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Statistical Models in Clinical Studies 

 

Abstract 

Although statistical models serve as the foundation of data analysis in clinical studies, their 

interpretation requires sufficient understanding of the underlying statistical framework. 

Statistical modeling is inherently a difficult task because of the general lack of information of the 

nature of observable data. In this article, we aim to provide some guidance when using regression 

models to aid clinical researchers to better interpret results from their statistical models and to 

encourage investigators to collaborate with a statistician to ensure their studies are designed and 

analyzed appropriately.   
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Introduction 

A statistical model is a mathematical representation of statistical assumptions about how 

observable data are generated. It is particularly useful for clinical studies that relate multiple 

variables, such as patients’ background factors, to an outcome, such as survival time, since it 

allows the compact representation of the relationship as a mathematical function, called a 

regression function. However, a statistical model is just a simplification of the true underlying 

relationship, and with incorrect assumptions it can easily lead to misleading results. “All models 

are wrong, but some are useful”; this is the famous remark by the statistician George E. P. Box 

[1]. 

Statistical modeling is inherently a difficult task because of our general lack of 

understanding regarding the nature of observable data, and it should be appropriately guided 

by clinical expertise. Another challenging aspect of statistical modeling is the underlying 

statistical assumptions may not be well understood by the intended audience or even the 

analysts [2]. This is particularly concerning as statistical software is readily available and is 

commonly used by researchers without appropriate expertise to perform complicated data 

analyses. This article thus intends to provide some basis and principles of statistical models, 

specifically, regression models, with the hope of helping clinical researchers to better interpret 

results from their statistical models, and more importantly, to strongly encourage investigators 

to collaborate with a statistician to ensure their studies are designed and analyzed 

appropriately.   

 

Components of a Statistical Model 

Statistical models are typically expressed as equations with the outcome of interest (called the 

dependent variable) on the left side of the equation and a set of predictors (called covariates or 

independent variables) on the right side, called regression models.  
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Outcome variables and types of regression model. The outcome of interest can be a continuous 

variable, a dichotomous variable, a count variable, or a time-to-event variable. The type of 

outcome variable dictates the type of regression model used to analyze the data. This is because 

a statistical model is fit to the observed data to not only understand the relationship between 

the outcome and the predictors for the observed patients but to also generalize the conclusions 

drawn from the observed data to a larger population. The generalization is inferred from the 

observed data based on a set of assumptions about the probability distribution of the outcome. 

Table 1 summarizes the common types of outcome variables, some example outcomes, their 

associated probability distributions, and corresponding regression model.  

    Examples of outcome types and regression models in lung cancer literature 

include: weight change (continuous variable) from the start of cancer therapy in non-small-cell 

lung cancer (NSCLC) patients was modeled using linear regression [3]; objective overall 

response rate (ORR, binary variable), grade 3 or worse adverse events (binary) after treatment 

of gemcitabine and carboplatin with or without cediranib as first-line therapy in advanced 

NSCLC were evaluated using logistic regression models [4]; and overall survival (OS, time-to-

event) and progression-free survival (PFS, time-to-event) in patients with advanced NSCLC 

treated with PD-1/PD-L1 check-point inhibitors were evaluated using Cox proportional hazards 

models [5].  

Predictor variables and interpretation. The predictors in a regression model can be categorical 

or continuous variables. The simplest categorical predictor has two levels, for example, sex 

(male vs. female). A linear regression model evaluating the association between sex and weight 

loss [3] can be stated as 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑤𝑤𝑀𝑀𝑤𝑤𝑤𝑤ℎ𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) = 𝛼𝛼 + 𝛽𝛽 ∙ 𝑙𝑙𝑀𝑀𝑠𝑠 where female is the reference 

category (𝑙𝑙𝑀𝑀𝑠𝑠 = 0) and 𝑙𝑙𝑀𝑀𝑠𝑠 = 1 represent male. In this model the intercept 𝛼𝛼 represents the 

mean weight loss of female patients, while the 𝛽𝛽 represents the difference in mean weight loss 
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between male and female patients. A positive 𝛽𝛽 means, on average, male patients lost more 

weight than female patients whereas a negative 𝛽𝛽 means, on average, male patients lost less 

weight than female patients.  

In general, a categorical predictor with K categories is represented by K-1 dummy 

variables, i.e., binary (0/1) variables, in a regression model with one category serving as the 

reference. For example, a model evaluating the association post-treatment weight loss and body 

mass index (BMI, categorized as 4 groups: underweight, normal weight, overweight, or obese) 

at the start of chemotherapy can be stated as 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑤𝑤𝑀𝑀𝑤𝑤𝑤𝑤ℎ𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) = 𝛼𝛼 + 𝛾𝛾1 ∙ 𝑏𝑏𝑏𝑏𝑤𝑤1 + 𝛾𝛾2 ∙

𝑏𝑏𝑏𝑏𝑤𝑤2 + 𝛾𝛾3 ∙ 𝑏𝑏𝑏𝑏𝑤𝑤3, where normal weight is the reference category and 𝑏𝑏𝑏𝑏𝑤𝑤1 = 1 for 

underweight and 𝑏𝑏𝑏𝑏𝑤𝑤1 = 0 otherwise, 𝑏𝑏𝑏𝑏𝑤𝑤2 = 1 for overweight and 𝑏𝑏𝑏𝑏𝑤𝑤2 = 0 otherwise, 

and 𝑏𝑏𝑏𝑏𝑤𝑤3 = 1 for obese and 𝑏𝑏𝑏𝑏𝑤𝑤3 = 0 otherwise. The 𝛼𝛼 is the mean weight for patients with 

normal weight and 𝛾𝛾1, 𝛾𝛾2, 𝛾𝛾3 are the differences in mean weight between patients who are 

underweight, overweight, and obese compared to patients with normal weight. 

For a continuous predictor, e.g., age at baseline in years, its association with the 

outcome can be evaluated in the linear model, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑤𝑤𝑀𝑀𝑤𝑤𝑤𝑤ℎ𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) = 𝛼𝛼 + 𝜙𝜙 ∙ 𝑀𝑀𝑤𝑤𝑀𝑀. The 

intercept 𝛼𝛼 represents 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑤𝑤𝑀𝑀𝑤𝑤𝑤𝑤ℎ𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) at 𝑀𝑀𝑤𝑤𝑀𝑀 = 0 and 𝜙𝜙 represents the change in 

mean weight loss with every year increase in age. However, it is worth noting that 𝑀𝑀𝑤𝑤𝑀𝑀 = 0 

may be far outside the range of the study population, and one can avoid such an extrapolation 

by introducing a typical age level, such as 50, as the reference age, by subtracting 50 from 𝑀𝑀𝑤𝑤𝑀𝑀. 

In this case, the model can be expressed as 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑤𝑤𝑀𝑀𝑤𝑤𝑤𝑤ℎ𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) = 𝛼𝛼 + 𝜙𝜙 ∙ (𝑀𝑀𝑤𝑤𝑀𝑀 − 50), where 𝛼𝛼 

now represents 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑤𝑤𝑀𝑀𝑤𝑤𝑤𝑤ℎ𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) at 𝑀𝑀𝑤𝑤𝑀𝑀 = 50. In some cases, when 𝜙𝜙, the change in one-

year increment is deemed negligibly small, it is more meaningful to consider the effect of a 

substantial change in age, such as 10 years. As such, one may work with a modified predictor,  

agetrans = (𝑀𝑀𝑤𝑤𝑀𝑀 − 50)/10, and assume 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑤𝑤𝑀𝑀𝑤𝑤𝑤𝑤ℎ𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) = 𝛼𝛼 + 𝜙𝜙 ∙ agetrans, where 𝜙𝜙 now 

represents the change in mean weight loss associated with every 10-years increase in age. 
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This example assumes that the effect of age is linear, i.e., the incremental impact on 

mean weight loss associated with each year increase in age is constant over its entire range. We 

can check the linearity assumption simply based on a scatter plot of the observed weight loss 

versus age in this univariable setting. Such a plot can also help in identifying outliers that can 

substantially influence the parameter estimation (see Section “Univariable versus Multivariable 

Models” for related plots and detection of influential observations in the multivariable setting). 

When non-linearity is suggested, a more complex model should be considered, for example, a 

model with a quadratic effect of age, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑤𝑤𝑀𝑀𝑤𝑤𝑤𝑤ℎ𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) = 𝛼𝛼 + 𝜙𝜙1 ∙ agetrans + 𝜙𝜙2 ∙ agetrans2 . 

More flexible splines and other non-parametric models are also available [7]. Another approach 

address non-linearity is transformation of the outcome variable, such as log transformation. 

This approach can also help to yield a distribution that is nearer to a normal distribution with 

variance that is constant across the levels of the predictor variable. Alternatively, continuous 

predictor variables such as age are transformed into a categorical variable, e.g., less than or 

greater than 65 years. Such transformation may facilitate interpretation but at the cost of 

information loss due to grouping. 

Categorical and continuous predictors are included in logistic regression models and 

Cox proportional hazards models in the same manner as described above for linear regression 

model (see Table 1). However, their associations are modeled on the log(odds) of a binary 

outcome and on the log(hazard rate) of a time-to-event outcome, respectively. Due to the 

complexity of time-to-event data analysis, Cox proportional hazards model will be covered in 

more details in a future article in this series. 

 

Univariable versus Multivariable Models 

So far, we have discussed models with only one predictor, often called univariable models. Such 

models can be extended to simultaneously include multiple predictors, called multivariable 
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models. Most often these are referred to incorrectly as univariate and multivariate models in 

the clinical literature, it is important to emphasize that the appropriate terminology is 

univariable and multivariable models. An example of the multivariable model is: 

 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑤𝑤𝑀𝑀𝑤𝑤𝑤𝑤ℎ𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) = 𝛼𝛼 + 𝛽𝛽1 ∙ 𝑙𝑙𝑀𝑀𝑠𝑠 + 𝛽𝛽2 ∙ 𝑏𝑏𝑏𝑏𝑤𝑤1 + 𝛽𝛽3 ∙ 𝑏𝑏𝑏𝑏𝑤𝑤2 + 𝛽𝛽4 ∙ 𝑏𝑏𝑏𝑏𝑤𝑤3+𝛽𝛽5 ∙ agetrans,   (1) 

 

where sex, bmi, and 𝑀𝑀𝑤𝑤𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 are defined as in previous models. Here, the intercept 𝛼𝛼 

represents the mean weight loss of a female patient with normal weight whose age is 50, 

corresponding to agetrans = (𝑀𝑀𝑤𝑤𝑀𝑀 − 50)/10 = 0. However, interpretation of the regression 

parameters 𝛽𝛽′s is now conditional on the values of the other predictors. For example, 𝛽𝛽1 

represents the difference in mean weight loss of a male patient compared to a female patient in 

the same BMI category and the same age. Similarly, 𝛽𝛽2 represents the difference in mean 

weight loss of an underweight patient compared to a normal weight patient the same sex and 

age category. More generally, the effect of each predictor in the above multivariable model 

compares the outcome of individuals with the same attributes except for the predictor being 

evaluated. This aspect of multivariable models is particularly useful when adjusting for 

confounding factors. Here, confounding represents the effect of treatment which is not 

distinguishable from those of other factors, called confounding factors, which typically relate to 

both the treatment selection and the outcome variable, but are not mediators of the treatment 

effect on the outcome. Multivariable models allow for evaluation of the treatment effect 

conditional on the same attributes of confounding factors by including them as predictors. 

Another aspect of the above multivariable model is that the effect of a predictor is the 

same regardless of the value of the other predictors. For example, the effect of sex 𝛽𝛽1 on mean 

weight loss is constant irrespective of the BMI levels or age (see Fig 1A). This assumption can 

be relaxed by introducing an interaction term, such as 𝑙𝑙𝑀𝑀𝑠𝑠 × 𝑀𝑀𝑤𝑤𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 . Specifically,  
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𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑤𝑤𝑀𝑀𝑤𝑤𝑤𝑤ℎ𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) = 𝛼𝛼 + 𝛽𝛽1 ∙ 𝑙𝑙𝑀𝑀𝑠𝑠 + 𝛽𝛽2 ∙ 𝑏𝑏𝑏𝑏𝑤𝑤1 + 𝛽𝛽3 ∙ 𝑏𝑏𝑏𝑏𝑤𝑤2 + 𝛽𝛽4 ∙ 𝑏𝑏𝑏𝑏𝑤𝑤3+𝛽𝛽5 ∙ 𝑀𝑀𝑤𝑤𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡   

+𝛽𝛽6 ∙ (𝑙𝑙𝑀𝑀𝑠𝑠 × 𝑀𝑀𝑤𝑤𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡),     (2) 

which allows for differential effect of sex on mean weight loss across the levels of age (see Fig 

1B). Inclusion of interaction terms should be considered to capture effect modifications 

between predictors, even though it can make a model and its interpretation more complex.  

We have thus far considered additive effect models. The advantages of this type of 

model are ease of interpretation and suitability for evaluating absolute effects of factors or 

interventions in a population. However, additive effect models can suffer from technical issues, 

especially for non-continuous outcome variables, and models with multiplicative effects, such 

as logistic, Poisson, Cox regression models, can be considered (see Table 1). 

 

Model Complexity versus Data Information  

Generally, statistical models become complex as the number of parameters (𝛽𝛽′s) increases, e.g., 

by entering many predictors, possibly including non-linear or interaction terms, in the 

regression model. However, a complex model will not work when it is fit to a dataset that does 

not contain enough information to estimate the parameters. The limiting sample size represents 

the amount of data information required for model fitting, typically measured by the number of 

subjects for continuous outcome variables and by the number of events in the analysis of 

censored time-to-event data (see Table 1).  

In regression modeling, there are rules for limiting sample size, such as “at least 10 

subjects per predictor.” [8] However, it should be noted that these are crude criteria that do not 

take into account the joint distribution among variables, such as multicollinearity, which 

represents high correlations among predictors and multivariable models must be free of 

multicollinearity for independent predictors. An estimation that is unstable due to lack of 

limiting sample size, multicollinearity, or other reasons can be recognized by unrealistic 
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parameter estimates or confidence intervals and/or by warning messages from the statistical 

software indicating that the estimates or the variances cannot be obtained.  

 

Modeling for Effect Assessment versus Modeling for Classification/Prediction 

The strategy for regression modeling depends on the intended use of the model. Two common 

uses of statistical models are effect assessment and risk classification or prediction. If the 

model is used to assess the treatment effect or the impact of a risk factor, it is important that 

the model provides unbiased estimates of the treatment effect or impact of the risk factor of 

interest after adjusting for established prognostic factors and confounding factors. As such, 

careful selection of predictors based on both statistical and clinical perspectives is warranted. 

Various variable selection techniques and their implications can be found in statistical 

literature [8-11].  

It must be emphasized that model checking and diagnostics are critical. For example, 

in the multivariable linear model of mean weight loss, the linearity assumption for a continuous 

predictor, e.g., age, can be checked by a scatter plot of the residual versus age, where the 

residual for a patient is defined as the observed weight loss minus the fitted weight loss for that 

patient. Another aspect of model diagnostics is identification of influential observations, 

representing patients or groups of patients with particular predictor profiles, in estimating 

respective regression coefficients. Specifically, when the change of a regression coefficient 

estimate after deleting certain observations, called delta-beta, is substantial, it would be 

regarded as influential in estimating the regression coefficient. As a more theoretical remark, a 

linear model for a continuous outcome variable requires four main assumptions: linearity, 

independence (observations are independent from each other), normality (residuals follow a 

normal distribution), and homoscedasticity of residuals across the levels of the predictors, 

although the linear regression is relatively robust to deviations in the latter two assumptions. In 
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case where different regression models with different sets of predictors or from different sets 

of observations are considered important, it would probably be wise to present the results of all 

these models. This is helpful to evaluate the robustness of the main results or conclusions from 

the regression analysis to different regression models as a sensitivity analysis. 

If the regression model is intended to be used as a scoring system for risk classification 

or for prediction, then the overall prediction accuracy of the model – as measured by sensitivity, 

specificity, the C-statistic for classification and the Hosmer-Lemeshow statistic and Brier score 

for prediction [12] – is more important than providing unbiased estimate for each predictor in 

the model. For example, Mandrekar et al. [13] developed a prognostic model for advanced 

NSCLC and assessed its accuracy in classifying prognostic risk using the C-statistic, which 

represents the probability that a randomly selected patient who develops an event of interest 

has a higher risk score than a patient who had not developed the event.  

In classification or prediction, the estimates of 𝛽𝛽′𝑙𝑙 are regarded simply as weights, 

rather than effects, and will be tuned to achieve high prediction accuracy. For the standard 

regression models, such as linear, logistic, Poisson, and Cox regression models (see Table 1), 

penalized regressions, such as ridge and lasso [14, 15], are a technique to shrink the regression 

parameters or weights toward zero. The resultant weights are thus biased, but more stable (i.e., 

less variance). As the penalization reduces the number of parameters (the degree of freedom) 

substantially in the process of estimation by shrinkage, it is effective especially when the 

number of predictors or parameters is large relative to the limiting sample size.  

All regression models are subject to overfitting to random noise, rather than systemic 

variation in the data used to build the model [8,14,16]. In classification or prediction, 

resampling techniques, such as split-sample, cross-validation, or bootstrap, can be used for 

internal validation to assess the accuracy using the study population for which the model was 

developed [17]. However, an external validation study using an independent set of samples is 
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generally warranted. See the TRIPOD guidelines for reporting both model building and 

validation studies [17].  

 

Concluding Remarks  

In this article, our focus is on the basis and principles of statistical models after collection of a 

dataset for statistical analysis. We emphasize that the key to successful data analyses is 

designing the study to enhance the quality and quantity of data relevant to the study objective 

[18-20].  
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Figure legend  

Fig 1. Multivariable models without interaction (A) and with interaction (B). In the multivariable model with 

main effects only given in Equation (1) (panel A), two regression lines are parallel, indicating constancy of sex 

effect for any value of age (i.e., β1) and constancy of age effect for any value of sex (i.e., β5) in subjects with a 

given level of BMI. On the other hand, in the multivariable model with interaction given in Equation (2) (panel 

B) the regression lines are not parallel, and the effect of sex now depends on age and vice versa; the effect of sex 

for age = 50 or 𝑀𝑀𝑤𝑤𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = (𝑀𝑀𝑤𝑤𝑀𝑀 − 50)/10 = 0 is β1, but that for 𝑀𝑀𝑤𝑤𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =1 is β1+β6. Similar interpretation 

applies to the effect of age for each sex category.  
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A) Main effects only B) Main effects and interaction 

Fig 1. Multivariable models without interaction (A) and with interaction (B). In the multivariable model 

with main effects only given in Equation (1) (panel A), two regression lines are parallel, indicating 

constancy of sex effect for any value of age (i.e., β1) and constancy of age effect for any value of sex 

(i.e., β5) in subjects with a given level of BMI. On the other hand, in the multivariable model with 

interaction given in Equation (2) (panel B) the regression lines are not parallel, and the effect of sex 

now depends on age and vice versa; the effect of sex for age = 50 or 𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = (𝑎𝑎𝑎𝑎𝑎𝑎 − 50)/10 = 0 

is β1, but that for 𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =1 is β1+β6. Similar interpretation applies to the effect of age for each sex 

category. 
 



Table 1. Overview of Regression Models 

 Type of outcome variable 

Continuous  Binary† Count Time-to-event  

Examples Weight change [3] Objective response of 

complete/partial 

response or not [4]; 

Grade 3 or worse 

adverse event or not 

[4]; progression within 

6 months of starting 

treatment or not 

Number of 

occurrences of 

a rare adverse 

event per 

patient 

Overall survival 

(OS) or 

Progression-free 

survival (PFS) 

times [5] 

Assumed 

probability 

distribution 

Normal distribution 

or unspecified (non-

parametric) 

Bernoulli or binomial   Poisson  Exponential, 

Weibull, and log-

normal, or can be 

unspecified* 

Common 

regression model 

Linear regression Logistic regression Poisson 

regression 

Cox proportional 

hazards 

regression 

Function of 

outcome being 

modelled  

The mean Odds, (=P/(1 – P)) or 

Log(odds) 

(= log(P/(1 – P))** 

Expected count 

(e.g., expected 

number of 

adverse events 

per patient) 

Hazard rate (e.g., 

hazard rate of 

mortality for OS, 

of death or 

disease 

progression for 

PFS)  

 

†Binary variables are frequently transformed from multinominal variables (such as cancer types) or ordinal 

variables (such as disease severities or grades) by introducing a grouping or threshold. Alternatively, such 

variables can be modeled based on extensions of logistic models, i.e., multinominal logistic models and ordinal 

logistic models (such as adjacent-category logistic models and cumulative or proportional-odds models) [6].  

*The Cox regression is semi-parametric since the particular distributional form of the time-to-event 

distribution (or survival distribution) is unspecified, while the particular form of predictor effects is specified 

for the hazard rate.  

**P = probability of success 


