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Abstract Purpose: A three-dimensional (3D) structure extraction technique
viewed from a two-dimensional image is essential for the development of a
computer-aided-diagnosis (CAD) system for colonoscopy. However, a straight-
forward application of existing depth-estimation methods to colonoscopic im-
ages is impossible or inappropriate due to several limitations of colonoscopes.
In particular, the absence of ground-truth depth for colonoscopic images hin-
ders the application of supervised machine-learning methods. To circumvent
these difficulties, we developed an unsupervised and accurate depth-estimation
method.

Method: We propose a novel unsupervised depth-estimation method by intro-
ducing a Lambertian-reflection model as an auxiliary task to domain trans-
lation between real and virtual colonoscopic images. This auxiliary task con-
tributes to accurate depth estimation by maintaining the Lambertian-reflection
assumption. In our experiments, we qualitatively evaluate the proposed method
by comparing it with state-of-the-art unsupervised methods. Furthermore, we
present two quantitative evaluations of the proposed method using a measur-
ing device, as well as a new 3D reconstruction technique and measured polyp
sizes.

Results: Our proposed method achieved accurate depth estimation with an
average estimation error of less than 1 mm for regions close to the colonoscope
in both of two types of quantitative evaluations. Qualitative evaluation showed
that the introduced auxiliary task reduces the effects of specular reflections and
colon wall textures on depth estimation and our proposed method achieved
smooth depth estimation without noise; thus validating the proposed method.
Conclusions: We developed an accurate depth-estimation method with a new
type of unsupervised domain translation with the auxiliary task. This method
is useful for analysis of colonoscopic images and for the development of a CAD
system since it can extract accurate 3D information.

Keywords Colonoscopy - depth estimation - medical image understanding -
computer-aided diagnosis - domain translation - Lambertian reflection

1 Introduction

The extraction of three-dimensional (3D) structures is an essential medical-
image processing task for understanding anatomical structures and surgical
scenes. Especially in colonoscopy, extracting 3D structures in a view from
two-dimensional images is important for the development of computer-aided
diagnosis (CAD) systems, since we can obtain only a set of two-dimensional
images by a colonoscope’s monoscopic camera. To assist colonoscopic exam-
ination, several depth-estimation-based methods have been proposed [1-4].
Nadeem and Kaufman integrate depth estimation into their polyp-detection
method to prevent overlooking polyps [1]. Itoh et al. proposed automatic
polyp-size classification using estimated depth to clarify whether a polyp is
over or under 10 mm for qualitative diagnosis [2]. Ma et al. proposed a real-
time 3D colon reconstruction method using deep-learning-based depth and
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camera-motion estimation to detect missing regions and reduce overlooking
lesions in colonoscopy [3]. Chen et al. adopted an estimated depth map to
obtain accurate localisation and mapping for the construction of an accurate
navigation system [4]. In these methods, depth estimation plays an essential
role. Therefore, an accurate depth-estimation method from a single-shot image
has great potential for developing an accurate CAD system in colonoscopy.

In spite of the importance of depth estimation in colonoscopy, the settings
of this estimation problem are challenging. Even though supervised depth-
estimation methods for a single-shot image have been reported in computer
vision [5-7], depth information cannot be measured with a colonoscope due to
its hardware limitations. Since ground truth depth is unavailable, supervised
methods are inapplicable to colonoscopic images. On the other hand, based
on classical shape from shading [8] and multiple view geometry [9], unsu-
pervised deep-learning-based methods have been proposed for an autonomous
car-driving system [10-13]. These methods construct convolutional neural net-
work (CNN) models without the ground truth of depth. Unsupervised train-
ing is achieved by the optimisation of depth-estimation CNN and camera-
pose estimation CNN for temporary-sequential images. For the optimisation, a
Lambertian-reflection assumption and geometrical constraint with correspond-
ing matching among sequential images are used instead of the ground truth of
depth. However, colonoscopic images include non-Lambertian reflections, such
as the specular reflections and textures of a colon wall. Furthermore, colono-
scopic images have fewer discriminative textures and poor local geometrical
features for fine corresponding matching [3,4]. In this difficult situation, we
can achieve only blurred or partly corrupted depth images with the current
unsupervised deep-learning method for colonoscopic images [2].

To circumvent the above challenges, we propose a new unsupervised depth-
estimation method for a colonoscope. Instead of the conventional multiple-
view-geometry approach, we adopt a model-based domain translation ap-
proach. We first generated virtual RGB-D colonoscopic images, based on an
ideal Lambertian-reflection model with an unique albedo for depth estima-
tion, from human computed tomography (CT) colonography data by virtual-
colonoscope settings [15]. We used these generated virtual images and the real
colonoscopic images collected in daily colonoscopy to find the translations be-
tween the domains of these two types of images. In general, textures of colon
walls and specular reflections lead to depth-estimation errors, since these are
violations of the Lambertian-reflection model. However, we can reduce the
effects of these violations by using Lambertian-reflection-based images for
the training of translations. Figure 1 summarises our proposed method. In
the training of the proposed method, its loss function evaluates translated
Lambertian-reflection-based images in addition to translated depth images.
This additional evaluation is backpropagated to the all weights in a model
and contributes to keeping the Lambertian-reflection model as an auxiliary
task for the depth estimation. From the results of this backpropagation, deep-
learning architecture learns how to ignore the textures and specular reflections
in input images. Therefore, we achieved an accurate depth estimation from a
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Fig. 1 Proposed depth-estimation method for a colonoscope.

real colonoscopic image by adopting this auxiliary task for unsupervised learn-
ing.

2 Methodology
2.1 Depth estimation and domain translation

Computing a 3D shape of a surface as a set of 3D points (X,Y, Z) " € R? from
a brightness image I(u),u = (u,v)" € £ of an object’s surface captured in an
image plane 2 C Z? is conventionally known as a shape-from-shading prob-
lem. For shape from shading, Belhumeur and colleagues proved the following
property with the Lambertian-reflection model, which is a model of a surface’s
diffuse reflection.

Bas-relief Ambiguity When the lighting direction and the Lambertian re-
flectance (albedo) of the surface are unknown, the same image can be obtained
by a continuous family of the surface [8,18].

To circumvent this ambiguity, we assume that the lighting is known and the
albedo is uniform. We then can express the brightness on an image by

I(u) = pl"n  cos, (1)

where p is a reflectance ratio (albedo) and 6 is an angle between lighting
direction ! and surface normal vector n, ||l||z2 = |n|l2 = 1 at surface point
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(X,Y,Z)T. From the given brightness and lighting directions, we can estimate
the normal vectors over an image. By adding a smooth condition to a surface
as an assumption, we can estimate the shape of a surface by minimising the
sum of the gradient of the surface normal vectors over an image [8]. Note that
the solution is not unique due to the properties of this ill-posed problem, which
includes concave/convex ambiguities [8].

The depth information in colonoscopy expresses the distance between a
colonoscope and the surface of a colon wall. In the depth estimation, we have
to capture the distance to a colon wall in addition to the shape of a colon wall.
Therefore, the estimation problem of depth D(u) € R from a three-channel
discrete image X in colonoscopy can be interpreted as an extension of shape-
estimation problem. Note that the directions of the colonoscope and lighting
are the same, where a single light that is attached to the colonoscope’s tip.
We then have the following proposition with the Lambertian-reflection model
for the depth-estimation problem.

Proposition 1 We set Vrgp and Vp to be domains of virtual RGB colono-
scopic images and virtual depth images, respectively. Virtual RGB images are
generated under the Lambertian-reflection model of a unique albedo by using
CT colonography data. We assume that a virtual depth image expresses a dis-
tribution of distances from points on a colon surface to the optical centre of
a colonoscope. By using the given pairs of a virtual colonoscopic image and a
depth image, CNN can find a translation @ : Vrgs — Vb -

The validity of the above proposition was experimentally supported [16,17]. In
this report, virtual colonoscopic images were generated under the Lambertian
reflection of a unique albedo. Therefore, these virtual images are ideal images
for depth estimation without violation elements on images such that textures
and specular reflections. Toward the application of transformation @ to real
colonoscopic images, we have to remove the violation elements on the colon
surface. Therefore, we introduce the following proposition.

Proposition 2 For given unpaired data of virtual RGB colonoscopic images
in domain Vrap and real RGB colonoscopic images in domain Rrap, Genera-
tive Adversarial Networks (GANs) can find a domain translation ¥ : Rrap —
Vrce and its inverse W' : Veap — RreB-

Studies have experimentally supported the validity of this proposition [16,19].
Unfortunately, however, ¥ leads to cumbersome two-step optimisation and
estimation.

Instead of introducing ¥, training techniques have been proposed for the
achievement of a translation Rrgp — Vp. To mitigate the difference between
real and virtual RGB images, Rau et al. introduced an adversarial loss of
translated real colonoscopic images to the training of Pix2Pix and proposed it
as extended Pix2Pix (ExtPix2Pix) [17]. Even though ExtPix2Pix adopted the
GAN framework, ExtPix2Pix bases on the paired learning of virtual RGB and
depth image; This paired learning is apt to overfit a domain of training data,
and does not work well for unseen data. Furthermore, ExtPix2Pix uses only one
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real colonoscopic image for each minibatch of 20 images in training. Therefore,
its practical advantage is unclear. Mathrew et al. proposed an extended cycle
loss and directional discriminator for the training of CycleGAN [14]. Their
new loss function reduced the effects of patient-specific texture and specular
reflections in depth esimation. However, we found that the extended cycle loss
causes over smoothing and artefact generation. Thus, to achieve accurate depth
estimation, we need to integrate the reflection model to depth estimation.
Propositions 1 and 2 lead to the following properties. A real RGB colono-
scopic image has information for the domain translation to Lambertian-assumed
virtual colonoscopic images, and these virtual colonoscopic images provide
ideal information for depth estimation. Therefore, we assume that real RGB
colonoscopic images have information for both translations to a virtual RGB
colonoscopic image and a depth image. We then have the following proposition.

Proposition 3 For given unpaired data of real colonoscopic images in domain
Rrae and virtual RGB-D colonoscopic images in domain Vraep, CycleGAN
can find domain translation F : Rras — Vrasp and its inverse G : VrRap —
Rres-

Against Proposition 3, we propose a new method in the next subsection.

2.2 Proposed depth-estimation method

For a spatial size of H x W, and the conditions ¢ = 1,2,...,n;,j =1,2,...,n;
and n; # n;, we set discrete images X; € RAXWX3 in Rpep and Y, ¢
RAXWx4 in Veapp. For the domains Rrgp and Vrgpp, we define mapping
F : Rras — Vraep and G : Vraep — Rrap as two kinds of domain trans-
lations. In addition, we introduced two adversarial discriminators, Dy, and
Dg, where Dy distinguishes between images { X}, and {G(Yj)};zl, and
Dy, distinguishes between images {Yj};”:1 and {F(X;)};",. As the extension
of Ref. [20], for distributions p(R) and p(V) of real and virtual colonoscopic
images, we then define adversarial losses

Lean(F, Dy, Vraep, RrcB) = Ig*,:yj ~p(v) [log Dy (Yj)]

+Ex,np(r) [log(1 = Dy(F(X:)))],
Lean(G, Dr,RreB, VReBD) = If;xwp(?z) [log D (X;)]

+ I]EYJ-W(V) [log(1 — Dr(G(Y;)))],

(2)

3)

where the first and second terms of the right side of each equation evaluate how
accurately the original and translated images are discriminated. These adver-
sarial losses evaluate the matching between the distribution of the translated
images to the data distribution of the genuine images in the target domain. If
the adversarial losses are small for well-trained discriminators, we can obtain
realistic translations.
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By extending the cycle-consistency loss [21], we define a loss by

Leye(F, G) = Ex,np(m) (IGF (X)) = Xilli] + By vy [IIF(G(Y5)) = Y] -
(4)

This cycle-consistency loss evaluates the consistency of two mappings to pre-
vent learned mappings F' and G from contradicting each other. By using Eqs.
(2)-(4), we define our object function by

L(G,F,Dy,Dr) = Lcan(F, Dy, VraBD, RRGB)
+ Laan(G, Dgr, RraB, VreBD) + Moy (F, G),  (5)

where A controls the importance of the cycle-consistency loss defined in Eq.
(4). In this paper, we use A = 10. The object function in Eq. (5) evaluates the
translation to RGB-D images, where both the Lambertian and depth images
are evaluated. If translation F' violates the Lambertian-reflection model in its
training, the loss value increases. Therefore, minimisation of the adversarial
loss can find translation F' while maintaining the model and ignoring textures
and specular reflections. The translation from Rrgp — Vres is an auxiliary
task for depth estimation Rrgg — Vp in F, since this task reduces the effects
of textures and specular reflections in the translation. This is reason why we
adopt Rrap — Vrapp instead of the direction domain translation Rrap —
Vp. Finally, we obtain translations while keeping the Lambertian-reflection
assumption as solutions

F* G* = i F,G,Dy,Dgr).
67 = s iy g AR G Dy D) Y

This min-max problem searches optimal translations by maximising the per-
formance of discriminators and minimising the adversarial losses. The solution
of Eq. (6) achieves a depth estimation from a given colonoscopic image X as
the fourth channel of a translated image

Y = F*(X). (7)

3 Dataset construction

We constructed a real and virtual colonoscopic dataset for the development and
evaluation of our unsupervised depth-estimation method. We firstly collected
colonoscopic movies during typical colonoscopies of 37 patients at two hospitals
using the HQ290ZI colonoscope (Olympus, Japan) with Institutional Review
Board approval. Next, we divided these movies into training, and test A and
test B data without duplication of patients. We then extracted still images
from these divided data at 5 frames per second (fps). Each extracted image in
the test-A data includes a polyp, whose size is measured. Each extracted image
in the test-B data includes measuring forceps. Finally, we generated RGB-D
virtual images for training and validation data from the CT colonography
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Fig. 2 Examples of images in training data. Left: real RGB three-channel colonoscopic
images in domain Rrgp.- Right: virtual RGB-D four-channel colonoscopic images in domain
VraBD. In virtual four-channel images, depth represents physical length captured from CT
volumes.

data of seven and two patients, respectively, with CT colonography software:
NewVES [15].

In the dataset, there is no correspondence of patients between the extracted
real colonoscopic images and the CT data, since the collection of these CT data
and the colonoscopic images are independent. Each CT colonography data of
patients is a volume data of 512 x 512 x 349 voxels with 0.66 x 0.66 x 1.3
mm thickness. In the NewVES, setting a virtual camera and a light source on
a colon, we can observe the inside of a colon such like an usual colonoscopy.
In this observation, a virtual colonoscopic view represents only geometrical
shape of a colon wall without textures, since the NewVES generate an image
by lay-tracing technique against the distribution of colon’s CT values with
a Lambertian-reflection model of a unique albedo. From this observation, we
generated virtual Lambertian-based RGB images. For the generation of the
virtual depth image, we set pixel values to a range of [0, 255] for distances in the
range of [0,10] cm. In this setting, this distance represent the physical length
from a camera centre to a colon wall. Regions father than 10 cm are ignored
and set to 10 cm, since close regions are important for detailed observation
of polyps in colonoscopy. From this setting, the optimisation of Eq. (6) tries
to find the translation from the real colonoscopic images to the depth images
with a fixed scale [0, 10] cm.

Furthermore, we constructed a sequential-image dataset for the multiple-
view-geometry approach in the comparative evaluations. Based on results on
the previous work [2], we extracted still images at 30 fps and generated triplets
of successive images from the movies of 30 patients for training and validation
data. Table 1 summarises the number of images in the constructed dataset.
Figure 2 shows examples of the training data for the proposed method.
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Table 1 Summary of the number of real and virtual colonoscopic images and image triplets
used in the experiments. In this table, the number in parentheses expresses the number of
patients. Note that there is no duplication of data in patient level among the real and virtual
images, and training, validation, test-A, and test-B data.

training validation test A test B

f of real images 9,189 (30) — 6000 (11) 4302 (1)
# of virtual images 8,085 (7) 3064 (2) — —
f of image triplets 29,693 (27) 3299 (3) — —

4 Experimental results
4.1 Validation of training

Firstly, we trained the proposed method using the training data shown in Table
1. In this training, we trained generator F, G and discriminators Dg, Dy. We
set the sizes of real and virtual images to 256 x 256 x 3 and 256 x 256 X 4,
respectively. We then changed the number of channels of the input of G, Dy,
and the number of the output of F' to four from the original Cycle GAN,
where the number of channels is three. For F, G, D and Dy, the setting for
sizes, numbers, stride width and padding of kernels is the same to the original
CycleGAN. We used minibatch size of 64 and base learning rate ir = 0.002
with Adam optimiser for 300 epochs. We used the data argumentation with
random flipping for each image in a minibatch. For virtual depth images in
training and validation data, we computed the mean absolute error per pixel
between the original depth and the cyclically translated depth obtained as the
fourth channel of F(G(Y")) for a virtual colonoscopic image Y at each epoch.

Figure 3(a) illustrates the curves of the mean absolute errors. Figures 3(b)
and (c) show the examples of the original virtual images and their cyclically
translated depth images at epochs. Figure 4(a) shows an example of the cyclical
translation of G(F(X)) for a real colonoscopic image X. We translated all
images in the test-A data with the trained model at 300 epochs. Figure 5
show examples of the translation results.

4.2 Comparative evaluation

Secondly, we qualitatively evaluated the proposed method by comparing it
with the primary previous works such that XDCycleGAN [14], CycleGAN
[21], ExtPix2Pix [17], Monodepth2 [13] and SfMLearner [11], since there is no
existing benchmark dataset for the quantitative evaluation of depth estima-
tion. ExtPix2Pix and XDCycleGAN are the baseline and the latest colono-
scopic depth estimation methods. CycleGAN is the original method on which
our proposed method and XDCycleGAN based. SfMLearner and Monodepth2,
both of which are based on the Lambertian-reflection assumption and geomet-
rical constraint as explained in section 1, are the baseline and the winner
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Fig. 3 Qualitative validation of training of the proposed model. (a) Mean absolute error
between original and cyclically translated depth at each epoch for the training and validation
data. (b) Examples of virtual RGB images. (c) Examples of cyclically translated depth
images, which are the fourth channel of the virtual images shown in (b).

translated cyclically translated

Fig. 4 Examples of correct and incorrect training results. (a) Example of correctly opti-
mised results for the proposed method. (b) Example of incorrectly optimised results for
CycleGAN.

of the state-of-the-art methods for mono-view depth estimation, respectively
[13]. Note that SfMLearner and Monodepth2 can estimate only relative depth
without physical length.

For the training of XDCycleGAN and CycleGAN, which find a domain
translation Rrgp — Vp and its inverse, we used the same training data except
for the virtual RGB images of the proposed method. For CycleGAN, we used
the same hyperparameters of the proposed method. For XDCycleGAN with
the same loss weights to Ref. [14], we started the training with the weights
of 200-epoch trained CycleGAN with base learning rate Ir = 1.0 x 10~7 for
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Fig. 5 Examples of domain translation by the proposed method. (a) protruded polyps (6-14
mm). (b) small flat polyps (< 3mm). In (b), a green box expresses the location of a flat
polyp. In (a) an (b) each row shows the following results. The second and third rows show
from the first to third channel and the fourth channel, respectively, of the translated images.
The fourth row shows the fourth channel with seven colours to emphasise the changes in
estimated depth.
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XDCycleGAN  CycleGAN ExtPix2Pix ~ Monodepth2 ~ SfMLerner
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(b)

Fig. 6 Comparative evaluations of the proposed and state-of-the-art methods. (a) disparity
maps. (b) histogram-equalised images. In (a), brighter colour expresses larger disparity, that
is, the closer regions in a depth image and vice versa. In (b), distribution of histogram-
equalised depth shows the estimated shape of a colon wall.
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Table 2 Accuracy of polyp size measurement in a 3D reconstructed colon wall.

Casel Case2 Case3 Case4 Caseb

G.T. [mm] 3.0 6.0 8.0 12.0 14.0
measured size [mm] 2.1 6.2 8.1 11.0 15.6
absolute error [mm|] 0.9 0.2 0.1 1.0 1.6

70 epochs, since the training of XDCycleGAN is unstable. In the training of
CycleGAN, we observed incorrect optimisation, as shown in Fig. 4(b). In the
incorrect-optimisation results, CycleGAN outputs the inverse depth for near
and far points. These results imply the existence of concave/convex ambiguity
even in the deep-learning approach. To obtain the correct optimisation, we
restarted the optimisation with different random initial values.

For the training of ExtPix2Pix, which also finds a domain translation
Rres — Vp, we used the real and virtual RGB images in our training
data with the same architecture and hyperparameter setting of the original
ExtPix2Pix [17]. Note that this method bases on a supervised manner, where
each training data is a pair of a virtual RGB image and a depth image. There-
fore, compared with CycleGAN, the training of ExtPix2Pix was stable.

For the training of SfMLearner and Monodepth2, we used the sequential-
image dataset. We adopted the same hyperparameter settings as the original
SfMLearner and Monodepth2, respectively, since these settings achieved the
best results for each. We then predicted the depth for the real colonoscopic
images in the test-A data by using the three methods. For the comparison
shown in Fig 6, we adopted a disparity map and a histogram-equalised image.
The disparity map showed an inverse of depth for qualitative evaluation in the
same manner as Ref. [13]. The histogram-equalised image highlights effects of
the textures and lighting in the same manner as Ref. [14].

4.3 Quantitative evaluation with a measuring device

Thirdly, we presented quantitative evaluation with measuring forceps. To ob-
tain the ground truth depth, we assumed a pinhole-camera-model setting as
shown in Fig. 7(a). We can insert a device in the tip of a colonoscope and
the device will appear in a test-B data image. We inserted measuring forceps
(M2-3U, Olympus, Japan), which has graduations at every 2 mm.

We selected five still images from the test-B data, as shown in Fig. 7(c),
where the measuring forceps touch a colon wall. For each still image, we then
computed a mean error of depth estimation per pixel in the small region shown
with the green bounding box in Fig. 7(c), which represents the region of a colon
wall the measuring device touches. Figure 7(b) summarises the mean errors of
the bounding-square regions in the depth estimations.
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of depth is defined as the sum of the length of appeared measuring forceps in an image and
offset. Maximum length of the measuring forceps is 20 mm. We set the offset at 9 mm based
on the pre-calibration for a colonoscope. (b) Mean errors of depth estimation of the target
regions. Error bars express standard deviations of errors. (c) Input and estimated depth
images.

4.4 Quantitative evaluation with measured polyp sizes

Lastly, we present the quantitative evaluation with the 3D-reconstruction. As
preprocessing, we performed calibration [22] of a colonoscope—the same one in
the data collection—with a checkerboard and Matlab computer vision toolbox.
For the images of the test-A data, we obtained a 3D reconstructed colon wall
by reprojection with the inverse of an intrinsic matrix and a scale factor [9],
where we set the estimated depth to be the scale factor, and measured the
long diameter of each polyp in the reconstructed colon walls.

For the polyps in the test-A data images, expert endoscopists measured
their sizes with a device as the ground truth of the polyp sizes. Figure 8 shows
the 3D reconstructed colon walls from three viewpoints. Table 2 summarises
the ground truth, measured polyp size, and reconstructed error.
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Fig. 8 Examples of 3D reconstructions with estimated depth. In each view, the two rows
show the 3D point reconstruction and surface reconstruction, respectively, by MeshLab [24].

5 Discussion

Figure 3(a) shows the convergence of training of the proposed method in 150-
300 epochs. As shown in Fig. 3(c), the depth channel of an input is precisely
reconstructed by cyclical domain translation Vragpp — Rras — VrasD after
150 epochs. Figure 5 shows the assumption-satisfied domain translation to
RGB-D virtual colonoscopic images. In the second rows of Figs. 5(a) and
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5(b), the proposed method outputs smooth and sterical Lambertian-based
images without the textures of colon walls. The third and fourth rows in Figs.
5(a) and 5(b) show the smooth and boundary-clear depth distributions by the
proposed method. In the fourth row of Fig. 5(b), we can confirm small changes
in depth around small folds and flat polyps. These Lambertian and depth
images express different contents. A depth image simply shows the distance to
the colon wall. A Lambertian image, on the other hand, shows the distribution
of reflections and shades. We think that shades on Lambertian images make
these images look more sterical than depth images and make depth images
look smoother than Lambertian images. The results in Fig. 5 did not reveal
any tradeoff in the translation to Lambertian and depth images.

In the seventh column of Figs. 6(a) and (b), SfMLearner failed to capture
3D colon structures. In the sixth column of Figs. 6(a) and (b), Monodepth2
captured the 3D structure of a colon depicting the shapes of polyps and smooth
colon walls. In the results of both SfMLearner and Monodepth2, we see many
imprecise depth estimations as black spots. These might be caused by non-
Lambertian reflection in inputs, because this is a violation of the Lambertian-
reflection assumption in estimation. In the fifth column of Figs. 6(a) and (b),
ExtPix2Pix captured only a rough 3D structure of a colon and lost its detail
shape. Furthermore, we confirmed the black spots on estimation results. These
results show that ExtPix2Pix failed to mitigate the difference between real and
virtual domains in their depth estimation.

In the second and fourth columns of Figs. 6(a) and (b), the proposed
method and CycleGAN achieved smooth and boundary-clear depth estima-
tions. However, some outputs of CycleGAN are affected by textures and spec-
ular reflections in an input image. For example, the depth image of CycleGAN
shown in the first and second bottom rows affected by the texture of blood ves-
sels and specular reflections, respectively, in each input image. Furthermore,
as shown in the third columns in Figs. 6(a) and (b), XDCycleGAN lost the
shape details of the colon wall and generated some artefacts in the translation,
even though it slightly reduced the effects of textures and specular reflections.
On the other hand, comparison of the second columns of Figs. 6(a) and (b)
finds almost the same contrast between the histogram-equalised images, which
are contrast-enhanced images, and the disparity maps. This implies that the
proposed method accurately estimated small depth changes on the colon wall.
Consequently, the comparative evaluation results clarified the advantage of the
domain-translation approach with our auxiliary task.

In Fig. 7(b), the range of mean errors of depth estimation is only 1.0 mm.
Figure 8 shows the realistic 3D reconstructions of colon walls. Furthermore,
Table 2 shows that the mean absolute error of measured polyp sizes in these
3D reconstructions is 0.76 mm. Some might say that the convergence of the
cyclical translation in Fig. 3(a) doesn’t make sense, since GAN can embed
imperceptible high-frequency signals into an output for the reconstruction of
the original sample [23]. However, the results in Figs. 7(b) and (c), and Table
2, where input images do not include any signal generated by the GANs,
demonstrate the validity of our method.
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These validation of training, and qualitative and quantitative evaluations
clarified that the proposed method achieved the most accurate and valid depth
estimation where the auxiliary task reduced the effects of textures by keeping
the Lambertian-reflection model, among the state-of-the-art method.

6 Conclusions

We proposed a depth-estimation method by introducing a Lambertian-reflection
model as the auxiliary task to a domain translation between real and virtual
colonoscopic images towards the developing of a CAD system for colonoscopy.
Qualitative evaluations demonstrated the advantages of the proposed method
by showing smoother and less corrupted depth distribution in its estimation
than those of other state-of-the-art methods. Quantitative evaluations clarified
that the proposed method achieves accurate depth estimation with an average
error of less than 1 mm for regions close to the colonoscope.

Acknowledgements This study was funded by grants from AMED (19hs0110006h0003),
JSPS MEXT KAKENHI (26108006, 17TH00867, 17K20099), and the JSPS Bilateral Joint
Research Project.

Conflicts of interest

Kudo SE and Misawa M received lecture fees from Olympus. Mori Y received
consultant fees and lecture fees from Olympus. Mori K is supported by Cyber-
net Systems and Olympus (research grant) in this work, and by NTT outside
of the submitted work. The other authors have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in ac-
cordance with the ethical committee of Nagoya University (No. 357), and with
the 1964 Helsinki declaration and its later amendments or comparable ethical
standards. Informed consent was obtained via an opt-out procedure from all
individual participants included in the study.

References

1. Nadeem S, Kaufman A (2016) Computer-aided Detection of Polyps in Optical
Colonoscopy Images. Proc. SPIE 9785, Medical Imaging 2016: Computer-Aided Diagnosis:
549-560

2. Itoh H, Roth, HR, Lu L, Oda M, Misawa M, Mori Y, Kudo S-E, Mori K (2018) Towards
Automated Colonoscopy Diagnosis: Binary Polyp Size Estimation via Unsupervised Depth
Learning. Proc. Medical Image Computing and Computer Assisted Intervention: 611-619



18 Hayato Itoh et al.

3. Ma R, Wang R, Pizer S, Rosenman J, McGill, SK, Frahm J-H (2019) Real-Time 3D
Reconstruction of Colonoscopic Surfaces for Determining Missing Regions. Proc. Medical
Image Computing and Computer Assisted Intervention: 573-582

4. Chen, RJ, Bobrow TL, Athey T, Mahmood F, Durr NJ (2019) SLAM Endoscopy En-
hanced by Adversarial Depth Prediction. Proc. KDD’19 Workshop on Applied Data Sci-
ence for Healthcare

5. Saxena A, Sung HC, Andrew YN (2006) Learning Depth from Single Monocular Images.
Advances in Neural Information Processing Systems 18: 1161-1168

6. Eigen D, Fergus R (2015) Predicting Depth, Surface Normals and Semantic Labels with
a Common Multi-scale Convolutional Architecture. Proc. IEEE International Conference
on Computer Vision: 2650-2658

7. Ma F, Karaman S (2018) Sparse-to-Dense: Depth Prediction from Sparse Depth Samples
and a Single Image. Proc. IEEE International Conference on Robotics and Automation:
4796-4803

8. Prados E, Faugeras O (2006) Shape From Shading, Handbook of Mathematical Models
in Computer Vision, Springer: 375-388

9. Hartley R, Zisserman A (2003) Multiple View Geometry in Computer Vision. Cambridge
University Press

10. Garg R, Vijay Kumar BG, Carneiro G, Reid I (2016) Unsupervised CNN for Single View
Depth Estimation: Geometry to the Rescue. Proc. European Conference on Computer
Vision: 740-756

11. Zhou T, Brown M, Snavely N, Lowe DG (2017) Unsupervised Learning of Depth and
Ego-Motion from Video. Proc. IEEE Conference on Computer Vision and Pattern Recog-
nition: 6612-6619

12. Wang C, Buenaposada JM, Zhu R, Lucey S (2018) Learning Depth from Monocular
Videos Using Direct Methods. Proc. IEEE Conference on Computer Vision and Pattern:
2022-2030

13. Godard C, Aodha OM, Firman M, Brostow G (2019) Digging into Self-Supervised
Monocular Depth Estimation. Proc. IEEE International Conference on Computer Vision:
3827-3837

14. Mathew S, Nadeem S, Kumari S, Kaufman A (2020) Augmenting Colonoscopy Using
Extended and Directional CycleGAN for Lossy Image Translation. Proc. IEEE Interna-
tional Conference on Computer Vision: 4695-4704

15. Mori K, Suenaga Y, Toriwaki J (2003) Fast Software-based Volume Rendering Using
Multimedia Instructions on PC Platforms and Its Application to Virtual Endoscopy. Proc
SPIE Medical Imaging 5031: 111-122

16. Faisal M, Nicholas JD (2018) Deep Learning and Conditional Random Fields-based
Depth Estimation and Topographical Reconstruction from Conventional Endoscopy. Med-
ical Image Analysis 48: 230-243

17. Rau A, Edwards PJE, Ahmad OF, Riordan P, Janatka M, Lovat LB, Stoyanov D
(2019) Implicit Domain Adaptation with Conditional Generative Adversarial Networks
for Depth Prediction in Endoscopy. International Journal of Computer Assisted Radiology
and Surgery 14: 1167-1176

18. Belhumeur PN, Kriegman DJ, Yuille AL (1999) The Bas-relief Ambiguity. International
Journal of Computer Vision 35(1): 33-44

19. Oda M, Tanaka K, Takabatake H, Mori M, Natori H, Mori K (2019) Realistic Endo-
scopic Image Generation Method Using Virtual-to-real Image-domain Translation. IET
Healthcare Technology Letters 6(6): 214-219 v

20. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville
A, Bengio Y (2014) Generative Adversarial Nets. In: Advances in neural information
processing systems: 2672-2680

21. Zhu J-Y, Park T, Isola P, Efros AA (2017) Unpaired Image-to-Image Translation Using
Cycle-Consistent Adversarial Networks. Proc. IEEE International Conference on Com-
puter Vision: 2242-2251

22. Zhang, Z. (2000) A Flexible New Technique for Camera Calibration. IEEE Transactions
on Pattern Analysis and Machine Intelligence 22(11): 1330-1334

23. Chu C, Zhmoginov A, Sandler M (2017) CycleGAN, a Master of Steganography. Proc.
NIPS 2017 Workshop “Machine Deception”



Unsupervised Colonoscopic Depth Estimation 19

24. Cignoni P,Callieri M,Corsini M, Dellepiane M, Ganovelli F, Ranzuglia G (2008) Mesh-
Lab: an Open-Source Mesh Processing Tool. Proc. Eurographics Italian Chapter Confer-
ence.



