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Abstract Purpose : An endocytoscope is a new type of endoscope that en-
ables users to perform conventional endoscopic observation and ultramagni-
fied observation at the cell level. Although endocytoscopy is expected to im-
prove the cost-effectiveness of colonoscopy, endocytoscopic image diagnosis
requires much knowledge and high-level experience for physicians. To circum-
vent this difficulty, we developed a robust endocytoscopic (EC) image clas-
sification method for the construction of a computer-aided diagnosis (CAD)
system, since real-time CAD can resolve accuracy issues and reduce interob-
server variability.

Method: We propose a novel feature extraction method by introducing higher-
order symmetric tensor analysis to the computation of multi-scale topological
statistics on an image, and we integrate this feature extraction with EC im-
age classification. We experimentally evaluate the classification accuracy of
our proposed method by comparing it with three deep-learning methods. We
conducted this comparison by using our large-scale multi-hospital dataset of
about 55,000 images of over 3,800 patients.

Results: Our proposed method achieved an average 90% classification accu-
racy for all the images in four hospitals even though the best deep-learning
method achieved 95% classification accuracy for images in only one hospital.
In the case with a rejection option, the proposed method achieved expert-level
accurate classification. These results demonstrate the robustness of our pro-
posed method against pit-pattern variations, including differences of colours,
contrasts, shapes, and hospitals.

Conclusions: We developed a robust EC image classification method with novel
feature extraction. This method is useful for the construction of a practical
CAD system, since it has sufficient generalisation ability.

Keywords Endocytoscopy - CAD - pathological pattern classification -
machine learning - texture analysis

1 Introduction

The early detection of colorectal cancer is a critical problem because the sur-
vival rate for the cancer particularly depends on the stage of the cancer at diag-
nosis. Optical diagnosis of diminutive colorectal polyps is a promising approach
for the improvement of the cost-effectiveness of colonoscopy and the reduction
of polypectomy-related complications, according to the European Society of
Gastrointestinal Endoscopy and the American Society of Gastrointestinal En-
doscopy (ASGE). A new optical device, an endocytoscope has recently been
developed for minimally-invasive diagnosis. Endocytoscopy enables users to
perform direct observation of cells and their nuclei on the colon wall, that is,
pit patterns at a maximum of 500-times ultramagnification, as shown in Fig.
1. Endocytoscopy can become an alternative method to biopsy as a tool for
real-time diagnosis [1], since pit patterns on endocytoscopic (EC) images, as
shown in Fig. 2, capture similar strictures to histopathological patterns. How-
ever, much pathological knowledge and clinical experience are necessary for
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accurate endocytoscopy diagnosis. For example, Mori et al. [2] report that di-
agnostic performances of non-experts and experts for small (<10 mm) lesions
are and % and 89-93% accuracy, respectively, in the recognition of neoplastic
lesions.

Image classification techniques have the potential to resolve accuracy issues
and reduce interobserver variability in optical diagnosis for endoscopic images
[2-11]. Therefore, an accurate and robust image classifier is essential to the
construction of a real-time computer-aided diagnosis (CAD) system. For this
classification, determining how to represent image patterns is the most impor-
tant factor. Jachin et al. proposed texture-feature extraction with selection of
a region of interest [3]. Mesejo et al. proposed feature extraction based on tex-
ture, colour, and shape information [4]. Hafner et al. proposed colour-texture
feature extraction [5]. Tamaki et al. proposed transformation-invariant local-
feature-based feature extraction [6] and various kinds of wavelet-based feature
extraction [7]. Mori et al. proposed the combination of local binary features
and nuclei features [2]. In addition to these handcraft features, deep-learning-
based feature extraction and classification have been proposed recently [8-10].
These image classification techniques are useful for the construction of a CAD
system. Kominami et al. reported that non-expert endoscopists with a image-
classification-based CAD system may more easily achieve sufficient accuracy to
meet the criterion of the preservation and incorporation of valuable endoscopic
innovation initiatives of ASGE [11].

We developed a robust EC image classifier as an essential function in several
requirements for the construction of a practical CAD system. Since a practi-
cal CAD system might be used in many hospitals, a classifier should have a
robust response to variants of pit patterns and generalisation ability for new
(unseen) data. In the process of developing a robust EC image classifier, we
have proposed a novel feature extraction method by introducing higher-order
symmetric tensor analysis (HOSTA) [12,13] to the computation of topological
statistics on an image. Previous works [5-10] suggest that topological informa-
tion is essential for representing pit patterns on the surfaces of polyps. As the
natural extension of texture features [14] used in previous works [3-5], HOSTA
enable us to compute detailed topological statistics by decomposing the local
distribution of gradients into several principal directions. By computing topo-
logical statistics with local contrast normalisation for results of HOSTA, we
obtain robust features against variations of pit patterns with differences of
colour, contrast, and shape. This robustness results in the high generalisation
ability in EC image classification, since the staining styles in different hospitals
generate colour and contrast variations in addition to variations of the shapes
of pit patterns. Using this novel feature extraction and a linear classifier, we
constructed an EC image classifier. We experimentally evaluated the classifi-
cation performance of our classifier by comparing it with three deep-learning
methods to demonstrate the validity of the proposed feature extraction. We
conducted this comparison by using our large-scale multi-hospital dataset of
about 55,000 images of over 3800 patients, which is the largest EC image
dataset, to the best of our knowledge. In the evaluation, we trained our clas-
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an endoscopist finds a polyp an endocytoscope touches on a polyp surface

q+E%

endocytoscope normal observation ultramagnified observation

Fig. 1 Endocytoscope and ultramagnified observation. The first figure shows the CF-
H290ECI endocytoscope (Olympus, Tokyo, Japan). As shown from the second to fourth
images, endocytoscopy offers an ultramagnified view in vivo, where the tip of the endocy-
toscope touches the surface of a polyp.

(a) (b)

Fig. 2 Typical examples in endocytoscopy. (a) non-neoplasia (b) adenoma (c) invasive
cancer. Adenoma and invasive cancer are categorised as neoplasia.

Neoplastic: 97 %

Non—neoplastic: 3 %

i ety Y 35 eference

Fig. 3 CAD system based on EC image classifier for endocytoscopy. Left: input endocyto-
scopic image. Right: indication of classification result.

sifier with only one hospital’s data and tested it with three other hospitals’
data to demonstrate its generalisation ability against unseen data.
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2 Methods
2.1 Neoplasia classification by endocytoscopic images

For binary classification between non-neoplastic and neoplastic EC images, we

set categorical labels of non-neoplasia and neoplasia to be 0 and 1, respectively.

For a label £ € {0,1} and an input image X, we assume that X belongs to

a category of £ with a probability P(L|X). To construct a precise decision

function

o) = {0, PIL=1]2) > T, )
, otherwise,

where 7 is a criterion that gives the minimum classification error, we have
to construct an appropriate probabilistic model P(L£]|X). After we decide the
value of 7, we adopt a rejection option to reject a classification of low output
probability due to its low confidence [15]. For a query X, the classifier outputs

(2)

9(X), max({P(L|X)|L € {0,1}}) > &,
reject a classification, otherwise,

where k is a rejection criterion. The constructed classifier is implemented in a

CAD system to show the classification results with estimated probability, as

shown in Fig. 3.

2.2 Proposed method

We constructed the pipeline shown in Fig. 4(a) for endocytoscopic image clas-
sification. For this pipeline, we proposed texture feature extraction based on
HOSTA and multi-scale topological statistics.

Let X : 2 € R? — R be a grayscale image obtained from an RGB image X'.
We apply a median filter of 3 x 3 kernel to X for denoising in pre-processing.
Furthermore, we apply the two-dimensional isotropic Gaussian filter G, of a
standard deviation o to a denoised image. A grayscale value of G,(X) is a
scalar, that is, a Oth-order tensor. VG,(X) is a vector, that is, a lst-order
tensor. For a smoothed image G,(X), a Hessian is defined by H = (V®
V)G,(X). H is a matrix, that is a 2nd-order tensor. Using an [-fold outer
product, we have a I[th-order symmetric tensor as an extension of a Hessian
matrix for G,(X) by

T =(VG,(X) = (VRV V- )VG,(X), (3)

where [ is the number of nabla V. Note that a 2nd-order symmetric tensor is
a Hessian matrix.

In an analogy of a rank-1 matrix, a symmetric rank-1 /th-order tensor is
defined by using the [th-fold outer product. Therefore, any symmetric [th-order
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tensor 7 can be expressed by a linear combination of rank-1 tensors

/1)

). (@
O]

where v,/ corresponds to )\El) with the condition )\Z(»l) > )\521 in descending or-
der. In Eq. (4), a relaxation of orthogonality is introduced for ! two-dimensional
vectors in a fixed spacing of /I between neighbours as principal directions.
HOSTA decomposes a local distribution of gradients at each point into its prin-
cipal directions. For [ = 2,3,4, a decomposition method has been proposed
with proofs of unique solutions [13].

By selecting a scale from o = 1, 2,4, 8, we obtained a best smoothed image.
For the selected scale, we have distributions of G,(X), |[VGs(X)|, /\gl)ax7 and

H o C 1 1
2 with ] = 2,3, 4 as eight images. For | = 2, 4, we set A = max({/\g )}ﬁzl)

~—

!
_Z OMOE] ) _ [cos(—=0+ (i—1
7= — AvorT o= <sin(9+ (i—1

min
and )\I(Ill)in = min({)\gl)}ﬁ»:l). For | = 3, we set Ay = max({\)\gl)|}§:1) and
)\Erll)in = min({|/\§l)|}§:1) due to the odd-function property of homogeneous
form of odd-order symmetric tensors [13]. Figure 4(b) shows an example of
eight images obtained by HOSTA. By using eigenvalues of principal axes for
higher-order derivatives, we can express detail local topology of a grayscale-
value distribution on an image as handcraft feature maps.

We then extract multi-scale topological statistics from eight images ob-
tained from HOSTA. For one of these eight images, we compute a discritised
16-level grayscale image I(k,l) € {1,2,3,...16}>W  where H and W ex-
press height and width, respectively, by applying local constant normalisation
with a kernel of 32 x 32 at each point. By using I(k,1), we compute gray-level
co-occurrence

p(i,j;d, 0) = §{(k,1) € (H x W) |

I(k,l) =4,I(k+ |dsin® 4 0.5],1 4+ [dcosd +0.5]) = j}, ®)

where we use cardinality operator f, and set indexes of grayscale level i, j €
{1,2,...,16}, a distance to neighbours d € {2,5,8}, and a connection direc-
tion 6 € {0, 115 %”} From one image, we obtain a gray-level co-occurrence
matrix Cyg = (p(i,7;d,0)) , and its 13 topological statistics defined in Har-
alick feature, except for the max correlation coefficient [14]. For each d, we
average each of the 13 statistics among four directions. This averaging re-
sults in rotation-invariant feature extraction. We concatenate these statistics
for eight HOSTA results with three scales of d € {2,5,8}, and obtain a 312-
dimensional feature vector for an input image. Note that we select ¢ = 2 as
the best hyperparameter with respect to classification performance.

We finally classify extracted feature vector £ € R3'? using a linear sup-
port vector machine (SVM) [16]. If we have ideal feature extraction, a linear
classifier can theoretically achieve robust classification [10]. Furthermore, a
linear SVM is apt to overfit to a given pattern distribution less than nonlinear
methods such as nonlinear SVM and deep-learning methods. A SVM gives a
function f(-), which returns the score between an input feature vector and the
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Input Gl M2 F3  Output
400 x400 %3 400 <400 400x400%8 312 2

multi-scale texture-feature extraction

with local contrast nomalisation

— — B >
denoising higher-order N——
and grayscaling ~ symmetric tensor analysis support vector machine
(a)
Input Oth order 1st order
X Go(X) VG, (X)]

2nd order 3rd order 4th order

(V) Go (X) (V) Go(X) (VN Go(X)
Mide A Moke AL Made A

min

(b)

Fig. 4 Proposed method. (a) pipeline of proposed feature extraction and classification. (b)
example of [th-order tensor analysis. We generate eight images from an input colour image
for the computation of topological statistics. Here, we set | = 0,1,2,3,4 and o = 2.

hyperplane that differentiates the categories. For the two categories with label
L € {0, 1}, the output of the pipeline is given by the approximated probability

1

P(L=1]z) ~ T @@ (6)

where a and b are the parameters in Platt’s method [17]. We can obtain the
decision function f(-) and parameters a, b by training of a SVM and maximum
likelihood estimation, respectively.

2.3 Deep-learning methods

We constructed three deep-learning architectures for evaluations of our pro-
posed method. For all these architectures, we used a softmax function to obtain
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Input Cl S2 c3 S4 Ccs S6 F7 F8  Output
179x179%3 175%175%32 35%35%32  33x33x32 1x11%32 9%9x64 3x3x64 576 288 2

\ \ maxpooling \ ‘maxpooling :

maxpooling

dropout

convolution convolution convolution

batch normalization batch i batch

(a)

fully connected

Input c1 R2
179%179%3 175%175% 64

R4 F5  Output

i b
skip i linear map linear map 36 2

R3
90%90%64 45x45x128 23x23%256
maxpooling
pocting fully connected

convolution :
global average pooling

+
batch normalization

(b)

Input S1 S2 S3 sS4 S5 F6  Output
179%179%3 45x45%32 22x22%128

*11%256 5x5x512 5%5%704 704 2

j\
Ry [y R —— [——
3 layers 4 layers 8 layers 6 layers

(c)

dropout

transition layer
transition layer

5 .
g g
= =
- -
S 2
z :
£ £
B E

2-way dense layers

2-way dense layers
2-way dense layers

fully connected
global average pooling

Fig. 5 Architectures of deep-learning methods. (a) three-convolution-layer CNN. (b) seven-
convolution-layer ResNet. (c) 21-dense-layer PeleeNet. In (a)-(c), the number beside the
squares shows the size of the array in processing. Note that an input image is a three-
channel RGB image.

the function in Eq. (1). In our previous works, we found that a deep structure is
inappropriate for texture-based EC image classification [9,10], since the fixed-
scale texture can be expressed as a simple combination of low-level geometrical
features. For the extraction of a simple combination of low-level geometrical
features, a shallow architecture is suitable [8,18]. Therefore, we constructed
our first architecture as a three-block convolutional neural network (CNN), as
shown in Fig. 5(a). We used leaky ReLU [19] of negative slope 0.30 for activa-
tion functions in each layer. We applied batch normalisation [20] and dropout
[21] with a ratio of 0.50 for convolutional and fully-connected layers, respec-
tively. For this architecture, we assumed three cases: no weight regularisation,
and Ly and Ly regularisation (weight decay) [15] for each convolution layer.
We set the coefficient of regularisation term to be 1.0 x 1072 for these weight
decays. The total number of parameters in the CNN was 529,794.

For the the second architecture, we constructed a three-residual-unit ResNet
by replacing three blocks of the first architecture with residual units [22]. Fig-
ure 5(b) illustrates our ResNet. Note that one convolution layer was added
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before the three residual units in this ResNet. The learning of ResNet is a
kind of ensemble learning, which consists of shallow convolutional layers in
ResNet [23]. For the building a residual unit, we adopted the same structure
of the original building block [22]. For the weight decay in each residual unit,
we set a coefficient of 1.0 x 107°. We used dropout with a ratio of 0.20 for the
outputs of the global average pooling. The total number of parameters in the
ResNet was 1,228,034.

For the third architecture, we used PeleeNet [24] by changing the size of
the input and output layers as shown in Fig 5(c). This deep architecture is a
refined variant of MobileNet, which was designed for mobile applications with
less spatial complexity, with 21 dense layers of 105 convolutional layers. We
could use a large minibatch size for training of the PeleeNet, since it had only
2,114,250 parameters for 105 convolutional layers.

3 Image acquisition and dataset construction

We built an EC image dataset for the development of a robust EC image clas-
sification method. First, we collected about 50,000 EC images of 3,522 patients
of conventional colonoscopy at a main hospital, where endocytoscopy had been
developed by using a prototype of an endocytoscope over many years, with 47
endoscopists. For this collection, an endoscopist took from 10 to 200 images of
each polyp by changing the target position at its stained surface. From rare pit
patterns, an endoscopist collected many images at several positions to collect
a wide variety of patterns. Second, we divided these images into three types of
data: training, validation, and test-A data, without the duplication of patients.
Finally, we collected about 4,300 EC images from normal colonoscopy at three
other hospitals, for use as test-B data. These were collected from January
2016 to July 2019 with IRB approvals of each facility. Based on pathologi-
cal diagnosis via biopsy, we gave a categorical label to each image. Table 1
summarises the amount of the four kinds of data. Figures 6(a) and (b) show
examples of images in the training data, and test-A and -B data, respectively.
The comparison between Figs. 2 and 6 summarises the large variety of EC
image patterns due to the difference of colour, contrast, and shape of the pit
patterns. The part of the difference of colour and contrast comes from the
difference of staining styles with two dyes: crystal violet and methylene blue.

4 Experimental results

We conducted four experiments to evaluate our dataset and proposed classi-
fication method. First, we evaluated the scales of our dataset as to whether
it had enough pit patterns to obtain generalisation ability against the valida-
tion and test-A data. Second, we compared the performance on the training
and validation data among the CNN, the CNN with weight decay, the ResNet,
and the PeleeNet. This showed the baseline characteristics of each architecture.
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Fig. 6 Examples of images. (a) training data. (b) test-A and test-B data.
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Table 1 Summary of the number of EC images in our dataset, which consists of training,
validation, test-A, and test-B data. Test-A and -B data consist of images captured in a single
main hospital, and in three other hospitals, respectively. Training data contains images of
about 2,800 cases (patients). Note that there is no duplication of patients among these
divided training, validation, and test-A and test-B data.

training  validation test A  test B total

f of non-neoplasia 13,180 1,592 1,638 662 17,599
f of neoplasia 26,462 3,213 3,262 3,965 36,902
f of both categories 39,642 4,805 4,900 4,267 54,501

Third, we evaluated the classification performance of our proposed method by
comparing it with the deep-learning methods. Finally, we evaluated the classi-
fication accuracy of our proposed method with the rejection option defined in
Eq. (2). For the evaluations, we defined accuracy, sensitivity, and specificity by
the ratios of correctly classified images for all, neoplastic, and non-neoplastic
images, respectively. In all of the experiments with the deep-learning meth-
ods, we used a single GPU V100 of 32 GB (NVIDIA) with Keras of Tensorflow
backends. For training of the models, we used binary-cross entropy with weight
balancing for all of the deep-learning methods.

For the first experiment, we trained the three-block CNN by using one
eighth, one quarter, one half, and all of the training data. For training of
the CNN, we set the mini-batch size to be 1,024 with He’s initialisation [25]
and an Adam optimiser [26] of base learning rate lIr= 1.0 x 10~ for 300
epochs. At 100, 150, 200, and 250 epochs, the learning rate was multiplied
by 0.10. In this training, we used data argumentation with a rotation trans-
form of 0, 30,60, ...,330 degrees with random mirroring with respect to the
horizontal and vertical axes. From the four-type training, we selected four
trained models that had the highest classification accuracy in each training
for the validation data with 7 = 0.50. Using these selected trained models,
we confirmed the accuracy in the training, validation, and test-A data. Note
that fine-tuning with ImageNet [28] did not contribute to the increase of the
classification accuracy in preliminary experiments. This was caused by the
differences of colour contrasts around edges, corners, and blobs between EC
images and natural images. Figures 7(a)-(d) illustrate the learning curves of
four-type training. Figure 7(e) summarises the relationship between the size
of the training dataset and the accuracy.

For the second experiment, we trained the CNN with weight decay of L,
and Lo, the ResNet, and the PeleeNet. For the training of the CNN with weight
decay, we used the same procedure as in the first experiment. For the training
of the ResNet and the PeleeNet, we set the mini-batch size to be 512 and 256,
respectively. Training of the ResNet and the PeleeNet were performed with
an Adam optimiser of base learning rate Ir = 1.0 x 10~ for 250 epochs. At
100, 150, and 200 epochs, the base learning rate Ir is multiplied by 0.10. We
used the same data argumentation procedure as for the CNN. We selected four
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trained models that gave the highest classification accuracy in each training
for the validation data with 7 = 0.50. Figures 8(a)-(d) illustrate the learning
curves of these trained models.

For the third experiment, we trained a linear SVM with the proposed
HOSTA-based texture features described in Sec 2.2. For the training of the
SVM, we performed five-fold cross-validation for the mixture of the training
and validation data to find the best hyperparameter in the SVM. We then had
the six classification methods, and we evaluated the accuracy of these methods
for test-A and test-B data. Figures 9(a) and (b) show the ROC curves for test-
A and test-B data, respectively.

For the fourth experiment, we evaluated the classification accuracy of our
proposed method with the rejection option. Figure 10 shows the accuracy for
the rejection rate, which is the ratio of rejected queries in test-A and -B data.

5 Discussion

In Figs. 7(a) to (d), the gap between the training and validation curves became
smaller as the number of cases increased. As summarised in Fig. 7(e), when
there were over 1400 cases of training data, the accuracy gap between the val-
idation and test data was almost zero. Furthermore, the accuracy gap among
the training, validation, and test data was close to zero for the trained CNN
with 2800 cases of training data. These results show the validity of our data
generation, since the training data is enough to obtain generalisation ability
for the validation and test-A data.

The comparison among Fig. 7(d) and Figs. 8(a) and (b) shows that the
weight decay reduces the gap between the training and validation data. Fur-
thermore, Fig. 8(c) illustrates that residual learning leads to better learning
than a simple shallow CNN for the training and validation data. As shown
in Fig. 8(d), the PeleeNet gives the highest accuracy for the training data,
even though the accuracy for the validation data is almost the same as for
the ResNet. Moreover, in Fig. 9(a), the ResNet, the PeleeNet, the CNN with
weight decay, the CNN, and the proposed method give higher performance in
descending order for the test-A data. These results imply that the PeleeNet is
too deep of an architecture for EC image classification.

In Fig. 9(b), the proposed method is more accurate than all of the deep-
learning methods for the test-B data. The PeleeNet and the ResNet had the
worst and second worst performances, respectively. The comparison between
Figs. 9(a) and (b) clarified that deep-learning methods overfit the pattern
distribution of the main hospital. In particular, deeper architectures are apt
to overfit to the pattern distributions on the training data. The proposed
handcraft feature is mathematically well defined, and it does not depend on
the pattern distribution of the training data. The proposed method achieves
an average classification accuracy of 0.93 with rejection criterion x = 0.70
for all hospitals, as shown in Fig. 10. Two expert endoscopists commented
that about 10-15% of test images, which were rejected by the rejection option,
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Fig. 7 Learning curves with glowing of training data for the CNN. (a)-(d) show the learning
curves for learning with one eighth, one quarter, one half, and all of the training data,
respectively. (e) Glowing of the classification accuracy with respect to the number of cases
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Fig. 9 ROC curves. (a) Test A (b) Test B. In (a) and (b), the horizontal and vertical axes
express 1—specificity and sensitivity, respectively. For plotting, we changed the decision
criteria 7 in Eq. (1).
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Fig. 10 Classification performance of proposed method with the rejection option for test-A
and test-B data. The horizontal and vertical axes show the rejection rate and accuracy,
respectively. We set x € {0.60,0.65,...,0.90} in Eq. (2) for plotting these curves.

were difficult queries even for endoscopists. This performance is approximately
equal to that of an expert endoscopist [2,27].

6 Conclusions

We developed a robust EC image classifier by introducing HOSTA to the
computation of topological statistics and integrating it into a linear SVM.
This classification method with the rejection option had almost the same
performance as expert endoscopists did in the evaluation with a large-scale
multi-hospital dataset. Furthermore, comparison of the classification perfor-
mances among the proposed methods and three deep-learning methods vali-
dated the high generalisation ability of our classification method, even though
the deep-learning methods overfitted a specific hospital’s distribution. A large-
scale multi-hospital comparison revealed the difficulty of constructing a deep
learning model with generalisation ability.
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