RESEARCH REPORTS

ON THE NUMBER OF TYPES OF SYMMETRIC
BOOLEAN OUTPUT MATRICES

Icnizo NINOMIYA
Department of Applied Physics

(Received October 30, 1955)

1. Introduction

The operation performed by a combinational switching network can be described
by a Boolean output matrix? (BO-matrix), whose rows and columns correspond to
the terminals 1, 2, . . ., m, say, and zj-entry is a Boolean function f;; of the input
variables x;, . . ., x,, say, representing the states of connection between the termi-
nals ¢ and 7. The diagonal entries are all 1, because every terminal can be con-
sidered to be always connected to itself. If all the contact elements of the network
are bilateral, we have fi; =fj;, ie., the matrix is symmetric. But if some of the
contact elements are unilateral, the matrix is not generally symmetric.

There exist many different real networks which perform a given operation
described by a BO-matrix, and it is a very important but still open problem to
select the simplest or at least economical ones from among them. However, we
will not take care of this aspect of problem. On the contrary, we will not differ-
entiate networks with the same BO-matrix and even more. That is: If a BO-
matrix F’ can be obtained from a given BO-matrix ¥ by permuting its rows and
columns, and (or) by permuting the input variables, and (or) by complementing
some of them, we will consider that the networks corresponding to F and F’ are
all physically the same.

It will be convenient to define two BO-matrices in the above relation to each
other to be of the same type. Then there exist as many different physical networks
as types of BO-matrices. The main purpose of this paper consists in the enumer-
ation of the types of BO-matrices in the above mentioned sense. Precisely, we will
consider symmetric BO-matrices only, and the treatment of the general case will
be put off to later occasions.

2. Boolean Output Matrix

BO-matrix can be characterized as an m x m matrix F = (fi;) over a Boolean

algebra generated by a finite set of elements x;, . . ., x,, satisfying the conditions
Sii=1 i=1,...,m (2.1)
and F2=F. (2.2)
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Expanding a BO-matrix F by 2" fundamental products pr (=0,1,...,2"=1)
formed from xi, . .., Xx, we have
oMl
F: EpkAk, (2. 3)

k=0

where Ay are m X m matrices over a two-element Boolean algebra, i.e., their entries
are either 1 or 0.

It can easily be seen that the properties of F, ie., (2.1) and (2.2), induce the
same on each Ap.  Conversely, if each A; satisfies these properties, then any
matrix of the form of (2.3) is a BO-matrix. If, in addition, F is symmetric, then
each Ap is also symmetric and vice versa. )

Since there holds a one-to-one correspondence between an 2 X m matrix over
a two-element Boolean algebra and a dyadic relation defined in a finite set of m
elements, we may call it a relation matrix or R-matrix for short. A symmetric
m x m R-matrix satisfying the conditions (2.1) and (2.2) corresponds to a re-
flexive, symmetric, and transitive relation defined in a finite set of m elements, and
consequently to a partition of the set. Therefore we may call it a partition matrix
or P-matriz for short. Thus a symmetric BO-matrix is equivalent to a sequence
of 27 P-matrices. When we denote the number of possible 2 x m P-matrices by
®(m), the total number of possible symmetric BO-matrices is given by (@ (m))*".
As for @(m), the following generating function is well known

= 3 &f};;!@_?__ . (2.4)

3. Computing Principle

A permutation of the rows and columns 1, 2, ..., 7, and (or) a permutation
of the input variables «xi, ..., ¥s, and (or) a complementation of some of them,
will induce a permutation of (#(m))*" BO-matrices among each other.

R-matrices of order (®(m))?" describing these permutations of BO-matrices
constitute a representation ® of the group ©m x O, where Em is the symmetric
group of m-th order, and ©, is the hyperoctahedral group of z-th order. It can
be observed that this representation is reducible and contains as many identity
representations as the types of symmetric BO-matrices. Denoting the number of

types of symmetric BO-matrices by N, n, we obtain, from the theorem of group
representation,

Mn, n= ""—““24 Ne /{c, (3 1)

where the summation is taken over all the conjugate classes C of the group Sm X O,

n, is the number of elements of class C, and 7. is the character of the class C in
the representation ®.

A conjugate class of S is given by a symbol (g1, . . ., pm) or (z) for short,
specifying the cycle structure of the class. The number of elements of the class
(g1, . . ., pm) is given by

m!
IZp, = -;‘Ad 9

Lt (3.2)
=1
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and the number of classes is equal to that of partitions of .

A conjugate class of O, is given by a symbol (ay, ..., an; B, ..., Ba) Or
(« ; @) for short, where (a;, . .., a,) specifies the cycle structure of permutations
of xy, ..., 2, and (B;, . .., Bx) specifies the complementation structure. Pre-
cisely #;, (7=1, ..., n) is the number of e-cycles—the cycles in which even number
of the variables are subjected to complementation—of length j.

The number of elements of the class (a ; B) is given by

ha g= 7! il_Il Bil (ai— y:y j“r'z‘,,‘ (3.3)

and the number of classes of O, is given by

2] ﬁ(m+1). (3.4)

Sigi=ni=1
[

As a conjugate class of a product group is a direct product of conjugate classes
of factor groups, (3.1) can be rewritten as

1

Nomn= gt

Z huha,{szu;a,s- (3.1")
wia,B

Now, we can interprete Y. . p as the number of symmetric BO-matrices which are
invariant under the operation of the class (u; a«, B) of ©mx O, Let ab be an
element of the class (u; @, B) where a=S,; and b=D,. The cycle structure of
the permutation of 2" foundamental products p; induced by b4, is uniquely deter-
mined by the class of b, and does not depend on the choice of 5. Let (f%, . . .,

Dr.) be a typical cycle of the permutation of pr. Since a transforms Ar into aAp,
-1

a necessary and sufficient condition that a symmetric BO-matrix F = E DrAr may
be invariant under the operation of ab, can be given by

ARy = Ap,y, aAp, = Ap,, . .., AL = Ap, (3.5)
for each cycle. (3.5) implies aTAk,-=Ak,~ (i=1,...,7), ie, Ay are invariant
under the operation of &”. Let A" (j=1, ..., &) be all the P-matrices invariant
under the operation of a”, then puttmg Ak, aimlAY (1=1, . s i=1,...,

&ur), we can obtain £,r solutions for this cycle. Clearly &, depends only on the
class (), and the length 7 of the cycles of the permutation of pr. Thus, Yu;es
can be given by

an

Z;L;u,a = 1;[155‘.;, (36)

where (vy, . . ., »en), or simply (») for short, is the cycle structure of the permu-
tation of pr induced by the class (« ; ). Suppose, now, that two classes (« ; 8)
and (a'; @) induce the permutations of #; with the same cycle structure (»). Then
the above reasoning shows that Y.« s=Zu;e,p. Thus, summing up all ., o for
the classes (@ ; B) which induces the same cycle structure (»), we can get

Noyn = Ehghv/u,v, (3.7)

771‘2"71' "
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where %, is the number of elements of £, which induce the cycle structure (»),
and %, is given by (3.6).

A method to inquire after the cycle structure (») induced by a class (« ; 3),
has been worked out by Slepian.? Here we will not try to restate the detail of
his method. We will only show the results for n =1, 2, 3, 4, 5, obtained by his
method in the following table, where %, is the number of cycles, and the ordering
of (v) is somewhat arbitrary.

TABLE 1. The Cycle Structures of the Permutations of the 2"
Fundamental Products Induced by the Elements of D.

n=1, 2"=2, 2'nl =2 n=2, 2"=4, 2"n! =8 n=3, 2"=8, 2"n! =48
voowvr w2 ke Ry vt w2 v Ry he poowr w2 wa e ve kv My
1 2 0 2 1 1 4 0 0 4 1 1 8 0o 0 0 0 8 1
2 0 1 1 1 2 2 1 0 3 2 2 4 2 0 0 0 6 6
S hv=2 3 0 2 0 2 3 3 2 0 2 0 0 4 8
4 0 0 1 1 2 4 0 4 0 0 0 4 13
She=8 5 0 1 0 0 1 2 8
6 0 0 0 2 0 2 12
S he=48

n=4, 2"=16, 2"n! =384 n=>5, 20=32, 2'n!=3,840

voovto w2 ora o ove o s Ry fw woowows a4 vz owvs vy vie vz ke hw
1 16 0 0 0 O 0 16 1 i3 00 0 0 0 0 0 0 32 1
2 8 4 0 0 0 0 12 12 2 16 8 0 0 0 0O 0 0 0 24 20
3 4 6 0 0 0 0 10 12 3 812 0 0 0 0 0 0O 0 20 G0
4 4 0 4 0 O 0O 8 32 4 8 0 8 0 O O O O 0 16 80
5 0O 8 0 O 0 0 8 51 5 0 16 0 0 0 0 0 0 0 16 231
6 2 1 0 3 0 0 6 48 6 4 2 4 0 0 2 0 0 0 12 160
7 0 2 0 0 2 0 4 96 7 4 2 0 6 0 0 0 0 0 12 240
8 0 0 0 4 0 0 4 84 g 0 4 0 6 0 0 0 0 0 10 240
9 O 0 0o 0 0 2 2 48 g 2 0 0 0O 6 0 0 0 O 8 384
S hy =384 1 0 4 0 0 0 4 0 0 0 8 720
i1 0 0 0 8 0 0 O 0O 0 8 520
12 0 1 0 0 0 0 O 3 0 4 384
13 0 00 2 0 0 0 0 2 4 32
4 0 0 0 0O 0O 0 4 0 O 4 480
> hy=3,840

In order to be able to compute Nm, » by (3.7), there remains only one task, i.e.,
that of computing &,~. Since & can be given by &, for a certain ¢/, it will be
sufficient to compute &, for each class () of Sm.

4. The Number of P-Matrices Invariant under Permutations of
Rows and Columns with a Given Cycle Structure

Let (z)=(u, ..., um) be a given cycle structure. As a typical permutation
p with this structure, we take (1)(2)... ()41, m+2) ... (u+2m—1,
A 2m) ... If we classify the rows and columns of an R-matrix A = (aij) ac-

cording to these cycles, A will be partitioned into blocks. First, we will seek for
a necessary and sufficient condition, so that an R-matrix may be invariant under
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the permutation, p. Consider any block B = (b;;) where i=1, ... ,hand j=1,

. «» k. Let us define that #;; and ?; ; are equivalent, if and only if j=i= g -1
(mod. g), where g is the G.C.M. of 1 and % Then a classification among b;; will
occur. We call the classes of &;;, thus formed, strings. Thus B will be divided
into g strings S, Si, . .., Sz.;, where S, is the string consisting of all 5;; such
that j—i=a (mod. g). If it is necessary to specify the block to which a string
belongs, we will write like S,(B).

Now, when p is applied to A, ai; will permuted within each block, and it can
be seen that the latter permutation is the product of cyclic permutations, of the
form (bst, bssit4s, . . ., bs_1z-1) within each string where the two suffixes 7 and j
of b;i; should be considered modulo % and % respectively.

Therefore A is invariant under p, if and only if the each string of the each
block consists exclusively of 1 or 0, or symbolically S=1 or S=0. We call an R-
matrix with this property an S-matrix, or more exactly an S-matrix with respect
to p.  Hereafter we will consider only S-matrices, so we need no longer take ac-
count of invariance under 2.

Let us proceed to the consideration of an S-matrix A which is a P-matrix at
the same time. At first, we will inquire after the condition that a diagonal block
D of A should be a part of P-matrix, or, we may say, a solution. Let %2 be the
order of D, then D is divided into % strings 8, Sy, . . ., Si-1, where Sy is the main
diagonal and the others are sub-diagonals, and S, and S;_. make a transpose pair.

Lemma 1. The number of k x k reflexive and transitive R-matrices which are
invariant under the cyclic permutation (1, 2, . . ., k) of the rows and columns, is
equal to the number of divisors of % inclusive of 1 and k. Any R-matrix with these
properties is always symmetric i.e., it is a P-matrix.

Proof. The wunit matrix Sy=1, S;=0, (i%£0 (mod. k)), is clearly a solution
satisfying the conditions of the lemma. If, in a solution, S;=1 for a certain 1,
(i% 0 (mod. k), then transitivity implies S,; = 1 for = =1,2, ...,k Suppose that
i is prime to k, then all the strings should be 1. This is the case of the universal
matrix.  Evidently the universal matrix is a solution satisfying the conditions of
the lemma. Suppose, on the other hand, that i is not prime to 2 and let & be
their G.C.M., then Sy, S4, . . ., Sp_4 should be all 1. Conversely, it can be readily
proved that the R-matrix with the above %/d strings put to 1, and the other strings
put to 0, is a solution satisfying the conditions of the lemma.

Since the G.C.M. of any i and % is a divisor of %, and conversely any divisor
d of k is the G.CM. of d and %, we can see that there exist as many solutions
as divisors of %, whereby we consider the universal matrix and the unit matrix
correspond to d=1 and d =k respectively. Incidentally, the value of d thus as-
sociated to each solution, coincides with the number of components constituting
the partition, corresponding to the solution, of a set of % elements.

From the above lemma, the number of solutions for a %X & diagonal block is
equal to the number of divisors of its order %, and to each solution, there cor-
responds a divisor of &, and vice versa. We call the divisor of % associated to a
solution for a % x %k diagonal block, the index of the solution. Next, we take two
diagonal blocks D(k x &) and IV (% x k). Assume that D and D’ are the solutions
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with the indices d and @ respectively. Then how many solutions are there for the
pair of non-diagonal blocks B(k X k') and B”(F' x %) related to D and D" ?

Lemma 2. The number of solutions for the pair of non-diagonal blocks
B(k x k) and B7(k x k) related to two diagonal blocks D(% X &) and D'(%' x E')
“with the indices d and d@' respectively, is 1 or d+1 according as dxd or d=d
respectively.

Proof. Zero matrices for B and B” are clearly a solution, whether d=d’ or
d=d. 1In order to find solutions other than the trivial zero matrix, we assume
S.(B) =1, where ¢ is considered modulo g, the G.CM. of % and %. From the
symmetry, we have S_.(BT) =1.

First, assume d=d’. We may take d<d’ without loss of generality. Now,
the transitivity applied to Sa(D)=1 and Sc(B)=1, gives S¢,4(B) =1 and again
applied to S_(B") =1 and Sc.a(B) =1, gives Sa(D')=1. But this is a contra-
diction, because the index of D’ is @’. Consequently, there is no solution other
than zero matrix in this case.

Next, assume d =d’, then d must be a divisor of g. Applying the transitivity
to Sea(D) =1, (s=0,1,..., k/d—1), and S.(B)=1, we obtain Sessa(B) =1L
Considering ¢+sd, (s=0,1,..., k/d-1) modulo g, and taking account of the
fact that d is a divisor of g, we see that the results, obtained above, coincide with
Sca(B) =1, (¢=0,1,..., g/d—1), as a whole.

It can be observed that the application of the transitivity to S (D) =1 and
Scira(B) =1 gives just as much as Scya(B) =1, (¢=0,1,..., gld—1). In a
similar manner we obtain S_cupa(BT) =1, (¢ =0,1,...,g/d=1), from Sea (D)
=1, (¢=0,1,..., ¥/d—1), and S_(B") =1. Since the application of the transi-
tivity to Sc,ea(B)=1 and S_cira(B?) =1 brings out Ssa(D) =1 and Sgq (D) =1, and
no more, and this arrangement is clearly symmetric, we conclude that this is a
solution. Taking ¢=0, 1, ..., d—1, d different solutions are obtained. If there
exists any other solution, it must be of the following form,

SCr-Pfd(B) =1, S-c,~+t'd(BT) =1,
(r=1,...,1;t=0,1,...,g/d=-1)

where ¢, £¢s (mod. d), (r=s, r,s=1,...,10.

But the transitivity applied to S¢,(B) =1, and S-..(B”) =1, for instance, gives
Sei-e(D) =1, which is a contradiction.

Therefore, there is no non-trivial solution other than those given above. We
call the d values of ¢ the indices of solutions for non-diagonal blocks B and B
Incidentally, we can interprete these non-trivial solutions as follows. That is:
Each of these solutions corresponds to a one-to-one mapping from a set of elements
1,2, ...,d withthecyclicorder (1, 2, ..., d) onto itself, preserving this cyclic
order, whereby the index corresponds to the amount of shift in this mapping.

Now we proceed to the next step. When the indices of the solutions for all
the diagonal blocks are given, how many solutions are there for the whole matrix?
From the lemma 2, the non-diagonal blocks related to two diagonal blocks with
different indices must be zero matrices. Therefore, the solutions for the groups
of blocks related to the diagonal blocks with the same indices can be determined
independently to each other, and the number of solutions for the entire matrix are
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given as the product of the numbers of solutions for all the different groups of
blocks. Let a group consist of ¢ diagonal blocks D, . . ., D, with the same index
d, and the related non-diagonal blocks Bj; (ij=1, ..., q), where apparently Bi;
is the block formed from the rows of D; and the columns of D;, and B;; and Bji
form a transpose pair.

We first consider the solutions in which every non-diagonal blocks is non-trivial.
Let us call these solutions as full solutions.

Lemma 3. The number of full solutions for a group of blocks related ot ¢
diagonal blocks with the same index d is d?-7.

Proof. As every non-diagonal block must be a non-trivial solution in the sense
of the Lemma 2, there corresponds to each non-diagonal block B;j;, an index of the
solution ¢;j, where of course c¢ji = — ¢;; from the symmetry. Because the transitivity
is assured between the diagonal and the related non-diagonal blocks, or between
the transpose pair of non-diagonal blocks by the fact that the each Bj; is a solution,
it is sufficient that the transitivity should be established between two non-diagonal
blocks B;; and Bj; for i%j, j& % and i=k so that the whole group may be a
solution.

Let Bij, Bjr and Bir be 2 x I, I x i, and hx I respectively, and g, &' and g"
be the G.C.M.'s of, k and &', #' and %", and % and " respectively. When we apply
the transitivity to S¢j::(Bij) =1, (¢=0,1,...,g/d-1) and Sejsra(Bie) =1,
('=0,1, ..., g/d), we obtain S¢(Bjr) =1, where

c=cijt+eipp+ (E+1)d+ng+n'g (mod. g"),
(n=0,1,...,hlg—=1;0=0,1,..., /g —1).

We can rewrite the result obtained above, as
Scsjchlﬁt"d(Bik) =1, (i” =0,1,..., g"/d— .

Accordingly, if ¢ij+ ¢jr=cir for all the combinations of i, 7 and k (i%j, j= £,
i k), this group is a solution. Then, how and in how many ways can we arrange
ci; to get a solution?

This is easy. That is: To begin with, we choose indices for g — 1 blocks, B,
By, . . ., By, for instance. This can be done independently. Therefore the number
of choices of indices for these blocks is equal to d7-'. For each choice, we deter-
mine the remaining ¢;; using

Ci1 = — €15 j=2....,Q
and Cij = Ci1 — Cj (4,7=2,...,q;i%]).

These arrangements of c;; are readily proved to be consistent as the solutions. This
completes the proof.

Next we consider general solutions for the group of blocks, i.e., solutions in
which some of the non-diagonal blocks can be zero matrices. If there exist some
zero blocks, it can be inferred that the diagonal blocks should be classified, in such
a manner that any non-diagonal block related to two diagonal blocks belonging to
different classes is zero matrix, and the sub-group of blocks related to any one
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class forms a full solution.

Lemma 4. The number of solutions, @(q, d), for a group of blocks consisting
of g diagonal blocks with the same index d, and the related non-diagonal blocks
can be computed by means of the following generating function

Let-1y

d _~ 0(q, d)
e = 12=o g £,
Proof. Let (L, ..., Ag) be a structure of a classification of diagonal blocks.

As the full solutions corresponding to different classes can be determined inde-
pendently, the number of solutions for any one classification of the above structure
can be given by

qu d(i-l)l;

i=1

I

A

- " a
This can be rewritten as d° i='  because of S}il; =q. As there are
-1

gt .
Ui
IX(E1)» 2!
i=1
of classifications with the same structure, the number of solutions for this structure,
is
(]' dq—‘.‘..lt

T (1) 2!
i=1
Summing these quantities for all the structures, we obtain

o(q, d) _ d—>
ShL -3

I (1) ;!
i=1
Putting d=1, we have

Q;lq) -'—'Eq 1
’ l:[l(i!)“/li!

,

because of @(g, 1) =2(q).
Using the same reasoning as that which leads to the generation function of

q
@(q), and considering that >)4; is the number of classes, we can conclude that
i=1

2 ety »
d -5 ?(q. d)

1’4
e = 2" g 1.

From the Lemma 4, we can derive the following results for ¢=1, 2, 3, 4, 5, 6
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o1, d) =1,

0(2,d)=1+d,

0(3,d)=1+3d+ d,

0(4,d) =1+6d+7d*+d>

0(5,d) =1+10d+25d* +15d° + d*,
0(6,d) =1+15d+ 65d° +90d* + 31d* + d®.

Now, we are in a position to answer the final question.

Theorem 1. Let (ps, ..., pr) be the alternative symbol for the given cycle
structure (z1, . . ., um), 1.e., pi is the length of i-th cycle and L is the number of
cycles. Let d; be any divisor of p;. Suppose that rearranging the sequence
(dy, ..., ds), we find o, of dy, a2 of @, ..., 0o of dz. Then the number of P-
matrix &, in question is given by

.
g =211 000y, &),
=
where the summation is taken over all the possible sequences {ds, . . ., dz).

The proof is immediate. The following table shows the result obtained by the
theorem for m =1, 2, 3, 4, 5, 6.

TABLE 2
m=2, m!=2 m=3, m! =6 m=4, m! =24

oo ope Ry S w o omowe ows My & w oo w2 opao Bp &
1 2 0 1 2 1 3 0.0 1 5 1 4 0 0 0 1 15
2 0 1 1 2 2 1 1 0 3 3 2 2 1 0 0 6 7
S hy=2 3 0 0 1 2 2 3 0 2 0 0 3 7
2 hu=6 4 1 0 1 0 8 3
5 0 0 0 1 6 3

2h};=24

m=>5, m! =120 m=6, m!=T20

w opt o ope opsous ous ha & w omop2 w3 ous opsops by du

1 5 0 0 0 0 1 52 1 6 0 0 0 0 O 1 203

2 3 1 0 0 0 10 20 2 4 1 0 0 0 0 15 67

3 1 2 0 0 0 15 12 3 2 2 0 0 0 0 45 31

4 2 0 1 0 0 20 7 4 3 0 1 0 0 0 40 20

5 0 1 1 0 0 20 5 5 2 0 0 1 0 0 9 9

6 1 0 0 1 0 3 4 6 1 1 1 0 0 0 120 10

7 0 0 0 0 1 24 2 7 0 3 0 0 0 0 15 31

> 7y =120 8 1 0 0 0 1 0 144 3

9 0 1 0 1 0 0 90 9

10 0 0 2 0 0 0 40 8

11 0 0 0 0 0 1 120 4

S b, =720

5. Conclusion

The number of types of symmetric Boolean output matrices was investigated.
This work is a generalization of Slepian’s® work, containing his work as a special
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case for m=2, on the one hand. And it would be a generalization of Davis'®
work, containing his work as a special case for # =0, on the other hand, if we had
treated general Boolean matrix instead of symmetric Boolean output matrix. The
reason why we did not treat general Boolean output matrix, is the same as that
why Davis did not treat reflexive and transitive relations. The following table
shows the results obtained by the method of this paper, for some combinations of
moderate values of m and n. The figures for m =2 reproduce Slepian’s results,
and those for n =0 is nothing but the numbers of partitions of .

TABLE 3
hﬂ:; - o
01| 2 3 4 5 6
myl_ 1 -
1)1 1 1 1 1l
2|2 3 6 22 402 1,228, 158) 400 507,806,843, 728
33 7 38 | 864 67,731,281 (1,010,601,961,371,087, 726
4 |5 21| 536 2,361,211 712,923,958,172 867 *
5| 7] 54| 10919 9,353,218,050 ¥ ¥
6 |11)167| 372,341 ¥ * * *
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