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Introduction

We have two traditional methods of approach to slip of flows near surfaces of
solid bodies. The first one, being initiated by Maxwell? and developed by Milli-
kan? and Epstein?®, is that we do not consider in detail the feature of flows inside
the layer of thickness of length of mean free path where slip appears, but calcu-
late the values of gross-variables on the wall surfaces under consideration accord-
ing to the laws of conservation of mass, momentum and energy. The second is to
calculate distribution functions of molecules near walls according to the Boltzmann-
Maxwell equation?. In both methods, the states under consideration are assumed
to deviate slightly from thermal equilibrium. However, as we considered in the
previous paper®, at the same time when we must consider the effect of slip, we
have to expect the deviation of considered states from thermal equilibrium is con-
siderably large. From this view point we reconsider the first approach.

1. Ambiguous Points in Maxwell’s Method

Let us set x-axis along the flat surface of a solid plane and y-axis perpendicular
to the surface. The direction of flow coincides with that of x-axis. In Fig.1, AB
is the border-line between the free mole-

cule layer and the domain of ordinary continuous domain

gasdynamics. The distance between AB e — Ug 4

and the wall is assumed to be equal to A7 T -8 L
the length of the mean free path 1. We free molocute domain T s
assume that there are two kinds of mole- : il ”

cules which are reflected from the wall - " FI1G. 1

surface, one which obeys Maxwell's dis-

tribution according to the temperature of the wall and the other of specular re-
flection from the wall. The ratio of the number of molecules of these two kinds
is given by

S:(1-29). (1.1)

When the molecules of latter part reflect from the wall, there occurs no change in
momentum component of x-direction. Consequently, those molecules belonging to
this group contribute nothing to the stress (x-y component of stress tensor) on
the wall. On the other hand, the molecules of former part give to the wall the
following amount of momentum?®:
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Sﬂp7725p2£p/4. (1.2)

Here u, is the mass velocity at P and is assumed to be that of slip flow just on
the surface, €p is the mean velocity of thermal agitation, #, the density of the
number of molecules, and m the mass of a molecule. Moreover, owing to the
deviation of their states from thermal equilibrium at P, they give stress to the
surface as follows:

1 du

?su(@)p. (1.3)
Summing up (1.2) and (1.3), we get the entire stress on the wall and it may be
assumed that the result is equal to p(du/dy)p:

S| (4 L) (28, wo

From this relation we obtain
_2(2=9) p (du
=TI A () (1.5)

This is the consideration of Maxwell. Later Epstein® studied the same problem
more in detail. But the essential point is the same as that of Maxwell and also
the conclusions are the same. There is a difference between Maxwell’s and Epstein’s
theories. In the latter’s theory, the distribution functions of molecules are explicitly
given. In his treatment the assumption is as follows:

i) The distribution function of molecules at P in Fig. 1 is given by fs(cx, ¢y, C2)
which includes, as parameters, the macroscopic densities of mass, of velocity, and
of stress where stress* is given by up(du/dy). Of the molecules, those of negative
values of ¢, travel to the surface of the wall with no collision on the way.

ii) There are two kinds of reflection, one specular and the other random.

iii) The distribution of specularly reflecting molecules is presented by

(]_ - S)fp(c;x, “'Cy, Cz), Cy> O.
iv) The distribution of molecules reflected at random is given by
Sf (e, €y, €2), ¢y > 0.

Here f is the Maxwell function corresponding to the temperature of the wall.

v) The sum of the two groups (iii) and (iv) is equivalent to f» (cx, ¢y, €2), €y > 0,
only with respect to the macroscopic densities of mass, momentum, energy, and
stress. That is to say

* Recently the present author proposed a distribution function® tuking into consideration
that the gas molecules in a local cell are in a kind of equilibrium although different from
thermal equilibrium, i.e. that the molecules are in equilibrium according to the condition
that value of certain gross variables are given. He learned recently that Epstein® in 1924
proposed a similar idea. There is, however, an important difference between the two ideas
in that Epstein used u(du/dy) as the stress and the author made the stress independent
variables of u.



276 Research Reports

yj:yi:f:@‘})(w, Cy, Cz)dexdeyde;
= fi:fo_ Ji:?fp(cx, Cy, €z2)dexdeydc:
+(1- S)K:S:mfi:eﬂfp(cm — ¢y, €z)dexdeyde,
+ Sj‘i:f: wSi:‘Ff @ ¢y, Cy, €z)dexdesde:,
© =m, MCs, MC:Cn, i} =%,y 2. (1. 6)

The fifth assumption may be equivalent to (1.4) of Maxwell’s assumptions. In those
assumptions, we find at least two ambiguous points: One is that stress is presented
by #(du/dy). Only when the deviation of the state from thermal equilibrium is
small can we accept this assumption. It is clear that near the surface of the wall
the state of the distribution of molecules may deviate considerably from Maxwell’s
distribution®. Consequently it is dangerous to present the stress by u(du/dy).

The other ambiguous point is as follows: There is no apriori reason for
making the right-hand side equal to the left-hand side in equation (1.4) or, accord-
ing to Epstein’s expression, for adopting assumption (v). This consideration seems
to be vital in the theory of slip. In the next section let us discuss this point more
in detail.

2. A Proposal for the Theory of Slip Flow

The two ambiguous points excepted, as set forth in the latter part of Section
1, we adopt the same assumptions as Epstein’s given in section 1:
i) Let us present the coarse-grained distribution at P in Fig. 1 as follows;

fl)(cﬁh Cy, Cz, Op, Up, TI?) (2 1)

Here T, denotes the stress at P, independently given, and is not derived from up,
and function f» gives the following relations:

0p = jj‘jizﬂlfpddeCyd027
Ups = .”jj:c fpdcrdeydez,
Then = j‘jfi:mCscnI{pddeCyde

f‘: =%, 9, Z (2.2)
|

Ci=c:~us,
7

ii) There are two kinds of reflections of molcules on the surface of a solid wall,
one specular and the other random. The ratio between their number is given by
1-9):8S. (2.3)

iii) The distribution of specularly reflecting molecules is given by
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(1= S)fplex, =€y C2), cy>0. (2. 4)
iv) The distribution of molecules reflecting at random is given by
SF9(cy, €y, €2). (2.5)

From these assumptions, we calculate the stress T, which, by measuring the force
T!, acting on an elementary area of the surface of the solid wall, can be observed
experimentally. This calculation is as follows:

/
- Tws'l = ]11037;

- j_ : 5 i \'Wmcicn Fodexdeydes

w0y -0

+SJ_J, §mecu e

%ot o
+(1-— S)Sﬂfo 5_ szmC‘-s(,‘ang(cx, — ¢y, €z)dexdeyde:,

-~
=
s

sz@z—-uz,
7

b=x 7, 2. (2. 6)
Here the #'s are given by (2.7) and it should be emphasized that Ty is different
from T;, because the fifth of Epstein’s assumptions is excluded. We can measure

experimentally T/, but not T,. In the same way the velocity of flow just on the
surface of a solid body is given by

Uw: = Si :5@_ Mja :Cffzﬁdcxdcydcz
+ Sjt :j: mji jc/ O derdeyde:

4% aF® Ak 0
-+ (1 - S)j‘ »SD S C“:]’})(Cx, - Cy, Ce)df;deydCz. (2. 7)
Here we know that according to the law of mass conservation

Uwy = O, (2 8)

although we do not necessarily apply the laws of momentum and energy conser-
vation. Further, the density of mass just on the wall surface is obtained as follows:

pw = g_zg(i “,,j': :77ij)dcxd0yd6z

wsf [0 o desdesde

R ]
W a0

oAk Dt
+ (1 - S)j Mgo ‘ mip(cx, — Cy, €2)dexdeyde:. (2.9)
According to the results (2.6), (2.7) and (2.9), pw, @w, Tw may be given in terms
of pp, wp, Tp or vise versa. Here those which we can measure experimentally on
the wall are not pp, up, Tp but pw, vw, Tw. However the variables in terms of
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which the macroscopic law of the external field of flow is given, are the continu-
ation of pp, wp, Tp. This means that when we treat the gas flow as a continuous
field presented by the equation of continuity, equation of momentum, etc., the
boundary condition of the field must be given by the values of pp, up, Tp.

Summary and Conclusion

It is emphasized that there is no apriori reason that we, as Maxwell and others
did, assume the coincidence between the respective values of density, velocity and
stress of gas flow just on the surface of a wall and their values at the point apart
from the wall the length of mean free path.

Instead of that assumption, we derived the equations which present the relations
between the two sets of values of our gross variables, i.e. of density, velocity and
stress.

According to these equations, we can give the boundary conditions of the field
of gas outside the slip layer in terms of the values of gross variables measured ex-
perimentally just on the wall.
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