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In this paper we develop a new method of calculating temperature distribution
in the elements of thermoelectric refrigerator, especially taking into account of
Thomson effect, which was disregarded in the earlier theories. The discrepancy
between the experimental result and the calculated value can be removed by making
use of our method. Our method leads to the result that the maximum temperature
difference is smaller and the value of the optimum current larger than those pre-
dicted by the earlier theory.

Next we tried to find the condition to make the temperature difference as large
as possible by changing the resistivity of the semiconducting elements along the
direction of flowing current. Under some assumptions, a numerical calculation was
made. If we apply to Bi-Te alloy, the temperature difference can be increased by
the amount of 149%.

In the last part, we also examine the effect of changing cross sectional area
of the elements along its current flow. However, it is found in this case that the
increase of temperature difference is not so large.

1. Introduction

Many attempts to obtain low temperature by means of Peltier effect have been
made by various investigators for a long time. Earlier experiments®? were not
successful, because metal was used as the element and the Peltier coefficient of
metal is generally very small. Recent progresses in semiconductor researches have
opened new possibilities of producing practical thermoelectric refrigerator.”’

According to Altenkirch’s theory,” it is necessary to maximize the factor
where 7; and 7. are the thermoelectric power per degree, 4; and 1, thermal conduc-
tivity and o, and p, electrical resistivity of n-type and p-type specimens respectively.
In semiconductor, Peltier coefficient which is the product of thermoelectric power
per degree and absolute temperature is large though their electrical resistivity is
also large. Moreover, for a given value of 7, lp changes from material to material
in semiconductor. This is constant in metal as is well known as Wiedemann-Frantz
law. Thus the application of proper semiconductor having proper impurity content
makes the temperature difference as large as 30 degrees or higher.

On the other hand, the theory of the thermoelectric refrigerator was only made
by Altenkirch in 1911. (Many problems such that how we determine the impurity
content of the elements or how we design the thermoelectric refrigerator etc. were
discussed by many authors, of course. These discussions were, however, mostly
based upon Altenkirch’s one). His theory based upon rather crude model, and

Thomson effect was neglected.
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We, therefore, discuss in this paper the effect of Thomson heat on the theo-
retical formula of the temperature difference. (For this problem, some considerations
were made by Joffe®’) Next we examine the effects of unhomogeneity of both
physical properties and geometrical size. The possibility of increasing the temper-
ature difference by these means is discussed.

2. Effect of Thomson Heat

An unit thermocouple of the thermoelectric refrigerator is illustrated schematic-
ally in Fig. 1. In this figure, 1 is n-type and 2 is p-type semiconductors respec-
tively, 3 and 4 are metal. It is assumed
that the semiconductors 1 and 2 are iso-

lated thermally from the surrounding, so }M
that there is no thermal current flowing -
into the semiconductor through the side T )l( 3 g
planes. The metal 4 is maintained at Ls ! {’ -{? * Ls
constant temperature Ty and the heat I’
W (watts) flows into this system only ! 2
through the metal 3. We also assume J T —— —
that the metal 3 has infinit electrical and 4 4
thermal conductivities. F16. 1. Schematic diagram of an ele-
The heat Q. generated in the semi- ment of the thermoelectric refrigerator.
conductor 1 per unit length is shown as
dT; T
Q= E%M(MSL*(BEEA) “‘M]L%ill——l'mﬂ/s» (D

In this equation, S; is sectional area, Ji electrical current, T absolute temperature
and %, variable taken as in Fig. 1. The similar equation can be derived for @
which is the heat generated in semiconductor 2 by exchanging the suffix 1 to 2.
Here the suffix 1 or 2 refers to the semiconductor 1 or 2. In eq. (1), the first term
on the right shows that due to heat conduction, the second Thomson heat and the
third Joule heat.

At stationary state, @ and . must be equal to zero. Here we assume that 2,
u, o and S are independent of T and x. Then the differential equations @: =0 and
@. =0 lead to

T1=A1 exp (/,t1]1x1/Z1S1) +91]1x1/51u1+31 (2-1)
and Ty = Asexp (pef2%:/2:S) + 02 J2 %2/ S2 p12 + B, (2.2)
where Ai, A., By and B; are integral constants.

By taking into account of the preceding assumptions, boundary conditions to
determine the integral constants A; etc. are written as follows;

at x1=0 and x2=0 T1:T2( =TL) (31)
AISL%% +X252%+W=(H13+H32)] (3.2)
at .’)C1~“—L1 Tl"——’- TH (3 3)

at m=1L, Ty=Tn, (3.4)
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where —J; = J,=]>0, and 771; means Peltier coefficient when the electrical current
flows from 1 to 3. The meaning of /7s is also similar. In the latter parts of this
paper, we will write 7ih and 7I, instead of 77 and 7. In eq. (3.2), L Si(dTh/dx)
and 2.5:(dT/dx;) are the conduction heats flow into the cold junction from the
semiconductors, W is the heat flow into the cold junction from the metal 3 and
(I + I1;) ] is the heat absorbed by Peltier effect. With egs. (2) and (3), the integral
constants can be determined as follows;

L+ IR — W~ g(pilfﬁ'//zi)}(eXp (2L Jal2eS0) — 11 + Aez]2§ (o:Lil :50)

A= pf1{exp (peLlafa/22Sh) — 1)+ pefo{exp (ulaJ1/AS) =1} )

(4.1
2 2

UL+ 1) - W — E(p;h]z/,ui)}(exp (mLiJi/ S — 1} +/11]2§ (pi Li/ 1S

Az = mfi{exp (e Lofo/h2S) — 1} + mofe{exp (muLlaJ1/2:S1) — 1) )
(4.2

B =Ty~ Arexp (L JiJ/ 1S — (o1 Lo J1/ St ) (4.3)

By=Ty— Asexp (peLsfo/2:5:) — (p2 Lo ]2/ Se p22) (4.4)

and the temperature difference 4Th =Ty — T is

s mg - (22 -—%)J}

—mJ/{exp (—wmLiJ/2S) — 1)+ paf/{exp (naLaJ/2252) — 1}

<01L1]>/{ (_,_/_%:IS’:L])—l} (O’sz)/{exp(jjéf.])“l}
—wJ/{exp (—mLiJ/ 2 S) — 1} + e f/{exp (12 LoJ/2:S:) — 1} .

ATy =

(5)

This is the general formula of the temperature difference when we consider the
effect of Thomson heat.

In order to compare this formula to Altenkirch’s one, the exponential terms
involved in eq. (5) are expanded in Maclaurin series under the assumption of
[ LnJ/ S| <1 and |2 LsJ/2:S:] < 1. The result is

. — W I+ 1]~ L ( ‘”L?)
YRS kS ;
(};:11 + ;L;g ) 2 SXLSE;;M( SIAZ Hat SZ;A% “2)
2 o 2 2
s (-4 + 25+ ] (- 2 LR )]
(XL& T xifg) % Iiagxz< sf}g rmt sé,zg ”2)

(6)

The value of the current J. which makes the temperature difference 471 to be
maximum 1is

Je=TJo (1 +4T/]0), (7)
where Jo= (I + IT:) [{(p1 L1/ S1) + (p2L2/S;)} is the value for the case that we neglect
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Thomson effect, and 4] is the correction term due to Thomson effect. The exact
expression of 4] will be given later, because the effect of 4] on 47} is very small.
For geometrical condition, we use the result of Altenkirch which is

(LsS{/L:S:) = \&7?22/@/;1 (8)
By means of these conditions, eq. (6) is transformed to

a= L 1+ IT, )2[1 2,(?71%—172)(—/&—%;@)]'

55 et

et Tl (6)
3 (Vo1 21+ \/02 22)2

In this equation, the second term in angular bracket represents the effect of Thomson
heat. Let 47T, denote the temperature difference given by Altenkirch, then eq. (9)
can be written in the form

(AT1/AT0) =1 =(4/3){(— p+ )/ (= m~+ 1) }(4To/Ty), (10)

where ATy = (1/2){UT + 1)) (ot ds + Vo 7)1

In terms of these notations 4] is expressed as

4]/ Te) = B/2Y (= + ) /(=1 4+ 2) } (AT T2 (11

Egs. (10) and (11) might be able to explain the discrepancies between the ex-
perimental results and the earlier theory. It is indeed the case as far as 4]J/Jy is
concerned, but not the case as for 47y/47,. For instance (see Ref. 3 Fig. 4) the
theoretical value of the (4]/Js) equals to about 149% whereas the experimental value
is about 16%. But as for the temperature difference, eq. (10) is different from the
experiment even in qualitatively. So that we must take into account of the effect
of the heat W. The result is

i an i ()5 42
- I

For previous example, (4T%1/4T}) is estimated to be 15%, and this corresponds to
about W=231mW. The effect of W on J. is smaller than 1% for this case. Thus
by means of egs. (10)-(13), we can explain the experimental results very well.

3. Effect of Changing Carrier Concentration

In this case, 4 and p are the function of x. Eq. (1) does not hold now because
of the presence of unhomogeneity, and we will try to derive an equation for @.
For the case of isotropic material even if it is not homogeneous, the heat produced
per second in unit volume is given by®

Q = JE —ow/ox,

since JE is the electrical energy supplied and 2w/dx is the heat flowing out. If we
express @ in terms of J and o7/ox, we find
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A E’]‘) T 9% | =

Q=2 (125) +i5-+ =+ o’ (14)
where & is Seebeck coeflicient, ¢ electronic charge and j electric current density.
In our case as unhomogeneity occurs along x, the second term which represents
the thermoelectric heat is divided into two parts, and eq. (14) can be written in
the form

2] oT oT on
Q= 5; (155) —wi Gy + v G + ol (15)

where p=— (T/e)(05/2T) is Thomson coefficient and » = (T/e) (o&/on), and n is
the concentration of the charge carrier. For our model, the heat generated in unit
length is given as

2
Qi= 1S _WT., (S, dl, pz;]z) L i i f;;l + —%‘—I]— (i=1,2). (16)
Eq. (15) or (16) suggests that the presence of unhomogeneity produce an thermo-
electric heat in addition to Thomson heat, which is proportional to the product of
current density and the gradient of the carrier concentration.
For the sake of simplicity, we try to solve eq. (16) only for the case that the
carrier concentration is expressed as the linear function of x;, namely

7 (%) = 0 (1 + & 1) (17)

then A(x) = i+ Aei(1+2x) and oi(w) =1/pi(%:) = oi(1+eixi), (£=1, 2) where i
and e are the lattice- and the electronic-thermal conductivities at % =0 and o:
(or pi) is the electrical conductivity (or resistivity) at x;=0. For Seebeck coef-
cient, we use the theoretical expression for non-degenerated electron gas, ie.,

il b (18)

Si= xk{2+n 22 memi BT

where % is Boltzmann’s constant, # Plank’s constant and mi effective mass of
electron or hole. From eq. (18) »;i is

m=kT/em(x) and v1=—kT/em(x). (19)
By means of egs. (17), (18) and (19), eq. (16) is written as

&T; ai dT; ci .
X i . LI ? =1, 2), (20)
dux} + 14+7ix dx (14 &ixi) (L +7ixi) (@ )
where
sl il )i o ayiakiTi ko it 21
al_l—}*ﬁz 7S = 7; S and ¢;={(-1) . e+ 2 S (21)
and 8 = Aei/ .

The exact solution of eq. (20) can hardly be obtained, because ¢; is the function
of Ti. But the variation of 7 is considered to be small, and we neglect the de-
pendence of ¢; on x;.. (This order of variation on 73 exists in other constants, for
example o; o T7%.) Then the approximate solution of eq. (20) becomes as
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% P
Ti= — cifo (1+7’iu)"’a"/wf0 (14 7:0) %07 1+ ) " dodu+ Ai(1+ 1) 7% 4 By
(i=1, 2) (22)

where A; and B; are integral constants. We define here constants F;, and G; as
follows ;

Li %

Fi=— L (1+‘riu)'("‘5'”)5 (14 0) (1 + 70 dydu (23)
. 0

GgE (1+TiLi)~<ai/T,-\+1 (24)

then the integral constants A; and B; are determined by means of egs. (3), (23)
and (24) as

AI - <(ﬂ1+][3)]'— VV}(GZ—"I) - (C1F1*—(}2F2.)3151(T2"‘ag) (25 1)
(G1—=1D) S —a) + (Ga— 1) 1 Si(1 — @) ’
Ay = {IL+TL)]— WHGL—1) ~ (o Fs— 1 Fy) A Salry — ay) (25.2)
(Gi=DhS(r—a)+ (G -1 S —a) o
Bi=Ty+cFi+ AGr (25.3)
By=Ty+ e F>— AsGo. (254:)

The temperature difference 47 is

(1T + Hg)]— W+ chIS,AI(n-—aN/(G‘I = 1)+ 63 5 So Ao — az)/(GO"‘l) . (26)

AT>= hSi(h—a)/(Gi— 1) + S~ @) /(G =1)

‘This result can be calculated numerically or be expressed in the form of the
sum of the power series if & L;i<1 and 7:L;<1. But these calculations are so
laborious that we will use some additional assumptions in order to simplify the
calculation, namely we assume that the Thomson effect can be neglected. Then
this result is compared to 47, instead of 47:. In this case egs. (22)~(26) are not
applicable because 7; = a;. After some calculations we get the following result.

4T = UL+ ) ] = W4 (iSia FY/GH + (S Fi'/GY) (27)
(A S/GF) + (A S:/G5) ’
Li
where Ff=— (1/si)§0 (1+72) ' In (L4 %) dx (28)
and Gf=1/ri)In (1 +71: L), (29)

Now we set €1L1: €3L2: EL, T1L1 = T2L2=TL, then F;p = Fz/ = F* and Gl/ = G; = GE,
and eq. (29) becomes

475 = AL+ 1L) — (kT/e) eL(2F*/LG™)} ]
= T S/L) + (B S/ L) Y (LG

— (U2 {(0sLi/S) + (0o Lo/ S} (2 F*LG) — W
{(LSIL) + (le S,/ La) } (L] G¥)

(30)

The current J& which makes the temperature difference 475 maximum is

Jéo = (I + ITe) = (kT/e) eL(2 F*/LG™)}/{(p1 L1/S)) + (02 Lo/ ) }(2 F*/LG*), (31)
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and this is substituted in eq. (30). The result is

(32)

(k/e)eL (%)}( G*2>

sk

ATQ - ATO{]. "‘7]1“’}‘7?2 2F>_< *
Numerical calculations of eq. (31)
were carried out and the results for
the case of 7;=0 are shown in Fig. 2,
because the electronic contribution
to the thermal conductivity seems
to be small in semiconductor.

The maximum temperature dif-
ference obtained by Suge-Aoki” for
Bi-Te alloy is about 30°C, where
—m+7: =320 ©V/deg., which corre-
spond to (e/k)/(~mp+wp)=1/4. For
this case it is found from Fig. 2 that
the maximum of the increase in
temperature difference occurs at -0
about ¢L =—0.9 and its increments
is about 14%.

0.6

(e/R)
04 Parameters are )

~~~~~ _ nlL)=n@)
~~~~  TEe T @

10
02

03
0.1

FI1G. 2. Increase of the temperature
difference as the function of the gradient
of the carrier concentration for the case

of =0 and y=0.

0.0

4. Effect of Changing Sectional Area

Here we discuss only the case where sectional area S; is represented by the
linear function of x;, ie.,

Si(x) =Si(1 + a;i x:). (33)

Calculations were carried out as in 2. The result is

Ti= — (Ai/b){S1+ aix)} ™% = ¢ In Si(1 + aix:) + By, (34)
where
2
{IL+IR)J—W-— % Uipi]z‘/#i)>{(1 +612L2)—bz - 1}/(33"52)
A= ST AT Gl b =T F haSe (AT el & 1)
2
- (xgazsz/sfw;‘lci In (1+aL)
(A2 S2/D1){ (1 + a L) 0 — 1)+ (ha Si/0){(1 +ayLy) "0 -1 > (35.1)
H{IL+ 1) - W— g(zfpz-Jf/ﬂ;>}{(1 +a L) 70 =13/ (S%8,)
Az = (A2 ae Sz/vbﬂl)’z“(l-%-611111)"51 -1+ (Alalsl/bg){(f_;_ @y Ly) "0 =1}
+ (haS/SP) Dein (1+aL:)
G (35.2)

(M@ S /b){(T+a L) =1} + (har Si/0){(1+ @ L)~ — 1}’
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Bi=Ty+ Al{Si(1+ai L)} /b + e: In Su(1 + a L), (35.3)
By=Tyg-+ A2E<52(1 -+ dsz)>—b2/bg]+ e In So(1+ asLs), (35.4)
and bi=wJ/iarS, bi= —p]J/AeasSs, ci= b/, €= Abal . (35.5)

The temperature difference 47 is given as

UL+ IR - W — 20 ioiJil pi)}
4Ty = =

23Laibi Sif {1+ (1+ @ L)%

2
- g[ﬁiaibiCiSi In(1+aL)/{1—1+a:L) %]

5 (36)
SVLaibi2:Si/{1 — (1 + a: L) "%}]
i=1

If @;Li <1 and a>L; <1, then the eq. (36) can be expanded and the final result is

_ 4 —mt ) 4T, 2 =+ AT, 2\ »
AT3—-ATO{1+ 3 (*‘—““‘-“_7]1+_02 ) T -+ 3 ( S, ) T aL‘f‘O(ﬂL/}' (37)

In this we assume that a1L: = @ L, =al. From this equation, it is found that the
effect of changing the sectional area appears only through the effect of Thomson
heat, so that this effect seems not to be serious. If we neglect the Thomson effect,
we can easily see that 4T3 is exactly the same as the earlier theory.

5. Conclusion

In cooling experiments of the element of the thermoelectric refrigerator, there
was differences between the earlier theory and experiments. These differences are
interpreted as the effect of Thomson heat. Thomson effect causes the temperature
difference to be large, but this becomes smaller by the heat W flowing into the
cold junction. As the result, the temperature difference does not so largely differes
from the earlier theory in spite of the presence of the heat W. On the other hand,
the current corresponding to maximum temperature difference is little affected by
the heat W, and the difference between the earlier theory and the experiment
becomes appreciable. This difference well explained quatitatively by our theory.

It is found that the temperature difference can be increased by changing its
carrier concentration along the current flow. The presence of the gradient of the
carrier concentration lead to following two effects; the one is the thermoelectric
heat (absorption or generation) which is proportional to the product of the current
density and the gradient of the carrier concentration, the other is the change of
Joule heat. As these two effects oppose each other, optimum gradient of the carrier
concentration exists for certain given boundary conditions at the cold junction. But
the presence of two opposing effects restrains the increase of the temperature
difference for actual case. For example, this maximum increase would be 149% for
Bi-Te alloy.

The effect of changing sectional area is summarized as follows. This effect does
no appear directly, and appears only through the effect of Thomson heat. As the
result this effect is not so serious, and it would be several per cent.
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