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We investigate entanglement of the Hawking radiation in a dispersive model with subluminal dispersion.
In this model, feature of the Hawking radiation is represented by three mode Bogoliubov transformation
connecting the in-vacuum state and the out-state. We obtain the exact form of the tripartite in-vacuum state
which encodes structure of multipartite entanglement. Bogoliubov coefficients are computed by numerical
calculation of the wave equation with subluminal dispersion and it is found that genuine tripartite
entanglement persists in whole frequency range up to the cutoff arisen from the subluminal dispersion.
In the low frequency region, amount of the tripartite entanglement is far small compared to bipartite
entanglement between the Hawking particle and its partner mode, and the deviation from the thermal
spectrum is negligible. On the other hand, in the high frequency region near the cutoff, entanglement of the
system is equally shared by two pairs of three modes, and the thermal nature of the Hawking radiation is lost.

DOI: 10.1103/PhysRevD.103.125007

I. INTRODUCTION

The black hole horizon causes an extremely large red-
shift on outgoing waves propagating from the vicinity of
the horizon to the asymptotically flat region. This redshift
results in the Planckian distribution of quantum mechan-
ically created Hawking radiation [1,2]. The original
Hawking’s scenario relies on the assumption of infinite
amount of modes whose wavelength is shorter than the
Planck scale. Thus there is a possibility that sub-Planckian
physics alter the nature of the Hawking radiation (trans-
Planckian problem). Within a setup of analog models of
black hole geometry using moving media with high
frequency cutoff, the issue of the trans-Planckian problem
has been investigated by many researchers [3–13]. The
main purpose of these works is to clarify the effect of high
frequency cutoff on sub-Plankian origin of the thermal
radiation predicted by the original Hawking’s work. These
investigations show the robustness of the thermal nature of
the Hawking radiation; deviation from the Planckian
distribution of the Hawking radiation is small if the cutoff
scale is much higher than the surface gravity scale which is
determined by the gradient of the flow velocity at the
sonic point.
The thermal nature of the Hawking radiation can be

understood from a viewpoint of quantum correlation
between the Hawking particles (Hawking radiation) and
their entangled partners which fall into the black hole [14].
To verify the analog Hawking radiation in laboratory

experiments, it is crucial to understand the entanglement
structure of quasiparticles, of which excitation is observ-
able by experiments to confirm the quantum nature of the
Hawking effect. Considering excitation of quasiparticles in
dispersive media, due to nonlinear dispersion relation, new
wave modes participate and they are responsible for
forming multipartite entanglement structure of the
Hawking radiation. Actually, even for (1þ 1)-dimensional
models, right moving modes and left moving modes can
mix each other and the Bogoliubov transformation between
the in-modes and the out-modes becomes transformation
between three modes [9,10,15]. Behavior of entanglement
involving three modes is investigated previously by [15] for
the purpose of distinguishing quantum signals of the
Hawking radiation from classical thermal noise in labo-
ratory experiments. Based on inequalities for correlations
between each mode, which are equivalent to the Peres-
Horodecki separability criterion [16–18], they analyzed
separability of specified two modes. The separability is
related to domination of stimulated emission due to the
initial thermal state in the frame of fluid over spontaneous
one, and they investigated parameter range of which the
spontaneous emission is possible.
The three mode Bogoliubov transformation naturally

leads to formation of multipartite entanglement among
involving modes. The purpose of this paper is to clarify the
structure of the multipartite entanglement of the Hawking
radiation in dispersive media. We obtain the exact form of
the in-vacuum state with three modes and examine entan-
glement between modes including the Hawking radiation.
The plan of this paper is as follows. In Sec. II, we shortly
review the Hawking radiation in dispersive models.
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In Sec. III, structure of the in-vacuum state involving three
modes is clarified and entanglement structure of this state is
investigated. In Sec. IV, we numerically solve the wave
equation with subluminal dispersion and obtain the
Bogoliubov coefficients which are required to determine
the entanglement structure of three mode state. Section V is
devoted to summary and conclusion. We adopt units
c ¼ ℏ ¼ G ¼ 1 throughout this paper.

II. HAWKING RADIATION
IN DISPERSIVE MODEL

We shortly review the Hawking radiation in a moving
media with subluminal dispersion. This part is mainly
based on articles [5,7,9–11]. The wave propagation in the
media with stationary flow is governed by the following
wave equation for scalar fluctuations (e.g., phonon)

ð∂t þ ∂xVÞð∂t þ V∂xÞϕ ¼ −F2ð−i∂xÞϕ; ð1Þ

where VðxÞ denotes the background flow velocity and
Fð−i∂xÞ represents nonlinear modification of dispersion
relation. The wave equation (1) is the specific case of the
equations for sound waves in the perfect fluid obtained by
assuming constant background density and constant sound
velocity of the fluid. In general, the wave equation in fluid
is not conformally invariant [19–21]; after separating time
dependence, the wave equation can be written in the form
of one dimensional Schrödinger equation with nonzero
effective potential which originated from spatially depen-
dent density and sound velocity. The nonzero effective
potential causes mixing of right moving waves and left
moving waves hence gray-body factors are nonzero. For the
specific wave equation (1) adopted in this paper, the
conformal invariance is violated due to dispersion and
mixing of right moving waves and left moving waves
occurs. The conformal invariance is recovered in the low
frequency limit which corresponds to the dispersionless
limit. As we will see, this mixing results in the tripartite
entanglement of the Hawking radiation in dispersive
models.
The velocity profile is assumed to be

VðxÞ ¼ −1þD tanh

�
κx
D

�
; D < 1: ð2Þ

The sonic horizon is located at x ¼ 0 for this flow (Fig. 1).
The parameter κ represents gradient of the flow velocity
at the sonic horizon. The asymptotic flow velocity is
Vþ ≔ Vjx¼þ∞ ¼ −1þD;V− ≔ Vjx¼−∞ ¼ −1 −D.
As the flow is stationary, time dependence of the wave is

separated as ϕ ∝ e−iωt and the wave equation becomes

ð−iωþ ∂xVÞð−iωþ V∂xÞϕ ¼ −F2ð−i∂xÞϕ: ð3Þ

The dispersion relation is obtained by substituting ϕ ∝ eikx:

ðω − VkÞ2 ¼ FðkÞ2; FðkÞ ¼ ðk2 − k4=k20Þ1=2; ð4Þ

where subluminal type of dispersion is assumed. The
parameter k0 determines the high frequency cutoff of the
dispersion. It is possible to identify wave modes as
solutions of Eq. (4) (Fig. 2). In the subsonic region
x > 0, there are two roots with negative wave numbers
kūðωÞ; kvðωÞ, and two roots with positive wave numbers
ku1ðωÞ; ku2ðωÞ. In the supersonic region x < 0, there are
two modes with negative wave number kūðωÞ; kvðωÞ. These
four roots represent modes appear in this model. We denote
them as u1; u2; ū; v. In the asymptotic region where VðxÞ is
constant, these modes behave as plane waves

φmðxÞ ∼ eikmðωÞx; m ¼ u1; u2; ū; v: ð5Þ
The group velocity of each mode is

Vg ¼ VðxÞ � F0ðkmðωÞÞ: ð6Þ

The mode u1 has positive group velocity (right moving)
and the modes u2; v; ū have negative group velocities (left
moving).
In the asymptotic subsonic region x → ∞where the flow

velocity becomes constant, we introduce the cutoff fre-
quency given by

ωcutoff ¼
k0
16

�
3Vþ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2þ þ 8

q �

×
�
8 − 2V2þ þ 2Vþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2þ þ 8

q �1=2
: ð7Þ

For ω > ωcutoff, the dispersion relation does not have real
solutions with k > 0 and there is no right propagating wave
modes in the asymptotic region of x > 0.
Spacetime trajectories of each mode are obtained by

equations of motion derived from the Hamiltonian ωðk; xÞ
(Fig. 3):

dx
dt

¼ ∂ω
∂k ;

dk
dt

¼ −
∂ω
∂x ; ω ¼ VðxÞk� FðkÞ: ð8Þ

In the vicinity of the sonic horizon, the group velocity of the
left moving mode u2 becomes zero. At this point, the mode

FIG. 1. The profile of the background flow. The sonic horizon
is located at x ¼ 0. For x > 0, jVj < 1 (subsonic) and for x < 0,
jVj > 1 (supersonic).
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u2 is reflected and converted to become the right moving u1
mode. The location of the turning point depends on the
cutoff frequency ωcutoff. Under the assumption that jVþj≪1
and ω=ωcutoff ≪ 1, it is given by

κx ≈
3

2

�
ω

2ωcutoff

�
2=3

; ð9Þ

and as the cutoff frequency becomes larger, the turning
point approaches the sonic horizon.
Let us introduce normalized wave modes φu1;2ðωÞ ∝

e−iωt;φvðωÞ ∝ e−iωt;φūð−ωÞ ∝ eiωt with ω > 0. They are
solutions of (1) and are orthogonal and normalized with
respect to the Klein-Gordon inner product

ðf; gÞ ≔ i
Z

dxðf�ð∂t þ V∂xÞg − gð∂t þ V∂xÞf�Þ; ð10Þ

ðφu1;2ðω1Þ;φu1;2ðω2ÞÞ¼ ðφvðω1Þ;φvðω2ÞÞ
¼ δðω1−ω2Þ; ð11Þ

ðφūð−ω1Þ;φūð−ω2ÞÞ ¼ −δðω1 − ω2Þ: ð12Þ

The mode ū has negative energy and negative norm. Now
we consider the self-adjoint field operator ϕ̂ satisfying (1).
The creation and annihilation operators associated with the
mode f of the wave equation (1) is defined by

âðfÞ ¼ ðf; ϕ̂Þ; â†ðfÞ ¼ −ðf�; ϕ̂Þ; ð13Þ

and they are independent of choice of the time slice. With
the other solution g of the wave equation, they satisfy

½âðfÞ; â†ðgÞ� ¼ ðf; gÞ; ½âðfÞ; âðgÞ� ¼ −ðf; g�Þ;
½â†ðfÞ; â†ðgÞ� ¼ −ðf�; gÞ: ð14Þ

The Hawking radiation in this model is explained as
follows. As the in-state, we prepare the vacuum state,

âðφin
u Þj0ini ¼ âðφin�

ū Þj0ini ¼ âðφin
v Þj0ini ¼ 0: ð15Þ

FIG. 2. Modes appear in this model. Left panel: supersonic region (V < −1), right panel: subsonic region (−1 < V < 0). Only u1
mode is right moving. ū mode corresponds to particles with negative energy (negative norm).

FIG. 3. Left panel: schematic picture of modes in this model. We have three modes for the in-state and three modes for the
out-state. Right panel: trajectories of each mode obtained by the Hamiltonian ωðk; xÞ. In this figure, adopted parameters are
D ¼ 1=2; κ ¼ 1; k0 ¼ 1;ω ¼ 0.10. The left moving u2 mode is reflected to become the right moving u1 mode.
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Then, using the Bogoliubov transformation (19) which
connects the in-out creation and annihilation operators,
number of the out-state particle in the subsonic region is

h0injâ†ðφout
u Þâðφout

u Þj0ini¼ jαūuj2h0injâðφin�
ū Þâ†ðφin�

ū Þj0ini
¼ jαūuj2h0inj½âðφin�

ū Þ; â†ðφin�
ū Þ�j0ini

¼−jαūuj2ðφin
ū ;φ

in
ū Þ>0: ð16Þ

Nonzero particle number implies outgoing radiation from the
sonic horizon. Previous works on the Hawking radiation in
dispersive media predict the thermal spectrum of emitted
particles with the Hawking temperature determined by the
“surface gravity” κ, which corresponds to the gradient of the
background flow velocity at the sonic horizon [8].

III. STRUCTURE OF THREE MODE
IN-VACUUM STATE

We investigate structure of the in-vacuum state involving
three modes which encode property of the Hawking
radiation in dispersive models.

A. Three mode Bogoliubov transformation

Using the normalized modes φu;φū;φv, the field oper-
ator is expressed as the Fourier expansion with respect
to ω as

ϕ̂ ¼
Z

∞

0

dωðϕ̂ðωÞe−iωt þ ϕ̂†ðωÞeiωtÞ; ð17Þ

where the Fourier component of the field operator is
expressed as [9,10,15]

ϕ̂ðωÞ ¼ âoutu ðωÞφout
u ðωÞ þ âout†ū ð−ωÞðφout

ū ð−ωÞÞ�
þ âoutv ðωÞφout

v ðωÞ
¼ âinu ðωÞφin

u ðωÞ þ âin†ū ð−ωÞðφin
ū ð−ωÞÞ�

þ âinv ðωÞφin
v ðωÞ: ð18Þ

Creation and annihilation operators âoutj ; âout†j are associ-

ated with the out-state and âinj ; â
in†
j are associated with the

in-state where indices are j ¼ fu; ū; vg. From now on, we
omit the argument ω of operators to simplify notations.
Operators âin;outj ; âin;out†j are related by the following three
mode Bogoliubov transformation

2
64
âinu

âin†ū

âinv

3
75 ¼

2
64
αuu αuū αuv

αūu αū ū αūv

αvu αvū αvv

3
75
2
64
âoutu

âout†ū

âoutv

3
75: ð19Þ

If the mixing between u; ū and v is negligible
αuv ¼ αūv ¼ αvu ¼ αvū ¼ 0, the transformation reduces
to the two mode transformation which appears in standard

calculations of the Hawking radiation. This mixing results
in the gray-body factor in the power spectrum of the
Hawking radiation. For Âin;out ≔ ðâin;outu ; â†in;outū ; âin;outv ÞT,
commutation relations between creation and annihilation
operators can be written as ½Âin

i ; Â
in†
j � ¼ ½Âout

i ; Âout†
j � ¼ ηij

where ηij ≔ diagð1;−1; 1Þ, and the Bogoliubov coeffi-
cients obey the following skew-unitarity relation [22]:

SηS†¼η; S≔

2
64
αuu αūu αvu

αuū αū ū αvū

αuv αūv αvv

3
75; Âin¼STÂout: ð20Þ

This relation yields

jα11j2 − jα12j2 þ jα13j2 ¼ 1;

−jα21j2 þ jα22j2 − jα23j2 ¼ 1;

jα31j2 − jα32j2 þ jα33j2 ¼ 1; ð21Þ

α11α
�
21 − α12α

�
22 þ α13α

�
23 ¼ 0;

−α�21α31 þ α�22α32 − α�23α33 ¼ 0;

α11α
�
31 − α12α

�
32 þ α13α

�
33 ¼ 0; ð22Þ

jα11j2 − jα21j2 þ jα31j2 ¼ 1;

−jα12j2 þ jα22j2 − jα32j2 ¼ 1;

jα13j2 − jα23j2 þ jα33j2 ¼ 1; ð23Þ

−α�11α12 þ α�21α22 − α�31α32 ¼ 0;

α12α
�
13 − α22α

�
23 þ α32α

�
33 ¼ 0;

α11α
�
13 − α�21α23 þ α�31α33 ¼ 0; ð24Þ

where we adopted indices f1; 2; 3g ¼ fu; ū; vg. These
equations are used to check accuracy of our numerical
solutions of the wave equation. From the representation of
the field operator

ϕ̂ ¼
X
j

Âin
j Φin

j ¼
X
j

Âout
j Φout

j ;

Φin;out ≔ ðφin;out
u ;φ�in;out

ū ;φin;out
v ÞT; ð25Þ

the in-mode functions and the out-mode functions are
connected by Φout ¼ SΦin:

2
64
φout
u

φ�out
ū

φout
v

3
75 ¼

2
64
αuu αūu αvu

αuū αū ū αvū

αuv αūv αvv

3
75
2
64
φin
u

φ�in
ū

φin
v

3
75: ð26Þ
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B. In-vacuum state

We adopt the following parametrization of αūu; αū ū; αūv
which satisfies jαū ūj2 − jαūuj2 − jαūvj2 ¼ 1:

αūu ¼ eiφ1 cos θ sinh r; αū ū ¼ eiφ2 cosh r;

αūv ¼ eiφ3 sin θ sinh r; r ≥ 0: ð27Þ

From linear combinations of âoutu ; âoutv , we introduce new
annihilation operators Â1; Â3 as

Â1 ¼ e−iðφ1−φ2Þ cos θâoutu þ e−iðφ3−φ2Þ sin θâoutv ;

Â3 ¼ eiφ3 sin θâoutu − eiφ1 cos θâoutv ; Â2 ¼ âoutū : ð28Þ

They satisfy ½Âi; Âj
†� ¼ δij; ½Âi; Âj� ¼ 0. Inverting the

relation,

âoutu ¼ eiðφ1−φ2Þ cos θÂ1 þ e−iφ3 sin θÂ3;

âoutv ¼ eiðφ3−φ2Þ sin θÂ1 − e−iφ1 cos θÂ3; âoutū ¼ Â2: ð29Þ

By expressing the Bogoliubov transformation (19) in terms
of new annihilation operators Âj, we obtain

âinu ¼ αuū
tanh r

ðÂ1 þ tanh rÂ2
†Þ

þ ðαuue−iφ3 sin θ − αuve−iφ1 cos θÞÂ3; ð30Þ

âinū ¼ α�̄u ūðtanh rÂ1
† þ Â2Þ; ð31Þ

âinv ¼ αvū
tanh r

ðÂ1 þ tanh rÂ2
†Þ

þ ðαvue−iφ3 sin θ − αvūe−iφ1 cos θÞÂ3; ð32Þ

wherewe have used the relationα11α�21−α12α�22þα13α
�
23¼0.

As the in-vacuum state jψ0i is determined by âinj jψ0i ¼ 0;
j ¼ u; ū; v, we have equations determining the in-vacuum
state

ðtanh rÂ1
† þ Â2Þjψ0i ¼ 0;

ðÂ1 þ tanh rÂ2
†Þjψ0i ¼ 0;

Â3jψ0i ¼ 0: ð33Þ

Solving these equations, the form of the in-vacuum state
jψ0i is

jψ0i ¼
1

cosh r

X∞
n¼0

ð− tanh rÞnjniA1
⊗ jniA2

⊗ j0iA3
; ð34Þ

where jniAj
are particle number states defined by the out-

state operators Âj. Hence jψ0i is a produce state of j0iA3
and

the two mode squeezed state defined by A1 and A2 (Fig. 4).

To obtain the wave function of the in-vacuum state
involving three modes, we introduce the following canoni-
cal quadrature operators

X̂j ¼
Âj þ Â†

jffiffiffi
2

p ; P̂i ¼
Âj − Â†

j

i
ffiffiffi
2

p : ð35Þ

Then the wave function of the in-vacuum sate in X-
representation is

ψ0ðX1;X2;X3Þ
¼hX1;X2;X3jψ0i

¼ 1

coshr

X∞
n¼0

ð−tanhrÞnhX1jniA1
hX2jniA2

hX3j0iA3
; ð36Þ

where

hX1;2jniA1;2
¼ ð2nn! ffiffiffi

π
p Þ−1=2HnðX1;2Þe−X

2
1;2=2;

hX3j0iA3
¼ ð ffiffiffi

π
p Þ−1=2e−X2

3
=2: ð37Þ

After all, the wave function is1

ψ0ðX1;X2;X3Þ

¼ π−3=4

coshr
e−ðX2

1
þX2

2
þX2

3
Þ=2X∞

n¼0

ð− tanhrÞn
2nn!

HnðX1ÞHnðX2Þ

¼ π−3=4 exp

�
−
cosh2r

2
ðX2

1 þX2
2Þ þ sinh2rX1X2 −

X2
3

2

�
:

ð38Þ

FIG. 4. Three mode state defined by Ai (left panel) and defined
by aouti (right panel). A1 and A2 constitute a pure two mode
squeezed state and A3 has no correlation with them. Expressing
the state using the original modes defined by aouti , entanglement
of the system is shared by all three modes.

1We applied Mehler’s formula

X∞
n¼0

Sn

2nn!
HnðXÞHnðYÞ¼ ð1−S2Þ−1=2 exp

�
2SXY−S2ðX2þY2Þ

1−S2

�
:
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C. Wigner function

To analyze structure of the tripartite entanglement of the
in-vacuum state, it is convenient to adopt the phase space
representation of the wave function. For this purpose, we
introduce the Wigner function of the three mode wave
function (38)

WðX;PÞ≔ 1

ð2πÞ3
Z

d3yeiP·yψ0

�
Xþ y

2

�
ψ�
0

�
X−

y
2

�

¼ 1

π3
exp½−cosh2rðX2

1þP2
1þX2

2þP2
2Þ

þ 2sinh2rðX1X2 −P1P2Þ− ðX3
3þP2

3Þ�: ð39Þ

In terms of the phase space vector ξ ¼ ðX1; P1; X2;
P2; X3; P3ÞT , the Wigner function is expressed as

WðξÞ ¼ 1

π3
exp

�
−
1

2
ξTV−1ξ

�
;

Z
d6ξWðξÞ ¼ 1; ð40Þ

where V is the covariance matrix

Vij ¼
1

2
hξ̂iξ̂j þ ξ̂jξ̂ii

¼
Z

d6ξξiξjWðξÞ; i; j ¼ 1; � � � 6; ð41Þ

and its components are

V ¼ 1

2

2
64

cosh 2rI − sinh 2rZ 0

− sinh 2rZ cosh 2rI 0

0 0 I

3
75;

I ¼
�
1 0

0 1

�
; Z ¼

�
1 0

0 −1

�
: ð42Þ

The original canonical quadrature operators associated with
âoutj ; âout†j are

x̂j ¼
âoutj þ âout†jffiffiffi

2
p ; p̂j ¼

âoutj − âout†j

i
ffiffiffi
2

p : ð43Þ

The relation between ξ0 ¼ ðx1; p1; x2; p2; x3; p3ÞT and
ξ ¼ ðX1; P1; X2; P2; X3; P3ÞT is obtained from (29):

2
6666666664

X1

P1

X2

P2

X3

P3

3
7777777775
¼

2
6666666664

cos θ cosφ12 cos θ sinφ12 0 0 sin θ cosφ32 sin θ sinφ32

− cos θ sinφ12 cos θ cosφ12 0 0 − sin θ sinφ32 sin θ cosφ32

0 0 1 0 0 0

0 0 0 1 0 0

sin θ cosφ3 − sin θ sinφ3 0 0 − cos θ cosφ1 cos θ sinφ1

sin θ sinφ3 sin θ cosφ3 0 0 − cos θ sinφ1 − cos θ cosφ1

3
7777777775

2
6666666664

x1
p1

x2
p2

x3
p3

3
7777777775
; ð44Þ

where φij ≔ φi − φj. We denote this relation as ξ ¼ Sξ0.
As S is a symplectic transformation, it satisfies the
symplectic condition

SΩ3ST ¼ Ω3; Ω3 ≔ ⨁
3

j¼1

J; J ¼
�

0 1

−1 0

�
: ð45Þ

The Wigner function W0 for the original variables ξ0 is

W0ðξ0Þ ¼ WðSξ0Þ

¼ 1

π3
exp

�
−
1

2
ξT0S

TV−1Sξ0

�

¼ 1

π3
exp

�
−
1

2
ξT0V

−1
0 ξ0

�
; ð46Þ

where the covariance matrix V0 is related to V as

V0 ¼ S−1VðSTÞ−1 ¼ Ω3STΩ3VΩ3SΩ3; ð47Þ

and its components are given by

V0 ¼

2
64

V1 W12 W31

WT
12 V2 W23

WT
31 WT

23 V3

3
75 ð48Þ

with 2 × 2 submatrices

V1 ¼
�
1

2
þ sinh2rcos2θ

�
I; V2 ¼

cosh 2r
2

I;

V3 ¼
�
1

2
þ sinh2rsin2θ

�
I; ð49Þ

W12 ¼ −
sinh 2r cos θ

2

�
cosφ12 sinφ12

sinφ12 − cosφ12

�
;

W23 ¼ −
sinh 2r sin θ

2

�
cosφ32 sinφ32

sinφ32 − cosφ32

�
;

W31 ¼
sinh2r sin 2θ

2

�
cosφ13 − sinφ13

sinφ13 cosφ13

�
: ð50Þ
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As the total system is pure, the covariance matrix V0

satisfies the following purity condition [23]2

V0Ω3V0 ¼
1

4
Ω3: ð51Þ

Submatrices W12, W23, W31 can be simultaneously dia-
gonalized using the local rotation with respect to each mode
[23]. As we are interested in entanglement of the state, and

it can be quantified in terms of the symplectic eigenvalues
and the negativity determined by the symplectic eigenval-
ues. They are independent of φ1 − φ2;φ3 − φ2;φ1 − φ3

and for the purpose of obtaining negativities of the state
defined by the covariance matrix (52), we can set φ1 ¼
φ2 ¼ φ3 without loss of generality. After all, entanglement
structure of the present three mode model can be inves-
tigated using the following covariance matrix

V0 ¼
1

2

2
64
ð1þ 2sinh2rcos2θÞI − sinh 2r cos θZ sinh2r sin 2θI

� cosh 2rI − sinh 2r sin θZ

� � ð1þ 2sinh2rsin2θÞI

3
75: ð52Þ

Two parameters r, θ in the covariance matrix are related to
the Bogoliubov coefficients as

cosh r ¼ jαū ūj; tan θ ¼
				 αūvαūu

				: ð53Þ

For θ ¼ 0; π, V0 reduces to V [Eq. (42)]. The parameter θ
represents degree of ūv-mixing.
By tracing out modes 23, 31, 12, reduced single mode

states are

ρ̂1 ≔ Tr2;3ρ̂; ρ̂2 ≔ Tr3;1ρ̂; ρ̂3 ¼ Tr1;2ρ̂; ð54Þ

and their covariance matrices are given by V1, V2, V3,
respectively. By tracing out modes 3,1,2, reduced bipartite
states are

ρ̂12 ≔ Tr3ρ̂; ρ̂23 ≔ Tr1ρ̂; ρ̂31 ≔ Tr2ρ̂; ð55Þ

and their covariance matrices are

V12 ¼
1

2

� ð1þ 2sinh2rcos2θÞI − sinh 2r cos θZ

− sinh 2r cos θZ cosh 2rI

�
; ð56Þ

V23 ¼
1

2

�
cosh 2rI − sinh 2r sin θZ

− sinh 2r sin θZ ð1þ 2sinh2rsin2θÞI

�
; ð57Þ

V31 ¼
1

2

� ð1þ 2 sinh2 r sin2 θÞI sinh2 r sin 2θI

sinh2 r sin 2θI ð1þ 2 sinh2 r cos2 θÞI

�
:

ð58Þ

D. Negativity and tripartite entanglement

In this paper, we adopt the negativity as an entanglement
measure. For a Gaussian state with canonical variables ξ̂ ¼
ðx̂1; p̂1;…; x̂N; p̂NÞT; hξ̂i ¼ 0, the commutation relation is

½ξ̂j; ξ̂k� ¼ iðΩNÞjk; ΩN ¼ ⨁
N

j¼1

J: ð59Þ

The Gaussian state is completely characterized by the
covariance matrix Vjk ¼ hξ̂jξ̂k þ ξ̂kξ̂ji=2. For a physical
state, the density matrix must be non-negative and the
corresponding covariance matrix must satisfy the inequality

V þ i
2
ΩN ≥ 0; ð60Þ

which is the generalization of the uncertainty relation
between two canonically conjugate variables. The sepa-
rability of the bipartite Gaussian state composed of parties
A and B is expressed in terms of the partial transpose
operation defined by reversing the sign of one party’s
momentum [16–18]. For the partially transposed covari-
ance matrix Ṽ, the sufficient condition of the separability is
given by

Ṽ þ i
2
ΩN ≥ 0: ð61Þ

If this inequality is violated, the bipartite state is entangled.
To quantify entanglement, we introduce symplectic
eigenvalues νi of V, which are obtained by diagonalizing
the covariance matrix with a symplectic transformation.
Practically, symplectic eigenvalues can be obtained as
positive eigenvalues of the matrix iΩNV [24]. In terms
of symplectic eigenvalues, the physical condition (60) is
νi ≥ 1=2 and the separability condition is ν̃i ≥ 1=2where ν̃i
are symplectic eigenvalues of Ṽ. The entanglement neg-
ativity [25] is given by

2Symplectic eigenvalues of V0 are obtained as positive eigen-
values of iΩ3V0. As symplectic eigenvalues of a pure state is 1=2,
iΩ3V0 is diagonalized using a unitary matrix U, the spectrum of
eigenvalue is UðiΩ3V0ÞU† ¼ 1=2diagð1; 1; 1;−1;−1;−1Þ. Thus
UðiΩ3V0Þ2U† ¼ I6×6=4. From this, the relation (51) is derived.
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N ≔
1

2
max

�� Y
ν̃i<1=2

1

2ν̃i

�
− 1; 0

�
: ð62Þ

Nonzero value of the negativity implies nonseparability of
the bipartite state and existence of bipartite entanglement of
the system. Related to the negativity, the logarithmic
negativity is defined by

EN ≔ logð2N þ 1Þ: ð63Þ

Bipartite entanglement of three mode state is evaluated
by specifying three possible bipartitions (Fig. 5):
Behavior of logarithmic negativities EN1∶23; EN2∶31;

EN3∶12 is shown in Fig. 6. For three different partitions
of three modes, the logarithmic negativity is nonzero and
grows as r increases with θ fixed. This behavior implies the
three mode state has genuine tripartite entanglement which
cannot be reducible to bipartite entanglement between two
modes. For a fixed value of r, the following inequalities
hold (right panel of Fig. 6)

EN2∶31 ≥ EN1∶23; EN2∶31 ≥ EN3∶12: ð64Þ

Magnitude relation between EN1∶23 and EN3∶12 changes
depending on values of θ.

By tracing out an one mode of three mode state,
entanglement between reduced two modes is also evaluated
(Fig. 7).
For reduced two mode states, behavior of the logarithmic

negativity is shown in Fig. 8. We have always

EN3∶1 ¼ 0; ð65Þ

and the mode 1 and the mode 3 are separable as a reduced
two mode system. For θ ¼ 0, EN2∶3 ¼ 0 and the modes 1
and 2 forms pure two mode squeezed state and the mode 3
decouples. For θ ¼ π=2, EN1∶2 ¼ 0 and the mode 2 and 3
forms pure two mode squeezed state and the mode 1
decouples.
To quantify genuine tripartite entanglement which

cannot be reducible to bipartite entanglement between
two modes, we examine the residual of entanglement
defined by

τ1 ¼ E1∶23 − E1∶2 − E1∶3 ¼ E1∶23 − E1∶2;

τ2 ¼ E2∶31 − E1∶2 − E2∶3;

τ3 ¼ E3∶12 − E3∶1 − E3∶2 ¼ E3∶12 − E2∶3; ð66Þ

where E denotes square of the logarithmic negativity. The
residual of entanglement quantifies genuine multipartite

FIG. 6. Bipartite entanglement of the three mode state. Amount of entanglement increases as the parameter r increases (left panel).
Relative magnitude of EN1∶23 and EN3∶12 changes depending on values of the parameter θ.

FIG. 5. Possible bipartitions of three mode state. For all three
different partitions, bipartite entanglement (negativity) is nonzero
in the present model. This implies existence of genuine tripartite
entanglement which cannot be reducible to bipartite entangle-
ment between reduced two modes.

FIG. 7. Reduced two modes states are obtained by tracing out
one mode. In the present three mode model, EN3∶1 ¼ 0 and
outgoing mode 1 (u) and ingoing mode 3 (v) are separable as
reduced two mode state. However, this does not imply the mode 1
and the mode 3 do not share entanglement.
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entanglement and is proved to have positive values for three
mode pure Gaussian state [26] (monogamy relation of
entanglement). If the residual is zero, entanglement in three
mode state can be represented as summation of entangle-
ment of the reduced two modes state and there is no
genuine multipartite entanglement. The tripartite entangle-
ment of the system is also quantified by a single quantity

τ ¼ minðτ1; τ2; τ3Þ: ð67Þ

Dependence of θ of the residual entanglement is shown
in Fig. 9.
For θ ¼ 0, the logarithmic negativity is EN3∶12 ¼

EN2∶3 ¼ 0; EN1∶23 ¼ EN2∶31 ¼ EN1∶2 ≠ 0 and τ1;2;3 ¼ 0.
The modes 1,2 constitute a pure entangled state and the
mode 3 decouples. Standard scenario of the Hawking
radiation corresponds to θ ¼ 0 because the mode 3 (left
moving v mode) decouples and the mode 2 (ū mode)
becomes the entanglement partner of the mode 1 (the
Hawking particle u). For θ ≠ 0, π=2, entanglement of three

mode states is shared by all three modes and there is
genuine tripartite entanglement.

IV. ENTANGLEMENT OF HAWKING
RADIATION IN DISPERSIVE MODEL

So far we obtained the structure of the in-vacuum state
defined by three mode Bogoliubov transformation (19)
without specifying behavior of coefficients. By obtaining
wave modes in dispersive media numerically, it is possible
to examine tripartite entanglement of the Hawking
radiation.

A. Numerical method

We solve the wave equation (3) to obtain the Bogoliubov
coefficients. For this purpose, we consider three different
boundary conditions for the wave equation (Fig. 10).
Corresponding to the in-state, ingoing modes (u2, ū, v)
are assumed. Three different out-states are possible by
choosing different boundary conditions at x ¼ −∞.

FIG. 8. Bipartite entanglement of reduced two modes states. Negativity between the mode 1 and 3 is EN3∶1 ¼ 0. Relative magnitude of
EN1∶2 and EN2∶3 changes depending on values of the parameter θ.

FIG. 9. Residual of entanglement τ1, τ2, τ3 (left panel) and τ (right panel). Genuine tripartite entanglement exists for θ ≠ 0, π=2. For
θ ¼ 0, π=2, one mode decouples from other two modes and residual entanglement becomes zero.
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The mode ψA is defined by imposing a boundary
condition that all wave modes decay at x → −∞. This
combination of modes corresponds to φout

u in (26). The
mode ψB is defined by imposing a boundary condition that
only ū mode exists at x → −∞ and is represented by a
linear combination of φout

ū and φout
v : ψB ∝ ðφout

ū Þ� þ c1φout
u .

The mode ψC is defined by imposing a boundary condition

that only vmodes exists at x → −∞ and is represented by a
linear combination of φout

v and φout
u : ψC ∝ φout

v þ c2φout
u .

The coefficients c1, c2 are determined by required boun-
dary conditions. Taking into account of the definition of the
Bogoliubov coefficients (26), behaviors of these modes at
x ¼ �∞ are

ψA ∝ φout
u ∼



0 ðx → −∞Þ
φu1 þ αuuφu2 þ αūuφ

�̄
u þ αvuφv; ðx → þ∞Þ ð68Þ

ψB ∝ ðφout
ū Þ� þ c1φout

u ∼


φ�̄
u ðx → −∞Þ

ðαuū þ c1αuuÞφu2 þ ðαū ū þ c1αūuÞφ�̄
u þ ðαvū þ c1αvuÞφv þ c1φu1 ; ðx → þ∞Þ ð69Þ

ψC ∝ φout
v þ c2φout

u ∼


φv ðx → −∞Þ
ðαuv þ c2αuuÞφu2 þ ðαūv þ c2αūuÞφ�̄

u þ ðαvv þ c2αvuÞφv þ c2φu1 : ðx → þ∞Þ ð70Þ

Asymptotic behavior of these modes at x → þ∞ can be
represented by the Fourier expansion

ψA;B;C ∼
X
m

dðmÞ
A;B;Cφm; m ¼ u1; u2; ū; v; ð71Þ

where φm ∝ eikmðωÞx are plane waves at the asymptotic
region corresponding to each mode. It is possible to obtain
the Bogoliubov coefficients from Fourier coefficients

dðmÞ
A;B;C of these modes. We integrate the wave equation (3)

from the inner boundary of numerical region (corresponds
to x ¼ −∞) with specified boundary conditions for ψA;B;C

to the outer numerical boundary (corresponds to x ¼ þ∞)
across the sonic horizon x ¼ 0, and read off coefficients

dðmÞ
A;B;C.
We adopted the 4th order Runge-Kutta method to solve

the wave equation. For numerical calculation, we prepare
computation region −20 ≤ x ≤ 250 with discretization

Δx ¼ 0.001. The parameters of the velocity profile VðxÞ
are D ¼ 0.7, κ ¼ 7. The corresponding Hawking temper-
ature is TH ¼ κ=ð2πÞ ¼ 1.11. The cutoff parameters in the
dispersion are chosen as k0 ¼ 2, 15, which correspond to
ωcutoff ¼ 0.6, 4.5. Thus these two cutoff parameter corre-
spond to ωcutoff < TH for k0 ¼ 2 and ωcutoff > TH for
k0 ¼ 15. Calculated range of the frequency is 0 < ω <
ωcutoff with Δω ¼ 0.0001. Figure 11 shows behaviors of
ψA;B;C with k0 ¼ 15;ω ¼ 0.1; they reflect different boun-
dary conditions at x ¼ −20 which is the inner boundary of
our numerical integration.

B. Result

From the Bogoliubov transformation (19), the number of
outgoing Hawking particles (mode u) for the in-vacuum
state jψ0i is

NuðωÞ ¼ hψ0jâout†u âoutu jψ0i ¼ jαūuj2δð0Þ ð72Þ

FIG. 10. Three different combinations of modes to determine the Bogoliubov coefficients. The dotted line represents the sonic
horizon.
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where the divergent factor δð0Þ accounts for an infinite
spatial volume. The mean number density of particles is
nuðωÞ ¼ jαūuj2. We compare numerically obtained jαūuj2
with the following spectrum with ω dependent temperature
TðωÞ [9,10]:

nuðωÞ ¼
1

eω=TðωÞ − 1
: ð73Þ

Figure 12 shows the spectrum of particle number density
obtained by our numerical calculation. For ω ≪ ωcutoff, the
spectrum agrees well with the thermal one but its temper-
ature differs from the Hawking temperature TH (see
Fig. 13). For small cutoff frequency ωcutoff < TH, the
temperature is proportional to ωcutoff . As the cutoff fre-
quency becomes larger and satisfies TH < ωcutoff , the
thermal temperature approaches TH [10]. The value of
temperature is related to the location where the mode
conversion occurs. For large cutoff TH < ωcutoff , the left
moving wave u2 is reflected in the vicinity of the sonic

FIG. 11. Three mode functions to obtain the Bogoliubov coefficients (figure shows k0 ¼ 15;ω ¼ 0.1 case). Blue lines and red lines
correspond to the real part and the imaginary part of each wave function, respectively. The mode function ψA does not show oscillatory
behavior in x < 0 region. The mode functions ψB and ψC show oscillation in x < 0 which correspond to propagating ū mode and v
mode, respectively.

FIG. 12. Left panel: the spectrum of created particle number density nuðωÞ ¼ jαūuj2 for k0 ¼ 2, 15. The cutoff frequency is
ωcutoff ¼ 0.6, 4.5. Right panel shows effective temperature TðωÞ defined by (73). For ω ≪ ωcutoff, the spectrum is well fitted with
thermal ones but its temperature differs from TH for k0 ¼ 2. As the cutoff frequency becomes larger, the temperature approaches TH .

FIG. 13. The cutoff parameter dependence of the thermal
temperature atω ¼ 0.001. Open circles correspond to cutoff wave
numbers k0 ¼ 1, 2, 4, 10, 15. For ωcutoff < THðk0 < 3.71Þ, the
temperature is proportional to ωcutoff . For ωc > THðk0 > 3.71Þ,
the temperature asymptotically approaches TH as the cutoff
frequency increases.
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horizon and the thermal temperature is determined by the
“surface gravity” of the sonic horizon. On the other hand
for small cutoff frequency ωcutoff < TH, the mode con-
version occurs at the location (9) depart from the sonic
horizon and the thermal temperature is lowered.
The entanglement structure of the state with the covari-

ance matrix (52) is encoded in behavior of parameters rðωÞ,
θðωÞ, which are determined by the Bogoliubov coefficients
αūu; αū ū; αūv. Figure 14 shows ω-dependence of these
parameters obtained from our numerical calculation. As
the number density of the Hawking particles is jαūuj2 ¼
cos2 θ sinh2 r, emission of radiation is monotonically
decreases as ω increases.
Figure 15 shows behavior of the logarithmic negativity

for k0 ¼ 15 (TH < ωcutoff case). Left panel shows bipar-
tite entanglement for three different bipartitions. For
ω ≪ ωcutoff , EN3∶12 ≪ EN2∶31 ≈ EN1∶23 and entanglement
of the system is mainly shared by the mode 1 (u) and 2 (ū).
For ω ∼ ωcutoff, EN1∶23 ≈ EN2∶31 ≈ EN3∶12 and entangle-
ment is equally shared by all three modes. Right panel
shows bipartite entanglement for reduced two mode states.

An equality EN3∶1 ¼ 0 always holds. We can confirm that
the mode 1 (u) and 2 ðūÞ constitutes a entangled pair for
ω ≪ ωcutoff because entanglement of the system is mainly
shared by the mode 1,2 ðu; ūÞ and the mode 3 (v)
decouples. Figure 16 shows behavior of the logarithmic
negativity for k0 ¼ 2 (ωcutoff < TH case). Although values
of entanglement at ω ∼ 0 and ω ∼ ωcutoff are ten times
larger compared to k0 ¼ 15 case, qualitative dependence of
ω is the same as k0 ¼ 15 case.
Figure 17 shows behavior of the residual of entangle-

ment. For ω < ωcutoff, the genuine tripartite entanglement
persists. However, as τ1;2;3 ≪ EN3∶12 and EN2∶31 ≈ EN1∶23,
EN2∶3 < EN1∶2, the entanglement of the system is mainly
shared by the modes u and ū. Thus we can conclude that ū
mode is approximately the partner mode of the Hawking
particle u. For ω ∼ ωcutoff, the residual of entanglement
approaches nonzero small value and the entanglement of
the system is approximately equally shared by pairs of the
modes v; ū and u; ū. Thus the tripartite entanglement is
reducible to the bipartite entanglement between two
modes (Fig. 18).

FIG. 14. Frequency dependence of parameters r, θ for k0 ¼ 2, 15. Aroundω ∼ ωcutoff , the squeezing parameter r becomes smaller than
one and emission of the Hawking radiation is shut down.

FIG. 15. Logarithmic negativity for k0 ¼ 15 (ωcutoff ¼ 4.5). Left panel: logarithmic negativity of the three mode state. Right panel:
logarithmic negativity of reduced two mode states. EN3∶1 ¼ 0 holds.
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The spectrum of the Hawking radiation around
ω ≪ ωcutoff well agrees with the thermal one with a
temperate given by T ∼ TH for ωcutoff > TH and T ∝
ωcutoff for ωcutoff < TH. From the viewpoint of entangle-
ment, although genuine tripartite entanglement exists
around ω < ωcutoff , its amount is smaller than the bipartite
entanglement between the mode 1 (u) and 2 ðūÞ. Thus the
mode 1 (u) and 2 (ū) constitute entangled pair and the
mode 3 (v) decouples. Thus the expected spectrum of
emitted radiation (mode u) coincides with the thermal one
because reduced state of the mode u is a state of maximal
entropy. For frequency around ωcutoff , entanglement of the
system is equally shared by the modes u; ū and the modes
ū; v. Hence the reduced state of the mode u does not show
the thermal feature.

V. CONCLUSION

We examined effect of multipartite entanglement on the
Hawking radiation in the dispersive model and found that

FIG. 17. Behavior of the residual entanglement (left panel: ωcutoff ¼ 4.5, right panel: ωcutoff ¼ 0.6). For ω < ωcutoff, the residual τ1;2;3
has nonzero value. However, as τ1;2;3 ≪ EN3∶12, the tripartite entanglement of the system can be approximately reducible to the bipartite
entanglement between mode 1 (u) and 2 ðūÞ. For ω ∼ ωcutoff, τ1;2;3 approach to nonzero small values and the tripartite entanglement of
the system can be approximately reducible to the bipartite entanglement between mode 1, 2 ðu; ūÞ and 2,3 ðū; vÞ.

FIG. 18. Schematic structure of the tripartite entanglement in
dispersive model. For low frequency ω ≪ ωcutoff, the mode 1 (u)
and 2 (ū) constitute an entangled pair because genuine tripartite
entanglement is small. For ω ∼ ωcutoff, genuine tripartite ap-
proaches zero and entanglement of the system is equally shared
by the modes 1,2 (u; ū) and the modes 2,3 (ū; v).

FIG. 16. Log negativity for k0 ¼ 2 (ωcutoff ¼ 0.6). Left panel: logarithmic negativity of three mode state. Right panel: logarithmic
negativity of reduced two mode state. EN3∶1 ¼ 0 holds.
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the tripartite entanglement persists in the whole frequency
range up to ωcutoff . The origin of this multipartite entan-
glement is mixing of the left moving vmode and remaining
u; ū modes. Usually, this mixing is recognized as the gray-
body factor due to back scattering of waves. In the
dispersive model investigated in this paper, the origin of
the gray-body factor is spatially varying background flow
velocity [19–21]. Thus even for low frequency region
where the fluid is nearly dispersionless, nonzero values
of the tripartite entanglement is expected as confirmed by
our numerical calculation. The effect of this mixing and
relation to the tripartite entanglement has not been con-
sidered in previous investigations. For low frequency
region, the mixing between the v mode and u; ū modes
are small compared to that between u and ū, and resulting
spectrum of the Hawking radiation coincides with the
thermal one but its temperature depends on the cutoff
scale. Emergence of the thermal feature corresponds to the
structure of entangled pair u; ū and decoupling of v.
Around the cutoff frequency, the thermal feature of the
Hawking radiation is lost; entanglement of the system is
equally shared by pairs of v − ū and u − ū. In this region,
the in-vacuum state is a three mode entangled state and this
entanglement does not reduce only to that between the
Hawking mode u and its partner ū.
If we consider the Hawking radiation for gravitational

black holes, uðūÞ − v mixing naturally occurs due to the
gray-body factor which comes from curvature scattering
effect. Thus the tripartite entanglement of the Hawking
radiation is also expected but the behavior in low frequency
region will depend on type of black holes and type of
quantum fields. For the massless minimally coupled scalar
field, the gray-body factor for the s-wave in low frequency
limit is zero for the Schwarzschild black hole and non-
zero for the Schwarzschild-de Sitter black hole, but the

behavior is different for the nonminimally coupled scalar
field [20,27]. Thus behavior of the tripartite entanglement
of the Hawking radiation also depends on the spacetime
structures and type of quantum fields.
As remaining issues not investigated in this paper, the first

one is effect of different type of dispersion (e.g., super-
luminal type) on entanglement. In this paper, we have
derived the exact form of the in-vacuum state involving
three modes without specifying the dispersion relation. As
the difference of dispersion is encoded in frequency depend-
ence of the Bogoliubov coefficients, it is simple task to apply
our formula to other dispersive models to investigate
entanglement structure. The second one is effect of non-
vacuum in-state. If we assume the thermal state as the in-
state, which corresponds to classical noise from the external
environment, the quantum correlation is reduced and the
structure of the multipartite entanglement will be affected.
The third one is the dependence of flow profile D, κ on
entanglement. The shape of background flow profile may
strongly affects the structure of multipartite entanglement
and it is interestingproblem to examinedifferenceof velocity
profile on structure of entanglement sharing of the Hawking
radiation. These problems are left for our future research.
After uploading our paper to arXiv, we noticed the

preprint [28]. In this paper, the authors also investigate
the tripartite entanglement of the Hawking radiation for the
superluminal dispersion and discuss the best experimental
configuration for observing entanglement in the BEC
system.
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