
1.  Introduction
There is increased interest recently in understanding Sun-Earth interactions and space weather events due 
to the increasing reliability on space-based technological systems. Geomagnetic storms are among the most 
important phenomenon of space weather effects on Earth. Intense geomagnetic storms can cause severe 
damage to satellites, communications and power transmission lines (Jordanova et al., 2020 and references 
therein). The southward interplanetary magnetic field (IMF) Bz in solar wind allows magnetic reconnection 
with geomagnetic field which transfer energy from the solar wind to the Earth's magnetosphere (Dun-
gey, 1961; Gonzalez et al., 1994). The ring current is a near-equatorial westward electric current flowing 
toroidally around the Earth (∼2–7 RE), formed by charged particle (a few kilo-electronvolts to a few hundred 
of kilo-electronvolts) pressure gradients and drift motion (Daglis et al., 1993, 1999; Ebihara & Miyoshi, 2011; 
Frank, 1967; Williams, 1981). It is well known that the Earth's ring current consists of both electron and ion 
species. It is found by some event studies that during the main phase of the storm the ions with energies 
E < 50 keV contribute more significantly to the ring current than those with higher energies. However, 
during recovery phase and quiet time the contribution of higher energy protons to ring current dominates 
(Keika et al., 2011; Zhao et al., 2015). The populations of westward drifting ions, and eastward drifting elec-
trons of ring current energy intensify significantly with the increase in geomagnetic activity (Jordanova & 
Miyoshi, 2005; Le et al., 2004). The spatial and temporal development of the ring current depends strongly 
on the magnetic field topology in the inner magnetosphere. Ring current causes the global depression in the 
geomagnetic field observed on the ground during geomagnetic storms. The Dst (disturbance storm time) 
index has been used as standard measure of ring current strength (Sugiura, 1964). The decrease in Dst index 
is directly related to the total energy of the ring current particles (Dessler & Parker, 1959; Sckopke, 1966). It 
is generally understood that the storm time convection intensifies the ring current during the main phase 
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of the storm (Miyoshi & Kataoka, 2005). Plasma pressure gradients play a very important role in plasma 
dynamics and the generation of electric currents in the inner magnetosphere. Thus, it is essential to under-
stand the ring current pressure variation and the dynamic changes in the spatial structure of ring current 
ions and electrons.

Various loss processes can influence the intensity of the ring current. The main mechanism for ring cur-
rent decay is charge exchange with neutral hydrogen of geocorona (Dessler & Parker, 1959). Ring current 
particles can also lose energy and be scattered by the plasmaspheric ions and electrons due to Coulomb 
collisions (Jordanova et al., 1996). Other important mechanism for ring current decay is via pitch angle scat-
tering, due to the resonant interaction of particles with waves, such as Electromagnetic Ion Cyclotron (Cao 
et al., 2019, 2020; Cornwall et al., 1970; Jordanova et al., 2001; Miyoshi et al., 2008; Summers et al., 2007) 
and whistler waves (Kozyra et al., 1994). Escape through the dayside magnetopause is also one of the loss 
processes for ring current particles (Keika et al., 2005, 2006 and references therein). Field line curvature 
scattering also contributes to the loss of ring current particles and it depends on the geomagnetic activity 
and location (Delcourt et al., 1996; Tsyganenko, 1982; S. L. Young et al., 2002, 2008; Yu et al., 2020). It is well 
known that during quiet times, the ion pressure in the inner magnetosphere is dominated by H+, while O+ 
ion contribution to the ring current pressure increases significantly during storm times and even dominates 
during very intense storms (Daglis et al., 1999; Greenspan & Hamilton, 2002; Hamilton et al., 1988; Keika 
et al., 2013; Nosé et al., 2005). Previous studies using in situ observations and modeling have confirmed that 
during active times, O+ ions that originate in the ionosphere contribute significantly to the plasma pressure 
in the inner magnetosphere (Daglis et al., 1999; Ebihara et al., 2006; Fok et al., 2001; Kistler et al., 2016; Yue 
et al., 2011; Keika et al., 2018). It is also found that warm O+ dominates close to the plasmapause whereas 
warm H+ dominates at higher L-shells (Jahn et al., 2017).

There are numerous studies on ring current ion composition through observations (Daglis et  al.,  1999; 
Greenspan & Hamilton, 2002; Hamilton et al., 1988) and modeling (Jordanova et al., 1996, 2006, 2010). 
However, the contribution of electrons to the ring current is not well understood. There are few studies 
which have focused on the role of electrons in the formation of the storm time ring current. An initial study 
by Frank (1967) showed that electrons contribute to ∼25% to the ring current during active times. Later, Liu 
et al. (2005) showed that this may be an overestimation because the high energy particles were not included 
in the study. They showed that during quiet time electrons contribute 1% to the ring current and ∼8%–19% 
of the ring current during active time (Liu et al., 2005). The storm time electrons play an important role spe-
cially on dawn side and their contribution to ring current is significant (Liu et al., 2005). Jordanova and Mi-
yoshi (2005) extended their global drift loss model to relativistic energies and electrons. They predicted that 
the electrons contribute to ∼2% during quiet times and their contribution increases to ∼10% during active 
times. The ring current atmosphere interactions model (RAM) coupled with a self-consistent (SC) magnetic 
field (B) have been successfully used in many ring current studies over decades (Jordanova & Miyoshi, 2005; 
Jordanova et al., 1996, 2006, 2010, 2016; Yu et al., 2017; Zaharia et al., 2006). Jordanova et al. (2012) showed 
that the electron contribution to the ring current may reach ∼20% near the peak of a high-speed stream 
driven storm and should be investigated carefully. Zhao et al. (2016) have also showed that electron has 
non-negligible contribution to the ring current energy content. They showed contribution of electrons to 
the ring current ∼12% and ∼7% for a selected moderate and intense storm respectively. They also showed 
through statistical study that during the main phase of the storms the electron density is higher at midnight 
and dawn while lower at noon and dusk sector. In this work, we studied the ring current variation during 
the moderate geomagnetic storm of 7–8 November 2017 using observations and RAM-SCB simulations. We 
specially focused on electron contribution to the ring current and ground magnetic depression during the 
magnetic storm that have not been examined previously.

2.  Data Set and Methodology
Ground magnetic variations (Dst and Sym-H index) are often used as a proxy to understand the evolution 
of ring current during magnetic storms (Iyemori et al., 1992; Sugiura & Kamei, 1991). However, Dst and 
Sym-H indices are not sufficient to study the spatial/longitudinal variation in the ring current due to limit-
ed number of stations used in their calculation. Therefore, to study these variations more precisely 30 low 
to midlatitudes (09°–45°) ground magnetic stations are used in the present analysis. Table 1 provides the 
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details of the 30 stations used in the present analysis. Figure 1 shows the distribution of ground magnetic 
stations used across the globe. The ΔH of each station is calculated using the below equation.





HqΔ

Cos
HH� (1)

where, H is a northward component, Hq is the solar quiet variation averaged over 5 quietest days of that 
month, and φ is the magnetic latitude of that particular station.

The mean variation ΔHm is calculated using a method described by Li et al. (2011) and Kumar et al., (2020).


 

1

1Δ Δ
N

m
n

H H
N
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where ΔH is calculated from Equation 1 and N is the total number of stations.
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Station name IAGA code Geographic latitude Geographic longitude CGM latitude CGM longitude

Alibag ABG 18.64 72.87 12.08 145.46

Apia API −13.8 188.22 −15.6 262.65

Alice Springs ASP −23.76 133.88 −33.59 207.89

Beijing Ming Tombs BMT 40.3 116.2 34.99 190.05

Stennis Space Centre BSL 30.4 270.4 41.2 340.95

Chambon la Foret CLF 48 2.3 43.33 79.19

Charters Towers CTA −20.1 146.3 −29.08 220.48

Fresno FRN 37.1 240.3 42.98 303.97

Guimar-Tenerife GUI 28.32 343.56 17.17 60.51

Hartebeesthoek HBK −25.88 27.7 −35.74 96.46

Hermanus HER −34.4 19.2 −42.33 82.9

Honululu HON 21.3 202 21.32 270.06

Jaipur JAI 26.91 75.8 21.55 149.06

Kakioka KAK 36.23 140.19 29.31 212.04

Kakadu KDU −12.6 132.5 −21.73 204.86

Kanoya KNY 31.42 130.88 24.87 203.51

Kourou KOU 5.21 307.27 9.46 23.62

Learmonth LRM −22.22 114.1 −32.46 186.53

Lanzhou LZH 36.08 103.84 30.96 177.23

Memambetsu MMB 43.9 144.2 37.12 215.74

Phuthuy PHU 21.03 105.96 14.16 177.96

Pamatai PPT −17.6 210.4 −16.72 285.42

San Juan SJG 18.11 293.85 27.46 10.73

San Pablo-Toledo SPT 39.5 355.6 31.9 71.78

Tamanrasset TAM 22.79 5.53 9.22 78.37

Teoloyucan TEO 19.8 260.8 28.67 331

Trelew TRW −43.3 294.7 −29.94 4.92

Tsumeb TSU −19.2 17.58 −30.16 88.12

Tucson TUC 32.2 249.2 39.76 314.86

Vassouras VSS −22.4 316.35 −19.63 23.7

Table 1 
List of Geomagnetic Observatories Used for the Present Analysis
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The Exploration of energization and Radiation in Geospace (ERG) satellite, also known as Arase, has an el-
liptical orbit with a perigee of 400 km, an apogee of 32,000 km altitude with an inclination of 31° (Miyoshi, 
Shinohara, et al., 2018). In the present analysis, we use ion data (H+, He+, and O+) obtained from low-en-
ergy particle experiments-ion mass analyzer (LEP-i [10 eV/q–25 keV/q]) (Asamura et al., 2018b; Asamu-
ra, Kasama, et al., 2018), medium-energy particle experiments-ion mass analyzer (MEP-i [10–180 keV/q]) 
(Yokota et  al.,  2017,  2018a,  2018b) and the electron data from low-energy particle experiments-electron 
analyzer (LEP-e [19 eV–20 keV]) (Kazama et al., 2017; Wang et al., 2018a, 2018b), medium-energy parti-
cle experiments-electron analyzer (MEP-e [7–87 keV]) (Kasahara et al., 2018a; Kasahara, Yokota, Mitani, 
et  al.,  2018) and high-energy particle experiments-electron analyzer (HEP-L [70 keV–2 MeV]) (Mitani 
et al., 2018a, 2018b) instruments on board Arase satellite.

3.  RAM-SCB Model
The physics based numerical model used in the present study is the ring current-atmosphere interactions 
model (RAM) coupled with a SC magnetic field (B) (Jordanova & Miyoshi, 2005; Jordanova et al., 1996, 1997, 
2006, 2010, 2016; Miyoshi et al., 2006; Yu et al., 2012, 2017; Zaharia et al., 2006). RAM-SCB solves numeri-
cally the bounce averaged kinetic equation for the phase distribution function   0 0, , , ,lQ R E t  for species l 

in the relativistic case using relativistic factor    2
0

1 E
m c

 where E is the kinetic energy of the particle, m0 

is the rest mass and c is the speed of light.
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Here the brackets 〈〉 denotes the bounce averaging, p is the relativistic momentum of the particle, R0 is the 
radial distance in the equatorial plane from 2 RE to 6.5 RE, φ is the geomagnetic east longitude, and μ0 is 
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Figure 1.  Distribution of ground magnetic stations. The black line denotes the magnetic equator.
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the cosine of the equatorial pitch angle α0, where α0 is from 0° to 90°. The kinetic energy (E) of the particle 
is from 100 eV to 400 keV. h is proportional to the bounce period along magnetic field lines and defined as 

 
 

  



0
0

1
2

1
m

dsh
R B s

B
� (4)

Here Bm is the magnetic field at the mirror point, ds is the distance interval along the field line. The out-
side boundary conditions are determined from plasma sheet flux measurements from the Magnetospheric 
Plasma Analyzer and Synchronous Orbit Particle Analyzer instruments on the Los Alamos National Labo-
ratory geosynchronous spacecraft. These measured fluxes are decomposed into different species using the 
statistical method derived by D. T. Young et al. (1982). The electric field is provided by the latest version of 
the solar wind-driven W05 (Weimer, 2005) ionospheric model by mapping it along the SCB field lines to the 
equatorial plane. As for the magnetic field condition, the ring current model is coupled self-consistently to 
a 3-D force-balanced equilibrium code that computes the magnetic field from the anisotropic RAM plasma 
conditions (Zaharia et al., 2004, 2006). The loss term in the right-hand side of Equation 3 contains charge 
exchange loss with geocoronal hydrogen, and loss due to atmospheric precipitation through wave particle 
interaction.

4.  Results
We investigated the ring current variation during the Corotating Interaction Region (CIR) driven moderate 
storm of 7–8 November 2017. Figure 2 shows the interplanetary parameters in Geocentric Solar Magnetic 
coordinates and geomagnetic indices during 7–8 November 2017 with 1-min resolution. The variation of 
solar wind velocity (Vsw), temperature (T), dynamic pressure (P), IMF Bz, auroral index (AL), and Sym-H are 
shown in Figure 2 from top to bottom (a–f) respectively. An interplanetary shock was observed at ∼0200 UT 
on 7 November followed by an increase in solar wind velocity, temperature and solar wind dynamic pressure 
(Figures 2a–2c). Solar wind velocity started increasing at ∼0200 UT on 7 November and remained constant 
(∼600 km/s) for the rest of the interval. The solar wind temperature also increased at ∼0200 UT and was 
almost constant for the rest of the interval. There were some strong pressure pulses at ∼0300 UT and ∼0900 
UT. IMF Bz started fluctuating around 0200 UT. A strong southward excursion to about −15 nT occurred at 
∼0800 UT followed by north-south fluctuations for the rest of the interval. These IMF conditions triggered a 
moderate geomagnetic storm with minimum Sym-H = −89 nT at ∼0400 UT on 8 November 2017. The main 
phase of the storm started ∼0800 UT (shown by vertical line). The minimum AL = −1,400 nT was reached 
at ∼1300 UT on 8 November 2017. This is a typical CIR-driven storm, that is, long-lasting recovery phase 
driven by series of substorms (e.g., Miyoshi & Kataoka, 2008; Miyoshi et al., 2013; Tsurutani et al., 2006).

Figure  3 shows the orbit of Arase satellite in solar magnetic (SM) coordinates (a) in X-Y plane (b) in 

  2 2Z X Y  during 7–8 November 2017. The Arase satellite was located in afternoon to dusk sector 
for most of the time. This location was ideal to observe the ring current particles for the selected storm. 
To investigate the ring current, we compare the particle fluxes from RAM-SCB simulations driven by solar 
wind-dependent W05 convection electric field model with observations from the Arase satellite. The flux 
along the orbit of Arase is obtained using the same MLAT, MLT, and L-values from RAM simulation.

Figure 4 shows the energy-time diagram of omni-directional ion fluxes of Arase obtained from LEP-i and 
MEP-i and from RAM-SCB simulations during 7–8 November 2017. Figures 4a and 4b show the H+ flux 
from RAM-SCB and Arase observations respectively. The dotted black vertical line represents the onset of 
main phase. It can be seen that there is increase in H+ fluxes at all energies after the onset of main phase in 
both panels RAM-SCB and Arase. There are some data gaps in Figure 4b as the Arase was operating in time 
of flight mode. The increase in H+ flux can be seen throughout the main phase. Figures 4c and 4d show the 
O+ flux from RAM-SCB and Arase observations respectively. The O+ fluxes also increased with the onset of 
main phase in both Arase observations and simulations. Similarly, Figures 4e and 4f shows the He+ fluxes. 
There is increase in He+ fluxes during main phase but not as much compared to H+ and O+ fluxes. Figure 4 
shows clearly that there was increase in the ions fluxes during main phase indicating the development of 

KUMAR ET AL.

10.1029/2021JA029109

5 of 16



Journal of Geophysical Research: Space Physics

ring current. It is also to be noted that RAM-SCB reproduces the observed ion fluxes by Arase satellite very 
well. Figure 5 shows the energy time diagram of electron fluxes calculated from RAM-SCB and Arase ob-
servations obtained from LEP-e, MEP-e, and HEP-L during 7–8 November 2017. It can be seen that there 
is significant increase in the electron flux after main phase onset in both panels of Figure 5. The electron 
flux increases initially for few kiloelectron volts (keV) then with the onset of substorms ∼1000 UT onwards 
the flux in range of 10 keV to few 100 keV also increased in both panels. However, there are some discrep-
ancies too. The comparison between electron fluxes at ∼0800–1000 UT is not very good. RAM-SCB shows 
the significant enhancement of electron fluxes of 0.1–10 keV energies however, these flux enhancements 
are not observed by Arase satellite. The electron fluxes after 1000 UT observed by Arase are reproduced by 
RAM-SCB fairly well. In addition, the magnitude of 10–100 keV fluxes measured by Arase are at times a 
magnitude less than simulated by RAM-SCB. The loss processes can be one of the reasons behind these 
differences as RAM-SCB used in the present study includes electron loss due to atmospheric precipita-
tion through wave particle interactions using empirical electron lifetime (for further details see Jordanova 
et al., 2012). These lifetimes might not be representing the actual lifetime well during the specific storm 
conditions. It can be seen from Figures 4 and 5 that RAM-SCB has reproduced the ion and electron fluxes 
measured by Arase reasonably well.

Figure 6 shows the plasma pressure observed by Arase and RAM-SCB for LEP-i (100 eV/q–20 keV/q), LEP-e 
(19 eV–20 keV), MEP-i (10 keV/q–170 keV/q), and MEP-e (7–87 keV) energies. The plasma pressure is cal-
culated for each p article species using RAM-SCB from the energy (E) and pitch angle (α) distributions of 
differential flux J (E, α) (De Michelis et al., 1999)
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Figure 2.  Variation in the interplanetary parameters and geomagnetic indices for geomagnetic storm on 7–8 November 
2017. Each panel from top to bottom show (a) solar wind velocity (Vsw), (b) solar wind temperature (T), (c) solar wind 
dynamic pressure (Psw), (d) interplanetary magnetic field Bz, (e) auroral index (AL), and (f) Sym-H. Vertical blue line 
denotes the onset of main phase of the storm.
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Figure 3.  Orbit of the Exploration of energization and Radiation in Geospace (ERG) satellite in solar magnetic (SM) coordinates and during 7–8 November 
2017 magnetic storm.

Figure 4.  Time series of omni-directional ion flux measurements by low-energy particle experiments-ion mass analyzer and medium-energy particle 
experiments-ion mass analyzer of Arase satellite and Ring current Atmosphere interactions Model with Self Consistent magnetic field (RAM-SCB) calculated 
fluxes along the Arase orbit. (a) Proton, (c) oxygen, and (e) helium fluxes calculated by RAM-SCB. (b) Proton, (d) oxygen, and (f) helium fluxes measured by 
Arase satellite. Vertical black line denotes the onset of main phase of the storm.
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 


      32 , sin Δ Δ
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P mE J E E� (5)
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where m is the mass of the species, ΔE is the energy channel width, and Δ  is the pitch angle bin width. 
Figures 6a–6c shows the plasma pressure observed by Arase (red line) and calculated from RAM-SCB (black 
line) for H+, O+ (LEP-i) and electrons (LEP-e). It can be seen that ions pressure from Arase and RAM-SCB 
are very similar except few occasions. The electron pressure (LEP-e) for lower energies RAM-SCB overes-
timated the observed pressure on November 8 around 0600–0800 UT. Similarly, Figures 6d–6f shows the 
plasma pressure observed by Arase and RAM-SCB for H+, O+ (MEP-i), and electrons (MEP-e). The ions 
pressure is very similar from observation and simulation for MEP-i energies except the 0700 UT on Novem-
ber 8 when RAM-SCB underestimated the proton pressure. It can be seen RAM-SCB reproduced very well 
the observed plasma pressure by Arase except few occasions especially near boundary cut off of the model. 
Figure 6f shows the electron pressure from Arase (MEP-e) and RAM-SCB. It can be seen electron pressure 
also reproduced by RAM-SCB except at 1400 UT on November 8 when model underestimated the plasma 
pressure.

In order to see the ring current asymmetry, the mean ΔHm (from Equation 2) is subtracted from the ΔH of 
each station to calculate ΔHasy (ΔHasy = ΔH−ΔHm) (Kumar et al., 2020). The top panel of Figure 7 shows the 
variation of ΔHasy with 1-min resolution with UT (X-axis) and MLT (Y-axis) along with pressure corrected 
Sym-H (Sym-H*) during 7–8 November 2017. The color bar represents the magnitude of ΔHasy. Sym-H* is 
the value after removing the contribution from the magnetopause currents (Burton et al., 1975; O'Brien & 
McPherron, 2000) using the following equation:

   Sym Sym dH H b P c�
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Figure 5.  Time series of electron flux measurements by Arase satellite and Ring current Atmosphere interactions Model with Self Consistent magnetic field 
(RAM-SCB) along Arase orbit. (a) Electron omni-directional fluxes calculated by RAM-SCB. (b) Electron omni-directional fluxes measured by Arase satellite. 
Vertical black line denotes the onset of main phase of the storm.
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where b = 7.26 and c = 11 are the values derived by O'Brien and McPherron (2000) and Pd is the solar wind 
dynamic pressure in nPa.

It can be seen from Figure 7 that there is a clear and strong asymmetry in the ring current after 0800 UT 
(dotted vertical line). It is also to be noted that before 0800 UT, the ΔHasy variations show weak asymme-
try in the ring current. However, after 0800 UT, dawn sector (0300–0700 MLT) shows the positive ΔHasy 
variations whereas the dusk sector (1700–2100 MLT) shows negative ΔHasy variations indicating the ring 
current is stronger at dusk sector than dawn sector. It is well known that ring current is asymmetric during 
the main phase of the geomagnetic storm. The ground magnetic depression during geomagnetic storms is 
caused by the increase in ring current (plasma pressure) in inner magnetosphere. The top panel of Figure 8 
shows the variation of the total (integrated over all species) plasma pressure (L = 3–6.5) with UT and MLT, 
and the bottom panel shows the Sym-H* variations during 7–8 November 2017. It can be seen ∼0400 UT 
there was increase in plasma pressure in dusk sector, which might have caused the initial depression in 
Sym-H*. There was significant increase in plasma pressure ∼0800 UT (marked with vertical line) at dusk 
and post-midnight sector. During the same time there was a significant decrease in the Sym-H*. The plasma 
pressure also shows similar asymmetric variation as shown by ground magnetic stations in Figure 7. This 
again shows that the ring current is asymmetric during the main phase of the geomagnetic storm. The 
ratio of individual species pressure to the total pressure was calculated to investigate their contribution to 
the total ring current and shown in Figure 9. Figure 9a shows the ratio of H+ pressure to the total pressure 
(PT) integrated over L = 3–6.5 during 7–8 November 2017. It can be seen that the H+ pressure dominates 
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Figure 6.  Comparison of plasma pressure observed by Arase (red line) and Ring current Atmosphere interactions Model with Self Consistent magnetic field 
(black line) for low-energy particle experiments-ion mass analyzer (LEP-i) (100 eV/q–20 keV/q) ions (a) H+, (b) O+, and (c) low-energy particle experiments-
electron analyzer (LEP-e) (19 eV–20 keV) electrons. Medium-energy particle experiments-ion mass analyzer (MEP-i) (10 keV/q–170 keV/q) ions (d) H+, (e) O+, 
and (f) medium-energy particle experiments-electron analyzer (MEP-e) (7–87 keV) electrons.
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at afternoon to dusk sector after the onset of main phase (vertical dotted line). Figures 9b and 9c show the 
ratio of O+ and He+ to the total pressure respectively. It can be seen from Figures 9a–9c that the ion pressure 
is dominating in dusk to post-midnight sector. Figure 9d shows the ratio of electrons pressure to the total 
pressure during 7–8 November 2017. The electron pressure is enhanced in midnight to dawn sector with 
peak plasma pressure at dawn sector. Note that H+ has the highest ratio to the total pressure (∼0.8). It can be 
seen clearly from Figure 9 that the ion pressure is dominating in dusk sector whereas the electron pressure 
is dominating in dawn sector.

In order to see the electron contribution to the ring current in the dawn sector, the electron pressure at 
0300–0800 MLT has been plotted in Figure 10 along with the ground ΔH variations (Equation 1). The top 
panel in Figure 10a shows the ground ΔH variations at 0300–0800 MLT sector during 1600–1200 UT on 7–8 
November 2017 while bottom panel shows the variation of Sym-H*. Figure 10b shows the total electron 
pressure in 0300–0800 MLT sector during 1600 UT 7 November until 1200 UT 8 November 2017. It can be 
seen from Figure 10b that the electron pressure started increasing significantly after 1800 UT on 7 Novem-
ber 2017. The electron pressure was highest at ∼2200 UT. The ground ΔH variations started showing more 
negative variations during the same period (shown by red color). The enhanced electron pressure has con-
tributed significantly to this negative depression in ground ΔH variations near the dawn sector.

5.  Discussions
Knowledge of the ring current particles composition in the inner magnetosphere is essential for the un-
derstanding of magnetospheric processes and related instabilities. The global ground geomagnetic field 
depression during geomagnetic storms is caused by the ring current. It is well known that the ring current 
is highly asymmetric during main and early recovery phase during geomagnetic storms and dawn-dusk 
asymmetry is observed (Ebihara & Ejiri, 2000; Fok et al., 1996; Jordanova et al., 2006; Kumar et al., 2020; 
Liemohn et al., 1999; Sugiura & Chapman, 1960).
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Figure 7.  (Top panel) variation of ΔHasy = ΔH−ΔHm with MLT and onset time (UT). (Bottom panel) variation of 
pressure corrected Sym-H* index during the magnetic storm of 7–8 November 2017.
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In the present study, we compared the ion and electron fluxes calculated with RAM-SCB with Arase ob-
servations. It is found that RAM-SCB simulations reproduce reasonably well the particle fluxes observed 
by Arase satellite in the inner magnetosphere during 7–8 November 2017 geomagnetic storm. The ion and 
electron fluxes started to increase during the main phase of the geomagnetic storm. The ion fluxes with 
energy in 10 keV to few 100 keV increased significantly during the main phase. Similarly, electron fluxes 
with energy few keV increased initially and with the enhanced substorm activity fluxes with energy 10 keV 
enhanced significantly. We also compared the plasma pressure observed by Arase and RAM-SCB for LEP-i 
(100 eV/q–20 keV/q), LEP-e (19 eV–20 keV), MEP-i (10 keV/q–170 keV/q), and MEP-e (7–87 keV) energies. 
It is found that RAM-SCB reproduces the observed plasma pressure by Arase reasonably well.

Low and middle latitudes ground magnetic variations are often used as a proxy to understand the evolu-
tion of ring current during geomagnetic storms. In the present study, we used data from ground magnetic 
stations to study the ring current variations observed at ground. Storm time ground H component has con-
tribution from various current systems (e.g., magnetopause current, symmetric/asymmetric ring current, 
tail current and ionospheric currents). However, these currents have different origin and effects at different 
magnetic local times (Tsyganenko & Sitnov, 2005; Turner et al., 2000; Yu et al., 2010). It is also to be not-
ed that field aligned currents (FACs) also contribute to the ground magnetic field during disturbed time 
(Imajo et al., 2020). FACs are large scale current system that flows in and out of the ionosphere. Region 
2 (R2) FACs flows out and in to the ionosphere on the dawn and dusk side respectively (Iijima & Potem-
ra, 1976). During disturbed time R2 FACs move equatorward and get connected to the ring current in the 
inner magnetosphere (Liemohn et al., 2016). This closure part of the ring current is known as the partial 
ring current (PRC) and is formed by the nightside pressure enhancement observed during the main phase 
of the magnetic storm (Ebihara et al., 2002). Therefore, ring current is asymmetric due to the generation 
of PRC and a dawn-dusk asymmetry is observed in the ground H-component during the main phase of the 
magnetic storm. Figure 6 shows a clear dawn-dusk asymmetry of ring current observed at ground magnetic 
stations. The four-dimensional physics-based model RAM-SCB with self-consisting magnetic field has been 
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Figure 8.  (Top) Variation of sum of total pressure (ions + electrons) from L = 3–6.5 with MLT and onset time (UT). 
(Bottom) Variation of pressure corrected Sym-H (Sym-H*) index during the magnetic storm of 7–8 November 2017.
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used successfully over the past decade to reproduce ring current dynamics and morphology during various 
geomagnetic conditions (Jordanova et al., 2006, 2010, 2014, 2016; Yu et al., 2017; Zaharia et al., 2006).

In the present study, we used RAM-SCB simulations to calculate the ring current pressure in the inner mag-
netosphere during 7–8 November 2017 geomagnetic storm. The ring current intensifies during the main 
phase of the storm (Figure 7). The ring current pressure is asymmetric as the ring current is stronger in dusk 
to midnight sector (Figure 7). It is found that the ring current is mainly dominated by the ions. We calcu-
lated the contribution of each species to the total ring current pressure. The H+ and O+ contribution to ring 
current was found to be ∼71% and ∼15% respectively during the main phase of the storm. He+ contribution 
was found to be ∼2% to the ring current. Interestingly, the electron component contributed ∼12% to the to-
tal ring current. However, in the dawn sector the electron contribution to the ring current is important and 
could increase locally to ∼18% due to substorm injections during the peak of the storm.

6.  Summary and Conclusions
In the present paper, we investigated the ring current variations during the 7–8 November 2017 magnet-
ic storm using in situ and ground-based observations and RAM-SCB simulations. The ion and electron 
fluxes in the inner magnetosphere measured by Arase satellite were fairly well reproduced by RAM-SCB 
simulations. RAM-SCB reproduces the plasma pressure observed by Arase satellite during the storm. The 
ground magnetic stations show the clear dawn-dusk asymmetry of the ring current. Pressure variations 
from RAM-SCB show that the ion and electron pressure was dominating in the dusk and dawn sector re-
spectively. During the main phase of the storm the ions contributed ∼88% whereas electrons contributed 
∼12% to the total ring current. The ring current was mainly dominated by H+ (∼71%), O+ contributed ∼15% 
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Figure 9.  Ratio of particle pressure to the total ring current pressure (PT) as a function of MLT and UT (a) proton, (b) oxygen, (c) helium, and (d) electron.
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and He+ contribution was ∼2% during the main phase. Interestingly, it is found that the ΔH variation at 
ground in dawn sector (0300–0800 MLT) sector was negative corresponding to enhanced electron pres-
sure. The majority of ring current pressure is dominated by ions in the dusk sector during the main phase. 
However, electrons have non-negligible contribution to the ring current in the dawn sector. It is expected 
that enhanced electron pressure might have contributed to negative ΔH variations at ground in the dawn 
sector. Thus, storm time ring current electrons should be included to estimate the total pressure in future 
observational and model studies.

Data Availability Statement
The RAM-SCB model data used in the present study are available at https://nuss.nagoya-u.ac.jp/s/
iNLS9sDArsYcJjw.
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