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ABSTRACT 33 

 34 

To robustly estimate the fundamental mode component of prompt neutron decay 35 

constant α in a subcritical system, dynamic mode decomposition (DMD) is applied to 36 

time-series data obtained by the pulsed-neutron source (PNS) and Rossi-α methods. For 37 

the statistical uncertainty quantification of α by DMD, randomly sampled virtual data 38 

are used for the DMD procedure. The applicability of DMD is demonstrated by 39 

analyzing the experimental results by the PNS and Rossi-α methods, which are 40 

performed at the Kyoto University Critical Assembly (KUCA). When applying the 41 

DMD to the PNS and Rossi-α experimental data, a constant signal was added to the 42 

experimental data to remove the background constant component. The application 43 

results indicate that DMD enables one to robustly estimate the fundamental mode 44 

component of α in the PNS and Rossi-α methods. 45 

 46 

KEYWORDS: prompt neutron decay constant, dynamic mode decomposition, 47 

fundamental mode component, pulsed-neutron source method, Rossi-α method 48 
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I. INTRODUCTION 50 

The prompt neutron decay constant α is a time constant that represents the 51 

exponential decay of the number of prompt neutrons in a subcritical system. The 52 

experimental value of the fundamental mode component of α is useful for estimating the 53 

subcriticality of the measurement system and reducing nuclear data-induced 54 

uncertainties in numerical results using data assimilation [1]. The fundamental mode 55 

component shows the slowest decay among those of higher mode components obtained 56 

by the time-dependent prompt neutron transport equation. Therefore, when sufficient 57 

time has elapsed after a source neutron is generated, the fundamental mode component 58 

becomes the most dominant component of the neutron flux in the system.  59 

The pulsed neutron source (PNS) method [2] and the Rossi-α method [3] can be 60 

applied to obtain the α value experimentally. In the PNS method, the time variation of 61 

neutron count rates in the subcritical system is measured by periodically injecting 62 

pulsed neutrons into the subcritical system. After pulsed neutrons are injected into the 63 

subcritical system, the neutron count rates temporarily increase due to the neutron 64 

transport and the fission chain reaction caused by the pulsed neutrons. Subsequently, 65 

since the fission chain reaction terminates in the subcritical system, the neutron count 66 

rates exponentially decrease by a system-specific decay constant. The system-specific 67 

decay constant corresponds to α. By contrast, in the Rossi-α method, the reactor noise 68 

signals in the subcritical system are measured to obtain a histogram of the neutron-69 

detection-time intervals. The histogram of the neutron-detection-time intervals 70 

corresponds to the time variation of the probability that a neutron pair belonging to the 71 

same fission chain system is detected. The probability also decreases exponentially by 72 

the prompt neutron decay constant α. Generally, the value of α is estimated by the least-73 

squares fitting method using an exponential function to the measured time-series data of 74 

the PNS or Rossi-α method.  75 

 The problem of the least-squares fitting method is that the estimated α contains 76 

a systematic error derived from the higher mode components because a precise 77 

extraction of only the fundamental mode component is difficult. To reduce the influence 78 

of higher mode components, the time-series data obtained by the PNS or Rossi-α 79 

method within a masking time interval are excluded in the conventional least-squares 80 

fitting. In other words, the estimated value of α depends on the masking time. To 81 

address this issue, Katano proposed linear combination method [4–6]. In this method, 82 
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the time-series data acquired using multiple detectors are summed with the weighting 83 

coefficients, to be expressed as a single exponential decay as much as possible. 84 

However, not only the value of α but also the weighting coefficients should be 85 

determined by the nonlinear least-squares fitting. Hence, the initial values of these 86 

fitting parameters must be assigned appropriately to estimate the fundamental mode 87 

component of α, i.e., there is an issue to set the initial values of these fitting parameters 88 

automatically. 89 

To overcome this issue, we aim to develop another method that can robustly 90 

estimate the fundamental mode component of α without requiring any initial values in 91 

the conventional fitting process. For this purpose, this study focused on dynamic mode 92 

decomposition (DMD). DMD is a data-driven method that can extract the spatio-93 

temporal structure of a system from time-series data obtained from experiments or 94 

numerical simulations [7]. Recently, DMD has been investigated in the field of reactor 95 

physics, e.g., to construct the reduced order models of kinetic properties in subcritical 96 

systems [8]. In DMD, the time constant for each mode can be obtained by decomposing 97 

the time-series data into a summation of exponential modes. Since the experimental 98 

results obtained by the PNS and Rossi-α methods can also be expressed by the 99 

summation of exponential functions, the applicability of DMD to both methods is 100 

expected. Furthermore, unlike conventional fitting and linear combination methods, 101 

DMD does not require any initial values, i.e., the fundamental mode component of α 102 

can be uniquely determined from the time constant obtained by applying DMD. In this 103 

study, the applicability of DMD for extracting the fundamental mode component of α 104 

from actual experimental results by the PNS and Rossi-α methods was investigated.   105 

The remainder of this paper is organized as follows. In Section II, the theoretical 106 

formulas of the PNS and Rossi-α methods are briefly explained. Subsequently, the 107 

theory of DMD is presented, followed by a procedure to estimate the statistical 108 

uncertainty of α by DMD using randomly sampled virtual data. Section III describes the 109 

PNS and Rossi-α experiments performed at the Kyoto University Critical Assembly 110 

(KUCA) and presents the application results of DMD for each experiment. Finally, 111 

concluding remarks are presented in Section IV. 112 

  113 
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II. THEORY 114 

II.A. Pulsed-Neutron Source and Rossi-α Methods 115 

In the PNS method, pulsed neutrons are periodically injected into the subcritical 116 

system, and then the time variation in the neutron count rate 𝐶(𝑡) is measured. The 117 

prompt neutron decay constant α is estimated by analyzing the exponential time 118 

variation of 𝐶(𝑡).  119 

 The theoretical formula for the neutron flux after pulsed neutrons are injected 120 

into a subcritical system is explained briefly below. First, let us define Green’s function 121 

𝐺(𝑟, 𝐸, Ω⃗⃗⃗, 𝑡|𝑟0, 𝐸0, Ω⃗⃗⃗0, 𝑡0) as the neutron flux at (𝑟, 𝐸, Ω⃗⃗⃗, 𝑡) after injecting one neutron 122 

into the system at (𝑟0, 𝐸0, Ω⃗⃗⃗0, 𝑡0). Here, 𝑟, 𝐸, Ω⃗⃗⃗, and 𝑡 represent the position, neutron 123 

energy, neutron flight direction, and time variables, respectively; the subscript 0 124 

indicates the index for neutron injection. By focusing on the time domain where the 125 

decay of prompt neutron component is dominant, the Green’s function 126 

𝐺(𝑟, 𝐸, Ω⃗⃗⃗, 𝑡|𝑟0, 𝐸0, Ω⃗⃗⃗0, 𝑡0) can be expanded using the α-eigenfunction as follows [9]: 127 

𝐺(𝑟, 𝐸, Ω⃗⃗⃗, 𝑡|𝑟0, 𝐸0, Ω⃗⃗⃗0, 𝑡0) = ∑ 𝜓𝑛(𝑟, 𝐸, Ω⃗⃗⃗)𝜓𝑛
†(𝑟0, 𝐸0, Ω⃗⃗⃗0)𝑒−𝛼𝑛(𝑡−𝑡0)

∞

𝑛=0

, (1) 

where 𝜓𝑛 and 𝜓𝑛
†
 represent the forward and adjoint eigenfunctions, respectively. These 128 

eigenfunctions satisfy the following forward and adjoint prompt-α eigenvalue equations 129 

using the conventional nomenclature in the reactor physics: 130 

𝐁𝜓𝑛(𝑟, 𝐸, Ω⃗⃗⃗) =
𝛼𝑛

v(𝐸)
𝜓𝑛(𝑟, 𝐸, Ω⃗⃗⃗), (2) 

𝐁†𝜓𝑛
†(𝑟, 𝐸, Ω⃗⃗⃗) =

𝛼𝑛

v(𝐸)
𝜓𝑛

†(𝑟, 𝐸, Ω⃗⃗⃗), (3) 

where vacuum conditions are assumed for 𝜓𝑛 and 𝜓𝑛
†
 at the outer boundary conditions; 131 

𝐁 and 𝐁†  are the forward and adjoint Boltzmann operators, respectively, defined as 132 

follows: 133 

𝐁 ≡ Ω⃗⃗⃗ ∙ ∇ + Σt(𝑟, 𝐸) − ∫ 𝑑𝐸′
∞

0

∫ 𝑑Ω′

4𝜋

Σs(𝑟, 𝐸′ → 𝐸, Ω⃗⃗⃗′ → Ω⃗⃗⃗ )

−
𝜒p(𝑟, 𝐸)

4𝜋
∫ 𝑑𝐸′

∞

0

∫ 𝑑Ω′

4𝜋

𝜈pΣf(𝑟, 𝐸′), 

(4) 
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𝐁† ≡ −Ω⃗⃗⃗ ∙ ∇ + Σt(𝑟, 𝐸) − ∫ 𝑑𝐸′
∞

0

∫ 𝑑Ω′

4𝜋

Σs(𝑟, 𝐸 → 𝐸′, Ω⃗⃗⃗ → Ω⃗⃗⃗′)

− 𝜈pΣf(𝑟, 𝐸) ∫ 𝑑𝐸′
∞

0

∫ 𝑑Ω′

4𝜋

𝜒p(𝑟, 𝐸′)

4𝜋
. 

(5) 

To derive the theoretical formula of the PNS method, let us assume that delta-functional 134 

neutrons 𝑞PNS are repeatedly injected with a constant period  𝑇0 at time 𝑡 = −𝑖𝑇0 (𝑖 =135 

0,1,2, ⋯). In the steady-state after sufficient time from the start of pulsed neutron 136 

injection, an approximately constant background neutron source 𝑞BG  exists in the 137 

system because of the inherent neutron source (e.g., spontaneous fission and (𝛼, 𝑛) 138 

reaction) in the nuclear fuel and the decay of delayed neutron precursors. Hence, the 139 

total neutron source 𝑞(𝑟, 𝐸, Ω⃗⃗⃗, 𝑡) in the system can be expressed as follows: 140 

𝑞(𝑟, 𝐸, Ω⃗⃗⃗, 𝑡) = 𝑞PNS(𝑟, 𝐸, Ω⃗⃗⃗) ( ∑ 𝛿(𝑡 − 𝑖𝑇0)

∞

𝑖=0

) + 𝑞BG(𝑟, 𝐸, Ω⃗⃗⃗). (6) 

Based on Eqs. (1) and (6), the time variation of the neutron flux 𝜓(𝑟, 𝐸, Ω⃗⃗⃗, 𝑡) due to the 141 

PNS can be derived by integrating the product of Green’s function 142 

𝐺(𝑟, 𝐸, Ω⃗⃗⃗, 𝑡|𝑟0, 𝐸0, Ω⃗⃗⃗0, 𝑡0) and 𝑞(𝑟, 𝐸, Ω⃗⃗⃗, 𝑡) as follows: 143 

𝜓(𝑟, 𝐸, Ω⃗⃗⃗, 𝑡)

= ∫ 𝑑𝑉0
𝑉

∫ 𝑑𝐸0

∞

0

∫ 𝑑Ω0
4𝜋

∫ 𝑑𝑡0

𝑡

−∞

𝑞(𝑟0, 𝐸0, Ω⃗⃗⃗0, 𝑡0)𝐺(𝑟, 𝐸, Ω⃗⃗⃗, 𝑡|𝑟0, 𝐸0, Ω⃗⃗⃗0, 𝑡0)

= ∑ 𝐹𝑛(𝑟, 𝐸, Ω⃗⃗⃗)𝑒−𝛼𝑛𝑡

∞

𝑛=0

+ 𝐹BG(𝑟, 𝐸, Ω⃗⃗⃗), 

(7) 

where 𝐹𝑛  and 𝐹BG  represent the n’th order expansion coefficient and the background 144 

component, respectively. Finally, the time variation of the neutron count rate 𝐶(𝑡) in the 145 

PNS method can be derived by integrating the product of the macroscopic detection 146 

cross section Σd and the neutron flux 𝜓(𝑟, 𝐸, Ω⃗⃗⃗, 𝑡) over the total phase space: 147 

𝐶(𝑡) = 〈Σd𝜓〉 = ∑ 𝐶𝑛𝑒−𝛼𝑛𝑡

∞

𝑛=0

+ 𝐶BG, (8) 

where  148 

〈 〉 = total integral over the total phase space  149 

𝐶𝑛 = n’th order expansion coefficient 150 

𝐶BG = constant background component.  151 
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As shown in Eq. (8), the theoretical formula for the neutron count rate 𝐶(𝑡) in 152 

the PNS method can be expressed by the sum of the exponential higher mode 153 

components and the constant component [5,6].  154 

By contrast, the Rossi-α method is one of the reactor noise analysis methods. 155 

First, the reactor noise (i.e., time-series data of neutron-detection time) in the subcritical 156 

system in steady-state condition is measured. Subsequently, the histogram 𝑃(𝜏) of the 157 

neutron-detection-time interval 𝜏 is obtained by analyzing two detection time points. 158 

Namely, the time interval 𝜏  is calculated for each combination of all neutron pairs 159 

detected within the measurement time, and the histogram 𝑃(𝜏) is counted to estimate 160 

the prompt neutron decay constant α. 161 

 The theoretical formula for the histogram 𝑃(𝜏) is briefly explained below. Let us 162 

consider a subcritical system in which the steady-state is maintained by an external 163 

neutron source. Based on the heuristic method with Green’s function expressed in Eq. 164 

(1) [9,10], the theoretical formula for 𝑃(𝜏) can be derived from the α-eigenfunction 165 

expansion as follows:   166 

𝑃(𝜏) = ∑ 𝑃𝑛𝑒−𝛼𝑛𝜏

∞

𝑛=0

+ 𝑃u, (9) 

where  167 

𝑃𝑛 = n’th order expansion coefficient  168 

𝑃u = uncorrelated term representing the frequency due to independent neutron  169 

pairs that do not belong to the same fission chain. 170 

 As shown in the experimental results of the Rossi-α method in Section III.C., 171 

according to the experimental condition, the uncorrelated term 𝑃u  in Eq. (9) can be 172 

regarded as an almost constant term. In such a case, as in the same manner as the PNS 173 

method, the theoretical formula for the histogram 𝑃(𝜏) in the Rossi-α method can be 174 

also expressed by the sum of the exponential higher mode components and the constant 175 

component. 176 

 177 

II.B. Dynamic Mode Decomposition 178 

Let us consider that neutrons are successively counted by 𝑛 time steps of time 179 

interval ∆𝑡 using 𝑚 neutron detectors in the PNS method. Alternatively, in the Rossi-α 180 

method, let us consider that the frequency of the neutron-detection-time interval τ is 181 

measured by 𝑛 bins of time interval ∆𝜏  using 𝑚 neutron detectors. The discrete time-182 
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series data of the PNS or Rossi-𝛼 measurement are arranged into an 𝑚 × 𝑛 matrix 𝐗, 183 

where 𝑚 < 𝑛. By taking the 𝑖’th through 𝑗’th time-series data from the original matrix 184 

𝐗, a slicing matrix 𝐗𝒊:𝒋  of size 𝑚 × (𝑗 − 𝑖 + 1) is constructed. Based on two slicing 185 

matrices 𝐗𝟏:𝒏−𝟏  and 𝐗𝟐:𝒏 , the time evolution matrix 𝐀  in the DMD satisfies the 186 

following equation [7]:  187 

𝐀𝐗𝟏:𝒏−𝟏 ≈ 𝐗𝟐:𝒏 . (10) 

For Eq. (10), it is assumed that the time variation of the time-series data is exponential. 188 

The time evolution matrix 𝐀 transforms each time-step data into the next time-step data. 189 

In the DMD, the time evolution matrix 𝐀 can be estimated from the time-series data 190 

only. 191 

 The procedure to calculate the time evolution matrix 𝐀  is briefly explained 192 

below. First, 𝐗𝟏:𝒏−𝟏  is decomposed into three matrices using singular value 193 

decomposition as follows: 194 

𝐗𝟏:𝒏−𝟏 = 𝐔𝚺𝐕∗, (11) 

where  195 

matrix 𝐔 = 𝑚 × 𝑚 unitary matrix  196 

matrix 𝚺 = 𝑚 × 𝑚 diagonal matrix with diagonal elements corresponding 197 

 to singular values 198 

matrix 𝐕 = (𝑛 − 1) × 𝑚 unitary matrix  199 

superscript *= denotes a complex conjugate transposition.  200 

Using Eq. (11), the pseudo-inverse matrix 𝐗𝟏:𝒏−𝟏
+  can be obtained as follows: 201 

𝐗𝟏:𝒏−𝟏
+ = 𝐕𝚺−1𝐔∗, (12) 

where superscript −1 indicates the inverse matrix. By multiplying both sides of Eq. (10) 202 

by the pseudo-inverse matrix 𝐗𝟏:𝒏−𝟏
+  from the right, the time evolution matrix 𝐀 can be 203 

obtained as follows: 204 

𝐀 = 𝐗𝟐:𝒏𝐕𝚺−1𝐔∗. (13) 

By applying the eigenvalue decomposition to the estimated 𝐀 , eigenvalues 𝜆𝑖  and 205 

eigenvectors 𝜓𝑖(𝑟) associated with the matrix 𝐀 are obtained for each mode (1 ≤ 𝑖 ≤206 

𝑚). Note that 𝜓𝑖(𝑟) exhibits a discretized form in the space.  Using the eigenvectors 207 

𝜓𝑖(𝑟), the time-series data of 𝑓(𝑟, 𝑡) at position 𝑟 can be expanded as follows: 208 



8 

 

𝑓(𝑟, 𝑡) = ∑ 𝑎𝑖𝜓𝑖(𝑟)

𝑚

𝑖=1

exp(𝜔𝑖𝑡) ,  (14) 

where 𝑎𝑖 and 𝜔𝑖 are the amplitude (or expansion coefficient) and time constant of the 209 

𝑖’th mode, respectively. The time constant 𝜔𝑖  can be calculated using the following 210 

formula: 211 

𝜔𝑖 =
ln(𝜆𝑖)

∆𝑡
. (15) 

Note that the prompt neutron decay constant is a negative time constant and that the 212 

sign of 𝛼 is opposite to that of 𝜔𝑖, i.e., 𝛼𝑖 = −𝜔𝑖. In addition, the fundamental mode 213 

component of 𝛼  is the slowest decay constant except for the constant background 214 

component 𝐶BG  in Eq. (8) or 𝑃u  in Eq. (9) as explained in Sec. II.A. The constant 215 

component degrades the estimation accuracy of the fundamental mode component of 𝛼. 216 

To remove the contribution of the constant background component, a constant signal for 217 

all time steps is added virtually to matrix 𝐗. By adding a constant signal, the constant 218 

background component can be extracted as an independent mode, which contains the 219 

first maximum eigenvalue 𝜆max = 1, because the background component corresponds 220 

to exp (−
ln(𝜆𝑚𝑎𝑥)

∆𝑡
𝑡) = 1 . Consequently, the fundamental mode component of 𝛼  is 221 

determined by the second maximum eigenvalue except for the first maximum 222 

eigenvalue 𝜆max = 1 as follows: 223 

𝛼 = −
ln(max(𝜆𝑖′))

∆𝑡
 where 𝜆𝑖′ < 𝜆max . (16) 

 224 

II.C. Evaluation of Statistical Uncertainty of α Using Randomly Sampled 225 

Virtual Data 226 

Since the measured time-series data contain statistical errors, the random 227 

sampling method [11] was utilized to evaluate the statistical uncertainty of α in the 228 

DMD procedure. 𝑁 virtual time-series data sets were sampled by adding normal random 229 

numbers to the elements in matrix 𝐗. Here, the element of matrix 𝐗 in the 𝑖’th row and 230 

𝑗’th column is denoted by 𝑥𝑖𝑗. In the PNS method, 𝑥𝑖𝑗 corresponds to the neutron counts 231 

measured by the 𝑖’th neutron detector at the 𝑗’th time step. By contrast, in the Rossi-α 232 

method, 𝑥𝑖𝑗  corresponds to the frequency of the neutron-detection-time interval 233 

measured by the 𝑖 ’th neutron detector at the 𝑗 ’th time interval. If each 𝑥𝑖𝑗  has a 234 
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statistical uncertainty 𝜎𝑖𝑗 , then the 𝑘’th virtual time series data 𝐗(𝑘)  is generated via 235 

perturbation as follows: 236 

𝑥𝑖𝑗
(𝑘)

= 𝑥𝑖𝑗 + 𝜎𝑖𝑗𝒩(0,1) , (17) 

where 𝒩(0,1) is the standard normal random number. By applying repeatedly DMD to 237 

each virtual data set, a histogram of α can be obtained. Figure 1 shows a typical 238 

example of a histogram for α. Based on the obtained histogram of α, the sample mean 239 

and unbiased standard deviation of α were estimated. The estimated standard deviation 240 

corresponds to the statistical uncertainty of α in the DMD procedure. The procedure for 241 

calculating α with statistical uncertainty is summarized as follows: 242 

1. Create 𝑘’th perturbed virtual time-series data by adding normal random numbers to 243 

matrix 𝐗(𝑘). 244 

2. Calculate time evolution matrix 𝐀(𝑘) based on slicing matrices 𝐗𝟏:𝒏−𝟏
(𝑘)

 and 𝐗𝟐:𝒏
(𝑘)

. 245 

3. Obtain eigenvalue 𝜆𝑖
(𝑘)

 for each mode by eigenvalue decomposition of matrix 𝐀(𝑘). 246 

4. Evaluate the fundamental mode component of the prompt neutron decay constant 247 

𝛼(𝑘) using Eq. (16). 248 

5. Repeat steps 1–4 N times to obtain the histogram of α. 249 

6. Estimate the sample mean and standard deviation of α by statistical processing for 250 

the obtained histogram of α. 251 

 252 

 253 

Figure 1. Example of histogram for α by randomly sampled virtual data. 254 

 255 
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III. APPLICATION TO KUCA EXPERIMENT 256 

III.A. Experimental Conditions 257 

The experimental KUCA core is shown in Fig. 2. All control rods (C1, C2, and 258 

C3) and safety rods (S4, S5, and S6) were fully inserted into the core in this experiment. 259 

Figure 3 shows the configurations of the fuel assemblies loaded in the core. The 260 

1/8”p60EUEU and 1/8”p10EUEU fuel assemblies were configured by a unit fuel-cell 261 

#1, which comprised two 1/16” enriched uranium plates and one 1/8” polyethylene plate. 262 

By contrast, the EU-Al-NU-Al-EU fuel assembly was configured by two different unit 263 

fuel-cells #1 and #3. Unit cell #3 comprised one natural uranium plate, four 1/16” 264 

enriched uranium plates, and four Al plates.  265 

In this experiment, 100-MeV protons generated from the fixed-field alternating 266 

gradient (FFAG) accelerator were periodically injected onto the Pb-Bi target. Therefore, 267 

spallation reactions generated pulsed neutrons periodically. The beam injection period 268 

of the FFAG accelerator was 30 Hz. Using 10 neutron detectors (four BF3 detectors #1–269 

#4, four fiber-optic detectors #1–#4, two fission chambers #1–#2), the time-series data 270 

of neutron counts were measured for 1,000 s after the core reached the steady-state. In 271 

order to successfully apply DMD to the experimental data, many combinations of 272 

neutron flux with various higher mode components are necessary. Thus, as shown in Fig. 273 

2, the detectors were dispersed in asymmetrical positions to obtain the various higher 274 

mode components. In the PNS method, we analyzed the neutron count rates per one 275 

pulsed neutron-shot and the statistical uncertainties using the 30,000(=30 Hz × 1,000 s) 276 

pulsed neutron-injection results. The statistical uncertainty of the neutron count rate was 277 

evaluated by the central limit theorem. In the Rossi-α method, the histogram 𝑃(𝜏) was 278 

obtained as the mean value of several histograms generated from the measurement 279 

results of the reactor noise for 1,000 s. Similar to the PNS experiment, the statistical 280 

uncertainty of 𝑃(𝜏) was also evaluated by the central limit theorem. 281 

 282 
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 283 

Figure 2. Top view of experimental core. 284 

 285 

Figure 3. Configurations of fuel assemblies. 286 
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Table 1 shows the control rod worth measured by the rod drop method [12] and 287 

the excess reactivity of the experimental core measured by the positive period method 288 

[12]. To evaluate the rod worth and excess reactivity, the decay constants 𝜆𝑖 and the 289 

relative yields 𝑎𝑖 for delayed neutrons were taken from the Keepin data [13]. As shown 290 

in Fig. 2, the control rods and safety rods were arranged symmetrically. Therefore, it 291 

was assumed that the rod worth of the safety rod was equal to that of the control rod at 292 

the symmetric position. Table 1 also shows the subcriticality (−𝜌) of the experimental 293 

core calculated from the rod worth and the excess reactivity. The uncertainty of each 294 

value presented in Table 1 was evaluated using the random sampling method [11] to 295 

consider the normal-distributed uncertainties of 𝜆𝑖, 𝑎𝑖 [13] and the measured doubling 296 

time, as well as Poisson-distributed statistical errors of neutron counts in the rod drop 297 

method. In the random sampling method, the sum of the perturbed 𝑎𝑖 was normalized to 298 

unity, and the sample size was set to 10,000 to estimate the uncertainties of the rod 299 

worth, excess reactivity, and (−𝜌). 300 

 301 

Table 1. Experimental results of rod drop method and period method. 302 

Rod worth ($) 

C1, S4 1.203 ± 0.041 

C2, S6 0.408 ± 0.014 

C3, S5 0.408 ± 0.014 

Excess reactivity ($) 0.036 ± 0.001 

Subcriticality (−𝜌) ($) 4.001 ± 0.133 

 303 

Table 2 shows the effective delayed neutron fraction 𝛽eff  and the neutron 304 

generation time Λ for the experimental core calculated by MCNP6.2 [14] with ENDF/B-305 

VII.1 [15]. In Table 2, the uncertainties in 𝛽eff and Λ are the statistical errors due to 306 

MCNP6.2. Based on the fundamental mode approximation, the prompt neutron decay 307 

constant α assumed to be nearly equal to (𝛽eff − 𝜌) Λ⁄ . For comparison with the 308 

measured α, Table 2 also presents the value of (𝛽eff − 𝜌) Λ⁄  using the experimental 309 

result of (−𝜌)  and the numerical results of Λ  and 𝛽eff . Similar to Table 1, the 310 

uncertainty of (𝛽eff − 𝜌) Λ⁄  was evaluated using the random sampling method. 311 

 312 

Table 2. Calculation results of point kinetics parameters and (𝜷𝐞𝐟𝐟 − 𝝆) 𝚲⁄ . 313 

Effective delayed neutron fraction 𝛽eff (-) 0.00797 ± 0.00006 

Neutron generation time Λ (μs) 27.20 ± 0.04 

(𝛽eff − 𝜌) Λ⁄  (1/s) 1466 ± 39 
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III.B. Experimental Results and DMD Analysis 314 

 The time-series data of the PNS and Rossi-α methods were successively 315 

measured using 10 neutron detectors (four BF3 detectors, four fiber-optic detectors, and 316 

two fission chambers). The positions of the detectors in the experimental core are 317 

shown in Fig. 2. In the PNS method, neutrons were successively counted by a time step 318 

of ∆𝑡 = 0.0001  (s). In the Rossi-α method, the frequency of neutron-detection-time 319 

interval was also calculated by a time bin of ∆𝜏 = 0.0001 (s). Figure 4 shows the 320 

experimental results obtained by the PNS and Rossi-α methods. In the DMD, matrices 𝐗 321 

was constructed using both time-series data shown in Fig. 4, respectively. From Fig. 4-322 

(a), the size of the matrix 𝐗 in the PNS method was 10 × 333, i.e., 333 time steps were 323 

measured with 10 neutron detectors. Meanwhile, from Fig. 4-(b), the size of matrix 𝐗 in 324 

the Rossi-α method was 10 × 200 , i.e., 200 time intervals were measured with 10 325 

neutron detectors. In addition, constant signals of 1 for all time steps were virtually 326 

added to both matrices 𝐗, in order to remove the constant components shown in Eqs. (8) 327 

and (9) in the DMD procedure. 328 

 329 

 330 

Figure 4. Experimental results of the PNS and Rossi-α method. 331 

 332 

Figure 5 shows the results of applying DMD and the conventional fitting method 333 

to the PNS method. Similarly, Fig. 6 shows the results of applying the aforementioned 334 

methods to the Rossi-α method. The horizontal axes in Figs. 5 and 6 represent the 335 

masking time for excluding the effect of higher mode components. For comparison, the 336 

calculated (𝛽eff − 𝜌) Λ⁄  value shown in Table 2 is also presented in Figs. 5 and 6. In the 337 
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conventional fitting method, the PNS and Rossi-α histograms shown in Fig. 4 were 338 

fitted by the following formulas, respectively: 339 

𝐶(𝑡) = 𝐶0exp(−𝛼𝑡) + 𝐶BG , (18) 

𝑃(𝜏) = 𝑃0exp(−𝛼𝜏) + 𝑃u , (19) 

where 𝐶0, 𝐶BG , 𝑃0 , and 𝑃u  are fitting parameters, and α is the prompt neutron decay 340 

constant. To obtain the least-squares fitting results shown in Figs 5-(a) and 6-(a), the 341 

“scipy.optimize.curve_fit” module [16] was utilized. By setting the option of 342 

“absolute_sigma” to “True,” the fitting error of α was evaluated using the absolute value 343 

of the statistical uncertainty (1σ) at each time step. Note that the fitting error in this 344 

study was approximately estimated without considering the covariance between the 345 

different time steps. Hence, the fitting errors of 𝛼 shown in Fig. 5-(a) and Fig. 6-(a) 346 

were underestimated, compared with the bias between the fitting result and 347 

(𝛽eff − 𝜌) Λ⁄ . By contrast, in the DMD, the fundamental mode component of α and the 348 

statistical uncertainty were estimated as described in Sec. II.C. The sample size 𝑁 for 349 

evaluating the statistical uncertainty of α was set as 𝑁 = 10,000 such that the relative 350 

statistical error of the uncertainty estimated by the random sampling method was less 351 

than 1 %. When 𝑁 = 10,000, the relative statistical error of the uncertainty using the 352 

random sampling method is expected to be 1 √2(𝑁 − 1)⁄ ≈ 0.7 % [17]. 353 

 354 

 355 

Figure 5. Estimation results of α by PNS method. 356 
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 357 

Figure 6. Estimation results of α by Rossi-α method. 358 

III.C. Discussion 359 

In the early stage of the time steps of the PNS and Rossi-α histograms, the 360 

higher mode components do not necessarily decay sufficiently. Using the conventional 361 

fitting method, the effect of the higher mode component becomes significant in the 362 

early stage of decay. For example, in the case of the PNS method as shown in Fig. 5-(a), 363 

the conventional fitting results of the BF3 detectors and fission chambers deviated 364 

significantly from the (𝛽eff − 𝜌) Λ⁄  value as the masking time decreased. Also in the 365 

case of the Rossi-α method as shown in Fig. 6-(a), a similar trend was also observed for 366 

the BF3 detectors and fission chambers. These differences between the conventional 367 

fitting results and the (𝛽eff − 𝜌) Λ⁄  value were greater than the fitting error of α, i.e., the 368 

conventional fitting results contained large systematic errors due to the higher mode 369 

components in the early stages of decay.  370 

Meanwhile, for the Rossi-α method, as the masking time increased, the fitting 371 

results of α for BF3#2, Fiber#2, and fission chambers deviated from the (𝛽eff − 𝜌) Λ⁄  372 

value, as shown in Fig. 6-(a). This is because the decay of the fundamental mode 373 

component could not be easily extracted when the masking time to eliminate the effect 374 

of higher mode components was too large, i.e, the histograms after masking were 375 

almost constant. Furthermore, the larger variations in the fitting results of α for FC#1 376 

and FC#2 with respect to the masking time were observed due to the larger statistical 377 

uncertainties of the Rossi-α histograms for FC#1 and FC#2, as shown in Fig. 4-(b). 378 

As discussed above, the appropriate masking time must be carefully selected to 379 

appropriately estimate the fundamental mode component of α using the conventional 380 

fitting method. However, the determination of masking time is difficult because the 381 
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reference value of α is usually unknown beforehand. In addition, since multiple 382 

detectors were used in this experiment, the conventional fitting method yielded different 383 

estimation results of α for each detector, i.e., the selection of an appropriate detector to 384 

obtain the fundamental mode component of α was not straightforward. To summarize, 385 

in the conventional fitting method, it is difficult to uniquely determine the value of α 386 

only from the measurement results. 387 

 By contrast, in DMD, the influence of higher mode components could be 388 

eliminated from the fundamental mode component by decomposing the time-series data 389 

into multiple exponential modes. Therefore, even in the early stages of decay, the 390 

fundamental mode component of α can be extracted robustly. Consequently, the 391 

variation in the estimated α with respect to the masking time could be reduced 392 

significantly, as shown in Figs. 5-(b) and 6-(b). DMD enables us to robustly estimate 393 

the fundamental mode component of α even when the reference value is unknown. The 394 

masking time in DMD can be determined simply to minimize the statistical uncertainty 395 

of α. For example, the DMD results of α with the smallest statistical uncertainty were 396 

1505 ± 10 (1/s) and 1519 ± 4 (1/s) for the PNS and Rossi-α experiments, respectively. 397 

Furthermore, even when multiple detectors were used, DMD provided a unique result 398 

for α from all the detector data. Hence, it was confirmed that DMD addressed the issue 399 

of the conventional fitting method because it is easy to uniquely determine the 400 

fundamental mode component of α. 401 

 402 

IV. CONCLUSIONS 403 

 Using DMD and randomly sampled virtual data, the present paper attempted to 404 

investigate the prompt neutron decay constant α of the fundamental mode component 405 

with statistical uncertainty. To demonstrate our proposed technique, experimental 406 

analyses by the PNS and Rossi-α methods were performed. In applying the DMD to the 407 

PNS and Rossi-α experimental data, the background constant component was removed 408 

by adding a constant signal to the experimental data. Consequently, the estimation 409 

results for the fundamental mode component of α were approximately constant with 410 

respect to the masking time, as compared with the larger variation in the conventional 411 

fitting α value. In conclusion, DMD enabled one to robustly estimate the fundamental 412 

mode component of α in the PNS and Rossi-α methods, and the applicability of DMD to 413 

both methods was demonstrated. 414 
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