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The position-dependent diffusion coefficient along with free
energy profile are important parameters needed to studymass
transport in heterogeneous systems such as biological and
polymer membranes, and molecular dynamics (MD) calcula-
tion is a popular tool to obtain them. Among many method-
ologies, the Marrink–Berendsen (MB) method is often em-
ployed to calculate the position-dependent diffusion coeffi-
cient, in which the autocorrelation function of the force on
a fixed molecule is related to the friction on the molecule.
However, the diffusion coefficient is shown to be affected
by the period of the removal of the center-of-mass velocity,
τv0, which is necessarywhen performingMDcalculations us-
ing the Ewald method for Coulombic interaction. We have
clarified theoretically in this study how this operation affects
the diffusion coefficient calculated by the MB method, and
the theoretical predictions are proven by MD calculations.
Therefore, we succeeded in providing guidance on how to
select an appropriate τv0 value in estimating the position-
dependent diffusion coefficient by theMBmethod. This guide-

Abbreviations: COM, Center of mass; FACF, Force autocorrelation function; MB, Marrink–Berendsen; MD, Molecular Dynamics; WR, Woolf–Roux.
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line is applicable also to the Woolf–Roux method.
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1 | INTRODUCTION24

Mass transport phenomena in heterogeneous systems are important issues in various fields, and much research has25

been conducted in this area to date. For example, in the field of biological chemistry, understanding the permeation26

of drugs into viruses1 and through membranes2–4 at the molecular level plays an important role in appropriate ra-27

tional drug design. In the field of materials sciences such as in the separation of molecules using reverse osmosis28

membranes5,6 and the study of the transport process of protons, oxygen, and hydrogen in a polymer electrolyte29

membrane7–9, it is important to understand the relationship between the mechanism of molecular transport and the30

microscopic details of the materials.31

The position-dependent diffusion coefficient, along with the free energy profile, is an important physical quantity32

utilized in studies of the mass transport phenomena of heterogeneous systems using molecular dynamics (MD) calcu-33

lations. Because of its importance, many methods10–19 have been proposed to obtain the position-dependent diffu-34

sion coefficient. Two of us and other coworkers have also previously proposed a method for obtaining the position-35

dependent diffusion coefficient with high accuracy in any heterogeneous system20.36

Among the methods proposed so far, the Marrink–Berendsen (MB) method is one of the best-known methods37

used to calculate the position-dependent diffusion coefficient21–26. This method allows for straightforward calcu-38

lation of the the position-dependent diffusion coefficient with existing MD calculation packages. In this method,39

the center of mass (COM) of the molecule is constrained to a certain position, and the diffusion coefficient can be40

obtained by the force autocorrelation function (FACF) of the COM of the molecule. A downside is systematic un-41

derestimation of the resultant diffusion coefficient27,20, which can be attributed to perturbation of dynamics arising42

from constraints. In other words, the memory kernel of a freely moving particle may not always be well approximated43

by that of a constrained particle.44

In this paper, we demonstrate the critical role of momentum removal in obtaining the position-dependent dif-45

fusion coefficient by methods involving position constraints, such as the MB method. In MD calculations that use46

the Ewald method28,29 for calculating the long-range Coulombic interaction, the momentum of the MD system is47

reduced to zero with a certain time interval, τv0, to prevent the MD system from diffusing. We demonstrate that this48

operation affects the diffusion coefficient calculated by the MB method when constraining the diffusing molecules49

to absolute coordinates. In particular, the diffusion coefficient can be overestimated without the operation. In this50

paper, we propose a theoretical equation comparing FACFs with and without the COM momentum removal. The51

theoretical equation was then examined to find the diffusion coefficient of methane in water. It was also found that52

τv0 dependence varies with the size of the system in the MD calculation. The theory we propose in this paper plays53

an important role in obtaining the position-dependent diffusion coefficient in three-dimensional heterogeneous sys-54

tems using the MB method. The method with spring restraint on absolute values, proposed by Woolf and Roux (WR55

method),12 is also discussed.56
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2 | THEORY57

The change in FACF, 〈F(0) · F(t )〉, with changing τv0 is explained qualitatively in terms of the momentum conservation58

within the whole simulation cell. Suppose that a solute molecule of infinite dilution feels force from the surrounding59

solvent in the +z direction at t = 0. The force between the solute and the solvent means the momentum exchange60

between them, and the momentum in the −z direction is then transferred from the solute to the solvent. The momen-61

tum given by the solvent is further transported to the bulk solvent with time through solvent–solvent interactions. In62

the MD simulation cell of finite size, however, the momentum in the −z direction cannot dissipate due to the momen-63

tum conservation, and the momentum is instead distributed uniformly over the whole simulation cell after sufficient64

time, which means the solvent flows in the −z direction. The fixed solute in the solvent flow in the −z direction then65

feels frictional force in the −z direction, leading to a negative correlation between F(0) and F(t ). A shift of the COM66

velocity of the solvent eliminates the negative correlation, and its operation frequency, 1/τv0, affects the strength of67

the negative correlation at longer time durations. The physics concepts outlined above are described quantitatively68

hereafter in this section using projection operator formalism.69

The system under consideration is composed of a solute (X) and a finite number of solvent molecules (S), which70

are contained in a cell with periodic boundary conditions. The solute is fixed at a given spatial position and no other71

external force operates on the solvent. A shift of the COM velocity of the solvent is not performed.72

The COM velocity of the solvent, vCM , is defined as follows:73

vCM ≡ 1

MS

∑
i ∈S

mi vi , (1)
MS ≡

∑
i ∈S

mi . (2)

Here, the summations run over all the solvent molecules, and the mass and the velocity of the i -th solvent molecule74

are described asmi and vi, respectively. The projection operator onto vCM is defined as P, and the projection operator75

to the orthogonal space is given by Q ≡ 1 − P. The definition of the projection operator, P, is explicitly given by76

PA ≡ 〈vCM · A〉⟨
|vCM |2

⟩ vCM =
MS

3kBT
〈vCM · A〉 vCM , (3)

where A is an arbitrary vector variable. The Boltzmann constant and the absolute temperature are denoted here as77

kB andT , respectively.78

An identity below holds for the time propagation operator as3079

e iLt Q = e iQLQt +

∫ t

0
dτe iL(t−τ)PiLe iQLQτ , (4)

where L stands for the Liouvillian operator. Equation (4) is then multiplied by the force on the solute, FX , from the80

left to yield81

e iLtFX = e iQLQtFX − MS

3kBT

∫ t

0
dτ

[
e iL(t−τ)vCM

]
×
⟨
{iLvCM } ·

{
e iQLQτFX }⟩

. (5)
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The Hermitian property of the Liouvillian operator,82

〈A · {iLB}〉 = − 〈{iLA} · B〉 , (6)
is utilized in the derivation from Equations (4) to (5), where A and B stand for arbitrary vector quantities.83

The momentum conservation of the whole system relates FX and vCM as84

FX +MS {iLvCM } = 0, (7)
which is substituted into Eq. (5) to give85

e iLtFX = e iQLQtFX +
1

3kBT

∫ t

0
dτ

[
e iL(t−τ)vCM

]
×
⟨FX ·

{
e iQLQτFX }⟩

. (8)

We change the notations here as follows:86

FX (t ) ≡ e iLtFX , (9)
RX (t ) ≡ e iQLQtFX , (10)

vCM (t ) ≡ e iLt vCM , (11)
γ(t ) ≡ 1

3kBT
〈RX (0) · RX (t )〉 . (12)

Equation (8) is then rewritten with these notations as87

FX (t ) = RX (t ) +
∫ t

0
dτγ(t − τ)vCM (τ). (13)

In Eq. (13), the total force acting on the solute at time t , FX (t ), is divided into the sum of random force, RX (t ), and88

the drag force by the flow of the solvent.89

The statistical average of Eq. (13) after the multiplication of FX (0) = RX (0) gives90

〈FX (0) · FX (t )〉 = 〈RX (0) · RX (t )〉 +
∫ t

0
dτγ(t − τ)

× 〈FX (0) · vCM (τ)〉 . (14)
The time correlation function in the integral, 〈FX (0) · vCM (τ)〉, is further related to FACF as91

〈FX (0) · FX (t )〉 +MS
d

d t
〈FX (0) · vCM (t )〉 = 0 (15)

by virtue of Eq. (7).92

The MB method is used to evaluate approximately the time correlation function of the random force acting on a93

freely moving solute as that of the total force on the spatially fixed one11. The time correlation function of the random94

force is then converted into the time-dependent friction coefficient through Eq. (12), and the position-dependent95

diffusion coefficient can then be determined. According to Eq. (14), however, the time correlation function of the96
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total force, 〈FX (0) · FX (t )〉, contains the correlation with the drag force, in addition to the time correlation function97

of the random force, 〈RX (0) · RX (t )〉. What we actually want to determine is the latter correlation function, and we98

need to somehow eliminate the second term of Eq. (14).99

The time development of the random force is governed by the projected Liouvillian, QLQ, instead of the normal100

one, L. Since the dynamics of the random force are determined by that of the positions and the momenta of the101

solvent molecules, {ri , pi }, the effects of the replacement of the Liouvillian can be analyzed through their dynamics.102

The time dependence of ri and pi through QLQ is explicitly written as follows:103

i QLQri =
1

mi
pi − 1

MS

∑
j ∈S

pj , (16)
i QLQpi = Fi − mi

MS

∑
j ∈S

Fj , (17)

where Fi stands for the force acting on the solvent molecule i . The derivation of these equations is described in104

Sec. S1 of Supporting Information. In Eqs. (16) and (17), the first terms of the right-hand sides give the ordinary105

time dependence through L, and the second terms mean the shift of the COM velocity. Therefore, the dynamics106

given by the projected Liouvillian, QLQ, corresponds to the time propagation of MD simulation in which the shift107

of the COM velocity is performed at every step, and the autocorrelation function of the force in such MD simulation108

can be regarded as that of RX (t ). It is thus expected that a smaller τv0 leads to a better diffusion coefficient in the109

implementation of the MB method in MD simulation.110

The long-time limiting behaviors of 〈FX (0) · FX (t )〉 can be analyzed based on Eqs. (14) and (15). First, the integral111

of Eq. (15) from t = 0 to∞ gives112 ∫ ∞

0
d t 〈FX (0) · FX (t )〉

= MS [〈FX (0) · vCM (0)〉 − 〈FX (0) · vCM (∞)〉] . (18)
The first term of the right-hand side vanishes so long as FX does not depend on the velocity of the solvent explicitly.113

The second term is also zero because the correlation is lost after the infinite time interval. Therefore, the integral of114

〈FX (0) · FX (t )〉 on the left-hand side is equal to zero. It should be noted that the discussion above does not apply to115

an infinite-size system where MS diverges.116

The time derivative of Eq. (14), combined with Eq. (15) yields117

d

d t
〈FX (0) · FX (t )〉 = d

d t
〈RX (0) · RX (t )〉

− 1

MS

∫ t

0
dτγ(t − τ) 〈FX (0) · FX (τ)〉 . (19)

Provided that the relaxation of γ(t ) is relatively fast, Eq. (19) can be approximated in the time scale longer than the118

relaxation time of γ(t ) as119

d

d t
〈FX (0) · FX (t )〉

' − 1

MS

[∫ ∞

0
dτγ(τ)

]
〈FX (0) · FX (t )〉 . (20)
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It means that 〈FX (0) · FX (t )〉 decays exponentially as120

〈FX (0) · FX (t )〉 ∝ e
− t
τF F , (21)

with the time constant given by121

τF F =
MS∫ ∞

0
dτγ(τ)

. (22)

3 | METHOD122

3.1 | Molecular dynamics calculation123

The effect of the frequency of the shift of the COM velocity on the time correlation function was investigated by124

performing simulations with different τv0 values. Here, τv0 denotes the interval between the removals of the COM125

velocity during MD simulations. System-size dependence was also investigated by studying two methane solutions126

of different sizes. The smaller system was composed of a methane molecule and 1053 water molecules and was127

simulated with τv0 set at 1 fs, 0.1 ps, 10 ps, and ∞. As to the larger system consisting of a methane molecule and128

8424 water molecules, τv0 was set at 0.1 ps, 10 ps, and∞. Since the time step of the MD simulation was set at 1 fs as129

described below, the simulation with τv0 = 1 fs corresponds to a faithful realization of the dynamics as defined by Eqs.130

16 and 17, whereby RX (t ) can be directly and accurately evaluated. Moreover, simulations with τv0 = ∞ correspond131

to the dynamics defined by the Liouvillian operator. These simulations enable the measurement of FX (t ). Hereafter,132

the FACF obtained by MD with τv0 is denoted by C simFF (t ; τv0) ≡ ⟨Fsim(t ; τv0) · Fsim(0; τv0)⟩ to explicitly express the133

dependence on τv0.134

After routine equilibration, each of the production runs was performed in the NVT ensemble for 50 ns with a135

time step of 1 fs. The temperature was controlled by a Nosé–Hoover thermostat31,32 at 300 K with a time constant136

of 100 fs. The effect of the thermostat on the resultant diffusion constant has been shown to be negligible in these137

conditions20 for various methods, thus allowing us to get the position-dependent diffusion constant. The total force138

acting on the COM of the methane molecule was sampled every 1 fs. The electrostatic potential was calculated by139

the particle mesh Ewald method with a short-range cutoff length of 1.2 nm. The van der Waals interaction was cut140

off at 1.2 nm and the cutoff correction applied. All simulations were performed using GROMACS 201933, which141

was modified to constrain the methane molecule. The water molecules were modeled by the SPC model34 and the142

methane molecule was modeled by OPLS-UA35.143

3.2 | Analysis144

We demonstrated numerically the satisfaction of Eq. 14 and thereby the theoretical framework described in the145

aforementioned section. To achieve this, we evaluated 〈FX (0) · FX (t )〉 and 〈RX (0) · RX (t )〉. Given these time cor-146

relation functions, the integrand on the right hand-side of Eq. 14 can be obtained via Eqs. 12 and 15. In partic-147

ular, 〈FX (0) · vCM (τ)〉 was obtained by integrating 〈FX (0) · FX (t )〉 from zero to τ (see Eq. 15). The time correla-148

tion function 〈FX (0) · FX (t )〉 was evaluated as ⟨Fsim(t ;∞) · Fsim(0;∞)
⟩ or the force autocorrelation function obtained149

from the trajectories with τv0 = ∞, as these trajectories are the realization of dynamics of the Liouvillian opera-150

tor. As regards the smaller system, 〈RX (0) · RX (t )〉 was calculated from the trajectory with τv0 = 1 fs, which is a151
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faithful realization of the dynamics defined by Eqs. 16 and 17. In other words, 〈RX (0) · RX (t )〉 was calculated by152 ⟨Fsim(t ; 1 fs) · Fsim(0; 1 fs)⟩. For the larger system, 〈RX (0) · RX (t )〉 was substituted by the FACF obtained for τv0 = 0.1153

ps, ⟨Fsim(t ; 0.1 ps) · Fsim(0; 0.1 ps)⟩, which was found to approximate well the dynamics defined by Eqs. 16 and 17, as154

described in the following section. In these calculations, the numerical integration was performed using the trape-155

zoidal formula.156

4 | RESULTS AND DISCUSSION157

4.1 | Smaller system158
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FIGURE 1 Time correlation function of the force on the methane molecule at τv0 = 1 fs (green), 0.1 ps (red), 10 ps
(yellow), and ∞ (blue) in the smaller system. The inset shows a magnified view for 0 ≤ t ≤ 50 ps.

Figure 1 shows time correlation functions of the force on the methane molecule at τv0 = 1 fs, 0.1 ps, 10 ps, and159

∞ in the smaller system. This graph shows that the time correlation function for τv0 ≤ 0.1 ps converged to zero160

immediately. On the other hand, a negative correlation appears for τv0 ≥ 10 ps. Considering that the absence of the161

negative tail for the systems of τv0 = 1 fs and 0.1 ps can be ascribed to the fast decay of the tail, the larger τv0 is, the162

more slowly the negative correlation relaxes. The negative correlation for τv0 = 10 ps disappears at approximately 10163

ps. This means that the effect of the momentum given by the solute to the solvent disappears due to the shift in the164

COM velocity at times longer than τv0. The MB method calculates the diffusion coefficient by165

D =
3(kBT )2∫ ∞

0
〈∆FX (0) · ∆FX (t )〉 dt . (23)

Here, ∆ is appended to FX (t ) to describe explicitly the deviation from the mean force, however, ∆ can be omitted166

in homogeneous systems as considered in this work. Equation 23 indicates that the diffusion coefficient is inversely167

proportional to the integrated value of FACF. Therefore, the fact that the shape of the time correlation function in168

Fig. 1 differs depending on τv0 means that the calculated diffusion coefficient also differs depending on τv0.169

Figure 2 shows the running integrals of the time correlation functions of the force at τv0 = 1 fs, 0.1 ps, 10 ps,170
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FIGURE 2 Running integrals of the time correlation function of the force on the methane molecule at τv0 = 1 fs
(green), 0.1 ps (red), 10 ps (yellow), and∞ (blue) in the smaller system. The curve calculated by the right-hand side of
Eq. 14 is shown by the blue dashed line.

and ∞ in the smaller system. When the time correlation function of the force converges to zero, the integrated171

value converges to a certain value. By substituting this converged value into Eq. 23, the diffusion coefficient can be172

estimated, and Fig. 2 clearly shows that the converged values differ depending on τv0. As mentioned in Section 2, the173

integral converges to the correct value when the COM velocity of the system is removed at every step. Therefore,174

the converged integral value at τv0 = 1 fs is correct. For τv0 ≤ 0.1 ps, the running integral converged to the same175

value as that at τv0 = 1 fs. This means that τv0 = 0.1 ps would be sufficiently small to give accurate results for the size176

of the system in this MD calculation. As τv0 increases, the converged value became smaller and smaller, and τv0 = ∞177

converges to 0, which is consistent with Eq. 18. The physical explanation is that the momentum given by the solute178

to the solvent is finally returned to the solute, because τv0 = ∞ means the absence of a momentum sink other than179

the solute itself. Moreover, comparing the functional form of the calculation result until it converges to zero with the180

result from the theoretical equation (Eq. 14), the curve at τv0 = ∞ is consistent with the curve obtained from the181

theoretical equation. Therefore, the numerical calculations support the validity of our theory. The running integral at182

τv0 = 10 ps follows the similar decay at t < τv0, and converges to the finite value at the longer time. In other words,183

the theory elucidates that the diffusion coefficient from the MB method depends on the period (τv0) in which the184

COM velocity is removed during MD simulations. The theory thus captures the physical mechanism by which the185

choice of τv0 affects the FACFs through the modification of the correlation functions.186

4.2 | Larger system187

Time correlation functions of the force on the methane molecule and their running integrals are shown in Figs. 3 and188

4, respectively, at τv0 = 0.1 ps, 10 ps, and ∞ in the larger system. Figure 3 shows that the negative correlation is189

weaker than that of the smaller system. As the MD system size increases, the momentum of the system is distributed190

over a larger space, and the COM velocity of the solvent generated by the momentum given by the solute becomes191

smaller. Therefore, the dependence on τv0 becomes smaller as the system size of the MD calculations increases. For192

τv0 = ∞, the negative correlation is weaker than that in the smaller system, but its relaxation becomes slower, as193
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FIGURE 3 Time correlation function of the force on the methane molecule at τv0 = 0.1 ps (red), 10 ps (yellow), and
∞ (blue) in the large system. The inset shows a magnified view for 0 ≤ t ≤ 50 ps.
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shown in Figure 4. Eq. 18 predicts theoretically that the running integral at τv0 = ∞ should converge to zero for any194

finite systems, but unlike the smaller system, here the convergence was not complete even at 100 ps. The reason195

for this slow relaxation is that the larger the system, the longer it takes for the momentum to return. The agreement196

between the MD simulation and the theoretical prediction of Eq. 14 is excellent, also in the larger system, Fig. 4,197

which further supports our theoretical discussion. Figure 4 shows that, for the larger system, the result with τv0 = 10198

ps was close to the correct value (τv0 = 0.1 ps). Therefore, the larger the system size, the larger τv0 can be set.199
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According to Eq. 22, the τF F of the small and large systems were 19.1 and 174.7 ps, respectively. Eq. 21 is plotted200

using these τF F and regarding the amplitude as an adjustable parameter. In addition, the running integrals of the time201

correlation functions of the force on COM of the methane molecule in the larger and smaller systems are shown again202

in Fig. 5 to make their difference clearly visible. It can be seen that Eq. 20 reproduces the decay well at τv0 = ∞ for203

both the smaller and larger systems. τF F is a reference quantity for determining τv0, and the larger the τF F , the larger204

the value of τv0 can be set. The larger the size of the system, the larger the value of τF F , which shows that τv0 can be205

larger for larger systems. We mentioned in Section 4.2 that τv0 = 0.1 ps, which is one two-hundredths of τF F , is small206

enough to calculate D in the smaller system with sufficient accuracy. It is thus sufficient to set τv0 to 1/200th of τF F207

even for a small system with fast decay. In the larger system, the result of τv0 = 10 ps, which is about 1/20th of τF F208

of the system, is close to that of τv0 = 0.1 ps. Therefore, it is safe to set τv0 to at most 1/200th of τF F for any system209

larger than the smaller system.210

For τv0 ≥ 10 ps, the integral was larger for the larger system than that for the smaller one, indicating that the211

larger the size of the system, the longer the time part was affected, as discussed previously. However, at τv0 = 0.1212

ps, the integral of the smaller system was larger than that of the larger system. This is not an effect of the shift of213

the COM velocity, but that of the hydrodynamic interaction between the solutes in adjacent cells in the periodic214

boundary system. Due to the effects of hydrodynamic interaction, the diffusion coefficient, DMD, calculated from the215

MD calculation of the finite system with periodic boundary conditions, is shifted from the true diffusion coefficient216
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D0 of the system of infinite size as shown in the following equation36:217

DMD = D0 −
2.83729kBT

6πµL
(24)

where µ and L are the viscosity coefficient and the length of the MD cell, respectively. This equation states that218

the smaller the cell size, the smaller DMD becomes. Since the integral value of the time correlation function of the219

force is the reciprocal of DMD (see Eq. 23), it becomes larger for smaller systems. Using the experimental viscosity220

coefficient of water at 25 ◦C (µ = 0.0009 Pa·s) and Eq. 24, the difference in the integrated values of the time correlation221

functions of the force between the larger and the smaller systems was calculated to be 1 × 10−10 m2 · s−1. On the222

other hand, the difference found from our calculation, shown in Fig.5, is 2 × 10−10 m2 · s−1. So, the estimates from223

the theoretical equations of fluid mechanics and our calculation are in good agreement, considering the error guessed224

from the fluctuation of the running integral.225

4.3 | Relevance to NVE ensemble and other thermostats226

The formalized theory perfectly fits with the NVE ensemble, and thus the COM velocity shift is needed to eliminate227

the unwanted negative correlation between F(0) and F(t ). However, the shift decreases the total energy when applied228

to the NVE simulations and therefore the simulations cannot reach thermal equilibrium. Furthermore, this decrease229

can cause a drop in the temperature and thus the diffusion constant can be underestimated. It should be carefully230

confirmed that the drift of the total energy or temperature is so marginal that the potential systematic error is satis-231

factorily small in application to NVE simulations. Given this potential artifact that is intrinsic to the NVE simulations,232

the coupling of a thermostat should be a practical choice, especially for long simulations, although disturbance from233

a thermostat to the original dynamics needs to be carefully considered. We have performed NVT simulations using a234

Nosé–Hoover thermostat in this work, and demonstrated that the discussion based on the NVE ensemble holds. We235

next discuss the applicability of the COMvelocity shift to thermostats other than theNosé–Hoover thermostat. Other236

widely used thermostats include the Gaussian constraint37–40, velocity rescaling41, and a Langevin thermostat29.237

A COM velocity shift is necessary for the thermostats that retain linear momentum conservation, such as the238

Gaussian constraint37–40 and velocity rescaling41, because the unwanted negative correlation between F(0) and F(t )239

arises ultimately from the momentum conservation (Eq. 7) in a finite system as described above. Furthermore, we240

have demonstrated numerically the necessity of the COM velocity shift for the Nosé–Hoover thermostat, which also241

retains themomentum conservation. When it comes to thermostats that break themomentum conservation, including242

the Langevin thermostat, we need to give more subtle consideration as follows.243

When applying the Langevin thermostat, the coupling time constant τLT (τLT ≡ 1/γ, where γ is the damping244

coefficient of the thermostat) needs to be considered, as the thermostat works also as the momentum sink with this245

time constant τLT. If the coupling is sufficiently strong, i.e., τLT � τFF, the diminishing behavior of the running integral246

of 〈FX (t ) · FX (0)〉 should not be observed, because the COM momentum drops quickly. Nevertheless, because such247

a strong coupling might disturb the short-term dynamics as well, the potential artifact in the diffusion constant should248

be considered carefully. If the coupling is weak such that τLT � τFF, the running integral of 〈FX (t ) · FX (0)〉 should249

diminish, as the momentum drops too slowly. In this case, the COM velocity shift should be performed frequently250

enough such that τv0 � τFF, even with this thermostat.251
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4.4 | Discussion on how to constrain the solute252

4.4.1 | Harmonic constraint253

TheWR method is another popular method for evaluating the position-dependent diffusion coefficient12. In the WR254

method, the solute is constrained around a position of interest by a harmonic potential, and the spring constant of255

the potential, k , is an adjustable parameter. We hereafter discuss how the COM velocity shift of the solvent affects256

the diffusion coefficient when the solute is constrained to absolute coordinates in the WR method. For simplicity, we257

consider a homogeneous system where no potential of mean force is induced on the solute by the solvent. When the258

system size is infinite, the dynamics of the solute in theWRmethod is described by the generalized Langevin equation259

as260

ÛrX (t ) = vX (t ), (25)
mX ÛvX (t ) = FX (t ), (26)

FX (t ) = RX (t ) −
∫ t

0
dτγ(t − τ)vX (τ) − k rX (t ). (27)

Here, the mass, position, and velocity of the solute are denoted as mX , rX (t ), and vX (t ), respectively, and the solute261

is assumed to be constrained to the origin. The equations above are solved to yield the time correlation function of262

the position as263 ∫ ∞

0
d t 〈rX (0) · rX (t )〉 =

γ̃0
k

⟨
|rX (0) |2

⟩
, (28)

γ̃0 ≡
∫ ∞

0
d tγ(t ). (29)

For derivation, readers refer to, e.g., Refs. 12,13,27,42 and also Sec. S2 of Supporting Information. Substituting the264

relationship between the fluctuation of the position and k as265 ⟨
|rX (0) |2

⟩
=

3kBT

k
, (30)

the diffusion coefficient is determined by the equation as follows:266

D =
kBT

γ̃0
=

⟨
|rX (0) |2

⟩2
3
∫ ∞
0

d t 〈rX (0) · rX (t )〉
. (31)

We would like to note that Eq. 23 holds for finite k values27 and that the diffusion constant obtained by Eq. 31267

theoretically equals that obtained by Eq. 23.268

Next we consider the finite-size system, to which the shift of the COM velocity of the solvent is applied with a269

time interval of τv0. Then, Eqs. 25 and 26 are intact, and Eq. 27 is modified as270

FX (t ) = RX (t ) −
∫ t

0
dτγ(t − τ) (vX (τ) − vCM (τ)) − k rX (t ), (32)

MS ÛvCM (t ) = − [FX (t ) + k rX (t )] − γsMSvCM (t ). (33)
Here, the shift of the COM velocity is approximated as the damping with a time constant of τv0 = 1/γs . The time271
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correlation function of the position is then obtained from Eqs. 25, 26, 32, and 33 as272 ∫ ∞

0
d t 〈rX (0) · rX (t )〉 = γ̃0

k
(
1 +

γ̃0
MS γs

) ⟨
|rX (0) |2

⟩
, (34)

whose derivation is described in Sec. S2 of Supporting Information. Comparing Eqs. 28 and 34, it is shown that the273

WR method gives the correct value of the diffusion coefficient under the condition as274

τv0 =
1

γs
<<

MS

γ̃0
, (35)

which is the same condition as the MB method.275

It is rather surprising that the condition Eq. 35 does not contain k . One may consider that τv0 can be smaller276

with decreasing k , because the diffusion coefficient from the WR method reduces to that from the mean square277

displacement of the unconstrained solute, for which the shift of the COM velocity is unnecessary. However, Eq. 35278

means that the removal of the COM velocity is indispensable in the WR method, irrespective of the strength of the279

constraining potential. The result above indicates that the COM velocity of the solvent should be removed with280

sufficient frequency when the solute is constrained to absolute coordinates, irrespective of how the constraint is281

performed.282

4.4.2 | Constraint by relative coordinates283

Instead of constraining to absolute coordinates, it is also common to constrain the relative coordinates of two sub-284

stances in order to calculate the position-dependent diffusion coefficients in heterogeneous systems. For example,285

membrane permeation43 or substrate adsorption44 of small molecules, and the transport across a transmembrane286

channel of ions45 are all discussed in terms of potential mean force (PMF) and the position-dependent relative diffu-287

sion coefficient between two substances such as a membrane and a molecule.288

In this case, external forces do not work, and only internal forces do. Therefore, momentum does not flow to-289

ward the solvent, and the error discussed in this paper does not occur. Therefore, τv0 can be determined solely by290

considering its original purpose to compensate the numerical errors in the Ewald calculation.291

5 | CONCLUSION292

It was shown theoretically that the position-dependent diffusion coefficient obtained using the MB method depends293

on τv0. For systems as small as 1000 molecules, the FACF integrals converge well at τv0 ≤ 0.1 ps, indicating that the294

diffusion coefficient can be obtained with good accuracy. However, at τv0 ≥ 10 ps, the integral converges to a value295

different from the correct one. The larger was τv0, the smaller the converged value of the FACF integral became. The296

converged value was zero at τv0 = ∞, which has good consistency with the theoretical prediction, thereby supporting297

the validity of our theory.298

For a system as large as 8000 molecules, the converged value of the FACF integral was close to the correct one299

even when τv0 was as large as 10 ps. In addition, the convergence of the integrated value became slower at τv0 = ∞.300

This result is also consistent with our theoretical prediction, and shows that our theory is applicable, irrespective of301

the system size. These calculations demonstrate the necessity of choosing τv0 according to the size of the system302

when calculating the position-dependent diffusion coefficient by theMBmethod usingMD calculationwith the Ewald303
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method. From the point of view of the speed of MD calculation, removing the COM velocity of the system requires304

full communication between nodes of parallel computers, which slows down the calculation speed. Therefore, τv0 is305

preferred to be as large as possible, but 0.1 ps is probably sufficient for ordinary systems.306
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GRAPHICAL ABSTRACT372

The position-dependent diffusion coefficient is beneficial for studyingmass trans-373

port with molecular dynamics calculations. In the Marrink–Berendsen method,374

this coefficient can be obtained from the integral of force autocorrelation func-375

tion of a fixed molecule at an absolute position. However, the integrated val-376

ues evaluated so in a finite system diminishes due to momentum flows arising377

from momentum conservation, and the diffusion coefficient diverges unphys-378

ically. We rigorously demonstrate that frequent removals of total momentum379

eliminate this flaw.380


