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Abstract

The transition region is a thin layer of the solar atmosphere that controls the energy loss from the solar corona.
Large numbers of grid points are required to resolve this thin transition region fully in numerical modeling. In this
study, we propose a new numerical treatment, called LTRAC, which can be easily extended to the
multidimensional domains. We have tested the proposed method using a one-dimensional hydrodynamic model
of a coronal loop in an active region. The LTRAC method enables modeling of the transition region with a
numerical grid size of 50–100 km, which is about 1000 times larger than the physically required value. We used
the velocity differential emission measure to evaluate the possible effects on the optically thin emission. Lower-
temperature emissions were better reproduced by the LTRAC method than by previous methods. Doppler shift and
nonthermal width of the synthesized line emission agree with those from a high-resolution reference simulation
within an error of several kilometers per second above the formation temperature of 105 K.

Unified Astronomy Thesaurus concepts: Solar transition region (1532); Solar corona (1483); Hydrodynamical
simulations (767)

1. Introduction

The solar transition region is a thin layer between the
chromosphere and the corona. In this region, the temperature
and mass density change steeply from chromospheric values to
coronal values. The rapid change of the mass density produces the
steep gradients of the acoustic and Alfvén speeds, which leads to
wave reflection. The rate of reflection of Alfvén waves at the thin
transition region is roughly determined by the density variation in
that region (Hollweg 1984; Verdini et al. 2012). The free
magnetic energy injected into the solar corona is released through
impulsive heating events in both the magnetic braiding and the
wave heating models (e.g., van Ballegooijen et al. 2011;
Rempel 2017; Matsumoto 2018). The thermal energy in the solar
corona is transported by thermal conduction down to the transition
region, releasing the energy as radiation into space. The resulting
evaporation of the chromospheric plasma increases the coronal
density (Reale 2010; Klimchuk 2015). Thus, accurate modeling of
the transition region cannot be avoided in modeling the energy
exchange between the chromosphere and the corona.

A simple static, coronal loop model was introduced by
Rosner et al. (1978). The major assumptions in this model are
as follows: (1) a coronal loop is sufficiently short so that the
spatial variation of the gas pressure can be ignored, (2) a
volumetric heating rate in a coronal loop is spatially uniform,
and (3) the energy balance in a static loop is given by

k
¶
¶

¶
¶

+ + =
s

T

s
Q Q 0, 1ext rad⎛

⎝
⎞
⎠

( )

where T is the temperature, s is the coordinate along the coronal
loop, κ is the thermal conduction coefficient, Qext is the
volumetric heating rate, and Qrad is the optically thin radiative
cooling rate. In this model, the temperature profile near the
transition region is sensitive to the gas pressure (or heating rate)
but is not sensitive to the length of the loop. We estimated the
thickness of the transition region using the spatial profile of the

temperature given by Equation (C1) in Appendix C of Rosner
et al. (1978). The thickness of the transition region was defined
as a distance -s T s T1 0( ) ( ), where = ´T 2 10 K0

4 (i.e., the
temperature at the footpoint of the coronal loop), =T 10 K1

5 (the
typical temperature at the transition region), and s(T) is the
coordinate s at the temperature T. The estimated thickness
of the transition region was approximately - ~ ´s T s T 281 0( ) ( )

-T K 10 kmtop
6 3( [ ] ) , where Ttop is the temperature at the apex of

the coronal loop. Even the quiet corona cannot be resolved by a
grid size of several tens of kilometers, which is typically assumed
in multidimensional simulations (e.g., Abbett 2007; Gudiksen
et al. 2011; Iijima & Yokoyama 2015, 2017; Rempel 2017). The
transition region becomes even thinner in hotter active regions or
flaring loops owing to the strong temperature sensitivity of the
thermal conduction coefficient and the radiative cooling.
The lack of sufficient resolution of the transition region in

hydrodynamic and magnetohydrodynamic simulations has
been a topic of continuing discussion (Craig et al. 1982;
Klimchuk 2006; Bradshaw & Cargill 2013). One possible
solution is to use a moving mesh (Carlsson & Stein 1992) or
adaptive mesh refinement (Bradshaw & Klimchuk 2011).
However, it is difficult to achieve such small numerical grid
sizes in multidimensional simulations owing to the resulting
high computational cost. As the coronal heating processes
(both magnetic braiding and wave heating) are intrinsically
three-dimensional in nature, it is necessary to devise a way to
capture the transition region adequately on a coarse numerical
grid to model the solar corona realistically.
A technique for broadening the numerical transition region

has been suggested by Linker et al. (2001), Lionello et al.
(2009), and Mikić et al. (2013). By introducing the problem-
dependent parameter Tc, they suggested that the thermal
conduction coefficient should be enhanced by a factor

=f T Tmax 1,c c( ) to broaden the unresolved transition region.
They also reduced the radiative cooling rate by the same factor
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fc so that the total radiative loss remains unchanged. Johnston
& Bradshaw (2019) and Johnston et al. (2020) suggested a way
to model the transition using a method they term “transition
region adaptive conduction” (TRAC). This method automati-
cally determines the optimal value of the parameter Tc in one-
dimensional coronal loop simulations. By selecting the highest
temperature at a location with a high-temperature gradient, they
showed that the dynamic evolution of a coronal loop can be
reproduced with the coarse grid size of 100 km. However, a
multidimensional extension of the TRAC method is not
straightforward, because we need a way to track the magnetic
field line as the optimal value of Tc is determined along the
field line (Zhou et al. 2021). Johnston et al. (2017a, 2017b) also
suggested an alternative way to resolve the transition region
using jump conditions.

Spectroscopic observations in the EUV and X-ray are
important diagnostic tools for the solar corona and transition
region, especially for information about plasma motions (e.g.,
Chae et al. 1998; Teriaca et al. 1999; Doschek et al. 2007;
Imada et al. 2008). In particular, the statistical characteristics of
nonthermal line widths and the Doppler velocities have been
used as constraints on coronal heating models (e.g., Peter &
Judge 1999; Imada et al. 2009; Brooks & Warren 2016; Testa
et al. 2016; van Ballegooijen et al. 2017). As the line profiles
contain considerable information about the coronal plasma, a
numerical treatment of the broadening method must therefore
reproduce the spectroscopic observables.

In this study, we propose a new approach called the LTRAC
(localized TRAC) method to broaden the unresolved transition
region in numerical simulations. The local nature of the
LTRAC method allows us to apply it to the parallel
computation of multidimensional simulations using the domain
decomposition technique. As a large number of grid points is
required to resolve the transition region properly, we tested the
proposed method using a one-dimensional hydrodynamic
model of a solar coronal loop. We investigated the performance
of the proposed method by examining the time evolution of the
plasma in the transition region and corona, specifically
focusing on spectroscopic observables in the optically thin
approximation. We found that the LTRAC method reproduces
the spectroscopic observables coming from the low-temper-
ature plasma better than previous methods.

2. Method

2.1. Simulation Setup

To investigate the performance of the methods used to
broaden the transition region, we solved the one-dimensional
hydrodynamic equations along a field line, including the effects
of gravity, Spitzer–Härm conduction, radiative cooling, and
external heating. The basic equations are the continuity
equation
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and the internal energy equation
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where ρ is the mass density, P is the gas pressure, e is the
internal energy density, Vs is the velocity along a field line, and
gs is the gravitational acceleration along a field line. The
equation of state is computed assuming local thermodynamic
equilibrium and considering the most abundant six elements in
the solar atmosphere. The ionization energies of the six
elements and the latent internal energy of molecular hydrogen
are included in the internal energy of the plasma.
The quantity Qcnd represents the volumetric heating rate due

to the thermal conduction:
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For the thermal conduction coefficient, we assume Spitzer–
Härm conduction k k= T0

5 2 with k = -100
6 in cgs units.

The radiative cooling rate Qrad is a combination of the
cooling rates from the optically thick and thin regions, as given
by

x x= - +Q Q Q1 , 6rad thick thin( ) ( )

where x = -P Pexp thick( ) is the switching function between
optically thick cooling, Qthick, and thin cooling, Qthin. We chose

=P 10thick
4 dyn cm–2 as the threshold parameter. The optically

thick cooling rate is given by

r
t
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-
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where CV is the isochoric heat capacity per unit mass and
=T 6000 Krad is the radiation temperature. Following the

approach of Gudiksen & Nordlund (2005), we chose the
cooling timescale τ to be

t
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where r = ´ -2 10surf
7 g cm−3. We used the slightly modified

version of the optically thin cooling rate given by
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to prevent the formation of low-temperature regions with
<T Trad. Here, ne and nH represent the number densities of

electrons and hydrogen nuclei. This modification does not
affect either the transition region or the corona.
The numerical scheme is based on the finite-difference

method. The hyperbolic equations are solved using the second-
order SLIP scheme (Jameson 1995) with the third-order
strongly stability preserving Runge–Kutta method (Shu &
Osher 1988). The energy-consistent formulation by Iijima
(2021) is used in the spatial discretization to ensure the total
energy conservation while explicitly solving the internal energy
equation. We used the operator splitting between the hydro-
dynamic equations and the thermal conduction equation.
The thermal conduction equation is discretized using the
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second-order central difference method, and it is integrated
implicitly using the backward Euler method to avoid the severe
time-step restriction encountered in explicit schemes.

The numerical domain extends from the solar surface (s= 0)
to the top of the coronal loop (s= L). The half length of the
coronal loop L is chosen to be 25Mm in a typical case. We
assumed a semicircular coronal loop and reduced the field-
aligned gravitational acceleration gs following the geometrical
effect. We calculated the initial temperature profile from
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where =s 2.5 MmTR , D =s 500 kmTR , =T 6000 Ksurf , and
=T 10 Ktop

6 . The mass density is integrated assuming
hydrostatic equilibrium, with the boundary value of r = ´2

-10 7 g cm−3. This initial condition is not energetically balanced
because of the thermal conduction, radiative cooling, and external
heating terms. We assume reflective boundary conditions at the
top and bottom of the domain. In this study, the dynamical
evolution of the simulated corona is controlled by imposing an
external heating rate Qext to mimic coronal heating due to arbitrary
processes. In a typical case, we impose spatially uniform
volumetric heating rate =Q F Lext ext . The injected energy flux
Fext is set to 3×107 erg cm−2 s−1 for the initial 600 s of the
simulation and set to zero after the time of 600 s. This setup
mimics a coronal loop in an active region.

2.2. The LTRAC Method

We now describe the LTRAC method we implemented to
broaden the unresolved transition region in the model described
in Section 2.1. As our new method is an extension of the
methods suggested by Lionello et al. (2009) and Johnston &
Bradshaw (2019), we summarize their methods first.

Lionello et al. (2009) used energy balance between the
radiative cooling and conductive heating,

k
d

~Q
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, 11rad
TR
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to obtain the approximate thickness of the transition region as
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Here, we note that if we assume that the typical temperature in
the transition region does not depend on the temperature at the
loop top, the temperature dependence of the transition region
thickness (discussed in Section 1) can be derived as d µ -TTR top

3,
where we used the scaling law of Equation (4.3) in Rosner et al.
(1978). The dependence on the loop top temperature Ttop
comes from the dependence on the mass density of the
radiative cooling rate Qrad.

Lionello et al. (2009) proposed that if κ and Qrad are
substituted by kfc and Q fcrad , respectively, the transition
region can be broadened by a factor of fc. This substitution can
be alternatively expressed by

k k= =f Q Q fand , 13c c
b

rad
b

rad ( )/

where the variable with superscript Ub indicates the variable U
modified by the broadening technique of the transition region.
The substitution (13) broadens the approximate thickness of the
transition region (12) as d d= fcTR

b
TR. We did not include the

effect of the heat flux saturation (Fisher et al. 1985;
Patsourakos & Klimchuk 2005; Bradshaw & Cargill 2006)
for simplicity, which is important for very hot coronal loops.
One possible way to implement the heat flux saturation is to
enhance the saturated (limited) heat flux (or conductive flux) by
a factor of fc instead of the thermal conduction coefficient κ.
However, its validity and performance should be investigated
in the future study.
Johnston et al. (2020) pointed out that the substitution (13)

does not alter the total radiative loss from the broadened
transition region. From Equation (12), the total radiative loss
integrated across the transition region can be approximated as

ò d k k~ ~ =Q ds Q Q T Q T , 14
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rad rad TR rad
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where s0 and s1 are the spatial coordinates at the bottom and top of
the transition region, respectively, and we used Equation (13) to
derive the last equality. As the substitution of κ and Qrad by
Equation (13) does not alter the right-hand side of Equation (14),
the total radiative loss from the transition region is not altered
even if the transition region is numerically broadened. Similarly,
the total conductive heating of the transition region (k dT TR)
remains unchanged by the substitution (13).
Lionello et al. (2009) suggested to determine the broadening

factor fc as

=f T Tmax 1, , 15c c
5 2( ) ( )

where Tc is a parameter that depends on the specific problem
and the grid size. For example, Tc is set to a typical temperature
at the top of the transition region. Lionello et al. (2009) noted
that the lower Tc requires higher numerical resolution to resolve
the transition region. Johnston & Bradshaw (2019) proposed
the TRAC method that determines the optimal value of Tc from

s=
D ¶

¶
>T T s
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whereDs is the grid size and the problem-independent parameter
s = 1 2c is introduced. Following Johnston & Bradshaw (2019),
the variable Tc is limited by imposing a lower bound of typical
chromospheric temperature ( ´2 10 K4 ) and an upper limit of
20% of the maximum coronal temperature. Note that a multi-
dimensional extension of the TRAC method is not straightforward,
as the maximum is taken along a field line. In parallel simulations
with the domain decomposition, the computation of the maximum
value along a field line requires global communication, which may
result in less parallel efficiency.
There are slight differences between the implementations of

the TRAC method in Johnston & Bradshaw (2019) and
Johnston et al. (2020). Our implementation of the TRAC
method is based on Johnston & Bradshaw (2019), not Johnston
et al. (2020). Johnston et al. (2020) suggested to divide the
external heating rate by the factor fc. We do not follow their
approach because the modification of the external heating rate
may cause an error in the total energy injected into the whole
atmosphere. As we assume a spatially uniform volumetric
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heating rate, this minor difference in the heating term does not
affect the results presented in this paper. Johnston et al. (2020)
also suggested to use the temporal smoothing on Tc. This
modification may reduce the temporal oscillation of the low-
temperature emission measure in the TRAC method observed
in Figure 4. In this study, we did not use this temporal
smoothing to clarify the effect of the different spatial profiles
of the broadening factor between the TRAC and LTRAC
methods.

In this study, we propose a new method called LTRAC to
determine the broadening factor fc using only the information
from nearby grid points. Similar to the TRAC method, the
LTRAC method uses the temperature gradient to detect the
unresolved transition region. We define the normalized
temperature gradient as

=
D ¶

¶
r

s

T

T

s
exp . 17( )

In the unresolved transition region, the quantity r becomes large
and the nonnegligible numerical artifacts can lead to unphysical
solutions (e.g., the wrong density in the corona; see also Figures 1

and 2). To reduce the steep temperature gradient in the high r-
value region, the broadening factor fc is determined as

=f r rmax 1, , 18c c
p( ) ( )

where rc and p are nondimensional parameters and the overline
indicates a low-pass filter in space. The threshold parameter
>r 1c is introduced so that the broadening factor fc is kept at

unity (no broadening) in the grid points with a smooth
temperature profile of <r rc. The parameter p 1 is
introduced to accelerate convergence. We used rc=1.5 and
p=4 as typical values in this study. The dependence of the
LTRAC method on these parameters is investigated in
Appendix B. The low-pass filter is introduced to smooth the
spatial distribution of fc computed from the numerical gradient
of the temperature, which is generally nonsmooth. As our
discretization described in Section 2.1 is second order in space,
we used the second-order low-pass filter defined by

=
+ +- +

U
U U U2

4
, 19j

j j j1 1 ( )

Figure 1. Time variation of the temperature at the loop top (top left), the mass density at the loop top (top right), the velocity at the footpoint (bottom left), and the
maximum value of the transition region broadening factor fc (bottom right). The coronal loop is heated using a spatially uniform volumetric heating term from t=0 s
to t=600 s (see Section 2.1 for details). Shown are the numerical solutions calculated using the SH method (orange line with crosses), using the TRAC method
(green line with circles), and using the LTRAC method (red line with diamonds). The reference solution is shown as a blue line with plus signs. A uniform grid size of
50 km is used except for the reference.
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where Uj indicates the value of a variable U at the jth grid point
along the s-coordinate. We note that the procedure above can
be extended easily into multidimensional geometries, which is
one of the advantages of the LTRAC method.

Here, we summarize the broadening process of the transition
region by the LTRAC method. When the temperature gradient
becomes steeper ( >r rc), fc is enhanced by Equation (18). The
enhanced fc broadens the transition region through the
enhanced thermal conduction by Equation (13) while preser-
ving the total radiative loss (Equation (14)). In the broadened
transition region, the broadening factor fc decreases and
approaches unity. The value of fc in the steady state is
determined by the balance between the broadening effect by the
LTRAC method and the thinning effect by the physical nature
of the transition region.

2.3. Velocity Differential Emission Measure

To investigate the effect on the spectroscopic observables,
we use the velocity differential emission measure (VDEM) for
optically thin emissions. The VDEM is defined by

ò ò ò=T V dV dT n n dhVDEM , , 20
T V h

e H⎡
⎣

⎤
⎦

( ) ( )

where V is the line-of-sight velocity and the integration on the
right-hand side is taken along the line of sight. Let us focus on
the optically thin intensity that can be approximated by

òl l=I C T V n n dh, , . 21
h

e H( ) ( ) ( )

Equation (21) is usually valid if ionization/excitation equili-
brium is satisfied in the coronal approximation (Del Zanna &
Mason 2018). The VDEM can fully reproduce the intensity, as
shown by

ò òl l=I C T V T V dV dT, , VDEM , . 22
T V

⎡
⎣

⎤
⎦

( ) ( ) ( ) ( )

The effect of the proposed method on the optically thin
spectroscopic observables can therefore be analyzed using the
VDEM. The zeroth-, first-, and second-order moments of
VDEM with respect to V correspond to the usual differential
emission measure (DEM), Doppler velocity, and nonthermal
line width, respectively. The definition of the VDEM given
above is identical to that given by Cheung et al. (2019), but it is
different from the original version presented by Newton et al.
(1995).

Figure 2. Spatial variation along a coronal loop at t=800 s. Shown are the temperature (top left), the mass density (top right), the velocity (bottom left), and the
transition region broadening factor fc (bottom right), The notation is the same as that in Figure 1.
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We found that calculations of the optically thin emission that
employ the methods for broadening the unresolved transition
region require special care. As both the TRAC and LTRAC
methods use the substitution (13), the local radiative cooling
rate is reduced by a factor of fc so that the total radiative loss
remains unchanged by the numerical broadening of the
transition region (see Equation (14)). Similarly, the optically
thin emission from the numerical solution must be calculated
taking the broadening factor into account:

òl l=I C T V n n
dh

f
, , . 23

h
e

c
H( ) ( ) ( )

The VDEM must be computed in a similar manner. This
correction mainly affects the low-temperature region.

3. Results

In this section, we analyze the performance of the LTRAC
method compared with previous methods. We investigated
three different methods for treating the unresolved transition
region: one uses the classical Spitzer–Härm conduction without
applying any broadening technique (denoted as SH for brevity),
one uses the TRAC method, and one uses the LTRAC method.

3.1. Overall Structure

The time variation of the spatially averaged variables
calculated with a uniform grid size of 50 km is shown in
Figure 1. The variables at the loop top are averaged over the
interval of  L s L0.6 , whereas the variables at the footpoint
are averaged over  s4 Mm 6 Mm. The high-resolution
reference solution is calculated using the SH method with a
grid size near the transition region of 100 m. We refer the
reader to Appendix A for the details of the reference solution.
The temperature of the underresolved SH solution (with the
grid size of 50 km) slightly deviates from the reference
solution. A larger deviation of the underresolved SH solution
from the reference solution can be observed in the mass density
(Bradshaw & Cargill 2013). The mass density at the loop top is
more than 30% smaller than that of the reference solution. In
contrast, the numerical solutions obtained using the TRAC or
LTRAC methods show good agreement with the reference
solution. For the variation of the mass density and velocity, the
LTRAC solution is slightly close to the reference solution. The
maximum value of the broadening factor fc in the LTRAC
solution is about one order of magnitude smaller than that in
the TRAC solution. The smaller value of fc implies smaller
thermal conduction coefficients, which is advantageous if the
thermal conduction term is integrated explicitly.

The maximum value of the broadening factor fc in the
LTRAC method shows temporal oscillation as shown in
Figure 1. We could not fully understand its origin, but the
oscillatory nature may be caused by a kind of feedback
between the broadening effect of the transition region by the
LTRAC method and the thinning effect from the nature of the
transition region. For a better understanding, we checked
the dependence on the size of time stepping by running the
simulation with 10 times smaller time-step size. If the
oscillatory nature of fc is due to the time discretization error
in the evaluation of r and fc in Equations (17) and (18), it
should depend on the size of time stepping. However, the
temporal variation of fc in the smaller time-step size was almost
the same as in Figure 1. We also checked the dependence on

the LTRAC parameter p. Note that as discussed in Appendix B,
the larger p is, the larger fc is expected to be. If the oscillatory
nature of fc is caused by the feedback between the broadening
effect by the thermal conduction (enhanced by fc) and the
decrease in fc (due to the smoothed temperature gradient),
the period of the temporal variation of fc would depend on the
parameter p. However, the period of the oscillation did not
show strong dependence on the parameter p. Therefore, the
oscillatory nature of fc may not be due to the thermal
conduction or the temporal discretization, but to other
processes associated with the thinning of the transition region,
like the radiative cooling and/or acoustic waves (related to the
hydrostatic equilibrium).
Figure 2 shows the spatial variation of the temperature, mass

density, velocity, and the transition region broadening factor fc
at the snapshot of 800 s. Similar to the spatially averaged
variables in Figure 1, the underresolved SH solution exhibits
the largest difference from the reference solution, and the
LTRAC solution is closest to the reference solution. The spatial
profiles of the temperature and mass density obtained using the
TRAC and LTRAC methods are close to the reference profile.
In terms of the spatial profile of the velocity, both the TRAC
and LTRAC solutions deviate from the reference solution by at
least several kilometers. In addition, the velocity profiles from
the TRAC and LTRAC solutions are not as smooth as that of
the reference solution, which may be a numerical artifact. An
important difference between the TRAC and LTRAC methods
can be observed in the spatial profile of the broadening factor
fc. The value of fc in the LTRAC solution increases only in the
transition region, whereas that value in the TRAC solution
increases all the way from the surface (s= 0) to the transition
region. Considering the good agreement of the LTRAC
solution to the reference solution, the increased broadening
factor fc in the upper chromosphere of the TRAC solution is not
necessary to reproduce the dynamics and energetics of the
coronal plasma. Moreover, the redundant enhancement of
thermal conduction in the upper chromosphere may lead to
weak chromospheric evaporation, which causes an excess of
low-temperature emission, as shown in Section 3.2.

3.2. Effects on Spectroscopic Observables

To evaluate the performance of the LTRAC method on
spectroscopic observables, we used the velocity DEM
described in Section 2.3. Figure 3 shows the quantities
calculated from the VDEM and temporally averaged from
100 to 1500 s. The DEM from the underresolved SH solution
shows the largest deviation from the reference solution from
the transition region temperature to the coronal temperature.
From the resolution dependence within the range of

D s6.25 km 100 km, we found that the underresolved
SH solution always overestimates (underestimates) the DEM in
<T 10 K5.2 ( >T 10 K5.2 ). The DEM from the TRAC solution

is close to that from the reference solution in >T 10 K5.4 .
However, the TRAC solution overestimates the DEM in lower
temperatures of <T 10 K5.4 . This excess of low-temperature
emission in the TRAC solution was observed even when a finer
grid size was used. We speculate that enhanced thermal
conduction in the upper chromosphere to the lower transition
region in the TRAC solution may be heating the high-density,
cool plasma in the lower layers and enhancing the emission
measure in the upper transition region. In contrast, the LTRAC
method successfully reproduces the DEM in the wider
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temperature range of >T 10 K5.0 . This result indicates the
advantage of the localized broadening factor used in the
LTRAC method. In the lowermost temperature of <T 10 K5.0 ,
a slight lack of the emission measure can be observed. The
LTRAC solution was found to show smaller DEM even in the
higher resolution (down to D =s 6.25 km) in this temperature
range. We also note that the lack/excess of the emission
measure in <T 10 K5.0 depends on the parameter p in the
LTRAC method (see Appendix B).

We averaged the velocity DEM over the temperature
intervals 10 , 105.0 5.5[ ] K, 10 , 105.5 6.0[ ] K, and 10 , 10 K6.0 7.0[ ]
to mimic a line profile produced by the optically thin emission.
The resulting profile differs from the actual line profile
(calculated using the coronal approximation) because the
temperature-averaged VDEM profile does not include broad-
ening processes (e.g., thermal or instrumental broadenings).
However, we believe that at least a part of the effect of the
LTRAC method on spectroscopic observables can be investi-
gated using the VDEM. The velocity dependence of the VDEM
from the underresolved SH solution deviates from the reference
solution, especially in the lower-temperature intervals. The
VDEM profile from the TRAC solution agrees well for
>T 10 K5.5 with the reference profile, but it deviates slightly

at lower temperature. In contrast, the VDEM profile calculated

from the LTRAC solution shows better agreement with that of the
reference solution, especially in the low-temperature interval.
To evaluate the differences in the VDEM more quantita-

tively, we calculated the time variation of the velocity moments
of the VDEM as shown in Figure 4. The velocity shift Vshift and
velocity width Vwidth for the temperature interval < <T T T0 1
are defined as
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respectively. All of the SH, TRAC, and LTRAC solutions produce
oscillatory behavior in the lower-temperature interval, because
fewer grid points are used for calculating the VDEM in the
transition region. The temporal oscillation of the underresolved SH
solution is the most significant because the transition region is

Figure 3. Time-averaged DEM (top left) and the velocity DEM averaged over the temperature intervals of 10 , 10 K5.0 5.5[ ] (top right), 10 , 10 K5.5 6.0[ ] (bottom left),
and 10 , 10 K6.0 7.0[ ] (bottom right). The notation is the same as that in Figure 1.
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resolved by only a few grid points in the numerical solution. As the
TRAC and LTRAC solutions both have more grid points in the
transition region, the temporal oscillation is slightly suppressed
using these two methods. Among the three methods, we found that
the LTRAC solution exhibits the smallest temporal oscillation and
provides the best agreement with the reference solution. The
LTRAC solution can reproduce the velocity shift and width within
the difference of several kilometers per second to the reference
solution even with a coarse grid size of 50 km.

3.3. Convergence Analysis

Figure 5 shows a convergence analysis of the spatially
averaged variables (shown in Figure 1). The error is defined as
the mean absolute difference from the reference solution. The

convergence rate of the SH method is very small (less than first
order with respect to the grid size Ds). The TRAC method
shows similarly slow convergence, although the absolute value
of the error is much smaller than that of the SH method. The
LTRAC method produces slightly faster convergence of the
temperature at the loop top and of the velocity at the footpoint.
The mass density at the loop top in the LTRAC method
displays irregular convergence for D s 25 km. We speculate
that the mass density of the LTRAC simulation with
D =s 25 km accidentally approached the value in the reference
solution. In the high-resolution range of D s 12.5 km, both
the mass density and the velocity of the LTRAC solutions
exhibit slow convergence, similar to the SH and TRAC
methods. These results indicate that although the TRAC and
LTRAC methods both yield smaller deviations from the

Figure 4. Time variation of the emission measure (top row), the velocity shift (middle row), and the velocity width (bottom row), calculated from the VDEM averaged
over the temperature intervals of 10 , 10 K5.0 5.5[ ] (left column), 10 , 10 K5.5 6.0[ ] (middle column), and 10 , 10 K6.0 7.0[ ] (right column). The notation is the same as that in
Figure 1.

8

The Astrophysical Journal, 917:65 (14pp), 2021 August 20 Iijima & Imada



reference solution, the rate of convergence in the high-
resolution simulation may not be significantly improved from
the SH method. We also measured the dependence of the
broadening factor fc on the grid size by the time average of
the spatial maximum. The values of the broadening factor fc in
the TRAC and LTRAC solutions show approximately a first-
order convergence rate.

We also analyzed the convergence of the emission measure,
the velocity shift, and the velocity width as shown in Figure 6.
The LTRAC method shows the smallest error in the emission
measure among the three methods, in all three temperature
intervals: 10 , 105.0 5.5[ ] K, 10 , 105.5 6.0[ ] K, and 10 , 10 K6.0 7.0[ ] .
The convergence of the emission measure is slow, which may
be due to the slow convergence of the mass density shown in
Figure 5. The velocity shift and width show better convergence
rates (especially in the LTRAC solutions), but the grid
convergence is less than first order. The errors in the velocity
shift and width in the LTRAC solutions are less than 2 km s−1

even when a coarse grid size of 50 km is used. These results
suggest that the Doppler shift and nonthermal line width of the
synthesized optically thin line emission from the LTRAC
solution may be accurate enough to be compared with
spectroscopic observations.

4. Discussion

From the nature of the transition region, a large number of grid
points are required to resolve this thin layer fully. In this study, we
have proposed a new numerical method, called the LTRAC
method, which enables the physically accurate coronal dynamics
and energetics to be obtained with a coarse grid size. Following
the strategy of Lionello et al. (2009) and Johnston & Bradshaw
(2019), the LTRAC method broadens the unresolved transition
region by modifying the thermal conduction coefficient and the
radiative cooling rate. The major difference between the LTRAC
method and the previous methods is that the broadening factor of
the transition region is concentrated only in the region with the
high-temperature gradient. The localized broadening factor
provides better reproduction of the emission measure especially
in the lower-temperature region, which may result from the
suppression of excess conductive heating in the upper chromo-
sphere observed in the previous methods. We investigated the
possible effect of the Doppler velocity and the nonthermal
broadening of optically thin emission lines based on the velocity
DEM from the numerical solutions. We found that the synthesized
profile of the optically thin line emission is reproduced within an
error of several kilometers per second with a coarse grid size of
50 km. The LTRAC method is designed so that it can be extended

Figure 5. Convergence of the spatially averaged variables as a function of the grid size. Shown are the mean absolute errors measured by the temperature at the loop
top (top left), the mass density at the loop top (top right), and the velocity at the footpoint (bottom left), as well as the maximum value of the broadening factor fc
(bottom right). The results for the SH method (blue line with plus signs), the TRAC method (orange line with crosses), and the LTRAC method (green line with
circles) are shown.
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to multidimensional simulations using the domain decomposition
technique. Application of the LTRAC method to multidimen-
sional coronal heating models (e.g., Abbett 2007; Gudiksen et al.
2011; Iijima & Yokoyama 2015, 2017; Rempel 2017) will allow
us to reproduce the wave reflection rate at the transition region and
the energy loss from the corona more accurately with a coarse grid
spacing.

In this paper, we evaluated the performance of the proposed
method using one-dimensional hydrodynamic simulations of a
coronal loop in an active region. In flaring loops with higher
temperatures, the accuracy of the coarse-resolution simulations
may be worse than that for cooler loops. It should be noted that
we assumed a uniform volumetric heating rate in this study.
The performance of the proposed method should be tested with
a wider range of numerical settings, including a spatially
nonuniform heating rate. However, we believe that the
proposed method will be effective even in such problems, as

the free parameters in the LTRAC method determine the
sensitivity based only on the normalized temperature gradient
and are not chosen for specific problems.
We have ignored the realistic physical processes such as the

nonequilibrium ionization or the effect of optical thickness in
this study. The numerically broadened transition region may
require special care on these processes. For example, in
calculating the VDEM (Section 2.3), we accounted for the
broadening factor fc by reducing the effective line-of-sight
distance by a factor of f1 c (see Equation (23)), which hopefully
conserves the total emission measure from the artificially
broadened region. Similarly, in calculating the optical thick-
ness, the line-of-sight distance must be modified to account for
the broadening factor. Modification nonequilibrium ionization
processes may be also required. If we assume that an ion moves
across the broadened transition region at a constant velocity,
the total number of radiative/collisional reactions the ion

Figure 6. Convergence of the VDEM against the grid size. Shown are the mean relative error of the emission measure (top row), the mean error of the velocity shift
(middle row), and the mean absolute error of the velocity width (bottom row), calculated from the VDEM averaged over the temperature intervals of 10 , 10 K5.0 5.5[ ]
(left column), 10 , 10 K5.5 6.0[ ] (middle column), and 10 , 10 K6.0 7.0[ ] (right column). The notation is the same as that in Figure 5.
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undergoes may increase by a factor of fc. To prevent this
artifact, the reaction rates should also be reduced by the
broadening factor fc. We emphasize that these suggestions are
mere speculations, and they should be verified more precisely
in a future study.
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JP19K14756 and JP21H01124. This work was supported by
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research program. The authors would like to thank the
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Appendix A
Convergence of the Reference Solution

As the requirement on the grid size is extremely severe in the
transition region, we were not able to resolve the transition
region fully. Figure 7 compares high-resolution runs obtained
by the SH, TRAC, and LTRAC methods. The nonuniform grid

spacing is used with a grid size of 100 m near the transition
region. The variations of the temperature, mass density, and
velocity field calculated by these three methods are very close
to each other, which implies that the numerical solutions are
roughly converged at this grid size. If the transition region in
the numerical solution is fully resolved, the normalized
temperature gradient of Equation (17) should be smaller than
the critical value ( sexp c( ) for the TRAC method and rc for the
LTRAC method), which implies that the maximum value of
the fc should be unity in both the TRAC and LTRAC methods.
The nearly constant (but larger than unity) value of fc in the
TRAC solution after 1000 s occurs because the lower limit of
Tc is set to ´2 10 K4 . Unfortunately, fmax c( ) in the LTRAC
solution is about 5, which indicates that the numerical grid size
should be 20 m or less to obtain a truly converged solution (in
the sense that the LTRAC solution becomes exactly identical to
the SH solution). Such a high-resolution simulation is difficult
to achieve even in a one-dimensional domain, as we do not use
the adaptive mesh refinement. This requirement that the grid
size be less than 20 m is consistent with the estimate obtained
using the static loop model of Rosner et al. (1978), which
predicts that the thickness of the transition region is about

Figure 7. Time variation of the temperature at the loop top (top left), the mass density at the loop top (top right), the velocity at the footpoint (bottom left), and the
maximum value of the broadening factor fc (bottom right). Shown are the numerical solutions calculated using the SH method (orange line with crosses), using the
TRAC method (green line with circles), and using the LTRAC method (red line with diamonds). The nonuniform grid spacing is used with the grid size of 100 m near
the transition region.
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400 m for a loop top temperature of 4 MK (see Section 1). The
results presented in this paper do not depend on the choice of
the reference solution, except for the convergence rates of the
highest-resolution runs (grid sizes less than 20 km) in
Appendix B. In this study, we use the SH solution with a
grid size of 100 m as the reference solution.

Appendix B
Dependence on LTRAC Parameters

The LTRAC method employs two parameters, the critical
value rc of the temperature gradient and the acceleration factor
p. Here, we briefly investigate the dependence of the LTRAC
solutions on these parameters. Figure 8 shows the dependence
of the convergence rates on the LTRAC parameter p, fixing the
value of rc to be 1.5. Clearly, a larger value of p produces faster
grid convergence. The error in the LTRAC method with p=2
is similar to that of the TRAC method (Figure 5).

Figure 9 shows the dependence of the convergence rate on
rc, with the value of p fixed to 4.0. The result is not very
sensitive to the parameter rc, although a smaller rc tends to
produce smaller errors and larger values of the broadening
factor fc. The reader may notice that the mass density of

rc=1.2 apparently converges to the reference value regularly.
However, we note that this regular convergence may be
produced by the insufficient resolution of the reference
solution. If we use the high-resolution LTRAC run as a
reference, the mass density shows irregular convergence in all
values of rc. We chose the typical value rc=1.5 so that the
threshold of the temperature gradient would be close to the
value in the TRAC method (so that s ~ rexp c c( ) ).
In Section 2.3, we have mentioned a small lack of the low-

temperature DEM in <T 10 K5.0 found in the LTRAC
solution. The lack and excess of the DEM in this low
temperature range depend on the parameter p. Figure 10 shows
the parameter dependence of the DEM. The uniform grid size
of 50 km is used except the reference solution. In the cases
of smaller p-value (i.e., p 2), the emission measure in
<T 10 K5.0 tends to show slight excess, in contrast to the cases

for p 3. This dependence on the parameter p was observed
independently of the spatial resolution (down to
D =s 6.25 km). This result may imply that the optimal
parameter of p lies between 2 and 3 in terms of the DEM
reproducibility. We found that the dependence of the low-
temperature DEM on the parameter rc is not significant.

Figure 8. Same as Figure 5, but showing the dependence on the LTRAC parameter p. The results for p=1 (blue line with plus signs), p=2 (orange line with
crosses), p=3 (green line with circles), and p=4 (red line with diamonds) are shown.
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