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ble to large deformation of distribution function in the Vlasov-Poisson plasma

with the periodic boundary, where contours of distribution function are traced

without using spatial grids. Novelty of this study lies in application of CD to

the one-dimensional Vlasov-Poisson plasma with the periodic boundary con-

dition. A major difficulty in application of the periodic boundary is how to

deal with contours when they cross the boundaries. It has been overcome by

virtue of a periodic Green’s function, which effectively introduces the peri-

odic boundary condition without cutting nor reallocating the contours. The

simulation results are confirmed by comparing with an analytical solution for

the piece-wise constant distribution function in the linear regime and a linear

analysis of the Landau damping. Also, particle trapping by Langmuir wave is

successfully reproduced in the nonlinear regime.
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1. Introduction

Kinetic equations for plasma dynamics describe many interesting physical phenomena, but are generally difficult

to be solved analytically or numerically. For example, a long term nonlinear evolution of the distribution function is

not yet fully understood even in the one-dimensional Vlasov-Poisson system. Three types of simulation methods for

kinetic plasma are widely known, such as Lagrangian, semi-Lagrangian, and Eulerian methods. The Particle-In-Cell

(Lagrangian) method has a problem of numerical noise, while resolution of the Vlasov method (Eulerian) is limited

by the grid size. Indeed, it is shown that, in the Vlasov simulation of the nonlinear Landau damping, fine structures of

the distribution function continue to grow in phase space and are stretched exponentially in time, increasing numerical

errors (Ref. [1]).

The water-bag model, which assumes a piece-wise constant distribution function ( f ), has been studied for the

Vlasov-Poisson plasma (Refs .[2, 3, 4]) since 1960s, and successfully resolved stretching and strong deformation of

f in the phase space (x, v). In 1979, as a generalization of the water-bag model, contour dynamics (CD) method is

introduced by Zabusky, Hughes, and Roberts (Ref. [5]) for solving inviscid and incompressible fluid motions in the

two-dimensional configuration space (x, y). The CD method employs nodes on each contour of which motion is given

by calculating line integrals of the Green’s function along contours. Because CD employs no spatial grid but nodes

on contours (Lagrangian), the numerical resolution is not limited by spatial grids, which makes the CD method tough

against large deformation of vorticity (Ref .[6]).

In this paper, we revisit the CD method and apply it to the Vlasov-Poisson plasma with the periodic boundary

condition. Although the basic idea of the CD method stems from the water-bag model, there has been a few appli-

cations to the Vlasov-Poisson plasma. The CD method differs from the water-bag model as no spatial grid is used in

the former in solving Poisson equation (Ref. [2]). Although a modern implementation of the water-bag method by

Colombi & Touma (Ref. [7]) did not use spatial grids, the application is limited to a system with no spatial boundary.

Novelty of the present paper lies in application of the CD method to the Vlasov-Poisson plasma with the periodic

boundary, where we consider time development of contours of the distribution function without using spatial grids.

The simulation results are confirmed by comparing with an analytical solution for the piece-wise constant distribu-
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tion function in the linear regime and a linear analysis of the Landau damping. Furthermore, the particle trapping

by Langmuir waves is successfully reproduced in the nonlinear regime. Here, it should be remarked that no contour

surgery (Ref. [8]) nor node redistributions (Ref. [9]) is employed in numerical simulations in this paper, because we

focus on validity of our implementation for the periodic boundary condition.

This article is organized as follows. After a brief introduction to the CD in Section 2, application to the Vlasov-

Poisson system with the periodic boundary is described in Section 3. Validity of the CD method is confirmed by

comparing the simulation results with the analytical solution for the piece-wise constant distribution function in

Section 4. A bench mark test for the linear Landau damping is described in Section 5.1. Application to the nonlinear

Landau damping is shown in Section 5.2. Finally, we summarize the results in Section 6.

2. Contour Dynamics

Zabusky, Hughes, and Roberts have proposed contour dynamics algorithm for the Euler equation of fluid dynamics

in two dimensions (Ref. [5]). The governing equations are

Dω
Dt
=
∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
= 0, (1)

∇2ψ =
∂2ψ

∂x2 +
∂2ψ

∂y2 = −ω, (2)

u =
∂ψ

∂y
, v = −∂ψ

∂x
,

ω = −∂u
∂y
+
∂v
∂x
, (3)

where ψ is the stream function and ω means the vorticity. Time development of the vorticity is calculated by tracing

motions of contours of the piece-wise constant vorticity distribution.The flow velocity is given by the line integrals of

the Green’s function on the contours, such that

(u, v) =
(
∂ψ

∂y
,−∂ψ
∂x

)
=

∑
m

(∆ωm)
∮

Cm

G(x, y; ξ, η)dr′m, (4)
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Fig. 1. In contour dynamics, motion of the contours are determined by solving the Hamilton equations of the node points

where m is a label of contours, Cm is the contour labeled by m, and ∆ωm is a jump of vorticity when crossing the

contour Cm inward. The two-dimensional Green’s function, G(x, y; ξ, η), is given as

G(x, y; ξ, η) = − 1
2π

log
√

(x − ξ)2 + (y − η)2. (5)

The contours are discretized by nodes with label n, and motion of the contours is determined by solving the Hamilton

equations of the node points (Fig. 1). Each contour represents a constant vorticity line, and is advected by an incom-

pressible flow as given in Eq. (1). The incompressibility also guarantees conservation of volumes surrounded by each

contour.

3. Application to Vlasov-Poisson system

3.1. Basic scheme

Here, we consider application of the CD method to the Vlasov-Poisson system with the periodic boundary. The

normalized Vlasov-Poisson equations are

∂ f
∂τ
+ v

∂ f
∂x
+ a

∂ f
∂v
= 0, (6)

a =
∂ϕ

∂x
, (7)

− ∇2ϕ = 1 −
∫ ∞

−∞
f (x, v)dv =: F(x), (8)
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where f is the distribution function of electrons, while stationary background ions are assumed. The particle density

is normalized so that
∫ L/2
−L/2 dx

∫ ∞
−∞ dv f (x.v) = L, where L denotes the system length. The periodic boundary conditions

at x = ±L/2 are given by

lim
ϵ→−0

ϕ
(L

2
+ ϵ

)
= lim

ϵ′→+0
ϕ
(
−L

2
+ ϵ′

)
, (9)

lim
ϵ→−0

ϕ′
(L

2
+ ϵ

)
= lim

ϵ′→+0
ϕ′

(
−L

2
+ ϵ′

)
(quasi neutrality), (10)

The Liouville’s theorem and Eq. (6) guarantee the volume conservation and d f
dτ = 0, which are required for contour

dynamics method. In order to implement the CD, we employ the Green’s function, G, that satisfies

∇2G (x; ξ) =
1
L
− δ (x − ξ) , (11)

lim
ϵ→−0

G
(L

2
+ ϵ

)
= lim

ϵ′→+0
G

(
−L

2
+ ϵ′

)
, (12)

lim
ϵ→−0

G′
(L

2
+ ϵ

)
= lim

ϵ′→+0
G′

(
−L

2
+ ϵ′

)
. (13)

Solving Eqs. (11), (12), and (13) to obtain G (Ref. [10]), one finds

G (x; ξ) =
1

2L

(
|x − ξ| − L

2

)2

. (14)

Therefore,

ϕ(x) =
∫ L

2

− L
2

G (x; ξ) F (ξ) dξ + const for x ∈
(
−L

2
,

L
2

)
. (15)

The acceleration of each particle at x is given by the CD representation,

a (x) =
Nm∑
m

∆ fm

∮
cm

G (x; ξ) dv, (16)
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where Nm is the number of contours, Cm is a contour labeled by m and ∆ fm is the jump of distribution function when

crossing the contour Cm inward. We discretize the contours with nodes labeled counterclockwise by n and connect

nodes with straight line segments. Then, Eq. (16) breaks down into

a (x) =
Nm∑
m

∆ fm
∑

n

vn+1 − vn

2

(
w2

n(x)
L
+

δ2
n

12L
− In(x)

)
, (17)

where

In(x) =


|wn(x)| for |wn(x)| ≥ δn

2

w2
n(x)
δn
+ δn

4 for |wn(x)| < δn
2

with wn(x) := x − xn+1 + xn

2
and δn := |xn+1 − xn|. (18)

Although n is a function of the label of contours (m), we use the notation of n = n(m) for simplicity. Equation of

motion of each node point labeled by i is given by

d2xi

dτ2 = a (x = xi) =
Nm∑
m

∆ fm
∑

n

vn+1 − vn

2

(
w2

n(xi)
L
+

δ2
n

12L
− In(xi)

)
. (19)

For the time integration, we use the leap-frog scheme with the time step size ∆τ = 0.01 in the all simulations shown

below.

3.2. Implementation of the periodic boundary

A difficulty of implementation arises in the CD method with the periodic boundary, when a node(xn, vn) moves

across the boundaries and comes into the simulation box from the another side. Straightforwardly, we may cut the

contour at the boundary and reallocate a node point (xn, vn) as

xn < (−L/2, L/2)⇒


xn 7→ xn − L/2 ; if L/2 < xn

xn 7→ xn + L/2 ; if xn < −L/2
(20)
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Fig. 2. Conventional implementation of the periodic boundary. Contours which get out of simulation box are cut and reallocated (A, B, A′
and B′ are defined on Eqs. (21) and (22)).

and make interpolation of points (x̃s, ṽs) and (x̃t, ṽt) on the boundary between (xn+1, vn+1) <
(
−L
2 ,

L
2

)
and (xn, vn) ∈(

−L
2 ,

L
2

)
,

(x̃s, ṽs) =


(

L
2 ,

vn+1−vn
xn+1−xn

(
L
2 − xn+1

)
+ vn+1

)
; if L/2 ≤ xn+1 · · · A(

−L
2 ,

vn+1−vn
xn+1−xn

(
−L
2 − xn+1

)
+ vn+1

)
; if xn+1 ≤ −L/2 · · · B

(21)

(x̃t, ṽt) =


(
−L
2 ,

vn+1−vn
xn+1−xn

(
L
2 − xn+1

)
+ vn+1

)
; if L/2 ≤ xn+1 · · · A′(

L
2 ,

vn+1−vn
xn+1−xn

(
−L
2 − xn+1

)
+ vn+1

)
; if xn+1 ≤ −L/2 · · · B′

(22)

for calculation of the line integrals (See Fig. 2). Here, we call this method the reallocation scheme. Since we must

know the sequence of the nodes for the CD method, the reallocated nodes complicate the computational algorithm.

Actually, we need to count how many times each node moved across the boundaries and to use the counts every time

in calculation of vn+1−vn
2

(
w2

n
L +

δ2
n

12L − In

)
. However, it increases numerical costs and makes the code implementation

complicated.

In the following, we propose a novel scheme to implement the periodic boundary in CD, which is named a

periodic Green’s function method. Because we consider the periodic problem; f (a) = f (a + L), ϕ(a) = ϕ(a + L), and

ϕ′(a) = ϕ′(a+ L). Thus, it may be possible to eliminate the boundaries at x = ± L
2 , while extending the simulation box
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to (−∞,∞) and imposing the periodicity to the Green’s function, that is,

∀x ∈ (−∞,∞), a(x) =
Nm∑

m=1

∆ fm

∮
cm

G′ (x; ξ) dv′, (23)

with

G′ (x; ξ) = G (x; Mod (ξ − (x − L/2) , L) + (x − L/2)) , (24)

where

Mod (a, b) = Min {c (≥ 0) |∃r ∈ Z, a = br + c} . (25)

In this way, we can avoid cutting or reallocation of the contours, but equivalently the contours feel the periodicity of

the system through G′ instead of G (See Fig. 3.2). If ∀n, |xn − xn−1| < L
2 is satisfied, then (17) becomes

a(x) =
Nm∑
m

∆ fm
∑

n

vn+1 − vn

2

(
w′2n
L
+

δ2
n

12L
− I′n

)
, (26)

where

w′n(x) := x + r (xn, x) L − xn+1 + xn

2
, (27)

r (xn, x) :=
xn −

(
x − L

2

)
− Mod

(
xn −

(
x − L

2

)
, L

)
L

= b
xn −

(
x − L

2

)
L

c,

and

δn := |xn+1 − xn|, I′n(x) =


|w′n(x)| for |w′n(x)| ≥ δn

2

w′2n (x)
δn
+ δn

4 for |w′n(x)| < δ
2

. (28)

Here, the periodicity is introduced not in Cm, but in G′. Therefore we do not need to count how many times each node

moves across the boundaries, which makes a faster and simpler implementation. Our new implementation with the
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v

x

x+L/2x-L/2

Fig. 3. Implementation of the periodic boundary using G′ = G(Mod(ξ − (x − L/2), L) + (x − L/2); x). The periodic boundary is effectively
introduced without cutting nor reallocating the contours.

periodic Green’s function G′ accelerate the computation speed about 1.5 faster than that of the reallocation scheme.

It owes to no cutting nor reallocation, which makes the code avoid many “if” branches.

4. Benchmark Test for Piece-Wise Constant Distribution Function

In order to check validity of our application, we consider the initial distribution function given by

f (x, v, τ = 0) =
Nm∑

m=−Nm

bmU (v − vm(x, 0)) , (29)

U(x) =


1 0 < x

0 x ≤ 0
, (30)

where bm = −b−m < 0 and vm(x, 0) = v0
m + v1

m(x). Also v0
m = m∆v and v1

m(x) = αeikx with ∆v ∈ R+ and kL/2π ∈ N,

where α � 1 so that |v1
m| � |v0

m|. This function Eq. (29) was also used to study the water-bag model (Ref.[11]). As

shown in Appendix, the linear dispersion relation is derived as

D(ω) = 1 +
∑
m>0

2bmv0
m

ω2 −
(
kv0

m

)2 = 0. (31)
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a

τ
numerical result predicted behavior

Fig. 4. Benchmark test1: Time evolution of a = ∂ϕ/∂x. Red points are simulation results and green line is predicted by the Eq. (32).
Nm = 2, b1 = b2 = −1/6, ∆v = 1.0, k = 1.0 and α = 0.01 are given for initial distribution function (29).

Solving the initial value problem analytically, the acceleration a(x, τ) is determined by means of ωl which satisfies

D(ωl) = 0 with kv0
l < ωl < kv0

l+1,

a(x, τ) = Re


∑
j>0

∑
m>0

{
(−bm)αei(kx− π

2 )Πn(,m)>0

((
ω j

)2 −
(
kv0

n

)2
)}

kΠn(, j)>0

(
ω2

j − ω2
n

) 2 cosω jτ

 . (32)

We make comparison of a simulation result with Eqs. (31) and (32).

For Nm = 2, b1 = b2 = −1/6, ∆v = 1.0, k = 1.0 and α = 0.01, Eqs. (31) and (32) lead a(x = −1.4π, τ) =

A1 cos(ω1τ) + A2 cos(ω2τ) with A1 = 0.00226, A2 = 0.00409, ω1 = 1.13 and ω2 = 2.18. The numerical result

of a(x = −1.4π, τ) shown in Fig. 4 agrees well with the analytical prediction, Eq. (32). It shows validity of our

implementation of the CD method for the Vlasov-Poisson system with the periodic boundary condition.

5. Benchmark test for the Landau Damping

5.1. Linear Landau Damping

We also verify our code for the linear Landau damping. We set the initial contour distribution as follows. The

initial (continuous) distribution function f is given by

f (x, v, τ = 0) =
1
√

2π
exp

(
−v2

2

)
(1 + α cos(kx)). (33)
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By means of a sequence {∆ fm}NMax
m=1 : ∆ fm ∈ R+ and

NMax∑
m=1

∆ f m < Max
x,v∈R
{ f (x, v, τ = 0)} ,we define f̃ , a piece-wise constant

approximation of f ,

f̃ (x, v, τ = 0) :=
NMax∑
m=1

∆ fmI
[
Σm

m′=1∆ fm′ < f (x, v, τ = 0)
]
, (34)

where

I [P(x, v, τ)] =


1 if P(x, v, τ) is true

0 otherwise
(35)

with a propositional function P(x, v, τ). However, Eq. (34) does not satisfy
∫ L

2

− L
2

dx
∫ ∞
−∞ f̃ (x, v, t = 0)dv = L because f̃

is a piece-wise constant function defined by means of contours of f . Therefore instead of f̃ , we use f̃ ′ normalized by

(1 + ϵ),

f̃ ′ = (1 + ϵ) f̃ , where ϵ =
L∫ L

2

− L
2

dx
∫ ∞
−∞ f̃ (x, v, t = 0)dv

− 1, (36)

and thus ∆ f ′m = (1 + ϵ)∆ fm.

The simplest way of giving {∆ fm} is ∆ fm =constant. However, contour dynamics method does not require constant

∆ fm, and non-uniform contour intervals have an advantage over the constant ∆ fm in approximation of f . In case with

∆ fm = constant, the contours are densely distributed where the velocity space gradient of f is steep around v ∼ ±vth

(vth means the thermal velocity), while no contour is found for |v| > 3vth when we use 40 contours. It means that

there is no particle in |v| > 3vth, while the super thermal particles can be included in the case of ∆ fm , constant.

From the linear theory, real and imaginary parts of the eigenfrequency for k = 0.5 are evaluated as ωr = 1.4156 and

γ = −0.1533. Thus, the phase velocity is ωr/k ∼ 2.8vth. This is the reason why the high speed particle should be

included in this application. Otherwise, many contours are necessary in the constant ∆ fm case in order to introduce

contributions of the super thermal particles. Thus, we employ the non-uniform contour intervals of ∆ fm which is
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Fig. 5. Time history of the quadratic integral of the electrostatic potential ϕ obtained from the simulation of the linear Landau damping.
The damping rate γ = -0.153 is successfully confirmed by the contour dynamics method.

defined as

∆ fm :=


f (x = x0, v = Vm) m = 1

f (x = x0, v = Vm) − f (x = x0, v = Vm−1) 2 ≤ m ≤ NMax

, (37)

with dv ∈ R+,NMax ∈ N and Vm := (NMax + 1 − m)dv. Since Eq. (33) has the maximum at x = 0, we set x0 = 0. In

this application, we used 40 contours with dv = 0.1, where the contour spacing in v is nearly constant covering the

velocity space of |v| < 4vth.

A simulation result for the linear Landau damping is presented in Fig. 5, where the initial distribution function is

given by Eq. (37) with α = 0.01 and k = 0.5. The simulation box size is L = 4π. We also used 2000 nodes/contour.

One clearly finds the linear damping rate of γ = −0.153 successfully reproduced by the present CD method.

5.2. Nonlinear Landau damping

Next, we consider a benchmark test for the nonlinear Landau damping (Ref. [1]) with the initial distribution

function in Eq. (33) where α = 0.5 and k = 0.5. We employ 40 contours (with NMax = 40 and dv = 0.1) and 8000

nodes/contour. It is noteworthy that intersections of contour lines are not observed till τ = 30 in the present simulation.

It is, thus, appropriate not to use the node redistribution nor the contour surgery in the current test case. Fig. 6 shows
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Fig. 6. Phase space structure of nonlinear Landau damping at τ = 30. Particles trapped by waves are reproduced. The color bar represent
the magnitude of f .

a snapshot of contour distribution in the phase space at τ = 30, where the particle trapping by the Langmuir wave is

successfully reproduced by the CD method.

Soundness of our implementation is also confirmed by conservation of energy, as shown in Figure 7. Total energy,

Et =
1
2

∫∫
v2 f dxdv + 1

2

∫
| ∂ϕ
∂x |2dx, is conserved with an error, ϵE(τ) = |Et(τ) − Et(0)|/E(0), less than 2.5 × 10−5 for

τ ≤ 30.

Dependence of the numerical accuracy on the number of nodes per contour and the number of contours is investi-

gated for conservation of the total energy and particles. Errors in the total energy conservation are shown in Figures 8

(a) and (b) for cases with different numbers of nodes and contours, respectively. If the number of nodes per contour

is decreased by 1/4 while using 40 contours, the total energy conservation significantly degrades after τ = 17, which

would be attributed to the contour crossing. Total energy conservation for different numbers of contour lines (but with

8000 nodes per contour) is also presented in Figure 8 (b), where the maximum of numerical error in the case with 10

contours (with NMax = 10 and dv = 0.4) is lower than that for the case of 2000 nodes/contour with 40 contours shown

in Figure 8 (a). Thus, the energy conservation is more sensitive to the number of nodes per contour than the number

of contours.

Figure 9 shows numerical errors found in the particle (or area) conservation, ϵN := |N(τ) − N(0)|/N(0), for cases
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Fig. 7. Conservation of energy. Blue line represents energy of electric field, Eϕ = 1
2

∫
| ∂ϕ∂x |2dx , Green kinetic energy, Ek =

1
2

∫∫
v2 f dxdv,

and Red Total energy, Et = Eϕ + Ek .

with different numbers of nodes and contours, where N(τ) is a total integral of the particle density defined as

N(τ) :=
∫∫

f̃ ′(x, v, τ)dxdv, (38)

where

f̃ ′(x, v, τ) :=
NMax∑
m=1

∆ f ′mI[(x, v) ∈ S m(τ)] (39)

with S m(τ) denoting the closed polygonal region determined by nodes on the mth contour. Errors in the particle

conservation, ϵN , is less than 10−4 for the case with 40 contours with 8000 nodes per contour (blue curve) while

increasing in time. Generally speaking, the CD method tends to fail in following the strong deformation of contours

with large curvature, because the contours consist of finite straight segments connected by nodes. This is confirmed

in comparison for the different number of nodes shown in Figure 9 (a), where the larger errors are found for the

smaller number of nodes per contour. In comparison of Figures 8 (b) and 9 (b), errors found in the energy and particle

conservation for the case of 10 contours are correlated to each other, and are simultaneously improved by increasing

the number of contours.
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Fig. 8. Errors found in the total energy conservation, ϵE(τ) = |Et(τ)−Et(0)|/E(0), for cases with different numbers of (a) nodes per a contour
(that is, 2000, 4000, and 8000 with 40 contours) or (b) contours (that is, NMax = 10, 20, and 40 with 8000 nodes per contour but dv = 0.4,
0.2, and 0.1, respectively). Blue curves in (a) and (b) represent the same result in the case with 40 contours and 8000 nodes per contour.
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Fig. 9. Errors found in the particle conservation, |N(τ) − N(0)|/N(0), for cases with different numbers of (a) nodes per a contour (that is,
2000, 4000, and 8000 with 40 contours) or (b) contours (that is, NMax = 10, 20, and 40 with 8000 nodes per contour but dv = 0.4, 0.2, and
0.1, respectively). Blue curves in (a) and (b) represent the same result in the case with 40 contours and 8000 nodes per a contour.
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6. Summary and Conclusion

We have newly implemented contour dynamics method for the Vlasov-Poisson system with the periodic bound-

ary. The major difficulty in application of the periodic boundary is how to deal with contours when they cross the

boundaries. It has been overcome by introducing periodic Green’s function defined on the infinite phase space, instead

of the Green’s function derived for the bounded system with the periodic boundary condition. The new scheme en-

ables implementation without cutting nor reallocating the contours and node points, and accelerates the computational

speed.

Validity of the CD method for the Vlasov-Poisson system with the periodic boundary is confirmed by compar-

ing the simulation results with the analytical solution for the piece-wise constant distribution function in the linear

regime, and by the bench mark test for the linear Landau damping. Nonlinear Landau damping simulation using the

CD method successfully reproduces the electron trapping by the Langmuir wave. Soundness of our method is also

demonstrated by the energy and particle conservation with errors less than 2.5 × 10−5 and 10−4, respectively, when

one used 40 contours with 8000 nodes per contour . Improvement of the CD method to reduce the conservation errors

remains for future works.

Because this paper focused on the verification of our basic CD scheme for the periodic system, detailed analyses

of the physics problem by means of the CD method are remained for future studies. Application of the CD method to

a variety of issues in kinetic plasma physics is currently in progress, and will be reported elsewhere.
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Appendix

Here, we calculate the analytical solution of a(x, τ) = ∂ϕ/∂x for the initial distribution function in Eqs (29) and

(30). For a node with the index m, vm satisfies the equation

a(x, τ) =
dvm

dτ
=
∂vm

∂τ
+ vm

∂vm

∂x
. (40)

Eqs. (8) and (29) lead to

− ∂a
∂x
= 1 −

Nm∑
−Nm

(−bm) vm. (41)

For the zeroth order, the electron density is assumed to be the same as that of the uniform background ions,
Nm∑
−Nm

(−bm) v0
m =

1 (namely, we choose ∆v to satisfy this relation). Therefore, Eq.(40) is linearized as

a =
∂v1

m

∂τ
+ v0

m
∂v1

m

∂x
, (42)

and Eq. (41) reads

∂a
∂x
=

Nm∑
−Nm

(−bm) v1
m. (43)

Assuming a, v1
m ∝ eikx, the Laplace transform of Eqs (42) and (43) give

L(a) = −v1
m(0) + sL

(
v1

m

)
+ v0

mikL
(
v1

m

)
, (44)

− ikL(a) =
Nm∑
−Nm

bmL
(
v1

m

)
, (45)

where L ( f (τ)) :=
∫ ∞

0 f (τ)e−sτdτ. Thus,

L(a) =
1

D(is)

Nm∑
−Nm

{
(−bm) v1

m(0)Πl,m

(
is − kv0

l

)}
, (46)



/ Journal of Computational Physics (2022) 19

with

D(is) = kΠNm
m=−Nm

(
is − kv0

m

)
+

Nm∑
m=−Nm

{
bmΠl,m

(
is − kv0

l

)}
. (47)

It is known that for a choice of bn < 0 (∀n ≥ 1), the solutions of D(is) = 0 are purely real (see Refs. [11] and [12]).

We define ω := is and ωm : D(ωm) = 0 with kv0
m < ωm < kv0

m+1 so that D(ωm) is written as D = kΠNm
m=−Nm

(ω − ωm).

The inverse Laplace transform of Eq. (46) is

a =
Nm∑

j=−Nm

Res
(
L (a) (s) est,−iω j

)
(48)

=

Nm∑
j=−Nm

lim
s→−iω j

(
s + iω j

) 1
k

Nm∑
−Nm

{
(−bm) v1

m(0)Πl,m

(
is − kv0

l

)}
Π

Nm
m=−Nm

(is − ωm)
est (49)

Since ωm = −ω−m, bm = −b−m and v0
m = −v0

−m, one finds

a(x, τ) = Re


∑
j>0

∑
m>0

{
(−bm)αei(kx− π

2 )Πn(,m)>0

((
ω j

)2 −
(
kv0

n

)2
)}

kΠn(, j)>0

(
ω2

j − ω2
n

) 2 cosω jτ

 , (50)

where ω j satisfies the dispersion relation of

1 +
∑
m>0

2bmv0
m

ω2 −
(
kv0

m

)2 = 0. (51)
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