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Abstract

Many model-based optimization methods have beeposed for chromatographic processes to
ensure product quality and efficiency, but uncettabdf model parameters should be considered to
assure robust design and operation. In this stwdydeveloped a sequential Monte Carlo (SMC)
parameter estimation method for chromatographicgsses to estimate the parameter uncertainty
rigorously within a reasonable amount of computatime. As an example, separation of glucose and
fructose is considered. Through the example usgitifical data, we confirmed that SMC can perform
estimations more efficiently than the existing neethMarkov chain Monte Carlo. Furthermore,
through the example using lab-scale experimentid, dee confirm that the time and effort for the
sample analysis to identify the concentration @hezomponent can be eliminated. We also examined
the relationship between the number of cores amtpatation time for parallel implementation of
SMC.

Keywords: Chromatography process, Parameter estimation, téiaty quantification, Bayesian
inference, Sequential Monte Carlo



1. Introduction

Chromatography is one of the techniques for sejparanhd purification. In its original form, it was
developed for the separation of chlorophyll (Etnel Sakodynskii, 1993), followed by improvements
in adsorbents and solvents (Martin and Synge, 1@41) achieving higher flow rates (Horvath et al.,
1967). In addition to the conventional batch chrtmgeaphy, many advanced designs and operations
have been developed and demonstrated, such asthatoving bed (SMB) chromatography which
allows continuous separati@Bentley and Kawajiri, 2013; Broughton and Gerhold, 1961; Francotte
and Richert, 1997; Hashimoto et al., 1983; Kawajiri and Biegler, 2006).

Liquid chromatography is a system in which a fegldt®n containing multiple components flows
through a column packed with adsorbents, and thgoaents are separated by using the difference
in the interaction between the components anddBerhents. The adsorbent in the column is called
the stationary phase, and the solvent of the swidtowing through the column is called the mobile
phase (Guiochon et al., 2006). Figure 1 shows &msatic diagram of the separation of each
component from a mixture of two components, A andi€gng liquid chromatography. Figure 1 (a) -
(d) show the time evolution of this process. Congrdr\,, represented by the circles, has stronger
affinity towards the adsorbent, while componentdpresented by the triangles, has weaker affinity
towards the adsorbent. As shown in Figure 1 (&)ntixture of two components A and B dissolved in
the mobile phase is pulsed into the column as feedithen the mobile phase without the components
continues to flow. The components are graduallyasdpd by the difference in adsorption forces
between the components and the adsorbent as tveyhtough the column. The mixture is separated
and purified at the outlet of the column, as shawigure 1 (c) and (d).

Chromatography is widely used in industrial scateshemical and pharmaceutical industries as a
purification technique for the production of petiemicals, sugars, and pharmaceuticals
(Kaltenbrunner et al., 2007; Westerberg et al., 2012). Such large-scale processes require optimization
of flow rates of solvents and feed, temperaturd,dmice of adsorbent to reduce manufacturing costs
while meeting the required quality of the prodddte more complex the process is, the more difficult
it is to perform these operations relying on thpegience of operators, which may lead to suboptimal
design and operation, and failure in meeting regoénts such as product purity. Therefore, it is
desirable to employ model-based development, aidason of parameters in the model is critical.

To obtain the parameters in the model, a commomoaph is to solve an inverse problem using
experimental data and perform parameter estimatiome only need a single set of estimated
parameter values, least-squares methods can béuseattr and Zuberbuehler, 1990; Zhang, 1997).
However, the result obtained by this method isiatgstimate which does not quantify the uncenjaint

of the parameters. The uncertainty of the parametenich may cause a model mismatch, must be



taken into account for robust design and operatiforeal processes, which is more challenging in
complex processes such as SMB. To address thisepmplthere are many studies of methods for
estimating parameter uncertainty in the past. Aequentist method using the Fisher information
matrix obtained from the Hessian of the objectwection, a study of model comparison using lab-
scale SMB (Grosfils et al., 2007), and insulin ficgition by single-column liquid chromatography
(Borg et al., 2013) have been reported. Howevegsdhmethods require assumptions such as
approximating probability density functions to nalndistributions. Such an approach does not
necessarily guarantee the accuracy of the estim@tiochlich et al., 2014; Joshi et al., 2006). Also,
there are Bayesian methods using Markov Chain M@atdo (MCMC), such as a study of single-
column drug separation (Briskot et al., 2019) astlLdy of lab-scale SMB protein separation (He and
Zhao, 2020) to eliminate the shortcomings of tlegfientist approaches. However, the method using
MCMC requires a large number of serial samplingarameters, which is computationally expensive
(Conrad et al., 2018; Sherlock et al., 2017).

Uncertainty quantification (UQ) based on Bayesigfierence, which utilizes prior knowledge, has
been gaining attention in recent years. To deah witmplex models for chemical engineering
applications, Markov Chain Monte Carlo (MCMC) haeh explored (Na et al. 20119su et al. 2009).
This algorithm has been used also for single-colaimiy separation (Briskot et al., 2019) and lab-
scale SMB protein separation (He and Zhao, 2026nd¥er, MCMC requires a large number of serial
sampling of parameters, which is computationally expensive (Conrad et al., 2018; Sherlock et al.,
2017). To reduce the computational effort, altéweai@lgorithms have been proposed, such as
Hamiltonian Monte Carlo and Sequential Monte C&8MC) (Barbu and Zhu, 2020). Applications
of SMC to state estimation wittata tempering, or particle filtering, can be found in literature
(Rawlings and Bakshi, 2006). Recently, the SMC wtlgm has been applied also to parameter
estimation of gas adsorption processes WkHihood tempering (Kalnayanaraman et al., 2016).
Nevertheless, this approach has yet to be appliedromatographic processes.

In this study, we present sequential Monte CarlM@$ parameter estimation and uncertainty
guantification (UQ) for single-column liquid chrotography. The SMC applied in this study employs
likelihood tempering (Kalyanaraman et al., 2016), in which the priatidbution reflects the likelihood
in a stepwise manner as it approaches the posthsiibution. By implementing parallel computing,
Bayesian inference on parameters can be performadihorter amount of time. As an example, we
adopted the process of separating glucose anafritly lab-scale cation exchange chromatography,
considering artificial data obtained by simulatiand actual lab-scale experimental data. Furthegmor
the SMC estimation was compared to that by MCMC.alfde demonstrate that experimental effort
for component analysis may be eliminated by valgathe numerical deconvolution of two
components from total concentrations utilizing thedel with the estimated parameters. Finally, the

relationship between the number of cores useddmliel computation and the computation time for



parameter estimation is also examined.

The remainder of this paper is as follows: Section 2 describes the background, including the
mathematical model of the target process and Bayesian inference techniques; Section 3 describes the

specific experimental and computational methods; Section 4 presents the estimation results and

discussions; and finally, Section 5 is the conclusion.
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Figure 1. Schematic diagram of two-component separation by liquid chromatography

2. Background and methods

2.1 Experimental and estimation methods for model parameters



To model chromatographic processes, some testsaaried out using a column, such as pulse
injection and step injection (breakthrough) tebisa pulse injection test, a small amount of tredfe
mixture is injected at the inlet of the column, g&hd concentrations at the outlet are measured to
record chromatograms (Figure 1). Since the injeetddme is usually small, the concentrations in the
column are low. In this test, information on theagbtion equilibria and mass transfer kineticoat |
concentrations can be obtained. On the other lhadstep injection test, the feed mixture is sigapl
continuously at the column inlet to record breadtiyh curves. In this test, the concentrations én th
column remain high, and thus information on theogotion equilibria at high concentrations can be
obtained. It is known that step injection tests effective for a system described by nonlinear
isotherms, where the equilibrium behavior is depahdn the concentrations (Guiochon et al., 2006).

From the chromatograms and breakthrough curvesnaotdrom the above tests, parameters in the
model equations can be determined. Acommon appisag use correlations of the model parameters
and moments of the chromatograms and breakthrougies (Guiochon et al., 2006). An alternative
approach is regression, or the inverse method, evleermathematical model is fitted to the
chromatograms and breakthrough curves to identsipgle set of the optimal parameters (Grosfils et
al., 2007).

In this work, we explore an alternative approackarhpling based on Bayesian inference from the
chromatograms and breakthrough curves. Unlike élgeesssion approach where only a single set of
model parameter values is pursued, the samplingbapip obtain the probability distributions of the
model parameters. The probability distributions rdifia the uncertainty of the model parameters,
which will be critical information for robust desigand operation. In this study, we implement two
sampling techniques, MCMC and SMC, as describ&kition 2.4 and 2.5.

2.2. Numerical model

Among many numerical models proposed for liquidoamatography(Kawajiri, 2021; Schmidt-
Traub et al., 2012), in this study, we used thedirdriving force (LDF) modé€lGrosfils et al., 2007,
Kawajiri and Biegler, 2006; Moon and Kook Lee, 1986; Wang and Tien, 1982) which consists of two
mass balance equations and one adsorption isotigpration. The LDF model assumes that the effects
of heat and pressure in the column and diffusiainénradial direction can be neglected, and ttet th
diffusion in the axial direction and the pores bé tadsorbent can be described by mass transfer
between the liquid and solid phases. These assomspdire commonly used in literature (Grosfils et
al., 2007; Guiochon et al., 2006).

The equations that make up the LDF model are lasv®. First, the mass balance equation in the

liquid phase is given by:



aC;(x, t) _ 1—¢g,0q;(x,t) _laCi(x, t) o
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where the subscript denotes the adsorbent components, which in théysdare glucoseG{u) and
fructose Fru); C; is the concentration of componeitin the liquid phasegq; is the concentration
of componenti in the solid phasee, is the overall porosity in the columm is the superficial
velocity of the liquid t is the time and x is the coordinate in the axial direction, where ithlet of
the column isx = 0.
The mass balance equation in the solid phaseés diy:
dq;(x,t) __Ki
ot 1-

(@@ -¢@o), @

where K; is the overall mass transfer coefficient of comgran based on the liquid phasnd qu
is the equilibrium concentration of componentin the liquid phase given by the adsorption
equilibrium.

The initial and boundary conditions for the partidferential equations (PDEs),1) and (2), are
given as follows. The initial conditions are givieyt

Ci(x,0) = q;(x,0) =0, 3)
and the boundary conditions are given by:
Ci(0,t) = Cyn) (4)

where subscriptn represents the inflow to the column, aéd,, is the concentration of component
i in the liquid phase flowing into the column. lististudy, the feed is injected by pulse or steptinp
and C; ;,, is given by:

Ci,feed' 0<t< tf
Ciin = { 0, t<0,t; <t )

where C; r..q is the concentration of componentin the feedand ¢; is the injection time of the
feed where for the step inpaf = oo,
The adsorption isotherm equation for the adsampiguilibrium between the liquid and solid phases
is given by:
H;C;(x,t)
1 = b1 Crru (%, t) = b Con (X, t)
eq

where q;* is the concentration of componeitin the solid phase at the adsorption equilibriui,

q; " (x,t) = (6)

is Henry’s constant for componeitand b; is the adsorption equilibrium constant for compuni
Equation (6) is called anti-Langmuir isotherm. Although manydels have been proposed to
describe the adsorption isotherm (Guiochon e28Dg), previous studig€hilamkurthi et al., 2012;
Nowak et al., 2007) have shown that the adsorgauilibrium between sugars and cation exchange
resin, which is demonstrated in this study, canMedi described by the anti-Langmuir isotherm

equation. This model assumes that the equilibriontentration in the solid phase increases as the



concentration in the liquid phase increases.
2.3. Bayesian inference

Bayesian inference is the process of inferringcthesal phenomena (parameters) from observed facts
(data) as probability distributions based on Batfesbrem (Gelman et al., 2013). Bayes' theorem is
given by:

P(y|0)P(0)

POly) =—

(7

where in generaly are the observed data, afdare the parameters. In this stugy= {(tj, Cj)}jil

are observed data obtained by experiments as af sb$crete-time points and concentrations of
components at the column outlet, a= [Hg,, Hrru K Kerws Poiw brrw 01T are model
parameters to be estimateM, is the number of observations of the data, anik the standard
deviation assuming that the observation errordl afada follow a constant normal distribution. het
above equationP(8|y) is the posterior distribution?(y|8) is the likelihood distributionP(8) is
the prior distribution, and(y) is the marginal likelihood.

The likelihood distribution is given by:

M 1 1 C_model _ C'data 2
P(yl6) = | | exp{——( : : ) } ®)
it V2mo? 2 a

when the observation error follows a normal disttitn with a standard deviatiom Here, the

superscriptmodel refers to the simulation data computed by the bizfdel, and the subscriptata
refers to the experimental data.

The prior distribution is the parameter distribatibefore taking the observed data into account. If
there is no prior knowledge of the parameterslaa ainiform distribution without any restrictionan
be set as an uninformative prior distribution. @e pther hand, if the estimator has some prior
knowledge of the parameters such as relevant datpirical rules, etc., it is also possible to set a
uniform distribution with upper and lower limits amormal distribution with the estimated value by
maximum likelihood as the mean as the prior distidn. The parameters by maximum likelihood

estimation are given by:

2

) + 2M -log (o), 9

M C_model _ C'data
0™ = arg meaxP(yIO) =arg meinz< 1 4
=1

g

where the subscripinle indicates an estimate from maximum likelihoodireation. The latter

equality in Equation(9) is given because the negative log-likelihood isimized, which shows that



the result of maximum likelihood estimation is elgt@mthe least square minimization when the
observation error follows a normal distribution lwé constant value of.
The marginal likelihoodP(y) refers to the probability distribution of obtaigithe observed data

From the law of total probability, it is given by:

P(y) = j P(y|6)P(6)d6. (10)

However, this integral is difficult to solve eithanalytically or numerically. Therefore, it is not
possible to calculate the equati¢h0) directly to obtain the posterior distribution. Caygproach to
obtain the posterior distribution is random sanglfallowing the posterior distribution, using the

information of the prior and likelihood distributis.
2.4. Markov Chain Monte Carlo (MCMC)

MCMC (Gelman et al., 2013) is a general term foid@m number sampling methods using Markov
chains, which can be used to sample values aceptdirthe probability density of the posterior
distribution. The posterior distribution can be apgmated by a sufficiently large number of samples
without fixing a functional form of probability disbutions. Various algorithms for MCMC have been
developed, which may result in different computadioload and convergence properties. The
Metropolis-Hastings (M-H) algorithm (Hastings, 1978 one of the popular methods and is often
used as a basic and general-purpose MCMC. Th@ewtdiMCMC using M-H algorithm is as follows.
1. Initialization and determination of the proposaitdbution

Choose the initial values of the paramet@ys to start sampling and the proposal distribution
Q(6716,,) to propose parameter updates, whée is the candidate parameter aégl is the
parameter adopted in thieth sampling. Heref, can be set to any arbitrary value within the
range of the prior distribution, and the maximurpasteriori (MAP) estimate@”4?, may be
employed to speed up the convergence of MCMC. MNatewhen a sufficiently wide uniform
distribution is used in the MAP estimation, th@f{f4f = g™te,
2. Update parameters fat - k + 1
Based on the current values of the paramefigrscandidate paramete@'are generated from
the proposal distribution as follows:
0°~Q(67|6y). (1D

Using 8*, we calculate the adoption rate, which can be calculated using Bayes' theorem as
follows:

L _PO19)0(0,16") _ P(I6")P6)QO107)

P(0x1y)Q(6*16,) P(¥10,)P(8,)Q(6%16))

Using «, the adoption or rejection ad* is determined probabilistically as follows:

(12)




o =fo, B> 12
where g is a uniform random number generatedasl (0,1). This series of parameter updates
are repeated until the parameter distributions eaye:

A special case of M-H algorithm where the propafiatribution is symmetric is also called the
Metropolis algorithm (Metropolis et al., 1953). Bgmpling a sufficient number of times with the M-
H algorithm, a set of numbers proportional to theyét posterior distribution can be obtained. To
eliminate the influence of the choice of the iditialue 8, in the early stages of sampling, the initial
sampling period is truncated, which is called bumriMICMC has been used in many studies to perform
complex Bayesian inference, but it tends to rechigh computational cost to carry out a large numbe
of samplings. In particular, since the numericaldeloused in this study includes PDEs, the
computational cost of a single sampling (solutiérth@ PDE model) is very high. Therefore, it is

critical to employ an efficient algorithm.
2.5. Sequential Monte Carlo (SMC)

SMC (Gordon et al., 1993; Kitagawa, 1996) is a method for estimating the posterior distitruty
having a large number of particles track variakilethis study, they are parameters) using infoiomat
from observed data. It was originally developeddequential estimation of state variables in state-
space models and is now widely used for forecasiting series data (Lang et al., 2007). SMC consists
of four major phases: initialization, mutation dilhood calculation, and resampling. It can be ueed
estimate quantities including state variables armbeh parameters by improving mutation and
likelihood computatiofGao and Zhang, 2012; Kalyanaraman et al., 2016; Kantas et al., 2009). For
example, estimation using self-organizing statesspaodels, in which parameters are considered to
be part of the state variables, and data temperinghich the number of observed data is gradually
added to anneal the prior distribution to the pimtelistribution, have been studied.

In this study, we adoptdikelihood tempering (Kalyanaraman et al., 2016; Uppsala University, 2017),
which brings the parameter distributions closer the posterior distributions by gradually
strengthening the influence of the likelihood disition during the likelihood calculation phase€eTh
distribution of the parameters in the likelihoothfeering is given as follows:

m,(6) = P(y|6)"P(0). (14)
Here, 1 =0,1,--,L are the steps repeated for a totalloftimes, m; is the distribution of the
parameters at th&h step, andy; is a monotonically increasing scalar value saitisfyy, = 0 and
y, = 1;thatis, my,(8) = P(0) atl =0 andn,(8) = P(y|@)P(@) at | = L. The sequence shown
below gives the Bayesian inference:

1. |Initialization atl =0



Determine the number of particledl,, to be computed. Fom = 1,2,:--, Np, we generate
particles, 87'~P(0), that follow the prior distribution. Let the wéigof the particle@7* be
w§' = 1/Np; that is, the weight of each particle is equal tiredsum is1.

2. Mutationforl—1 —1
Mutate each particle using the MCMC stiqat is, considetk = [ — 1 in equations(11), (12),
and (13), and calculate8]* from 67" ,. In this work, we chose the normal distributiorthathe
covariance matribX@; for proposal distribution@ = N(0,Z;)).

3. Likelihood calculation
Calculate the likelihood of the particles at eatdp 9f the likelihood tempering as normalized
weights as follows:

_ wP(ylepyrYe

X POy

(15)

4. Resampling
Redistribute particles proportionally to the vahfew;™; that is, if W™ is large, particles are
replicated conversely, if W™ is too small, the particles are annihilated. is ttork, the number
of particles for each parameter value, which isnéeger, is chosen to be neamw;™. After
this particle redistribution, the weight for eaclrticle is renormalized equally so thaf™ =
1/Np.

Figure 2 illustrates the sequence of the SMC algori(Leeuwen, 2009). Since SMC is computed
by spreading many particles widely, it convergeshe posterior distribution faster than MCMC,
which starts from a single particle. We also nb# since the particles do not interfere with eattier
(each particle is independent), the calculation lbarperformed in parallel, which allows utilizing

multiple cores simultaneously.
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Figure 2. Schematic diagram of SMC
3. Experimental and Computational conditions
3.1. Case.1: Simulated experiments to generate artificial data

In the simulated experiments, the numerical model (1)-(6) with all parameters specified in advance
was solved in Python. The outlet concentrations from the column in this simulation were added to
artificial random error that follows a normal distribution to obtain the artificial data, y. The parameters
related to the HPLC system were set according to the values used in the lab-scale experiments, as
shown in Table 1. In this table, three different feed injection conditions, (A), (B), and (C) in the
experiments and the true values of parameters to be estimated are also shown. These parameters were
chosen referring to previous experimental reports on the separation of sugars (Nowak et al., 2007;

Sreedhar and Kawajiri, 2014).
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3.2. Case.2: Lab-scale experiments

In the lab-scale experiments, pulse and step injedests of glucose and fructose by column
chromatography were conducted using an actual HBystem. The HPLC system consisting of
degasser DGU-20A3R, pump LC-20AD, autosampler SIAFT, column oven CTO-20A, UV/VIS
detector SPD-20A, RI detector RID-20A, and systeomtller CBM-20A was used for all
experiments which was operated through the cordgoftware LCsolution (all of the above
SHIMADZU CORPORATION, Kyoto, Japan). A schematiagliam of the HPLC system is shown in
supplementary material (Figure S1). First, the dealdme was measured using dextran 40,000
(FUJIFILM Wako Pure Chemical Corporation, Osakaadg as an indicator with the column removed,
estimated to be).259 mL. Next, the overall porosity of the preparativeuroh was measured also
using the dextran, which was estimated to0k#97. For the preparative column, an industrial cation
exchange resin DIAION UBK535 (Mitsubishi Chemical Corporation, Tokyopaa) was packed in
a custom-made empty stainless column (Sugiyamd ShaqjLtd., Kanagawa, Japan).

Using the column, two pulse injection tests andsiaep injection test were conducted under the same
conditions as in (A), (B), and (C) of the simulatexberiment, using aqueous solutions of D(+)-
glucose and D(-)-fructose (both FUJIFILM Wako PQemical Corporation, Osaka, Japan) as feed
components. The pulse input in (A) and (B) werdqrared by the autosampler, and the step input
was performed using a manual injector with a sigffity large sample loop (20mL). Pure water was
used as the mobile phase.

The data sets for parameter estimation were oltt@isdollows. The feed injections were done under
each of the experimental conditions shown in Tdblat the outlet from the column, the eluent is
supplied to the RI detector. The data were obtdiyszbnverting the intensity values of the RI d&dec
into concentrations using values of feed concentrainject volume, peak area, and flow rate.

In addition to the data sets obtained by the Reatet in (A), (B), and (C), an additional datawas
obtained using another measurement technique anl§€), which is used for the validation test in
Section 4.1.1 and 4.2.1. For the large-volume tigactest, (C), the solution at the outlet was
fractionated at an interval dt5s, and the concentration of each sample was ardlygang an
analytical HPLC column, SUGAR SC1011 (Showa Denkid.KTokyo, Japan). In this analysis, the
concentration was converted from the Rl intensitiyg the calibration curves prepared from standard
solutions of glucose and fructose prepared separéds&00 g/L, 1.00 g/L, 2.00 g/L, 5.00 g/L,
10.0 g/L, 20.0 g/L, 30.0 g/L, and 50.0 g/L). The flow rate was of the analysis wa$0 mL/min
and the temperature of the column oven B88<C. It should be noted that obtaining this data set
requires experimental effort, and we attempt tmiglate the need to carry out such measurement. The
experimental conditions are summarized in Tablentl, the data sets in our study are summarized in
Table 2.

12



Table 1. Conditions in obtaining experimental data

Experiment Simulated Lab-scale

Inject conditions (A) (B) © (A) (B) © Units
Column length 250 mm
Column diameter 10.0 mm
Flow rate 1.00 mL/min
Temperature - 60 °C
Column porosity 0.397 —
Feed concentration of 250 0 250 250 0 250 g/L
Glucose

Feed concentration of O 250 250 0 250 250 g/L
Fructose

Input type Pulse Pulse Step Pulse Pulse Step -
Injection volume 0.100 0.100 — 0.100 0.100 — mL
Adsorption resin - DIAIONM UBK535 -
True value ofHg, 0.301 Unknown —
True value ofHg,, 0.531 Unknown —
True value ofKg, 470 x 1073 Unknown s71
True value ofKg,,, 8.30x 1073 Unknown s71
True value ofbg, 6.34 x 1074 Unknown L/g
True value ofbg,., 2.48 x 1074 Unknown L/g
True value ofo 5.00 x 1073 Unknown -

Table 2. Summary of data sets.

Data for estimation Data for validation test

(experimental deconvolution data)

Experiment (A), (B), (C) ©
Data frequency Online and continubus ~ Sampling discretely at 25 sec intervals
Experimental Online detector HPLC analysis of each sample

measurement technique
Data description Overall (total) Individual concentrations of the two

concentration components

“In the lab experiments in our study, data in (C)enabtained using HPLC analysis and fractionating

the column effluent instead of online RI detectioravoid the saturation of the RI signal.
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3.3. Computational environment and numerical method

3.3.1. Solution of the numerical model

The solution of the system of PDEs consisting ofaigns (1)-(6) was performed by the numerical
method of lines (Schiesser, 1991), where the PBEesywas discretized in the spatial domain. The
resulting set of ordinary differential equationd)®s) which includes only temporal derivatives was
solved numerically. The spatial discretization wadormed using the central difference method with
100 finite differences. The ODE system was solveaherically usingscipy.integrate.odeint and the
integration algorithm waksoda. To speed up the computation, we usadba, a JIT compiler for
Python (Lam et al., 2015).

All computations, including simulations, MCMC, a®MC, were implemented in Python. The
computing environment was an Intel(R) Core(TM)i®40X CPU at 3.30 GHz with 14 cores (28

logical processors).

3.3.2. Execution conditions for MCMC and SMC

First, MAP solutions for each parameter were ole@jnwvhere uniform distributions were employed
as the prior distributions. The range of Henry'sstantsH; and overall mass transfer coefficients
K; were settot+50 % of the initial value estimated by the initial @séition method (Guiochon et al.,
2006), and adsorption equilibrium constahtsand standard deviations were set to be sufficiently
wide in the positive domain to cover all potentialues.

Using the MAP solutions, the prior distributions fdQ of parameters by MCMC and SMC were
determined. For Henry's constants, overall mass transfer coefficient§;, and the standard
deviation o, the prior distributions are normal distributiomsere the mean i®M4” with sufficiently
wide standard deviationsstandard deviation fow is 0.1x o™4?P | those for H; and K; are
0.05x H;"4? and 0.0% K;"4" respectively. For adsorption equilibrium contgab;, we set a
uniform distribution with the same width as theopriistribution for MAP estimation because of its
low sensitivity and difficulty in estimation.

The data used in the estimation was prepared lasvilAll data of outlet concentrations used in the
likelihood calculations were treated as dimensisslgalues by dividing them by the maximum
concentrations. This was done to avoid overfitting data with high concentrations when dealing
with multiple data sets. Three types of data weesfor each of simulated experiments and lab-scale
experiments: time-series data of glucose concémtrabtained in experiment (A), time-series data of

fructose concentration obtained in experiment @jd time-series data of total concentration of
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glucose and fructose obtained in experiment (C).

The MCMC calculations were performed usiyvC, a MCMC library for Python. The total number
of samples was 50,000, and the burn-in was 30 samples were thinned out every other one to
eliminate the effect of autocorrelation betweengas Convergence was judged by visual inspection
of the trace plots.

The SMC calculations were performed using a progtaveloped by the authors (Yamamoto, 2021).
The number of particles was 10,000, and the nurabsteps for likelihood tempering was 24.
After the likelihood tempering was completed, ohe mutation step was iterated five times
additionally to confirm the convergence of the pdsir distributions to confirm that the shapeshaf t
distributions do not change. The SMC was run onogkstation that has 14 cores usiplib, a
parallel computing library for Python. The priorstlibutions for the artificial and lab-scale
experimental data are shown in supplementary nahtesind the hyperparameters used in the
calculations are also shown in that.

4. Results and Discussions

4.1. Case.l: Simulated experiment

The purpose of this case study is to confirm thatgroposed approach finds the correct values of
the parameters, and the SMC and MCMC find the sastienates. A density plot matrix of the
posterior distributions of the parameters obtaime8MC is shown in Figure 3. Each of the histograms
on the diagonal represents the posterior probphdigtribution of each parameter itself. The off-
diagonal density plots represent the correlatidéen the two parameters. We can see that there is
a strong negative correlation betweky,, and bg,,,. This can be attributed to the fact that these two
parameters have nearly the same influence on ti@ntiaator value of the equatiof6) because the
liquid-phase concentrations of the two componeméssimilar. There is also a weak correlation
betweenH;;,, and bg;;,,, and betweerHy,,, and bg,.,. These trends have been confirmed in a
previous study (Borg et al., 2013), which is beednsth parameters appear in the equatién and
thus resolving the correlations to identify eactapzeter independently is difficult. These correlas
may be weakened by increasing the number of degaieder different experimental conditions in the
estimation.

A time-series graph of concentration is shown guFeé 4, superimposing the artificial data and the
model which were calculated by substituting 5,0@0ues sampled randomly from the parameter
posterior distributions. The simulation and expetinal data fit well, suggesting that the estimation

was done correctly.
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4.1.1. Model validation by individual component deeolution

We validated the model using the estimated param&teonfirm it could correctly deconvolute the
overall concentration into individual concentragasf the two components, glucose and fructose. As
described in Section 3.3.2 and Table 2, the estimaised two sets of single-component pulse
injections, (A) and (B), in addition to the two-cpoment step injection (C) which only gives the
overall (total) concentratianwe attempt to estimate thendividual concentrations of the two
components in (C) using the obtained model withetstemated parameters. The estimated individual
concentrations are compared against the unusedsdtgaof individual concentrations, which are
assumed to be obtained using another measurenséintgae such as analytical HPLC.

Figure 4 (d) shows a time-series graph of the aumatons of glucose and fructose in (C),
superimposed on the artificial data, and the dedlited concentrations given by the model using
5,000 randomly sampled values from the estimatednpeter posterior distributions. It can be seen
that the artificial data and deconvoluted concéiatna given by the model overlap, indicating thne t
deconvolution is successful. This successful esitimas because the experimental data for parameter
estimation was prepared welhat is, the information aboutl;;,,, Hry,, K, and K, can be
obtained from single-component experiments, (A) @)drespectively, and the information @g;,,
and bg,,, can be obtained from a high concentration experin{€) as reported in the previous study
(Felinger et al., 2003). It can be seen in Equafiéh that b;,, and bg,,, become sensitive only if
the concentrationsCy,,, and Cg;;,, and are sufficiently highi.e. when bg;,, Cep(x,t) >>0 and
bgyy Crry (x, £)>>0, which is realized in (C).

It is worth noting that this successful deconvantbf the online overall concentrations, which is
enabled by the model and successful parameter aiiim may reduce the experimental effort
substantially. In the current practice of chromaaplyy modeling, experimentalists often fractionate
the effluent from the column outlet and analyze $laenples toexperimentally deconvolute the
concentrations. The number of samples tends tarbe,lwhich may take a substantial amount of time
for HPLC analysis. This time-consuming practiceassidered necessary to improve the accuracy of
parameter estimation. Our case study, on the b#ed, demonstrated that the overall concentrations

obtained easily online by RI detectors camim@erically deconvoluted into individual concentrations.

4.1.2. Comparison between SMC and MCMC

We confirm that the estimation given by SMC is itilgal to that by MCMC. The modes and 95%
credible intervals of the posterior distributiorsdimated by the two methods are shown in Table 3,
along with the true values of the parameters. [eantiore, superimposed histograms showing the

posterior distributions of each parameter obtaime@&MC and MCMC are shown in Figure 5. All of
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these results show that the estimations given b &lkld MCMC are identical. It can also be seen in
Table 3 that the true values are within the 95%libie interval for all estimation results. Lookiat
the values in more detail, it can be seen thatHenry's constant$/; and overall mass transfer
coefficients K;, the modes are close to the true values, andS¥e®@edible interval is within 1% of
the true value. On the other hand, for the adsmwpgiquilibrium constant$;, the modes slightly
deviate from the true values, and the 95% crediitaval is wider than 1% of the true value. A very
similar trend was reported in a previous study EBio et al.,, 2010), except for the overall mass
transfer coefficient, which may be due to the défe sensitivity of the parameters to the model. In
our estimation, the slight deviations of the moafgzarameter distributions from their true valuesym
be due to the artificial random error added tosiheulated artificial data of 300 time-series paitits
the data generation and estimation had been repfeaita sufficiently large number of times, the raod
of the parameter distributions would have matclhedtue values.

The computation time of SMC is significantly shortean that of MCMC. The SMC estimation
requires 34.9 minutes, which is less than one-teftthat in the MCMC estimation, 352 minutes.
Since the calculation times vary depending on tralitions of the simulation, it is not appropritte
simply compare these times. However, since it &y @éa implement parallel computing in SMC, the
computation time of SMC can be easily reduced usingany-core computer. The impact of the

number of cores on the computation time of SMddsubksed in a later section.

Table 3. True values, modes, and 95% credibleviateiof parameters for artificial data

Parameter True value Prior distributions Estimated value by Estimated value by  Units
SMC MCMC
Han 0301 o30S 030t osorgie -
Hers 0531 0sIEE oswEiT osa:ei -
K 470X 1073 471 x 10737H6DA0T 471 x 107312OPI0T 4 71 x 103 T2IEA0T
Kpru 830x107% 830 x 1073 81PI0T0 g9 x 10-31528X1070 g g x 10-3F55IT 1
beu 634X 107 500 x 10~¢THISNTL 670 x 107+ TESEA0T 650 x 104580 Ly/g
brry 248X 107 500 x 1074 TH7SATL 220 x 107+ 76LA0T 507 x 1074560 Ly/g
o 5.00 X 1073 4,67 x 10737211070 475 % 10-3F AT 4 69 x 1073 TR0 —
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Figure 3. Density plot matrix of the posterior dimtitions of the parameters using the artificialada
estimated by SMC. Each of the diagonal histogrdrows the posterior distribution of each parameter,

and each of the non-diagonal density plots shoesdtirelation between two parameters.
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Figure 4. Fittings of simulations using the estimated parameters and the artificial data used for
estimation((a)-(c)) and validation((d)). (a) glucose concentration obtained in experiment (A), (b)
fructose concentration obtained in experiment (B), (c) total concentration of glucose and fructose
obtained in experiment (C), and (d) validation test of parameter estimation results using deconvoluted

concentration. The gray lines are given by the model using 5,000 randomly sampled parameter values

from the estimated parameter posterior distributions.”
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4.2. Case.2: Lab-scale experimental data

The purpose of this case study is to verify the practical applicability of the proposed method by
estimating the parameters and quantifying the uncertainty by SMC using actual lab-scale experimental
data. The density plot matrix of the posterior distributions of the parameters obtained by SMC is shown
in Figure 6. The modes and 95% credible intervals of the posterior distributions of the parameters
estimated by SMC are shown in Table 4. The histograms and the shapes of the correlations among the
parameters from Figure 6 are generally similar to those of the artificial data.

However, the value of bg,, converges toward 0, the lower bound of the uniform prior distribution,

and the mode of b, is two orders of magnitude smaller than one of bg,, (Table 4). This result may
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not be justified considering the two molecules,hbot which are monosaccharides, have similar
molecular structures. Indeed, in a past study (Noeteal., 2007),b;;,, and by, are estimated to
be within the same order of magnitude. The reasoth& potential poor estimation of this parameter
in our study may be that the sensitivity of the aigon equilibrium constant is small in our
experimental conditions. This is also supportethiey95% credible interval obg,., in the case study

of the artificial data in Section 4.1, which wagrsficantly wider than that of the other parameters
This potentially low sensitivity may be because¢heas only one type of breakthrough test conducted
at the concentration of 250 g/L in this study (ekpent (C)), while in the previous study (Nowak et
al., 2007) breakthrough tests were conducted umdel conditions at concentrations of up to as high
as 600 g/L. The challenge of estimatihg,., under low concentration was exacerbated by tlyetar
measurement error in the lab-scale experimental@atimated mean ofis 1.11 x 1072), than that

in the artificial data (estimated meancoi 4.72 x 1073).

A time-series graph of concentration is shown guké 7, superimposing the experimental data and
the simulation results, which were calculated Hyssituting 5,000 randomly sampled values from the
estimated parameter posterior distribution intortiedel. The fit is generally good, but in the high
concentration region of (c), the model with thameated parameters gives smaller values than the
experimental data. This is most likely due to egriorthe experimental operation of dilution of the
HPLC analysis, which also explains the observatiwt the experimental data in the breakthrough

curve exceeded the concentration of the feed, A0@tground 1000 s and onward.

4.2.1. Model validation by individual component deeolution

Validation of the model was performed by comparmgmerical and experimental component
deconvolutions under the same conditions as imtfificial data. As in the case of the artificialtd,
a time-series graph of concentration showing thrikition results superimposed on the experimental
data is shown in Figurg(d). As can be seen in this figure, the numedeabnvolution nearly overlaps
the experimental deconvolution, indicating the aacy of the model. The slight deviation in the high
concentration region at around 1000 s and onwaridhrdan also be seen in Figure 7 (c), is probably
caused by the dilution error in HPLC analysis, msuksed in the previous section. This successful
estimation shows the numerical deconvolution usivggmodel with the estimated parameters can

eliminate the need for experimental deconvolutignich may reduce experimental effort substantially.
4.2.2. Variation in computation time due to thdatié#nce in the number of cores

We analyzed the relationship between the numbecooés used in parallel and the overall
computation time for SMC. Figure 8 shows as the lmemof cores used in the calculations are

increased, the overall computation time decreda$ewever, the computation time reaches a plateau
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when the number of cores is approximately 10.

The limitation in decreasing the computation timeyrbe explained by several reasons. First, there
are calculation blocks that cannot be paralleliz&dcks in which each particle can be calculated
independently—such as model simulation and likathevaluation—can be processed in parallel,
but blocks in which particles interfere with eagcher—such as the calculation of the normalized
weights and resampling—must be calculated in seB8esond, communication overhead between
cores to send each particle to each core incremsthee number of cores increases. Finally, tasks in
some cores must wait for other cores to finish kefiroceeding to the next task. The decision of
choosing the number of cores should be made chrefohsidering the limitations in parallel
implementation discussed above.

Table 4. Modes, and 95% credible intervals of patans for lab-scale experimental data

Parameter Prior distributions Estimated value by SMC Units
Hew 03421335007 0342} 11000 -
Hpry 05522410 0552+ 12700 -

Kot 2.23 x 1072220107 2.22 x 107251631070 571
Krry 2.78 x 1072272107 2.78 x 102841070 571
betu 5.00 x 10479107 4.40 x 1042921072 L/g
brru 5.00 x 10-4H 475107 2.30 x 10-67 54107 L/g

o 1.09 x 10-2 214107 111 x 10-2F L0107 -
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Figure 7. Fittings of simulations using the estimated parameters and the lab-scale experimental data
used for estimation((a)-(c)) and validation((d)). (a) glucose concentration obtained in experiment (A),
(b) fructose concentration obtained in experiment (B), (c) total concentration of glucose and fructose
obtained in experiment (C), and (d) validation test of parameter estimation results using deconvoluted
concentration obtained by HPLC analysis of fractionated samples (experimental deconvolution). The

gray lines are given by the model using 5,000 randomly sampled parameter values from the estimated

parameter posterior distributions.”
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5. Conclusions

In this study, we developed an approach for UQ afameters by SMC for chromatographic
separation processes, and demonstrated usingiattdata and lab-scale experimental data that the
proposed approach can shorten the computation Bsnapplying the likelihood tempering SMC to
the chromatography model, we confirmed that themadion accuracy is nearly identical to that of
MCMC while reducing the computation time substdhytialso, we demonstrated that the model with
the estimated parameters can deconvolute the beeratentrations into individual concentrations,
eliminating the need for extra experimental efféitirthermore, we investigated the relationship
between the number of cores used for parallel ctatipn and identified the limitation in reducing
the computation time by increasing the number oégo

We have also identified some issues that need twbsidered in future work. First, to improve the
estimation accuracy by weakening the correlatidwéen parameters, it is necessary to have multiple
data sets under different conditions such as efeatolume and feed concentration. Design of
experiments (Franceschini and Maetto, 2008; Kalyanaraman et al., 2014) may be utilized in
determining the experimental conditions. Secondhoalgh the computation time has been
considerably reduced, more challenging processes, & SMB, exist. For this problem, surrogate
models using neural network&nthony and Bartlett, 2009; Wu and Zhao, 2018) or support vector
regression (Smola and Schoélkopf, 2004; Song e2@D2) can be potential solutions. Finally, further

model validation tests should be performed foredéht process designs, such as the one with recycle
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stream, and multi-column processes.

Acknowledgements

This study was supported by the Japan SocietyhfoiPromotion of Science (JSPS) Grants-in-Aid
for Scientific Research, Grant Number JP18H01776.

Notation

adsorption equilibrium constant for componénfL/g]

concentration of componertit in the liquid phasdg/L]

concentration of componerit in the feed in the liquid phase

concentration of componerit in the liquid phase flowing into the column
concentration of componeritin the liquid phase at the adsorption equilibrium
[g/L]

jth data of concentration in the liquid phase goltgthe experiment$g/L]

jth data of concentration in the liquid phase caltad by the simulation model
[g/L]

Henry’s constant for componeit [—]

overall mass transfer coefficient of componeénits 1]

total steps of SMC

number of observations of the data

Normal distribution

total number of particles

probability distribution

proposal distribution

concentration of componertit in the solid phasdg/L]

concentration of componeritin the solid phase at the adsorption equilibrium
[g/L]

time [s]

injection time of the feeds]

superficial velocity of the liquidg/L]

total injected volume of feed

coordinate in the axial directiofm]

observed datay(= {(t, C;)},)

weight of themth particle atlth step of SMC
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wt normalized weight of thenth particle atith step of SMC
Greek letters

a adoption rate

B uniform random number generated&sU(0,1)

Vi monotonically increasing scalar value of SMC

& overall porosity in the columffi- |

(7] parameter to be estimate® € [H,,, Hrru Koiw Keru Do Prrws 017)
0, parameter adopted in thieth sampling of the MCMC sampling
oMAP parameter calculated by maximum a posteriori esiima

omie parameter calculated by maximum likelihood estiorati

0, initial value of the parameter of the MCMC sampling

o candidate parameter value of the MCMC sampling

I, distribution of the parameters at thi step of SMC

X covariance of thekth proposal distribution

o standard deviation assuming that the observatioorse of all data follow a

constant normal distributiof—]

Superscripts
data experimental data
eq equilibrium
m particle number
MAP maximum a posteriori estimation
mle maximum likelihood estimation
model simulation data computed by the LDF model
* candidate value of the Metropolis sampling
subscripts
feed or f feed
Fru fructose component
Glu glucose component
i component
in inflow to the column
inject injection
Ji step of data
k step of the MCMC sampling
l step of SMC
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