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Abstract 

Many model-based optimization methods have been proposed for chromatographic processes to 

ensure product quality and efficiency, but uncertainty of model parameters should be considered to 

assure robust design and operation. In this study, we developed a sequential Monte Carlo (SMC) 

parameter estimation method for chromatographic processes to estimate the parameter uncertainty 

rigorously within a reasonable amount of computation time. As an example, separation of glucose and 

fructose is considered. Through the example using artificial data, we confirmed that SMC can perform 

estimations more efficiently than the existing method, Markov chain Monte Carlo. Furthermore, 

through the example using lab-scale experimental data, we confirm that the time and effort for the 

sample analysis to identify the concentration of each component can be eliminated. We also examined 

the relationship between the number of cores and computation time for parallel implementation of 

SMC. 

 

Keywords: Chromatography process, Parameter estimation, Uncertainty quantification, Bayesian 
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1. Introduction 

 

Chromatography is one of the techniques for separation and purification. In its original form, it was 

developed for the separation of chlorophyll (Ettre and Sakodynskii, 1993), followed by improvements 

in adsorbents and solvents (Martin and Synge, 1941), and achieving higher flow rates (Horvath et al., 

1967). In addition to the conventional batch chromatography, many advanced designs and operations 

have been developed and demonstrated, such as simulated moving bed (SMB) chromatography which 

allows continuous separation (Bentley and Kawajiri, 2013; Broughton and Gerhold, 1961; Francotte 

and Richert, 1997; Hashimoto et al., 1983; Kawajiri and Biegler, 2006).  

Liquid chromatography is a system in which a feed solution containing multiple components flows 

through a column packed with adsorbents, and the components are separated by using the difference 

in the interaction between the components and the adsorbents. The adsorbent in the column is called 

the stationary phase, and the solvent of the solution flowing through the column is called the mobile 

phase (Guiochon et al., 2006). Figure 1 shows a schematic diagram of the separation of each 

component from a mixture of two components, A and B, using liquid chromatography. Figure 1 (a) - 

(d) show the time evolution of this process. Component A, represented by the circles, has stronger 

affinity towards the adsorbent, while component B, represented by the triangles, has weaker affinity 

towards the adsorbent. As shown in Figure 1 (a), the mixture of two components A and B dissolved in 

the mobile phase is pulsed into the column as feed, and then the mobile phase without the components 

continues to flow. The components are gradually separated by the difference in adsorption forces 

between the components and the adsorbent as they flow through the column. The mixture is separated 

and purified at the outlet of the column, as shown in Figure 1 (c) and (d). 

Chromatography is widely used in industrial scales in chemical and pharmaceutical industries as a 

purification technique for the production of petrochemicals, sugars, and pharmaceuticals 

(Kaltenbrunner et al., 2007; Westerberg et al., 2012). Such large-scale processes require optimization 

of flow rates of solvents and feed, temperature, and choice of adsorbent to reduce manufacturing costs 

while meeting the required quality of the product. The more complex the process is, the more difficult 

it is to perform these operations relying on the experience of operators, which may lead to suboptimal 

design and operation, and failure in meeting requirements such as product purity. Therefore, it is 

desirable to employ model-based development, and estimation of parameters in the model is critical. 

To obtain the parameters in the model, a common approach is to solve an inverse problem using 

experimental data and perform parameter estimation. If we only need a single set of estimated 

parameter values, least-squares methods can be used (Maeder and Zuberbuehler, 1990; Zhang, 1997). 

However, the result obtained by this method is a point estimate which does not quantify the uncertainty 

of the parameters. The uncertainty of the parameters, which may cause a model mismatch, must be 
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taken into account for robust design and operation of real processes, which is more challenging in 

complex processes such as SMB. To address this problem, there are many studies of methods for 

estimating parameter uncertainty in the past. As a frequentist method using the Fisher information 

matrix obtained from the Hessian of the objective function, a study of model comparison using lab-

scale SMB (Grosfils et al., 2007), and insulin purification by single-column liquid chromatography 

(Borg et al., 2013) have been reported. However, these methods require assumptions such as 

approximating probability density functions to normal distributions. Such an approach does not 

necessarily guarantee the accuracy of the estimation (Froehlich et al., 2014; Joshi et al., 2006). Also, 

there are Bayesian methods using Markov Chain Monte Carlo (MCMC), such as a study of single-

column drug separation (Briskot et al., 2019) and a study of lab-scale SMB protein separation (He and 

Zhao, 2020) to eliminate the shortcomings of the frequentist approaches. However, the method using 

MCMC requires a large number of serial sampling of parameters, which is computationally expensive 

(Conrad et al., 2018; Sherlock et al., 2017). 

Uncertainty quantification (UQ) based on Bayesian inference, which utilizes prior knowledge, has 

been gaining attention in recent years. To deal with complex models for chemical engineering 

applications, Markov Chain Monte Carlo (MCMC) has been explored (Na et al. 2019; Hsu et al. 2009). 

This algorithm has been used also for single-column drug separation (Briskot et al., 2019) and lab-

scale SMB protein separation (He and Zhao, 2020). However, MCMC requires a large number of serial 

sampling of parameters, which is computationally expensive (Conrad et al., 2018; Sherlock et al., 

2017). To reduce the computational effort, alternative algorithms have been proposed, such as 

Hamiltonian Monte Carlo and Sequential Monte Carlo (SMC) (Barbu and Zhu, 2020). Applications 

of SMC to state estimation with data tempering, or particle filtering, can be found in literature 

(Rawlings and Bakshi, 2006). Recently, the SMC algorithm has been applied also to parameter 

estimation of gas adsorption processes with likelihood tempering (Kalnayanaraman et al., 2016). 

Nevertheless, this approach has yet to be applied to chromatographic processes. 

In this study, we present sequential Monte Carlo (SMC) parameter estimation and uncertainty 

quantification (UQ) for single-column liquid chromatography. The SMC applied in this study employs 

likelihood tempering (Kalyanaraman et al., 2016), in which the prior distribution reflects the likelihood 

in a stepwise manner as it approaches the posterior distribution. By implementing parallel computing, 

Bayesian inference on parameters can be performed in a shorter amount of time. As an example, we 

adopted the process of separating glucose and fructose by lab-scale cation exchange chromatography, 

considering artificial data obtained by simulation, and actual lab-scale experimental data. Furthermore, 

the SMC estimation was compared to that by MCMC. We also demonstrate that experimental effort 

for component analysis may be eliminated by validating the numerical deconvolution of two 

components from total concentrations utilizing the model with the estimated parameters. Finally, the 

relationship between the number of cores used for parallel computation and the computation time for 
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parameter estimation is also examined. 

The remainder of this paper is as follows: Section 2 describes the background, including the 

mathematical model of the target process and Bayesian inference techniques; Section 3 describes the 

specific experimental and computational methods; Section 4 presents the estimation results and 

discussions; and finally, Section 5 is the conclusion. 

 
Figure 1. Schematic diagram of two-component separation by liquid chromatography 

 

2. Background and methods 

 

2.1 Experimental and estimation methods for model parameters 
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To model chromatographic processes, some tests are carried out using a column, such as pulse 

injection and step injection (breakthrough) tests. In a pulse injection test, a small amount of the feed 

mixture is injected at the inlet of the column, and the concentrations at the outlet are measured to 

record chromatograms (Figure 1). Since the injected volume is usually small, the concentrations in the 

column are low. In this test, information on the adsorption equilibria and mass transfer kinetics at low 

concentrations can be obtained. On the other hand, in a step injection test, the feed mixture is supplied 

continuously at the column inlet to record breakthrough curves. In this test, the concentrations in the 

column remain high, and thus information on the adsorption equilibria at high concentrations can be 

obtained. It is known that step injection tests are effective for a system described by nonlinear 

isotherms, where the equilibrium behavior is dependent on the concentrations (Guiochon et al., 2006). 

From the chromatograms and breakthrough curves obtained from the above tests, parameters in the 

model equations can be determined. A common approach is to use correlations of the model parameters 

and moments of the chromatograms and breakthrough curves (Guiochon et al., 2006). An alternative 

approach is regression, or the inverse method, where a mathematical model is fitted to the 

chromatograms and breakthrough curves to identify a single set of the optimal parameters (Grosfils et 

al., 2007).  

In this work, we explore an alternative approach of sampling based on Bayesian inference from the 

chromatograms and breakthrough curves. Unlike the regression approach where only a single set of 

model parameter values is pursued, the sampling approach obtain the probability distributions of the 

model parameters. The probability distributions quantify the uncertainty of the model parameters, 

which will be critical information for robust design and operation. In this study, we implement two 

sampling techniques, MCMC and SMC, as described in Section 2.4 and 2.5. 

 

2.2. Numerical model 

 

Among many numerical models proposed for liquid chromatography (Kawajiri, 2021; Schmidt-

Traub et al., 2012), in this study, we used the linear driving force (LDF) model (Grosfils et al., 2007; 

Kawajiri and Biegler, 2006; Moon and Kook Lee, 1986; Wang and Tien, 1982) which consists of two 

mass balance equations and one adsorption isotherm equation. The LDF model assumes that the effects 

of heat and pressure in the column and diffusion in the radial direction can be neglected, and that the 

diffusion in the axial direction and the pores of the adsorbent can be described by mass transfer 

between the liquid and solid phases. These assumptions are commonly used in literature (Grosfils et 

al., 2007; Guiochon et al., 2006). 

 The equations that make up the LDF model are as follows. First, the mass balance equation in the 

liquid phase is given by: 
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�����, ���� = − 1 − �
�

�����, ���� − ��


�����, ���� ,  �1� 
where the subscript � denotes the adsorbent components, which in this study are glucose (���) and 

fructose (���); �� is the concentration of component � in the liquid phase; �� is the concentration 

of component � in the solid phase; �
 is the overall porosity in the column; � is the superficial 

velocity of the liquid; � is the time; and � is the coordinate in the axial direction, where the inlet of 

the column is � = 0. 

 The mass balance equation in the solid phase is given by: 

�����, ���� = ��1 − �
 �����, �� − ������, ��� , �2� 
where �� is the overall mass transfer coefficient of component � based on the liquid phase; and ���� 

is the equilibrium concentration of component �  in the liquid phase given by the adsorption 

equilibrium. 

 The initial and boundary conditions for the partial differential equations (PDEs), �1� and �2�, are 

given as follows. The initial conditions are given by: 

����, 0� = ����, 0� = 0, �3� 
and the boundary conditions are given by: 

���0, �� = ��,��, �4� 
where subscript �� represents the inflow to the column, and ��,�� is the concentration of component 

� in the liquid phase flowing into the column. In this study, the feed is injected by pulse or step input, 

and ��,�� is given by: 

��,�� =  ��,!��" , 0 ≤ � ≤ �!0, � < 0, �! < �, �5� 
where ��,!��" is the concentration of component � in the feed; and �! is the injection time of the 

feed where for the step input �! = ∞. 

 The adsorption isotherm equation for the adsorption equilibrium between the liquid and solid phases 

is given by: 

������, �� = '�����, ��1 − ()*+�,-+��, �� − ()*+�)*+��, �� , �6� 
where ���� is the concentration of component � in the solid phase at the adsorption equilibrium, '� 
is Henry’s constant for component �, and (� is the adsorption equilibrium constant for component �. 
Equation �6�  is called anti-Langmuir isotherm. Although many models have been proposed to 

describe the adsorption isotherm (Guiochon et al., 2006), previous studies (Chilamkurthi et al., 2012; 

Nowak et al., 2007) have shown that the adsorption equilibrium between sugars and cation exchange 

resin, which is demonstrated in this study, can be well described by the anti-Langmuir isotherm 

equation. This model assumes that the equilibrium concentration in the solid phase increases as the 
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concentration in the liquid phase increases. 

 

2.3. Bayesian inference 

 

Bayesian inference is the process of inferring the causal phenomena (parameters) from observed facts 

(data) as probability distributions based on Bayes' theorem (Gelman et al., 2013). Bayes' theorem is 

given by: 

/�0|2� = /�2|0�/�0�/�2� , �7� 
where in general, 2 are the observed data, and 0 are the parameters. In this study, 2 = 45�6 , 76896:;

<
 

are observed data obtained by experiments as a set of discrete-time points and concentrations of 

components at the column outlet, and 0 = =')*+, ',-+, �)*+, �,-+, ()*+, (,-+, >?@  are model 

parameters to be estimated, A  is the number of observations of the data, and >  is the standard 

deviation assuming that the observation errors of all data follow a constant normal distribution. In the 

above equation, /�0|2� is the posterior distribution, /�2|0� is the likelihood distribution, /�0� is 

the prior distribution, and /�2� is the marginal likelihood. 

 The likelihood distribution is given by: 

/�2|0� = B 1
√2D>E exp I− 12 J76KL"�* − 76"MNM

> OE
P

<

6:;
, �8� 

when the observation error follows a normal distribution with a standard deviation σ. Here, the 

superscript RSTU� refers to the simulation data computed by the LDF model, and the subscript TV�V 

refers to the experimental data. 

 The prior distribution is the parameter distribution before taking the observed data into account. If 

there is no prior knowledge of the parameters at all, a uniform distribution without any restrictions can 

be set as an uninformative prior distribution. On the other hand, if the estimator has some prior 

knowledge of the parameters such as relevant data, empirical rules, etc., it is also possible to set a 

uniform distribution with upper and lower limits or a normal distribution with the estimated value by 

maximum likelihood as the mean as the prior distribution. The parameters by maximum likelihood 

estimation are given by: 

0K*� = V�W max0 /�2|0� = V�W min0 \ J76KL"�* − 76"MNM
> OE<

6:;
+ 2A ∙ log �>� , �9� 

where the subscript R�U  indicates an estimate from maximum likelihood estimation. The latter 

equality in Equation �9� is given because the negative log-likelihood is minimized, which shows that 
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the result of maximum likelihood estimation is equal to the least square minimization when the 

observation error follows a normal distribution with a constant value of >. 

The marginal likelihood /�2� refers to the probability distribution of obtaining the observed data y. 

From the law of total probability, it is given by: 

/�2� = d /�2|0�/�0�T0 . �10� 
However, this integral is difficult to solve either analytically or numerically. Therefore, it is not 

possible to calculate the equation �10� directly to obtain the posterior distribution. One approach to 

obtain the posterior distribution is random sampling following the posterior distribution, using the 

information of the prior and likelihood distributions. 

 

2.4. Markov Chain Monte Carlo (MCMC) 

 

MCMC (Gelman et al., 2013) is a general term for random number sampling methods using Markov 

chains, which can be used to sample values according to the probability density of the posterior 

distribution. The posterior distribution can be approximated by a sufficiently large number of samples 

without fixing a functional form of probability distributions. Various algorithms for MCMC have been 

developed, which may result in different computational load and convergence properties. The 

Metropolis-Hastings (M-H) algorithm (Hastings, 1970) is one of the popular methods and is often 

used as a basic and general-purpose MCMC. The outline of MCMC using M-H algorithm is as follows. 

1. Initialization and determination of the proposal distribution 

Choose the initial values of the parameters 0f to start sampling and the proposal distribution 

g�0∗|0i� to propose parameter updates, where  0∗ is the candidate parameter and 0i is the 

parameter adopted in the jth sampling. Here, 0f can be set to any arbitrary value within the 

range of the prior distribution, and the maximum a posteriori (MAP) estimate, 0<kl, may be 

employed to speed up the convergence of MCMC. Note that when a sufficiently wide uniform 

distribution is used in the MAP estimation, then 0<kl ≅ 0K*�.  

2. Update parameters for j → j + 1 

Based on the current values of the parameters 0i, candidate parameters 0∗are generated from 

the proposal distribution as follows: 

0∗~g�0∗|0i�. �11� 
Using 0∗, we calculate the adoption rate, p, which can be calculated using Bayes' theorem as 

follows: 

p = /�0∗|2�g�0i|0∗�/�0i|2�g�0∗|0i� = /�2|0∗�/�0∗�g�0i|0∗�/�2|0i�/�0i�g�0∗|0i� . �12� 
Using p, the adoption or rejection of 0∗ is determined probabilistically as follows: 
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0iq; =  0∗, r ≤ p0i , r > p, �13� 
where r is a uniform random number generated as r~t�0,1�. This series of parameter updates 

are repeated until the parameter distributions converge. 

A special case of M-H algorithm where the proposal distribution is symmetric is also called the 

Metropolis algorithm (Metropolis et al., 1953). By sampling a sufficient number of times with the M-

H algorithm, a set of numbers proportional to the target posterior distribution can be obtained. To 

eliminate the influence of the choice of the initial value 0f in the early stages of sampling, the initial 

sampling period is truncated, which is called burn-in. MCMC has been used in many studies to perform 

complex Bayesian inference, but it tends to require high computational cost to carry out a large number 

of samplings. In particular, since the numerical model used in this study includes PDEs, the 

computational cost of a single sampling (solution of the PDE model) is very high. Therefore, it is 

critical to employ an efficient algorithm. 

 

2.5. Sequential Monte Carlo (SMC) 

 

SMC (Gordon et al., 1993; Kitagawa, 1996) is a method for estimating the posterior distribution by 

having a large number of particles track variables (in this study, they are parameters) using information 

from observed data. It was originally developed for sequential estimation of state variables in state-

space models and is now widely used for forecasting time series data (Lang et al., 2007). SMC consists 

of four major phases: initialization, mutation, likelihood calculation, and resampling. It can be used to 

estimate quantities including state variables and model parameters by improving mutation and 

likelihood computation (Gao and Zhang, 2012; Kalyanaraman et al., 2016; Kantas et al., 2009). For 

example, estimation using self-organizing state-space models, in which parameters are considered to 

be part of the state variables, and data tempering, in which the number of observed data is gradually 

added to anneal the prior distribution to the posterior distribution, have been studied. 

In this study, we adopted likelihood tempering (Kalyanaraman et al., 2016; Uppsala University, 2017), 

which brings the parameter distributions closer to the posterior distributions by gradually 

strengthening the influence of the likelihood distribution during the likelihood calculation phase. The 

distribution of the parameters in the likelihood tempering is given as follows: 

D*�0� = /�2|0�uv/�0�. �14� 
Here, � = 0,1, ⋯ , x  are the steps repeated for a total of x  times, D*  is the distribution of the 

parameters at the �th step, and y* is a monotonically increasing scalar value satisfying yf = 0 and 

yz = 1; that is, Df�0� = /�0� at � = 0 and Dz�0� = /�2|0�/�0� at � = x. The sequence shown 

below gives the Bayesian inference: 

1. Initialization at � = 0 



 

10 
 

Determine the number of particles, {l , to be computed. For R = 1,2, ⋯ , {l , we generate 

particles, 0fK~/�0� , that follow the prior distribution. Let the weight of the particle 0fK  be 

|fK = 1/{l; that is, the weight of each particle is equal and the sum is 1. 

2. Mutation for � − 1 → � 
Mutate each particle using the MCMC step; that is, consider j = � − 1 in equations �11�, �12�, 

and �13�, and calculate 0*K from 0*�;K . In this work, we chose the normal distribution with the 

covariance matrix �i for proposal distribution (g = ��0i, �i�). 
3. Likelihood calculation 

Calculate the likelihood of the particles at each step of the likelihood tempering as normalized 

weights as follows: 

|�*K = |*�;K /�2|0*K�uv�uv��
∑ �|*�;K /�2|0*K�uv�uv�����K:;

. �15� 
4. Resampling 

Redistribute particles proportionally to the value of |�*K; that is, if |�*K is large, particles are 

replicated; conversely, if |�*K is too small, the particles are annihilated. In this work, the number 

of particles for each parameter value, which is an integer, is chosen to be nearly {l|�*K. After 

this particle redistribution, the weight for each particle is renormalized equally so that |*K =
1/{l. 

Figure 2 illustrates the sequence of the SMC algorithm (Leeuwen, 2009). Since SMC is computed 

by spreading many particles widely, it converges to the posterior distribution faster than MCMC, 

which starts from a single particle. We also note that since the particles do not interfere with each other 

(each particle is independent), the calculation can be performed in parallel, which allows utilizing 

multiple cores simultaneously. 
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Figure 2. Schematic diagram of SMC 

 

3. Experimental and Computational conditions 

 

3.1. Case.1: Simulated experiments to generate artificial data 

 

In the simulated experiments, the numerical model �1�-�6� with all parameters specified in advance 

was solved in Python. The outlet concentrations from the column in this simulation were added to 

artificial random error that follows a normal distribution to obtain the artificial data, 2. The parameters 

related to the HPLC system were set according to the values used in the lab-scale experiments, as 

shown in Table 1. In this table, three different feed injection conditions, (A), (B), and (C) in the 

experiments and the true values of parameters to be estimated are also shown. These parameters were 

chosen referring to previous experimental reports on the separation of sugars (Nowak et al., 2007; 

Sreedhar and Kawajiri, 2014).  
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3.2. Case.2: Lab-scale experiments 

 

In the lab-scale experiments, pulse and step injection tests of glucose and fructose by column 

chromatography were conducted using an actual HPLC system. The HPLC system consisting of 

degasser DGU-20A3R, pump LC-20AD, autosampler SIL-20AHT, column oven CTO-20A, UV/VIS 

detector SPD-20A, RI detector RID-20A, and system controller CBM-20A was used for all 

experiments which was operated through the control software LCsolution (all of the above 

SHIMADZU CORPORATION, Kyoto, Japan). A schematic diagram of the HPLC system is shown in 

supplementary material (Figure S1). First, the dead volume was measured using dextran 40,000 

(FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan) as an indicator with the column removed, 

estimated to be 0.259 mL. Next, the overall porosity of the preparative column was measured also 

using the dextran, which was estimated to be 0.397. For the preparative column, an industrial cation 

exchange resin DIAIONTM UBK535 (Mitsubishi Chemical Corporation, Tokyo, Japan) was packed in 

a custom-made empty stainless column (Sugiyama Shoji Co., Ltd., Kanagawa, Japan).  

Using the column, two pulse injection tests and one step injection test were conducted under the same 

conditions as in (A), (B), and (C) of the simulated experiment, using aqueous solutions of D(+)-

glucose and D(-)-fructose (both FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan) as feed 

components. The pulse input in (A) and (B) were performed by the autosampler, and the step input 

was performed using a manual injector with a sufficiently large sample loop (20mL). Pure water was 

used as the mobile phase. 

The data sets for parameter estimation were obtained as follows. The feed injections were done under 

each of the experimental conditions shown in Table 1. At the outlet from the column, the eluent is 

supplied to the RI detector. The data were obtained by converting the intensity values of the RI detector 

into concentrations using values of feed concentration, inject volume, peak area, and flow rate.  

In addition to the data sets obtained by the RI detector in (A), (B), and (C), an additional data set was 

obtained using another measurement technique only in (C), which is used for the validation test in 

Section 4.1.1 and 4.2.1. For the large-volume injection test, (C), the solution at the outlet was 

fractionated at an interval of 25 s , and the concentration of each sample was analyzed using an 

analytical HPLC column, SUGAR SC1011 (Showa Denko K.K., Tokyo, Japan). In this analysis, the 

concentration was converted from the RI intensity using the calibration curves prepared from standard 

solutions of glucose and fructose prepared separately (0.500 g/L , 1.00 g/L , 2.00 g/L , 5.00 g/L , 

10.0 g/L, 20.0 g/L, 30.0 g/L, and 50.0 g/L). The flow rate was of the analysis was 1.00 mL min⁄  

and the temperature of the column oven was 80 ℃. It should be noted that obtaining this data set 

requires experimental effort, and we attempt to eliminate the need to carry out such measurement. The 

experimental conditions are summarized in Table 1, and the data sets in our study are summarized in 

Table 2. 
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Table 1. Conditions in obtaining experimental data  

Experiment Simulated Lab-scale  

Inject conditions (A) (B) (C) (A) (B) (C) Units 

Column length 250 mm 

Column diameter 10.0 mm 

Flow rate 1.00 mL min⁄  

Temperature − 60 ℃ 

Column porosity 0.397 − 

Feed concentration of 

Glucose 

250 0 250 250 0 250 g L⁄  

Feed concentration of 

Fructose 

0 250 250 0 250 250 g L⁄  

Input type Pulse Pulse Step Pulse Pulse Step - 

Injection volume 0.100 0.100 − 0.100 0.100 − mL 

Adsorption resin - DIAIONTM UBK535 - 

True value of ')*+ 0.301 Unknown − 

True value of ',-+ 0.531 Unknown − 

True value of �)*+ 4.70 × 10�� Unknown s�; 

True value of �,-+ 8.30 × 10�� Unknown s�; 

True value of ()*+ 6.34 × 10�� Unknown L g⁄  

True value of (,-+ 2.48 × 10�� Unknown L g⁄  

True value of σ 5.00 × 10�� Unknown − 

 

Table 2. Summary of data sets. 

 Data for estimation Data for validation test 

(experimental deconvolution data) 

Experiment (A), (B), (C) (C) 

Data frequency Online and continuous* Sampling discretely at 25 sec intervals 

Experimental 

measurement technique 

Online detector * HPLC analysis of each sample 

Data description Overall (total) 

concentration 

Individual concentrations of the two 

components 

*In the lab experiments in our study, data in (C) were obtained using HPLC analysis and fractionating 

the column effluent instead of online RI detection to avoid the saturation of the RI signal.  
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3.3. Computational environment and numerical methods 
 

3.3.1. Solution of the numerical model 

 

The solution of the system of PDEs consisting of equations �1�-�6� was performed by the numerical 

method of lines (Schiesser, 1991), where the PDE system was discretized in the spatial domain. The 

resulting set of ordinary differential equations (ODEs) which includes only temporal derivatives was 

solved numerically. The spatial discretization was performed using the central difference method with 

100 finite differences. The ODE system was solved numerically using scipy.integrate.odeint and the 

integration algorithm was lsoda. To speed up the computation, we used numba, a JIT compiler for 

Python (Lam et al., 2015). 

All computations, including simulations, MCMC, and SMC, were implemented in Python. The 

computing environment was an Intel(R) Core(TM)i9-10940X CPU at 3.30 GHz with 14 cores (28 

logical processors). 

 

3.3.2. Execution conditions for MCMC and SMC 

 

First, MAP solutions for each parameter were obtained, where uniform distributions were employed 

as the prior distributions. The range of Henry's constants '� and overall mass transfer coefficients 

�� were set to ±50 % of the initial value estimated by the initial estimation method (Guiochon et al., 

2006), and adsorption equilibrium constants (� and standard deviations σ were set to be sufficiently 

wide in the positive domain to cover all potential values. 

Using the MAP solutions, the prior distributions for UQ of parameters by MCMC and SMC were 

determined. For Henry's constants '� , overall mass transfer coefficients �� , and the standard 

deviation σ, the prior distributions are normal distributions where the mean is 0<kl with sufficiently 

wide standard deviations; standard deviation for σ  is 0.1× σ<kl , those for '�  and ��  are 

0.05× '�<kl  and 0.05× ��<kl , respectively. For adsorption equilibrium constants (� , we set a 

uniform distribution with the same width as the prior distribution for MAP estimation because of its 

low sensitivity and difficulty in estimation. 

The data used in the estimation was prepared as follows. All data of outlet concentrations used in the 

likelihood calculations were treated as dimensionless values by dividing them by the maximum 

concentrations. This was done to avoid overfitting the data with high concentrations when dealing 

with multiple data sets. Three types of data were used for each of simulated experiments and lab-scale 

experiments: time-series data of glucose concentration obtained in experiment (A), time-series data of 

fructose concentration obtained in experiment (B), and time-series data of total concentration of 
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glucose and fructose obtained in experiment (C). 

The MCMC calculations were performed using PyMC, a MCMC library for Python. The total number 

of samples was 50,000, and the burn-in was 30,000, and samples were thinned out every other one to 

eliminate the effect of autocorrelation between samples. Convergence was judged by visual inspection 

of the trace plots. 

The SMC calculations were performed using a program developed by the authors (Yamamoto, 2021). 

The number of particles was 10,000, and the number of steps for likelihood tempering x was 24. 

After the likelihood tempering was completed, only the mutation step was iterated five times 

additionally to confirm the convergence of the posterior distributions to confirm that the shapes of the 

distributions do not change. The SMC was run on a workstation that has 14 cores using joblib, a 

parallel computing library for Python. The prior distributions for the artificial and lab-scale 

experimental data are shown in supplementary material, and the hyperparameters used in the 

calculations are also shown in that. 

 

4. Results and Discussions 

 

4.1. Case.1: Simulated experiment  

 

The purpose of this case study is to confirm that the proposed approach finds the correct values of 

the parameters, and the SMC and MCMC find the same estimates. A density plot matrix of the 

posterior distributions of the parameters obtained by SMC is shown in Figure 3. Each of the histograms 

on the diagonal represents the posterior probability distribution of each parameter itself. The off-

diagonal density plots represent the correlation between the two parameters. We can see that there is 

a strong negative correlation between ()*+ and (,-+. This can be attributed to the fact that these two 

parameters have nearly the same influence on the denominator value of the equation �6� because the 

liquid-phase concentrations of the two components are similar. There is also a weak correlation 

between ')*+  and ()*+ , and between ',-+  and (,-+ . These trends have been confirmed in a 

previous study (Borg et al., 2013), which is because both parameters appear in the equation �6� and 

thus resolving the correlations to identify each parameter independently is difficult. These correlations 

may be weakened by increasing the number of data sets under different experimental conditions in the 

estimation.  

A time-series graph of concentration is shown in Figure 4, superimposing the artificial data and the 

model which were calculated by substituting 5,000 values sampled randomly from the parameter 

posterior distributions. The simulation and experimental data fit well, suggesting that the estimation 

was done correctly. 
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4.1.1. Model validation by individual component deconvolution 

 

We validated the model using the estimated parameters to confirm it could correctly deconvolute the 

overall concentration into individual concentrations of the two components, glucose and fructose. As 

described in Section 3.3.2 and Table 2, the estimation used two sets of single-component pulse 

injections, (A) and (B), in addition to the two-component step injection (C) which only gives the 

overall (total) concentration; we attempt to estimate the individual concentrations of the two 

components in (C) using the obtained model with the estimated parameters. The estimated individual 

concentrations are compared against the unused data sets of individual concentrations, which are 

assumed to be obtained using another measurement technique such as analytical HPLC.  

Figure 4 (d) shows a time-series graph of the concentrations of glucose and fructose in (C), 

superimposed on the artificial data, and the deconvoluted concentrations given by the model using 

5,000 randomly sampled values from the estimated parameter posterior distributions. It can be seen 

that the artificial data and deconvoluted concentrations given by the model overlap, indicating that the 

deconvolution is successful. This successful estimation is because the experimental data for parameter 

estimation was prepared well; that is, the information about ')*+ , ',-+ , �)*+ , and �,-+  can be 

obtained from single-component experiments, (A) and (B), respectively, and the information on ()*+ 

and (,-+ can be obtained from a high concentration experiment, (C) as reported in the previous study 

(Felinger et al., 2003). It can be seen in Equation �6� that ()*+ and (,-+ become sensitive only if 

the concentrations �,-+  and �)*+  and are sufficiently high; i.e. when ()*+�)*+��, �� >>0 and 

(,-+�,-+��, ��>>0, which is realized in (C).  

It is worth noting that this successful deconvolution of the online overall concentrations, which is 

enabled by the model and successful parameter estimation, may reduce the experimental effort 

substantially. In the current practice of chromatography modeling, experimentalists often fractionate 

the effluent from the column outlet and analyze the samples to experimentally deconvolute the 

concentrations. The number of samples tends to be large, which may take a substantial amount of time 

for HPLC analysis. This time-consuming practice is considered necessary to improve the accuracy of 

parameter estimation. Our case study, on the other hand, demonstrated that the overall concentrations 

obtained easily online by RI detectors can be numerically deconvoluted into individual concentrations. 

 

4.1.2. Comparison between SMC and MCMC 

 

We confirm that the estimation given by SMC is identical to that by MCMC. The modes and 95% 

credible intervals of the posterior distributions estimated by the two methods are shown in Table 3, 

along with the true values of the parameters. Furthermore, superimposed histograms showing the 

posterior distributions of each parameter obtained by SMC and MCMC are shown in Figure 5. All of 
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these results show that the estimations given by SMC and MCMC are identical. It can also be seen in 

Table 3 that the true values are within the 95% credible interval for all estimation results. Looking at 

the values in more detail, it can be seen that for Henry's constants '�  and overall mass transfer 

coefficients ��, the modes are close to the true values, and the 95% credible interval is within 1% of 

the true value. On the other hand, for the adsorption equilibrium constants (�, the modes slightly 

deviate from the true values, and the 95% credible interval is wider than 1% of the true value. A very 

similar trend was reported in a previous study (Grosfils et al., 2010), except for the overall mass 

transfer coefficient, which may be due to the different sensitivity of the parameters to the model. In 

our estimation, the slight deviations of the modes of parameter distributions from their true values may 

be due to the artificial random error added to the simulated artificial data of 300 time-series points. If 

the data generation and estimation had been repeated for a sufficiently large number of times, the mode 

of the parameter distributions would have matched the true values. 

The computation time of SMC is significantly shorter than that of MCMC. The SMC estimation 

requires 34.9 minutes, which is less than one-tenth of that in the MCMC estimation, 352 minutes. 

Since the calculation times vary depending on the conditions of the simulation, it is not appropriate to 

simply compare these times. However, since it is easy to implement parallel computing in SMC, the 

computation time of SMC can be easily reduced using a many-core computer. The impact of the 

number of cores on the computation time of SMC is discussed in a later section. 

 

 

 

Table 3. True values, modes, and 95% credible intervals of parameters for artificial data 

Parameter True value Prior distributions Estimated value by 

SMC 

Estimated value by 

MCMC 

Units 

')*+ 0.301 0.301�E.��×;f��qE.��×;f��
 0.301��.;�×;f��q�.f�×;f��

 0.301��.;�×;f��q�.��×;f��
 − 

',-+ 0.531 0.532��.E;×;f��q�.E;×;f��
 0.532��.��×;f��q;.E�×;f��

 0.532�;.f�×;f��q�.f�×;f��
 − 

�)*+ 4.70 × 10�� 4.71 × 10����.��×;f��q�.��×;f��
 4.71 × 10����.�;×;f��qE.��×;f��

 4.71 × 10���E.��×;f��qE.��×;f��
 s�; 

�,-+ 8.30 × 10�� 8.30 × 10����.;�×;f��q�.;�×;f��
 8.29 × 10����.��×;f��q�.E�×;f��

 8.29 × 10����.��×;f��q�.�E×;f��
 s�; 

()*+ 6.34 × 10�� 5.00 × 10����.��×;f��q�.��×;f��
 6.70 × 10����.��×;f��q�.��×;f��

 6.50 × 10����.�;×;f��q�.��×;f��
 L g⁄  

(,-+ 2.48 × 10�� 5.00 × 10����.��×;f��q�.��×;f��
 2.20 × 10����.��×;f��q�.�;×;f��

 2.27 × 10����.��×;f��q�.�f×;f��
 L g⁄  

σ 5.00 × 10�� 4.67 × 10����.;�×;f��q�.;�×;f��
 4.72 × 10����.f�×;f��q�.;�×;f��

 4.69 × 10����.f�×;f��q�.ff×;f��
 − 
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Figure 3. Density plot matrix of the posterior distributions of the parameters using the artificial data 

estimated by SMC. Each of the diagonal histograms shows the posterior distribution of each parameter, 

and each of the non-diagonal density plots shows the correlation between two parameters. 
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Figure 4. Fittings of simulations using the estimated parameters and the artificial data used for 

estimation((a)-(c)) and validation((d)). (a) glucose concentration obtained in experiment (A), (b) 

fructose concentration obtained in experiment (B), (c) total concentration of glucose and fructose 

obtained in experiment (C), and (d) validation test of parameter estimation results using deconvoluted 

concentration. The gray lines are given by the model using 5,000 randomly sampled parameter values 

from the estimated parameter posterior distributions.” 
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Figure 5. Histograms for the posterior distributions of each parameter obtained from SMC and MCMC 

using the artificial data. (a) HGlu, (b) HFru, (c) KGlu, (d) KFru, (e) bGlu, (f) bFru, (g) σ. 

 

4.2. Case.2: Lab-scale experimental data 

 

The purpose of this case study is to verify the practical applicability of the proposed method by 

estimating the parameters and quantifying the uncertainty by SMC using actual lab-scale experimental 

data. The density plot matrix of the posterior distributions of the parameters obtained by SMC is shown 

in Figure 6. The modes and 95% credible intervals of the posterior distributions of the parameters 

estimated by SMC are shown in Table 4. The histograms and the shapes of the correlations among the 

parameters from Figure 6 are generally similar to those of the artificial data.  

However, the value of (,-+ converges toward 0, the lower bound of the uniform prior distribution, 

and the mode of (,-+ is two orders of magnitude smaller than one of ()*+ (Table 4). This result may 
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not be justified considering the two molecules, both of which are monosaccharides, have similar 

molecular structures. Indeed, in a past study (Nowak et al., 2007), ()*+ and (,-+ are estimated to 

be within the same order of magnitude. The reason for the potential poor estimation of this parameter 

in our study may be that the sensitivity of the adsorption equilibrium constant is small in our 

experimental conditions. This is also supported by the 95% credible interval of (,-+ in the case study 

of the artificial data in Section 4.1, which was significantly wider than that of the other parameters. 

This potentially low sensitivity may be because there was only one type of breakthrough test conducted 

at the concentration of 250 g/L in this study (experiment (C)), while in the previous study (Nowak et 

al., 2007) breakthrough tests were conducted under many conditions at concentrations of up to as high 

as 600 g/L. The challenge of estimating (,-+ under low concentration was exacerbated by the larger 

measurement error in the lab-scale experimental data (estimated mean of σ is 1.11 × 10�E), than that 

in the artificial data (estimated mean of σ is 4.72 × 10��).  

A time-series graph of concentration is shown in Figure 7, superimposing the experimental data and 

the simulation results, which were calculated by substituting 5,000 randomly sampled values from the 

estimated parameter posterior distribution into the model. The fit is generally good, but in the high 

concentration region of (c), the model with the estimated parameters gives smaller values than the 

experimental data. This is most likely due to errors in the experimental operation of dilution of the 

HPLC analysis, which also explains the observation that the experimental data in the breakthrough 

curve exceeded the concentration of the feed, 500 g/L at around 1000 s and onward.  

 

4.2.1. Model validation by individual component deconvolution 
Validation of the model was performed by comparing numerical and experimental component 

deconvolutions under the same conditions as in the artificial data. As in the case of the artificial data, 

a time-series graph of concentration showing the simulation results superimposed on the experimental 

data is shown in Figure 7 (d). As can be seen in this figure, the numerical deconvolution nearly overlaps 

the experimental deconvolution, indicating the accuracy of the model. The slight deviation in the high 

concentration region at around 1000 s and onward which can also be seen in Figure 7 (c), is probably 

caused by the dilution error in HPLC analysis, as discussed in the previous section. This successful 

estimation shows the numerical deconvolution using the model with the estimated parameters can 

eliminate the need for experimental deconvolution, which may reduce experimental effort substantially. 

 

4.2.2. Variation in computation time due to the difference in the number of cores 

 

We analyzed the relationship between the number of cores used in parallel and the overall 

computation time for SMC. Figure 8 shows as the number of cores used in the calculations are 

increased, the overall computation time decreases. However, the computation time reaches a plateau 
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when the number of cores is approximately 10. 

The limitation in decreasing the computation time may be explained by several reasons. First, there 

are calculation blocks that cannot be parallelized. Blocks in which each particle can be calculated 

independently—such as model simulation and likelihood evaluation—can be processed in parallel, 

but blocks in which particles interfere with each other—such as the calculation of the normalized 

weights and resampling—must be calculated in series. Second, communication overhead between 

cores to send each particle to each core increases as the number of cores increases. Finally, tasks in 

some cores must wait for other cores to finish before proceeding to the next task. The decision of 

choosing the number of cores should be made carefully considering the limitations in parallel 

implementation discussed above. 

 

Table 4. Modes, and 95% credible intervals of parameters for lab-scale experimental data 

Parameter Prior distributions Estimated value by SMC Units 

')*+ 0.342��.��×;f��q�.��×;f��
 0.342�;.�;×;f��q;.;E×;f��

 − 

',-+ 0.552��.�;×;f��q�.�;×;f��
 0.552�;.�;×;f��q;.��×;f��

 − 

�)*+ 2.23 × 10�E�E.Ef×;f��qE.Ef×;f��
 2.22 × 10�E��.;E×;f��q�.;�×;f��

 s�; 

�,-+ 2.78 × 10�E�E.�E×;f��qE.�E×;f��
 2.78 × 10�E��.�f×;f��q�.��×;f��

 s�; 

()*+ 5.00 × 10����.��×;f��q�.��×;f��
 4.40 × 10����.��×;f��qE.�E×;f��

 L g⁄  

(,-+ 5.00 × 10����.��×;f��q�.��×;f��
 2.30 × 10���;.�;×;f��q�.��×;f��

 L g⁄  

σ 1.09 × 10�E�E.;�×;f��qE.;�×;f��
 1.11 × 10�E��.E;×;f��q;.f;×;f��

 − 
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Figure 6. Density plot matrix of the posterior distributions of the parameters using the lab-scale 

experimental data estimated by SMC. 
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Figure 7. Fittings of simulations using the estimated parameters and the lab-scale experimental data 

used for estimation((a)-(c)) and validation((d)). (a) glucose concentration obtained in experiment (A), 

(b) fructose concentration obtained in experiment (B), (c) total concentration of glucose and fructose 

obtained in experiment (C), and (d) validation test of parameter estimation results using deconvoluted 

concentration obtained by HPLC analysis of fractionated samples (experimental deconvolution). The 

gray lines are given by the model using 5,000 randomly sampled parameter values from the estimated 

parameter posterior distributions.” 
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Figure 8. (a) Relationship between the number of cores and computation time, (b) log-log plot. The 

dotted line shows the ideal relationship, where the computation time is inversely proportional to the 

number of cores. 

 

5. Conclusions 

 

In this study, we developed an approach for UQ of parameters by SMC for chromatographic 

separation processes, and demonstrated using artificial data and lab-scale experimental data that the 

proposed approach can shorten the computation time. By applying the likelihood tempering SMC to 

the chromatography model, we confirmed that the estimation accuracy is nearly identical to that of 

MCMC while reducing the computation time substantially. Also, we demonstrated that the model with 

the estimated parameters can deconvolute the overall concentrations into individual concentrations, 

eliminating the need for extra experimental effort. Furthermore, we investigated the relationship 

between the number of cores used for parallel computation and identified the limitation in reducing 

the computation time by increasing the number of cores. 

We have also identified some issues that need to be considered in future work. First, to improve the 

estimation accuracy by weakening the correlation between parameters, it is necessary to have multiple 

data sets under different conditions such as injected volume and feed concentration. Design of 

experiments (Franceschini and Macchietto, 2008; Kalyanaraman et al., 2014) may be utilized in 

determining the experimental conditions. Second, although the computation time has been 

considerably reduced, more challenging processes, such as SMB, exist. For this problem, surrogate 

models using neural networks (Anthony and Bartlett, 2009; Wu and Zhao, 2018) or support vector 

regression (Smola and Schölkopf, 2004; Song et al., 2002) can be potential solutions. Finally, further 

model validation tests should be performed for different process designs, such as the one with recycle 
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stream, and multi-column processes. 
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Notation 

 

(�  adsorption equilibrium constant for component � =L g⁄ ? 
��  concentration of component � in the liquid phase =g L⁄ ? 
��,!��" concentration of component � in the feed in the liquid phase 

��,��  concentration of component � in the liquid phase flowing into the column 

���� concentration of component � in the liquid phase at the adsorption equilibrium 

=g L⁄ ? 
76"MNM jth data of concentration in the liquid phase gotten by the experiments =g L⁄ ? 
76KL"�* jth data of concentration in the liquid phase calculated by the simulation model 

=g L⁄ ? 
'� Henry’s constant for component � =−? 
��  overall mass transfer coefficient of component � =s�;? 
x  total steps of SMC 

A  number of observations of the data 

�  Normal distribution 

{l  total number of particles 

/  probability distribution 

g  proposal distribution 

��  concentration of component � in the solid phase =g L⁄ ? 
���� concentration of component � in the solid phase at the adsorption equilibrium 

=g L⁄ ? 
�  time =s? 
�!  injection time of the feed =s? 
�  superficial velocity of the liquid =g L⁄ ? 
���6��N total injected volume of feed 

�  coordinate in the axial direction =m? 
2  observed data (2 = ���i, 7i��i:;< ) 

|*K  weight of the Rth particle at �th step of SMC 
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|�*K  normalized weight of the Rth particle at �th step of SMC 

Greek letters 

p  adoption rate 

r  uniform random number generated as r~t�0,1� 
y*  monotonically increasing scalar value of SMC 

�
  overall porosity in the column =– ? 
0  parameter to be estimated (0 = =')*+, ',-+, �)*+, �,-+, ()*+, (,-+, >?@) 

0i  parameter adopted in the jth sampling of the MCMC sampling 

0<kl parameter calculated by maximum a posteriori estimation 

0K*� parameter calculated by maximum likelihood estimation 

0f  initial value of the parameter of the MCMC sampling 

0∗  candidate parameter value of the MCMC sampling 

D*  distribution of the parameters at the �th step of SMC 

�i  covariance of the jth proposal distribution  

> standard deviation assuming that the observation errors of all data follow a 

constant normal distribution =−? 
Superscripts 

TV�V experimental data 

U�  equilibrium 

R  particle number 

A¡/ maximum a posteriori estimation 

R�U  maximum likelihood estimation 

RSTU� simulation data computed by the LDF model 

∗  candidate value of the Metropolis sampling 

subscripts 

¢UUT or ¢ feed 

���  fructose component 

���  glucose component 

�  component 

��  inflow to the column 

��£U¤� injection 

£  step of data 

j  step of the MCMC sampling 

�  step of SMC 
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