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Abstract: 30 

Strain measurement is critical for wood quality evaluation. Using conventional strain 31 

gauges constantly is high cost, also challenging to measure precious wood materials due 32 

to the use of strong adhesive. This study demonstrates the correlation between the light 33 

scattering degrees inside the wood during tension testing and their macroscopic strain 34 

values. A multifiber-based visible-near-infrared (Vis-NIR) spatially resolved 35 

spectroscopy (SRS) system was designed to rapidly and conveniently acquire such light 36 
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scattering changes. For the preliminary experiment, samples with different thicknesses, 37 

from 2 mm to 5 mm, were measured to evaluate the influence of sample thickness. The 38 

differences in Vis-NIR SRS spectral data diminished with an increase in sample thickness, 39 

suggesting that the SRS method can successfully measure the wood samples' whole strain 40 

(i.e., surface and inside). Then, for the primary experiment, 18 wood samples were each 41 

prepared with approximately the same sample thickness of 2 mm and 5 mm to construct 42 

strain calibration models, respectively. The prediction accuracy of the 2-mm samples was 43 

characterized by a determination coefficient (R2) of 0.81 with a root mean squared error 44 

(RMSE) of 343.54 με for leave-one-out cross-validation; for test validation, the validation 45 

accuracy was characterized by an R2 of 0.76 and an RMSE of 395.35 με. For the validation 46 

accuracy of the 5-mm samples, R2
val was 0.69 with 440.78 με RMSEval. Overall, the 47 

presented calibration results of the SRS approach were confirmed to be superior to the 48 

standard diffuse reflectance spectroscopy. 49 

 50 
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1. Introduction 55 

Wood is a natural material with multi-layered elongated cells. Due to the variability 56 

of its mechanical properties, the tensile strain evaluation of each structural wooden 57 

member is critical for quality management (Wang et al. 2020). The strain (ε) is defined 58 

as the ratio of the change in length to the original length; it is a unitless quantity (Ambrose 59 

1993). The wood cell wall is a macromolecular composite formed of cellulose, 60 

hemicelluloses, and lignin (Hon and Chang 1984). Cellulose is the primary component in 61 

bearing tensile stress (Salmén and Bergström 2009). In contrast, hemicelluloses function 62 

as a coupling agent to hold the cellulose (Burgert 2006). The conventional method for 63 

wood strain measurement is to use a strain gauge, which is high cost (either disposable or 64 

reusable ones) in constant use (Yang et al. 2005). In addition, it is challenging to measure 65 

precious wood materials due to the use of a strong adhesive, which can destroy the wood 66 

after removal. For example, the heritage community generally does not apply strain 67 

gauges on genuine objects of art (Anaf et al. 2020). Moreover, difficulties arise when 68 

strain gauges are used in an environment where the electromagnetic wave interference is 69 

extensive. Such an environment can affect the measurement accuracy or even damage the 70 

experimental instruments (Liu et al. 2015; Barr et al. 2017). 71 

 72 
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In addition to the strain gauge, the wood strain can also be evaluated by monitoring the 73 

displacements that occurred during deformation, i.e., digital image correlation (DIC) 74 

techniques (Samarasinghe and Kulasiri 2000; Ozyhar et al. 2012). X-ray diffraction 75 

(Kamiyama et al. 2005) and infrared (IR) spectroscopy (Åkerholm and Salmén 2001; 76 

Salmén and Bergström 2009) can detect wood structure-function relationships at the 77 

nano- and microstructural levels. Near-IR (NIR) spectroscopy (wavelength: 800–2500 78 

nm or wavenumber: 12500–4000 cm-1) is another well-suited method in wood research, 79 

mainly in combination with multivariate mathematical techniques (Tsuchikawa 2007; 80 

Watanabe et al. 2012; Hein et al. 2017). When NIR light illuminates and transmits through 81 

an object, the energy of the incident electromagnetic wave changes due to the stretching 82 

and bending vibrations of chemical bonds, such as O–H, N–H, and C–H. Subsequently, 83 

the quality and quantity of an object can be evaluated non-destructively, rapidly, and cost-84 

effectively by analyzing the light reflectance and transmittance values (Tsuchikawa and 85 

Kobori 2015; Ma et al. 2020). Compared with microtomed sections needed for IR 86 

spectroscopy, NIR spectroscopy can non-destructively measure wood samples up to 87 

several millimeters thick without special sample pretreatments. It is essential when 88 

focusing on practical applications, as thin samples prepared in lab behave differently than 89 

solid wood, e.g., including stress relaxation in the former (Yu et al. 2009). Taking the 90 
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advantages of NIR spectroscopy, Guo and Altaner (2018) analyzed band shifts and band 91 

assignments on NIR light absorbance characteristics during the wood tension test, the 92 

results of which suggest that the observed band shifts correlate with wood tension levels. 93 

Their study is impressive and has reference value for future use of NIR spectroscopy (Guo 94 

et al. 2019). However, since the molecules are influenced by neighboring molecules, 95 

actual peaks generally overlap on the NIR spectra (Okazaki 2012). Although advanced 96 

curve-fitting approaches could be used to predict the small-signal peak shift, the band 97 

shift may also vary among specimens, which has been confirmed by the IR method 98 

(Eichhorn 2001). Additionally, the spectral information of such long-wave sensitive 99 

spectrometers is relatively rich, and, as such, it requires expensive equipment, such as 100 

detectors and light sources (Xing et al. 2008). Accordingly, there is still room to develop 101 

and improve NIR spectra collection and data analysis methods, especially for on-site 102 

application purposes. 103 

 104 

The most likely to be neglected is that bulk wood is a highly scattering medium. 105 

Studies show that the reduced light scattering coefficient (𝜇𝑠
′ = 10 − 100 𝑐𝑚−1) is much 106 

larger than the absorption coefficient (𝜇𝑎 = 0.05 − 1.00 𝑐𝑚−1) in the wavelength range 107 

of 700-1040 nm for both softwood and hardwood species treated in different ways (dry, 108 



7 

 

wet and degraded) (D’Andrea et al. 2007). The light scattering degree inside the wood 109 

cell wall highly correlates with the microstructure (Ban et al. 2018; Ma et al. 2018a, 2019). 110 

The deformation under longitudinal tension includes macromolecule deformations in the 111 

layers and interlaminar slippages. The former is related to the structure, orientation, and 112 

interaction of the polymers in the wood, and the latter slippage deformation results from 113 

the structural differences between cell-wall layers (Keckes et al. 2003; Adler and Buehler 114 

2013). For example, the misalignment between the cellulose fibrils to the strain direction 115 

could be amplified by bending and shearing (Montero et al. 2012; Salmén 2015). 116 

Moreover, the weak interfaces of wood cells or annual rings could deflect transverse 117 

cracks into the longitudinal plane (Smith et al. 2003; Marthin and Kristofer Gamstedt 118 

2019; Guo et al. 2020). Hence, effective utilization of the light scattering degrees (i.e., 119 

microstructure changes) inside the wood during tension testing should predict strain 120 

levels accurately. This method also can reduce costs associated with equipment because 121 

shorter wavelengths are scattered more strongly than longer wavelengths in the visible 122 

(Vis)–NIR optical range (Ma et al. 2018a).  123 

 124 

Conventional Vis-NIR spectrometry has the potential to gather information on both 125 

molecular and anatomical strain. However, since it generally acquires spectral data from 126 
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a single sample point based on the collective effects of light absorption (due to chemical 127 

components such as water and cellulose content) and scattering (due to physical structures 128 

such as cell size and intercellular spacing) (Vanoli et al. 2020); studies have mainly relied 129 

on performing further spectral pretreatments, such as baseline offset correction or 130 

standard normal variate (SNV), to reduce light scattering effects before training 131 

calibration models (Zude et al. 2011). By contrast, spatially resolved spectroscopy (SRS) 132 

requires relatively strong, steady-state spotlights for illumination; its diffusely reflected 133 

light pattern is collected at multiple distances for light absorption and scattering 134 

evaluation (Farrell et al. 1992; Qin et al. 2009; Lu et al. 2020). SRS has two main 135 

measurement configurations: spectral imaging and fiber probing. On the one hand, the 136 

SRS based on spectral imaging is a non-contact method that measures spatially resolved 137 

diffuse reflectance over a broad spectral range (Peng and Lu 2008; Qin and Lu 2008; Zhu 138 

et al. 2015). The measurement system mainly consists of a hyperspectral imaging (HSI) 139 

camera, a prime lens, and a small broadband beam as illumination. However, the distance 140 

between the light beam and the source-detector is required to be carefully considered in 141 

this configuration, as they determine the measured results (Cen and Lu 2010; Lu et al. 142 

2020). On the other hand, the fiber probe-based SRS is a contact method, which is often 143 

inconvenient for rapid online quality assessment (Ma et al. 2018a). However, due to the 144 
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easy-to-operate design with a strong light reflectance, fiber probe-based SRS portable 145 

systems are desirable alternatives for on-site applications. Additionally, the contact 146 

measurement is more convenient to predict the tension strains of wood samples. 147 

This paper reports on wood strain prediction results obtained by evaluating the changes 148 

in Vis-NIR SRS spectral data collected from wood samples during tension testing. The 149 

objectives of this paper are as follows: (1) acquire light scattering characteristics in wood 150 

samples during tension testing by a newly designed multifiber-based Vis-NIR SRS 151 

system; (2) examine the relationship between SRS signals and wood strains by principal 152 

component analysis (PCA); (3) construct wood strain calibration models by partial least 153 

squares (PLS) regression; and (4) benchmark against standard diffuse reflectance 154 

spectroscopy to quantify the added value of the SRS method. This study should provide 155 

new insights to predict the tensile strain of wood samples conveniently and cost-156 

effectively. 157 

 158 

2. Materials and methods 159 

2.1 Sample preparation 160 

Wood samples (Hinoki cypress) with a length of 120 mm (longitudinal), a width of 161 

10 mm (radial), and various thicknesses (tangential: 2 mm, 3 mm, 4 mm, and 5 mm) were 162 
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sawn from air-dried wood board that commercially purchased from a local wood 163 

processing company. Specimens were selected from mature wood parts sufficiently far 164 

from the pith to neglect ring curvature.  165 

For the preliminary experiment, samples with different thicknesses (2 mm, 3 mm, 4 166 

mm, and 5 mm) were measured to evaluate the influence of sample thickness. Then, for 167 

the primary experiment, 18 wood samples were each prepared for approximately the same 168 

thickness 2 mm and 5 mm to construct strain calibration models, respectively. The 169 

samples were selected based on the wood fiber directions, which were as parallel as 170 

possible to the longitudinal direction. Before the experiment, all the pieces remained in a 171 

desiccator, where relative humidity (RH) was controlled at 59% with a saturated salt 172 

solution of sodium bromide. Subsequently, the sample weights were measured using a 173 

digital balance (accuracy of 0.0001 g). A digital caliper (0.01 mm accuracy) was used to 174 

measure the sample dimensions. From the measured weights and dimensions of the raw 175 

data, sample moisture content (MC) and density were calculated according to the 176 

following equations: 177 

                                                   MC(%) =
𝑊−𝑊𝑑

𝑊𝑑
                                                          (1)    178 

                                              Density (
𝑘𝑔

𝑚3) = (
𝑊

𝑉
)                                                          (2)  179 
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where 𝑊  is the sample weight before spectral data acquisition and 𝑊𝑑  is the 180 

sample weight after oven-drying, and 𝑉 is the sample volume under the equilibrated 181 

condition. 182 

 183 

2.2 Tensile testing  184 

Each prepared wood sample was placed in a bending testing machine (either 185 

Shimadzu AG-100KNI, Shimadzu, Japan or SVZ-50NA, IMADA-SS Corporation, Japan 186 

was used depending on the sample thickness and experiment schedule). The bending 187 

machine was suspended several times manually during the tension test to obtain strain 188 

measurements and Vis-NIR SRS data. The strain was recorded with strain gauges (FLAB-189 

5-11, Tokyo Sokki Kenkyujo, Japan) glued to one side of each sample with instant 190 

adhesive (CN, Tokyo Sokki Kenkyujo, Japan) and connected to a strain-meter (TC-32K, 191 

Tokyo Sokki Kenkyujo, Japan). A Vis-NIR measurement system was used to collect light 192 

scattering characteristics on the other sample side (Fig. 1 (a) and (b)).  193 

 194 

2.3 Visible and near-infrared spatially resolved spectroscopy measurements 195 

Fig. 1 (c) and (d) show the measurement part (i.e., the fixator of light illumination and 196 

detection fibers) of the proposed Vis-NIR SRS system and a diagram of the internal 197 
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structure. A 5-W halogen lamp initially provided light illumination. An optical fiber 198 

(SOG-70S, Sumita Optical Glass, Inc., Saitama, Japan) translated the light source onto 199 

each wood sample. Then, 30 silica fibers (Vis-NIR type, Core: 100 µm, Clad: 110 µm, 200 

Fiberguide Industries, New Jersey, USA) were separated into five groups (1, 2, 3, 4, and 201 

5 from the light illumination point) to collect the diffusely reflected light and transfer the 202 

light to the Vis-NIR HSI camera (SPECT-100nir1F, Spectral Application Research 203 

Laboratory Co., Ltd. Shizuoka, JAPAN). A fiber connecter was used to order the 30 silica 204 

fibers horizontally at the side of the HSI camera. Then, the light beam was dispersed by 205 

a spectrometer into spectral components (vertical axis) while preserving spatial 206 

information (horizontal axis), and the two-dimensional light signals were collected. The 207 

shutter speed and framerate were set at 15 ms and 8 fps, respectively. In this study, the 208 

fixator was pasted parallelly to the sample grain direction with a double-sided tape, which 209 

can be easily removable after measurement collection. The sensitive wavelength range of 210 

the Vis-NIR HSI camera was 600–1100 nm, with a spectral resolution of 4.5 nm (a 211 

minimum reading width of approximately 0.65 nm/pixel). For each measurement, 16 212 

spectral images were captured and their averaged values saved. A barium sulfate white 213 

plate was used to reflect the transmitted Vis-NIR light through hinoki wood samples. 214 

Light reference was measured using a tailor-made integrating sphere, i.e., a plastic ball 215 
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(diameter of 6 cm) covered in barium sulfate. Dark values were measured by turning off 216 

the light and covering the light-collection fibers. Wavelengths under 660 nm and over 217 

1002 nm were noisy and unreliable. Thus, a wavelength range of 660–1002 nm was 218 

selected for further data analysis. The collected spectra were then converted to the 219 

reflectance values by Eq. (3): 220 

                                                               𝑅𝜆 =  
𝑆𝜆−𝐷𝜆

  𝐵𝜆−𝐷𝜆  
                                                                (3)                     221 

where λ denotes the wavelength, S and B are the sample and a white reference spectrum, 222 

respectively, and D is the dark spectrum.  223 

A digital camera took photos (16×amplification) of another wood sample (thickness 224 

of 2 mm) before and after the tensile test to understand the submicroscopic changes. 225 

 

Fig. 1 (a) Experiment instruments; (b) Vis–NIR SRS data and strain 

measurements; (c) fixator of the Vis-NIR SRS measurement system; (d) internal 

structure diagram of the fixator. 

 226 
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2.4 Spectra pretreatments and principal component analysis 227 

The Vis-NIR SRS raw spectra were smoothed by a Savitzky–Golay filter (polynomial 228 

order: 2; frame length: 15). The spectral data, collected before tension testing subtracted 229 

from various strain levels, were tested to correct the natural variability of physical 230 

structure among wood samples. Then, PCA with the mean center was used to reduce the 231 

dimensionality of the Vis-NIR spectral data while minimizing information loss; the 232 

purpose of this was to examine the correlation between measured strain reference values 233 

and the spectral data changes. Principal component (PC) loadings are the weights for each 234 

variance value of spectral data when calculating the PC scores (Martens and Tormod 235 

1992). Generally, the first PC score accounts for the most variability in the original data, 236 

and each successive component accounts for as much of the remaining variability as 237 

possible (Ma et al. 2020). It is noteworthy that no other spectra pretreatments (e.g., SNV 238 

(Cuesta Sánchez et al. 1995) and the second derivative (Gorry 1991)) were used in this 239 

study to keep the maximum light scattering information.  240 

 241 

2.5 Partial least squares regression analysis 242 

To achieve the initial value correction purpose, the Vis-NIR difference spectral data 243 

obtained by subtracting the spectrum collected at strain 0 from others were used to 244 



15 

 

calibrate with the measured strain values via PLS regression (Martens and Tormod 1992). 245 

To against overfitting, the wavelength range from 900 nm to 1000 nm was selected from 246 

each fiber group (FG). In addition, 70 % of measured data was randomly selected as the 247 

calibration set, leaving 30 % for the test set in developing the PLS regression models. 248 

Leave-one-out cross-validation was used to optimize the number of latent variables 249 

(LVs). The coefficients of determination (𝑅2) and the root mean squared error (RMSE) 250 

characterized the constructed calibration model’s performance: 251 

                                                          𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

                                       (4) 252 

  RMSE = √
1

𝑛
∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑛

𝑖=1                                     (5) 253 

where n is the number of measurements, y is the reference strain values, 𝑦̂ is the strain 254 

value predicted by PLS regression analysis, and 𝑦̅ is the mean value of 𝑦. To quantify 255 

the added value of the SRS approach, the PLS calibration results earned by using the total 256 

five FGs were also benchmarked against either using the first three FGs or the standard 257 

spectroscopy analysis that only using one FG. Data analysis was performed by MATLAB 258 

(The MathWorks Inc., Natick, MA). 259 

 260 

3 Results and discussion  261 
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Fig. 2 shows the raw spectral image of 2-mm wood sample taken by the Vis-NIR HSI 262 

camera before the tensile test. This image data contains the spatial information of the 30 263 

silica fibers (horizontal axis) and the spectral information of the measured wood sample 264 

(vertical axis). The main difficulty with conventional SRS methods is associated with 265 

quickly collecting the spectral data with a high signal-to-noise ratio. One way is to repeat 266 

the same data measurements and to average the results, which is time-consuming 267 

(Tkachenko 2006). This study is desirable for the spectral data acquisition time to be short 268 

of excluding other relaxation phenomena (Burgert 2006; Altaner et al. 2014). This was 269 

achieved by a two-step signal averaging process: (i) each fiber occupies 34 pixels of the 270 

HSI camera, and the central 30 pixels were averaged for spectral data collection, after 271 

which, (ii) the signals of six fibers in the same group were averaged. 272 

 

Fig. 2. Raw Vis-NIR SRS spectral image of a 

wood sample with 2 mm thickness. 
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Fig. 3 shows the Vis-NIR SRS spectra with standard deviations of the 18 wood 273 

samples with approximately the same 2 mm and at various tension levels. It is logical that 274 

the overall spectral intensity quickly falls with an increase in distance from the light 275 

illumination. The wavelength at 925 nm corresponds to the third overtone of C–H 276 

absorption (Mohammadi-Moghaddam et al. 2018), which can be attributed to the 277 

chemical components of the wood samples. The wavelength at approximately 930 nm has 278 

the highest light reflectance when the FG is 3–4 mm away from the light illumination, 279 

suggesting that the light at said wavelength was less absorbed and transmitted further 280 

from the light illumination than other wavelengths along the wood grain direction. It is 281 

noteworthy that the optical scattering was not isotropic within each wood sample. The 282 

light propagated further in the parallel direction because the scattering coefficient along 283 

the cylinders is much smaller than that in the perpendicular direction to the grain direction 284 

(Ma et al. 2018b, 2019). 285 
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Fig. 3 Averaged Vis-NIR raw spectra and the 

standard deviations (light color) of 18 

samples with the same thickness (2 mm) and 

various tension strains. 

 286 

Fig. 4 shows the Vis-NIR spectral data for various strain measurements for wood 287 

samples with different thicknesses (vertical) by different FGs (horizontal), respectively. 288 

The wavelength range was selected to 900–950 nm to expand the image size. In this study, 289 

the Vis-NIR light could transmit through the hinoki wood samples with an maximum 290 

thickness of approximately 5 mm (see supplementary, Fig. S1). The light reflectance 291 

increased with an increase in wood strain. Light absorption at 925 nm is the most obvious 292 

at the spectra collected by the 1-mm FG. The signal quality decreases with an increase in 293 

distance between the light illumination and light-detection fibers, suggesting that 294 

different FGs can collect spectral data with different light absorption and scattering 295 
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degrees. Light reflectance is also affected by sample thickness. The differences in the Vis-296 

NIR spectral data, caused by sample strains, diminished in thicker samples, especially at 297 

far FGs. This could be due to the light transmission depth is different among the wood 298 

samples at various thicknesses. Since thicker wood samples have a more profound light 299 

transmission, which affected light propagates in parallel; stronger noise was associated 300 

with the collected spectra at more extended FGs. Except for signal quality, because the 301 

strain gauge was stuck on the opposite side of the SRS fixator, less transmission light 302 

could also reduce the correlation between SRS data and strain reference values. Further 303 

improvements could be considered to construct strain prediction models for thicker 304 

samples, such as reducing the distance between FGs and introducing a method to measure 305 

the strain changes where the spectral data were collected. 306 
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Fig. 4 Vis-NIR SRS spectral data collected at various sample thicknesses (vertical) 

by different FGs (horizontal).  

 307 
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Fig. 5 (b) and (c) show the digital photos of wood samples before and after tension 308 

testing with a strain of 3410 με. The stretched wood cell wall could decrease the amount 309 

of material in the measured area and increase the light transmissivity on the cell wall 310 

between the light source and the five FGs of the SRS fixator. Hence, the light reflectance 311 

values increased during the tension test. 312 

 

Fig. 5 Digital photos of the wood sample with 2 mm thickness before (a) and after 

(b) the tension test, respectively. 

 313 

To check the correlation between measured strain reference values and the spectral 314 

data changes. The SRS data collected from the total five FGs at a wavelength range of 315 

660–1002 nm were concatenated, resulting in 2555 variance values (Figure 6 (a1: 2-mm 316 

sample, b1:3-mm sample, c1: 4-mm sample, and d1: 5-mm sample)). Fig. 6 (a2-d2)) shows 317 

their first two PC loadings. The PC loadings can be understood as the weights for each 318 

variance value when calculating the PC score. The accumulated contribution rate of the 319 
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frist two scores is approximately 99.64%, 99.15%, 97.47%, and 94.48% for a sample 320 

thickness of 2, 3, 4, and 5 mm, respectively. The PC1 and PC2 scores of the SRS are 321 

shown in Fig. 6 (a3-d3), where the Y-axis shows the PC2 score and the X-axis shows the 322 

PC1 score. There is a strong correlation between PC1 loading and light scattering 323 

differences, i.e., vertical baseline shift. As expected from Fig. 4 (i.e., the differences in 324 

the Vis-NIR spectral data diminished in thicker samples), the contribution rate of the PC 325 

1 score decreases with an increase in sample thickness. Moreover, PC2 loading has 326 

relatively high absolute values at light wavelengths close to water specific band at 970 327 

nm. It suggests a meaningful correlation between the light absorption by hydrogen bonds 328 

and wood strain changings, but the contribution rate was much lower than the light 329 

scattering differences. It could be supported by the knowledge that wood becomes more 330 

ductile with increased MC (Ozyhar et al. 2012; Mvondo et al. 2017), which also affects 331 

the light scattering degree (Konagaya et al. 2016). This also suggests that MC effects 332 

much be fully valued, to build individual calibration models depends on sample MC may 333 

be the best way to reduce the MC effects.  334 

 335 
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Fig. 6 (a1-d1) Concatenated Vis-NIR difference spectral data used for PCA; (a2-d2)  

first two PC loadings; (a3-d3) first two PC socres of the concatenated Vis-NIR 

spectral data. The numbers in each scatter plot show the tensile strain reference 

values. 
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Fig. 7 (a1) shows the strain calibration results of the 18 wood samples with 336 

approximately the same thickness of 2 mm from the PLS regression method with the five 337 

FGs. The wavelength range of 900-1000 nm was selected from each FG. Fig. 7 (a2-3) 338 

shows the RMSE and the PLS regression coefficients regarding the Vis-NIR difference 339 

spectra with LV numbers 8, respectively. Table 1 shows the detailed density and MC 340 

values of all the wood samples. Overall, the PLS calibration model has a high prediction 341 

accuracy: the R2 and RMSE of the calibration set were 0.81 and 343.54 με, respectively. 342 

For the validation set, the R2 and RMSE were 0.76 and 395.35 με, respectively. 343 

Differences in the RMSE could be attributed to the strain gauge measured the strain 344 

reference values from the wood surface. By contrast, the SRS method measured the light 345 

scattering degrees mainly affected by the sample inside structures. Hence, there is a 346 

possibility that the SRS method could estimate the wood sample strain more accurately 347 

than the conventional strain gauges, but further studies are required to prove this. Fig. 7 348 

(b1-3) shows the calibration results of the same wood samples with the first three FGs (i.e., 349 

1-mm FG, 2-mm FG, and 3-mm FG) and LV numbers 7. Fig. 7 (c1-3) shows the 350 

calibration results of the same wood samples with only the first FG (i.e., 1-mm FG) and 351 

LV numbers 5. It is evident that the prediction accuracy was improved by increasing the 352 
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number of FGs, suggesting the effectiveness of the SRS method compared to the 353 

conventional NIR spectrometry. 354 

 

Fig. 7 (a1-c1) Scatter plot of measured and predicted strain values of 2-mm wood 

samples using; (a2-c2) RMSE of the predictors and response; (a3-c3) PLS 

regression coefficients. 
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Fig. 8 (a1-3) shows the strain calibration results of the 18 wood samples with 5 mm 355 

thickness from the PLS regression method with the five FGs and LV numbers 7. The 356 

same wavelength range of 900-1000 nm was selected from each FG. Table 1 shows the 357 

detailed density and MC values of all the samples. Overall, the PLS calibration model 358 

had a good prediction accuracy: the R2 and RMSE of the calibration set were 0.8 and 359 

348.81 με, respectively. For the validation set, the R2 and RMSE were 0.69 and 440.78 360 

με, respectively. Fig. 8 (b1-3) shows the calibration results of the same wood samples with 361 

the first three FGs and LV numbers 4. Fig. 8 (c1-3) shows the calibration results of the 362 

same wood samples with only the first FG and LV numbers 2. Overall, the strain 363 

prediction accuracy of the 5-mm samples was lower than that of the 2-mm wood samples, 364 

which agrees that the differences in the Vis-NIR spectral data, caused by sample strains, 365 

diminished in thicker pieces. Nevertheless, that does not mean the SRS method can not 366 

be used to assess thicker structural timbers. The maximum measurable depth of the hinoki 367 

wood samples was confirmed to be approximately 5 mm using the designed Vis-NIR SRS 368 

system (see supplementary, Fig. S1); Hence, for thick timbers, the stain prediction would 369 

be achieved by estimating the light scattering changes in the sample subsurface layers.  370 
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Fig. 8 (a1-c1) Scatter plot of measured and predicted strain values of 5-mm wood 

samples using; (a2-c2) RMSE of the predictors and response; (a3-c3) PLS 

regression coefficients. 

 371 

 372 

 373 

 374 
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Table 1 sample thickness, density, and MC 375 

 2-mm wood samples  5-mm wood samples 

Sample 
number 

Thickness 
(mm) 

Density 
(kg/m3) 

MC (%) 
Thickness 

(mm) 
Density 
(kg/m3) 

MC (%) 

1 2.0 407 11 4.8 369 8 

2 2.0 408 11 4.9 421 9 

3 1.9 397 11 4.9 435 9 

4 1.9 429 10 5.0 443 8 

5 1.8 399 10 4.8 421 8 

6 1.8 420 10 4.8 438 9 

7 1.8 419 11 4.8 473 9 

8 1.9 409 10 4.9 451 9 

9 2.0 420 10 5.2 435 9 

10 2.0 427 11 5.1 462 9 

11 2.0 403 11 5.1 430 8 

12 2.2 390 11 5.5 408 8 

13 2.1 425 10 5.0 435 9 

14 2.0 406 10 5.3 442 8 

15 2.0 407 10 5.1 439 9 

16 2.0 446 10 5.0 393 8 

17 2.1 418 10 5.0 379 9 

18 1.9 439 10 5.0 461 8 

 376 

4 Conclusion 377 

This study aims to demonstrate the correlation between light scattering changes inside 378 

the wood samples during tension testing and their macroscopic strain values. Spatially 379 

resolved diffuse reflectance was collected by designing a portable and cost-effective 380 

measurement system based on fiber probes. For the preliminary experiment, samples with 381 

different thicknesses (2 mm, 3 mm, 4 mm, and 5 mm) were measured to evaluate the 382 

influence of sample thickness. Then, for the primary experiment, each 18 wood samples 383 

with the same thickness of 2 mm and 5 mm were tested to construct a strain calibration 384 

model. The prediction accuracy for the 2 mm samples was characterized by an R2 of 0.81 385 

and an RMSE for 343.54 με for leave-one-out cross-validation, 0.76 and 395.35 μ for test 386 
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validation. The R2 and RMSE of the calibration set for the 5-mm samples were 0.8 and 387 

348.81 με, respectively. For the validation set, the R2 and RMSE were 0.69 and 440.78 388 

με, respectively. 389 

The designed SRS measurement system does not require sophisticated measurement 390 

techniques. Moreover, it has a cost-effective design due to the Vis-NIR HSI camera with 391 

short-wave sensitivity, which is much cheaper than long-wave sensitivity cameras. 392 

Further research should focus on extending the applicability of the SRS approach to a 393 

broader database of wood types and larger sample numbers with various thicknesses. The 394 

intervals between FGs should be changed to test the strain prediction of thicker wood 395 

samples. This research also references further research to measure growth strain in trees 396 

non-destructively. However, because light scattering degree is also affected by MC, this 397 

would require more in-depth spectral pretreatments. 398 

 399 
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