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Abstract

For solution growth of silicon carbide, it is significant to understanding the
evolutionary mechanism of step bunching. This study infers that solute’s
incorporation into steps and transport together determines step bunching
progress. The occurrence of step bunching is due to the depletion of solute
in the region with high step density, caused by a high step kinetic coefficient.
On the other hand, by promoting the transport of the solute in the solution,
the step speed becomes uniform, thereby the step bunching can be prevented.
Furthermore, we proposed a non-dimensional Damköhler number for crystal
growth in step-flow mode. It correlates incorporation rates with bulk dif-
fusion rates and can build a phase map of growth rates and step bunching
stability. Several solvents are located in the phase map, demonstrating the
possible usage of the phase map as a pointer for solvent designing.
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1. Introduction

Silicon carbide, especially its 4H-polytype, has proven to be a promis-
ing material for next-generation power devices due to its excellent physical
properties, such as its wide bandgap, high thermal conductivity, high elec-
tric breakdown voltage, and large saturated drift velocity. [1, 2] Solution
growth is a potential method for producing high-quality bulk SiC crystals
since growth processes under conditions close to thermal equilibrium. [3] We
have reported dislocations in seed SiC crystals being converted and wiped
out during solution growth. [4, 5, 6, 7, 8] By utilizing the threading disloca-
tion conversion phenomenon, we demonstrated crystals of dramatically high
quality.[9] The total dislocation density has been lowered to 200 cm−2, which
is a close value to the result obtained by the repeated a-face growth (RAF)
growth process.[10]

Since the liquid phase at the composition of SiC is not available, a so-
called self-flux method based on silicon melt is utilized. In this method, car-
bon dissolves at the graphite-solvent interface, transport through diffusion
and convection in solution, and crystallizes on the seed crystal. However, the
negligible solubility of carbon in pure silicon melt limits the growth rate to a
low level. The Si-Cr binary solvent has been extensively studied. The addi-
tion of chromium increases the growth rate while suppresses the formation of
2D nucleation. Because the supersaturation, ∆c = c− ceq, the driving force
of growth, is enhanced, while the relative supersaturation, σ = ∆c/ceq, the
driving force of nucleation, is reduced, respectively. [11, 12, 13, 14]

Besides the enhancement of growth rate and suppression to 2D nucle-
ation, the solvent composition also affects the surface morphology during the
so-called step-flow growth carried out on the vicinal surface. Step bunching is
a typical unfavorable morphology due to the following inclusion and dopant
inhomogeneity. [15, 16] The addition of a small amount of aluminum has
been proved effective in suppressing step bunching and thus improving the
growth morphology of SiC by Mitani et al.[14, 17, 18] With an in-situ obser-
vation of the step motions at the growing SiC crystal, Onuma et al. pointed
out that step bunching is suppressed due to a change made by adding Al in
surface kinetics rather than in mass transportation. [19] Additive elements
can thus be utilized to modify the step to a demanded height and shape
for specific purposes. We revealed the effect on step morphology of silicon-
titanium solvent during growth 4H-SiC on the C face. [20, 21] Afterwards,
Si-5%Ti solvent has been utilized to modify the shape of steps on the C
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face of 4H-SiC to realize threading dislocations’ conversion. [22] In addition
to experiments, theoretical studies are focused on illuminating the mecha-
nism of solution properties affecting step morphology. [23, 24] Mitani et al.
compared the growth results of 19 different additive elements and concluded
that additive elements change the interface energies; thus, two-dimensional
nucleation rates vary. However, the mechanism in which additive elements
affecting step bunching behavior remains open to discussion. [25]

A general understanding of the step bunching mechanism is essential for
solvent design. However, it remains challenging because the mechanism in-
cludes an interplay between mass transport and surface kinetics. In this
study, we constructed a computational fluid dynamics (CFD) model coupling
the physical phenomena at the growth interface and focused on the role of
solute transport and surface kinetics in step growth rate and bunching be-
havior. We come to a similar conclusion as the Mullins-Sekerka instability
but address the kinetic perspective of step bunching.

2. Computer simulations

In this study, a fluid dynamics simulation coupling with surface kinetics
is carried out to investigate how physical properties affect surface stability.
This model is inspired by the similar works done previous researchers.[26,
27, 28] Only we combined the features of 1) multiple steps in one grid [26]
and 2) calculate step velocities post solute concentration[27, 28] This model
allows us to simulate the behavior of plenty of steps without increasing mesh
density. Values of the step kinetic coefficient Kst and diffusion coefficient
D are changed, and step velocities and positions are observed to quantify
growth rate and bunching behavior.

The diagrammatic illustration of the model is shown in Figure 1. The
model contains a solution part and a surface part. The solution part describes
the mass transport and absorption of growth units in a laminar boundary
layer near the crystal. The upper boundary of the solution part (y = ymax)
indicates the interface between the laminar boundary layer and the imaginary
bulk solution. While the surface part, located at the bottom boundary of the
solution part, mimics a vicinal surface where aligned steps train advancing.
As shown in Fig.1 (b, c), the surface part are divided into grids (the Xis).
The step motion is independent of the grids. However, when a step enters
one mesh, it will maintain the same velocity as the other steps in this mesh.
(Fig.1 (d))
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Note that we did not explicitly consider the step height in the calculation
of mass transport because the step height is minor compared with the length
scale of the solution. [26] However, since the top of a bunch protrudes to the
solution, a bunch-top step should be less affected than a bunch-bottom step
by the solute depression caused by the step bunch. Although this difference
may be minor, we consider it significant at the initial stage of the instability.
One will find that some step bunches are artificially created to introduce
instability, and the step bunches have symmetrical profiles. One will also find
the step velocity related to the profile. That means step movements in the
two sides of a bunch, that is, entering and leaving the bunch, corresponding
to bunching and de-bunching, are supposed to be symmetrical, as well. It is
the above-mentioned minor difference between the top and bottom steps that
broke the symmetry and led to instability. Before de-bunching, a bottom step
must move in the mesh containing the bunch at a relatively small velocity
due to the depression caused by the bunch. On the other hand, a step moves
faster before it enters the mesh, and once it crosses the mesh border, it gets
bunched. That leads to a fast bunching than de-bunching in the simulation,
yet the bunch profile is symmetrical.

2.1. Model formulation

The solute transport in the solution volume is described by the convection-
diffusion equation of the form

∂c

∂t
+ v · ∇c = D∇2c. (1)

The boundary condition at top of the fluid domain where y = δc, is set as

c = c∞, (2)

where c∞ is the bulk concentration in solution. The horizontal boundaries
are set to be periodical. According to the mass conservation, the boundary
condition at the solution-solid interface is formulated for each boundary mesh
as:

Nvstρ
Sh = D∂ρL

∂y

∣∣∣∣
y=0

∆x, (3)

Where N is the number of steps in a mesh, ρS and ρL are the solutal density
in solid and liquid phase, respectively. ∆x is the mesh size in x-direction,
vst is the mean velocity of the steps in the mesh and h is the step height.
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Figure 1: The schematic diagram of the model. (a)shows the components of solution and
crystal surface. (b)shows the diagram of grids on the surface. (c)is a schematic diagram
of the actual stepped vicinal surface corresponding to the configuration of crystal surface
in the simulation, and (d)shows the calculated step velocities in each grid.
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In grids with zero steps in, the boundary condition eq. 3 becomes a simple
Neumann boundary condition

dc

dy
≡ 0. (4)

A step’s velocity can to be calculated with the concentration near the step,
cst, with [29]

vst = Kstvc(cst − ceq), (5)

where Kst is the step kinetic coefficient and vc is the volume of growth unit,
which is considered to be 1/4 of the 4H-SiC primitive cell. Combine the
molar concentration and the volume of growth unit then we get

vst = Kst(c
∗
st − c∗eq), (6)

where c∗ = c× vc. And since ρL/ρS|y=0 = c∗st, the boundary condition can be
written as

NhKst(c
∗
st − c∗eq) = D∂c∗st

∂y
∆x. (7)

2.2. Determination of physical parameters

The diffusion coefficient of carbon in pure silicon melt can be calculated
with [30]

D = 7.55× 108 exp(
−9150

1.9856T
) [µm2/s]. (8)

Since the solubility of carbon in pure silicon melt is small, consider the density
of carbon’s silicon solution being the same as pure silicon melt with

ρ = 2.54− 1.59× 10−4(T − Tm)− 1.15× 10−7(T − Tm)
2 [g/cm3], (9)

where T is the temperature and Tm is the melting point of silicon. The
carbon solubility in pure silicon melt can be calculated in mole fraction with
[31]

a% = exp(
−2.97× 104

T
+ 7.95). (10)

Converted in weight fraction

w% =
1

1 + MSi

MC
( 1
a%

− 1)
(11)
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and converted to molar concentrationin

c = ρ
w%

MC

NA × 10−12 [mole/µm3]. (12)

where M is the molecular weight, NA is the Avogadro number. While the
normalized concentration c∗ appeared in this study is the number of solutal
atoms in every primitive cell

c∗ = c× vc, (13)

where vc = 2.0554× 10−11µm3 is the volume of a primitive cell of 4H-SiC.
The physical properties used in simulations shown in Figure 3, 4 and 5

are listed in Table 1 while the properties for simulation shown in Figure 6
are listed in Table 2. The physical properties used for simulation shown in
Figure 7 and 8 are the same as those listed in Table 1 except the varied values
of diffusion coefficient and step kinetic coefficient.

3. Results and discussion

3.1. Effects of Kst

Primarily, the step velocity is directly determined by the step kinetics,
which is characterized by the step kinetic coefficient. It is defined as

Kst = νast(
ak
δk
) exp(−∆U

kBT
), (14)

where ν is the attempt frequency, ast is the unit advancing distance of a step,
ak and δk are the length of a single kink site and the average distance between
two neighbouring kink sites, respectively. ∆U is the solvation barrier, kB is
the Boltzmann constant and T is the temperature. In the pre-exponential
factor, δk, the average distance between kinks, can be written as δk = a[1 +
1/2 exp(ω/kBT )], where ω is the energy necessary for creation of a kink,[32]
which is actually the interface energy of the crystal-solution interface in our
case. Thus we consider the step kinetic coefficient reflecting an important
aspect of the solution properties.

One of the major obstacles to fully linking experimentally observed step
bunching behaviors to additive elements is our lack of knowledge about the
step kinetics. Onuma et al. indicated that the transition from step bunching
to stable growth by addition of aluminum is due to surface kinetics rather
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Table 1: Physical properties used in simulation for revealing the effect of step kinetic
coefficient.
Physical property Mark Value Unit
Boundary condition
Step height h 3.0730 Å
Off angle θ 0.75 ◦
Equilibrium concentration c∗eq 0.00188
Bulk concentration c∗∞ 0.00476

Geometry
x-direction length Lx 40 µm
y-direction length Ly 300 µm

Initial Configuration
Pertubation wave number kx π µm−1

Pertubation amptitude δx 0.1 µm

Dynamics
Temperature T 2073 K
Diffusion coefficient D 8180 µm2/s
Step kinetic coefficient Kst 2× 100 - 2× 107 µm/s
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Table 2: Physical properties used in simulation for revealing the effect of diffusion coeffi-
cient.
Physical property Mark Value Unit
Boundary condition
Step height h 3.0730 Å
Off angle θ 0.75 ◦
Equilibrium concentration c∗eq 1.0
Bulk concentration c∗∞ 2.0

Geometry
x-direction length Lx 50 µm
y-direction length Ly 50 µm

Dynamics
Diffusion coefficient D 104 & 108 µm2/s
Step kinetic coefficient Kst 104 & 108 µm/s

than other solution properties like diffusivity or carbon solubility. Although
the direct evidence for step kinetics being modified by aluminum is not able to
be obtained, they convincingly conducted the conclusion through two facts,
with the addition of 5% aluminum, the thermal calculation showing that
solvent properties change minorly and the step velocities showing a transition
from a step height dependant mode to a step height independent mode.
[19] However, a direct and quantitative study is still necessary to reveal
the influence of kinetics on step bunching. Experimentally determining the
step kinetic coefficient (as the fraction of step velocity and supersaturation)
requires an in-situ measurement to elementary steps, which is very difficult,
if not impossible, in the case of solution growth of SiC for the high growth
temperature. In this study, therefore, we carried out a series of simulations
with a varied Kst values to reveal its influence on step bunching behavior.

The simulations are carried out on a 0.75◦ tilted vicinal substrate. Thus
the surface is intrinsically stepped. Figure 2 shows the diagram of the side
view of a stepped surface. The line graph indicates the surface with step
trains perfectly equidistant arranged, with the n-th step’s “perfect position”
being nδ0. The steps advance towards the x-direction in vst. To introduce an
instability, we set steps deviating from the perfect positions by δx cos(knδ0)
in the initial simulation configuration, indicated by the filled graph. This
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Figure 2: The schematic diagram of the vicinal surface. Evenly spaced step trains are
represented by a line graph, while step trains deviating from evenly spaced positions by
δx cos(knδ0) are represented as a filled graph. The deviation of step position leads to steps
aggregating and separating periodically, forming a periodically step-bunching morphology.
The numbers indicate regions with different step densities.

initial configuration is the same ones in step bunching analyses utilizing the
perturbation theory.[33, 34, 35, 36] Since it is difficult to affirm whether
an elementary step is bunched, the “local slope” is measured instead in this
study. On a smooth surface, each step has the same local slope of p0 = tan θ0,
where θ0 is usually mentioned as the “off-angle” in experimental studies. On
an undulated surface, the local slope varies. For a step in a step bunching
(indicated as 1 in Fig.2) it is p1 = tan θ1 while for a step out of a bunching
(indicated as 2) it is p2 = tan θ2, where θ1 > θ2 are the angles between
the tangent line of surface profile passing the step and the horizontal line.
We can quantitatively tell how dense the step is bunched by measuring the
elementary step’s local slopes. Table 1 lists the other parameters used in the
simulation.

Figure 3 shows (a) the initial and (b) the as-grown surface morphology.
Note that this is an enlarged portion of the whole surface with a total length
of 40 µm. Compared with the initial morphology, the step bunchings on
the as-grown surface are higher and steeper. The statistic root-mean-square
(RMS) of the surface height measures the surface roughness.

∆hRMS =

√
1

n
(∆h1)2 + (∆h2)2 + ...+ (∆hn)2, (15)

where ∆hi is the difference between the i-th interpolated value on the surface
height profile and the mean surface height. Fig.3(b) diagramticly shows the
measurement of ∆hi and the mean surface height.

The changes of surface roughnesses over time are measured for two crys-
tals with step kinetic coefficients varying from 2µm/s to 2 × 107µm/s. We
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Figure 3: The enlarged height profile of the crystal surface (a)before and (b)after growth.
The growth period is 500 seconds.
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chose such a wide range because the Kst can vary broadly when the temper-
ature, kink creation work, or the solvation barrier are changed. The results
Kst = 2 × 107µm/s and 2 × 103µm/s are shown in Figure 4. The rest re-
sults show no significant difference from the results obtained with the two
values. For the clarity of our discussion, only the two critical results are
displayed. The growth time at maximum is 500 seconds. Because no arti-
ficial solid-on-solid (SOS) restriction is applied in this model and the steps
in the case of Kst = 2 × 107µm/s starts to overlap after growing for over
500s. (Although an SOS restriction is usually preferred for the advantage of
preventing steps from overlapping, we did not include the restriction due to
a consideration of the law of mass conservation.) For the crystal with a small
value of Kst = 2× 103µm/s, the surface roughness remains constant, indicat-
ing there is little further step bunching. While for the crystal with a large
value of Kst = 2 × 107µm/s, the surface roughness increases exponentially
over time with a short-period oscillation. The reason for the exponential
growth will be discussed in the next section. The oscillation and increase of
surface roughness imply how steps bunch. Once step bunches are formed, the
elementary steps are not constantly fixed in the current bunches. Instead,
the elementary steps keep leaving their current bunches from the front and
entering the next bunches from behind. This results in two kinds of tempo-
rary states, 1) there are more elementary steps leaving than entering, and
the step bunches dissipate, 2) there are more entering than leaving, and the
step bunches grow. It is the alternating of the two temporary states which
leads to the oscillation in surface roughness. If the entering of elementary
steps to bunches is faster than leaving, the probability of temporary state 1)
thus is higher than 2). Therefore, the step bunches are enhanced, and the
surface roughness increase. That is the exact reason why would a large value
of kinetic coefficient results in step bunching.

To vertify the mechanism of Kst affecting step bunching behavior, the
step velocities vst against the local slopes p are plotted in Figure 5. Note
that the local slope p is replaced with step the local density

pi =
Ni

∆x
, (16)

where the subscript i refers to the i-th surface grid and N is the number of
steps in the surface grid. According to the mechanism of step bunching, a
step bunch increases its height because the steps in it have different velocities
from the other steps. As shown in Fig.5(a), despite the variance among
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Figure 4: Change of surface roughnesses over growth time. Note that the root mean square
of height profile is normalized by its initial value for clear.

Figure 5: Scatter plots of step velocities against the local slopes over the growth time of
crystal whose step kinetic coefficient is (a)2×103µm/s (b)2×107µm/s. The scatters colors
indicate the time passed since the growth started.
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local slopes, step velocities are the same and remain constant over the whole
growth duration. Bear in mind that the step’s local slope indicates how dense
the step is bunched. The constant and slope-independent velocities reveal
that with small Kst, no matter a step is in a bunch or on the terrace, the
velocity should be the same. On the other hand, as shown in Fig.5(b), step
velocity shows an apparent inverse proportional relationship with the local
slope, indicating that a step in a bunch slows down itself and will be caught
by other steps coming from behind. Thus, the bunch grows larger. It is also
noteworthy that the distribution of scatters changes over time in Fig.5(b).
At the beginning stage, the variances of both the step velocities and the
local slopes are minor. But during growth, both the two variances increase.
The synchronous increases in variances indicate the mechanism of a surface
loses its stability: Since the step velocities reversely depend on the local
slopes, elementary steps collide ahead into bunches, resulting in higher step
densities in bunches and lower on terraces. That results in step movements
even slower in bunches and faster on terraces. Furthermore, again the slower
moving bunches catch more steps from terraces. Step bunches intensify step
bunching. That is why the surface roughness increases exponentially (shown
in Fig.4).

3.2. Effect of D
An enormous value for step kinetic coefficient, Kst, results in an enhance-

ment in step bunching behavior. On the other hand, the diffusion coefficients
are revealed to affect step bunching behavior in a reversed manner, as shown
in Figure 6. Fig.6 shows the solutal concentration as a result of simulations
using a pair of large and small values of both diffusion coefficient and step
kinetic coefficient. The boundary condition is the same as the simulations
carried out in the last section, but the crystal-solution boundary now has
only one macrostep aggregated at the center of the surface (where the dark-
est part is located in the colormap in Fig.6) instead of steps distributed on
the whole surface with different densities. We also calculated the relative step
velocities with the solutal concentration on the crystal-solution boundary c∗st
with vst = Kst(c

∗
st − c∗eq). In the case of Fig.6(a) small D but large Kst, as

analyzed in the last section, the solute are consumed by steps rapidly and can
not be supplied in time by diffusion. Therefore, a low-concentration regime
appeared around the macrostep, resulting in steps in the macrostep deceler-
ated to a shallow level compared with the velocity of independent elementary
step v∞st (eq. 17). In the two cases (b) large D and large Kst (c) small D and
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Figure 6: Solutal concentration and the relative step velocities simulated by CFD model
with a macrostep at the center of the lower boundary. Only the diffusion coefficient and
the step kinetic coefficient varied. The units for D is µm/s2 and for Kst is µm/s.

small Kst, the consumption of solute can be partially supplied by diffusion,
thus the solute is less depleted arount the macrostep. We also found that
the relative velocity is the same in the two cases. In contrast, in the last
case (d) large D but small Kst, the solute consumption is entirely supplied
by diffusion, and the solutal concentration difference is almost smoothed out,
and the steps in macrosteps are no longer decelerated, which corresponds to
the situation in Figure 5 (b).

3.3. Nondimensional Analysis of Growth Phase Map

According to Chernov,[37] in solution growth, step velocity of equally
spaced steps on a vicinal surface can be written as

v∞st =
Kstceqvcσ

1 + aKst

πD ln(x0

a
sinh(πδ

x0
))
, (17)

where σ is the supersaturation degree at the maximum of boundary layer, a
is the height of a elementary step, x0 is the distance between two neighboring
steps, δ is the thickness of boundary layer.
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In most cases of solution growth, the boundary layer thickness is much
larger than the step distance,

πδ ≫ x0.

Therefore, the step velocity can be approximated as

vst ≈
Kstceqvcσ

1 + pKstδ
D

, (18)

where p = a/x0.
While the reversed influences of step kinetics and diffusion have been

elucidated in the last sections, according to equation 18, analysis of the
balance between step kinetics and solute diffusion needs to be developed
to provide a holistic picture. In this regard, we define a non-dimensional
Damköhler number (Da) for step-flow growth from solution as the ratio of
reaction rate to diffusion rate and classify the observed regimes as a function
of this number

Da =
pKstδ

D
, (19)

where pKst is the “surface kinetic coefficient” reperesenting the incorporation
rate of solute on the growth surface, δ is the characteristic length thus D/δ
is the characteristic diffusion velocity. Similar nondimensional numbers are
defined and used as criteria of transition between stable growth and dendritic
growth[38] or as an explanation of the growth rate profile in epitaxy of GaAs
by MOCVD method[39]. Da ≫ 1 implies that the incorporation of growth
units occurs mush faster than diffusion in solution. This leads to the diffusion
limited growth regime since the solute consumed will not be supplemented
in time. The step velocity can be approximated to

vst ≈
Dceqvcσ

pδ
. (20)

It makes sense since the steps will have to slow down to compensate for the
decrease in solute concentration, which is more drastic near step bunching.
For Da ≪ 1, the growth enters a kinetic limited regime, in which any con-
sumption of solute will be supplemented immediately. Thus all steps will
maintain the same velocity no matter where it is. The step velocity is then

vst ≈ Kstceqvcσ. (21)
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Figure 7: (a) Relative standard deviation of step velocity phase map and (b) average step
velocity phase map as functions of Damköhler number. High Damköhler number leads to
step bunching.

Figure 7(a) shows the two regimes mentioned above of step-flow growth
as a function of the step kinetic coefficient and diffusion coefficient. Different
values of the Damköhler number (Da) are represented by the contour colors.
As mentioned above, the transition from high to low Damköhler number re-
sults in the variation of growth mode from bunching to stable. It implies
that a stable crystal growth process requests a large diffusion coefficient but
a small step kinetic coefficient. On the other hand, Fig.7(b) shows the av-
erage step velocity as a function of the step kinetic coefficient and diffusion
coefficient. Two regimes are divided by the contour line on which the step
velocity reaches 1 µm s−1, and the macroscopic crystal growth rate reaches
100 µm h−1. With one of the independent variables, say, the diffusion coeffi-
cient fixed, the increase in step velocity by raising the step kinetic coefficient
will meet a limitation, vice versa. Thus, to increase the growth rate, the large
diffusion coefficient is still necessary, and the step kinetic coefficient must be
raised as well.

The above discussion implies that the growth rate and surface morphology
are partially a trade-off when designing solvent for crystal growth. Fortu-
nately, there is an intersection between the fast growth regime and the stable
growth regime, as shown in Figure 8. One can then refer to the intersection
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as the “ideal regime”, where both the growth rate and the morphology are
acceptable.

3.4. Solvent design based on Damköhler number

By locating solvent on the phase map shown in Figure 8, we can figure
out the “best” solvent for solution growth of SiC. To locate the solvent, one
needs both the diffusion coefficient and the step kinetic coefficient values.
The data of diffusion coefficient of substances is available from databases.
While for the mixtures, the data of diffusion coefficient is obtained using the
Stokes-Einstein equation.[40] The viscosity data is estimated with the uni-
fied equation developed by Kaptay et al.ref[41]. However, the step kinetic
coefficient remains unknown due to a lack of knowledge of the interface and
solvation energy. Therefore, instead of using the step kinetic coefficient, we
first locate the solvent by the reported growth rates as a contour line. The
intersection point between this contour line and a vertical line indicating
the value of diffusion coefficient then is asserted as the location of solvent.
Bearing in mind the arbitrariness of all the estimations, we located several re-
ported solvents on the phase map, as shown in Fig.8. Since the reported cases
have varied supersaturations, the step velocities are “normalized” by the su-
persaturations. The values of Si, Si0.95Ti0.05, Si0.6Cr0.4 and Si0.56Cr0.4Al0.04
are typical values obtained in our previous experimental researches. While
the values of Si0.67Al0.33 and Si0.65Ni0.31Al0.04 are obtained from the report in
which Onuma et al precisely measured the step velocities through an in-situ
observation to the step movement.[19]

The coordinate of the solvents indicates that the solvent composition has
a more negligible effect on the diffusion coefficient than on the step kinetic co-
efficient, and the elements reduce the diffusion coefficient without exception.
Nickel and chromium improve the growth rate by increasing the step kinetic
coefficients by almost an order of magnitude. People usually attribute the
effect of improving growth rate to the increasing in carbon solubility. How-
ever, this study implies that these additive elements’ modification of surface
kinetics also contributes to the growth rate rise. On the other hand, the
addition of aluminum decreases the step kinetic coefficient, stabilizing step
bunching and decreasing step velocities.
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Figure 8: Phase map for solvent designing based on Damköhler number, several reported
solvents are located on the phase map.

4. Conclusion

Solvent design involving reaction rate and transport phenomena rate is
an approach to rapid and stable crystal growth. In this study, simulations
are carried out about the influence of kinetic coefficient and diffusion rate on
the step flow growth of the crystal.

1. The evolution behavior of surface roughness depends on the value of
Kst. It is because the dependence of step velocity on the local slope
will be changed by Kst, switching surface stability.

2. The dimensionless Damköhler numberDa = pKstδ/D which determines
the growth mode can be used as a criterion of intrinsic stability.

3. The ideal zone for both rapid and stable crystal growth requests for
large D and moderate Kst.

Besides all the discussion above about the effect on step bunching behavior of
the balance between step kinetics and mass transport, this study also reveals
why supersaturation does not influence such step morphologies. As indicated
by Mitani et al. [14]—changing supersaturation can only raise or lower step
velocities in an aggregative manner, which do not affect the step velocity
variance, thus no effect on step bunching behavior.
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