
DOCTOR THESIS

Genetic Algorithm-based Optimization of
Generative Adversarial Networks and its

Applications

HE Bate
Department of Complex Systems Science

Graduate School of Informatics
Nagoya University

Japan

Contents

Abstract . 4

1 Introduction 7

1.1 Research Background . 7

1.2 Issues and Challenges . 10

1.3 Related Works . 11

1.3.1 Stock price prediction . 11

1.3.2 Successive Image Generation . 12

1.3.3 Others time-series data generation by using GANs 13

1.3.4 Optimization of GANs . 14

1.4 Motivations and Contributions . 15

1.5 Overview of the Thesis . 17

2 Theory 19

2.1 Multi-layer Perceptron . 19

2.2 Convolutional Neural Network (CNN) . 20

2.2.1 Convolutional layer . 22

2.2.2 Activation Function . 24

2.2.3 Pooling layer . 27

2.2.4 Fully Connected Layer . 28

2.3 Recurrent Neural Networks, Long Short-Term Memory, Gated Recur-

rent Units . 30

2.3.1 Recurrent Neural Networks . 30

2.3.2 Long Short-Term Memory . 32

1

2

2.3.3 Gated Recurrent Units . 33

2.4 Generative Adversarial Networks (GANs) 35

2.4.1 How GANs work . 35

2.5 Genetic Algorithm . 41

2.6 Comparative Algorithm . 43

2.6.1 Autoregressive Average (AR) model 45

2.6.2 Moving Average (MA) model . 45

2.6.3 Autoregressive Moving Average (ARMA) model 45

2.6.4 Autoregressive Integrated Moving Average (ARIMA) model . . . 45

2.6.5 Model Parameter Estimation . 46

3 Stock Price Prediction 47

3.1 Introduction . 47

3.2 Methodology . 48

3.2.1 Training Discriminator . 49

3.2.2 Training Generator . 50

3.2.3 Process . 50

3.3 Experiment . 50

3.3.1 Experimental Dataset . 50

3.3.2 Training Strategy . 52

3.3.2.1 rolling window training 52

3.3.2.2 segmented data training 52

3.3.3 Experimental Results . 54

3.4 Summary . 59

4 Optimization of GANs on Stock Price Prediction 60

4.1 Introduction . 60

4.2 Methodology . 61

4.2.1 Successive-GANs (GANs, LSTM) – Basic Model 61

4.2.2 Optimization by Genetic Algorithm 63

4.2.3 Modified GA processing . 67

3

4.3 Experiment . 69

4.3.1 Experimental Dataset . 69

4.3.2 Pretest for GA design . 69

4.3.3 Experimental Results . 70

4.4 Summary . 72

5 Successive Image Generation of Pedestrian Walking Behavior 74

5.1 Introduction . 74

5.2 Methodology . 75

5.3 Experiment . 82

5.3.1 Datasets . 82

5.3.2 Experimental Details . 83

5.3.2.1 Evaluation by PSNR . 84

5.3.2.2 Evaluation by using a CNN classifier 85

5.3.3 Experimental Results . 85

5.4 Summary . 88

6 Optimization of GANs on Successive Image Generation of Pedestrian Walking Be-

havior 89

6.1 Introduction . 89

6.2 Methodology . 90

6.2.1 Basic Model . 90

6.2.2 Optimization Process . 90

6.3 Experiment . 91

6.3.1 Experimental Dataset . 91

6.3.2 Pretest for GA design . 93

6.3.3 Experimental Result . 94

6.4 Summary . 95

7 Conclusion 97

Acknowledgment . 113

4

Abstract

The time-series data is a series of values obtained by continuously observing changes over

time in a specific phenomenon; such as economic data, weather changes data, airplane

ticket prices and so on. Since the accurate prediction of the time-series data is vital for ev-

eryday life, several algorithms are studied widely by many researchers. Previous time-series

analysis includes Autoregressive conditional heteroscedasticity model (ARCH), Autoregres-

sive integrated moving average (ARIMA), Markov model, and machine learning algorithms

(Recurrent Neural Networks, Long Term-Short Memory, etc.). Although, recently, supervised

machine learning algorithms have been successively applied to predict the time-series data,

the training process needs a large amount of learning data to develop the mathematical

model of the prediction. Therefore, unsupervised learning is advantageous in analyzing and

predicting time-series data because it can use less unlabeled training data. As a representa-

tive of unsupervised learning, Generative Adversarial Networks (GANs) have an outstanding

ability to learn data distribution and generate data tasks not only in the image data domain,

but also in the text data, and other non-image data domain. In this study, GANs model is

applied for time-series data prediction.

Some researchers have been applied GANs for the prediction of the time-series data and

their researches show that the prediction model based on GANs has better results than pre-

vious methods. However, there is one problem to be solved. The prediction accuracy of

the GANs-based model depends on the hyper-parameters of the GANs and the data pre-

processing for the prediction model. In the previous studies, they were determined manu-

ally by humans. Since the design of hyper-parameters and the data pre-processing depend

on the different GANs model and the task to be solved, it is difficult for inexperienced re-

searchers to determine them in advance. Design of the hyper-parameters of the GANs and

the data pre-processing by Genetic Algorithm (GA) is presented in this study. GA is widely

used in optimizing deep learning frameworks such as Convolutional Neural Networks and

has achieved excellent results. For this reason, GA is used to optimize GANs, which have a

more complex structure. For an optimization problem, GA represents a certain number of

candidate solutions as chromosomes so that the population can evolve to a better solution.

Therefore, the purpose of this research is as follows:

5

1. The first is to establish a suitable Generative Adversarial Networks (GANs) model for

time-series numerical data and continuous images data in order to maximize the po-

tential ability of GANs for predicting time-series data.

2. The second is to present the way to design the hyper-parameters of the GANs auto-

matically and the data pre-processing by Genetic Algorithm (GA).

The validity of the proposed model is discussed in the experiments on stock data predic-

tion and continuous walking images of pedestrians.

GANs have two networks: a Generator and a Discriminator. In the application of stock

data prediction, the adequate selection of the networks for a Generator and a Discrimina-

tor is discussed firstly. Long Short-Term Memory (LSTM) is adopted for the Generator, and

then, Multi-layer perceptron (MLP), Recurrent Neural Network (RNN), Gated Recurrent Unit

(GRU), and Long Short-Term Memory (LSTM) are compared for the Discriminator. The re-

sults show that the best accuracy is observed when Long Short-Term Memory (LSTM) is

used for both the Generator and the Discriminator. A GA-based optimization algorithm is

applied to optimize both sliding window size for data pre-processing and hyper-parameters

for GANs, such as the number of hidden layers and the number of units on each hidden

layer. The results show that the proposed algorithm can simultaneously determine the slid-

ing window size for the proposed model and the hyper-parameters. Besides, the prediction

accuracy has been improved.

In the successive image generation of pedestrian walking behavior, GANs model adopts

convolutional neural networks (CNN) as the Generator and the Discriminator. Then, the

continuous past images are taken as input data for GANs, and then, the continuous future

images are generated. Another GA-based optimization algorithm is applied for the opti-

mization of both number of input and output images and the hyper-parameters of CNN

such as the number of hidden layers and activation functions. The results show that the

proposed algorithm can simultaneously determine the number of input and output images

and hyper-parameters. Besides, the quality of the generated image has been improved.

In Automated Machine Learning (AutoML), researchers tend to focus on the model con-

struction for machine learning automation and ignore the importance of data pre-processing.

6

This study simultaneously optimizes data pre-processing and model construction, breaking

through the previous limitation that AutoML only optimizes the model network structure.

Chapter 1

Introduction

1.1 Research Background

Artificial intelligence is a new technical science that uses and develops theories, methods,

technologies, and application systems to simulate, extend and expand human intelligence.

The purpose of the research is to promote intelligent machines for speech recognition, ma-

chine translation, image recognition, text recognition, speech synthesis, human-computer

dialogue, human-computer games, theorem proofs, robots, and autonomous driving cars,

for example. In the summer of 1956, scientists such as McCarthy and Minsky [1] held a meet-

ing at Dartmouth College in the United States to discuss "how to use machines to simulate

human intelligence." This meeting marked the birth of the intelligent discipline.

In this thesis, the development of artificial intelligence is divided into the following six

stages:

The first stage is the initial development period: 1956 to the early 1960s. After the con-

cept of artificial intelligence was put forward, several remarkable research [2] results have

been achieved, such as machine theorem proofs, checkers programs, etc., which set off the

first examples of the development of artificial intelligence.

The second is to reflect on the development period: 1960s-early 1970s. The breakthrough

progress in the early stage of the development of artificial intelligence has significantly in-

creased people’s expectations of artificial intelligence [3] [4]. People began to try more chal-

lenging tasks, putting forward unrealistic research and development goals. However, suc-

cessive failures and the failure of expected goals (for example, the inability to use machines

to prove whether the sum of two continuous functions is a continuous function) have not

7

8

helped the jokes about machine translation.

The third stage is the application development period: the early 1970s to the mid-1980s

[5]. The expert system that emerged in the 1970s simulated the knowledge and experience

of human experts to solve problems in a specific field, and a breakthrough in artificial intel-

ligence from theoretical research to the practical application was realized, from the discus-

sion of general reasoning strategies to the use of specialized knowledge.

The fourth stage is the period of downturn development: the mid-1980s to the mid-

1990s [6]. As the application scale of artificial intelligence continued to expand, problems

such as a lack of application fields, lack of common-sense knowledge, difficulty in acquiring

knowledge, single reasoning methods, lack of distributed functions, and difficulty in com-

patibility with existing databases were gradually exposed.

The fifth is a period of steady development: the mid-1990s to 2010. Due to the devel-

opment of network technology, especially internet technology, the innovation research of

artificial intelligence was accelerated, and artificial intelligence technology moved further

towards practicality. In 1997, the International Business Machines Corporation (IBM) Deep

Blue supercomputer [7] defeated the world chess champion Kasparov. In 2008, IBM put

forward the concept of "Smart Earth". The above are all landmark events of artificial intelli-

gence in this period.

The sixth stage is the period of vigorous development: 2011 to present. With the im-

provement of both software (machine learning algorithms) and hardware (CPU, GPU, cloud

computing) in computer science, machine learning has been overloaded from theoretical

algorithms to practical applications. The applications include various application cases

such as image classification [8–11], speech recognition, question-answer system, and au-

tomatic drive. This development has led to a new surge of explosive growth in machine

learning.

Machine learning can be divided into the following categories:

• Supervised learning [12] learns a function from a given training data set. When new

data arrives, it can predict the results based on this function. The training set require-

ments for supervised learning include input and output, which can also be said to

be features and targets. Standard supervised learning algorithms include regression

9

analysis and statistical classification.

• Compared with supervised learning, unsupervised learning [13] has no artificially la-

beled results in the training set. Standard unsupervised learning algorithms include

Generative Adversarial Network (GANs) [14] and clustering.

• Semi-supervised learning [15] is somewhere between supervised learning and unsu-

pervised learning.

• Reinforcement Learning (RL) [16] is a field of machine learning that learns "what to

do (i.e., how to map the current situation to an action) to maximize the numerical

earnings." The learner is not told what actions to take but must try to discover for

himself which actions will yield the most rewarding results.

The difference between supervised learning and unsupervised learning is whether re-

searchers label the target of the training set. Researchers use training sets, and they all have

inputs and outputs.

Machine learning is represented by supervised learning Convolutional Neural Networks

(CNN) [17] and has achieved great success. However, CNN is not good at data genera-

tion and fitting data distribution, and the emergence of GANs provides a good idea and

framework for this field. At present, machine learning is divided into four aspects: super-

vised learning, unsupervised learning, semi-supervised learning, and reinforcement learn-

ing. CNN has shown compelling performance in the field of supervised learning. The emer-

gence of GANs has taken the field of unsupervised learning a big step forward. GANs are

composed of the Generator and Discriminator. The advantages of this framework are as

follows:

• The model only uses back-propagation, without a Markov chain [18].

• In theory, if a function is differentiable, it can be used to construct Discriminator and

Generator because it can be combined with a deep neural network to make a deep

generative model.

10

• The Generator’s parameter update is not directly from the data sample but instead

uses the back-propagation from the Discriminator (this is the most different from the

traditional method).

1.2 Issues and Challenges

Although GANs have made significant breakthroughs in generating data [19–30], and have

also achieved specific results in time-series prediction [31–36], GANs still have some un-

solved problems in the prediction of time-series data. This research focuses mainly on the

following unsolved problems:

1. Constructing the corresponding GANs model based on different time-series data is the

first problem. GANs are not so much a model as a framework, in which the Generator and

Discriminator are essential components. There are complex problems for training GANs

when choosing the differentiable network structure, setting the corresponding loss function,

and setting the input and output. Since the input of the original GANs is a random vector,

it will be difficult to train if the random vector is also used when processing the time-series

data. Besides, time-series data is generally unstructured data. Although GANs do not require

a large amount of manually labeled structured data compared to traditional CNN, a certain

degree of data pre-processing is necessary.

2. Optimization of models based on GANs. When using GANs-based models to train

and predict time-series data, the GANs model has to be optimized to achieve the best re-

sults. In the supervised learning represented by CNN, many optimization methods have

been produced, including the multi-objective optimization method [37, 38], the ensemble

method [39–42], and the genetic algorithm-based method [43–46], for example, but the op-

timization of GANs is focused on improving the quality of the generated pictures [47–55].

There are relatively few optimization methods for time-series data. Since GANs are com-

posed of two differentiable networks against training, it is almost impossible to optimize

two networks simultaneously, so finding a way to optimize GANs to improve their expres-

siveness is an important topic.

These two issues are challenging for researchers. In particular, in the second problem

above, optimizing GANs-based models can not only promote the automatic generation of

11

models, but also automatically make different models for different datasets, which makes

the GANs-based model more flexible in solving problems. Predicting future data based on

historical time-series data can be applied in many fields, and solving these problems can

better help these applications.

1.3 Related Works

Works related to these issues in this thesis are summarized below.

1.3.1 Stock price prediction

The prediction of time-series data, such as in economic data, weather changes, and airplane

ticket prices, for example, has important significance to everyday life. The changes in these

data are also based on changes in historical data. Conventional and state-of-art methods for

time-series data prediction will be introduced in this section.

In the area of Quantitative Finance, the Autoregressive Integrated Moving Average model

(ARIMA), one of the methods of time-series forecast analysis [56–59], was widely used be-

fore neural networks. The ARIMA model has three parameters (p,d , q), which represent the

order of the autoregressive model, the degree of differencing, and the order of the moving-

average model, respectively. Although the ARIMA model is simple enough only to need en-

dogenous variables and not need other exogenous variables, it is a linear model which and

has two serious demerits:

• The time-series data are required to be stationary, or it must be stable after being dif-

ferencing.

• Essentially, the ARIMA model can only capture linear relationships in a time-series

dataset and not in nonlinear relationships.

Long Short-Term Memory (LSTM) [60] is one type of Recurrent Neural Network (RNN)

[61] architecture. Unlike ARIMA, LSTM can mine the nonlinear information from time-

series data like stock market data [62–66]. At first, LSTM was used for Natural Language

Processing (NLP). Currently, it can be used with speech recognition tasks and time-series

tasks for capturing deep patterns from these datasets [67–69]. In the study, "Stock market’s

12

price movement prediction with LSTM neural networks" [62], the researchers used LSTM

networks to predict future trends of stock prices based on the historical stock price. The

researchers achieved 55.9% accuracy on average whether the stock was forecast to go up or

not. In the research "Applying long short term memory neural networks for predicting stock

closing price" [63], the researchers used stock data from the S&P and the NASDAQ to predict

next-day stock movement by using the LSTM model. The results showed that LSTM had a

slightly higher prediction accuracy than conventional methods, such as ARIMA.

Recently, GANs have also been applied to stock prediction [70]. In the research "Stock

market prediction on high-frequency data using generative adversarial nets" [71] the re-

searcher employed LSTM and CNN for adversarial training to forecast high-frequency stock

data. Their experiments showed that their approach effectively improves stock price predic-

tion accuracy and reduces forecasting errors. In "Stock market prediction based on genera-

tive adversarial network" [72], the researchers also used GANs as their basic framework, and

they set MLP as the Discriminator and LSTM as the Generator.

In addition to LSTM and GANs, researchers have also used other neural network meth-

ods to predict stock movements [73–78].

The above researches used GANs for stock prediction and achieved some promising re-

sults. However, the models have not been optimized, and it is not clear which model can

perform best. In other words, these models lack good interpretability.

1.3.2 Successive Image Generation

The pedestrian prediction method will be introduced in this section. Although this research

focuses on the successive image generation of pedestrians [79–81], there are some other

prediction methods for pedestrian prediction task [82–86].

In the research "Planning-based prediction for pedestrians." [87] the researchers pre-

sented an approach that can determine robot movements while not hindering the move-

ments of people to replace pedestrian’s trajectories. The experiments were held in an office

environment.

In work "Deep multi-scale video prediction beyond mean square error" [88], the authors

learned to predict future images from a video (successive images). The authors trained a

13

convolutional network to generate future images that were given an input sequence. In ad-

dition, the authors used Mean Squared Error (MSE) as the loss function. In another similar

work, "Generating videos with scene dynamics" [89], the researchers also used GANs for the

video generation tasks. They separated the successive images (video data) into foreground

and background. Their experiments showed tiny videos could be generated up to a sec-

ond, which is better than simple baselines. However, the results cannot generate tiny videos

logically and showed video images such as humans having three eyes. In the research, "To

Create What You Tell: Generating Videos from Captions" [90], the authors tried to generate

videos from an input sentence that contained the movement of objects such as an image

including digit 6 moving up and down.

Since researchers can obtain helpful information by predicting the future of frames of

the video, and GANs have shown advantages over traditional methods in the above several

studies, the results from the generated videos are often incomprehensible to humans. These

incomprehensible results occur for reasons: first, too many categories of the data set make

the GANs model unable to learn too many video features; second, the researchers did not

optimize when building the model. As a result, the model did not perform at its best.

1.3.3 Others time-series data generation by using GANs

There are also other applications using GANs on time-series data prediction. In the research,

"C-rnn-gan: Continuous recurrent neural networks with adversarial training" [31], the au-

thors proposed a GANs model that uses continuous sequential data, which is a collection of

classical music. They concluded that the model could generate great music as judged by the

audience. In addition, in research entitled, "Real-valued (Medical) Time Series Generation

with Recurrent Conditional GANs" [32], the researchers proposed a Recurrent GAN (RGAN)

and Recurrent Conditional GAN (RCGAN) produce realistic medical data.

One problem with GANs is that it has limitations when the purpose is for generating

sequences for discrete data. To overcome this problem, SeqGAN is proposed in the study

"SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient" [91], where the gen-

erator is an intelligent body in reinforcement learning, the state is the generated token, the

action is the next generated token, a Monte Carlo search is used to estimate the state behav-

14

ior value, and the policy gradient is used to train the gradient. The discriminator is a CNN

network that evaluates the generated sequences and guides the generative model learning.

A good generative model preserves the characteristic of a temporal dynamic. In other

words, the generated sequence can restore the relationship between each time step of the

original. In the research, "Time-series Generative Adversarial Networks" [92], the authors

discuss how the previous proposed GANs methods do not sufficiently preserve the temporal

correlation of time series. A new GANs framework is proposed in this work. It combines the

flexibility of the unsupervised paradigm with supervised training. By combining a learning

embedding space jointly optimized for supervised and adversarial objectives, the network

is allowed to comply with dynamic soft-constrained data during sampling.

1.3.4 Optimization of GANs

Automated Machine Learning (AutoML) has become a trend in the development of machine

learning since CNN has become widely used. AutoML can not only make machine learning

models achieve the best pattern recognition results but can also automatically build corre-

sponding models for different data sets. Most importantly, this process is automated and

does not require the machine learning experience of experts to design unique models.

The Genetic Algorithm used in this study to optimize GANs has been used to optimize

CNN automatically in previous studies [93–96]. To search for neural network architecture,

the paper "Genetic CNN" [97] limits the network to a limited depth, and each layer is a pre-

set operation, but there are still many candidate networks. To search effectively in a vast

search space, "Genetic CNN" proposes accelerating a Genetic Algorithm. In order to do this,

the authors first construct the initial population, then perform genetic selection operations,

such as crossover and mutation on the individuals in the population, judge their adaptabil-

ity through the accuracy of recognition, and finally obtain a substantial population. Such an

encoding form can encode the current mainstream classification structure, but it also has

many limitations: 1) The current connection method requires only convolution and pool-

ing, and other tricky modules, such as Maxout, cannot be used. 2) The convolution kernel

at each stage is fixed, which hinders the fusion of multi-scale features. In another work,

"Automatically Designing CNN Architectures Using Genetic Algorithm for Image Classifica-

15

tion" [98], the researchers also proposed an automatic CNN architecture design approach

using a Genetic Algorithm.

Many works on optimizing CNN structure using a Genetic Algorithm exist, but few works

on optimizing GANs exist. In work "Evolutionary generative adversarial networks" [99], the

authors convert the adversarial training process of the original GANs into an evolutionary

problem, making the entire training process more stable and improving the performance of

the generator. This optimization process has three operations:

• Variation: The link of the variation is the process of generating offspring Gθ1Gθ2...Gθn

through an individual Gθ through a mutation operator

• Evaluation: For each generated offspring to be evaluated by a fitness function, the

fitness function must depend on the current environment (the discriminator)

• Selection: Excellent offspring should be selected according to the fitness value to enter

the next evolutionary iteration process

The crossover operation did not appear in the whole optimization operation, and the

chromosome did not emerge for iteration. Therefore, in this research, a Genetic Algorithm

cannot be accurately used, but an algorithm that dynamically changes the loss function is

used instead to optimize GANs.

In work, "Genetic algorithm-optimized long short-term memory network for stock mar-

ket prediction" [100], the researchers used a Genetic Algorithm to optimize a long short-

term memory network for stock market prediction. They set the LSTM’s inside structure as

a hyper-parameter which had to be optimized.

1.4 Motivations and Contributions

The research above has contributed to GANs breakthroughs in modeling and predicting

time-series data that were not apparent in previous single models, but there is still much

room for improvement in prediction accuracy and optimization. Related studies such as E-

GAN, which is the first application of a genetic algorithm to GANs, however, generate higher

quality images. E-GAN is not considered a genetic algorithm in the strict sense because it

16

does not use crossover and variation. The main contribution of this study is the optimiza-

tion of GANs when processing time-series data using genetic algorithms. Previous research

has focused on optimizing the structure of the machine learning model itself, but while the

model itself is crucial in machine learning, processes such as data pre-processing can also

have a massive impact on the training results. This study uses genetic algorithms to combine

the data pre-processing and the training model for optimization. This has the advantage

of eliminating the need for the experience and knowledge of human experts in adjusting

hyper-parameters when processing time-series data for prediction tasks with GANs models

and making the entire training process more automated. This study uses these advantages

as innovative points for experiments, and the time-series data are chosen for two reasons:

• Stock data is chosen among many time-series data for the following reasons: stock

data has a relatively high value for analysis, and due to the rise of machine learning,

there are more and more studies applying machine learning to economic analysis;

secondly, stock data is relatively easy to obtain, through some packages such as the

mlpfinance library of python, for example. Various types of stock data can be obtained

directly through this and other packages. Also, stock data are somewhat cyclical and

can be modeled by historical data to make predictions.

• The image data of a pedestrian walking continuously was chosen because we think

the GANs handle time-series data differently when facing numerical data and succes-

sive image data. If the following image of the pedestrian can be predicted, then the

application scenario will be extensive.

The main contributions of this study are as follows.

1. This study proposes a model for analyzing and predicting time-series data based on

GANs. It aims to go from unsupervised to semi-supervised learning by changing the

way the data are trained.

2. This study proposes a genetic algorithm-based optimization method that automati-

cally generates an optimal GANs model for each time-series data. This optimal model

obtained can maximize the predictive power of the model.

17

3. This study combines the data pre-processing process and the process of GANs model

building for optimization, which extends the machine learning automation extended.

1.5 Overview of the Thesis

This paper consists of seven chapters.

Chapter 1 includes the research background, its issues and challenges, and a discussion

of related research in four categories: 1) Stock price prediction, 2) Successive Image Gen-

eration, 3) Other time-series data generation using GANs, and 4) Optimization on GANs.

Chapter 1 also concludes with the motivations and contributions and the thesis.

Chapter 2 describes the fundamental methodologies that are used in the proposed meth-

ods and several comparative algorithms. Generative Adversarial Networks are highlighted

because these Networks are the basic framework used in this thesis. Convolutional Neural

Networks are introduced for use with successive images. Recurrent Neural Networks, Long

Short-Term Memory, and Gated Recurrent Units are introduced for use with the time-series

stock data. A Genetic Algorithm was introduced for optimization on sequential GANs. Com-

parative Algorithm, which includes ARIMA, and optical flow, is also introduced.

Chapters 3 and 4 describe the first application task, i.e., stock prediction. Chapter 3

describes how the GANs model, the pre-processing data method, and the corresponding

training strategy are built for the stock data, the time-series data which is used in this study,

for the prediction task. Furthermore, it compares with the previous research methods. The

original GANs are first converted into GANs that can process time-series data. LSTM is set

up in the generator because LSTM performs best in the distribution of time-series data when

capturing. Suitable for the Discriminator, MLP, RNN, LSTM, GRU are set up. Two training

methods are proposed: sliding windows, segmented training. Experiments prove that the

combination of G-LSTM and D-LSTM performs best. Chapter 4 optimizes the GANs model

with the best results using genetic algorithm based on Chapter 3. The GANs model and

data pre-processing are combined and optimized simultaneously for machine learning au-

tomation. The input data and the hyper-parameters in the generator’s network structure

are combined for training. The results show that the optimized GANs model is better than

the unoptimized model. The performance is even better, although this adds much time to

18

training the model.

Chapters 5 and 6 describe the second application task, i.e., successive image generation.

In this application task, video data of walking pedestrians, in other words, successive image

data, is used for analysis and prediction. Since successive image data is somewhat different

from continuous time-series data, the study’s modeling details and optimization modeling

process of GANs are different from Chapters 3 and 4. In the model establishing process, re-

verse CNN are set to the generator in GANs, and CNN (like a two-classifier) are set to the

Discriminator. Then, RMSE and a CNN 8-classifier are used to evaluate the results of gen-

erated future images by using GANs. Experiments show that the results of our proposed

method are better than previous studies. The genetic algorithms are used to establish an

optimization scheme based on this model. The number of input pictures, the number of

output (predicted) pictures, and the hyper-parameters in the generator are combined with

the network structure for training. The results show that the optimized GANs model per-

forms better than the unoptimized model.

Chapter 7 concludes this research. The conclusions are summarized, and the overall

contribution of this work is discussed as well as suggestions for future work.

Chapter 2

Theory

2.1 Multi-layer Perceptron

A Multi-layer Perceptron (MLP) [101] is also called an Artificial Neural Network (ANN). A

neural network is a simulation and simplification of biological neurons. Biological neurons

are composed of dendrites, cell bodies, axons, and other parts. Dendrites are the input end

of the cell body and receive surrounding nerve impulses; axons are the output end of the cell

body, transmitting nerve impulses to other neurons. Biological neurons have two states of

excitement and inhibition. When the receiving stimulus is higher than a certain threshold,

it will enter an excited state and transmit the nerve impulse from the axon; otherwise, there

is no nerve impulse. The basic structure of the multi-layer perceptron (MLP) is based on

the biological neuron model. The most typical MLP includes the input layer, hidden layer,

and output layer. The different layers of the MLP neural network are fully connected (fully

connected means that any neuron in the upper layer is connected to all neurons in the next

layer), as shown in Figure 2.1.

If the input has N dimensions, the input layer has N neurons.

The hidden layers are fully connected with the input layer. If the input layer is repre-

sented by X , the output of hidden layers is f (W1X +b1), where W1 is weight, b1 is the bias,

and the function f can be a sigmoid function or tanh function.

The hidden layers to the output layer can be regarded as a multi-category logistic regres-

sion, a softmax regression. Therefore, the output of output layer is so f tmax(W2X1 +b2),

where X1 represents the output of hidden layers f (W1X +b1).

19

20

Fig 2.1: Multi-layer Perceptron

In summary, MLP can be expressed as the following function:

f (x) =G(b2 +W2(si g moi d(b1 +W1x))) (2.1)

Therefore, all the parameters of MLP are the connection weights and biases between

layers, including W1, b1, W2 and b2. For a specific problem, solving the best parameter is

an optimization problem. To solve the optimization problem, the simplest method is using

the Gradient Descent [102]. First, all parameters are initialized randomly, then iteratively

trained, and the training process continuously calculates the gradient and updates the pa-

rameters until a certain value is satisfied.

2.2 Convolutional Neural Network (CNN)

Like the way children learn to recognize objects, an algorithm is needed that shows millions

of pictures before the input can be generated and predictions made about images that have

never been seen before.

Computers "see" things in different ways than we do. Their world consists only of num-

21

bers. Each image can be represented as a two-dimensional array of numbers, called pixels.

However, the fact that they perceive images differently does not mean that we cannot

train their recognition patterns, just like how we do to recognize images. We need to think

about what an image is differently.

To "teach" an algorithm to recognize objects in an image, a specific type of artificial neu-

ral network has to be used: a Convolutional Neural Network (CNN). The name comes from

one of the most critical operations in the network: convolution.

Convolutional neural networks are inspired by the brain. DH Hubel and TN Wiesel’s re-

search [103] on the mammalian brain in the 1950s and 1960s proposed a new model of how

mammals perceive the world visually. They showed that the visual cortex of cats and mon-

keys includes neurons that specifically respond to neurons in their immediate environment.

In their paper, the authors described two basic types of visual neuron cells in the brain,

each of which functions in a different way: simple cells (S cells) and composite cells (C cells).

In 1980, a researcher named Fukushima proposed a hierarchical neural network model

[104]. He called it the new cognition. The model was inspired by the concept of simple

and complex cells. Fukushima described a ’neocognitron’, which can recognize patterns by

knowing the shape of objects.

Later, in 1998, the convolutional neural network was introduced by Bengio, Le Cun, Bot-

tou, and Haffner [105]. Their first convolutional neural network is called LeNet-5, which can

classify numbers in handwritten digits.

A Convolutional Neural Network (Convolutional Neural Network) is abbreviated as CNN.

CNN is mighty in image recognition. Many image recognition models have been extended

based on the CNN architecture. It is also worth mentioning that the CNN model is one of

the few deep learning models built regarding the visual organization of the human brain.

Figure 2.2 depicts a CNN model for pattern recognition. The image at the leftmost is our

input layer, which the computer understands as inputting several matrices, basically in the

same way as DNN.

The input image is followed by the Convolution Layer (Convolution Layer), which is

unique to CNN. The activation function of the convolutional layer uses ReLU. It is very sim-

ple, namely, ReLU(x)=max(0,x). Behind the convolutional layer is the Pooling layer, which is

22

Fig 2.2: Convolutional Neural Network

also unique to CNN. It should be noted that there is no activation function for the pooling

layer.

The combination of the convolutional layer + the pooling layer can appear many times

in the hidden layer, and it appears twice in the above figure. This number is based on the

needs of the model. Of course, the convolutional layer + convolutional layer can be used

flexibly, or the combination of convolutional layer + convolutional layer + pooling layer, so

that there are no restrictions when building the model. However, the most common CNN is

a combination of several convolutional layers + pooling layers, such as the CNN structure in

the figure above.

Behind several convolutional layers+pooling layers is a fully connected layer (Fully Con-

nected Layer, referred to as FC). The fully connected layer is the DNN structure, but the

output layer uses the Softmax activation function for image recognition classification.

From the above CNN model description, compared to DNN, CNN is more remarkable in

the convolutional layer and pooling layer.

2.2.1 Convolutional layer

For image convolution, different local matrices of the input image and the elements in each

position of the convolution kernel matrix are multiplied, and then added.

In the following example, the input in the figure is a two-dimensional 3x4 matrix, and

23

the convolution kernel is a 2x2 matrix. In this case, the convolution is convolved by moving

one pixel at a time so that the upper-left corner of the input 2x2 is convolved with the con-

volution kernel, that is, the elements at each position are multiplied and then added, and

the output matrix S is the value, which is aw+bx+ey+fz. Next, the input part is translated to

the right by one pixel, and then it is a matrix composed of four elements (b,c,f,g) and the

convolution kernel to convolve so that the elements of S01 of the output matrix S result. It

uses the same method, elements of S02, S10, S11, S12, S02, S10, S11, S12 of the output matrix

S result.

Fig 2.3: Convolution layer

24

2.2.2 Activation Function

Each neuron node in the neural network accepts the output value of the previous layer of a

neuron as the input value of this neuron and passes the input value to the next layer. The

input layer neuron node will directly pass the input attribute value to the next layer (hidden

layer or output layer). In a multi-layer neural network, there is a functional relationship

between the upper node’s output and the lower node’s input. This function is called the

activation function.

If the activation function has not been used, the activation function is f(x) = x, and the

input of each layer of the node is the linear function of the output of the upper layer. Regard-

less of the many layers of a neural network, the output is a linear combination of the input,

which is equivalent to the effect of no hidden layer. In this case, the model is the most primi-

tive perceptron (MLP), so the approximation ability of the network is quite limited. Because

of the above reasons, a non-linear function will be used as the excitation function so that the

deep neural network expression ability is more powerful (no longer a linear combination of

inputs, but almost any function can be approximated).

Sigmoid is a commonly used nonlinear activation function, and its mathematical form

is as follows:

f (z) = 1

1+e−z
(2.2)

The geometric image of Sigmoid is as follows:

The sigmoid function can transform the continuous real value of the input into an output

between 0 and 1. In particular, if the input is a vast negative number, the output is 0; if the

input is a vast positive number, the output is 1.

However, the sigmoid function has some flaws:

• Disadvantage 1: In the deep neural network, it causes gradient explosion and gradient

disappearance when the gradient is transferred backward. The probability of gradient

explosion is minimal, and the probability of gradient disappearance is relatively large.

• Disadvantage 2: Sigmoid function’s output is not zero mean (i.e., zero-centered). This

is undesirable because it will cause neurons in the next layer to get the non-zero mean

25

Fig 2.4: Sigmoid function

output signal of the previous layer as input.

• Disadvantage 3: Sigmoid function’s analytical formula contains exponentiation, which

is relatively time-consuming to solve by computer. For large-scale deep networks, this

will greatly increase the training time.

The Tanh function’s mathematical form is as follows:

t anh(x) = ex −e−x

ex +e−x
(2.3)

The geometric image of Tanh is as follows:

The Tanh function [106] is omitted by a Hyperbolic Tangent. The Tanh function solves

the problem of a non-zero-centered output of the Sigmoid function. However, the problems

of gradient vanishing and exponentiation still exist.

The ReLU function’s mathematical form is as follows:

Relu = max(0, x) (2.4)

The geometric image of ReLU is as follows:

The ReLU function [107] is a maximum value function. Note that this is not all-interval

derivable, but the sub-gradient, as shown in the figure above, can be used. Although ReLU

26

Fig 2.5: Tanh function

Fig 2.6: ReLU function

27

is simple, it has been an important achievement in recent years. It has the following advan-

tages:

• Solved the gradient vanishing problem (in the positive range)

• The calculation speed is breakneck, the ReLU function only need to judge whether the

input is greater than 0

• The convergence speed is much faster than Sigmoid and Tanh

ReLU also has several issues that require special attention:

• The output of ReLU is not zero-centered

• The Dead ReLU Problem refers to the fact that some neurons may never be activated,

causing the corresponding parameters never to be updated. Two reasons cause this

situation: (1) Highly unappropriated parameter initialization, which is relatively rare.

(2) The learning rate is too high, which leads to too much parameter update during the

training process, which unfortunately makes the network enter this state. The solution

for these two situations is to use the Xavier initialization method and avoid setting the

learning rate too large or using optimizers such as AdaGrad that automatically adjust

the learning rate.

Despite these two problems, ReLU is still the most used activation function.

2.2.3 Pooling layer

Compared with the complexity of the convolutional layer, the pooling layer is much simpler.

The pooling compresses each sub-matrix of the input tensor. If the layer is 2x2 pooling, then

every 2x2 element of the sub-matrix becomes an element. If it is 3x3 pooling, then every 3x3

element of the sub-matrix becomes an element so that the dimensions of the input matrix

get smaller.

A pooling standard is needed to turn every nxn element of the input sub-matrix into an

element. There are two common pooling standards, MAX or Average. Both of which take the

maximum or average value of the corresponding area as the element value after pooling.

28

The following example uses the maximum pooling method. In addition, 2x2 pooling is

used. The stride is 2.

First, the red 2x2 area is pooled. Since the maximum value of this 2x2 area is 6, the value

of the corresponding pooling output position is 6. Since the stride is 2, the pooling process

moves to the green position for pooling at this time and outputs the maximum value of 8. In

the same way, the output values of the yellow and blue areas can be obtained. In the end,

the input 4x4 matrix is compressed and becomes a 2x2 matrix after pooling.

Fig 2.7: Max Pooling

2.2.4 Fully Connected Layer

Fully connected (FC) layers play the role of "classifiers" in the entire convolutional neural

network [108]. If operations such as the convolutional layer, pooling layer, and the activa-

tion function layer map the original data to the hidden layer feature space, the fully con-

nected layer plays the role of mapping the learned "distributed feature representation" to

29

the sample label space. In actual use, the fully connected layer can be realized by a convo-

lution operation: the fully connected layer that is fully connected to the previous layer can

be transformed into a convolution with a convolution kernel of 1x1, and the fully connected

layer that is the convolutional layer in the previous layer can be transformed into the con-

volution kernel, which is the global convolution of hxw , where h and w are the height and

width of the previous convolution result, respectively.

Fig 2.8: Fully Connected Layer

At present, due to the redundancy of fully connected layer parameters (the fully con-

nected layer parameters account for about 80% of the entire network parameters), some

recent network models with excellent performance, such as ResNet and GoogLeNet, use

global average pooling (GAP) to replace FC to fuse the learned deep features, and then, fi-

nally, use softmax and other loss functions as the network objective function to guide the

learning process.

30

2.3 Recurrent Neural Networks, Long Short-Term Memory, Gated Recur-
rent Units

2.3.1 Recurrent Neural Networks

For the CNN mentioned in the last subsection, the input and output of the training sample

are relatively specific. However, there is a kind of problem that CNN is not easy to solve, the

training sample input is a continuous sequence, and the length of the sequence is differ-

ent, such as a time-based sequence with segments of continuous speech and segments of

continuous handwritten text, for example. These sequences are relatively long and have dif-

ferent lengths, and it is difficult to split them into independent samples for training through

CNN directly.

For this type of problem, RNN [61] is better. RNN assumes that our sample is based on

the sequence. For example, for any sequence index number t from sequence index 1 to se-

quence index T , its corresponding input is x(t) in the corresponding sample sequence. The

hidden state of the model at the sequence index number t position h(t) is determined by

x(t) and the hidden state at t−1 position (t−1) joint decision. At any sequence index num-

ber t , the corresponding model prediction output is o(t). By predicting the output o(t) and

the real output of the training sequence y(t), and the loss function L(t), CNN-like methods

can be used to train the model and then used to predict the output of some positions in the

test sequence.

Figure 2.9 below shows how the RNN works.

Fig 2.9: RNN model

31

For any sequence index number t , our hidden state h(t) is obtained by x(t) and h(t„1):

ht =σ
(
zt

)
=σ

(
Wh xt +Uhht−1 +bh

)
(2.5)

where σ is active function of RNN, the active function sets t anh generally; ht is the hid-

den state at time t ; xt is the input at time t , and ht−1 is the hidden state at time t −1. Wh and

Uh are the weights to be trained, and bh is the bias.

The output of the model when the sequence index number t is o(t), and the expression

is relatively simple:

ot =V ht + c (2.6)

At the end of the sequence index number t , the prediction output is:

y ′
t =σ(ot) (2.7)

Usually, because RNN is a classification model for recognition classes, the above activa-

tion function is generally softmax.

Through a loss function L(t), such as the log-likelihood loss function, loss of the model

at the current position can be quantified as the distance between y ′
(t) and y(t).

With the basis of the RNN forward propagation algorithm, it is easy to derive the flow

of the RNN back propagation algorithm. The idea of the RNN back-propagation algorithm

is the same as that of CNN. To acquire the appropriate RNN model parameters U,W,V,b,c,

iteration of the gradient descent method has to process. Since back-propagation through

time is used, the back-propagation of RNN is sometimes called BPTT (back-propagation

through time). Of course, the BPTT and CNN here are also very different because, in BPTT,

all the parameters (U, W, V, b, c) are shared at various positions in the sequence, and the

same parameters are updated during back-propagation.

Although RNN can solve the training of sequence data beautifully in theory, it also has

shortcomings. These two shortcomings cause it to generally not be directly used in NLP

fields such as speech recognition, handwritten books, and machine translation. For exam-

ple,

32

• Long Term Dependencies: In the field of deep learning (especially RNN), the problem

of "long-term dependence" is widespread. The reason for the long-term dependence

is that when the nodes of the neural network have been calculated in many stages, the

characteristics of the previous relatively long time slice have been covered.

• Gradient Vanishing/Exploding: Gradient disappearance and gradient explosion are

two of the critical problems that plague RNN model training. The gradient disap-

pearance and gradient explosion are caused by the cyclic multiplication of the weight

matrix of the RNN. Multiple combinations of the same function will lead to extreme

nonlinear behavior. The gradient disappearance and gradient explosion mainly exist

in RNN, because each time slice in RNN uses the same weight matrix. For a DNN,

although it also involves the multiplication of multiple matrices, the problem of gra-

dient disappearance and gradient explosion can be avoided by carefully designing the

ratio of weights.

Gradient truncation can be used to deal with gradient explosion. The gradient cut-

off manually reduces the gradient whose gradient value exceeds the threshold θ. Al-

though the gradient truncation will change the direction of the gradient to a certain

extent, the direction of the gradient truncation is still the direction in which the loss

function decreases.

Compared with gradient explosion, gradient disappearance cannot be solved simply

by a threshold method like gradient truncation because the phenomenon of long-term

dependence will also produce a small gradient.

2.3.2 Long Short-Term Memory

The motivation of LSTM [60] is to solve the Long-Term Dependencies problem and the Gra-

dient Vanishing/Exploding problem mentioned above. LSTM can solve the long-term de-

pendence of RNN because LSTM introduces a gate mechanism to control the circulation

and loss of features.

Figure 2.10 shows how the LSTM works.

LSTM has a more complex structure than RNN. When the input is time series data, each

33

Fig 2.10: LSTM model

cell computes with the following function:

ft =σ(W f xt +b f +U f ht−1 +b′
f)

it =σ(Wi xt +bi +Ui ht−1 +b′
i)

g t = t anh(Wg xt +bg +Ug ht−1 +b′
g)

ot =σ(Wo xt +bo +Uoht−1 +b′
o)

ct = ft
⊙

ct−1 + it
⊙

g t

ht = ot
⊙

t anh(ct)

(2.8)

where ht is the hidden state at time t ; ct is the cell state at time t ; xt is the input at time t ,

and ht−1 is the hidden state at time t −1. ft , it , g t and ot are forget gates, input gate 1, input

gate 2, and output gates, respectively. W f , Wi , Wg , Wo and U f , Ui , Ug , Uo are the weights to

be trained, and b f , bi , bg , bo and b′
f , b′

i , b′
g , b′

o are the bias.

2.3.3 Gated Recurrent Units

The motivation for using GRU [109, 110] is also to solve the Long-Term Dependencies prob-

lem and Gradient Vanishing/Exploding problem. However, the LSTM model has lots of

weights to calculate. Moreover, GRU has a similar performance to LSTM, and the model

does not have many weights. Figure 2.11 shows how the GRU works.

34

Fig 2.11: GRU model

Each cell of GRU computes with the following function:
zt =σ(Wz xt +bz +Uzht−1 +b′

z)

rt =σ(Wr xt +br +Ur ht−1 +b′
r)

nt = t anh(Wn xt +bn + rt ∗ (Unht−1 +b′
n))

ht = (1− zt)∗nt + zt ∗ht−1

(2.9)

where ht is the hidden state at time t ; xt is the input at time t , and ht−1 is the hidden state

at time t −1, and zt , rt , nt are the update, reset and new gates, respectively. Wz , Wr , Wn and

Uz , Ur , Un are the weights to be trained, bz , br , bn and b′
z , b′

r , b′
n are the bias.

In the LSTM and GRU models, σ is the sigmoid function;
⊙

is the Hadamard product.

The Hadamard product of an m × n matrix A and an m × n matrix B is marked as A
⊙

B. For

example, A 3 × 2 matrix A
⊙

a 3 × 2 matrix B with the flowing function.

The structure of GRU input and output is like an ordinary RNN, and the interior idea is

similar to LSTM. Compared with LSTM, there is no "gating" mechanism inside the GRU,

which has fewer parameters than LSTM, but it can also achieve functions equivalent to

LSTM. Considering the computing power and time cost of the hardware, GRU can also be

used in many cases to solve the time series forecasting problem.

a11 a12

a21 a22

a31 a32

⊙b11 b12

b21 b22

b31 b32

=
a11b11 a12b12

a21b21 a22b22

a31b31 a32b32

 (2.10)

35

2.4 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) [14] is an unsupervised machine learning frame-

work which is used in the theoretic of game theory. This framework trains two differentiable

networks: Generator G to capture the data distribution and Discriminator D to discriminate

whether the data is real data or generated data. Although GANs was originally proposed

for unsupervised learning, it has also been shown to be useful for semi-supervised learning,

supervised learning, and reinforcement learning. Yann LeCun, an outstanding representa-

tive in the field of deep learning, wrote on Quora: "Generative Adversarial Networks (GANs)

and related changes are what I think it is the most interesting idea in the field of machine

learning in the past decade."

The training of GANs can be analogized to the process of playing chess. If a chess player

wants to improve his chess playing skill, then his opponent who plays chess has to be more

skillful than him. Then in the process of playing chess the player needs to learn what he does

not do well and what his opponent does well, so that he can think how to beat his opponent.

This concept can be incorporated into building better models. So in simple terms, to acquire

a powerful skill in playing chess (like Generator), the model need a stronger opponent (like

Discriminator).

Another analogy similar to the relationship between the Discriminator and the Gener-

ation in GANs is the relationship between the forger (Generator) and the investigator (Dis-

criminator). The task of the forger is to imitate the paintings of famous artists. If the forged

work can surpass the original work, then the forger can sell the work for a lot of money.

On the other hand, the task of art investigators is to catch these forgers. The competition

between the counterfeiters and the investigators continued, eventually giving birth to high

skilled counterfeiters and investigators.

2.4.1 How GANs work

The Generator network and the Discriminator network are shown in Figure 2.12.

The Generator network uses random inputs and tries to output "realistic-looking" data

samples. In the image below, the Generator G(z) gets the input z from pz(z), where z is

a sample from the probability distribution p(z). The Generator generates a piece of data

36

Fig 2.12: Generative Adversarial Networks

and passes it to the Discriminator network D(x). The task of the Discriminator network

is to receive real data or to generate data, and to try and predict whether the input is real

or generated. This task requires an input x from pd at a(x), where pd at a(x) is the true data

distribution. D(x) then uses the Sigmoid function to solve the binary classification problem

and outputs a value from 0 to 1.

The loss function of GANs is the Min-Max loss function:

min
G

max
D

V
(
D,G

)
= Ex∼pd at a (x)

[
logD(x)

]
+Ez∼pz (z)

[
logD

(
1−G

(
z
))]

(2.11)

The Generator network and Discriminator network are not trained simultaneously. The

training strategy is to use separate alternating iterative training.

To use this training for the Discriminator: Assume that the Generator network model is

already available (however, it may not be the best Generator network), then given random

inputs, the output will receive fake sample data, as well as true sample sets. Next, the la-

bels of true and false samples are artificially defined because the output of the true sample

data should be as close to 1 as possible, and the false sample data to 0. Obviously, to Dis-

criminator all the labels of the true sample data are defaulted to 1, and all the labels of the

37

fake sample data are defaulted to 0. In this way, in terms of the Discriminator network, the

problem becomes a simple supervised two-classification problem, which is directly passed

to the network model for training. Figure 2.13 shows this process of training the Discrimi-

nator network. Assuming that the training of Discriminator network is complete, and then

it is the turn for the Generator network training.

Fig 2.13: Generative Adversarial Networks

The loss function of Discriminator is shown below:

max
D

V
(
D,G

)
= Ex∼pd at a (x)

[
logD(x)

]
+Ez∼pz (z)

[
logD

(
1−G

(
z
))]

(2.12)

To use this training for the Generator: generate samples that are as realistic as possi-

ble. Judging the authenticity of the generated samples requires the Discriminator network,

so when training the generated network, the Discriminator network must be used together

with the Generator to achieve the purpose of training. If only use the Generator network to

train, there will be no loss to do the back propagation. But if the Discriminator network that

has just been trained is connected to the back of the Generator network, there will be losses

for training. Therefore, the training of the Generator network is training of the Generator-

Discriminator network concatenated, as shown in Figure 2.14. Currently, the key point is

38

that the labels of these fake samples should be set to 1, which means that these fake sam-

ples are real samples in the Generator network training. Only in this way the Generator can

serve the purpose of confusing the discriminator, and can also make the generated false

samples gradually approach the real samples. To train the Generator network, sample data

(only a fake sample set, and not a real sample set), with the corresponding label (all 1) is

used. When training this concatenated network, don’t discern the changes in the parame-

ters of the Discriminator network, which means that the parameters should be prevented

from being updated, but the loss should be passed all the way to the Generator network.

This completes the training of the Generator network.

Fig 2.14: Generative Adversarial Networks

The loss function of Generator is shown below:

min
G

V
(
D,G

)
= Ez∼pz (z)

[
logD

(
1−G

(
z
))]

(2.13)

After completing the Generator network training, new fake samples can be generated

from the previous random input z based on the current new Generator network, and the

fake samples after training are more like real data. Then there is a new set of true and false

samples (in fact, a new set of false samples), so that the above process can be repeated. This

39

process is called separate alternating iterative training. A number of iterations can be de-

fined and stopped after a certain number of alternate iterations. One of the most important

points is the transformation from false samples to real samples in the training process.

In summary, the iteration training of GANs includes two processes completed in se-

quence:

• Training the Discriminator, fixing the Generator (fixing means not training, the net-

work only propagates forward, not back propagation)

• Training the Generator and fixing the Discriminator.

There are several steps when using the GANs framework to generate "realistic-looking"

data:

• Step 1: Define the problem. The problem is like generate fake images or text. The

problem should be fully defined and collect data.

• Step 2: Define the GANs architecture. According to the problem, different differen-

tiable networks should be set in Generator and Discriminator.

• Step 3: Use real data to train the discriminator for N epochs. Train the discriminator

to correctly predict that the real data is true. Here N can be set to any natural number

between 1 and infinity.

• Step 4: Use the generator to generate fake input data to train the discriminator. Train

the discriminator to correctly predict false data as false.

• Step 5: Train the generator with the access of the discriminator. When the discrimina-

tor is trained, its predicted value is used as a marker to train the generator. Train the

generator to confuse the discriminator.

• Step 6: Repeat steps 3 to 5 for multiple epochs

• Step 7: Manually check whether the fake data is reasonable. Stop training if it seems

appropriate, otherwise go back to step 3. This is a manual task, and manual evaluation

of data is the best way to check the degree of counterfeiting. When this step is over,

the researcher can evaluate whether the GANs are performing well.

40

Algorithm 1 Mini-batch stochastic gradient descent training of generative adversarial nets.
The number of steps to apply to the discriminator, k, is a hyper-parameter.

for number of training iterations do
for k steps do

• Sample mini-batch of m noise samples {z(1),..., z(m)} from noise prior pg (z).

• Sample mini-batch of m examples {x(1),..., x(m)} from data generating distri-
bution pd at a(x).

• Update the discriminator by ascending its stochastic gradient:

▽θd

1

m

m∑
i=1

[
logD

(
x(i)

)
+ log

(
1−D

(
G

(
z(i)

)))]
(2.14)

end for

• Sample mini-batch of m noise samples {z(1),..., z(m)} from noise prior pg (z).

• Update the Generator by ascending its stochastic gradient:

▽θg

1

m

m∑
i=1

log
(
1−D

(
G

(
z(i)

)))
(2.15)

end for
The gradient-based updates can use any standard gradient-based learning rule.

41

Compared with other generative models, GANs has the following advantage:

• GANs can generate samples faster than completely obvious belief networks (NADE,

PixelRNN, WaveNet, etc.), because it does not need to generate different data in the

sampling sequence.

• GANs do not require Monte Carlo estimation to train the network. People often com-

plain that GANs are unstable and difficult to train, but they are much simpler than

training Boltzmann machines that rely on Monte Carlo estimation and logarithmic

partition functions. The Monte Carlo method does not work well in high-dimensional

spaces. Boltzmann machines have never been extended to tasks like Image-Net. GANs

can at least learn to draw some fake images after training on Image-Net.

• Compared to variational autoencoders, GANs do not introduce any deterministic bias,

and variational methods introduce deterministic bias, because they optimize the lower

bound of the log likelihood, rather than the likelihood itself, which seems to cause the

instances generated by VAEs, which are more obscure than GANs.

• Compared with non-linear ICA (NICE, Real NVE, etc.), GANs do not require the la-

tent variables input by the generator to have any specific dimensions or require the

generator to be reversible.

• Compared with Boltzmann machines and GSNs, the process of generating instances

of GANs only requires the model to run once, rather than iterating many times in the

form of Markov chains.

2.5 Genetic Algorithm

The Genetic Algorithm (GA) [111] originated from the computer simulation study of bio-

logical systems. It is a stochastic global search and optimization method developed by im-

itating the biological evolution mechanism of nature, drawing lessons from Darwin’s the-

ory of evolution and Mendel’s theory of genetics. Its essence is an efficient, parallel and

global search method, which can automatically acquire and accumulate knowledge about

42

the search space during the search process, and adaptively control the search process to find

the best solution.

Relevant terms are given below:

• Genotype: the internal manifestation of trait chromosomes.

• Phenotype: the external performance of the trait determined by the chromosome, or

the external performance of the individual formed according to the genotype.

• Evolution: The population gradually adapts to the living environment, and the quality

is continuously improved. The evolution of organisms is carried out in the form of

populations.

• Fitness: a measure of the degree of adaptation of a species to the living environment.

• Selection: Select several individuals from the population with a certain probability.

Generally, the selection process is a process of survival of the fittest based on fitness.

• Reproduction: When a cell divides, the genetic material DNA is transferred to the

newly produced cell through replication, and the new cell inherits the genes of the

old cell.

• Crossover: DNA is cut at a certain position of two chromosomes, and the front and

back strings are cross-combined to form two new chromosomes, which is called ge-

netic recombination or hybridization.

• Mutation: It is possible (with a very small probability) that some replication errors will

occur during replication, and mutation will produce new chromosomes, showing new

traits.

• Individual: this term refers to the entity with characteristics of the chromosome.

• Population: a collection of individuals, the number of individuals in the collection is

called the size of the population.

43

Each chromosome in the genetic algorithm corresponds to a solution of the genetic algo-

rithm. Generally, we use the fitness function to measure the pros and cons of this solution.

So, the fitness from a genome to its solution forms a mapping. The process of a genetic

algorithm is a process of finding the optimal solution in a multivariate function.

The realization process of genetic algorithm is like the evolution process in nature. First,

look for a scheme to "digitally" encode the potential solution of the problem (Establish the

mapping relationship between phenotype and genotype). Then initialize a population with

random numbers, and the individuals in the population are these digital codes. Next, af-

ter an appropriate decoding process, the fitness function is used to evaluate the fitness of

each individual gene. Use the selection function to select the best according to a certain

regulation. Let individual genes mutate.

Then produce offspring. The biggest advantage of using a genetic algorithm is that it is

easy to "find" the optimal solution; that is, simply "negate" some individuals who are not

performing well.

The general steps of the genetic algorithm are summarized as follows:

Start the cycle until a satisfactory solution is found.

1) Assess the fitness of the individual corresponding to each chromosome.

2) Following the principle that the higher the fitness, the greater the probability of selection,

select two individuals from the population as the parents.

3) Extract the chromosomes of both parents and cross over to produce offspring.

4) Make mutations to the chromosomes of the offspring.

5) Repeat steps 2, 3 and 4 until a new population is produced.

End the loop.

2.6 Comparative Algorithm

Linear Models

Traditional linear models are explained in this section. The Autoregressive Average (AR)

model, the Moving Average (MA) model, the Autoregressive Moving Average (ARMA) model

44

Fig 2.15: Genetic Algorithm

45

and the Autoregressive Integrated Moving Average model (ARIMA) are described and then,

the algorithm to determine the model parameters are described.

2.6.1 Autoregressive Average (AR) model

The AR model, which is referred to as AR(p), represents the stock price X t by the past stock

price X t−1 and the error term ϵt .

X t = c +α0 +
p∑

i=1
αi X t−i +ϵt (2.16)

where t and c and αi denote the data and the model parameter, respectively. The error

term ut depends on the white noise of average 0 and the volatility σ2.

2.6.2 Moving Average (MA) model

The MA model, which is referred to as MA(q), represents the stock price X t by the error term

ϵt :

X t = c +ϵ0 +
q∑

i=1
β j ϵt− j (2.17)

where β j denotes the model parameter. The error term ut depends on the white noise

of average 0 and the volatility σ2.

2.6.3 Autoregressive Moving Average (ARMA) model

The ARMA model, which is referred to as ARMA(p, q), is the combination model of the AR

and MA models:

X t = c +ϵ0 +
p∑

i=1
αi X t−i +

q∑
i=1

β j ϵt− j (2.18)

2.6.4 Autoregressive Integrated Moving Average (ARIMA) model

The ARIMA model, which is referred to as ARIMA(p,d , q), is the combination model of the

AR and MA models:

X t = X t−d +ϵ0 +
p∑

i=1
αi X t−i +

q∑
i=1

β j ϵt− j (2.19)

46

2.6.5 Model Parameter Estimation

The model parameters are determined to minimize the Akaike Information Criteria (AIC):

AIC = 2lnσ+2
p +q +d

T
(2.20)

Chapter 3

Stock Price Prediction

3.1 Introduction

In European and American capital markets, algorithmic trading has been deeply involved

in quantitative investment strategies and has become one of the most important financial

technology applications. In the 1990s, algorithmic trading began to be applied to stock bro-

kerage business in the United States. With the continuous improvement of algorithmic trad-

ing platforms and technological advancement, in recent years, the US stock market has ap-

plied the algorithmic trading execution business on a large scale. A study in 2016 showed

that over 80% of trading in the FOREX market was performed by trading algorithms rather

than humans. Since the global financial crisis in 2008, quantitative investment has received

widespread attention, and algorithmic trading has gradually merged with quantitative in-

vestment.

In the area of Quantitative Finance, the Autoregressive Integrated Moving Average model

(ARIMA), one of the methods of time series forecast analysis, was widely used before the

neural networks. The ARIMA model has three parameters(p,d , q), which represent the order

of the autoregressive model, the degree of differencing and the order of the moving-average

model, respectively. Although the ARIMA model is simple enough to need only endogenous

variables and no need to use other exogenous variables, it is a linear model, but it has two

fatal demerits:

• The time series data is required to be stationary, or it must be stable after being differ-

encing.

47

48

• Essentially, time-series data can only capture linear relationships in the time series

dataset, not nonlinear relationships.

Long Short-Term Memory (LSTM) [60] is one of the Recurrent Neural Networks (RNN)

[61] architecture. Unlike ARIMA, it can mine the nonlinear information from time series

data like stock market data. At first, LSTM was used for Natural Language Processing (NLP).

Now it can be used with speech recognition tasks and time-series tasks for capturing deep

patterns from these datasets.

In this research, the architecture is based on the time series neural networks which are

RNN, LSTM, and Gate Recurrent Unit (GRU) [109] and another state-of-art network called

Generative Adversarial Networks (GANs). Goodfellow has presented generative Adversarial

Networks (GANs) in 2014 [14]. GANs are classified into one of the unsupervised machine

learning algorithms. GANs have outstanding performance in the field of image generation.

Currently, GANs can also generate text and speech data by changing the inside architecture

of GANs.

GANs have two networks: a Generator and a Discriminator. The alterability of this struc-

ture makes GANs very flexible. LSTM is chosen in this research as the Generator to capture

the inside pattern from time series stock data and generate a future trend, and MLP, RNN,

LSTM, and GRU as the Discriminator to distinguish the real future data and the data gen-

erated by Generator. In this work, the Discriminator is treated as a huge loss function that

consists of another neural network. These hybrid sequential GANs are used to find which

GANs model can best perform on the three training strategies.

Two training strategies using the successive-GANs:

• rolling window training

• segmented data training

In this study, the S&P 500 dataset is used for numerical experiments.

3.2 Methodology

In the proposed algorithm, an LSTM model is set without loss function into the Genera-

tor, and time-series neural networks (RNN, LSTM, and GRU), MLP into the Discriminator

49

separately [112]. The Discriminator is regarded as a huge loss function which consists of a

time series network and MLP. In addition, a regular loss function must be set (Least squares

loss function) to train the Discriminator. Figure 3.1 illustrates the structure of the proposed

algorithm.

Fig 3.1: Proposed Algorithm

Let (X ,Y) be a continuous sample from the stock dataset. For example, X is 5 consecu-

tive days stock data with 6 features (‘open’, ‘close’, ‘high’, ‘low’, ‘volume’ and ‘adj close’) and

Y is 2 consecutive days stock data after X with 6 features. Let G(X) be the generated data by

the Generator.

3.2.1 Training Discriminator

The input of the Discriminator is (X , Y) and (X , G(X)), and the output is a scalar in the

range between 0 and 1. The value 1 and 0 means the input is real or fake, respectively. The

Discriminator tries to classify the input (X , Y) into class 1 and the input (X , G(X)) into

class 0. Therefore, the Discriminator is more like a binary classification network. When the

Discriminator is training, the weights of the Generator have no change, which means the

Generator is not training in the meanwhile.

50

The loss function for training the Discriminator is:

LD = Lloss(D(X ,Y),1)+Lloss(D(X ,G(X)),0) (3.1)

Lloss =
n∑

i=1
(ytr ue − ypr edi cted)2 (3.2)

Minimizing this loss function means that the ability of the Discriminator in discriminat-

ing the "real" data and "fake" data has been improved.

3.2.2 Training Generator

The input of the Generator is a different "real" continuous stock data sample X , and the

output is G(X) generated by Generator. While fixing the weights of Discriminator, the ad-

versarial loss should be minimized as defined below:

LG = Lloss(D(X ,G(X)),1) (3.3)

Minimizing this loss function means that the ability of Generator in cheating the Discrim-

inator has been improved. This means the stock data generated by the Generator is more

like the "real" future data.

3.2.3 Process

The algorithmic process is summarized as follows:

1. The weights of the Generator are fixed, and the Discriminator is trained to minimize

the loss function to update the weights of the Discriminator.

2. The weights of Discriminator are fixed, and the Generator is trained to minimize the

loss function to update the weights of the Generator.

The flow chart of the proposed algorithm is shown in Algorithm 2.

3.3 Experiment

3.3.1 Experimental Dataset

Since not all companies have enough training data in the S&P 500, 50 companies from S&P

500 stock for training and testing the model in this research were selected. The average value

51

Algorithm 2 successive-GANs

Input Data:
continuous stock data M: (X ,Y)
Generator:

• input: X

• output: G(X)

• Generator learning rate: lG

Discriminator:

• input: (X ,Y) and (X ,G(X))

• output: a scalar value between 0 and 1

• Discriminator’s learning rate: lD

for number of training iterations EPOCH do
Get one data sample from M, Generator fixed, update the Discriminator weights WD :

WD =WD − lD (
∂LD (X ,Y)

∂WD
+ ∂LD (X ,G(X))

∂WD
)

Get another data sample from M, Discriminator fixed, update the Generator weights
GD :

WG =WG − lG
∂LG (X ,G(X))

∂WG

end for

52

of 50 companies for loss and accuracy was used. The training data are from 2010/01/01 to

2019/11/30 and the test data from 2019/12/01 to 2019/12/31. The dataset contains 6 fea-

tures (‘open’, ‘close’, ‘high’, ‘low’, ‘volume’ and ‘adj close’). The dataset is from Yahoo Finance.

An example of training data is shown in Figure 3.2.

Fig 3.2: AAPL stock data

3.3.2 Training Strategy

Two training strategies use the hybrid sequential GANs:

3.3.2.1 rolling window training Figure 3.3 shows how the rolling window strategy train

the hybrid sequential GANs. As an example, numbers of input and output data are given as

5 and 1, respectively. In rolling window training, the stock data on 5 consecutive days are

taken as the input data and the stock data on the next day of 5 consecutive days are taken as

output data. Therefore, in the first set, the stock data on the 1st to 5th days and the stock data

on the 6th day are input and output data, respectively. In the second set, the stock data on

the 2nd to 6th days and the stock data on the 7th day are input and output data, respectively.

3.3.2.2 segmented data training Figure 3.4 shows how the segmented data strategy train

the hybrid sequential GANs. In this case, the first set contains the stock data on the 1st to

53

5th days as input and the stock data on the 6th day as output. The second set contains the

stock data on the 6th to the 10th days as input and the stock data on the 11th day as output.

Fig 3.3: rolling window training

Fig 3.4: segmented data training

Evaluation

When we use the rolling window training and segmented data training, the RMSE and MAE

are used for evaluating the model.

Here is the RMSE function:

54

RMSE =
√

1

m

m∑
i=1

(yi − yi
′)2 (3.4)

Here is the MAE function:

M AE = 1

m

m∑
i=1

∣∣yi − yi
′∣∣ (3.5)

yi is the real data of stock dataset, y ′
i is the generated stock data by sequential GANs, m

is the number of data.

Experiment environment

In this work, all codes are written by PyTorch [113] [114], which is an open-source machine

learning library. The CPU and GPU that were used are Intel Xeon(R) CPU 3.5GHz, GeForce

GTX TITAN X, Intel i7-8700 CPU 3.20GHz, and GeForce GTX 1080.

3.3.3 Experimental Results

Because there are some companies in S&P 500 stocks that do not have 10 years’ worth of

data, 50 companies were chosen for this research from the S&P 500 stocks for training the

model and testing.

For convenience, in the following section D is designated as the Discriminator and G

as the Generator. The hybrid sequential GANs include four forms: G-LSTM+D-MLP, G-

LSTM+D-RNN, G-LSTM+D-LSTM,and G-LSTM+D-GRU. The words following to G- and D-

represent the algorithm used for the Generator and Discriminator, respectively. For exam-

ple, G-LSTM+D-MLP represents the GANs with LSTM as the Generator and MLP as Discrim-

inator. The hybrid sequential GANs with ARIMA, were compared to the simple LSTM and

the simple GANs using the two training strategy which mentioned in the last section.

The following example shows how training loss changed when using the simple LSTM

(Figure 3.5) and G-LSTM+D-LSTM (Figure 3.6) model. The training data uses "AAPL"(APPLE)

stock for 10 years.

The hyper-parameters used in this example are as follows:

• EPOCH: 100

55

Fig 3.5: simple LSTM train loss

Fig 3.6: G-LSTM+D-LSTM train loss

56

• BATCH_SIZE: 10

• Learning Rate: 0.0001

When using the simple LSTM for training, the model can be used directly to predict the

future stock data. When using the hybrid successive GANs proposed in this research, the

Generator is used to predict the future stock data and the Discriminator is abandoned.

Figures 3.7, 3.8, 3.9, and 3.10 show four examples for the prediction comparison by us-

ing different models on the test data. The stocks used are Apple, Adobe, AMD, and Google

company stock data for 1 month.

Fig 3.7: Prediction comparison using different models on test data (Apple)

In TABLE 3.1 and TABLE 3.2 different models were compared (ARIMA, GANs, LSTM, hy-

brid successive GANs) with three different strategies, which were mentioned the section

above. The lower the evaluation values of RMSE and MAE the better the performance of

model is.

Strategy 1: the rolling window strategy on different model comparisons is shown in TA-

BLE 3.1. The result shows that the G-LSTM+D-LSTM has the best performance. Although

57

Fig 3.8: Prediction comparison using different models on test data (Adobe)

Fig 3.9: Prediction comparison using different models on test data (AMD)

58

Fig 3.10: Prediction comparison using different models on test data (Google)

the G-LSTM+D-GRU model’s result is worse than G-LSTM+D-LSTM, the former may be used

in actual investment analysis because the latter model has much more weights to compute

than the former. Also, the difference in results between the two models is not huge.

Table 3.1: Result of Training Strategy 1

model RMSE MAE
ARIMA 10.345 9.146
GANs 8.962 7.339
LSTM 3.727 2.822

G-LSTM+D-MLP 4.153 5.510
G-LSTM+D-RNN 4.046 4.989

G-LSTM+D-LSTM 3.441 2.523
G-LSTM+D-GRU 3.509 2.934

Strategy 2: the segmented data strategy on different model comparisons is shown in TA-

BLE 3.2. The result of strategy 2 is beyond the scope of this research because the experiment

shows the simple LSTM has the best performance. This means that compared with strategy

1, the hybrid successive GANs are more suitable for strategy 1.

59

Table 3.2: Result of Training Strategy 2

model RMSE MAE
ARIMA 17.385 15.994
GANs 14.039 13.302
LSTM 10.145 8.080

G-LSTM+D-MLP 14.908 12.045
G-LSTM+D-RNN 13.334 12.013

G-LSTM+D-LSTM 13.983 12.224
G-LSTM+D-GRU 12.348 10.125

3.4 Summary

We proposed the hybrid sequential GANs to predict the future stock close price by using

three strategies. From the result of experiments we found that G-LSTM+D-LSTM model had

the best performance on strategy 1, and G-LSTM+D-GRU model had the best performance

on strategy 3, and beyond our expectations our model didn’t perform well on strategy 2. As

we show the structure in 3rd section Methodology, the RNN model has most simple struc-

ture that it can’t capture the long memory information from time series dataset. So when we

set RNN into the Discriminator it didn’t perform well. Although the LSTM and GRU has dif-

ferent numbers of weights, their structures show that they have the similar effect on training

the time series data. We can find this conclusion from the comparison result.

The hybrid successive GANs were proposed to predict future stock closing prices using

two strategies. From the result of experiments, the G-LSTM+D-LSTM model had the best

performance on strategy 1, our model didn’t perform well on strategy 2. As we showed in

section 2 of the Methodology section of Chapter 2, the RNN model has the simplest struc-

ture in that it cannot capture the long memory information from time series dataset. There-

fore, when the RNN was set to the Discriminator, the RNN didn’t perform well. Although the

LSTM and GRU have different numbers of weights, their structures show that they have a

similar effect on training the time series data. However, the G-LSTM+D-LSTM model per-

forms best in strategy 1, the hyper-parameters of the model are unoptimized, which means

the current result is not the best.

Chapter 4

Optimization of GANs on Stock Price
Prediction

4.1 Introduction

There are two primary methodologies for forecasting financial data: fundamental analysis

and technical analysis. Technical analysis shows how useful information and patterns in fi-

nancial data can be extracted from statistical analysis of historical data. In recent years, the

rapid development of machine learning has made this field of forecasting financial data no

longer the specialization of financial scholars and economists but has gradually become an

interdisciplinary subject of finance and computer science. Several algorithms have been de-

veloped for accurate analysis of financial data; for example, Convolutional Neural Networks

(CNN) [17], Long Short-Term Memory (LSTM) [60], and Generative Adversarial Networks

(GANs) [14]. Many studies have proved that machine learning algorithms can predict the fi-

nancial data better than traditional algorithms such as the Autoregressive Integrated Moving

Average (ARIMA) [56].

Among these machine learning algorithms, GANs are more flexible and work better than

other algorithms. Generative Adversarial Networks (GANs) is a generative model based on

the principles of game theory to build an architecture [14]. GANs have gradually become ex-

cellent generative models in time-series data generation. Several researchers have applied

GANs to stock price prediction [70–72]. However, the prediction accuracy of GANs depends

on the hyper-parameters and the network structure of the model. To make the model per-

form best, it has to be optimized. The optimization of the network architecture in the field of

60

61

CNN has been extensively studied, but because the overall structure of GANs is more com-

plex than CNN and more difficult to train, the optimization of the GANs-based framework

has become a necessary topic.

Therefore, in this work, a Genetic Algorithm (GA) [111] is applied to the design of the

hyper-parameters and the network structure of the model. The Genetic algorithm (GA) is

a search algorithm used for solving computational problems. GA was initially developed

based on some phenomena in evolutionary biology, including heredity, mutation, and nat-

ural selection. Several previous studies focused on hyper-parameters tuning on Convolu-

tional Neural Networks (CNN) by using GA [97,98]. GA-based optimization of GANs in stock

price prediction is presented in this study. The ’chromosome’ in the proposed model in-

cludes the window size of the training data and the hyper-parameters of the LSTM in the

Generator.

In previous research, when using the strategy of rolling window training, the result (RMSE,

MAE) has been better than the strategy of segmented training, and in strategy 1 the G-LSTM,

D-LSTM combination performed best. For this reason, we optimized the successive GANs

based on the G-LSTM, D-LSTM model by using the Genetic Algorithm.

4.2 Methodology

4.2.1 Successive-GANs (GANs, LSTM) – Basic Model

The combinational model of GANs and LSTM is used in this research for stock price pre-

diction. GANs have two differentiable networks in the model. One is named the Generator,

which predicts the stock price, and another is the Discriminator, which determines whether

the data is real or generated by the Generator. In the original GANs, both the Generator and

the Discriminator are defined by Multi-layer Perceptron (MLP). In this research, however,

two different LSTM networks are used for the Generator and Discriminator because they

show very good accuracy for predicting time-series data.

Figures 4.1 and 4.2 show the structure of the original GANs and the GANs proposed in

this research, respectively. According to this change in GANs structure unsupervised learn-

ing is converted to a semi-supervised learning.

In addition, the window sliding method is applied to split the stock data for data pre-

62

Fig 4.1: Original GANs

Fig 4.2: Sequential GANs

63

processing. Figure 4.3 shows the process of window sliding with a window size set by 3.

Each number (1, 2, 3, 4, 5) indicated daily stock data of days 1, 2, 3, 4, 5, respectively. Each

window includes three days of historical stock data to predict the next day closing price.

This process continues until the last day of the original stock data.

Fig 4.3: Window Sliding

4.2.2 Optimization by Genetic Algorithm

The Genetic Algorithm (GA) finds the optimal combination of hyper-parameters in GANs. In

the GA, the chromosome indicated the combination of hyper-parameters. The optimization

algorithm is shown in Figure 4.5. In this study, as shown in Figure 4.4, each chromosome is

composed of four genes related to window size, number of layers in the Generator, number

of units in the first layer of the Generator, and the number of units in the second layer of the

Generator, respectively. The first gene takes values from 1 to 8; the second gene 1 or 2, and

the third and fourth gene 10 to 32. If the second gene is 1 then the fourth gene is 0.

Each chromosome is defined by randomly generated numbers and the population is

composed of chromosomes. Fitness functions of all chromosomes are estimated, and then

genetic operators such as selection, crossover, and mutation are applied to the population.

After this processing, a new population is generated. The above optimization process re-

peats until the best chromosome is found.

Fitness function is defined as the root mean squared error (RMSE) as follows.

f i tness = RMSE =
√

1

m

m∑
i=1

(yi − yi
′)2 (4.1)

where the variable yi represents the real stock data on day i , the variable yi
′ represents the

generated stock data and the variable m represents the number of the stock data.

64

Fig 4.4: Chromosome in stock prediction

Fig 4.5: Genetic Algorithm of GANs for stock prediction

65

Two conditions have to be satisfied when using the GA:

a) A chromosome must be defined to represent a solution to the optimization problem. Five

genes in a chromosome are set for updates in the GA operation.

b) A fitness function must be defined to evaluate the chromosomes which represent solu-

tions. RMSE is set as the fitness for evaluation.

The three basic operations that constitute a GA, are as follows:

• Definition of population: The population is constructed with randomly generated

chromosomes.

• Fitness estimation: Fitness of chromosomes is evaluated.

• Selection: Parents are selected according to the fitness values.

• Crossover: One-point crossover generates the offspring from the parents.

• Mutation: Offspring genes are randomly changed.

Algorithm 3 of the GA algorithm for stock prediction is represented below:

66

Algorithm 3 GA algorithm of GANs for stock prediction

Input:
Training data D tr ai n , Testing data D test ;
Number of generations T ;
Population size N ;
Crossover probability Pc ;
Mutation probability Pm ;
Output:

Final generation
{

MT,n

}N

n=1
;

Initialization: generating a set of randomized individuals
{

M0,n

}N

n=1
;

Evaluation: computing the fitness of each individual in D test ;
for t = 1, ...,T do

Selection: Selecting a parent set
{

M ′
T,n

}N

n=1
;

Crossover: for each pair
{

Mt ,2n−1, Mt ,2n

}N /2

n=1
, performing crossover with Pc ;

Mutation: for each individual
{

Mt ,n

}N

n=1
, performing mutation with Pm ;

Evaluation: computing the fitness of each new individual in D test ;
end for
Save the elite individual

67

4.2.3 Modified GA processing

Neural networks are not easily implemented with conventional genetic algorithms for the

following reasons:

1. In the traditional genetic algorithm, the length of each chromosome is the same, but

when optimizing the LSTM in the Generator, the length of the chromosome will be

different because of the number of layers.

2. In the conventional genetic algorithm, the value range of the genes on the chromo-

some is the same, but when optimizing the LSTM in the Generator, the genes repre-

senting the number of layers need to be in a range which is different than the range of

genes representing the number of units.

3. Due to the different lengths of the chromosomes, both the crossover function and the

mutation function need to be modified.

To solve the above problems, the following methods are used:

1. Set each chromosome to the same length and fill in zeros if the length is insufficient.

Set the second gene, make it 1 or 2, and then determine the following genes about the

number of units in each layer based on the second gene.

2. For the modification of the crossover function, following the crossover point to crossover

is shown in Figure 4.6 (left side). The crossover operation stops when the second gene

is different between two chromosomes.

3. For the modification of the mutation, only the gene is mutated where it is the window

size and the number of units, and the mutation on the gene stops, which is the number

of layers as shown in Figure 4.6 (right side).

68

Fig 4.6: Modified crossover and mutation operation

69

4.3 Experiment

4.3.1 Experimental Dataset

In this work data from 4 companies are used: Apple (AAPL), Advanced Micro Device (AMD),

Adobe (ADBE), and Google (GOOGL) for training. The training data are from 2010/01/01 to

2019/11/30, the test data are from 2019/12/01 to 2019/12/31.

4.3.2 Pretest for GA design

One-tenth of the training data was used as a pre-training to test the crossover rate and mu-

tation rate of the Genetic Algorithm. First, the population was set to 20 and the generation

to 20. The results after the change of crossover rate and variation rate are compared in the

Table 4.1. "CR" stands for crossover rate and "CM" stands for mutation rate. From the Table

4.1, it shows that the best result is obtained when the cross rate is 0.6 and the variation rate

is 0.1.

Table 4.1: Effect of crossover and mutation rates (stock)

CM
CR

0.4 0.5 0.6

0.1 13.023 12.883 11.930
0.2 13.924 14.057 12.304
0.3 12.792 13.472 12.770

Although in many optimization problems population and generation are as large as pos-

sible, it will waste a lot of computational resources and be inefficient if they are set too large.

Therefore, in this study, in order to select the appropriate population and generation, two

indicators were set. For the setting of generation, if the last 5 generations’ change is less than

1%, the result is "SA", which means satisfied; more than 1%, the result is "UN", which means

unsatisfied. Only the combination of generation and population which have the "SA" result

can be selected. For population, the average fitness will calculate for selection.

Secondly, due to the Table 4.2 and the above explanation, the population as 20 and the

generation as 40 had been chosen. In summary, the parameters of GA are crossover rate =

0.6; mutation rate = 0.1; population = 20; generation = 40.

In Figure 4.7, here fitness is defined by RSME. x-axis is generation and y-axis is fitness.

70

Table 4.2: Selection of population and generation (stock)

Population
Generation

10 20 30 40

10 UN/12.149 UN/11.382 UN/11.039 SA/10.801
20 UN/11.802 UN/11.142 UN/10.991 SA/10.553

we can see from the graph that as the genetic algorithm is trained fitness gets smaller, which

means that better and better individuals are selected. At about 30 generations, we can see

that the selection of the best individuals has basically stopped. This means that there is no

more training value to increase the generation.

In the Table 4.3, the optimal hyper-parameters of successive-GANs model are shown.

Table 4.3: optimal hyper-parameters

company window size dense units (1st) units (2nd) units (3rd)
AAPL 5 3 20 22 13
AMD 6 2 19 15 0
ADBE 6 3 30 20 12

GOOGL 5 2 30 16 0
fixed1 5 1 32 0 0
fixed2 5 2 32 20 0
fixed3 5 3 32 20 16

4.3.3 Experimental Results

In Figures 4.8, 4.9, 4.10, and 4.11, and in Table 4.4 and Table 4.3 the result are compared with

the sets of initial and optimized hyper-parameters. The Generator predicts the future stock

data and the Discriminator is abandoned. In Figures 4.8, 4.9, 4.10, and 4.11, and in Table 4.4,

the x-axis is the data from 2019/12/01 12/31, and the y-axis is the stock price of each com-

pany. In the four companies (Apple, AMD, Adobe, Google), the result of optimized sequen-

tial GANs by GA is better than fixed GANs. In Tables 4.4 and 4.3, the optimized model is com-

pared with the fixed model, which includes the number of layers are 1, 2, and 3. From the

result of the stocks from Apple and Adobe, the optimal number of layers is 2, which means

the number of layers is not better than when using GANs to predict future stock prices. The

results show that our initial setting cannot acquire the best predict accuracy. Therefore, the

71

Fig 4.7: Convergence of the best individual fitness with respect to the generation number. (stock)

72

design of model structure is not reliable. Although the accuracy on stock prediction by GA

is used, the training time’s cost is about 20 times more than in the fixed model.

Fig 4.8: Apple Fig 4.9: AMD

Fig 4.10: Adobe Fig 4.11: Google

4.4 Summary

In this study, the GA-based optimization approach is applied for the design of hyper-parameters

of Generative Adversarial Networks on the stock price prediction. Through the operations

inside with GA, the best hyper-parameters are acquired in combination in the GANs model

for each company. The experimental results show that the performance of GANs model has

been improved after optimization. In addition, the know-how and experience of machine

learning designers are no longer necessary when using hyper-parameters tuning by GA.

73

Table 4.4: Compare with two fixed GANs

company RMSE(Initial-GAN1) RMSE(Initial-GAN2) RMSE(Initial-GAN3) RMSE(GA-GAN)
AAPL 7.112 7.082 6.951 6.901
AMD 5.982 5.991 5.837 5.791
ADBE 8.027 8.007 7.970 7.946

GOOGL 6.759 6.810 6.661 6.519

Chapter 5

Successive Image Generation of
Pedestrian Walking Behavior

5.1 Introduction

When a car approaches a pedestrian, the car driver must judge whether the pedestrian will

cross in front of the car so as to avoid hitting the pedestrian. If a system can predict the

pedestrian’s future behavior, the vehicle can recognize the existence of the pedestrian in

front of the car and the walking direction of the pedestrian. This will avoid traffic accidents

with pedestrians. In previous studies, pedestrian motion patterns or what is called, the mov-

ing path, is predicted by the Bayesian model and scenario patterns. This study generates the

pedestrian’s future images from past images which are taken through a camera.

The proposed algorithm generates the pedestrian’s future successive images from their

past successive behavior images. Algorithms for generating successive images have been

studied widely. The previous algorithms are based on Optical flow or Long Short-term Mem-

ory (LSTM). On the other hand, an algorithm using Generative Adversarial Networks (GANs)

is employed in this study. Generative Adversarial Networks (GANs) were presented by Good-

fellow in 2014. GANs are classified into unsupervised machine learning algorithms. GANs

have outstanding performance in the field of image generation.

There are several advantages while using the GANs model:

• GANs can generated the realistic-looking images. Therefore, researchers can acquire

lots of worthwhile information from the predicted future images.

• Previous research has shown, however, that predicting a pedestrian’s future move-

74

75

ments when she/he suddenly turns direction is difficult. The GANs model can predict

future movement by increasing the diversity of pedestrian’s data sets.

• The GANs model can also predict when suspicious people are near the pedestrian.

The proposed algorithm is defined as the concept of Generative Adversarial Networks

(GANs). While the original GANs use fully-connected layers for the Discriminator, the pro-

posed algorithm adopts Convolutional Neural Network for the Discriminator. For numeri-

cal experiments, successive images of pedestrians are necessary. Microsoft KINECT [115],

or, KINECT, is used for recording pedestrians’ walking scenes. Segmenting the video of

the pedestrians creates successive images. In numerical experiments, while the number of

pedestrians’ past images is taken as 2, 4, 6, 8 and 10, the number of pedestrians’ future im-

ages varies 2, 4, 6, and 8. The accuracy is defined as the difference between the real and the

generated future images. The proposed algorithm is compared with Optical flow to confirm

the validity of the proposed algorithm.

5.2 Methodology

The proposed method is called successive-GANs [116]. There are several differences be-

tween the original GANs and successive-GANs. The difference in the Generators of both

GANs is summarized as follows. The input of the original GANs Generator is random noise

while the input of successive-GANs are continuous images data. The difference in the Dis-

criminator is that the input of the original GANs is a "real" image and the "fake" image,

which is from the Generator, is output on a scale between 0 and 1. When the scale is close to

0, 0 represents the Discriminator’s ’belief’ that the image was "fake". On the contrary, when

the scale is close to 1, this represents the Discriminator’s belief the image was "real". The

input of successive-GANs has two sets; one set includes the Generator input images data

and generated images, the other set includes the same Generator input images and ground

truth images. Ground truth images are the images that were supposed to be predicted.

In the successive-GANs model, Generator G first takes several continuous pictures X ,

and then uses the Convolutional Neural Network to generate one future image y ′. Generator

G has to minimize the distance L(y, y ′) between the generated picture y’ and the ground

76

truth y in order to train the network using back propagation.

L(y, y ′) = L(y,G(X)) = ∥∥y −G(X)
∥∥ (5.1)

The Discriminator needs to replace the above loss function. That means the Discriminator’s

loss function is used by the Generator changing the weight of a back propagation to make

the generated image more "real".

Training Discriminator

Let (X , y) be a continuous sample from the dataset. Let G(X) be one image generated by the

Generator. The input of Discriminator is (X, y) and (X, G(X)), and the output is a scalar in

the range between 0 and 1. In this way, the discriminator tries to classify the input (X, y) into

class 1 and the input (X, G(X)) into class 0. Therefore, the Discriminator is more like a binary

classification CNN. When the Discriminator is training, the weights of the Generator have

no change, which means that Generator is not training in the meanwhile. The difference

between the original GANs and the successive-GANs in the Discriminator is in the number

of input images.

Therefore, the loss function for training the Discriminator is:

LD (X , y) = Lbce (D(X , y),1)+Lbce (D(X ,G(X)),0) (5.2)

where Lbce is the binary cross-entropy loss function, which is defined as

Lbce (Y ,Y ′) =−∑
i

Y ′
i log(Yi)+ (1−Y ′

i) log(1−Yi) (5.3)

Minimizing this loss function means that the ability of the Discriminator in discriminating

the "real" data from the "fake" data has been improved.

Training Generator

The input of the Generator is a different "real" continuous sample X, and the output is one

image G(X) that generated by the Generator. While fixing the weights of the Discriminator,

the adversarial loss defined below should be minimized:

LG (X , y) = Lbce (D(X ,G(X)),1) (5.4)

77

Minimizing this loss function means that the ability of Generator in cheating the Discrim-

inator has been improved. In other words, image generated by Generator is more like the

"real" data.

Process

The algorithmic process is summarized as follows:

1. The weights of the Generator are fixed and the Discriminator is trained to minimize

the loss function to improve its ability to discriminate the "real" from the "fake" data.

This process can update the weights of the Discriminator using back propagation of

loss function.

2. The weights of the Discriminator are trained to train the Generator by using the same

loss function. This process can update the weights of the Generator by using back

propagation of the same loss function.

3. Steps 1) and 2) are iterated in the Algorithm 4 as shown below: WD and WG denote the

weights of the Discriminator and the weights of the Generator, respectively.

Both the Generator and the Discriminator are neural networks. In the work [88], fully

connected layers are used in the Discriminator [108]. In this thesis, only one pedestrian is in

a frame, and the background has no information. Therefore, the fully connected layers (FC)

are turned into convolutional layers because the FC layers have two faults [47]:

• A fatal weakness in the FC layer is that the parameter size is too large, especially the

FC layer connected to the last convolutional layer. In the interval at the same time, the

calculation amount of training and testing is increased, and the calculating speed is

reduced.

• The parameter amount is too large to be over-fitting of the training model. Although

the parameter uses dropout, dropout is a hyper-parameter, so it has to be set by re-

searchers.

Two advantages change fully connected layers to convolutional layers:

78

Algorithm 4 Improved GANs algorithm

Input Data:
continuous image data M: (X (1), y (1)), · · · , (X (M), y (M))
Generator:

• input: X (1), · · · , X (M)

• output: G(X (1)), · · · ,G(X (M))

• Generator learning rate: lG

Discriminator:

• input: (X (M), y (M)) and (X (M),G(X (M)))

• output: a scalar value between 0 and 1

• Discriminator’s learning rate: lD

for number of training iterations EPOCH do
One data sample is obtained from M, the Generator is fixed, and the Discriminator
updates weights WD :

WD =WD − lD

M∑
i=1

(
∂LD (X (i), y (i))

∂WD
+ ∂LD (X (i),G(X (i)))

∂WD
)

In another data sample from M, the Discriminator is fixed, and the Generator updates
weights GD :

WG =WG − lG

M∑
i=1

∂LG (X (i), y (i))

∂WG

end for

79

Fig 5.1: GANs with Fully connected layers (before)

• The convolutional layer has a local connection; the fully connected layer uses the

global information of the image. In this research, the whole image is not calculated

because the information needed exist only in the pedestrian’s part.

• This change allows the convolutional network to slide over a larger input picture to get

the output of each area (so that it breaks the input size limit).

This change shows the difference changed in the structure inside the successive-GANs

(Figure 5.1 and 5.2).

Next, a flowchart of the experiments performed in this research using GANs is shown

below:

Flowchart:

80

Fig 5.2: GAN with Convolutional layers (after)

81

Fig 5.3: Flowchart of proposal GANs

82

5.3 Experiment

5.3.1 Datasets

A pedestrian dataset for this research used the RGB camera of Kinect. The dataset included

five people. The Kinect was set at the height of 2 meters, because the Kinect can capture

people’s movements completely at this height. Many surveillance cameras were also set to

this height. The goal was to simulate a scene where the pedestrian was walking in a public

area. Next, each pedestrian’s video was captured in 8 directions (Figure 5.4). Each video has

25fps; therefore, a 1-second video has 25 frames.

Fig 5.4: 8-directional data

The pre-processing of data is performed as follows: In the improved GANs, the number

of input frames and the number of output frames are important hyper-parameters. The

data collected was 25fps video. Therefore, several frames had to be extracted from one video

data, which means that training photo data was trained. The experiments were designed in

several pairs as follows: 2-2, 4-2, 4-4, 6-2, 6-4, 6-6, 8-2, 8-4, 8-6, 8-8, 10-2, 10-4, 10-6, 10-8,

10-10 (the front number is the input frame’s number and the back number represents the

output number).

83

In the evaluation of CNN, a CNN was trained to evaluate the GANs. In one direction,

10 frames were extracted from one video, and 5 videos were taken in one direction. Next,

OpenCV was used to increase the quantity of the dataset, including removing the back-

ground (Figure 5.5), rotation, and to make mirror frames. After this process, 10 frames were

transferred to 40 frames. In total, 40*5*8*5=8000 frames could train. The first 5 frames means

that in one direction 5 videos were taken, and 8 means 8 directions. In the latter 5 there is

walking data from 5 pedestrians. Next, the 8000 frames were separated into 2 parts: training

data and testing data; the proportion was 8:2. The purpose of this process was to evaluate

whether or not the CNN can judge if the pedestrian frame is predicted and generated by

improved GANs, in one of 8 directions.

Fig 5.5: Removal of Background of Picture

5.3.2 Experimental Details

The experiment is aimed at generating several continuous images as the prediction of pedes-

trian behavior using the dataset mentioned in the last section. The experimental code is

written by python3.6 in this work. The python package used frequently in this experiment

included tensorflow, numpy, skimage, and scipy. Both GTX 1060g and GTX 730 GPU are used

in this experiment. Though GPUs reduce a lot of computing time, it takes several minutes to

train GANs networks on 100steps. Before training the networks, several hyper-parameters

must be set; for example, the number of the training, the number of the input images, the

number of the output images (predicted images), the Generator learning rate, and the Dis-

criminator learning rate. When the number of training steps reaches the number of the

training, one experiment is finished.

84

5.3.2.1 Evaluation by PSNR This thesis uses two evaluation methods. The first method

is the Peak signal-to-noise ratio (PSNR) [117]. PSNR is an engineering term for the ratio

between the maximum possible power of a signal and the power of corrupting noise that

affects the fidelity of its representation. PSNR is most used to measure the quality of recon-

struction of lossy compression codecs (for example, for image compression). The signal, in

this case, is the original data, and the noise is the error introduced by compression. When

comparing compression codecs, PSNR approximates human perception of reconstruction

quality. Different from the reconstruction situation, in this thesis the generated frames and

the ground truth frames with PSNR are examined. PSNR is often simply defined by mean

square error (MSE). For two m*n monochrome images I and K, then their mean square error

is defined as:

MSE = 1

mn

m−1∑
i=0

n−1∑
j=0

[I (i , j)−K (i , j)]2 (5.5)

The peak signal to noise ratio is defined as:

PSN R = 10 · log10(
M AX 2

I

MSE
) = 20 · log10(

M AX Ip
MSE

) (5.6)

Between them, M AX I is the maximum value indicating the color of the image point. If

each sample point is represented by 8 bits, M AX I is 255. A more general representation

shows that if a 8-bit linear pulse code modulation represents each sample point then M AX I

is

M AX I = 28 −1 (5.7)

The definition of the peak signal-to-noise ratio is similar for a color image with three values

of RGB per point, except that the mean square error is the sum of all variances divided by

the image size divided by three.

Typical PSNR values in image compression range from 30 to 40 dB, and the higher the

value, the better.

85

5.3.2.2 Evaluation by using a CNN classifier Generally, however, the PSNR has performed

poorly compared to other quality metrics when estimating the quality of images and par-

ticularly videos as perceived by humans. For this reason, this research used an additional

second evaluation method; namely, the 8000 images data to train a CNN classifier model

to work in 8 directions. Evaluating and comparing GANs, or evaluating and comparing im-

ages produced by GANs, is a very challenging task, in part because of the lack of explicit

likelihood methods commonly used in comparable probability models. Therefore, many

previous works on images synthesized by GANs used only subjective visual assessment. The

current best GANs generated image sample cannot be evaluated accurately for image qual-

ity using subjective evaluation methods. The evaluation method used in the research is a

CNN classifier, which can test the generated images quality objectively, and let researchers

know which direction the pedestrian will go (Figure 5.6).

Fig 5.6: CNN classifier2

5.3.3 Experimental Results

Learning rate

Deep learning uses a straightforward first-order convergence algorithm called the gradi-

ent descent method. No matter how many adaptive optimization algorithms are used, these

86

algorithms are essentially a variety of deformations of the gradient descent method, so the

initial learning rate, which converges to the deep network, plays a decisive role. However, in

the proposed GANs there are two networks, which means there are two learning rates. The

Generator was used for training the network, and then compared the Discriminator’s loss

function in a different learning rate. Then the Discriminator was fixed for the training net-

work, compared with the Generator’s learning rate. This experiment done with four frames

of input and two frames of output. When the Generator’s learning rate is too small, it will

make both the Generator’s and Discriminator’s loss function worse. Therefore many experi-

ments were performed with different learning rates. The G learning rate=0.00004 and the D

learning rate= 0.02, so that c the Generator loss and Discriminator loss was less.

Training number

Generally, when the improved GANs training is unstable, the result is abysmal. When

the training number became very large, improved GANs had the possibility of collapsing

and the generated image was not good.

The specific reasons of the above problem can be explained as follows: improved GANs

uses the method of confrontation training, and Generator’s gradient update comes from the

Discriminator, so the Generator’s training is determined by the Discriminator. Specifically,

the Generator generates a sample image and gives it to the Discriminator to judge if it is

real or fake. The Discriminator will output the probability that the image is a true sample

(0-1), which is equivalent to telling the Generator how much the authenticity of the sample

is generated. The Generator will use this authenticity as feedback to adjust its parameters.

The Generator constantly improves itself and increases the probability of the Discrimina-

tor’s output. However, if a Generator generates a sample image that may not be very real-

istic, but the Discriminator gives a high scalar of evaluation. Then Generator will consider

it’s output is correct. In this situation, the Generator is not very good, but the Generator and

Discriminator are deceiving themselves, resulting in missing information and incomplete

features.

Due to the above reasons, the appropriate training number must be found. In a 20000

87

Table 5.1: Results

Input and
output
number

Optical
Flow

successive-
GANs

The ac-
curacy of
CNN clas-
sifier

2-2 27.8 25.2 96.6%
4-2 30.2 27.5 94.8%
4-4 28.4 26.9 95.4%
6-2 27.6 28.2 96.8%
6-4 25.8 27.4 93.0%
6-6 23.1 25.5 95.9%
8-2 27.0 29.1 98.3%
8-4 26.7 27.4 98.0%
8-6 23.3 26.0 96.8%
8-8 21.4 24.7 95.1%
10-2 27.0 26.3 98.5%
10-4 24.9 25.0 97.7%
10-6 23.4 24.9 95.5%
10-8 21.9 24.5 93.0%

training number, the improved GANs has the most stable loss in the Generator and Discrim-

inator. In this experiment, four frames were used for input and two frames for output.

Find the most suitable numbers of input frames and output frames

The reason that the appropriate numbers of input frames and output frames have to

be found in this research: The experiments showed that if the number of input frames and

output frames were two big, the generated frames were crushed and the Discriminator’s

and Generator’s loss function becomes strange. Therefore only the experiments can find the

most appropriate numbers of input and output frames. The pairs in the experiments are

as follows: 2-2, 4-2, 4-4, 6-2, 6-4, 6-6, 8-2, 8-4, 8-6, 8-8, 10-2, 10-4, 10-6, and 10-8. The first

number is input frame’s number, and the second number represents the output number.

Comparing with optical flow method [118], the most suitable experimental numbers were

found by comparing the PSNR scalar and the accuracy of CNN classifier (Table 5.1).

More images that improved GANs predicted means that future information can get from

the generated images, so except for comparing the PSNR and the accuracy of the CNN clas-

88

sifier of generated images, more images should be generated. The generated images: (8

inputs and 2 outputs) are shown below. Figures 5.7, 5.8, 5.9 are the experimental images.

Fig 5.7: 8-input

Fig 5.8: 2-output Fig 5.9: 2-groundTruth

5.4 Summary

In this research, a successive GANs model was trained to predict pedestrian behavior. GANs

are the unsupervised learning of deep learning areas. Two methods were proposed to evalu-

ate the model: PSNR and a CNN classifier. The successive GANs algorithm is improved from

fully connected layers to convolutional layers to make the calculation more efficient and de-

crease the loss function. The dataset in the research is original, and the quantity of dataset is

increased to train the CNN. Collecting data is a complicated job, and it is expensive in terms

of time. That is one important reason why GANs are used, which is an unsupervised ma-

chine learning algorithm. When a GANs model should be trained, a small quantity of data

will be enough. Also, the labeled data is difficult to obtain.

However, there are still many unresolved issues in this study. For example, the input

and output image data had been set manually in this study, and these numbers need to be

set in an automatic data pre-processing way, because manual setting has some involuntary

operation and poor interpretability. In addition, the hyper-parameters in the GANs model

are also set manually, which also needs to be automated in some way.

Chapter 6

Optimization of GANs on Successive Image
Generation of Pedestrian Walking
Behavior

6.1 Introduction

Future video prediction is considered a promising application for unsupervised feature learn-

ing using Generative Adversarial Networks (GANs). The input video data can be regarded

as successive images. In other words, future video prediction will require the analysis and

prediction of time series images analyzed by GANs and CNN. In this training process, the

number of input images and the number of generated images are important. In Chapter 5,

hyper-parameters such as the number of input images and output images must be set by re-

searchers. This means that an adequate selection of the hyper-parameters and the network

structure often depends on the researchers’ know-how and experience. To tune the hyper-

parameters automatically instead of with human assistance, in this research, an approach

to optimize the number of input images, the number of generated images and the active

function of generator by using Genetic Algorithm (GA) based on this composite model was

proposed. Before the optimization process, the best set of the numbers of input and out-

put images were found to be 8 and 2, respectively. After the optimization by GA, the result

showed that the 8-1 combination and ReLU-tanh-ReLU-tanh in the Generator have the best

performance; in other words, the best PSNR score.

89

90

6.2 Methodology

6.2.1 Basic Model

In this model, different CNN structures in the Generator and Discriminator were set. Instead

of the random vector input of original GANs, successive images as the input of Generator

were set. The Discriminator distinguished the real successive data from the generated data.

6.2.2 Optimization Process

Activation functions are an essential part of the design of a GANs model. The selection of

an activation function in the hidden layer may connect to the performance of learning the

training dataset. The basic theory of deep learning is based on an artificial neural network.

Because of the repeated superposition of these non-linear functions the neural network has

enough capacity to capture complex patterns and achieve state-of-the-art results in various

fields. Obviously, the activation function plays an important role in deep learning, and this

function is also a critical research field. The selection of the activation function has a huge

impact on the performance and capability of the model, and different activation functions

can be used in different parts of the designed model. Generally, in a differentiable neural

network, all hidden layers use the same activation function, and the output layer uses dif-

ferent activation function with hidden layers.

The researchers usually use different activation functions in different types of networks:

• Multiplayer Perceptron (MLP): ReLU activation function

• Convolutional Neural Network (CNN): ReLU activation function

• Recurrent Neural Network (RNN): Tanh and/or Sigmoid activation function

However, in different GANs models, there are different activation functions. The selec-

tion of the activation function is determined by the researchers’ know-how and experience.

Therefore, in this research, the activation function was designed into a part of the chromo-

some using the GA optimization approach.

Next, GA was used to optimize the best combination of input images’ number, generated

images’ number, and active function in the Generator. The chromosome is shown in Figure

6.1.

91

Fig 6.1: chromosome (image)

Using the Genetic Algorithm to optimize GANs on successive images is different from

numerical data. For continuous images (video), the composition of chromosomes includes

the number of input continuous images. At the same time, the number of continuous out-

put images, which is generated by the GANs, is also important, because the larger the time

span of the generated images is, the worse the quality of the images becomes. Therefore,

the number of output images is also added to the chromosome, to achieve the best qual-

ity model. Secondly, when training continuous images, since the Generator uses CNN, the

activation function is relatively important. In this thesis, the activation function was con-

nected after the 4-layer convolutional layer as part of the chromosome. Figure 6.2 shows the

optimization process of sequential GANs on successive images.

6.3 Experiment

6.3.1 Experimental Dataset

The training data was created by KINECT. The walking behavior of the pedestrian video data

has 8 directions. First, the video data was turned into successive images data. Next, the

background of the pedestrian image was removed, and mirror image processing was used

for the data augmentation. PSNR was used to evaluate the generated images for compari-

92

Fig 6.2: GA on successive image data

93

son.

6.3.2 Pretest for GA design

One-tenth of the training data was used as a pre-training to test the crossover rate and mu-

tation rate of the Genetic Algorithm. First, the population was set to 20 and the generation

to 20. the results after the change of crossover rate and variation rate are compared in the

Table 6.1. "CR" stands for crossover rate and "CM" stands for mutation rate. From the table

6.1, we can see that the best result is obtained when the cross rate is 0.5 and the variation

rate is 0.1.

Table 6.1: Effect of crossover and mutation rates (image)

CM
CR

0.4 0.5 0.6

0.1 21.9 23.7 22.3
0.2 20.5 22.5 21.7
0.3 20.2 22.5 20.9

Although in many optimization problems population and generation are as large as pos-

sible, it will waste a lot of computational resources and inefficient if they are set too large.

Therefore, in this study, in order to select the appropriate population and generation, two

indicators were set. For the setting of generation, if the last 5 generations’ change is less

than 1%, the result is "SA", which means satisfied; more than 1%, the result is "UN", which

means unsatisfied. For population, the average fitness will calculate for selection. Only the

combination of generation and population which have the "SA" result can be selected.

Table 6.2: Selection of population and generation (image)

Population
Generation

10 20 30 40

10 UN/21.1 UN/23.4 SA/25.2 SA/26.1
20 UN/22.6 UN/23.7 SA/26.8 SA/26.7

Secondly, due to Tabel 6.2 and above explanation, the population as 20 and the genera-

tion as 30 were chosen. In summary, the parameters of GA are crossover rate = 0.6; mutation

rate = 0.1; population = 20; generation = 30.

94

Fig 6.3: Convergence of the best individual fitness with respect to the generation number. (image)

In Figure 6.3, here fitness is defined by PSNR. x-axis is generation and y-axis is fitness.

we can see from the graph that as the genetic algorithm is trained fitness gets larger, which

means that better and better individuals are selected. At about 25 generations, we can see

that the selection of the best individuals has basically stopped. This means that there is no

more training value to increase the generation.

6.3.3 Experimental Result

Before optimization on the model, the experiment was performed to compare the number

of input images’ with the generated images’ number. At this stage, the best combination was

8-2. After the optimization by GA, the best combination was found to be 8-1, and the active

function set was ReLU-tanh-ReLU-tanh (Table 6.3).

And comparison of the generated image is shown in Figure 6.4.

95

Table 6.3: Comparison between Original and Optimized

Algorithm No. hidden layers Activation function PSNR Input-Output
Original 4 ReLU,ReLU,ReLU,tanh 29.1 8-2

Optimized 4 ReLU,tanh,ReLU,tanh 29.6 8-1

Fig 6.4: Generated image comparison

6.4 Summary

As Chapter 5 showed, this research used a Genetic Algorithm to automatically optimize

some hyper-parameters. When using successive-GANs to generate the next frame of a pedes-

trian image, many hyper-parameters need to be set manually, including the construction of

the GANs model. The manual design approach increases the threshold for the design of the

model, and it is dependent on the experience and skills of the model designer. The advan-

tage of using a genetic algorithm to optimize GANs model is that hyper-parameters can be

set automatically. In this study, the number of input images and output images and the ac-

tivation function in the Generator were used as the chromosomes of the genetic algorithm

for optimization. The results show that the method proposed in this study can improve the

quality of the generated pictures. In the previous study, the activation function was always

set by ReLU, but in this research, the best combination of activation function is ReLU-Tanh-

ReLU-Tanh. This is different from the way traditional GANs are designed. In addition, this

research also produced an automated machine learning solution for the analysis and pre-

96

diction of future time-series image data.

Chapter 7

Conclusion

Machine learning represented by CNN has achieved great success. However, CNN is not

very good at data generation and fitting data distribution. Furthermore, the idea to use

GANs provides an excellent framework for this field. At present, machine learning is divided

into four aspects: supervised learning, unsupervised learning, semi-supervised learning,

and reinforcement learning. CNN has shown powerful performance in the field of super-

vised learning and GANs has taken the field of unsupervised learning a big step forward.

GANs are composed of generators and discriminators. The advantages of this framework

are as follows:

• The model only uses back-propagation, without the Markov chain

• In theory, if a function is differentiable, it can be used to construct Generator and

Discriminator, because it can be combined with a deep neural network to make a deep

generative model

• The Generator’s weights update is not directly from the data sample but uses the back-

propagation from the Discriminator (this is also the most different from the traditional

method)

Such a framework allows GANs to confront many problems. One of this thesis’s most es-

sential research aspects was the fitting distribution and prediction of time-series data. The

most crucial point in building a model that can analyze time-series data based on GANs is

how to convert the unsupervised learning of the original GANs into semi-supervised learn-

ing. After the model was built, the time-series GANs were also a fixed-mode model that had

97

98

not been optimized. Currently, the optimization of the model has become essential. Due

to the particularity of the time-series data, different time-series data requires models with

different hyper-parameters.

This research proposed solutions for the model construction and optimization of GANs

when using time-series data. Previous analysis and predictions for time-series include ARIMA,

ARCH, RNN, LSTM, and the Markov chain, for example. In this research, the results indi-

cated that GANs showed better performance in fitting and predicting time series data than

the previous approaches. This better performance means that GANs have good flexibility

and research value in time-series data prediction problems. Secondly, in machine learning

represented by CNN, the optimization problem has been studied by many researchers, but

in the field of GANs, there have not been many approaches for good optimization, which is

also an important topic. This thesis made the following main contributions:

• Time-series (stock numerical data, pedestrian image data), models based on GANs

were constructed. These models can be applied not only to stock data but also to

the analysis and prediction of other time-series data, such as the walking behavior of

pedestrians.

• Through tuning the original GANs (unsupervised learning) into sequential GANs (semi-

supervised learning), the sequential GANs have better results than previous single se-

quential models (ARIMA,LSTM).

• This research uses GA’s selection, crossover, mutation, and elimination of natural se-

lection to update essential parameters in the model. Different data sets are used to

optimize GANs to different degrees. To get the best performance of prediction, the

experimental results show that GA can make sequential GANs perform better and can

search the optimal combination of Generator structure and the number of input data.

• Through tuning the hyper-parameters by GA, it was found that different hyper-parameter

should be set toward different datasets to get the best results.

Future work: Although this research has achieved good results, using GA to update the

hyper-parameters of GANs is still a relatively time-consuming calculation. I hope that in

99

future research, I can find methods of optimizing GANs that can save calculation time and

have good performance at the same time.

Bibliography

[1] J. McCarthy, M. Minsky, and N. Rochester, “Artificial intelligence,” tech. rep., Research

Laboratory of Electronics (RLE) at the Massachusetts Institute of Technology (MIT).,

1959.

[2] J. McCarthy, M. L. Minsky, N. Rochester, and C. E. Shannon, “A proposal for the dart-

mouth summer research project on artificial intelligence, august 31, 1955,” AI Maga-

zine, vol. 27, no. 4, p. 12, 2006.

[3] H. A. Simon, The shape of automation for men and management, vol. 13. Harper &

Row New York, 1965.

[4] M. L. Minsky, Computation. Prentice-Hall Englewood Cliffs, 1967.

[5] S. R. Council, Artificial Intelligence; a Paper Symposium. Science Research Council

(Great Britain), 1973.

[6] D. Crevier, AI: the tumultuous history of the search for artificial intelligence. Basic

Books, Inc., 1993.

[7] F.-h. Hsu, “IBM’s deep blue chess grandmaster chips,” IEEE Micro, vol. 19, no. 2,

pp. 70–81, 1999.

[8] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,”

in European Conference on Computer Vision, pp. 818–833, Springer, 2014.

[9] A. Dosovitskiy, J. Tobias Springenberg, and T. Brox, “Learning to generate chairs with

convolutional neural networks,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 1538–1546, 2015.

100

101

[10] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale im-

age recognition,” arXiv preprint arXiv:1409.1556, 2014.

[11] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei, “Large-scale

video classification with convolutional neural networks,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pp. 1725–1732, 2014.

[12] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Prentice Hall, 3 ed.,

2010.

[13] G. E. Hinton and T. J. Sejnowski, Unsupervised learning: foundations of neural com-

putation. MIT Press, 1999.

[14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,

and Y. Bengio, “Generative adversarial nets,” Advances in Neural Information Process-

ing Systems, vol. 27, 2014.

[15] X. Zhu and A. B. Goldberg, “Introduction to semi-supervised learning,” Synthesis Lec-

tures on Artificial Intelligence and Machine Learning, vol. 3, no. 1, pp. 1–130, 2009.

[16] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A survey,”

Journal of Artificial Intelligence Research, vol. 4, pp. 237–285, 1996.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” Advances in Neural Information Processing Systems,

vol. 25, pp. 1097–1105, 2012.

[18] S. R. Eddy, “What is a hidden Markov model?,” Nature Biotechnology, vol. 22, no. 10,

pp. 1315–1316, 2004.

[19] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv preprint

arXiv:1411.1784, 2014.

[20] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley, “Least squares generative

adversarial networks,” in Proceedings of the IEEE International Conference on Com-

puter Vision, pp. 2794–2802, 2017.

102

[21] X. Huang, Y. Li, O. Poursaeed, J. E. Hopcroft, and S. J. Belongie, “Stacked Generative

Adversarial Networks.,” in CVPR, vol. 2, p. 3, 2017.

[22] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep

convolutional generative adversarial networks,” arXiv preprint arXiv:1511.06434,

2015.

[23] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using

cycle-consistent adversarial networks,” in Proceedings of the IEEE International Con-

ference on Computer Vision, pp. 2223–2232, 2017.

[24] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan, “Unsupervised

pixel-level domain adaptation with generative adversarial networks,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3722–3731,

2017.

[25] M. Molano-Mazon, A. Onken, E. Piasini, and S. Panzeri, “Synthesizing realistic neu-

ral population activity patterns using generative adversarial networks,” arXiv preprint

arXiv:1803.00338, 2018.

[26] T. Schlegl, P. Seeböck, S. M. Waldstein, G. Langs, and U. Schmidt-Erfurth, “f-AnoGAN:

Fast unsupervised anomaly detection with generative adversarial networks,” Medical

Image Analysis, vol. 54, pp. 30–44, 2019.

[27] J. Gui, Z. Sun, Y. Wen, D. Tao, and J. Ye, “A review on generative adversarial networks:

Algorithms, theory, and applications,” IEEE Transactions on Knowledge and Data En-

gineering, 2021.

[28] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee, “Generative adversarial

text to image synthesis,” in International Conference on Machine Learning, pp. 1060–

1069, PMLR, 2016.

[29] 川西康友,出口大輔,井手一郎, and村瀬洋, “姿勢を表現する多様体に基づく

GANsを用いた物体姿勢推定の検討,”電子情報通信学会技術研究報告;信学技報,

vol. 117, no. 238, pp. 139–144, 2017.

103

[30] A. Brock, J. Donahue, and K. Simonyan, “Large scale GAN training for high fidelity

natural image synthesis,” arXiv preprint arXiv:1809.11096, 2018.

[31] O. Mogren, “C-rnn-gan: Continuous recurrent neural networks with adversarial train-

ing,” arXiv preprint arXiv:1611.09904, 2016.

[32] C. Esteban, S. L. Hyland, and G. Rätsch, “Real-valued (medical) time series generation

with recurrent conditional GANs,” arXiv preprint arXiv:1706.02633, 2017.

[33] A. Koochali, A. Dengel, and S. Ahmed, “If you like it, GAN it. Probabilistic Multivariate

Times Series Forecast With GAN,” CoRR, vol. abs/2005.01181, 2020.

[34] Y. Li, Z. Gan, Y. Shen, J. Liu, Y. Cheng, Y. Wu, L. Carin, D. Carlson, and J. Gao, “Storygan:

A sequential conditional GAN for story visualization,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pp. 6329–6338, 2019.

[35] Y. Cheng, Z. Gan, Y. Li, J. Liu, and J. Gao, “Sequential Attention GAN for Interactive Im-

age Editing,” in Proceedings of the 28th ACM International Conference on Multimedia,

MM ’20, (New York, NY, USA), p. 4383–4391, Association for Computing Machinery,

2020.

[36] Q. Hoang, T. D. Nguyen, T. Le, and D. Phung, “MGAN: Training generative adversarial

nets with multiple generators,” in International Conference on Learning Representa-

tions, 2018.

[37] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncertainty to weigh

losses for scene geometry and semantics,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 7482–7491, 2018.

[38] O. Sener and V. Koltun, “Multi-task learning as multi-objective optimization,” arXiv

preprint arXiv:1810.04650, 2018.

[39] T. Huster, J. E. Cohen, Z. Lin, K. Chan, C. Kamhoua, N. Leslie, C.-Y. J. Chiang, and

V. Sekar, “Pareto gan: Extending the representational power of GANs to heavy-tailed

distributions,” arXiv preprint arXiv:2101.09113, 2021.

104

[40] X. Lin, H. Chen, C. Pei, F. Sun, X. Xiao, H. Sun, Y. Zhang, W. Ou, and P. Jiang, “A pareto-

efficient algorithm for multiple objective optimization in e-commerce recommenda-

tion,” in Proceedings of the 13th ACM Conference on Recommender Systems, pp. 20–28,

2019.

[41] U. Garciarena, A. Mendiburu, and R. Santana, “Analysis of the transferability and ro-

bustness of GANs evolved for Pareto set approximations,” Neural Networks, vol. 132,

pp. 281–296, 2020.

[42] B.-Y. Hsueh, W. Li, and I.-C. Wu, “Stochastic gradient descent with hyperbolic-tangent

decay on classification,” in 2019 IEEE Winter Conference on Applications of Computer

Vision (WACV), pp. 435–442, IEEE, 2019.

[43] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-dominated sorting

genetic algorithm for multi-objective optimization: NSGA-II,” in International Con-

ference on Parallel Problem Solving from Nature, pp. 849–858, Springer, 2000.

[44] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective ge-

netic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6,

no. 2, pp. 182–197, 2002.

[45] K. Deb, “Multi-objective optimisation using evolutionary algorithms: an introduc-

tion,” in Multi-objective Evolutionary Optimisation for Product Design and Manufac-

turing, pp. 3–34, Springer, 2011.

[46] X. Zan, Z. Wu, C. Guo, and Z. Yu, “A Pareto-based genetic algorithm for multi-objective

scheduling of automated manufacturing systems,” Advances in Mechanical Engineer-

ing, vol. 12, no. 1, p. 1687814019885294, 2020.

[47] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial networks,”

in International Conference on Machine Learning, pp. 214–223, PMLR, 2017.

[48] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, “Improved training

of wasserstein gans,” arXiv preprint arXiv:1704.00028, 2017.

105

[49] X. Wei, B. Gong, Z. Liu, W. Lu, and L. Wang, “Improving the improved train-

ing of Wasserstein GANs: A consistency term and its dual effect,” arXiv preprint

arXiv:1803.01541, 2018.

[50] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Im-

proved techniques for training GANs,” Advances in Neural Information Processing Sys-

tems, vol. 29, pp. 2234–2242, 2016.

[51] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normalization for genera-

tive adversarial networks,” arXiv preprint arXiv:1802.05957, 2018.

[52] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of GANs for improved

quality, stability, and variation,” arXiv preprint arXiv:1710.10196, 2017.

[53] K. Roth, A. Lucchi, S. Nowozin, and T. Hofmann, “Stabilizing Training of Generative

Adversarial Networks through Regularization,” CoRR, vol. abs/1705.09367, 2017.

[54] K. Shmelkov, C. Schmid, and K. Alahari, “How good is my GAN?,” in Proceedings of the

European Conference on Computer Vision (ECCV), pp. 213–229, 2018.

[55] L. Mescheder, A. Geiger, and S. Nowozin, “Which training methods for GANs do ac-

tually converge?,” in International Conference on Machine Learning, pp. 3481–3490,

PMLR, 2018.

[56] G. E. Box and D. A. Pierce, “Distribution of residual autocorrelations in autoregressive-

integrated moving average time series models,” Journal of the American Statistical As-

sociation, vol. 65, no. 332, pp. 1509–1526, 1970.

[57] T. C. Mills and T. C. Mills, Time series techniques for economists. Cambridge University

Press, 1990.

[58] G. P. Zhang, “Time series forecasting using a hybrid ARIMA and neural network

model,” Neurocomputing, vol. 50, pp. 159–175, 2003.

[59] T. Bollerslev, “Generalized autoregressive conditional heteroskedasticity,” Journal of

Econometrics, vol. 31, no. 3, pp. 307–327, 1986.

106

[60] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation,

vol. 9, no. 8, pp. 1735–1780, 1997.

[61] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, no. 2, pp. 179–211,

1990.

[62] D. M. Nelson, A. C. Pereira, and R. A. de Oliveira, “Stock market’s price movement pre-

diction with LSTM neural networks,” in 2017 International Joint Conference on Neural

Networks (IJCNN), pp. 1419–1426, IEEE, 2017.

[63] T. Fischer and C. Krauss, “Deep learning with long short-term memory networks for fi-

nancial market predictions,” European Journal of Operational Research, vol. 270, no. 2,

pp. 654–669, 2018.

[64] W. Bao, J. Yue, and Y. Rao, “A deep learning framework for financial time series us-

ing stacked autoencoders and long-short term memory,” PloS one, vol. 12, no. 7,

p. e0180944, 2017.

[65] S. Selvin, R. Vinayakumar, E. Gopalakrishnan, V. K. Menon, and K. Soman, “Stock price

prediction using LSTM, RNN and CNN-sliding window model,” in 2017 International

Conference on Advances in Computing, Communications and Informatics (ICACCI),

pp. 1643–1647, IEEE, 2017.

[66] S. Siami-Namini and A. S. Namin, “Forecasting economics and financial time series:

ARIMA vs. LSTM,” arXiv preprint arXiv:1803.06386, 2018.

[67] H. Li, Y. Shen, and Y. Zhu, “Stock price prediction using attention-based multi-input

LSTM,” in Asian Conference on Machine Learning, pp. 454–469, PMLR, 2018.

[68] Y. Li, L. Li, X. Zhao, T. Ma, Y. Zou, and M. Chen, “An attention-based LSTM model for

stock price trend prediction using limit order books,” in Journal of Physics: Conference

Series, vol. 1575.1, p. 012124, IOP Publishing, 2020.

[69] H. Chung and K.-s. Shin, “Genetic algorithm-optimized long short-term memory net-

work for stock market prediction,” Sustainability, vol. 10, no. 10, p. 3765, 2018.

107

[70] S. Takahashi, Y. Chen, and K. Tanaka-Ishii, “Modeling financial time-series with gen-

erative adversarial networks,” Physica A: Statistical Mechanics and its Applications,

vol. 527, p. 121261, 2019.

[71] X. Zhou, Z. Pan, G. Hu, S. Tang, and C. Zhao, “Stock market prediction on high-

frequency data using generative adversarial nets,” Mathematical Problems in Engi-

neering, vol. 2018, 2018.

[72] K. Zhang, G. Zhong, J. Dong, S. Wang, and Y. Wang, “Stock market prediction based

on generative adversarial network,” Procedia Computer Science, vol. 147, pp. 400–406,

2019.

[73] T. Kimoto, K. Asakawa, M. Yoda, and M. Takeoka, “Stock market prediction system

with modular neural networks,” in 1990 IJCNN International Joint Conference on Neu-

ral Networks, pp. 1–6, IEEE, 1990.

[74] E. Guresen, G. Kayakutlu, and T. U. Daim, “Using artificial neural network models

in stock market index prediction,” Expert Systems with Applications, vol. 38, no. 8,

pp. 10389–10397, 2011.

[75] X. Ding, Y. Zhang, T. Liu, and J. Duan, “Deep learning for event-driven stock predic-

tion,” in Twenty-fourth International Joint Conference on Artificial Intelligence, 2015.

[76] A. Borovykh, S. Bohte, and C. W. Oosterlee, “Conditional time series forecasting with

convolutional neural networks,” arXiv preprint arXiv:1703.04691, 2017.

[77] R. Ramezanian, A. Peymanfar, and S. B. Ebrahimi, “An integrated framework of ge-

netic network programming and multi-layer perceptron neural network for predic-

tion of daily stock return: An application in Tehran stock exchange market,” Applied

Soft Computing, vol. 82, p. 105551, 2019.

[78] H. Chung and K.-s. Shin, “Genetic algorithm-optimized multi-channel convolutional

neural network for stock market prediction,” Neural Computing and Applications,

vol. 32, no. 12, pp. 7897–7914, 2020.

108

[79] M. Ranzato, A. Szlam, J. Bruna, M. Mathieu, R. Collobert, and S. Chopra, “Video (lan-

guage) modeling: a baseline for generative models of natural videos,” arXiv preprint

arXiv:1412.6604, 2014.

[80] W. Lotter, G. Kreiman, and D. Cox, “Deep predictive coding networks for video predic-

tion and unsupervised learning,” arXiv preprint arXiv:1605.08104, 2016.

[81] Y. Yang, J. Zhou, J. Ai, Y. Bin, A. Hanjalic, H. T. Shen, and Y. Ji, “Video captioning by

adversarial LSTM,” IEEE Transactions on Image Processing, vol. 27, no. 11, pp. 5600–

5611, 2018.

[82] Y. Chen, M. Liu, S.-Y. Liu, J. Miller, and J. P. How, “Predictive modeling of pedestrian

motion patterns with Bayesian nonparametrics,” in AIAA Guidance, Navigation, and

Control Conference, p. 1861, 2016.

[83] N. Schneider and D. M. Gavrila, “Pedestrian path prediction with recursive Bayesian

filters: A comparative study,” in German Conference on Pattern Recognition, pp. 174–

183, Springer, 2013.

[84] S. Bonnin, T. H. Weisswange, F. Kummert, and J. Schmuedderich, “General behavior

prediction by a combination of scenario-specific models,” IEEE transactions on Intel-

ligent Transportation Systems, vol. 15, no. 4, pp. 1478–1488, 2014.

[85] E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motion planning for agile au-

tonomous vehicles,” Journal of Guidance, Control, and Dynamics, vol. 25, no. 1,

pp. 116–129, 2002.

[86] 杉本達哉,坊農真弓, and佐藤真一, “Rgb-dデータによる人物姿勢推定のインタラ

クション研究への応用,”第 77回全国大会講演論文集, vol. 2015, no. 1, pp. 227–228,

2015.

[87] B. D. Ziebart, N. Ratliff, G. Gallagher, C. Mertz, K. Peterson, J. A. Bagnell, M. Hebert,

A. K. Dey, and S. Srinivasa, “Planning-based prediction for pedestrians,” in 2009

IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3931–3936,

IEEE, 2009.

109

[88] M. Mathieu, C. Couprie, and Y. LeCun, “Deep multi-scale video prediction beyond

mean square error,” in 4th International Conference on Learning Representations,

ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings (Y. Ben-

gio and Y. LeCun, eds.), 2016.

[89] C. Vondrick, H. Pirsiavash, and A. Torralba, “Generating videos with scene dynamics,”

Advances in Neural Information Processing Systems, vol. 29, pp. 613–621, 2016.

[90] Y. Pan, Z. Qiu, T. Yao, H. Li, and T. Mei, “To create what you tell: Generating videos from

captions,” in Proceedings of the 25th ACM International Conference on Multimedia,

pp. 1789–1798, 2017.

[91] L. Yu, W. Zhang, J. Wang, and Y. Yu, “SeqGAN: Sequence Generative Adversarial Nets

with Policy Gradient.,” CoRR, vol. abs/1609.05473, 2016.

[92] J. Yoon, D. Jarrett, and M. van der Schaar, “Time-series Generative Adversar-

ial Networks,” in Advances in Neural Information Processing Systems (H. Wallach,

H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, eds.), vol. 32,

Curran Associates, Inc., 2019.

[93] F. I. Alarsan and M. Younes, “Best Selection of Generative Adversarial Networks Hyper-

Parameters using Genetic Algorithm,” SN Computer Science, vol. 2, no. 4, pp. 1–14,

2021.

[94] U. Garciarena, R. Santana, and A. Mendiburu, “Evolved GANs for generating Pareto set

approximations,” in Proceedings of the Genetic and Evolutionary Computation Confer-

ence, pp. 434–441, 2018.

[95] X. Feng, J. Zhao, and E. Kita, “Genetic Algorithm-based Optimization of Deep Neural

Network Ensemble,” The Review of Socionetwork Strategies, vol. 15, no. 1, pp. 27–47,

2021.

[96] X. Feng, R. Li, J. Zhao, and E. Kita, “Genetic algorithm based optimization of deep con-

volutional neural network ensemble for pedestrian moving direction recognition.,”

Aust. J. Intell. Inf. Process. Syst., vol. 16, no. 1, pp. 56–64, 2019.

110

[97] L. Xie and A. Yuille, “Genetic cnn,” in Proceedings of the IEEE International Conference

on Computer Vision, pp. 1379–1388, 2017.

[98] Y. Sun, B. Xue, M. Zhang, G. G. Yen, and J. Lv, “Automatically designing CNN archi-

tectures using the genetic algorithm for image classification,” IEEE Transactions on

Cybernetics, vol. 50, no. 9, pp. 3840–3854, 2020.

[99] C. Wang, C. Xu, X. Yao, and D. Tao, “Evolutionary generative adversarial networks,”

IEEE Transactions on Evolutionary Computation, vol. 23, no. 6, pp. 921–934, 2019.

[100] H. Chung and K.-s. Shin, “Genetic algorithm-optimized long short-term memory net-

work for stock market prediction,” Sustainability, vol. 10, no. 10, p. 3765, 2018.

[101] S. Mitra and S. K. Pal, “Fuzzy multi-layer perceptron, inferencing and rule generation,”

IEEE Transactions on Neural Networks, vol. 6, no. 1, pp. 51–63, 1995.

[102] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint

arXiv:1609.04747, 2016.

[103] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional

architecture in the cat’s visual cortex,” The Journal of Physiology, vol. 160, no. 1,

pp. 106–154, 1962.

[104] K. Fukushima and S. Miyake, “Neocognitron: A self-organizing neural network model

for a mechanism of visual pattern recognition,” in Competition and Cooperation in

Neural Nets, pp. 267–285, Springer, 1982.

[105] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[106] E. Fan, “Extended tanh-function method and its applications to nonlinear equations,”

Physics Letters A, vol. 277, no. 4-5, pp. 212–218, 2000.

[107] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified activations in

convolutional network,” arXiv preprint arXiv:1505.00853, 2015.

111

[108] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic seg-

mentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 3431–3440, 2015.

[109] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent

neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555, 2014.

[110] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and

Y. Bengio, “Learning phrase representations using RNN encoder-decoder for statisti-

cal machine translation,” arXiv preprint arXiv:1406.1078, 2014.

[111] D. Whitley, “A genetic algorithm tutorial,” Statistics and Computing, vol. 4, no. 2,

pp. 65–85, 1994.

[112] B. He and E. Kita, “Stock price prediction by using hybrid sequential generative ad-

versarial networks,” in 2020 International Conference on Data Mining Workshops

(ICDMW), pp. 341–347, IEEE, 2020.

[113] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, et al., “PyTorch: an imperative style, high-performance

deep learning library,” Advances in Neural Information Processing Systems, vol. 32,

pp. 8026–8037, 2019.

[114] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,

L. Antiga, and A. Lerer, “Automatic differentiation in PyTorch,” in NIPS 2017 Workshop

on Autodiff, 2017.

[115] Z. Zhang, “Microsoft Kinect sensor and its effect,” IEEE Multimedia, vol. 19, no. 2,

pp. 4–10, 2012.

[116] B. He and E. Kita, “Pedestrian walking direction prediction using generative adversar-

ial networks,” in 2020 IEEE International Conference on Systems, Man, and Cybernetics

(SMC), pp. 4358–4364, IEEE, 2020.

[117] Q. Huynh-Thu and M. Ghanbari, “Scope of validity of PSNR in image/video quality

assessment,” Electronics Letters, vol. 44, no. 13, pp. 800–801, 2008.

112

[118] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid, “Epicflow: Edge-preserving

interpolation of correspondences for optical flow,” in Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, pp. 1164–1172, 2015.

113

Acknowledgments

I would like to express my special gratitude to my supervisor Professor Eisuke Kita. His

guidance was indispensable for this doctoral thesis and each academic and journal paper

that helped me a lot. He has been a tremendous help to me in conducting my research

and writing my dissertation. He helped me make significant growth from zero to one in

academics.

Secondly, I would like to thank Professor Takaya Arita and Professor Masahiro Ohka for

their insightful and valuable comments on the revision of my dissertation. I would also like

to thank all the teachers who taught me and helped me at Nagoya University and Zhejiang

Gongshang University. I am very grateful to Nagoya University for all the financial support

during my doctoral studies, which allowed me to complete my research work smoothly.

I am grateful to all the people I met in the KITA laboratory, and I have spent some happy

times with many of them. I am incredibly thankful to Dr. Feng Xuanang, who has given

me lots of guidance in life and academics. He is an outstanding, intelligent and responsible

man. I hope he will always be happy in the future.

Finally, I would like to thank my parents, who gave me financial and spiritual support. I

feel fortunate and blessed to be their son. I am also very grateful to my girlfriend, Dr. GUO

Ling, who gave me a lot of valuable help and advice. I love her very much.

