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Abstract

The studies on image classification can be divided into two Fine-grained image

classification (FGIC) aims to recognize hard-to-distinguish object classes, such as

di�erent breeds of birds or models of cars. It is a very di�cult task and capturing

attention is key for solving the di�culty. The objective of this work is to explore

how to e�ciently capture attention information to improve the accuracy of FGIC.

With this objective, we propose three novel attention-learning frameworks for

FGIC. This paper has six chapters.

Chapter 1 gives the background of this research, discusses the motivation of

this thesis as well as gives an overview of the proposed approaches.

Chapter 2 introduces the studies that are related to this research or the topic of

fine-grained image classification.

Chapter 3 introduces a guided attention-learning framework, named as Attention-

Guided Spatial Transformer Networks (AG-STNs), which focuses on capturing

e�ective attention regions for FGIC. Traditional region-based attention learning

approaches treat the localization and recognition of attention regions as two sep-

arate steps, during which the errors in each step can be accumulated. AG-STNs

localize attention regions by deep neural networks, which can be optimized to-

gether with the recognition networks. Learning cropping attention regions is very

di�cult for deep neural networks, and AG-STNs solve the training di�culty by

utilizing hard-coded attention as the guiding signal to initialize the localization

network. Moreover, AG-STNs can generate multiple scales of attention regions, a

fusion of whose predictions further improves the accuracy.

Chapter 4 introduces a multi-task attention-learning framework, named Contrastively-

reinforced Attention Convolutional Neural Network (CRA-CNN). CRA-CNN is

inspired by the human behavior of using the knowledge learned from one task to

help learn another related task. During the training, CRA-CNN has two networks.
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One is the major network used for the task of categorizing the given input image.

The other is the subordinate network used for the task to make the deep features

of the major network correspond more to the attention regions. After training,

the subordinate network can be removed, and only the major network is kept for

utilization. In this way, CRA-CNN does not require extra overhead for utilization

and has no loss of information from input images.

Chapter 5 introduces a recursively-refined multi-scale attention framework,

named Recursive Multi-scale Channel-spatial Attention Module (RMCSAM). Dif-

ferent from the approaches proposed in Chapters 3 and 4, RMCSAM is an insertable

module that has small weights and can be embedded into various backbone net-

works. RMCSAM explores both channel-wise and spatial-wise attention from

deep features, and recursively refines the learned attention information for more

accurate attention. RMCSAM is lightweight and has strong versatility, and it can

be combined with the Progressive Multi-Granularity Training (PMG), which is

the state-of-the-art approach in the FGIC task, to further improve the accuracy.

RMCSAM is also possible to combine with other training frameworks.

Chapter 6 gives the summary and prospect of this paper.
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Chapter 1

Introduction

1.1 Background and Motivation

The studies on image classification can be divided into two sub-fields: generic

image classification and fine-grained image classification (FGIC). Generic image

classification aims to di�erentiate between distinctively di�erent objects, such as

birds and vehicles. In comparison, FGIC aims to di�erentiate between hard-to-

distinguish object classes, such as di�erent breeds of birds or models of cars.

As a fundamental, meaningful, and challenging subfield of image classification,

fine-grained image classification (FGIC) has attracted much attention in recent

years. However, FGIC is a very challenging task, and the challenges are principally

related to two characteristics of its own: inter-class similarity and intra-class

variance. As shown in Figure 1.1, inter-class similarity means the images of

di�erent categories of an FGIC task may look visually similar, and thus it is

very di�cult to learn discriminative features for distinguishing the images of

di�erent classes. Intra-class variance means the images of the same category of

an FGIC task may look visually di�erent because of di�erent conditions, such

as di�erent poses, shooting angles, illuminations, etc. Thus it is very di�cult to

learn comprehensive and representative features for the images of the same class.

Inter-class similarity and intra-class variance can easily confuse the classification

models and heavily harm the classification accuracy.

Many previous studies have shown that accurately identifying visual attention

(i.e., discriminative visual information) is the key to mitigate the adverse e�ect

1



(a) Inter-class similarity (b) Intra-class variance

Figure 1.1: Example images showing inter-class similarity (a) and intra-class
variance (b). (a) shows some images that are from di�erent categories but look
similar because of the same shooting angle. (b) shows some images that are from
the same category but look di�erent because of di�erent poses, shooting angles,
illuminations, etc.

caused by inter-class similarity and intra-class variance [33, 21, 96, 154, 42, 134,

28, 106, 130, 49, 69, 90, 139, 142] for the FGIC task. Visual attention is inspired by

the fact that the human brain e�ectively filters out the majority of incoming visual

information before it goes to the deeper levels of the brain [87]. For example,

the human visual system intuitively focuses on certain important regions of the

image, while ignoring other irrelevant regions [132]. Similarly, for the image

classification task, attention learning implements this notion of importance by

allowing the models to dynamically pay attention to only certain regions of the

input image that help in improving the classification accuracy [7].

However, attention learning has heavy di�culties. First, attention learning is

a hard-to-train task for deep neural networks. Second, attention learning always

introduces heavy extra overheads. The above-mentioned problems result in the

following research question that we try to address in this thesis: how to e�ciently
capture and utilize accurate attention information to improve the classification
accuracy in fine-grained image classification? This thesis looks into this question

by proposing novel deep-learning frameworks specializing in learning attention in

e�cient ways to improve the accuracy of FGIC. As discussed above, the key atten-

2



tion in FGIC is always subtle, and the position is di�cult to predict. Consequently,

the proposed frameworks should be able to knock over the di�culty to capture the

key attention. Also, the framework should not introduce too much extra e�ort or

overhead, which is unfavorable for applications.

1.2 Research overview and Thesis structure

1.2.1 Research Overview

Learning key attention has always been the leitmotif in FGIC and attracted

great attention and e�ort from researchers. However, there is still plenty of room

for research on how to capture key attention accurately and e�ciently. As men-

tioned, the research question is how to e�ciently capture and utilize accurate
attention information to improve the classification accuracy in fine-grained im-
age classification. Specifically, capturing attention information with deep learning

approaches su�ers from two serious di�culties. The first is hard to get accurate

attentional information, and inaccurate attention information may harm the clas-

sification performance. The second is that learning attention information always

introduces many extra overheads. In this thesis, we propose three frameworks,

namely guided attention learning (Chapter 3), multi-task attention learning (Chap-

ter 4) and recursively-refined multi-scale attention learning (Chapter 5) to address

these di�culties. Thereinto, Chapter 3 mainly addresses the first di�culty. Chap-

ter 4 and Chapter 5 mainly address the second di�culty.

Finding attention information is a di�cult task for deep neural networks. A

lot of existing studies capture key attention information relying on localizing and

cropping attention regions [37]. Typically, the attention regions are firstly localized

using manual regional annotations or conventional hand-crafted features. Then the

localized attention regions are cropped and categorized [130, 135, 121]. However,

such strategies are not only troublesome but also disconnect the localization and

classification. That is, the errors during each step can be accumulated. The advent

of deep neural networks [108, 40, 41, 111, 22] brings the possibility of connecting

the steps of localization and classification and optimizing the two steps together.

However, learning and cropping regions are very di�cult for deep neural networks.

It is because the early-stage noise causes huge errors, which is irreversible in later
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Figure 1.2: Examples of multi-scale attention regions for the images of di�erent
woodpeckers. Di�erent scales of attention regions can capture di�erent objects,
such as nape, head, and body. All the information is important for distinguishing
di�erent woodpeckers. For example, Downy Woodpecker has a red nape. Red-
headed Woodpecker has a bright-red head. American Three-toed Woodpecker has
a black and white barred back and white breast.

stages [52, 71, 105]. For the first proposal, we propose a novel guided attention

learning framework, named Attention-Guided Spatial Transformer Networks (AG-

STNs), to solve the training di�culty of using deep neural networks to localize

attention regions.

AG-STNs first use conventional hand-crafted features [141] to learn hard-coded

attention regions and then use the hard-coded attention regions as the guidance to

initialize deep neural networks for preventing the early-stage noise. Thereafter, the

deep neural networks are trained to optimize the region localization by themselves.

By doing so, the early-stage noise can be successfully avoided and the deep neural

networks are able to find informative regions during the training. Furthermore, the

scale of the hard-coded attention region can be set di�erently to guide the cropping

of di�erent scales of deep attention regions. As shown in Figure 1.2, attention

regions of di�erent scales are important. Especially, detailed regions can capture

the subtle yet key attention in FGIC and play an important role. Moreover, multi-

scale attention regions can provide complementary information. Thus, we learn

multi-scale attention from the input image (as shown in Figure 1.3), and fusing the

multi-scale attention information is proved to further improve the accuracy (see
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Figure 1.3: An overview of the approach proposed in Chapter 3.

more details about AG-STNs in Chapter 3).

Another problem for obtaining attention information with deep neural networks

is heavy extra overheads. Region-based attention learning strategies have two in-

herent drawbacks: (a) cropping multi-scale attention regions introduces extremely

heavy extra overhead; (b) the region-cropping strategy inevitably causes some loss

of visual information (because the regions not included in the attention region are

abandoned). Targeting these two drawbacks, we consider implementing attention

in the feature level rather than the image level, for the second proposal. Namely,

instead of directly cropping regions, we try to capture attention information from

deep features and utilize the attention information to refine the deep features to

better respond to attention regions. With this idea, we propose a novel multi-task

attention learning framework, named Contrastively-reinforced Attention Convolu-

tional Neural Network (CRA-CNN), based on the multi-task learning strategy. As

shown in Figure 1.4, CRA-CNN treats the task of cropping attention region as an

additional task and utilizes the additional task to improve the task of classification,

which is the main task of CRA-CNN. We enable the additional task to automati-

cally adjust the scale and location of the attention region since the key attention in

FGIC is always subtle and has an uncertain position. CRA-CNN has to improve

the awareness of attention in order to complete the additional task. The main task

5



Figure 1.4: A simplified illustration of the approach proposed in Chapter 4. The
shaded parts can be removed after training.

Figure 1.5: A simplified illustration of the approach proposed in Chapter 5.

of CRA-CNN takes the whole input image as input so that there is no loss of visual

information. Moreover, after the training, the additional task can be removed, and

thus CRA-CNN requires a small overhead for utilization (see more details about
CRA-CNN in Chapter 4).

CRA-CNN mainly reduces the problem of heavy extra overhead for testing. To

further reduce the extra overhead during the training procedure, we turn our eyes to

the studies on attention modules, which are insertable deep neural modules that can

explore attention information inside the networks and refine deep features accord-

ing to the explored attention information. Existing attention modules are generally

designed for generic image classification and do not have a good performance in

the FGIC task. We suppose it is because existing attention modules only explore

the suitable scale of attention information in the generic image classification task.

In this thesis, we propose a novel attention module, named Recursive Multi-scale
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Figure 1.6: Relationships of the core chapters.
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Channel-spatial Attention Module (RMCSAM), for the third proposal. RMCSAM

is able to explore both channel-wise and spatial-wise deep attention of multiple

scales, which can meet the requirements of capturing the key attention in FGIC

very well (see more details about RMCSAM in Chapter 5). RMCSAM can ex-

plore both spatial-wise and channel-wise attention information. The spatial-wise

deep attention is the attention extended from the region-based attention strengthen-

ing strategy used in CRA-CNN (Chapter 4). The new mechanism can capture the

attention corresponding to multi-scale regions with di�erent weights if necessary.

Moreover, as the e�ectiveness of multi-scale attention information is verified in

Chapter 3, we make RMCSAM to capture multi-scale attention information with

di�erent scales of parameter kernel sizes in Chapter 5. As shown in Figure 1.5,

the approach proposed in Chapter 5 is a lightweight and insertable module, which

increases small overhead.

1.2.2 Thesis Structure and Chapter Relationships

This thesis contains six chapters. Chapter 1 gives an overview of the back-

ground of this research, discusses the motivation of this thesis as well as gives

an overview of the proposed approaches. Chapter 2 introduces the studies that

are related to this research or the topic of fine-grained image classification. Chap-

ters 3⇠5 respectively introduce the three attention learning approaches proposed in

this thesis in details, namely Attention-Guided Spatial Transformer Networks (AG-

STNs), Contrastively-reinforced Attention Convolutional Neural Network (CRA-

CNN), and Recursive Multi-scale Channel-spatial Attention Module (RMCSAM).

Lastly, Chapter 6 concludes this thesis by reviewing the research contributions and

results found through the thesis.

Chapters 3⇠5 are the core chapters of this thesis. The relationships of the core

chapters are shown as Figure 1.6.

Chapter 3 introduces the AG-STN, which is a guided attention learning frame-

work exploring attention from original input images. AG-STN solves the training

di�culty of using deep neural networks to capture attention regions by initializing

the networks with the guidance of traditional hard-coded approaches. By doing

so, the localization can be performed by the initialized network, which can be con-

catenated with the network performing recognition. That is, the localization and
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Figure 1.7: Illustration of the changes of deep-feature-based attention learning
mechanism between the approaches proposed in Chapter 4 and Chapter 5.

recognition of attention regions can be optimized together. AG-STN can also be

used to capture attention regions of multiple scales, which provide complementary

information and further improve accuracy.

Chapter 4 introduces CRA-CNN, which is a multi-task attention learning

framework targeting to solve the drawbacks of extra overhead during the test-

ing procedure. In Chapter 4, instead of cropping regions on input images, we

focus on exploring attention information from deep features, which means we try

to increase the dependence on the features responding to attention information
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and decrease the dependence on the features responding to non-attention informa-

tion. In this way, there is no irreversible loss of information on the input image.

Specifically, for training, CRA-CNN requires two backbone networks to perform

the classification task and attention strengthening task, respectively. After the

training, CRA-CNN only requires a single network backbone for utilization.

Chapter 5 introduces the RMCSAM, which is a novel attention module pro-

posed by summing up the experience of Chapter 3 and Chapter 4 to solve the

drawbacks of extra overhead during the training procedure. Chapter 3 verifies that

multi-scale attention information is e�ective for FGIC. Chapter 4 verifies that ex-

ploring attention information from deep features is e�ective and very e�cient. In

Chapter 5, we try to explore multi-scale attention information from deep features

with small training overheads.

In the approaches exploring attention from deep features, the training overhead

is mainly influenced by two factors: (a) how to produce the indicator presenting

the attention awareness of deep features; (b) how to evaluate the indicator and

strengthen the attention awareness of deep features based on the evaluation.

As shown in Figure 1.7, in Chapter 5, the deep-feature-based attention learning

mechanism is improved in terms of both factors. Instead of strengthening attention

awareness by another network as the strategy in Chapter 4, we generate attention

weights from the deep features and multiply the attention weights back to the deep

features. Chapter 4 uses region prediction as the indicator to present the attention

awareness of deep features. The indicator is evaluated by another network. Chap-

ter 5 simply uses the attention weights as the indicator. The indicator does not

only act as the indicator presenting the attention awareness of deep features but

also involves forming the final prediction score. Thus, the indicator is simply eval-

uated by the classification loss. In this way, compared with the deep-feature-based

attention learning strategy in Chapter 4, the deep-feature-based attention learning

strategy in Chapter 5 reduces the training overhead a lot. This strategy can replace

the multi-task learning strategy in Chapter 4 to achieve similar e�ects. Moreover,

it can be easily extended to capture multi-scale attention information, following

the experience in Chapter 3.
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Chapter 2

Related Studies

2.1 General Image Classification and Fine-grained
Image Classification

Image classification, which refers to the labeling of images into a fixed set

of categories, is a core problem in computer vision. Image classification can

be divided into two sub-fields, generic image classification [19] and fine-grained

image classification (FGIC) [116, 63]. Generic image classification aims to classify

distinctively di�erent categories, such as birds, cars, etc., whereas FGIC aims to

classify subordinate categories within an entry-level category, such as di�erent

species of birds, di�erent models of cars, etc.

The research of FGIC has very important social significance. The most signif-

icant value of FGIC is that it aims to achieve a much stronger recognition ability

than human beings. For example, it is impossible for an ordinary person to distin-

guish various bird species without long-time specialized training, whereas FGIC

provides the capability to distinguish the species easily and quickly. With the

recognition ability far beyond human brain’s ability, FGIC provides the basic tech-

nology of a wide range of applications. For example, FGIC is the basic technology

of biodiversity monitoring systems [101, 34], which are important for observing

some global issues such as climate change [88, 38]. Also, FGIC can be applied

for commercial use, such as counting the number of cars of a certain model on the

highway [56, 68].

The two sub-fields of image classification, generic and fine-grained image clas-
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(a) Generic image classification [26] (b) Fine-grained image classification [116]

Figure 2.1: Some examples of a generic image classification task (a) [26] and
an FGIC task (b) [116]. In the images of the generic image classification task,
the key visual clues lie in the whole class-specific object. In the images of the
FGIC task, the key visual clues lie in certain local regions of the class-specific
object. For example, a long, drooping orange bill is the key feature of Elegant
Tern [86]. Consequently, the bill is the key region to distinguish Elegant Tern from
other similar birds, such as Caspian Tern, which has a thicker and redder bill than
Elegant Tern. Also, the bill is the key region to estimate the Elegant Tern photos
taken from di�erent shooting angles to be in the same category.

sification, have di�erent needs for attention learning. It is because that the classifi-

cation clues for the generic image classification task lie in the whole class-specific

object, but the key clues for the FGIC task always only lie in certain local regions of

the class-specific object. As shown in Figure 2.1 (a), the class-specific objects of

di�erent categories of a generic image classification task are distinctively di�erent.

That is, the whole class-specific objects contain discriminative visual information.

Consequently, the attention learning for generic image classification tasks usu-

ally means di�erentiating the whole class-specific object from the background,

especially in early studies [84]. Typically, some earlier researchers, such as Gao et

al. [29], Borji et al. [4], Ren et al. [98] and etc., tried to use visual saliency as a crite-

rion to filter out the objects from the backgrounds and extract hand-crafted features

(e.g., SIFT [74]) from the objects. Later, with the huge success of the convolutional

neural network (CNNs), deep learning approaches became the mainstream tools for

generic image classification [108, 40, 41, 111, 22, 22, 58, 136, 37]. Meanwhile, the
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strategy that filters out the class-specific objects by using visual saliency became

infrequent [84] because CNNs themselves have a degree of capability to localize

class-specific objects [155]. With heavy extra overheads, filtering out the class-

specific objects can hardly bring a good improvement over the powerful network

architectures [108, 40, 41, 111] in terms of accuracy and become unnecessary.

Nowadays, for generic image classification, most researchers implement attention

inside the network architecture by assigning weights to di�erent elements inside

the network [22, 117, 85, 136]. For example, self-attention has attracted much

interest because of its strong ability to capture long-distance information, meaning

that it can easily derive global information [22]. As the global information of the

class-specific object is the key to generic image classification, there is a wave of

developing new network architectures based on self-attention [22, 58, 136, 37].

However, recently, there are also some researchers doubting whether attention is

necessary for generic image classification. For example, Luke Melas-Kyriazi, a

researcher from Oxford University, argued that attention is not the main reason re-

sponsible for the good performance of those self-attention-based architectures [78].

He replaced the attention layer of some self-attention-based architectures with sim-

ple feed-forward layers, and the accuracy for the generic image classification task

did not decrease very much.

While the usefulness of attention in the sub-field of generic image classification

has become to-some-extent controversial, attention learning is always the dominant

theme in the FGIC sub-field [33, 21, 96, 154, 42, 134, 28, 147, 106, 114, 130,

49, 69, 90, 139, 142]. Moreover, the needs for attention learning in the FGIC

sub-field are more complicated than the needs in the generic image classification

sub-field. Generally, FGIC needs to explore attention in certain local regions

of the classic-specific object because not the whole object can provide useful

information [157, 6, 33, 21, 96, 93, 154]. As shown in Figure 2.1 (b), due

to inter-class similarity, many parts of the classic-specific object might mislead

the model while only certain key parts give the di�erence between the di�erent

categories. Also, due to intra-class variance, some same-category objects look

di�erent regarding most of the object parts because of di�erent conditions, such

as shooting angle. Only some key parts that are invariant to di�erent conditions

can help the model to recognize those objects.

Therefore, it is very important to capture the key attention for the FGIC task.
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As the key regions always only occupy a small proportion of the whole scene

and the position in the scene is uncertain, attention learning is a very di�cult

problem in the FGIC task. Moreover, in the FGIC task, the background objects

can sometimes mislead the models, which further makes FGIC more di�cult. For

example, the bird called Palm Warbler generally hangs out in the understory of

forests, and thus Palm Warbler always shows with understory plants in photos.

The understory plants in the photos not only make the bird self-occluded but also

can be wrongly regarded as the clues for recognizing Palm Warbler. Then, there

will be classification mistakes when other species of birds happen to hang out in

the understory.

Along with the hardness, another problem of learning attention for FGIC is

it always introduces much extra e�ort and overhead. For capturing and utilizing

attention information, many FGIC studies utilize extra manual bounding boxes or

part annotations to localize attention regions, which improves the classification

accuracy but is labor-intensive and limits the practicality of real-world applica-

tions [49, 69, 90, 139, 142]. Some other studies localize attention regions with

weakly supervised localization schemes[52, 33, 21, 96, 93, 154, 42, 134, 28],

which largely increase the computational overheads.

2.2 Attention Learning

2.2.1 Region-based Attention Learning

At a high level, FGIC can be regarded as a sub-field of the recognition task

of computer vision (CV), and thus has been strongly influenced by the studies of

visual recognition, including shallow approaches [64, 118, 119, 95, 92] and deep

approaches [108, 40, 57, 65, 113, 123, 107, 120, 27]. Especially the deep ones

have gained dramatical improvement in recent years. For example, in the generic

image classification sub-field, convolutional neural networks (CNNs) [108, 40, 41,

111, 22, 22, 58, 136, 37] make a well-known success.

However, compared with other visual recognition tasks, such as generic image

classification [19, 43], FGIC requires much e�ort to find and learn the key attention

regions of the scenes rather than directly recognizing the entire scenes or just

di�erentiating the class-specific objects from the background, as introduced in
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Chapter 1. Exploring key attention is always the main theme in FGIC tasks, and

many studies mainly rely on manual object bounding boxes or part annotations.

For example, Xie et al. [130] propose to utilize the manual object bounding

boxes to obtain image segmentation and give a descriptive image representation

by building mid-level structures on the segmented regions. However, collecting

manual annotations is time-consuming, labor-intensive and not feasible for real-

world applications. To avoid this problem, hard-coded attention is proposed to

localize the attention regions [84].

Hard-coded attention generally selects the attention regions before learning

them. The selection is always implemented by solving a certain statistical problem,

which strongly relies on human’s expert knowledges [3]. For example, with the

experience that the regions with high visual saliency always contain key attention

information, many researchers develop di�erent computational saliency models to

select the key attention regions [84, 83, 25, 140, 44, 45, 1, 94, 35]. The selected

regions are then learned by recognition algorithms.

Hard-coded attention has some problems. The studies based on hard-coded

attention divide attention region localization and attention region classification

into two separate steps. The errors that occurred in each step can be accumulated

finally. Moreover, the prior knowledge, on which the hard-coded attention is based,

may sometimes be wrong and not lead the algorithms to find the most e�ective

regions. The pre-defined region cropping strategy cannot be adjusted conditioned

on specific datasets.

In this thesis, we propose novel Attention-Guided Spatial Transformer Net-

works (AG-STNs) to break the barrier between the attention region localization

and attention region classification and optimize the two steps together (Chapter 3).

AG-STN can be regarded as an attention-guided variant of Spatial Transformer

Networks (STNs) [52]. The Spatial Transformers of the STNs can apply mul-

tiple transformations on the inputs. There is the theoretical possibility for the

transformation to make the transformed images to be attention regions of the input

images. However, outputting attention regions is a very di�cult task for the Spatial

Transformers. In this work, we add guidance signals, which are computed from

hard-coded attention regions, to solve the training di�culty of Spatial Transform-

ers. The hard-coded attention regions are obtained with the saliency map based on

Minimum Barrier Distance (MBD) Transform [141]. By doing so, we successfully
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solve the training di�culty and connect the attention region localization and clas-

sification steps. Both steps are optimized together for reducing the classification

loss. That is, the localization of regions is adjusted for better accuracy.

The research [97] and [28] are both concerned with the learning of deep-learned

attention on raw inputs. [97] proposed an non-uniformed sampling scheme on raw

image inputs by using as guidance the saliency maps that are generated from a

CNN. Conditioned on the saliency maps, [97] amplifies the regions that response

to more saliency. Compared with [97], our proposed work in Chapter 3 is di�erent

mainly in the following aspects: (i) our work uses saliency maps as an initial

guidance signal and turns o� such a guidance in the later stage. The purpose of

doing so is to reduce the prior hypothesis bias caused by the saliency, in case

the saliency learning scheme cannot bring the best recognition results. (ii) the

sampling of [97] strongly relies on distorted zoom while our work is mainly a

localization with slightly transformation for alignment. In our work, the spatial

correlation of objects within same attention is still preserved. [28] recurrently

locate the attention regions from coarse level to finer level. However, [28] only

allows localization and scaling on input images while our work also allows other

transformations (e.g., rotation, distortion, etc.) with Spatial Transformer module.

Therefore, our work is able to align the captured regions.

2.2.2 Learning Attention from Deep Features

The approach proposed in Chapter 3 solves the training di�culty of cropping

attention regions by deep neural networks and achieves the goal of learning and

classifying attention simultaneously. However, there are drawbacks of heavy

training and utilization overhead and loss of certain possibly useful information.

Thus, we consider capturing attention from deep features inside the deep neural

networks inside of directly cropping regions on input images.

Learning attention information from deep features has also been studied by

previous researchers. Sharma et al. [103] takes the 7 ⇥ 7 ⇥ 1024-⇡ feature cubes

from CNNs as the inputs of their LSTM-based attention model. Jin et al. [55]

propose to use a model containing two-stream networks, which respectively learn

attention information with fast Matrix Power Normalized Covariance Pooling [66]

and part feature matrix. Zhou et al. [156] propose a region selection model based
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on the saliency constraint conditioned on the deep features from a CNN fed with

the original input image. Then, another CNN is used to extract pyramidal features

from the selected regions and the extracted pyramidal features are used to improve

the attention capturing of the feature learned from the raw input.

Those approaches take full images as the input and explore attention informa-

tion inside the deep neural networks, which has no information loss in the input

procedure. However, those approaches still require the embedding of various

backbone networks, such as CNNs+LSTMs [103, 33], multi-stage or multi-stream

CNNs [156, 55].

To solve this problem, in this thesis, we propose a novel multi-task atten-

tion learning framework, named Contrastively-reinforced Attention Convolutional

Neural Network (CRA-CNN), to improve the attention awareness of deep features

(Chapter 4). CRA-CNN treats region capturing (including cropping, zooming and

aligning) as an additional task to improve the main task, i.e., image classification.

During the training procedure, our architecture looks somehow similar to some

region-based attention learning architectures, such as [52]. However, the main

idea of our work is to use the designed losses occurred by local regions to improve

the attention awareness of the major network, rather than cropping local regions to

replace the original images. Thus, our work explores the whole visual information

of each image for classification. After the training, the network used for the addi-

tional task can be removed. Thus, CRA-CNN does not introduce extra overhead

for utilization.

Recently, There emerge some studies learning attention information by self-

supervised learning strategies for FGIC [5, 59, 127, 138]. Self-supervised learning

strategies are a set of strategies that capture attention regions without using ground

truth but generating some pseudo signals for supervising the training. The training

of capturing attention regions is used as the pretext task, and the features learned

from the pretext task are then transferred into the downstream task, namely clas-

sification. For example, Breiki et al. [5] propose to use three kinds of tasks as the

pretext tasks: Jigsaw solving, adversarial learning [73], and SimCLR model [8].

In [5], Breiki et al. argue that the model trained with the pretext tasks will improve

its attention, which benefits the downstream classification task. For example, in

the Jigsaw solving pretext task, given the Jigsaw-transformed images, the model is

trained to reconstruct the original image. During this process, the model can learn
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the semantic meanings of di�erent small regions.

Both self-supervised learning approaches and the approach proposed in Chap-

ter 4 solves multiple tasks. However, self-supervised learning approaches have

two separate steps. That is, they have to first complete the pretext task and then

the downstream task [5, 59, 127, 138], which takes more work. The two steps

are disconnected and cannot help to optimize each other. Moreover, some pretext

tasks, such as Jigsaw solving, can introduce extra noises (e.g., the randomly shuf-

fled local regions), which harm the classification performance [10]. The proposed

approach in Chapter 4 is based on the multi-task learning strategy rather than

the self-supervised learning strategy. In our work, the multiple tasks are solved

simultaneously.

I��������� A�������� M������. The proposed approach in Chapter 4

reduces the utilization overhead for attention learning. However, the capturing

and utilizing of attention information still requires much overhead during the

training procedure. Targeting this drawback, we turn our eyes to the recent studies

of attention modules in the generic image classification sub-field, which can be

inserted into backbone networks easily and introduce very small overhead.

Attention modules are designed to make CNNs learn to focus on the important

information and ignore unuseful information by imitating the human visual atten-

tion mechanism [46, 126, 18]. Humans tend to process an image by regarding it

as a sequence of partial glimpses and selectively concentrate on informative parts,

instead of processing a whole scene at once. Inspired by this fact, there have

been emerging e�orts to incorporate attention modules into CNNs for improving

classification accuracy in large-scale classification tasks, such as ImageNet [19].

Attention modules can explore two types of attention information, namely

spatial-wise attention and channel-wise attention. The spatial-wise explores the

attention information among the di�erent spatial locations of the deep features.

The channel-wise explores the attention information among the di�erent channels

of the deep features. The existing attention modules generally consist of some

pooling layers, 2D convolutional layers, FC layers, and a sigmoid function at the

end to generate a mask of the input feature map. For example, the SE module [46]

squeezes global spatial information with 2D-pooling and excites the squeezed in-

formation into a set of channel weights to capture channel-wise dependencies.
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The success of the SE module is succeeded by many studies. CBAM [126]

uses a similar idea to the SE module to capture channel-wise attention and in-

troduces spatial-wise attention encoding implemented by 2D-convolutional layers

with large-size kernels. Dai et al. [18] propose channel-wise attention in multiple

scales by varying the spatial pooling size.

The existing attention modules are designed for generic image classification

and focus on exploring single-scale attention information [126, 46] or/and single-

type attention information [18, 46], which is not enough for finding the subtle and

location-unpredictable key attention for FGIC. In this thesis, we propose the Re-

cursive Multi-scale Channel-spatial Attention (RMCSAM) for FGIC (Chapter 5).

Di�erent from the above-mentioned attention modules, our module can explore

multi-scale attention of the input feature maps in both channel-wise and spatial

wise. The multi-scale channel-wise attention in our work is implemented by using

di�erent numbers of the hidden units within the channel-wise sub-modules, which

makes it di�erent from the multi-scale channel-wise attention proposed in [18].

FC layers of di�erent numbers of the hidden units can compress the features

into di�erent scales [133], the compressed features can then be used to generate

multi-scale channel-wise dependencies. In this way, our work requires less over-

head than [18] to explore multi-scale channel-wise attention. Besides, [18] only

explores channel-wise attention and cannot explore the location information of

attention. Moreover, unlike the above-mentioned attention modules, our module

recurrently refines the features a predetermined number of times before outputting

the final refined features. That is, our module can recurrently look into details to

find the key attention for FGIC.

2.3 Machine Learning Techniques

In this section, we introduce the machine learning techniques related to CRA-

CNN (the approach proposed in Chapter 4), including multi-task learning (Sub-

section 2.3.1) and contrastive learning (Subsection 2.3.2). CRA-CNN is based

on the multi-task learning framework by treating attention region learning as an

additional task. Contrastive learning is used to evaluate the region predicted in

CRA-CNN.
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2.3.1 Multi-task Learning

Multi-task Learning (MTL) is a branch of machine learning, where di�erent

training tasks are resolved at the same time for exploiting distinctness and com-

monness across the tasks. As pointed out in [146], the idea of MTL is inspired by

the fact that human always uses the knowledge learned from one task to help learn

another related task. For example, the knowledge of learning to ride a bike and a

three-wheeled cycle helps each other. In machine learning practice, when com-

pared to individually trained models, MTL can advance the prediction accuracy

as well as training e�ciency for the task-specific models.

MTL is widely used in di�erent machine learning fields. For example, [151]

proposes an MTL framework to e�ectively extract features for FGIC, which simul-

taneously solves ultra-fine-grained, fine-grained and coarse-grained image catego-

rization tasks. [125] proposes an MTL CNN model for fingerprint image enhance-

ment with the help of the ridge orientation, which reconstructs the fingerprint

photos and the orientation field at the same time. [150] formulates choosing a

business site to be an MTL problem and resolves it by an attention-based MTL

framework, which specifies the shared features into separate tasks with relational

attention for learning understandable features.

2.3.2 Contrastive Learning

Contrastive Learning (CL) is a family of training algorithms for deep neural

networks, which acquires features by maximizing the similarity/dissimilarity be-

tween similar/dissimilar pairs of data samples. CL has an advantage in developing

various learning approaches as it gives a unified framework. For example, [128]

first builds independent embedding spaces, responsive to a particular augmenta-

tion by each (e.g., rotation, colour jittering, etc.) while insensitive to the others.

Then, the proposed CL framework acquires visual representations by preserving

the variance conditioned on each augmentation and capturing invariances to the

augmentations. [9] first augments the images into di�erent views and then learns

visual features by maximizing the agreement among various views of the same

image with a contrastive loss.
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2.4 Other Fine-grained Image Classification Approaches

In this section, we introduce state-of-the-art FGIC approaches that are not

directly related with our work. In this thesis, we compare these state-of-the-

art approaches with RMCSAM (the approach proposed in Chapter 5) because

RMCSAM is proposed by summing up the experience of two former approaches,

and it is the most recommendable approach proposed in this thesis.

D������� ����. Decision tree refers to a process that selects the appropriate

directions based on the characteristic of features [99]. The inherent interpretability

of decision tree has attracted much interest in adapting it for the FGIC task. Nauta

et al. [82] proposed the Neural Prototype Tree (ProtoTree) that consists of a CNN

backbone followed by a binary tree structure. ProtoTree can be trained end-

to-end and locally explain each prediction by describing a decision path. Ji et

al. [53] proposed to combine convolutional operations along edges of the tree

structure and determines the decision path using the routing functions in each

node. The convolutional operations generate the representations of objects, and

the tree structure provides a feature learning process to exploit the representations.

E������-���� �������� �� ���� �������. The intrinsic interrelationship

between feature elements contains useful semantic information. Xu et al. [131] pro-

posed a discrimination-aware mechanism (DAM) that improves the deep features

conditioned to the analysis on the relation between deep feature elements. DAM

can find the feature elements that are not well-learned and refine such elements

for better FGIC performance. Zhao et al. [152] proposed a graph-based relation

discovery (GaRD) approach to explore the high-order relationships among deep

feature elements in the FGIC task. Given an input image, GaRD first generates

a high-dimensional feature bank that is regularized with high-order constraints.

Then GaRD utilizes a graph-based aggregating procedure to explore the relation

between high-order elements of the feature bank and produce a low-dimensional

feature representation.

P���������� ��������. In the FGIC field, progressive learning approaches

generally first divide a backbone CNN into several segments, and each segment

progressively learns features and gives the prediction. Thereafter, the features

learned by each segment are concatenated to give an overall prediction. Du et

al. [23] proposed the Progressive Multi-Granularity (PMG), which uses a jigsaw
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puzzle generator to produce the images with di�erent levels of granularity and then

learns cross-granularity information by progressive learning. Zhang et al. [143]

proposed to explore the similarity between the images of the same category and

the di�erence between the images of di�erent categories.

T����������. The latest success of transformer in some other fields [60, 100]

has influenced the attention-based research in the FGIC field. A transformer is a

deep learning model giving attention weights to each element of the input data.

It was originally proposed for the natural language processing task [115] and

has been adapted for computer vision tasks [22, 39]. He et al. [39] proposed a

transformer-based multi-attention model specifically for FGIC use, which is called

TransFG. TransFG first splits the input images into small regions, and the regions

are projected into feature space by the transformer encoder. Thereafter, TransFG

combines all raw attention weights of the transformer to be an attention map and

uses the attention map as guidance for selecting discriminative regions. TransFG

does not output the selected regions and then explore information from the selected

regions. On the contrary, TransFG intuitively considers the attention link of the

transformer as an indicator of attention. Specifically, before the last Transformer

Layer, TransFG utilizes a part selection module (PSM) to select the tokens that

correspond to the discriminative regions and only feed the selected tokens to the

last transformer layer.

Though bringing a boost in terms of classification accuracy, these approaches

have the problem of high overhead for memory, computation cost, etc. The huge

computational expenses caused by their sophisticated architecture [82, 53, 131,

152, 39] or multi-stage framework [23, 143]. For example, TransFG [39] does

not require directly localizing the attention regions by outputting the regions and

achieves the best accuracy among the studies mentioned in this subsection. How-

ever, the backbone transformer, which itself has a extremely heavy computation

overhead, together with the complicated part selection module (PSM) [39], makes

TransFG require much more parameters, GFLOPs, and time than our approach.

Di�erent from these studies, our work provides an insertable, lightweight, and

general module, which can be inserted into standard CNNs and only requires a

little extra overhead. Moreover, as an insertable module, our approach is comple-

mentary to state-of-the-art framework [23], and further improve the accuracy.
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Chapter 3

Guided Attention Learning

3.1 Chapter Overview

In this chapter, we focus on solving the problem of the heavy training di�culty

of capturing attention with deep neural networks, which is a specific aspect of

the research question. In FGIC, discriminative information is always contained in

certain regions while the other regions contain much redundancy. Thus the intra-

class variance is subtle, which makes FGIC an extremely di�cult computer vision

task. For solving this problem, many recent FGIC studies develop algorithms on the

attention regions, rather than the whole scenes [12, 13]. In attention regions, much

redundant visual information are discarded and the remainders are supposed to be

discriminative. Mainstream attention-region-based FGIC approaches capture the

attention regions by hard-coded methods, which generally locate attention regions

by certain hand-crafted saliency features [84, 83, 25, 140, 44, 45, 1, 94, 35].

Hard-coded attention regions are generally not accurate enough. For example,

as shown in Figure 3.1, most hard-coded methods assume the attention regions

to have the maximum saliency values [140, 44, 1, 94] and consequently usually

locate the body region as the attention region if we apply these approaches in bird

image classification. However, the body may not always be the most informative

region. As introduced in Chapter 1, the key attention for bird image classification

may be very subtle and usually locates in very small regions, such as the head

region.

Another problem of the approaches based on hard-coded attention regions is
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Figure 3.1: Many hard-coded approaches localize the regions by saliency maps [84,
83, 25, 140, 44, 45, 1, 94, 35]. Typically, those approaches first generate saliency
map from the input images and then use a value-heavy strategy to locate the regions
that have the most saliency value.

that the localization and recognition of the attention regions are treated as two

separate stages. The errors during each stage can be accumulated to be a huge

final error, and the information learned during each stage cannot help optimize

each other.

In this chapter, we try to solve this problem by using deep neural networks

to complement the task of region localization. By doing so, the localization task

can be optimized together with the task of recognition performed by other deep

neural networks. The attention region learned by deep neural networks is named

as deep-learned attention region. The problem of deep-learned methods is that

they are extremely hard to train with only categorical information because they

have to simultaneously complete two di�cult tasks (i.e., region localization and

classification).

In this chapter, we overcome this di�culty by proposing Attention-Guided

Spatial Transformer Networks (AG-STNs), which is an attention-guided variant of

the spatial transformer networks (STNs) [52]. AG-STNs have a mechanism named

regressive guiding, which makes spatial transformers to capture the same regions

as hard-coded attention regions in a certain scale by regression. With AG-STNs,

we can first guide the localization network to capture the attention regions of the

scales in an intended level (rather than performing meaningless transformations).

Then we turn o� regressive guiding and let the networks to adjust attention region

capturing by themselves (with only categorical information). Finally, the deep-

learned attention regions from AG-STNs will focus more meaningful parts. AG-

STNs bring two benefits: (a) Additional guidance information makes the network

easier to optimize; (b) With di�erent scales of hard-coded attention regions, AG-

STNs can be guided to capture di�erent scales of attention information, which are

complementary to each other. As mentioned in Chapter 1, we suppose multi-scale
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attention information is e�ective for FGIC. To avoid the harmful influence of inter-

class similarity and intra-class variance, it is very important to capture the subtle

and discriminative attention. However, the attention regions of small scale are not

the only informative regions, and the regions of other scales may sometimes also

provide important clues.

In experiment, we explore attention regions of three levels, namely detailed

level (224⇥224 attention regions from 896⇥896 input images), middle level (224⇥
224 attention regions from 448⇥448 input images) and the general level (224⇥224

attention regions from 256⇥256 input images). Our experimental results show that

AG-STNs are much easier to train and can capture meaningful regions. Moreover,

multi-level attention information captured by the AG-STNs are complementary to

each other, and a fusion can bring better results.

The contributions of the approach proposed in this chapter can be summarized

as follows:

• We propose a framework that can capture attention regions by deep neural

networks. In this way, the optimization of attention region localization and

recognition can be optimized together.

• The proposed regressive guiding strategy successfully solves the training

di�culty of using deep neural networks to perform the localization task.

Besides, the proposed regressive guiding strategy can be used to guide the

networks to capture the attention region of given scales.

• The experimental results show that the fusion of the prediction obtained

from multi-scale attention regions can further improve the accuracy over the

prediction obtained from single-scale attention regions and raw input images

(i.e., without attention).
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3.2 Proposed Approach

The proposed approach is an attention-guided variant of STNs, which ad-

dresses the training di�culty. With the guidance, AG-STNs can be restrained to

capture certain regions of certain scales at first (regressive guiding step). Then

such restraint is removed and the regions can be adjusted conditionally upon the

classification loss in the same way of ordinary STNs (joint training step).

3.2.1 STNs in attention region capturing

The STNs contains two important parts: the localization network and the

recognition network. As shown in Figure 3.2 (a), given an input image �8= ,

the localization network learns a set of transformation parameters ) = 5;>2 (�8=),
where 5;>2 denotes the function of the localization network. Thereafter a spatial

transformation module ST obtains the transformed image �C = ST () , �8=), and �C
will be the input of the recognition network. The whole structure can be optimized

together: thus, the transformation applied on �8= will make �C better recognized

by the recognition network. Rather than directly transforming �8=, ST is in fact

implemented by a transformation applied on a regular grid M, on which �C is

defined. M = {⌧8} and ⌧8 = (G8, ~8) denotes the coordinates of M. Let the

transformation on M be T . T () ,M) denotes the transformed grid and it defines

�8=. Thereafter, the sampler S forms the pixel values of �C by sampling the pixel

values of �8= at particular locations defined by T () ,M). Thus, �C = ST () , �8=)
can be also written as �C = S(T () ,M), �8=). T can be di�erent transformations

with di�erent ) . For example, let T () ,M) be a 2D a�ne transformation on M.

Then ) =

"
\11 \12 \13

\21 \22 \23

#
is the 6-dimensional a�ne transformation matrix and

the transformation between T () ,M) and M is implemented as

✓
G08
~08

◆
=

"
\11 \12 \13

\21 \22 \23

# ©≠≠
´
G8
~8
1

™ÆÆ
¨

(3.1)

where (G08 , ~08 ) is a coordinate in T () ,M), and it defines the particular location

of �8=, at which ( should samples the value for the location (G8, ~8) in �C . Those
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coordinate are normalized by width/height. Thus, �1  G08 , ~
0
8  1, �1  G8, ~8  1.

Bilinear sampling kernel is used forS in [52], and our work uses the same sampling

kernel.

In addition to a�ne transformation, STNs also allow other transformations

by using di�erent ) . In this work, we hope the Spatial Transformers to capture

the attention regions, for which a�ne transformation is enough. Thus, we keep

using a�ne transformation in this work, and thus the ) in this paper is always

6-dimensional. However, rather than capturing attention region, a�ne transfor-

mation can also result in other processing on �8=, such as rotation, warping, etc. It

is hard to make the localization network automatically “:=>|” our intention. The

networks can hardly automatically perform the cropping of right scale, rather than

other transformations, when only categorical information is provided. Further-

more, in some cases, especially when we try to capture attention regions in a very

detailed level, the images obtained from the localization networks are severely

distorted. Consequently, the recognition performance is extremely bad.

As shown in Figure 3.2 (a), the purpose of using the STNs is to learn the

attention region from inputs. However, what we actually obtain from the STNs are

distorted images that cannot be well recognized by the recognition network. This

is because initial parameters of the localization network are not meaningful for the

task. Therefore, at the beginning, the spatial transformation applied on images is

meaningless. In many cases, especially when we want more detailed information,

however the STNs are trained, they still obtain only distorted images. It is because

in such cases, the STNs can hardly be optimized with only classification loss

propagated from a recognition network. This phenomenon is referred as distortion

e�ect.

3.2.2 Attention-Guided STNs

To solve the problem of “Distortion E�ect”, we propose the AG-STNs. As

shown in Figure 3.2 (b), the training of an AG-STN can be mainly divided into

two steps. The first step is regressive guiding, in which the localization network is

initialized with hard-coded attention regions. The second step is joint training, in

which the regressive guiding is turned o� and the localization network is jointly

trained with the recognition network. The loss functions of these two steps are
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defined as

Ls =

8>>>>>>><
>>>>>>>:

2’
8=1

3’
9=1

|\8 9 � ¯\8 9 |, when s = 1 (3.2a)

�
:’

2=1

_2log ?(d = 2), when s = 2 (3.2b)

where s denotes the sC⌘ step (e.g., s = 1 denotes the first step). Ls is the loss

function of the sC⌘ step. As can be seen, L1 is in fact a !1-loss and L2 a standard

cross-entropy loss. More details about Equation (3.2a) and (3.2b) are given as

followings:

R��������� �������. Similar to the formulation in the Section 3.2.1, �8= is

the input image and ) = 5;>2 (�8=) is a set of transformation parameters directly

outputted by the localization network. )̄ =

"
¯\11 ¯\12 ¯\13

¯\21 ¯\22 ¯\23

#
is also a set of

transformation parameters. )̄ is obtained as )̄ = ST �1('⌘, �8=), where '⌘ is

the hard-coded attention region of �8= and ST �1 is the inverse operation of ST .

Given �8= and '⌘, ST �1 outputs the transformation parameters )̄ that makes

ST ()̄ , �8=) = '⌘. Then in the step of regressive guiding, the localization network

is optimized by reducing the loss defined by (3.2a). Obviously, after the training

in this step, ) will get close to )̄ and �C will approximate '⌘.

Then we introduce how we obtain the hard-coded attention regions and how

we obtain )̄ (namely ST �1(.)).
H���-����� ��������� ������ ����������. The hard-coded attention

regions are generated from saliency maps corresponding to each image. Let "

be a saliency map and is obtained by utilizing the MB+ method in [141]. After

obtaining the " of the images, we use a window of size { ⇥ { (| > ⌘ > {) to

traverse " . Thereafter, we use the window which has the most saliency value to

bound the hard-coded attention region '⌘. The starting position of '⌘ in an image,

whose size is | ⇥ ⌘ is defined as

(UA⌘, VA⌘) = 0Aî <0G
(U,V)

1
{2

U+{�1’
8=U

V+{�1’
9=V

"2
(8, 9)

(8  | � { + 1, 9  ⌘ � { + 1)
(3.3)
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Figure 3.3: The dark-blue-frame box illustrates �8= and the light blue coordinate
system illustrates T () ,M). The red-frame box illustrates intended �C , which
equals to '⌘. The coordinate system in pale red illustrates M. Note that the in
the coordinate systems used in the Spatial Transformers, the positive direction of
vertical axis is downward.

T�� ����������� �� )̄ . For convenience of computation, we crop an ⌘ ⇥ ⌘

square part from the | ⇥ ⌘ images, and use the ⌘ ⇥ ⌘ part instead of the whole

image as �8=. When cropping, we make sure '⌘ is included in the cropped part �8=.

Assume the starting position of '⌘ to be P and the position of P in �8= is

( ¯UA⌘, VA⌘). Here we want �C to be '⌘. As shown in Figure 3.3, each point of �C
should be sampled from the same position of �8=. Take P as an example, the pixel of

P in �C should also be the pixel of P in �8=. The position of P in �8= is ( ¯UA⌘, VA⌘), and

thus the coordinate of P in T () ,M) is (�
⌘
2 � ¯UA⌘

⌘
2

, �
⌘
2 �VA⌘

⌘
2

). Similarly, the position

of P in �C is (1, 1), and the coordinate of P in M is (�1,�1).
Then, as introduced in Section 3.2.1, �8= and �C are respectively defined on

T () ,M) and M. The transformation between T () ,M) and M are defined as

Equation (3.1). Thus,
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)̄ =

"
¯\11 ¯\12 ¯\13

¯\21 ¯\22 ¯\23
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377775
=
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{/⌘ 0 2

⌘ ¯UA⌘ + {
⌘ � 1

0 {/⌘ 2
⌘ VA⌘ + {

⌘ � 1

# (3.4)

J���� T�������. After the previous step, the localization network has been

initialized to capture the region '⌘. We then fuse the initialized localization

network with the recognition network and train them together (joint training).

Equation (3.2b) defines the loss function for a :-class classification problem. Let

l = {;1, ..., ;: } be a :-dimensional vector of logits, which are outputted by the

recognition network. In Equation (3.2b), d is the prediction of category for input

instance and ?(d = 2) = 4G?(;2)Õ:
8=1 4G?(;8)

. _2 is a binary indicator (0 or 1), which equals

to 1 if 2 is the true label of the input instance and 0 otherwise. During the step

of joint training, all the networks are trained by Equation (3.2b). In other words,

all the influencing factors are optimized toward the target of better classification

performance. With the training, the networks will gradually locate from '⌘ to

deep-learned attention region '3 , which will be more discriminative.

3.2.3 Multi-stream AG-STNs

When small attention regions can provide more details, sometimes general

information is also crucial. For example, as shown in Figure 3.4, in some cases,

more general information such as the body texture can be very important. Rather

than exploiting only detailed attention information, AG-STNs can also be used for

capturing multi-level attention information. To provide comprehensive informa-

tion, we apply three levels of attention regions, namely the detail level, middle

level and general level.

�C is the input of the recognition network, which requires the inputs to be in a

definite size (e.g., 224⇥224 for ResNet-101 [40]). �C is in fact a part of �8= (⌘⇥ ⌘),
and thus if we resize original images to a lager size (i.e., larger|⇥⌘), �C will account

for smaller proportion of �8= and otherwise lager proportion. Consequently, we

can decide �C to capture more detailed or general information by setting larger or
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(a) Acadian Flycatcher (b) Great-Crested Flycatcher

(c) Pied Kingfisher (d) Belted Kingfisher

Figure 3.4: Examples of two pairs of hard-to-distinguish bird images: Acadian
Flycatcher (a) and Great-Crested Flycatcher (b), Pied Kingfisher (c) and Belted
Kingfisher (d). In most of the cases, such as the two pairs of images here, the
detailed regions (e.g., the head region), provide very discriminative information.
However, in some other cases, such as distinguishing between Pied Kingfisher and
Belted Kingfisher, more general information, such as the body texture, is also very
important.

smaller | and ⌘.

As mentioned before, initial �C depends on '⌘. Therefore, we can compute '⌘

for multi-size �8= beforehand. Then we initialize multi-level localization networks
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by regressive guiding with multi-level '⌘. Thereafter, during the joint training

step, the location and proportion of attention regions can be fine-tuned to a needed

extend.

3.3 Experiments

3.3.1 Dataset and implementation details

D������. We use CUB-200-2011 [116], which is a bird image dataset across

200 species. There are totally 11788 images in this dataset, 5994 of which are

training images and the left 5794 are testing images. The dataset also provides

bounding boxes and detailed part annotations but we do not use them in this paper.

N������ ������������. We use the ResNet-101 model for localization

networks and both ResNet-101 and DenseNet-161 model [48] for recognition

network. We set the batch size as 8 for CUB-200-2011 dataset. We initially

train the localization networks by regressive guiding and pre-train the recognition

networks by random cropping. At this stage, we set the learning rate as 10�3 for

localization networks and 10�4 for recognition networks. We then fuse localization

and recognition networks together for joint training. At this stage, we set the

learning rate as 10�6 for the localization networks and 10�5 for the recognition

networks. When training CNNs directly on the hard-coded attention regions, the

learning rate is set as 10�4 at first and then 10�5 when training status saturates.

I���� �����. For all the datasets, we first resize all the images into a certain

size �AB. Table 3.1 shows the size configurations for di�erent levels. In order to

feed �8= into the localization networks, we need to downscale �8= at first. Regarding

the downscaling strategies, we utilize image resizing for the general level. For the

middle and detail level, we respectively add 2⇥ and 4⇥ max pooling layers before

the localization networks.

3.3.2 Evaluation on detail-level attention learning

In this section, we evaluate the performance of the AG-STNs for exploiting

detail-level attention information. We compare AG-STNs with the CNNs trained

on hard-coded attention regions and the original STNs. All the networks in this
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Table 3.1: Size configuration for di�erent levels

Level �AB �8= �C /'⌘/'3

Detail 1189 ⇥ 896 896 ⇥ 896 224 ⇥ 224
Middle 594 ⇥ 448 448 ⇥ 448 224 ⇥ 224
General 340 ⇥ 256 256 ⇥ 256 224 ⇥ 224

Table 3.2: Comparison on the recognition performance between di�erent ap-
proaches for exploiting detail-level attention

Methods Accuracy
Hard-coded Attention Approaches 60.41%
Original STNs 31.90%
AG-STNs 80.15%

Figure 3.5: Illustration of the detail-level attention regions respectively captured by
the hard-coded approach, STNs and AG-STNs. The STNs su�er from “Distortion
E�ect” so severely that the STNs can get very limited detail-level information. On
the contrary, the AG-STNs can capture attention regions as intended without being
a�ected by “Distortion E�ect”. Guided by the hard-coded attention regions, the
AG-STNs are able to gradually focus on more discriminative regions.

section are based on ResNet-101. Since the training of STNs involves randomness,

especially regarding the initialization of network parameters, we run the experi-

ments of STNs with di�erent parameter initializations for 10 times and report the

average results.

As shown in Table 3.2, the AG-STNs outperforms the STNs and hard-coded

attention regions in all the aspects. Regarding the accuracy, the AG-STNs are
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Figure 3.6: Examples of the detail-level attention regions extracted by the local-
ization networks right after the regressive guiding stage (Subsection 3.2.2)

.

dramatically better than the other two.

Figure 3.5 illustrates some examples of di�erent regions respectively captured

by di�erent approaches. As can be seen, the STNs can capture very limited

attention information in detail level, which accounts for the low performance

of STNs in this level. Whereas the AG-STNs guided by hard-coded attention

regions can successfully capture the intended information. Though guided by

hard-coded attention regions, the regions captured by the AG-STNs are far more

discriminative. Therefore, the AG-STNs also outperform the hard-coded approach.

Figure 3.6 shows the the initial attention regions captured by localization networks

right after the guidance. Figure 3.7 visualizes how an AG-STN gradually moves

its focus from the initial attention regions to more discriminative parts.

3.3.3 Evaluation on multi-stream AG-STNs

Beside the capability for exploiting detail-level attention information, the AG-

STNs also have the ability to capture attention information in other levels. In

this section, we present the results of multi-stream AG-STNs. All the localization

networks are constructed from ResNet-101. We evaluate the performance by using

both ResNet-101 and DenseNet-101 as recognition network. The performance of

AG-STNs is also compared with no-attention baselines trained on whole images.

The results are shown as Table 3.3. As can be observed, AG-STNs dramatically
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(a) (b) (c)

(d) (e) (f)

Figure 3.7: (a-f) show the detail-level attention regions captured by the AG-STNs
during the joint training process. (a) is the attention region captured by the AG-
STNs that are just initialized by regressive guiding. Thus, (a) can be regarded to
be equal to the hard-coded attention regions. (f) is the attention regions captured
by the AG-STNs when the joint training is finished. (b-e) are attention regions
captured by AG-STNs in di�erent stages between (a) and (f). It can be seen that
from (a) to (f), AG-STNs gradually focus on more informative regions.

Table 3.3: Results of multi-stream AG-STNs

Backbone Network ResNet-101 DenseNet-161

With attention

Detail 80.15% 81.71%
Middle 81.03% 82.93%
General 78.29% 82.83%
Fusion 83.36% 86.93%

Without attention 74.87% 81.29%
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Table 3.4: Comparison with previous studies on CUB_200_2011

Part-based R-CNNs [142] 76.36%
PD+DCoP+flip+GT BBox+ft [62] 82.8%
Compact Bilinear Pooling [31] 84.0%
STNs (4⇥ST-CNN 448px) [52] 84.1%
LRBP [61] 84.21%
RN-50+SS [97] 84.5%
PD+FC+SWFV-CNN [144] 84.54%
RA-CNN (scale 1+2+3) [28] 85.3%
Improved Bilinear Pooling [70] 85.8%
BoostCNN [80] 86.2%
Kernel Pooling [16] 86.2%
MA-CNN (!2;B + !2=î) [153] 86.5%
ResNet-101+OSME+MAMC [110] 86.5%
PC-DenseNet-161 [24] 86.87%
Ours (multi-stream AG-STNs) 86.93%

outperforms the no-attention baselines. Besides, di�erent streams of AG-STNs

are complementary to each other. A fusion of them brings better results.

Table 3.4 shows a comparison with previous studies in CUB-200-2011. [52]

is most related with our work. In [52], the best result is achieved by 4⇥ST-

CNNs (224 px attention regions for 448 px inputs). In our work, we use the

three levels of 1⇥AG-STNs. Compared with [52], our work is able to exploit

more detailed attention information, which is proved to be complementary with

attention information of other levels, such as the level used in [52] (i.e., 224 px

attention regions for 448 px inputs). The result shows that our work is comparable

with those previous studies on CUB-200-2011.

3.4 Summary of This Chapter

In this chapter, we focus on addressing the training di�culty of capturing atten-

tion with deep neural networks, which is a specific aspect of the research question

that we try to figure out in this thesis. With this objective, we introduce a new

extension model of STNs, the AG-STNs, for solving the problem of training di�-

culty. In the AG-STNs, at first, a mechanism named regressive guiding supervises
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the Spatial Transformers with hard-coded attention regions. Then regressive guid-

ing is turned o� and the network is able to adjust the captured regions for obtaining

more e�ective attention information. With the mechanism of regressive guiding,

the Spatial Transformers are able to understand their “mission” and therefore cap-

ture the attention information in the intended level rather than implementing other

transformations. Besides, with regressive guiding, the Spatial Transformers do not

su�er from “Distortion E�ect” any more. “Distortion E�ect” is especially severe

when capturing detail-level attention information and it is mainly caused by the de-

ficiency of the only-provided categorical signals. Since the AG-STNs are provided

with hard-coded attention information in addition to the categorical information,

they successfully capture attention information in a very detailed level whereas

the STNs fail to capture attention information in such level. Also, as attention

region localization and recognition are optimized simultaneously, the AG-STNs

can capture more discriminative regions than the hard-coded regions. Besides,

regressive guiding can also be used to make the Spatial Transformers to capture

multi-level attention regions by guiding with the relevant multi-level hard-coded

attention regions. Our results show that AG-STNs outperform STNs and hard-

coded approaches for capturing detail-level attention information. Moreover, the

streams of multi-stream AG-STNs are complementary to each other. Therefore,

the fusion of the streams brings better results. This chapter verifies that guiding

the deep neural networks with traditional hard-coded attention regions helps solve

the training di�culty and capture e�ective attention regions. This chapter also

verifies the e�ectiveness of multi-scale attention.
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Chapter 4

Multi-task Attention Learning

4.1 Chapter Overview

In this chapter, we mainly try to solve the problem of extra overhead for

capturing attention information. Specifically, with the multi-task learning strategy,

we propose a novel framework, where the extra attention-learning overhead can be

removed after training, requiring no extra overhead during the testing.

Traditional region-based attention learning strategies su�er from two draw-

backs. Firstly, region localization inevitably requires much extra overhead. More-

over, capturing three-scale attention regions further increase the overhead. For

practical use, while the overhead in the training procedure can be to some ex-

tents avoided by training beforehand, the overhead in the testing (i.e., utilization)

procedure is inevitably infeasible.

Secondly, region localization is a di�cult task in itself. It is impossible to

ensure to localize the imperfect region every time, and cropping wrong regions

causes inevitable and irreversible information loss and introduces unfavourable

noise to the training model. Sometimes, there might be several regions all

contain useful information but the model has to abandon some of them. This

problem largely limits the improvement of region-based attention learning. To

avoid abandoning useful regions, some recent studies stack a lot of networks to

capture dense attention regions, which, however, makes the overhead increase

largely [42, 54, 96, 36, 52, 28, 129, 67, 122].

In this chapter, instead of following the typical region-based pipeline used in
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Figure 4.1: Motivation of this chapter. This figure illustrates some classification
results of a ResNet-50 [40] trained on CUB-200-2011 dataset [116]. The first
column shows some input images that are wrongly classified by the trained ResNet-
50. The second column shows the Class Activation Maps (CAMs) [155] generated
by the ResNet-50 on the input images, which denotes what region the ResNet-50
uses as clues to identify the predicted category. The images in the third column
are from a di�erent class from the images in the first column, but the trained
ResNet-50 predicts them to be in the same category. The images in the fourth
column are from the same class as the images in the first column, but the trained
ResNet-50 predicts them to be in di�erent categories. The wrong classification is
caused by that the visual clues found by the ResNet-50 are not robust enough.

Chapter 3, we try to explore attention information from deep features. On the

one hand, the input image need not be cropped before going through recognition.

Namely, there is no loss of information on the input image. On the other hand,

the attention information can be obtained from the deep features. The obtained

attention information can be used to refine the deep features to strengthen the

features’ responses towards attention regions and weaken the features’ responses

towards non-attention regions.

Following the above idea, in this chapter, we focus on strengthening the CNNs’

awareness of the discriminative regions (i.e., we want to make CNN’s correspon-

dence stronger to the discriminative visual clues and weaker to redundant visual

information). As shown in Figure 4.1, take bird image classification as an example.

The classification di�culty mainly comes from two essential characteristics of the

images. The first characteristic is the intra-class variance. The birds of the same

species may look quite di�erent in various poses, illumination, etc. The second
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characteristic is the inter-class similarity. For foreground objects, the visual di�er-

ences among bird species are subtle. For background objects, images of di�erent

birds may have the same habitats, such as trees or water. If the CNNs take the

habitat background as an important clue, they tend to make mistakes.

For solving these problems, we suppose the classification networks requires:

(a) mainly exploring clues on the discriminative object parts that are invariant in

di�erent poses, camera angles, etc. (e.g., bird heads); (b) referring to the other

parts if necessary, otherwise not. For this objective, we propose the Contrastively-

reinforced Attention Convolutional Neural Network (CRA-CNN) following the

multi-task learning (MTL) strategy [104, 11, 30, 146, 151, 125, 150].

MTL is widely used for improving generalization by utilizing the domain

knowledge in the training supervision of relevant tasks as an inductive bias. The

proposed CRA-CNN consists of two network streams, namely a major network

(N<0 9 ) and a subordinate network (NBD1). N<0 9 has two related tasks: (a) predict

the correct category of a given image; (b) predict the attention information of

the given image. For the second task, N<0 9 is required to generate a set of

attention parameters conditioned on the given input image. Thereafter the proposed

Attention-redundancy Transformation module (ART module) takes as inputs the

attention parameters and the given image and divides the input visual information

into attention and redundancy. Then NBD1 evaluates the attention-redundancy

proposal of N<0 9 and regulates the N<0 9 through standard backpropagation. We

train N<0 9 and NBD1 together during training while removing NBD1 and only using

N<0 9 during the testing process. Thus, CRA-CNN requires no more overhead than

basic network backbones (e.g., the ResNets) in the testing procedure.

Generally, MTL requires multiple annotations for multiple tasks (e.g., category

label for classification and bounding box for localization [30]). However, extra

attention annotations besides necessary category labels, such as bounding boxes,

require much extra manual e�ort. Thus we use category label as the only manual

annotation for all tasks and design NBD1 to evaluate and improve the attention-

redundancy proposal instead of extra attention annotations.

The evaluation is conducted from two aspects. Firstly, the proposed attention

calls for contain discriminative visual information as much as possible. That

means the proposed attention can be recognized as the correct category. Secondly,

the proposed attention and redundancy are expected to be contrasted to each other,
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which follows the contrastive learning (CL) strategy [128, 9, 17, 50] and is inspired

by the fact that humans can learn discriminative clues by contrasting di�erent

images with categorical labels. For example, given an FGIC task of distinguishing

bird species, a human instinctively contrasts images with the same/di�erent labels

and tries to find commonality/di�erence among them. Then, the human will find

that the most discriminative regions are certain parts of the foreground objects

(e.g., bird heads), rather than the background objects (e.g., tree branches), and the

latter then become insignificant in the eyes of the human.

Corresponding to the two above aspects, we train the NBD1 by solving two

tasks, which is based on a loss function by each. The first one is a softmax loss to

teach NBD1 that the proposed attention is supposed to be recognized as the correct

category. The second is a proposed contrastive learning loss to teach the NBD1 that,

the attention-redundancy pairs of the same image should be pushed far apart, and

the redundancies of di�erent images should be pulled closer.

Our contributions in this chapter are:

• We propose a novel MTL framework that helps the networks to strengthen

the awareness of condition-invariant attention.

• The proposed approach is easy to implement and computationally a�ordable,

especially in the test procedure.

• Our approach clearly outperforms the baselines on CUB-200-2011 and Stan-

ford Cars datasets. Experimental results show that exploring attention infor-

mation from deep features is e�ective for improving the accuracy.

4.2 Proposed Approaches

4.2.1 Approach Overview

The outline of the proposed CRA-CNN is shown in Figure 4.2. The major

network (N<0 9 ) is used to predict the category of the input image, and we use

the subordinate network (NBD1) to force the N<0 9 to improve attention awareness.

The two networks are linked by the proposed ART module, which consists of the

attention transformation module (AT module) and the redundancy transformation

module (RT module).
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Figure 4.2: The pipeline of CRA-CNN. Given an input image, N<0 9 is required to
complete two tasks: predict the category (trained with L2;B1) and output a set of
transformation parameters �. The red dashed box illustrates the ART module. �
is restricted to be in a reasonable range and becomes �A4B, which is further limited
by the proposed attention-restriction loss LA4B. A�A4B and R�A4B are parametrized
transformations, which are implemented on the input image and form the attention
and redundancy, respectively. The parametrized transformations allow localiza-
tion, zooming, and rotation. Then the NBD1 evaluates the attention-redundancy
proposal by recognizing the attention’s category (L2;B2) and measuring the dissim-
ilarity of the attention-redundancy pairs and similarity of di�erent redundancies
(L2=CA).

In a practical sense, N<0 9 has two tasks: (a) categorize a given image; (b)

predict a transformation based on the features learned by N<0 9 . NBD1 also has two

tasks: (a) evaluate whether the proposed attention is discriminative; (b) evaluate

whether the proposed redundancy is redundant.

4.2.2 Attention-redundancy Transformer module

ART module acts as an important bridge between N<0 9 and NBD1. That is, the

ART module has to e�ciently report the attention awareness of N<0 9 to NBD1, and

then report NBD1’s evaluation to improve N<0 9 ’s attention awareness.

Therefore, the ART module has to meet three requirements: (a) The ART

module should be mathematically di�erentiable so that it can be embedded within

CNNs. (b) The ART module should be able to transmit comprehensive information

43



of the attention between the networks, such as the locations, sizes, and alignment

angles. (c) The design of the ART module should not be too complicated, and

should be easy to optimize. Otherwise, the training di�culty would bring an

accuracy decrease.

To meet the above requirements, we turn our eyes to the Spatial Trans-

former (ST) module, an essential component of the Spatial Transformer Networks

(STNs)[52]. The ART module is adapted from the ST module by overcoming its

shortcomings to meet the above requirements. The details of the STNs have been

introduced in Chapter 3. Here, similar to the formulation in Chapter 3, given an

input image �8=, the ST module outputs a transformed image �C , and the transfor-

mation applied by the ST module is conditioned on �8=. Neglect the numbers of

channels in �C and let the 2-D size of �C to be �⇥, (height, width), and � 2 [1, ⌘],
| 2 [1, |]. ⌧ = {(~1, G1), (~1, G2), ...(~2, G1), (~2, G2), ...(~|, G⌘�1), (~⌘, G|)} is a

regular spatial grid that defines the �C (i.e., ⌧ is the sampling grid for �C). Similarly,

let the 2-D size of �8= to be �0 ⇥,0 (height, width), and �0 2 [1, ⌘0], |0 2 [1, |0].
Let ⌧0 = {(~01, G01), (~01, G02), ...(~02, G01), (~02, G02), ...(~0|, G0⌘�1), (~0⌘, G0|)} to be the

sampling grid that defines the �8=. The transformation is applied as Equation (3.1)

in Chapter 3. Based on this formulation, we give the formulation of the proposed

approach as below.

D������ �� ���������-���������� ����������� ������. The ST

module is proposed to resolve spatial variations but faces some issues in prac-

tice.

The foremost common issue is that the localisation network has di�culty

dealing with the early-stage noise, which consequently leads to irreversible loss of

visual information and causes huge errors in classification (also indicated in [71]).

Additionally, the ST module fails to resolve certain spatial variations (also indicated

in [105]). Those issues make it rather di�cult to optimize the localisation network

and ST module. Due to the di�culty, [52] has to manually fix \11, \12, \21 and \22

and only optimizes \13 and \23 for learning attention region in the FGIC tasks (the

details of \11, \12, \13, \21, \22 and \23 are given in Chapter 3), which however

largely narrows the variety of possible transformations.

We propose the AT module to e�ciently reveal the attention awareness of the

N<0 9 without heavy optimization di�culty. As mentioned before, the AT module

should be able to reveal various attention information. In this paper, we design the
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AT module to predict the the attention regions’ locations, sizes, and angles. The

angle information is used for aligning the attention region. As indicated in [36],

the feature maps of strong visual semantics help to align objects. We assume the

converse to be also true: completing alignment tasks promotes N<0 9 to improve

visual semantics.

Thus, along with the classifiers, N<0 9 outputs � =
h
W1 W2 W3 W4

i
, which

is a 4-dimensional vector and we refer it as attention parameters. W1 to W4 defines

the horizontal location, vertical location, scale, and alignment angle, respectively.

Here, we use �8=, �C and ⌧ following the same formulation as given above. ⌧0

and ⌧A are the grids defining the sampling destinations in �8= for the attention

and redundancy, respectively. The transformation performed by the AT module is

defined as

⌧0 = A� (⌧), |⌘4A4 � = 5 0CC<0 9 (�8=). (4.1)

In equation (4.1), 5 0CC<0 9 denotes the function of predicting attention parameters

with N<0 9 . The transformation A for î8 9 is mathematically written as

✓
G08
~09

◆
= A� (î8 9) =

"
W32>B(W4) �W3B8=(W4) W1

W3B8=(W4) W32>B(W4) W2

# ©≠≠
´

G8

~ 9

1

™ÆÆ
¨
, (4.2)

where (G08 , ~09 ) denotes a coordinate in ⌧0.

Compared with the ST module, the AT module has reduced the number of

parameters, and each of the parameters only explores a determinate domain (i.e.,

locations, sizes or angle). Thus, the AT module is simpler to train than the

ST module. Despite its simplicity, the AT module can define various attention

transformations conditioned on di�erent combinations of the attention parameters

proposed by N<0 9 . ⌧A is defined as

⌧A = ⌧ � (⌧ \ ⌧0). (4.3)

R����������� �� ��� �������� �� ��������� �����������. In practice,

the proposed transformation is possible to be meaningless (e.g., sampling largely
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beyond the boundary of �8=). Thus, we give restrictions to the ART module to

prevent this.

Concretely, since the coordinates of the sampling grids are all normalized to

[�1, 1], the AT module will sample outside �8= if the coordinates of ⌧0 are beyond

[�1, 1]. We constrain the location factors W1,W2, and the scale factor W3 to be in

reasonable range by:

�A4B =
h
WA4B1 WA4B2 WA4B3 WA4B4

i
=
h
U?C0=⌘(W1) U?C0=⌘(W2) UBC0=⌘(W3) W4

i
,

(4.4)

where U? 2 [0, 1], UB 2 [0, 1] ensure WA4B1 , WA4B2 2 [�U?, U?] and WA4B3 2 [�UB, UB].
We keep WA4B4 = W4 because the angle factor W4 is actually restricted by trigono-

metric functions.

Instead of�, we use�A4B to transmit attention information between the networks

in practice. �A4B helps to avoid irreversibly meaningless transformation, which

inevitably misdirects the optimization of the networks.

Besides, we propose the attention-restriction loss to constrain the proposal

of attention information further. Assume ⇢ =
h
41, 42, 43, 44

i
is the expectation

of possible �. That is, the transformed image obtained with the � = ⇢ likely

represents the attention in the average situation. The attention-restriction loss is

defined as:

LA4B = (
<0G(0, |WA4B1 � 41 | � C1)
|WA4B1 � 41 | � C1 + 4?B

(WA4B1 � 41)2 +
<0G(0, |WA4B2 � 42 | � C2)
|WA4B2 � 42 | � C2 + 4?B

(WA4B2 � 42)2

+
<0G(0, |WA4B3 � 43 | � C3)
|WA4B3 � 43 | � C3 + 4?B

(WA4B3 � 43)2 + <0G(0, |W4 � 44 | � C4)
|W4 � 44 | � C4 + 4?B

(W4 � 44)2) 1
2 ,

|⌘4A4 4?B 34=>C4B C⌘4 4?B8;>=.
(4.5)

In equation (4.5), ) =
h
C1 C2 C3 C4

i
is a set of thresholds. LA4B punishes

N<0 9 if the distances between ⇢ and the proposed � is larger than the thresholds.

In experimental practice, ⇢ is manually set to be a half-width and half-length

center cropping. While most prior studies only learn localization (i.e., cropping

with a fixed size) [42, 52, 28], ART module proposes various transformations

constrained with the thresholds.
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4.2.3 Multi-task Learning Pipeline

Given an input image, our pipeline learns its category by minimizing four losses

to solve multiple learning tasks. L2;B1 is the softmax loss between the ground-truth

category labels and the category predictions that are mapped from the input image

byN<0 9 . LA4B is the restriction loss to guarantee proposals of attention/redundancy

to be reasonable, as introduced in Subsection 4.2.2. L2;B2 is the softmax loss

between the ground-truth category labels and the category predictions that are

mapped by NBD1 from the attention proposed by N<0 9 . L2=CA is a contrastive

learning loss that maximizes the discrepancy between the attention and redundancy

while minimizing the discrepancy of di�erent redundancies. Let (�<8= , �=8=) be a pair

of input images and (0<,0=),(A<,A=) are respectively the pairs of attention and

redundancy corresponding to the image pairs. L2=CA is mathematically defined as:

L2=CA = <0G(3 ( 5BD1 (A<), 5BD1 (A=)) � 3 ( 5BD1 (A<), 5BD1 (0<)) + <0Aî8=, 0)+
<0G(3 ( 5BD1 (A=), 5BD1 (A<)) � 3 ( 5BD1 (A=), 5BD1 (0=)) + <0Aî8=, 0),

(4.6)

where 3 (.) indicates the Euclidean distance and 5BD1 (.) denotes the deep represen-

tation learned by NBD1, such as the output of the last fully connected layer in NBD1.

We minimize a multi-task loss function L for training, which is defined as:

L = L2;B1 + L2;B2 + LA4B + L2=CA . (4.7)

During the testing process, we remove NBD1 and the ART module, and only

use the classifiers of N<0 9 for predicting the categories. Thus, our pipeline has the

same overhead as the basic backbone networks for testing.

4.3 Experiments

4.3.1 Implementation details

D�������. To evaluate the e�ectiveness of our approach, we carried out

experiments on two widely-used and competitive datasets, namely CUB-200-

2011 [116] and Stanford Cars [63]. CUB-200-2011 is also used in Chapter 3,

which is a benchmark of 11,788 bird image across 200 di�erent species. Stanford
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Cars is a benchmark of car images across 196 car models with 16,185 images.

B��������. As our approach is actually a training strategy, we use as a

baseline the VGG-16 [109], ResNet-50, ResNet-101 [40] and DenseNet-121 [48]

pre-trained on ImageNet [20] and then fine-tuned on the three above-mentioned

benchmarks. We compare the recognition performance between the baselines and

the same network backbones trained by our approach. To simplify the setting, we

always use the same network as the backbones of N<0 9 and NBD1. To obtain �,

we add a fully-connected layer on the top of the ReLu7 layer of VGG-16 or the

last pooling layer of the ResNets/DenseNets. As mentioned before, in the testing

stage, NBD1 and the ART module are removed, and thus our approach has exactly

the same structure as the baselines.

T������� ��� ������� �������. We manually set U? = 1, UB = 1, ⇢ =h
0 0 0.5 0

i
, ) =

h
0.4 0.4 0.4 c

i
and the threshold of Equation (4.6) as

0.7. For the training procedure, we resize the images to make the shorter side be

512, while keeping the aspect ratio being unchanged. Then we randomly crop a

448⇥448 part and feed the 448⇥448 images into N<0 9 as the inputs for completing

the tasks of category prediction and � generation. The output size of the ART

module is 224⇥224. We train the models using standard Stochastic Gradient

Descent (SGD) with the momentum of 0.9, batch size of 64, weight decay of

5 ⇥ 10�4. We set the initial learning rate as 10�3, and then reduce it to 10�4 after

50 epochs. Thereafter, the learning rate is reduced by 10�1 for every 45 epochs.

Furthermore, after the first 50 epochs, LA4B is repeatedly turned o� for 45 epochs

and then turned on for 45 epochs.

For the testing procedure, initially, the images are resized in the same way as

the training procedure. Then, we apply centre cropping on the the resized images

(Subsection 4.3.2 and Subsection 4.3.3) or do not crop the resized image but

average the final prediction scores outputted by the classifiers (Subsection 4.3.4).

4.3.2 Comparison with the Baselines

We compare our approach with the baselines on the two above-mentioned

FGIC benchmarks, and the results are shown in Table 4.1. It is clear that our

approach outperforms the baselines on all the datasets, whatever the backbone

is. Note that our approach exactly has the same structure as baselines for testing,
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Table 4.1: Comparison results with baselines.

CUB Birds Stanford Cars

VGG-16
Baseline 76.7% 85.2%
CRA-CNN 80.0% 86.8%

ResNet-50
Baseline 84.2% 90.0%
CRA-CNN 86.2% 92.6%

ResNet-101
Baseline 86.1% 91.8%
CRA-CNN 87.6% 93.4%

DenseNet-121
Baseline 80.0% 89.1%
CRA-CNN 84.2% 90.6%

Figure 4.3: Examples of some CAMs respectively generated by the baseline
ResNet-50 (the left image of each pair) and the ResNet-50 trained by CRA-CNN
(the right image of each pair). CRA-CNN makes the network much more focused
than the baseline network.

which shows the e�ectiveness of our proposed training strategy.

Figure 4.3 visualizes some examples of the CAMs respectively generated by the
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Figure 4.4: Examples of transformed images obtained by CRA-CNN and STN. It is
very hard for the STN to capture meaningful attention due to the training di�culty.
The CRA-CNN both captures and aligns the attention regions conditioned on
certain objects, such as head, body contour, etc.

baseline ResNet-50 and the ResNet-50 trained by CRA-CNN. CRA-CNN forces

the network to focus more on core attention, whereas the baseline network tends

to be distracted. The core attention, which is forced to learn by CRA-CNN, helps

to improve recognition accuracy.

Figure 4.4 shows the examples of some original input images, as well as

the attention and redundancy images captured from the original input images.

Moreover, since the ART module is adapted from the ST module, we also train an

STN as a reference. We show the region learned by the STN also in Figure 4.4. For

the sake of fairness, rather than fixing the first four transformation parameters of

the ST module as is done in [52], we optimize all the six transformation parameters.

It is obvious that the STN fails to capture any beneficial visual information in this

setting, which is caused by the heavy training di�culty of the STN. Actually, in

practice, we observe that the STN cannot converge at all unless we fix the first four

transformation parameters. However, the networks trained by CRA-CNN captures

useful visual semantics.

4.3.3 Ablation Study on di�erent losses.

Compared with the baselines, our approach needs to be trained with three

more additional losses (i.e., L2;B2, LA4B and L2=CA). Here we investigate the

e�ectiveness of the three additional losses by respectively removing each of the
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Table 4.2: Ablation study on di�erent losses.

w/o. L2;B2 w/o. LA4B w/o. L2=CA w/. all losses
CUB Birds 85.1% 85.7% 85.4% 86.2%
Stanford Cars 90.9% 91.8% 92.0% 92.6%

Table 4.3: Comparison results on Stanford Cars.

ResNet-101+OSME+MAMC [110] 90.3% TASN [154] 93.8%
Subset B [15] 90.6% SEF [76] 94.0%
Kernel Pooling [16] 92.0% WS-DAN [47] 94.5%
RA-CNN (scale 1+2+3) [28] 92.5% E�cientNet [112] 94.7%
MA-CNN (!2;B + !2=î) [153] 92.8% AutoAugment [14] 94.8%
PC-DenseNet-161 [24] 92.9% Ours(ResNet-50) 93.3%
MPN-COV [66] 93.3% Ours(ResNet-101) 94.8%

Table 4.4: Comparison results on CUB-200-2011.

SPD representation [32] 72.4% SEF [76] 87.3%
STNs (4⇥ST-CNN 448px) [52] 84.1% TASN [154] 87.9%
RA-CNN (scale 1+2+3) [28] 85.3% Subset B [15] 88.8%
Kernel Pooling [16] 86.2% WS-DAN [47] 89.4%
MA-CNN (!2;B + !2=î) [153] 86.5% Stacked LSTM [33] 90.4%
ResNet-101+OSME+MAMC [110] 86.5% Ours(ResNet-50) 86.7%
PC-DenseNet-161 [24] 86.9% Ours(ResNet-101) 88.3%

three losses and observing the change of classification accuracy. We adopt ResNet-

50 as the backbone network for this ablation experiment and apply centre crop on

the resized images. The results are shown in Table 4.2. On all three datasets, the

classification accuracy decreases to some extent when any one of three additional

losses is removed. In other words, each of the three additional losses contributes

to the improvement of accuracy.
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4.3.4 Comparison with Previous Studies

Table 4.3 shows comparison results with the previous studies on Stanford

Cars, and our best result reaches the same result reported in [14]. [14] designs

a search scheme for optimizing augmentation policy, which, however, introduces

large computational expenses. Besides, as pointed out in [145], the proxy tasks’

policies are sometimes not suitable for the target task. In comparison, the approach

proposed in this thesis gives a computationally a�ordable and e�ective solution.

Even though our best result is a little behind [15, 47, 33] on CUB-200-2011, our

work is still competitive because: (a) some of the methods, namely [15] and [75]

(behind our results on Stanford Cars), are actually transfer learning approaches

requiring larger extra data; (b) our approach is relatively easy to implement and

quite light to utilize. For utilization, our approach achieves a high accuracy after

removing all extra overhead and only using a single backbone CNN.

4.4 Summary of This Chapter

In this chapter, we focus on addressing the di�culty of extra overhead for atten-

tion learning. In this chapter, we propose the Contrastively-reinforced Attention

Convolutional Neural Network (CRA-CNN) to enhance the attention awareness of

deep neural networks. CRA-CNN is composed of two networks that are joined by

the proposed attention-redundancy transformer (ART) module. The subordinate

network helps the major network continuously explore core attention by evaluating

the attention-redundancy proposal of the major network. Our approach is easy to

implement and computationally a�ordable and largely reduces the extra attention-

learning overhead. Our work is quite competitive with previous studies regarding

its simplicity and categorization performance. This chapter verifies that exploring

attention information from deep features is e�ective for FGIC, and the approach

proposed in this chapter can solve the di�culty of extra overhead for the testing

(utilization) procedure.
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Chapter 5

Recursively-refined Multi-scale
Attention Learning

5.1 Chapter Overview

In this chapter, we mainly focus on the di�culty of heavy overhead during

the training procedure. By summing up the experience of previous chapters, we

propose the recursive multi-scale channel-spatial attention module (RMCSAM) for

addressing the above problems. RMCSAM provides a lightweight module that can

be inserted into standard CNNs. Experimental results show that RMCSAM can

improve the classification accuracy and attention capturing ability over baselines.

Also, RMCSAM performs better than other state-of-the-art attention modules in

fine-grained image classification, and is complementary to some state-of-the-art

approaches for fine-grained image classification.

The proposed RMCSAM follows the success of the previous research on atten-

tion modules [149, 46, 18, 89, 126]. Attention modules refer to a set of insertable

modules that enhance the feature representations generated by standard convo-

lutional layers by giving weights among the channels or spatial locations of the

feature. For example, the squeeze-and-excitation module (SE module) [46], which

is one of the most prominent attention mechanisms, performs channel-wise at-

tention by extracting global information from each channel and then generating a

set of weights for each channel. By doing so, the SE module provides a boost of

classification accuracy with a low additional overhead. The point-wise spatial at-

53



tention module (PSA module) [149] is another typical example. The PSA module

uses self-adaptively predicted attention maps to aggregate long-range contextual

information within images, which boosts the performance for the scene parsing

task. These attention modules are generally insertable into di�erent network

architectures and able to improve the networks’ focus on important information.

The RMCSAM is designed as an attention module that explores multi-scale at-

tention information and uses the explored information to enhance the deep features

learned in the FGIC task. As an attention module, RMCSAM can be easily placed

inside various backbone CNNs, such as ResNet [40] or VGG models [108]. Trained

together with the backbone CNNs, RMCSAM improves the correspondence to at-

tention information for better classification accuracy. Clearly, our approach is dif-

ferent from previous FGIC approaches, which mainly design mechanisms placed

as the output parts of the backbone CNNs yielding attention information (e.g.,

attention regions) [33, 21, 96, 154, 42, 134, 28, 147, 106, 114, 130].

Specifically, as shown in Figure 5.1, the main ideas of the proposed RMCSAM

are summarized as follows:

• Rather than localization and categorization of attention regions, which is

commonly used in previous FGIC approaches [33, 21, 96, 154, 42, 134,

28, 147, 106, 114, 130, 49, 69, 90, 139, 142], we focus on developing an

insertable attention module for the FGIC task.

• We design the proposed attention module to explore both channel-wise and

spatial-wise attention. For the channel-wise attention, we firstly spatially

pool the given features and then use the pooled features to compute channel-

wise weights with a set of fully connected (FC) layers. For the spatial-wise

attention, we firstly pool the given features along the channel axis and

then use the pooled features to compute spatial-wise weights with a set

of convolutional layers. The features learned with the channel-wise and

spatial-wise attention sub-module are aggregated by average.

• Following the prior experience that multi-scale attention is very important

and e�ective for FGIC, we design the proposed attention module to perform

three-scale channel-wise and spatial-wise attention. The di�erent scales

of the channel-wise sub-modules are defined with di�erent numbers of the
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Figure 5.1: Illustration of the main ideas of our work. The proposed attention
module has six sub-modules: three-scale channel-wise sub-modules and three-
scale spatial-wise sub-modules. The input feature map is recursively refined
through the six sub-modules for a predetermined number of times to output the
finally refined feature map.

neurons in the FC layers within the sub-modules. The di�erent scales

of the spatial-wise sub-modules are defined with di�erent kernel sizes in

the convolutional layers within the sub-modules. The features refined by

di�erent scales of sub-modules are aggregated by average. Even though

the proposed module is designed to perform three-scale channel-wise and

spatial-wise attention, the whole module is still very lightweight because
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each sub-module only requires a small number of parameters.

• We design the proposed attention module to progressively refine the learned

attention. Starting from the feature map outputted by a standard convo-

lutional layer, we design a cyclically learning scheduler to generate more

e�ective features by iteratively treating the output of the former learned at-

tention module as the input of the current attention module. The attention

modules in the di�erent stages share the same parameters.

The contributions of the approach proposed in this chapter can be summarized

as follows:

• We propose a simple yet e�ective attention module that can explore multi-

scale attention with negligible overhead for FGIC tasks.

• The proposed module can be easily inserted into standard CNNs and improve

the classification accuracy for FGIC.

• We evaluate the proposed module on two benchmarks: CUB-200-2011 [116]

and Stanford Cars [63]. We have validated the e�ectiveness of the design of

the proposed attention module through extensive ablation studies. Experi-

mental results show that RMCSAM can improve the classification accuracy

and attention capturing ability over baselines. Also, RMCSAM outperforms

other state-of-the-art attention modules [46, 18, 89, 126] in FGIC tasks.

• As an insertable attention module, our approach have very strong versatility.

It can be combined with the previous approach achieving state-of-the-art

accuracy in the FGIC task [23]. By combining our approach with the PMG

framework [23], we achieve the best accuracy on the Stanford Cars and

surpass the previous best accuracy obtained with the Resnet50 backbone on

the CUB-200-2011.

5.2 Proposed Approach

In this section, we introduce the proposed RMCSAM in detail. As shown in

Figure 5.2, given an input feature map, RMCSAM first processes it via six sub-

modules: three channel-wise sub-modules in di�erent scales and three spatial-wise
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sub-modules in di�erent scales. The processed feature maps are aggregated to be

an output feature map. Thereafter, the output feature map is treated as the input

feature map of the six sub-modules and processed again by the six sub-modules.

This process is repeated a predetermined number of times to obtain the final refined

feature map.

5.2.1 Multi-scale Channel-wise Attention Sub-modules

The multi-scale channel-wise attention sub-modules are used to exploit inter-

dependencies among the channels of a given feature map. In CNNs, each channel

of a feature map acts as an object detector [137]. Consequently, channel-wise

attention tells what objects are discriminative or unimportant for distinguishing a

given image [126]. For example, bird head and bird claw are generally discrimina-

tive objects for distinguishing di�erent bird species, and some other objects, such

as tree branches, are not important for classification. We describe the detailed

operation of the multi-scale channel-wise attention sub-modules below.

Firstly, consider a single-scale channel-wise attention sub-module, which is

implemented similarly to the SE module [46]. Let - 2 R�⇥,⇥⇠ be an input

feature map generated by the former layer within a CNN. �, , and ⇠ respectively

represents the spatial height, width and number of channels. Let ⌦2⌘;
A (.) denote

the function of the single-scale channel-wise attention sub-module. Note that A

is a manual hyper parameter controlling the scale of the attention module, and it

will be introduced in detail later in this subsection. An overview of the function

of the single-scale channel-wise attention sub-module can be summarized as:

output a 1D channel-wise weighted mask "2⌘;
A 2 R1⇥1⇥⇠ and then put "2⌘;

A on -

for emphasizing the discriminative channels and de-emphasizing the unimportant

channels. A mathematical definition of ⌦2⌘;
A (.) can be given as:

-2⌘;
A = ⌦2⌘;

A (-) = - ⌦ "2⌘;
A , (5.1)

where -2⌘;
A denotes the refined feature map outputted by the single-scale channel-

wise sub-attention module, and ⌦ denotes element-wise production. During ⌦,

the values of "2⌘;
A are broadcasted along the spatial dimension to make "2⌘;

A have

the same size as - .

"2⌘;
A is obtained from - with a set of pooling, fully connected (FC), and
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sigmoid operations. As average-pooled and max-pooled features provide com-

plementary information [126], we first use both global average pooling and

global max pooling to spatially shrink - to generate 1D channel-wise descrip-

tors ⇡0{î 2 R1⇥1⇥⇠ and ⇡<0G 2 R1⇥1⇥⇠ as:

30{î2 =
1

� ⇥,

�’
8=1

,’
9=1

G8, 9 ,2, (5.2)

3<0G
2 =

�
max
8=1

,
max
9=1

G8, 9 ,2, (5.3)

where 30{î2 and 3<0G
2 are respectively the values in the channel 2 (2 2 {1, 2, 3, ...,⇠})

of ⇡0{î and ⇡<0G . G8, 9 ,2 denotes the value at the spatial location (8, 9) in the channel

2 of - . Then both ⇡0{î and ⇡<0G are processed by two successive FC layers as:

⇡0{î0 = �0{î (⇡0{î)
= 5 '4!* (q0{î⇠ ( 5 '4!* (q0{î⇠

A

(⇡0{î)))) (5.4)

⇡<0G0 = �<0G (⇡<0G)
= 5 '4!* (q<0G

⇠ ( 5 '4!* (q<0G
⇠
A

(⇡<0G)))) (5.5)

where �0{î (.) denotes the layers processing ⇡0{î, and �<0G (.) denotes the

layers processing ⇡<0G . 5 '4!* (.) denotes ReLU operation. �0{î (.) and �<0G (.)
share the same parameters in order to reduce overhead. For both �0{î (.) and

�<0G (.), the output size of the first FC layer (i.e., q0{î⇠
A

(.) or q<0G
⇠
A

(.)) is set as

1 ⇥ 1 ⇥ ⇠
A , and this FC layer is used to compress the channel-wise information

of ⇡0{î or ⇡<0G into a certain scale. The output size of the second FC layer

(i.e., q0{î⇠ (.) or q<0G
⇠ (.)) is set as ⇠, and this FC layer makes the output descriptor

have the same size of channels of - (so that the element-wise multiplication in

Equation (5.1) can be implemented).

Thereafter, "2⌘;
A is obtained as:

"2⌘;
A =f(⇡0{î0) + f(⇡<0G0) (5.6)

where f represents the sigmoid operation, which makes each value range from
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0 to 1 and thus gives the importance of each channel of - . The refined feature

map -2⌘;
A can be obtained by substituting the "2⌘;

A obatined in Equation (5.6) into

Equation (5.1).

The multi-scale channel-wise attention is obtained with di�erent A . A controls

the output size of q0{î⇠
A

(.) and q<0G
⇠
A

(.). A smaller output size makes the output

information more compressed and gives a more abstract representation of the input

descriptor (i.e., ⇡0{î or ⇡<0G). A larger output size makes the output keep more

information and gives a more detailed and inclusive representation of ⇡0{î or

⇡<0G . In order to obtain all-sided channel-wise attention information, we build

up multi-scale channel-wise attention sub-modules by using three di�erent A: 8,

16 and 32. The refined feature map outputted by the multi-scale channel-wise

attention sub-modules is defined as:

-2⌘;
<D;C8 = ⌦chl (-)

= ⌦2⌘;
8 (-) +⌦2⌘;

16 (-) +⌦2⌘;
32 (-).

(5.7)

5.2.2 Multi-scale Spatial-wise Attention Sub-modules

The multi-scale spatial-wise sub-attention module are used to exploit inter-

dependencies among the spatial locations of a given feature map. In convolutional

neural networks, the receptive field is used to measure the region of the input

space that a�ects a particular unit of the network. The receptive field increases

as the depth of networks increases. The units of very deep layers have a very

large receptive field, which is sometimes even larger than the input image. That

is, the features of deep layers are a�ected by a large region of the input image

rather than a small local region. However, in practice, each spatial location of

the deep features only mainly corresponds to certain small local regions of the

input images even though the spatial location can be a�ected by a large region in

theory. Zhou et al. [155] proved in experiments that the deep features learned by

CNNs in the classification task have a strong localization ability, and the spatial

locations of the deep features can present the CNN’s attention towards di�erent

spatial locations of the input image. Later, Luo et al. [77] proved how only a

small number of pixels in the receptive field visibly contribute to the final deep

features in theory and proposed the idea of E�ective Receptive Field (ERF).

Such studies can be regarded as the basis of spatial-wise attention. Spatial-wise

60



attention tells the spatial location of the discriminative objects. As introduced

in Subsection 5.2.1, channel-wise attention tells what objects are discriminative

for classification. Thus, these two types of attention are complementary to each

other. We describe the detailed operation of the multi-scale spatial-wise attention

sub-modules below.

Firstly, consider a single-scale spatial-wise attention sub-module. Similar

to the formulation in Subsection 5.2.1, - 2 R�⇥,⇥⇠ denotes an input feature

map, and ⌦B?0C
: (.) denote the function of the single-scale spatial-wise attention

sub-module. Note that : is a manual parameter controlling the scale of the

attention sub-module, and it will be introduced in detail later in this subsection.

An overview of the function of the single-scale spatial-wise attention sub-module

can be summarized as: output a 2D spatial-wise weighted mask "B?0C
: 2 R�⇥,⇥1

and then put "B?0C
: on - for emphasizing the discriminative spatial locations and

de-emphasizing the unimportant spatial locations. A mathematical definition of

⌦B?0C
: (.) can be given as:

-B?0C
: = ⌦B?0C

: (-) = - ⌦ "B?0C
: , (5.8)

where -B?0C
: denotes the refined feature map outputted by the single-scale spatial-

wise attention sub-module, and during ⌦, the values of "B?0C
: are broadcasted

along the channel dimension to make "B?0C
A have the same size as - .

"B?0C
A is obtained from - with a set of operations including channel-wise

pooling, 2D convolution, and sigmoid. The first step for obtaining "B?0C
A is to

shrink - along the channel dimension to generate 2D spatial-wise score maps

(0{î 2 R�⇥,⇥1 and (<0G 2 R�⇥,⇥1 as:

B0{î8, 9 =
1
⇠

⇠’
2=1

G8, 9 ,2, (5.9)

B<0G
8. 9 =

⇠
max
2=1

G8, 9 ,2, (5.10)

where B0{î8, 9 and B<0G
8, 9 are respectively the values at the location (8, 9) of (0{î and

(<0G . G8, 9 ,2 denotes the value at the spatial location (8, 9) in the channel 2 of - .
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Then (0{î and (<0G are processed as:

(
0
= k:⇥:⇥2⇥1( 5 20C ((0{î, (<0G)), (5.11)

where 5 20C denotes a channel-wise concatenation operation. k:⇥:⇥2⇥1(.) denotes

a 2D convolutional layer whose kernal size is : ⇥ : ⇥ 2 ⇥ 1, and this layer is used

to encode the spatial-wise information of each : ⇥ :-size region inside (0{î and

(<0G . The padding size of k:⇥:⇥2⇥1(.) is set as :�1
2 and the stride is set as 1.

Consequently, k:⇥:⇥2⇥1(.) does not change the spatial size of the input feature

map.

Thereafter, "B?0C
: is obtained as:

"B?0C
: = f( 5 '4!* ( 5 ⌫# ((0)), (5.12)

where 5 ⌫# (.) denotes batch normalization operation [51].The refined feature map

-B?0C
: can be obtained by substituting the "B?0C

: obatined in Equation (5.12) into

Equation (5.8).

The multi-scale spatial-wise attention is obtained with di�erent : . : controls

the kernel size of k:⇥:⇥2⇥1(.). That is, : decides each value of "B?0C
: to be

corresponding to how large a region in (0{î and (<0G . A 2D convolutional layer of

a smaller kernel size has smaller E�ective Receptive Fields and thus can capture

more local information and more detailed clues. A 2D convolutional layer of

a bigger kernel size has bigger E�ective Receptive Fields and thus can “see”

more information at once and capture relatively more global information, such as

the dependencies among some local patterns. In order to obtain comprehensive

spatial-wise attention information, we build up multi-scale spatial-wise attention

sub-modules by using three di�erent :: 3, 5 and 7. The refined feature map

outputted by the multi-scale spatial-wise attention sub-modules is defined as:

-B?0C
<D;C8 = ⌦s pat (-)

= ⌦B?0C
3 (-) +⌦B?0C

5 (-) +⌦B?0C
7 (-).

(5.13)
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5.2.3 Recursive Refinement

Our module recursively refines the given feature maps to focus on the discrim-

inative visual information more finely. Let ) denote how many times we refine the

feature maps, and let -A4 5
C (C 2 {0, 1, 2, 3, ...,)}) denote the feature map outputted

at time C. We recursively refine the feature map by treating the output at time C � 1

as the input of time C. A mathematical definition is given as:

-A4 5
0 = - ,

-A4 5
C = ⌦chl (-A4 5

C�1 ) +⌦s pat (-A4 5
C�1 ).

(5.14)
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5.3 Experiments

5.3.1 Experimental Settings

To evaluate the e�ectiveness of our approach, we carried out experiments

on two widely-used, competitive and standard benchmarks, namely CUB-200-

2011 [116] and Stanford Cars [63], which are same as the datasets used in Chapter 4.

As our approach is actually a lightweight insertable module, we compare the

FGIC performance of the standard networks without the proposed module, with

the proposed module, with other state-of-the-art attention modules. Besides, we

also compare our approach with the latest state-of-the-art FGIC approaches [152,

131, 143, 39, 53, 82, 23]. Following the experience in previous studies [126, 18],

we insert the proposed module after the final convolutional block of each network.

In order to perform apple-to-apple comparisons, we reproduced all the evaluated

networks with the same training and testing configuration.

For the training procedure, we resize the images to make the shorter side be

512, while keeping the aspect ratio being unchanged. Then we randomly crop a

448⇥448 part augmented with random flipping as the input. Consequently, the

GFLOPs in this paper are reported by computing with 448⇥448 input. For the

testing procedure, we resize the images in the same way as the training procedure

but use center cropping to obtain the 448⇥448 input images. For keeping the

interference factors as few as possible and obtaining a stable result, we evaluate

the time cost of the proposed approach as well as other approaches by handling a

group of eight input images (unless otherwise specified), i.e., an 8⇥ 3⇥ 448⇥ 448

tensor, with a single Nvidia GTX 1080 Ti.

Regarding the parameter initialization, we use the network backbones pre-

trained on the ImageNet [19] (provided by PyTorch [91]) and then fine-tune them

on the fine-grained image classification datasets. The inserted RMCSAM, as

well as other attention modules, are randomly initialized. However, in Subsec-

tion 5.3.6, to further improve the accuracy, we also implement the experiment of

pre-training RMCSAM with the Resnet50 backbone on the ImageNet once before

the fine-tuning (see more training details in Subsection 5.3.6). For all the other

experiments,we use same experimental configuration:

• We reproduce all the experiments 10 times and report the average accuracy.
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• We train all the networks using standard Stochastic Gradient Descent (SGD)

with the momentum of 0.9, batch size of 32, weight decay of 5 ⇥ 10�4,

learning rate of 2 ⇥ 10�3.

• All the experiments are implemented in the PyTorch framework [91] with

2⇥Nvidia GTX 1080 Ti (except for evaluating the time cost).

5.3.2 Ablation Study

In this subsection, we analyze whether and how multiple scales of the channel-

wise, spatial-wise attention and recursive refinement are beneficial for FGIC tasks.

We use a VGG11 network [108] with batch normalization [51] as the baseline,

and evaluate the performance of: the baseline, the baseline + di�erent single-scale

channel-wise attention modules, the baseline + multi-scale channel-wise attention

module, the baseline + di�erent single-scale spatial-wise attention modules, the

baseline + multi-scale spatial-wise attention module, the baseline + RMCSAM

respectively refined 1~5 times.

The ablation study is conducted on both datasets, and the results are shown in

Table 5.1.
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ccuracy
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⌦
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90.4%
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⌦
2⌘;
32 (.)
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90.7%
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⌦
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8
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90.8%
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⌦
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3
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⌦
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C

3
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B?
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C
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⌦
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⌦
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91.6%

9.443M
30.032
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Single-scale attention vs. multi-scale attention. On both datasets, the multi-

scale channel-wise attention module performs better than all the single-scale

channel-wise attention modules. Compared with the baseline, the multi-scale

channel-wise attention module improves the accuracy by 5.9% on CUB-200-2011

and 1.5% on Stanford Cars. Multi-scale spatial-wise attention module performs

better than all the single-scale spatial-wise attention modules. Compared with the

baseline, the multi-scale spatial-wise attention module improves the accuracy by

5.7% on CUB-200-2011 and 1.5% on Stanford Cars.

The influence of refining times. Simply Aggregating both multi-scale channel-

wise and spatial-wise attention (i.e., ⌦s pat (.)+⌦chl (.) with) = 1) performs better

than only using one of them, which suggests multi-scale channel-wise and spatial-

wise attention are complementary to each other. Moreover, increasing refining

times can further a�ect the accuracy. On both two datasets, the most suitable ) is

3, because the accuracy tends to decrease with a ) larger than 3. Compared with

the baseline, by setting ) as 3, RMCSAM improves the classification accuracy

by 6.5% on CUB-200-2011 and 2.8% on Stanford Cars, while increasing only

0.116M parameters and 0.001 GFLOPs.

For all the rest experiments, the ) for RMCSAM is set as 3.

5.3.3 Comparison with the Baselines

In this subsection, we empirically show how RMCSAM helps improve the clas-

sification accuracy over di�erent baseline networks. We use as baselines six net-

work models, namely VGG11 [108] with batch normalization, VGG16 [108] with

batch normalization, Resnet18 [40], Resnet50 [40], Gluon_resnet18_v1b [41], and

GoogLeNet [111].We compare the networks with and without the proposed mod-

ule, and the results are shown in Table 5.2. RMCSAM favorably improves the clas-

sification of all the baselines by 0.4%~6.5% on CUB-200-2011 and 0.4%~2.8%

on Stanford Cars. In terms of the extra overhead, RMCSAM increases only

0.116M~1.841M parameters and 0.001~0.003 GFLOPs. In view of the negligible

additional parameters and GFLOPs, our approach provides a good improvement in

classification accuracy. Regarding the additional time cost, RMCSAM increases

1.065ms⇠6.100ms over di�erent backbones for processing a group of eight input

images, which is also a small overhead.
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5.3.4 Analysis of Attention Capturing

In this subsection, we evaluate whether the proposed RMCSAM actually helps

a network focus on discriminative visual information by two methods, namely

visualization and quantitative analysis. The experiments in this subsection are

implemented with the VGG11 model with batch normalization.

First, we use Grad-CAM [102] to visualize the focus of the networks. Grad-

CAM uses the gradients of the predicted category, flowing into the final convolu-

tional layer to generate a heatmap highlighting the important regions in the image

for predicting the category. That is, the heatmap generated by Grad-CAM visu-

alizes the “reason” why the network “thinks” a given image belongs to a certain

category. The visualization results are shown in Figure 5.3. Compared with the

baseline network, the network inserted with RMCSAM focuses more on discrim-

inative regions and objects. Moreover, Figure 5.4. shows the visualization results

of the attention generated with RMCSAM when there is no target object in the

scene. As can be observed, the attention is not accurate but it still has some ca-

pability of telling foreground and background in certain cases. However, in some

other cases, the attention makes no distinction between the major and the minor

clues.

Second, we quantitatively analyze the attention capturing ability by attention

precision. We first introduce the definition of attention precision. The computation

of attention precision starts from generating a heatmap. 2 R� 0⇥, 0
by Grad-CAM,

which has the same spatial size as the input image (R�
0⇥, 0⇥3). Regard. as a set of

pixels, namely . = {~(1,1) , ~(1,2) , ..., ~(U,V) , ...~(� 0,, 0) }. Then . is normalized as:

~0(U,V) =
~(U,V) � <8=(. )

<0G(. ) � <8=(. ) (5.15)

After the normalization, each value of the heat map ranges from 0 to 1. Then

given a threshold _ (0 < _ < 1), all the values larger than _ are set as 1, and all

the values no larger than _ are set as 0 as:

~00(U,V) =

(
1, 8 5 ~0(U,V) � _ > 0

0, 8 5 ~0(U,V) � _ <= 0.
(5.16)
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(a) CUB-200-2011

(b) Stanford Cars

Figure 5.3: Visualization of Grad-CAM. In each pair of images, the left one is the
visualization results using the baseline network. The right one is the visualization
results using the network inserted with RMCSAM.

Thereafter, the attention precision �% is given as:

�% =
#8=

#8= + #>DC
, (5.17)
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Figure 5.4: Visualization results of the attention of RMCSAM when there is no
target object in the scene. In this figure, the network generating the Grad-CAMs is
trained on Stanford Cars Dataset, but the input images are from the Stanford Dogs
Dataset.
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Figure 5.5: Attention precision with di�erent thresholds

where #8= denotes the total number of pixels locating inside the manually labeled

bounding box and having a value of 1. #>DC denotes the total number of pixels

locating outside the manually labeled bounding box and having a value of 1. The

manually labeled bounding boxes are o�cially provided by the authors of the two

datasets [116, 63]. The bounding boxes are widely used as the ground truth in

fine-grained object detection or segmentation tasks [148, 2, 142].

The attention precision expresses the proportion of the pixels the networks

“consider” to be discriminative actually are discriminative. We evaluate the at-
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tention precision with di�erent thresholds of 0.1~0.9. The results are shown in

Figure 5.5. Overall, the network inserted with RMCSAM has much higher at-

tention precision than the baseline. With the increase of _, the gap of attention

precision between them is getting wider and wider. A higher threshold selects the

pixels that have more contribution to the final prediction. That is, the network

inserted with RMCSAM tends to “consider” a higher proportion of pixels inside

the bounding box as high-contribution pixels than the baseline.

5.3.5 Comparison with the State-of-the-art Attention Modules
in Fine-grained Image Classification Task

In this subsection, we compare our proposed module with other state-of-the-art

attention modules in FGIC tasks. We adopt Resnet50 as the backbone because it

is the most commonly used network backbone for analyzing the performance of

attention modules [46, 126, 89, 18]. The results are shown in Table 5.3.
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The best accuracy and lowest overhead are highlighted in bold. Basically, the

proposed attention module outperforms the other ones in terms of classification

accuracy. The SE module [46], CBAM [126], and BAM [89] require lower

overhead than our proposed module, but the accuracy of our proposed module is

clearly higher than theirs on both datasets. AFF [18] has the closest classification

accuracy to ours on both datasets but requires a little more time cost and much

more GFLOPs and parameters.

5.3.6 Comparison with the Previous Approaches in Fine-grained
Image Classification Task

In this subsection, we compare our proposed approach with the approaches

achieving state-of-the-art accuracy in FGIC tasks. We use Resnet50 as the back-

bone because it is most widely used in those studies [82, 53, 131, 152, 23, 143]. As

mentioned before, in previous subsections, we use the CNN backbones pre-trained

on the ImageNet, but the parameters of the RMCSAM are initialized randomly.

In this subsection, for better accuracy, we also present the experimental results

by using the RMCSAM parameters pre-trained together with the Resnet50 on the

ImageNet, which is marked as ¢.

The pretraining is trained from scratch and conducted with the o�cial Timm

toolbox [124] on 2⇥Nvidia RTX 3080 Ti. We also train an original Resnet50

under the exact same configuration as a baseline. We turn on automatic mixed

precision [79] and label smoothing [81]. We set the batch size as 256 and train the

networks using standard Stochastic Gradient Descent (SGD) with the momentum

of 0.9. We totally train the networks on the ImageNet for 180 epochs. Regarding

the learning rate schedule, we divide the 180 epochs into 6 ⇥ 30 epochs. For the

first 30 epochs, we train the Resnet50 with/without the RMCSAM by the constant

learning rate of 0.1 for the quick decrease of training loss. From the second

30 epochs, we train the networks using cosine annealing [72], and the starting

learning rate for the second 30 epochs is 0.05. Then, for every 30 epochs, we

restart the cosine annealing schedule and decrease the starting learning rate by 0.7.

The training of the baseline Resnet50 and the Resnet50 inserted with RMCSAM

is conducted once. With RMCSAM, the average accuracy of the last 10 epochs

on the validation set of the ImageNet is improved from 77.7% to 78.5%. The
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best accuracy of the whole 180 epochs on the validation set of the ImageNet is

improved from 78.1% to 78.9%.

All the other experiments in this subsection follow the general configuration of

this paper. Namely, all the other experiments in this subsection are reproduced for

10 times, and we report the average accuracy. After the pre-training, we use the

weights of the pre-trained RMCSAM to replace the randomly initialized RMCSAM

weights for fine-tuning on the fine-grained image classification datasets.

Moreover, as an insertable module that can improve the accuracy of the back-

bone CNNs, our approach intuitively looks complementary to some state-of-the-art

FGIC approaches. It is possible to combine our approach with other approaches for

better accuracy. Specifically, we insert the RMCSAM pre-trained on the ImageNet

into the Resnet50 backbone of PMG [23]. For a fair comparison, all the other pa-

rameters (including the parameters of the Resnet50 backbones) are initialized in

the same way as the original PMG.

The comparison in this subsection is conducted in terms of both accuracy and

computational costs. As many state-of-the-art FGIC approaches require extremely

huge memory, such as [39], we test the time cost by processing one 448 ⇥ 448

image (i.e., a 1⇥ 3⇥ 448⇥ 448 tensor) to prevent the out-of-memory exception in

this subsection. The comparison results are shown in Table 5.4. The best accuracy

and lowest overhead are highlighted in bold. With the RMCSAM pre-trained on

the ImageNet and Resnet50 backbone, the accuracy of our approach is very close

to the state-of-the-art accuracy on the Stanford Cars and a little behind the state-

of-the-art accuracy on the CUB-200-2011. TransFG achieves the best accuracy

on the CUB-200-2011 but requires huge computational overhead regarding the

parameters, GFLOPs, and time cost. In contrast, our approach requires much

less overhead. Especially, our approach requires 13.694ms for processing a single

image at once, which is the least time cost among the approaches and around 5.3%

of the time cost of TransFG. Besides, our approach has the similar accuracy as

TransFG on the Stanford Cars.
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Among the approaches, PCA-Net [143] has the fewest parameters, and Pro-

toTree [82] has the fewest GFLOPs. However, they require much more time cost

than the proposed approach, which is caused by the complex feature extracting and

aggregating framework (PCA-Net) or the tree architecture hardly parallelizable

(ProtoTree). Besides, on the Stanford Cars, our approach has better accuracy than

both PCA-Net and ProtoTree.

By combining with our approach, the accuracy is improved by on both datasets.

Especially, RMCSAM¢+PMG achieves 95.3% accuracy on Stanford Cars, which

surpasses the previous best accuracy on this dataset. It achieves 89.9% accuracy

on the CUB-200-2011, which surpasses the previous best accuracy obtained with

Resnet50 backbone on this dataset. Among the 10 times of repeated experiments of

RMCSAM¢+PMG, the lowest accuracies are 89.7% (CUB-200-2011) and 95.3%

(Stanford Cars), while the highest accuracies are 90.0% (CUB-200-2011) and

95.5% (Stanford Cars). On both datasets, the highest, lowest and average accu-

racies of RMCSAM¢+PMG are better than the best accuracies reported in [23],

which shows our approach can bring stable improvement over the original PMG.

Considering that the accuracy of PMG, the state-of-the-art approach, is already

very high, it is interesting to see there is still room for improvement by our pro-

posed module. The improvement over PMG might be caused by the capability of

RMCSAM to capture multi-scale attention information. In [23], Du et al. force the

model to learn multi-granularity information by randomly shu�ing all the local

regions of the input images before feeding the images into the model. During each

stage of the progressive learning framework, the input images are partitioned by

di�erent granularity. Our proposed module can improve the attention awareness

of PMG towards the partitioned regions of multiple granularities.

5.4 Summary of This Chapter

In this chapter, we focus on addressing the di�culty of extra overhead for

attention learning in the training procedure. By summing up the experience of

previous chapters, we propose the recursive multi-scale channel-spatial attention

module (RMCSAM), a new approach for capturing attention information in fine-

grained image classification (FGIC) tasks. RMCSAM is designed by following the

previous experience that localizing multi-scale attention regions is very e�ective
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for FGIC. However, instead of region localizing strategy, RMCSAM is designed

as an insertable attention module, which can capture channel-wise and spatial-

wise attention of multiple scales and accordingly refine the deep feature maps to

better correspond to the visual attention. The feature maps are recursively refined

a predetermined number of times to obtain the finer feature map. In this way,

RMCSAM requires a very small additional overhead. The experimental results

show that the multi-scale channel-wise and spatial-wise attention are complemen-

tary, and aggregation of them brings better performance. Besides, the recursive

refinement can further improve the accuracy. The experimental results also show

that RMCSAM can improve the classification accuracy of widely used network

backbones and is able to improve the attention capturing ability. RMCSAM also

outperforms other attention modules in FGIC tasks. Moreover, our approach have

very strong versatility. The proposed approach can be combined with PMG frame-

work, which is state-of-the-art approach in the FGIC task, to further improve the

accuracy. Overall, the approach proposed in this chapter largely reduce the extra

training overhead, and also the extra testing overhead is very small.
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Chapter 6

Conclusion

The main objective of this work is to explore how to e�ciently and accu-

rately capture attention information for fine-grained image classification (FGIC).

Fine-grained image classification (FGIC) is a very di�cult task, and attention

information is the key for this task. The research question of this thesis is how to

e�ciently capture and utilize accurate attention information to improve the clas-

sification accuracy in fine-grained image classification? The research question

involves two specific di�culties. The first is that attention information is hard

to capture, and the second is that learning attention information requires much

extra overhead. In this thesis, we propose three novel frameworks to address the

problems. Chapter 3 mainly focus on reducing the training di�culty of captur-

ing attention information. Chapters 4 and 5 focus mainly on reducing the extra

overheads.

Chapter 3 mainly aims to attention regions for FGIC. Based on the Spatial

Transformers’ capability of spatial manipulation within networks, we propose an

extension model, the Attention-Guided Spatial Transformer Networks (AG-STNs).

This model can guide the Spatial Transformers with hard-coded attention regions at

first. Then such guidance can be turned o�, and the network model will adjust the

region learning in terms of the location and scale. Such adjustment is conditioned

to the classification loss so that it is actually optimized for better recognition results.

With this model, we are able to successfully capture detailed attention information.

Also, the AG-STNs are able to capture attention information in multiple levels,

and di�erent levels of attention information are complementary to each other in
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our experiments. A fusion of the information learned from them brings better

results.

Chapter 4 mainly aims to reduce the extra overhead for the testing (utiliza-

tion) procedure. Inspired by the human behavior of learning from experience

to complete new tasks, we propose a multi-task learning framework, named

Contrastively-reinforced Attention Convolutional Neural Network (CRA-CNN),

which forces the major network to respond better to discriminative regions using a

subordinate network. The major network is required to predict the categories and

attention redundancy pairs of input images. The subordinate network evaluates

the attention prediction by categorizing the attention and measuring the similar-

ity and dissimilarity of attention/redundancy. CRA-CNN improves the attention

awareness of the deep features in the major network by the tasks performed by the

subordinate network and consequently improves the accuracy. The subordinate

network can be removed after training, and CRA-CNN has no extra overhead for

utilization.

Chapter 5 mainly aims to reduce the extra overhead for the training proce-

dure, which also has very small testing (utilization) overheads. The approach in

Chapter 5 is proposed by summing up the experience of Chapter 3 and Chapter 4.

Chapter 3 verifies the e�ectiveness of multi-scale attention and Chapter 4 veri-

fies the e�ectiveness of exploring attention from deep features. In Chapter 5, we

propose the recursive multi-scale channel-spatial attention module (RMCSAM).

Following the experience of previous research on fine-grained image classifica-

tion, RMCSAM explores multi-scale attentional information. The attentional

information is explored by recursively refining the deep feature maps of a convo-

lutional neural network (CNN) to better correspond to multi-scale channel-wise

and spatial-wise attention, instead of localizing attention regions. The spatial-wise

attention of RMCSAM is extended from the region-based attention strengthening

strategy used in Chapter 4. In Chapter 5, we use the attention module framework

to replace the multi-task learning framework for capturing deep-feature-based at-

tention. In this way, RMCSAM provides a lightweight module that can be inserted

into standard CNNs. Experimental results show that RMCSAM can improve the

classification accuracy and attention capturing ability over baselines. Also, RMC-

SAM performs better than other state-of-the-art attention modules in fine-grained

image classification and is complementary to some state-of-the-art approaches for
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fine-grained image classification.

D��������� �� ��� �������� ���������. Figure 3.5, 3.6, 4.3, 5.3, and 5.4

are visualization results of the approaches proposed in this thesis. From those visu-

alization results, we can observe some phenomenons about the attention captured

by the proposed approaches.

First, the ratio of foreground to background a�ects the captured attention.

Especially in Figures 4.3 and 5.3, this phenomenon is obvious. For example, when

the bird occupies a large portion of the whole scene, the important body parts, such

as the head, are captured as attention. When the bird occupies a small portion of

the whole scene, the attention mechanism mainly devotes e�ort to distinguishing

the small bird from the complicated background.

Second, for the task of fine-grained image classification, some key parts are

acting the most important roles. For example, for distinguishing di�erent bird

images, the head always acts the most important role. For distinguishing di�erent

car images, the brand logo and headlight always acts the most important role.

However, only capturing those key parts is not enough for the FGIC task because

of the strong intra-class variation. For example, in some cases, the bird head is

occluded due to the complicated environment or unclear due to the bird being too

small, and the model has to learn clues from more parts. Therefore, a good attention

capturing strategy should not only be able to be sensitive to the most important parts

but also adjust the capturing strategy condition on specific images. We suppose it

is the main reason why the proposed deep-learned outperforms traditional hard-

coded attention-learning approaches. Furthermore, our experimental results show

that capturing multi-scale attention is also an e�ective way to deal with intra-class

variation.

Third, as shown in Figure 5.4, when there is no target object in the scene, the

attention mechanism still has some rough telling foreground and background in

certain cases.

F����� P��� ��� P�������. RMCSAM, the approach proposed in Chap-

ter 5, is the most recommendable approach of this thesis due to its small extra

overhead, good accuracy, and strong universality. However, compared with CRA-

CNN, the approach proposed in Chapter 4, RMCSAM has a drawback. That is, in

CRA-CNN, all the extra overhead required for attention learning can be removed

after the training, and there is no extra overhead for utilization. Regarding RM-
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CSAM, the extra training overhead is very small but still required for utilization.

The future plan is to design a new framework, where the model is trained to cap-

ture multi-scale attention by small extra overhead, and the extra overhead can be

removed after training, based on the experience of this thesis.

Another important thing that we need to verify in the future is whether capturing

attention with the RMCSAM can be used as an additional task to strengthen the

attention awareness of the networks. We plan to conduct new experiments by

redesigning new additional tasks based on the RMCSAM. If we can realize using

RMCSAM as an additional task we can further reduce the training overhead.

Moreover, the attention for FGIC tasks is very complicated due to various

foreground/background rations and occluded key parts, and it is important to

adjust the attention capturing strategy conditioned on each specific image. Thus,

it is worth expecting to further develop the attention capturing to automatically

zoom in or out the captured attention for unification and complement the occluded

key parts with generation models.
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