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Abstract
According to the current prevailing cosmological scenario, the very early Universe
experienced an inflation period, which was highlighted by rapid accelerated expan-
sion. In this scenario, the inflation was caused by a scalar field, called inflaton. The
quantum fluctuations of the inflaton became seeds of the fluctuations in the current
structure formation.

To determine the features of the fluctuations, a statistical treatment needs to be
adopted since the theory cannot uniquely predict the amplitude of the fluctuations at
each point. However, it can predict the expectation value of the correlations between
the fluctuations. The initial fluctuations closely obey the Gaussian. However, the
non-Gaussianity, which is a slight deviation from the Gaussian, reflects the nature of
physics in the early Universe.

The physics beyond the Standard Model, such as string theory, predicts new
particles at ultra-high energy, which are not yet discovered. If new particles interact
with the inflaton, their existences can be tested by investigating the nature of the
initial fluctuations. String theory predicts the particles with a higher spin as new ones.
If higher spin particles interact with the inflaton, they leave imprints characterized
by the non-Gaussianity of the primordial fluctuations.

This thesis discusses the relationship between galaxy shape correlations and pri-
mordial fluctuations. The shape of elliptical galaxies, whose formation started early
and long ago, correlates with the tidal field of the surrounding dark matter halos.
Since the primordial fluctuations generate the tidal field, the correlations of galaxy
shapes could give us access to the nature of the primordial fluctuations. We investi-
gate the effect of the primordial non-Gaussianity induced by the spin particles on the
galaxy shape correlations. We find that the contribution of the angular-dependent
primordial non-Gaussianity induced by the spin-2 particle in the correlations of the
galaxy shapes appears on different scales, which depends on the mass of the particle.
Moreover, we propose a method to investigate the imprint of higher-spin particles
using galaxy shape correlations. We find that the imprint of the primordial non-
Gaussianity generated by spin-n particle could be detectable through the decompo-
sition of the galaxy shapes into n-th moment.
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Chapter 1

Introduction

Modern cosmology can mostly explain the picture of the Universe with high preci-
sion observational data, assuming simple models. However, some problems remain
unsolved. There is still much left to interpret all the cosmological scenarios in phys-
ical terms. For example, there is the origin of primordial fluctuations, which lead
to the initial seeds of various structures of the Universe. Currently, reliable tracers
on cosmological scales are mainly the cosmic microwave background (CMB) which is
the photon coming towards us from the last scattering surface, and the large-scale
structure (LSS) which comprises the distributions of galaxies, clusters of galaxy and
so on. If the Universe were completely isotropy and homogeneity in the early epoch,
it would not be able to produce the temperature fluctuations measured by the CMB
and the density fluctuations on the LSS. As a theoretical approach, it was proposed
that the Universe went through rapid accelerated expansion before the hot big bang,
namely inflation [1, 2]. This is a powerful paradigm to describe physics in the early
Universe and provides a mechanism for generating primordial fluctuations.

So far, many theoretical models have been proposed, which are compatible with
observations. However, the detailed mechanism is yet to be determined. The upper
constraint on the energy scale during inflation is estimated to be Hinf . 1013[GeV],
where Hinf is the Hubble scale at the inflation epoch, from the CMB observation
under the assumption of the simple inflation model [3]. From a different point of
view, this implies that the analysis for the physics during inflation leads to testing
the ultra-high-energy physics beyond the reach of any accelerator on the ground.

The Planck satellite, which is the telescope for the CMB in space, measures the
temperature fluctuations up to O(10−4) around the uniform temperature T ∼ 2.7K
on the sky. The CMB observations suggest that tiny primordial fluctuations were
adiabatic, a nearly scale-invariant, and an almost Gaussian distribution. One of the
simplest models that broadly predict the measured properties is the single-field in-
flation model, in which the background dynamics during inflation is governed by a
scalar field called inflaton, and the observed fluctuations are generated by stretching
the inflaton’s quantum fluctuations. Nevertheless, the origin of the inflaton has not
been completely identified. The primordial gravitational waves generated during in-
flation also play an important role in making a piece of evidence for inflation. The
primordial gravitational waves left the imprint as the CMB B-mode on large scales,
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which is the rotation part of the polarization of the CMB photons. For the detection,
the forthcoming surveys such as LiteBIRD [4] are remarkable and have the potential
to constrain the inflation energy scale tightly.

While the CMB observations provide rich information about the early Universe,
the LSS reflects the current state of the Universe. Comparing the results of both
observations is essential as it will reveal the time evolution of the Universe and is
complementary to understanding the origin of the primordial fluctuations. Since as-
tronomical objects such as galaxies are formed by the gravitational instability, their
origin must be the primordial perturbations. This means that the LSS has the im-
print of the primordial perturbations and can provide the information of physics in
the early Universe. In addition, galaxy surveys to investigate the LSS have advan-
tages compared to the CMB measurements since they can give the three-dimensional
distribution of galaxies with redshift. In contrast, the CMB provides information
only on the two-dimensional surface. The forthcoming galaxy surveys that target
huge volumes, such as the Nancy Grace Roman Space Telescope [5], Euclid [6], and
Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices
Explorer(SPHEREx) [7], the Rubin Observatory Legacy Survey of Space and Time
(LSST) [8], have the potential to give tighter constraints on parameters compared to
the CMB observations. In addition, galaxy surveys allow us to explore the structure
of the Universe on broader scales, which is not possible by the CMB observations.

Moreover, galaxy imaging surveys provide not only the distribution but also the
shape of the galaxy, similar to the polarization of CMB. The cosmic shear, which is
the distortion of the galaxy by the weak lensing effect, is the powerful tracer of dark
matter distribution since the weak lensing effect deforms the background intrinsic
galaxy shape by foreground gravitational potentials (almost equivalent to the dark
matter.) Recent notable results by the Dark Energy Survey [9], the Kilo-Degree
Survey [10], and Subaru HSC observation [11] have reported the analysis of weak
lensing with cosmic shear, which will provide material for a deeper understanding of
the nature of dark energy and dark matter. For the weak lensing analysis, we must
consider the nature of the intrinsic galaxy shapes generated by the large-scale tidal
fields around the individual galaxy, which are known as Intrinsic Alignments [12, 13,
14, 15]. The intrinsic alignments reflect abundant information on the natures of the
Universe.

We introduce some more about the primordial non-Gaussianities and intrinsic
alignments, which are the main topics of this thesis.

Primordial non-Gaussianities

At present, the measured primordial perturbations nearly obey the Gaussian. How-
ever, it is still allowed that the distribution slightly deviates from the Gaussian, which
is characterized by primordial non-Gaussianities (PNGs). The existence of the PNGs
is not so unnatural from a theoretical viewpoint.
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For example, the PNGs are related to the interactions of fields during inflation.
The search of the PNGs provides an insight into the dynamics during inflation and
the fundamental physics at the inflation energy scale. The lowest order of the PNGs
is the bispectrum which is the three-point correlation function in the Fourier space.
Under the assumptions of homogeneity and isotropy, the bispectrum is given by the
function of the norm of the three momenta and is characterized by triangle forms,
which correspond to the momentum conservation. The shapes and the associated
amplitudes of primordial bispectra allow us to classify the physics of inflation. The
simplest type of non-Gaussianities is the local (squeezed) type, which is constructed
by two short-wavelength modes and a long-wavelength mode. This type is known to
be an indicator to distinguish between single-field inflation and multi-field inflation.
For the simple single-field case, the amplitude of the squeezed bispectrum f loc

NL is
expected to be very close to zero [16, 17], while some multi-field models can generate
the large f loc

NL, for example, Refs. [18, 19, 20]. Moreover, if massive higher spin
particles, which are motivated by the beyond standard model such as string theory,
exist at the inflation energy scale, they can produce nontrivial correlations and leave
unique signatures in the squeezed bispectrum with an oscillation feature and angular
dependence corresponding to the spin of particles [21]. The search for these PNGs
may lead to observational evidence for the existence of the higher-spin particles.

The current tight constraint is f loc
NL = −0.9±5.1 at 68 percent confidence level from

the CMB measurement by Planck satellite [3]. However, due to the cosmic variance,
a further improvement on the constraint is no longer expected by the CMB observa-
tions. In order to distinguish inflationary models, it is necessary to introduce other
approaches. As a possibility, the scale-dependent bias can be used to give the con-
straint on f loc

NL. The tracers of density fluctuations such as galaxy at low redshift are
biased by the local density fields. Since the local-type primordial non-Gaussianities
modulate the amplitude of the short-wavelength modes, the biased tracers have the
position dependence via the long-wavelength mode. This causes the scaling k−2 on
the large scales. By using this scale-dependent bias [22, 23, 24, 25, 26, 27], the tightest
constraint from the low redshift large-scale structure is f loc

NL = −12 ± 21 at 68 per-
cent confidence level [28] and the forthcoming galaxy survey, SPHEREx, will reach to
|∆f loc

NL| = O(1) by increasing the survey areas and depth. In deeper galaxy surveys,
the cosmic variance can be reduced to investigate long-wavelength modes than the
CMB. This could provide the PNGs with tighter constraints complementary to the
CMB.

Galaxy shape as Intrinsic Alignments

The galaxy imaging surveys supply not only the distribution of galaxies but also the
individual galaxy shapes. Recently, much attention has been paid to the intrinsic
alignments, which originate in the distortion of the intrinsic galaxy. Given that the
Universe follows homogeneity and isotropy on large scales, it can be assumed that
the orientations of galaxies are distributed randomly when we obtain a sufficient
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number of samples. Thus, the intrinsic alignments may be handled as systematic
errors for the weak lensing analysis. However, in practice, galaxies evolve following
local physical processes and their anisotropy is induced by the environments around
galaxies at each time. The local physical processes depend on many elements, for
instance, whether the galaxy is an elliptical or a spiral disk, red (ellipticals dominant
with old stellar population) or blue (spiral disks dominant with active star formation).
These elements may have an impact on how the galaxy is aligned, depending on the
surrounding structures.

In particular, the intrinsic alignment for elliptical galaxies that is supported by
observational data [29, 30, 31, 32, 33] and N -body simulations [34, 35, 36, 37, 38, 39]
is a tracer of the surrounding tidal fields. This is understood by the stretching in the
direction of higher density regions around a halo or galaxy on the large scales, which is
known as the linear alignment model [40]. As in the case of the galaxy number density,
this reflects cosmological information and is a promising tracer for precise observations
of galaxy shapes. Focusing on the PNGs, the galaxy shape as intrinsic alignments
would be a unique tracer for the angular-dependent PNGs. As mentioned above,
the galaxy number density is influenced by the contribution of the isotropic squeezed
bispectrum via scale-dependent bias. Similarly, the angular-dependent PNGs, which
can be generated by a spin-2 particle, induce a scale-dependent bias for the intrinsic
alignment correlations of the 2nd shape moment [41], which is the usual cosmic shear.
This effect was confirmed by N -body simulations [42] where, interestingly, the con-
tribution induced by the spin-2 in the bispectrum does not affect the number density
but changes only the second shape moment on the large scales. Therefore, an ideal
galaxy imaging survey that can separately observe the different shape moments of
galaxies may allow us to separately measure the PNGs produced by massive particles
with different spins.

This thesis provides prospects of the constraints on the angular-dependent PNGs
for the forthcoming galaxy imaging surveys via the moment decomposition of the
galaxy shape. The outline of this thesis is as follows. In chapter. 2, we brief the fun-
damental cosmology and the primordial non-Gaussianity. We summarize the struc-
ture formation based on the perturbation theory in chapter. 3, the galaxy bias and
the scale-dependent bias from the viewpoint of the effective field theory of LSS in
chapter. 4. This helps interpret the bias of the shape. Following Refs. [43, 44], chap-
ter. 5 is the main part of this thesis and is a summary of the relationship between
galaxy shape and angular-dependent PNGs, especially the global isotropic case. In
appendix. B, we discuss various imprints of a violation of the global rotation symme-
try in the primordial bispectrum. This allows us to understand whether the signal
of the PNGs induced by spin particles is unique or not by examining the differences
from the case with the global symmetry. We use the unit as c = ~ = 1 and the
reduced Planck mass as Mpl = (8πG)−1/2 = 2.4× 1018 GeV.
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Chapter 2

Fundamental Cosmology

2.1 Standard Cosmology

The Universe that we view on a large enough scale features homogenous and isotropy,
which is known as the cosmological principle. From this point of view, the general met-
ric satisfying these features, which called the Friedmann-Lemaître-Robertson-Walker
(FLRW) metric, is introduced as

ds2 = −dt2 + a2(t)
[

dr2

1− kr2 + r2dΩ
]
, (2.1)

where a(t) is the scale factor, which is normalized as a(t0) = 1 at present time t0, and
k decides the spatial form of the metric. Specifically, k = 0,−1 and 1 mean a flat, a
sphere, and a hyperbolic space, respectively 1.

Since the radius direction in Eq. (2.1) has the spatial curvature, this expression
is complicated to handle distances. However, the following variable transformation
make it easier to understand,

dχ = dr√
1− kr2

, (2.2)

where χ is called the comoving distance and corresponds to the distance from the
origin of the coordinate. Then, we find that Eq. (2.1) is transformed as

ds2 = −dt2 + a2(t)[dχ2 + Sk(χ)dΩ] , (2.3)

where

Sk(χ) =


sinh2 χ (k = −1)
χ2 (k = 0)
sin2 χ (k = 1)

. (2.4)

1We can, in principle, choose arbitrary k by using the 3-dimensional Ricci scalar.
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Since the photon passes through the null geodesic (ds = 0) on the spatially isotropy
condition, the comoving distance can be related as

χ ≡
∫ χ

0

dr√
1− kr2

=
∫ t0

t

dt

a(t) =
∫ 1

a

da

aȧ
, (2.5)

where t0 denotes the observer time and the a = 1 means the scale factor at present.
Besides, we introduce the conformal time as

τ ≡
∫ t

0

dt′

a(t′) , (2.6)

where we set t = 0 as the initial time. In this case, the line element Eq. (2.1) can also
be written as

ds2 = a2(τ)[−dτ2 + dχ2 + Sk(χ)dΩ] . (2.7)

Next, we investigate the dynamics of the metric, following the Einstein equation
given by

Gµν + Λgµν = 1
M2

Pl
Tµν , (2.8)

where gµν denotes the 4-dimensional metric which is derived from the line element,
Gµν is the Einstein tensor, Λ is the cosmological constant and Tµν is the energy-
momentum tensor.

Assuming the homogenous and isotropy, the energy-momentum tensor is given by

Tµν = diag(−ρ, p, p, p) (2.9)

with the energy density ρ and the pressure p.
Solving the Einstein equation, Eq. (2.8), the independent equations about the

evolutions of the scale factor are given by

H2 ≡
(
ȧ

a

)2
= 1

3M2
Pl
ρ− k

a2 + Λ
3 , (2.10)

ä

a
= H2 + Ḣ = − 1

6M2
Pl

(ρ+ 3p) , (2.11)

which are known as the Friedmann equations. Convining these equations, we also
obtain the energy conservation as

ρ̇+ 3H(ρ+ p) = 0 . (2.12)

While there are three variables with time-dependent parameters as a, ρ, p, there are
only two independent equations. Therefore, it is necessary to add the equation of state
that describes the properties of matters. The matter components can be divided into
relativistic and non-relativistic parts. Here, relativistic matters, called the radiation
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components, refer to matters in which the kinetic energy is not negligible compared to
the rest of energy. In contrast, non-relativistic matter, called the matter components,
represents the case in which the kinetic energy is negligible. Futhermore, Eq. (2.12)
can rewritten as

d(ρa3)
dt

= −pda
3

dt
, (2.13)

which can be read as adiabatic in the Universe compared to dU = −pdV + TdS of
the first law of thermodynamics. We can use the relation between the energy density
and the pressure as ρ ∝ p.

For the radiation components, since the radiation pressure is given by pr = ρr/3,
we find that the dependency on the scale factor is given by ρr ∝ a−4 from Eq. (2.12).
The pressure of the matter components is negligible, p = 0. For example, on the
situation of an ideal gas, this can be understood as follows. When n particles in
a unit volume are in thermal equilibrium at temperature T , the equation of state
is given by p = nkBT with the Boltzmann factor kB. Furthermore, assuming the
average mass of the particles µ, the energy density becomes ρ = nµ. Consequently,
the relation between pressure and energy density is expressed as

p = kBT

µ
ρ . (2.14)

However, for the matter component, since the kinetic energy is negligible compared
to the rest of the energy (kBT � µ), the pressure becomes negligible compared to
the energy density (p� ρ). Thus, the matter components depend on ρm ∝ a−3 from
Eq. (2.12). Combined with Eq. (2.12), the time dependency of the scale factor are
given by a ∝ t2/3 in the matter dominant Universe and a ∝ t1/2. In general, using
the equation of state parameter w = p/ρ under the adiabatic condition, we find the
solution as a ∝ t

2
3(1+w) .

The proportions of each component are needed to describe the structure evolution
of the Universe, and these characteristic values determined by observation are called
cosmological parameters, which are determined as

ΩX0 ≡
ρX0

3M2
PlH

2
0
, ΩK0 ≡ −

k

H2
0
, ΩΛ0 ≡

Λ
3H2

0
, (2.15)

where are known as the density parameter, the curvature parameter, and the cos-
mological constant parameter at present, respectively. Here we denote the Hubble
constant at present as H0. The Frieedmann equation Eq. (2.10) becomes

H2 = H2
0

[Ωr0
a4 + Ωm0

a3 + ΩK0
a2 + ΩΛ

]
(2.16)

= H2
0

[
Ωr0(1 + z)4 + Ωm0(1 + z)3 + ΩK0(1 + z)2 + ΩΛ0

]
, (2.17)

where we used a = 1/(1 + z) with the redshift z. This expression indicates that
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multiple components with different time dependencies form cosmic expansion. If the
Universe goes back in time, the dominant component at the epoch appears according
to the scale factor of each element. Since, in the early epoch, the radiation component
is dominant, and gradually the matter component becomes dominant, the instant of
matter-radiation equality epoch divides the two main periods of the Universe evolu-
tion, radiation domination and matter domination.

From the Planck observation with the Cosmic Microwave Background (CMB)
radiation, these parameters are measured as

h = H0
100 = 0.67 , Ωm0 = 0.31 , ΩΛ0 = 0.69 , ΩK0 = 0.0007 , (2.18)

and since the scale of matter-radiation equallity is given by aeq = (1 + zeq)−1 =
ρr0/ρm0, the Planck observation esimates the matter-radiation epoch as zeq ∼ 3400 [45].

2.2 Inflation

While the standard hot big bang cosmology can explain a lot of phenomenology in our
Universe, this theory has the following representative problems at the early epoch.

Flatness problem As seen in the previous section, the curvature parameter at
present is estimated as O(10−3), which is close to zero. Now let us see the
time evolution of the curvature in the early Universe. For simplicity, assum-
ing that the cosmic expansion is dominated by some form of matter with the
equation of state equal to w. The curvature parameter in time is given by

ΩK = − k

a2H2 = ΩK0 a
(1+3w) . (2.19)

This means that if w > −1/3, ΩK keeps growing (if ΩK0 is the positive value) or
decreasing (if ΩK0 is the negative value). Considered the current cosmological
history, for example, the curvature parameter at the Planck scale is required as
|ΩK| . O(10−63). Since the scale factor dependency of the curvature parameter
is proportional to a−2, it becomes dominant after the matter-dominated epoch.
As you can see from Eq. (2.18), the curvature already is not dominant at present,
and the value of ΩK at the early epoch should be a remarkable small value. The
easiest way to solve this problem is to assume that the initial curvature is zero
(k = 0), which is one answer. Another solution is the presence of the matter
with w < −1/3 in the Universe for some period. In this case, if the initial
curvature parameter is significant, the scale factor dilutes it.

Horizon problem The fluctuation of the CMB temperature is observed as O(10−5)
and distributed by isotropic and homogeneous. This distribution indicates that
the Universe at recombination epoch (z ∼ 1100) is already isotropic and ho-
mogeneous. However, since the signals with causality can only propagate at
the speed of light at best, they have a limited spatial region to keep causality.
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Let us consider the particle horizon χp, where causality is kept at a given time.
In the matter-dominated Universe with the equation of state w, the particle
horizon is roughly given by

χp ≡ τ − τini =
∫ a

aini

da

a2H
∼ a(1+3w)/2 − a(1+3w)/2

ini , (2.20)

where aini means the initial time, which corresponds to the singularity point
in the hot big bang cosmology. If w > −1/3, the particle horizon grows in
time. This means that the farthest distance with causality grows in time and
the new region at a certain time never interacts with another region until that
time. This contradicts the CMB observation. Only the horizon patch at the
recombination epoch can be causal, while the CMB temperature fluctuation is
homogenous and isotropic at the current horizon size.

The solution to these above problems is the period when some matter with w <

−1/3 dominates before the hot big bang history. This condition implies that the
Universe undergoes the accelerated expansion from Eq. (2.11)2, namely,

w < −1
3 =⇒ ä > 0 . (2.21)

Inflation is a period of accelerated expansion before the standard hot big bang. In the
standard cosmology, which is composed of well-known matters, the Universe always
undergoes a decelerating expansion. In this case, since the scale factor obeys a ∝
τ2/(1+3w) in terms of the conformal time, there exists the singularity a→ 0 as τ → 0.
This implies the particle horizon is determined at a late time since this size is the order
of τ . However, if there exists a phase with w < −1/3, the scale factor is proportional
to the negative power of the conformal time. This implies that the conformal time can
be extended to negative times. For example, for w = −1, since the Hubble parameter
H is constant, the scale factor becomes a(τ) = −1/(Hτ), which means a → 0 as
τ → −∞. This allows us to confront the horizon problem.

2.2.1 Slow-roll inflation with single scalar field

We summarize the typical inflation mechanism. The simplest example of an inflation-
ary system is the origin of a scalar field on an almost flat potential (Fig. 2.1). These
kinds of models are known as slow-roll inflation.

The action for gravity and a scalar field ϕ(t,x) which drives to expand the Uni-
verse, which is called inflaton, is

S =
∫
d4x
√
−g

[
M2

pl
2 R+ L

]
, (2.22)

L = −1
2g

µν(∂µϕ)(∂νϕ)− V (ϕ) , (2.23)

2We assumed that the energy density is positive.
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Figure 2.1: The schematic picture of the slow-roll inflation. One
of the examples of inflation scenarios is a picture of a potential that
was a vacuum state around the origin at the pre-inflation energy scale,
but which undergoes a phase transition to a slow-roll potential during
inflation as the energy scale decreases. In this case, the inflaton was
originally around the origin, but it moves to the true vacuum due to
the phase transition. The false vacuum energy causes inflation while
the inflaton rolls towards the true vacuum. When the true vacuum
is reached, the false vacuum energy is used for reheating, raising the

temperature of the Universe.

where R is the Ricci scalar and V (ϕ) is the potential for the scalar field. The first term
of the first line corresponds to the Einstein Hilbert term. The rest terms correspond
to the Lagrangian density of the inflaton. For minimal setups, assuming that gravity
only plays a role in the cosmic expansion, we can ignore the Einstein Hilbert term
for inflaton dynamics.

Let us focus on the dynamics of the inflaton. The energy-momentum tensor of
the scalar field is given by

Tµν = (∂µϕ)(∂νϕ)− δµν
[1

2(∂λϕ)(∂λϕ) + V (ϕ)
]
, (2.24)

and we obtain the energy density and pressure of the homogeneous part from Eq. (2.9)
by

ρϕ = 1
2 ϕ̇

2 + V (ϕ) , pϕ = 1
2 ϕ̇

2 − V (ϕ) . (2.25)

Inserting the energy density into the Friedmann equation, we get

H2 = 1
3M2

pl

[1
2 ϕ̇

2 + V (ϕ)
]
, (2.26)

where we ignore the cosmological constant and set the flat space. If the kinetic energy
is negligible compared to the potential energy, ϕ̇� V (ϕ), we find that the equation
of state becomes w ' −1 because of ρϕ ' −pϕ. Moreover, the equation of motion is
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derived from Euler-Lagrange equation3, and we obtain

ϕ̈+ 3Hϕ̇+ Vϕ(ϕ) = 0 , (2.27)

where Vϕ means ∂ϕV (ϕ). This expression is similar to the damped oscillation. The
second term is a friction term due to cosmic expansion. Although the solution to
the equation of motion for a scalar field requires a specific potential, the condition
that the potential is flat enough allows us to discuss general solutions. This condition
requires that the Hubble friction balances the external force. Consequently, the slow-
roll inflation requires

ϕ̇2 � 2V (ϕ) , |ϕ̈| � 3H|ϕ̇| , (2.28)

which are known as the slow-roll condition. Let us consider the relation between the
slow-roll condition and the potential. Under the slow-roll condition, since the Fried-
mann equation Eq. (2.26) and the equation of motion Eq. (2.27) can be approximated
by H2 ' V/(3M2

pl) and 3Hϕ̇ ' −Vϕ(ϕ), respectively. Then, the slow-roll condition
reads with respect to the potential,

εV ≡
M2

Pl
2

(
Vϕ
V

)2
, ηV ≡M2

Pl
Vϕϕ
V

, (2.29)

which are known as the slow-roll parameters and should satisfy εV � 1, |ηV | � 1. By
using the dynamics of the scale factor, another definition of the slow-roll parameters
are given by

εH ≡ −
Ḣ

H2 , ηH ≡
˙εH

HεH
. (2.30)

Satisfying the slow-roll condition, these parameters are related by

εH = εV +O(ε2V , η2
V ) , ηH = 4εV − 2ηV +O(ε2V , η2

V ) . (2.31)

The end of inflation is defined by εH ∼ 1. This corresponds to a steepening of the
potential slope so that the kinetic energy is no longer negligible.

2.2.2 Primordial perturbation

The inflationary cosmology was introduced in order to confront the shortcoming of
the standard cosmology. Of course, this is an important point. However, more
importantly, the inflationary cosmology can supply the origin of the cosmological
perturbation after inflation, which leads to the initial fluctuation to form the cosmic
structure.

3The Euler-Lagrange equation for the Lagrangian density is given by ∂ϕ(
√
−gL) =

∂µ[∂∂µϕ(
√
−gL)]
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Figure 2.2: The time evolution of the comoving Hubble radius and
the constant comoving scale. Since the fluctuations do not grow out-
side the horizon, the fluctuations of the Hubble horizon scale during
inflation correspond to the fluctuations coming into the horizon again.
This is the primordial fluctuation, which is the seed for structure for-

mation.

Even if the fluctuations within the Hubble patch before inflation are homogeneous
and isotropy, the inflaton field has quantum fluctuation. In a particle-like picture, this
means that the particles are being created and annihilated repeatedly. On the other
hand, the inflationary expansion stretches its quantum fluctuations so that quantum
correlations do not occur and the produced particles remain outside the Hubble scale.
After the inflation ends, these fluctuations come back into the Hubble horizon and
become the seeds of structure formation (Fig. 2.2).

If there exists the fluctuation of the inflaton, the time at which the inflation ends
varies by location. Let us consider the deviation from the background field value δϕ.
In this case, the time evolution of perturbation is shifted by δt = δϕ/ϕ̇ compared
to the time evolution of background. This means that the field value at time t̄ + δt

evolve in time ahead of the background t̄.
Following Ref. [46, 47, 48], we set the spatially-flat gauge. Since the action of the

first order perturbation vanishes because of the background equations of motion, the
action of the second order perturbation is given by

S(2) = 1
2

∫
d3xdt a3

[
˙δϕ2 − 1

a2 (∂iδϕ)2
]
, (2.32)

where we neglected the inflaton mass due to slow-roll inflation and the equation of
motion in δϕ is in Fourier space,

δ̈ϕk + 3H ˙δϕk + k2

a2 δϕk = 0 . (2.33)
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Since the quantity of the gauge invariant is u = aδϕ in the spatially-flat gauge, this
equation of motion can be rewritten with the conformal time,

u′′k +
(
k2 − a′′

a

)
uk = 0 , (2.34)

where the prime means the conformal time derivative ∂τ . Moreover, the conjugated
momentum for u field is given by π ≡ ∂L/∂u′ = u′4.

Let us consider quantizing the classical fields u and π to the operators û and π̂
by the equal time commutation relations, which are given by

[û(x, τ), π̂(y, τ)] = iδD(x− y) , [û(x, τ), û(y, τ)] = [π̂(x, τ), π̂(y, τ)] = 0 . (2.35)

Following the Heizenberg picture, we can expand the operator û as

û(x, τ) =
∫

d3k

(2π)3 [uk(τ)âk + u∗k(τ)â†−k]eik·x , (2.36)

where uk is the mode function which follows the solution of Eq. (2.34), and âk, â†k are
anihilation and creation operators, which satisfy 5

[âk, â†k′ ] = (2π)3δD(k − k′) , [âk, âk′ ] = [â†k, â
†
k′ ] = 0 , (2.37)

and the vacuum state |0〉 is defined as âk|0〉 = 0.
Let us consider to find the solution of the mode function. Since the scale factor

for de-Sitter Universe is a = −1/(Hτ), a′′/a = 2/τ2. Then, we find that the equation
of motion has the following solution,

uk(τ) = C1e
ikτ
(

1 + i

kτ

)
+ C2e

−ikτ
(

1− i

kτ

)
, (2.38)

where C1, C2 are the integration constants. In the limit to the subhorizon scale
(|kτ | � 1), since this solution is expected to approach asymptotically to the solution
in flat space, the solutions of the coefficients are given by6

C1 = 0 , C2 = 1√
2k

. (2.39)

4The action Eq. (2.32) can be rewritten with the conformal time and the Mukhanov-Sasaki variable
as

S(2) =
∫
dτd3xL = 1

2

∫
dτd3x

[
u′2 + a′′

a
u2 − (∂iu)2

]
.

5We normalized the time-independent Wronskian as uku∗
′
k − u′ku∗k = i because there is not the

first time derivative in the mode function.
6In the subhorizon limit, the mode function has both the solustions as the uk(τ) ∝ e±ikτ . However,

when the wave function in non-relativistic limit follows i∂tφ(x, t) = Eφ(x, t) (E > 0), the wave
function is given by φ ∝ e−iEt. Then, we find that the mode function has u ∝ e−ikτ when the energy
is positive.
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Before the horizon exit |kτ | � 1, since the mode function is proportional to e−ikτ and
the eigenstates change in time, the sub-horizon fluctuations have quantum behavior.
On the other hand, after the horizon exit |kτ | � 1, since we can approximate the
mode function as uk(τ) ∼ −iC2/(kτ), the field operator û becomes

û(k, τ) = − i√
2k(kτ)

(âk − â†−k) . (2.40)

On the super-horizon scale, the operator û only changes the amplitude and does not
change the coefficients of the commutation operators. This implies that û has time-
invariant eigenstates on super-horizon and thus behaves as the classical fluctuations.

Let us compute the curvature power spectrum after horizon exit. The fluctuations
on sub-horizon during inflation are equalized by the rapid accelerated expansion so
that after the horizon exit, the fluctuation of the vacuum energy only dominates. We
define the power spectrum of the fluctuaion of infaltion as

〈δϕ∗(k, τ)δϕ(k′, τ)〉 ≡ (2π)3Pδϕ(k, τ)δD(k − k′) (2.41)

≡ 1
a2 〈0|û

†(k, τ)û(k′, τ)|0〉 , (2.42)

where we used the condition of the spatial- and rotation-symmetry in the first line.
Using the solution of mode function on the super-horizon Eq. (2.40), we obtain the
power spectrum as

Pδϕ(k, τ) = 1
2k3a2τ2 = H2

2k3 , (2.43)

where we used a(τ) = −1/(Hτ). Moreover, we find that the dimensionless power
spectrum is given by

Pδϕ(k, τ) ≡ k3

2π2Pδϕ(k, τ) =
(
H

2π

)2
. (2.44)

Since the Hubble parameter during inflation is almost constant, the dimensionless
power spectrum becomes scale-invariant regardless of scale k. In the spatially-flat
gauge, the curvature perturbation, which is conserved in time on the super-horizon,
is given by

ζ = −Hδt = −Hδϕ
˙̄ϕ . (2.45)

Then, we obtain the curvature power spectrum at horizon exit as

Pζ(k) =
(
H2

2π ˙̄ϕ

)2

= H2

8π2M2
plεH

, (2.46)
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where we used ϕ̇2 = 2M2
plH

2εH
7. Though we considered the lowest order of perturba-

tion, a slight scale-dependence appears when treated up to first-order approximation.
The scale-dependency of the power spectrum can be expressed by the spectral index
ns, which is defined as

ns − 1 = d lnPζ
d ln k , (2.47)

and under the slow-roll approximation up to first order ns−1 = 2ηV −6εV . Since the
Planck result of the CMB observation measured ns = 0.9659 [45] and the amplitude
As ≡ Pζ(k∗) = 2.1×10−9 at the pivot scale k∗ = 0.05 Mpc−1, unless otherwise noted,
we use the curvature power spectrum as scale-invariant. We can estimate the inflation
energy scale on the single slow-roll inflation (e.g., Ref. [47]) by using the tensor-to-
scalar ratio r, which is the ratio of the primordial curvature power spectrum to the
primordial tensor one and given by r = 16εH . Since the CMB B-mode measurement
provides r < 0.056 at the pivot scale k∗ = 0.002 Mpc−1 [45], the uppder bound to
the inflation energy scale can be estimated by (Hinf/Mpl) < 1.2 × 10−5, which is
V 1/4 < 1016GeV.

In order to focus on the structure formation in this thesis, we describe the relation
between the gravitational potential and the curvature perturbation. The Bardeen po-
tential on super-horizon, which corresponds to the gravitational potential in conformal
Newtonian gauge, is related to the curvature perturbation by

Ψ = 3(1 + w)
5 + 3w ζ =

{
(2/3)ζ (radiation dominant : w = 1/3)
(3/5)ζ (matter dominant : w = 0)

, (2.48)

which we ignored the anisotropic stress. Note that when the fluctuations which exit
the horizon during inflation come back into the horizon after inflation, the coefficients
are different in the relation between the curvature perturbation and the primordial
potential, depending on the horizon reentry epoch.

2.2.3 Primordial non-Gaussianity

In this section, we consider the statistical properties of fluctuations. Suppose the
fluctuation obeys the Gaussian distribution, which is determined by the two variables
of the average and variance. In that case, the higher-order correlators of the fluctua-
tion are characterized by only the two-point correlator. The primordial perturbation
following the action Eq. (2.32) can be approximated as Gaussian, which is similar to
the quantum harmonic oscillation, and this means that the curvature power spectrum
contains all the information during inflation.

However, if a higher-order correlation exists beyond the two-point correlation, the
fluctuation obeys the non-Gaussian distribution and supplies additional information
about inflation. In order to study such non-Gaussian effects, we expand the action

7This is exact relation. We can derive this relation by using the time derivative for the Hubble
paramter is 6M2

plHḢ = ˙̄ϕ( ¨̄ϕ+ Vϕ̄) and the equation of motion Eq. (2.27)
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to the third order, and we need to compute the time evolution of vacuum based
on the interaction picture such as the in-in formalism, which requires complicated
calculations. Here, we do not derive the higher-order correlators but only give a rough
outline and introduce the templates of the primordial bispectra used for observations,
which we use to examine the effect on the galaxy. You can know the details and
derivations of the primordial non-Gaussianity, e.g., Refs. [49, 46, 50].

We define the three point correlation of the curvature perturbation in Fourier
space by using the primoridal bispectrum Bζ as

〈ζ(k1)ζ(k2)ζ(k3)〉 = (2π)3δD(k1 + k2 + k3)Bζ(k1,k2,k3) , (2.49)

which is the lowest order quantity that characterizes the non-Gaussianity effect. We
consider the degrees of freedom in the bispectrum. The delta function due to the
background homogeneity allows us to reduce the three degrees. In addition, since the
background rotational symmetry is due to isotropy, which means that the wavevec-
tor depends only on the length, the independent degrees of freedom become two.
Therefore, the bispectrum is determined by the two ratios, e.g., k3/k1 and k2/k1.

We summarize the representative shapes of bispectrum, which are used as the
templates of bispectra for the observation. Since the curvature perturbation is linearly
related to the Newtonian potential as Eq. (2.48), we use Ψ instead of ζ and denote
the Gaussian field as φ.

As the most simple case, we consider the non-Gaussian correction in real space as
follows,

Ψ(x) = φ(x) + f loc
NL

[
φ2(x)− 〈φ2〉

]
, (2.50)

where f loc
NL is the non-Gaussianity parameter, 〈·〉 denotes the ensemble average and 〈Ψ〉

ensures zero8. This is called the local-type non-Gaussianity because this is defined as
the local function. Let us consider the relation between the local-type non-Gaussianity
and the bispectrum. In Fourier space, we can express

Ψ(k) = φ(k) + f loc
NL

∫
d3p

(2π)3φ(p)φ(k − p) . (2.51)

Using the Wick theorem and the power spectrum Pφ, the bispectrum of the local type
takes

BΨ(k1,k2,k3) = 2f loc
NL [Pφ(k1)Pφ(k2) + Pφ(k2)Pφ(k3) + Pφ(k3)Pφ(k1)] . (2.52)

In order to examine the shape features of the bispectrum, we may assume without
loss of generality that k3 ≤ k2 ≤ k1 and the triangle inequality requires k1 < k2 + k3.
This type has the peak in the squeezed limit such as k3 � k2 ' k1 (see the left

8Using the curvature perturbation, we can write ζ(x) = ζG(x) + 3
5f

loc
NL [ζ2

G(x) − 〈ζ2
G〉] with the

Gaussian perturbation ζG and in matter dominant.
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panel of Fig. 2.3). Theoretical inflation models that have a large amplitude in the
squeezed-limit are the curvaton senario9 [20], the model with the multiple light scalar
fields [53, 19, 54], and so on. Meanwhile, for the single field slow-roll inflation, the
bispectrum in the squeezed limit (k3 � k2 ' k1) becomes [16, 55]

BΨ(k1,k2,k3) ' (1− ns)Pφ(k1)Pφ(k3) . (2.53)

This result is independent of the potential shape and is called the consistency rela-
tion. This means the f loc

NL becomes the order of the slow-roll parameters, and if the
observation suggests that the f loc

NL is not zero, the single field slow-roll inflation model
will be ruled out.

As other shapes, the bispectra of the equilateral is given by

BΨ(k1,k2,k3) = 6f eq
NL

[
−(Pφ(k1)Pφ(k2) + perms.)− 2(Pφ(k1)Pφ(k2)Pφ(k3))2/3

+ (P 1/3
φ (k1)P 2/3

φ (k2)Pφ(k3) + perms.)
]
, (2.54)

which has the peak at k1 ∼ k2 ∼ k3 (see the right panel of Fig. 2.3). For example, this
type is motivated by models with the non-trivial sounds of speed and higher-derivative
interactions [56]. A non-Bunch-Davies vacuum as the initial state of inflation leads to
the peak of the bispectrum for the flatten triangle configuration such as k1 = 2k2 =
2k3 [57, 49], of which the shape anzats is given by

BΨ(k1,k2,k3) = 6f folded
NL

[
(Pφ(k1)Pφ(k2) + perms.) + 3(Pφ(k1)Pφ(k2)Pφ(k3))2/3

− (P 1/3
φ (k1)P 2/3

φ (k2)Pφ(k3) + perms.)
]
. (2.55)

In this thesis, since we focus on the scale-dependent bias of galaxy power spectrum,
which will describe in Chapter. 4, the bispectrum in the squeezed limit becomes the
key to examining the galaxy statistics because the short-mode wavelength power
spectrum could modulate the two-point galaxy correlation at the position of the
long-wavelength mode. The bispectra in the squeezed limit for local, equilateral, and
folded are given by

BΨ(k1,k2,k3) ' Pφ(kS)Pφ(kL)×


4f loc

NL Local

12f eq
NL

(
kL
kS

)2
Equilateral

6f folded
NL

(
kL
kS

)
Folded

, (2.56)

denoting kL ≡ k3 � k1 ' k2 and |kS| = |k1 − kL/2| ' |k2 + kL/2|. We droped the
higher order terms of kL/kS. The Planck result with the bispectrum analysis of the
CMB observation supplies the constraints of f loc

NL = −0.9 ± 5.1 and f eq
NL = −26 ± 47

9The curvaton is a hypothetical scalar particle different from the inflaton [51, 52]. The curvaton
itself does not drive the inflation and generates the curvature perturbation. After inflation, the
curvaton oscillates while the inflaton decays into the radiation. When the energy density of the
curvation becomes non-negligible, this leads to generating the adiabatic curvature perturbation.
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Figure 2.3: The shape of bispectra. The left panel is the local bis-
pectrum Eq. (2.52). The right panel is the equilateral bispectrum
Eq. (2.55). Each bispectrum was normalized by BΨ(1, 1, 1)/(k1k2k3)2.
The squeezed limit is k3 � k2 ∼ k1, the equilateral shape is k1 = k2 =

k3 and the folded shape is k1 = 2k2 = 2k3.

at 68 percent confidence level [58] and the anaysis of the galaxy clustering with
spectroscopic survey suggests f loc

NL = −12± 21 at 68 percent confidence level [59].
From now, we will comment on the primordial non-Gaussianity (PNG) induced

by the higher-spin particles during inflation and introduce the general bispectrum
template in the squeezed limit.

Ref. [60] showed the quasi-single inflation, which is the model that there is an
additional scalar particle with the mass m ∼ H apart from the inflaton, left the
imprints with the oscillating contribution in the squeezed bispectrum. This was
extended to a general even spin particle in Ref. [21] and to a general integer spin
particle, including odd spin particles in Ref. [61] (see also Refs. [62, 63]). These
higher spin particles are predicted as parts of the infinite tower of the higher spin
states in theory describing the high energy physics beyond standard model such as
string theory [64] (see also Ref. [65]). The oscillatory feature in the bispectrum
depends on the spin s and massMs of the particle with the non-local scaling. A precise
measurement of such bispectrum may prove these particles around the inflation energy
scale. This program was dubbed the cosmological collider [21].

When the mass of the exchanged particle among the inflatons10, Ms, is much
heavier than the Hubble scale H � Ms, this massive particle contributes to the
Lagrangian of the inflaton locally11. On the other hand, when the exchange mass Ms

is the order of the inflation Hubble scale Hinf , the non-local contribution appears.
10In the context of the effective field theory of inflation, the scalar cosmological perturbations can

be understood as a Goldstone boson because of the time symmetry breaking, which is developed in
Ref. [66].

11Let us assume the interaction Lagrangian given by Lint = λπσ, where λ is the coupling constant,
σ is the additional scalar field with mass M and π is a Goldstone boson. For example, when the
mass of the additional scalar field σ is heavier than the Hubble scale, the equation of motion suppose
σ ∝ (λ/M)π. This allows us to write the Lagrangian by using only π.
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The squeezed bispectrum with the soft exchange of the even spin particles in the
slow-roll limit is given by [21]

BΨ(k1,k2,k3) =
∑

s=0,2,4,···
AsPs(k̂L · k̂S)fs

(
kL
kS

)
PΨ(kL)PΨ(kS)

[
1 +O

(
k2

L
k2

S

)]
,

(2.57)

with kL/kS � 1, k̂α ≡ kα/kα (α = L,S) and Ps denotes the Legendre polynomials.
We used the configuration in Eq. (2.56). As an example, the function fs for a particle
in the principal mass series is given by

fs

(
kL
kS

)
=
(
kL
kS

) 3
2

cos
[
νs ln

(
kL
kS

)
+ ψs

]
, (2.58)

with

νs =



√(
M0
H

)2
− 9

4 (s = 0)√(
Ms

H

)2
−
(
s− 1

2

)2
(s = 2, 4, · · · )

. (2.59)

Let us examine how to modulate the local power spectrum. When the function fs

can be rewritten into the separable form as

fs

(
kL
kS

)
= gs

(
kL
kp

)
hs

(
kp
kS

)
, (2.60)

with a pivot scale kp, the squeezed bispectrum (2.57) modifies the local power spec-
trum at x as [67, 68]

PΨ(kS;x|ΨL) =

1 +
∑

s=0,1,2,3,···
hs

(
kp
kS

)
[k̂i1S · · · k̂

is
S ]TL3αL i1···is(x)

PΨ(kS), (2.61)

where αL i1···is is given by

αL i1···is(x) ≡ (2s− 1)!!
s!

∫
d3kL
(2π)3 Asgs

(
kL
kp

)
[k̂L,i1 · · · k̂L,is ]TL3Ψ(kL)eikL·x. (2.62)

Here, we used Eq. (D.31) in App. D.4.1. These results are straightforwardly gen-
eralized to the case where the squeezed bispectrum is given by a sum of separable
contributions. When fs is given by a linear combination of a power of kL/kS, e.g.,
Eq. (2.58), which is given by

fs

(
kL
kS

)
= 1

2

[(
kL
kS

)∆s

eiψs + c.c.
]
, (2.63)

with ∆s = 3/2 + iνs, each term can be rewritten as in Eq. (2.60). Reflecting the fact
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that the contribution of the massive particle is non-local, the bispectrum acquires the
oscillatory contribution as a consequence of the non-analytic scaling. The contribution
from the odd spin particles is cancelled in the leading order of kL/kS [21], but appears
in the sub-leading order with (kL/kS)5/2 [61] (see also Ref. [69]).

In a simple setup, the squeezed PNG from massive particles is suppressed by the
smallness of the coupling, the Boltzmann factor, e−Ms/TH with TH being the Hawking
temperature TH = Hinf/(2π), and the dilution factor (kL/kS)3/2 (see Eq. (2.58))12. A
larger coupling between the inflaton and the massive particles enhances the radiative
corrections, leading to the breakdown of the EFT description. In Ref. [71], Kumar
and Sundrum showed that the PNG mediated by heavy particles in several scenarios
is too small to be detected when we require the validity of the EFT description.
They also showed that this difficulty could be circumvented in a curvaton scenario,
where two different cutoff scales can be introduced. The Boltzmann suppression is
not significant for a model where Ms is around Hinf as discussed in Refs. [69, 72]
by considering explicit models. In Ref. [73], Wang and Xianyu pointed out that a
coupling between the inflaton and the massive sector is strictly restricted to evade
the Boltzmann suppression without fine-tuning since a large coupling leads to a large
radiative correction to Ms. This restriction has guided their attention to parity odd
dimension five operators, which can relax the Boltzmann suppression [73, 74] (see
also Refs. [75, 76]). Finally, the suppression by the dilution factor (kL/kS)3/2 for
Ms ≥ O(Hinf) can be evaded by lowering Ms, while the straightforward attempt
conflicts with the Higuchi bound for s ≥ 2 [77]. In Refs. [78, 79], it was argued that
the Higuchi bound and subsequently the suppression by the dilution can be avoided
when the de Sitter symmetry is explicitly broken, which allows the existence of an
additional light spin particle. The model proposed by Kehagias and Riotto in Ref. [78]
violates the global rotation symmetry.

Based on the above discussion, we prepare the generalized bispectrum template
in the squeezed-limit as follows:

BΨ(k1,k2,k3) =
∑
`

A` Re
[(

kL
kS

)∆`
]
P`(k̂S · k̂L)PΨ(kL)PΨ(kS) . (2.64)

We can see that ∆0 = 0, 1, 2 are reproduced as the local, folded and equilateral
type bispectrum in Eq. (2.56). In addition, ∆` = 3/2 + iν` are reproduced as the
bispectrum induced by the massive even spin-l particles.

For our forecast, we consider both cases with and without the dilution, i.e.
Re[∆s] = 3/2 and ∆s = 0, respectively. The tightest constraint on the angular-
dependent PNG parameters has been obtained from the CMB observation by Planck
satellite. The Planck result put the limit on A2 for ∆2 = 0 as σ(A2) ∼ 77 [58].
In Ref. [80], this analysis was extended to a more general angular dependence with

12The mode function of the scalar massive particles is given by adding the mass term to Eq. (2.33),
and the solution becomes δσ ∝ eπν0 (−τ)3/2 well after horizon exit [46, 47]. When the short-
wavelength mode crosses the horizon, the long-wavelength mode shifts the background. This leads
to dilution factor (kL/kS)3/2 [70].
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even numbers of s, including the PNG generated by higher spin particles. However,
the CMB constraint almost reaches the cosmic variance limit [81]. In Ref. [82], it
was argued that from the bispectrum of the galaxy number density, As can be con-
strained as σ(A2) ∼ 15 for ∆2 = 0 and σ(A4) ∼ 21 for ∆4 = 0. Ref. [83] discussed
the constraint on As for Re[∆s] = 3/2 by combining the galaxy power spectrum
and bispectrum. These analyses require the bispectrum information, which is more
complex than the power spectrum analysis, especially in galaxy surveys (e.g., the
decomposition of anisotropic signals in the galaxy bispectrum [68, 84, 85]), and the
angular dependent PNG signals are mixed up in the bispectrum. Here, one can find
an advantage to use galaxy shape [41, 43, 42], whose observation enables us to pick
up the imprints of particles with different spins separately.
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Chapter 3

Large scale structure formation

The current large-scale structure of the Universe is known from observations to have
a huge bubble structure formed by the distribution of galaxies. Such structures
do not be formed in a homogeneous universe. This implies that the seeds of the
fluctuation are needed in the early Universe, which is often explained by the inflation
theory we described in Sec. 2.2. The presence of such initial fluctuations causes
the inhomogeneous due to the gravitational evolution, as matter collects where the
density is slightly higher.

In this chapter, we summarize the evolution of density fluctuations in order to
understand the formation of such a structure. The initial density fluctuations are
expected to be sufficiently small in the early Universe, and the CMB observation also
shows the amplitude of the primordial curvature perturbation O(10−4). Then, we
can understand the evolution of the density fluctuation via the linearized Einstein
equation at the early Universe (Sec. 3.1). As the density fluctuation grows, the
contribution of non-linear effects appears, and this contribution cannot be expressed
in the linear theory. Here, we introduce the methods for describing nonlinear effects
based on perturbation theory, which is known as the standard perturbation theory
(Sec. 3.3) [86, 87], and based on the self-similar solution (Sec. 3.4) [88].

Furthermore, to compare the theory with the observational data, we need to focus
on the statistics of density fluctuations. Since the initial fluctuations are the origin of
quantum fluctuations in inflation theory, which is understood as stochastic, the theory
cannot uniquely predict the amplitude of the fluctuations at every position and can
only predict the expectation of the amplitudes of the fluctuations. Therefore, we
introduce the power spectrum as a correlation function in Fourier space (Sec. 3.2).
We also refered to Refs. [89, 90, 91].

3.1 Linear perturbation

First of all, let us start with the amount of perturbations added to the metric as

ds2 = a2(τ)
[
−(1 + 2Ψ)dτ2 + (1 + 2Φ)δijdxidxj

]
, (3.1)

where Φ is the curvature perturbation, and Ψ leads to the gravitational potential,
which is known as the conformal Newtonian gauge.
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We introduce the conformal Friedmann equations, defined as

H2 = 1
3M2

Pl
a2ρ− k + Λa2

3 , H′ = − 1
6M2

Pl
a2(ρ+ 3p) + Λa2

3 , (3.2)

where we denote the prime (′) as the derivative with respect to the conformal time
τ . From the discussion in Sec. 2.1, the scale factor in the matter dominant epoch
depends on a ∝ τ and the one in the radiation dominant epoch depends on a ∝ τ2.

From Eq. (2.8) in absence of the consmological constant Λ, the linearlized Einstein
equation is given by

a2G0
0 = −

[
3H2 (1− 2Ψ) + 6HΦ′ − 2∇2Φ

]
, (3.3)

a2G0
i = −2

(
HΨ− Φ′

)
,i , (3.4)

a2Gi0 = 2
(
HΨ− Φ′

),i
, (3.5)

a2Gij = −
[
(2H′ +H2)(1− 2Ψ) + 2(Φ′′ + 2HΦ′ −HΨ′)−∇2(Φ + Ψ)

]
δij

− (Ψ + Φ) ,i,j , (3.6)

with ∇2 ≡ ∂i∂i and X,i ≡ ∂iX .
For a simple case, the energy-momentum tensor considers the case of a perfect

fluid, where the anisotropic pressure is neglected. In this case, using the 4-momentum
uµ, the energy-momentum tensor becomes

Tµν = (ρ+ p)uµuν + pδµν . (3.7)

With the normalization condition gµνuµuν = −1, the 4-momentum in the perturbed
metric is given by

uµ = 1
a

(1−Ψ, vi) , uµ = a(1 + Ψ, vi), , (3.8)

with the velocity perturbation vi ≡ aui. Furthermore, we also divide the energy
density and the pressure into background and other quantities as follows:

ρ(x, τ) = ρ̄(τ) + δρ(x, τ) , p(x, τ) = p̄(τ) + δp(x, τ) , (3.9)

where X̄ denotes background values with respect to X. Then, the perturbed energy
momentum tensor becomes

T 0
0 = −ρ̄(1 + δ) , (3.10)

T 0
i = (ρ̄+ p̄)vi , (3.11)

T i0 = −(ρ̄+ p̄)vi , (3.12)

T ij = (p̄+ δp)δij . (3.13)

Here we defined the relative energy density perturbation δ as δρ/ρ̄.
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Finally, extracting only the perturbations from the Einstein equations with Eq. (3.2),
we get

3H(−Φ′ +HΨ) +∇2Φ = − 1
2M2

Pl
a2δρ , (3.14)

(−Φ′ +HΨ),i = 1
2M2

Pl
a2(ρ̄+ p̄)vi , (3.15)

(2H′ +H2)Ψ− Φ′′ +H(Ψ′ − 2Φ′) + 1
3∇

2(Ψ + Φ) = 1
2M2

Pl
a2δp , (3.16)

Φ + Ψ = 0 . (3.17)

The last equation derived from the non-diagonal component and means that there
exists no the non-anisotropic tensor. Using the Helmholtz theorem, the velocity vector
is decomposed into the divergence and rotation components as

vi = ∂iv + εijk∂jVk , (3.18)

where v is the scalor field and Vi is the veclor field. From Eqs. (3.14) and (3.15), we
find

∇2Ψ = 1
2M2

Pl
a2ρ̄∆ = 3

2H
2∆ , (3.19)

where ∆ ≡ δ + 3H(1 + w)v. This leads to the relativistic Poisson equation. The
scalar velocity perturbation depends on v ∝ (H/k)2 in Fourier space. Then, when
the length of the wavelength is smaller than the Hubble radius (k � H), the scalar ve-
locity perturbation becomes negligible and Eq. (3.19) recovers the (classical) Poisson
equation.

Due to thermodynamics, with the entropy S, since the pressure perturbation is
given by

δp =
(
∂p

∂ρ

)
S

δρ+
(
∂p

∂S

)
ρ
δS = c2

sδρ+ TδS , (3.20)

the adiabatic condition leads to δp = c2
sδρ. Under the adiabatic condition, the evolu-

tion of the gravitational potential, conbining Eqs. (3.14)-(3.17), is given by

Ψ′′ + 3(1 + c2
s)HΨ′ + 3(c2

s − w)Ψ− c2
s∇2Ψ = 0 , (3.21)

where w ≡ p̄/ρ̄. For the radiation dominant epoch, imposing w = c2
s = 1/3 and

H = 1/τ , we find the solution as

Ψ(k, τ) = C1
1
x
n1(x) + C2

1
x
j1(x) , (3.22)

where x ≡ kτ/
√

3, and n1, j1 are the first mode of the spherical Neumann function and
the spherical Bessel function, respectively. To avoid divergence on the superhorizon
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scale (x � 1), which leads to the non-physical effect, it is necessary that C1 = 0.
Consequencely, denoting the initial potential as Ψr, the behavior of the potential is
given by

Ψ ∝


Ψr (kτ ∼ k/H � 1)

− Ψr
(kτ)2 cos

(
kτ√

3

)
(kτ ∼ k/H � 1)

. (3.23)

This indicates that the gravitational potential of the wavelength of fluctuations larger
than the Hubble horizon is time-invariant, while once the potential enters the Hubble
horizon, it oscillates and decays at a−2. On the other hand, from Eq. (3.19), since
the density perturbation behaves ∆ ∝ (k/H)2Ψ, the density perturbation of the
wavelength of fluctuations larger than the Hubble radius grows with a2 while the one
smaller than the Hubble size has only oscillation.

In the matter dominant case (w = c2
s = 0), since Ψ is independent of the wave-

length k, we find that Ψ becomes constant for the growing mode. Then, regardless
of the size of the fluctuation, the density fluctuation grows with a.

The linear theory provides the evolution of the fluctuations as the differential
of each independent mode k. Then, the fluctuations at the target mode become
proportional to the initial fluctuations. As discussed above, the short mode can
be interpreted as entering the Hubble horizon earlier. Therefore, the amplitude of
the fluctuations depends on when the mode entered the Hubble horizon. Then, it
is convenient to describe the behavior of fluctuations with respect to the matter-
dominant epoch in which we live. Then, we introduce the transfer function as

T (k, τ) = D(τin)
D(τ)

∆(k, τ)
∆in(k) , (3.24)

where D(τ) is the linear growth factor as D ∝ a2 for the radiation dominant epoch
and D ∝ a for the matter dominant epoch (see also Sec. 3.3.) Here we denoted the
density fluctuation at the initial time τin as ∆in. For modes larger than Hubble size
(k < H), it is simply because the density fluctuation grows with the growth factors
∆(k, τ) ∝ D(τ), and this leads to T (k, τ) = 1.

In the radiation dominant epoch, since the density fluctuation does not grow in the
Hubble horizon, when the short-wavelength mode enters the horizon before the long-
wavelength mode, the amplitude at the short-wavelength mode becomes suppressed.
On the other hand, we found that the density fluctuation could grow regardless of the
wavelength in the matter dominant epoch. Thus, we find that the transfer function
is different before and after the matter-radiation equality epoch. This can be roughly
estimated as follows.

Since the wavenumber corresponding to the Hubble radius in the radiation dom-
inant epoch depends on k = H ∝ a−1, the scale factor at a given wavenumber can
be estimated as aH(k) ∝ k−1. At the matter-radiation epoch, the modes that have
already entered the Hubble horizon grow with a2 during the horizon out while stop
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growing when enter the horizon, namely

∆(k, τeq) ∝ (aH)2∆in(k) ∝ k−2∆in(k) . (3.25)

Since the fluctuations that enter after the matter-radiation equality epoch can grow,
there is no change in the transfer function. To summarize, the transfer function can
be expressed as

T (k) ∝
{

1 (k � keq)
k−2 (k � keq)

, (3.26)

where keq ≡ Heq ∼ 1.6 × 10−2[h/Mpc] . Since we found that the scalar velocity
perturbation on the subhorizon was negligble and ∆ = δ, the relation between the
density fluctuation and the initial gravitatinal potential in Fourier space is given by

δ(k, τ) =M(k, τ)Ψi(k), , (3.27)

withM, defined as

M(k, τ) = 2
3
k2T (k)D(τ)
H2

0 Ωm0
. (3.28)

Hereafter, we may replace τ with z.

3.2 Power spectrum

We brief the statistical treatment for the observation. Though the density fluctuation
is an observable quantity, we cannot directly determine the value of the fluctuations
at each point. However, we can predict the statistical property of the fluctuations.
Since the spatial average of the density fluctuation becomes zero by definition, the
fundamental statistical role is played by the Power spectrum, which corresponds to
the 2-point correlation on Fourier space.

The correlation of the density fluctuations on the Fourier space is given by

〈δ(k)δ(k′)〉 =
∫
d3xd3x′e−ik·xe−ik

′·x′〈δ(x)δ(x′)〉 . (3.29)

Here we drop the time-dependent since the density fluctuations are evaluated at the
same time. Based on the assumption that the Universe has the global isotropic and
homogeneous, there is no particular place or direction in space, which only depends
on the relative length. Thus, we introduce the correlation function as

ξ(|r|) ≡ 〈δ(x)δ(x+ r)〉 . (3.30)

This function depends on the only distance in real space and how well the density
fluctuations are correlated at a distance r.
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Inserting Eq. (3.30) into Eq. (3.29), we obtain the matter power spectum, defined
as

〈δ(k)δ(k′)〉 =
∫
d3xe−i(k+k′)·x

∫
d3re−ik

′·rξ(|r|)

= (2π)3δD(k + k′)(4π)
∫
r2drj0(kr)ξ(r)

≡ (2π)3δD(k + k′)Pm(k) , (3.31)

where j0(kr) is the 0th spherical Bessel function. In the second line, we used the
partial wave expansion for eik·r. The delta function implies the homogeneous, and
the non-directional vector means the isotropy in the (statistical) Universe. Note that
the power spectrum by the definition has the dimension of cubic of the length and
the dimensionless power spectrum can be defined as

∆2(k, τ) ≡ k3

2π2Pm(k, τ) . (3.32)

Similarly, we can also define the spectra for the higher points correlation. The
3-point function is defined as

〈δ(k1)δ(k2)δ(k3)〉 ≡ (2π)3δD(k1 + k2 + k3)Bm(k1,k2,k3) , (3.33)

where we introduced the bispectrum Bm. The bispectrum vanishes if δ is Gaussian,
which implies that the bispectrum becomes the lowest order correlator in order to
distinguish the non-Gaussian from the Gaussian perturbations. Imposing the homo-
geneous and isotropy, the bispectrum should be the global rotation invariant. Thus,
the bispectrum only depends on the length of wavevectors and is formed as the tri-
angle due to the momentum conservation from the delta function.

We can also define the 4-point function as

〈δ(k1)δ(k2)δ(k3)δ(k4)〉c ≡ (2π)3δD(k1 + k2 + k3 + k4)Tm(k1,k2,k3,k4) , (3.34)

where we introduced the trispectrum Tm. Here we denote the subscript 〈· · · 〉c as the
connected part. The connected part is given by

〈δ(k1)δ(k2)δ(k3)δ(k4)〉c = 〈δ(k1)δ(k2)δ(k3)δ(k4)〉

− (〈δ(k1)δ(k2)〉〈δ(k3)δ(k4)〉+ perms.) . (3.35)

The trispectrum also vanishes if δ is Gaussian and the 4-point correlation becomes
the order of the square of the matter power spectrum.

As discussed in Sec. 2.2.3, when there exist the primordial non-Gaussianities, using
the Poisson equation in the linear theory Eq. (3.27), the bispectrum and trispectrum
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can be related to the primordial spectra as

Bm(k1,k2,k3) =M(k1)M(k2)M(k3)BΨ(k1,k2,k3) , (3.36)

Tm(k1,k2,k3,k4) =M(k1)M(k2)M(k3)M(k4)TΨ(k1,k2,k3,k4) . (3.37)

3.3 Non-linear Perturbation

When the amplitudes of fluctuations are small enough (δ � 1), thier evolution can
be described by linear theory. As the fluctuations become growth, the non-linear
effects can no longer be ignored. However, from the perspective of perturbation the-
ory, we can investigate the quasi-nonlinear region analytically. Such analysis may be
necessary for the late Universe when structure formation is evolved due to the grav-
itational evolution. Here, since we are interested in the structure in the subhorizon,
we summarize the non-linear treatment to use the Newtonian approximation.

In the rest freme, by using the density ρ(r, t), velocity u(r, t), pressure p(r, t)
fields and the gravitational potential Ψres(r, t), the continutity, Eular and Poisson
equation in the rest frame are given by

∂tρ+∇r · (ρu) = 0 , (3.38)
d

dt
u = ∂tu+ (u · ∇r)u = −1

ρ
∇rp−∇rΨres , (3.39)

∇2
rΨres = 4πGρ− Λ , (3.40)

where ∇r denotes the spatial derivative with respect to the coordinate in the rest
frame. For ΛCDM, the Poisson equation is added the cosmological constant. The first
equation corresponds to the energy conservation and the second equation corresponds
to the equation of motion for fluid systems.

Considering the influence of cosmic expansion, we change the coordinates system
from the rest frame to the comoving frame. The relation between the comoving
coordiante x and the physical coordiate r is given by

r = a(t)x , (3.41)

and the velocity in comoving frame is defined as

v ≡ a∂tx . (3.42)

From Eqs. (3.41) and (3.42), the continutity and Eular equations in the comoving
system are converted as

ρ′ + 3Hρ+∇ · (ρv) = 0 , (3.43)

v′ +Hv + (v · ∇)v = −1
ρ
∇p−∇Ψ , (3.44)
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where the gravitatinal potential in the comoving system Ψ is defined as Ψ ≡ Ψres +
1
2H
′x2. Redefined in this way, the Poisson equation in comoving system becomes

∇2Ψ = 3
2H

2Ωm(τ)δ(x, τ) , (3.45)

with the density fluctuation δ(x, τ). This means that the homogeneous density does
not influence the gravitational potential of the comoving system. In other words, the
gravitational potential is given by the density contrast.

Averaging spatially over Eq. (3.43), we obtain

d

dτ
(a3ρ) = 0 . (3.46)

The density decays as a−3, and this is the same result as the energy conservation on
the Einstein de-Sitter (EdS) cosmology. The equations for the perturbed part in the
EdS cosmology, with the background component removed, are given by

δ′(x, τ) +∇ · [(1 + δ(x, τ))v(x, τ)] = 0 , (3.47)

v′(x, τ) + [v(x, τ) · ∇]v(x, τ) +Hv(x, τ) = −∇Ψ(x, τ) , (3.48)

where we used to ignore the pressure in the EdS cosmology. In general, vector
fields can be decomposed into rotation-free and divergence-free components by us-
ing Helmholtz’s theorem. We consider the divergence-free component of the velocity,
corresponding to the vorticity. Applying the curl operator to Eq. (3.48), the vorticity
∇× v in the linear order becomes

d

dτ
(a∇× v) = 0 . (3.49)

Since the evolution of the vorticity field decays as a−1, so after enough time, this
becomes negligible due to cosmic expansion.

Focusing on the principle part of the velocity, we introduce the longitudinal ve-
locity field as θ ≡ ∇ · v(x, τ). Eq. (3.48) to which applied the divergence operator
can be combined with the Poisson equation. In Fourier space, we can obtain

δ′(k) + θ(k) = −
∫
k1

∫
k2
δ̄D(k − k12)α(k1,k2)θ(k1)δ(k2) , (3.50)

θ′(k) +Hθ(k) + 3
2H

2Ωmδ(k) = −
∫
k1

∫
k2
δ̄D(k − k12)β(k1,k2)θ(k1)θ(k2) , (3.51)

with

α(k1,k2) = 1 + k1 · k2
k2

1
, β(k1,k2) = k2

12(k1 · k2)
2k2

1k
2
2

. (3.52)

Here we used k12···n = k1 + k2 + · · ·kn,
∫
ki

=
∫ d3ki

(2π)3 and δ̄D(k) = (2π)3δD(k) .
We use these notations from now on. Since the terms in the right-hand sides of
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Eqs. (3.50) and (3.51) have the couplings between the different modes, it is difficult
to lead the analytical solutions for δ , θ. However, in the context of perturbation
theory, the goal is to find an analytic solution by assuming that the linear component
is a sufficiently small quantity and expecting that it can be expanded by the power
of the linear component. Thus, the density fluctuation and the velocity divergence
are pertutbatively given by

δ(k) =
∞∑
n=1

δ(n)(k) , θ(k) =
∞∑
n=1

θ(n)(k) , (3.53)

where the superscript (n) means a term involving n powers of the linear component.
In the limit of long-wavelength (k → 0), the time evolution of the fields can be

applied to the linear theory. Thus, the quadratic terms in Eqs. (3.50) and (3.51) can
be neglected. The time evolution of the linear density contrast is given by

δ(1)′′(k) +Hδ(1)′(k)− 3
2H

2Ωmδ
(1)(k) = 0 . (3.54)

Since the terms corresponding to spatial derivatives disappear, the time evolution of
δ(1) is the same regardless of modes. This implies δ(1) can be separatable into time
and modes components as δ(1)(k, τ) = [D(τ)/D(τ̃)]δ(1)(k, τ̃), where τ̃ is a reference
time. Then, the time evolution can be expressed by

D(τ)′′ +HD(τ)′ − 3
2H

2ΩmD(τ) = 0 . (3.55)

The solutions are the growing mode D+ ∝ a and the decaying mode D− ∝ a−3/2

during matter domination. In general, the time evolution solutions of the density
contrast always have both the growing and decaying modes. However, since we are
interested in the growth of the structure, we only have to consider the growing mode.
From now on, we refer to the growing mode asD(τ), which is called the (linear) growth
factor. Moreover, since we set the time evolution of the density fluctuation as how
the density fluctuation changes with respect to the reference time, we need not decide
the normalized factor, and the linear growth factor D during matter domination can
be set as D(τ) = a(τ). Since the epoch around today (a ∼ 1) has a dark energy
contribution, the growth factor slightly deviates from the EdS cosmology, and the
exact growth factor is given by

D(τ) ∝ H
a

∫ a

0

da

H3 . (3.56)

From Eq. (3.50), the soution of the linear velocity divergence field θ(1) can be
given by

θ(1)(k) = −δ(1)′(k) = −fHδ(1)(k) , (3.57)

where f is defined as the logarithmic growth rate f ≡ d lnD/d ln a. This implies the
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divergence velocity is proportional to the density field. Straightforwardly, we can get
the time evolution of the logarithmic growth rate as

(Hf)′ = H2
(3

2Ωm − f + f2
)
. (3.58)

From the consequence of Eqs. (3.53) and (3.57), we assume an ansatz of the n-th
order solutions to Eq. (3.53) as

δ(n)(k, τ) =
∫
k1
· · ·
∫
kn
δ̄D(k − k1···n)Fn(k1, · · · ,kn, τ)δ(1)(k1, τ) · · · δ(1)(kn, τ) ,

(3.59)
θ(n)(k, τ)
Hf

= −
∫
k1
· · ·
∫
kn
δ̄D(k − k1···n)Gn(k1, · · · ,kn, τ)δ(1)(k1, τ) · · · δ(1)(kn, τ) ,

(3.60)

where Fn and Gn are the symmetrized (ki ↔ kj) density and velocity divergence
kernels. Inserting these expressions into Eqs. (3.50) and (3.51), these kernels can be
computed recursively while evaluating the order of the perturbations. (The recursion
relations can be found, for example, Refs. [92, 87].) From the momentum conserva-
tion, the kernel Fn becomes proportional to k2 as k = k12···n goes to zero but each
mode ki is non-zero [91].

The kernels for n = 1 correspond to the linear components, F1 = G1 = 1, obvi-
ously. The kernels for n = 2, 3 are explicitly expressed by

F2(k1,k2) = 5
7 + 2

7
(k1 · k2)2

k2
1k

2
2

+ k1 · k2
2k1k2

(
k1
k2

+ k2
k1

)
, (3.61)

G2(k1,k2) = 3
7 + 4

7
(k1 · k2)2

k2
1k

2
2

+ k1 · k2
2k1k2

(
k1
k2

+ k2
k1

)
, (3.62)

F3(k1,k2,k3) = 1
6

{7
9
k123 · k3
k2

3
F2(k1,k2)

+
[

7
9
k123 · k12

k2
12

+ 2
9
k2

123(k12 · k3)
k2

3k
2
12

]
G2(k1,k2) + (perms.)

}
,

(3.63)

G3(k1,k2,k3) = 1
6

{1
3
k123 · k3
k2

3
F2(k1,k2)

+
[

1
3
k123 · k12

k2
12

+ 2
3
k2

123(k12 · k3)
k2

3k
2
12

]
G2(k1,k2) + (perms.)

}
.

(3.64)

Strictly speaking, such an exact solution can be given only for EdS cosmology, but
it is known to be approximately valid for ΛCDM cosmology as well. (see for more
accurate calculation for ΛCDM cosmology, e.g., Ref. [93].)
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Based on the results so far, we discuss the density power spectrum. The density
power spectra corresponding to the orders n, n′ are defined as

〈δ(1)(k)δ(1)(k′)〉 ≡ δ̄D(k + k′)PL(k) , (3.65)

〈δ(n)(k)δ(n′)(k′)〉 ≡ δ̄D(k + k′)P (nn′)
m (k) for n = n′ 6= 1 . (3.66)

Let us derive the next-to-leading order (NLO) contribution (1-loop) to the matter
power spectrum. The auto-correlation of matter density with Eq. (3.53) is given by

〈δ(k)δ(k′)〉 = 〈δ(1)(k)δ(1)(k′)〉+ 2〈δ(1)(k)δ(2)(k′)〉

+ 2〈δ(1)(k)δ(3)(k′)〉+ 〈δ(2)(k)δ(2)(k′)〉+O(δ5) . (3.67)

We can calculate each of the correlations straightforwardly by using theWick theorem.
The NLO power spectrum is given by

PNLO
m (k) = 2P (12)(k) + P (22)

m (k) + 2P (13)
m (k) , (3.68)

P (12)
m (k) =

∫
p
F2(p,k − p)BL(−k,p,k − p) , (3.69)

P (22)
m (k) = 2

∫
p
[F2(p,k − p)]2PL(p)PL(|k − p|)

+
∫
p

∫
p′
F2(p,k − p)F2(p′,k − p′)TL(p,k − p,−p′,p′ − k) , (3.70)

P (13)
m (k) = 3PL(k)

∫
p
F3(p,−p,k)PL(p)

+
∫
p

∫
p′
F3(p,p′,k − p− p′)TL(−k,p,p′,k − p− p′) , (3.71)

where BL and TL are the bispectrum and the trispectrum from the 3-point / 4-
point functions among the linear density contrast, respectively. When the initial
density condition follows the Gaussian distribution, P (12)

m and the terms involving
the trispectrum TL vanish.

One can think of incorporating the contributions of higher-order loops to handle
non-linearity effects in principle accurately. This has been investigated using N-body
simulations, and according to [94], they showed that the non-linear matter power spec-
trum with the contributions up to three loops predicted worse than when one of the
contributions up to two loops at low redshifts if even low-k (Fig. 3.1). The loop con-
tributions perturbatively incorporate the contribution of the small scale fluctuations
(at high-k), which in turn affects the large scale (at low-k). Since the gravitational
evolution increases the small-scale fluctuations as the redshift gets smaller, this effect
becomes more apparent at low redshifts. Consequently, this implies that adding loop
contributions improves the agreement only up to a certain order for any redshift.
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Figure 3.1: This shows that the comparison at some redshifts z =
0.375, 1.75 of SPT up to one loop (black dashed lines), two loops (black
dot-dashed) and three loops (black diamonds) with N-body results
((red dots). The black line corresponds to the linear result. (adapted

from [94])

3.4 Loop contributions by self-similar solution

We summarize the qualitative discussion of the loop contributions by using self-similar
solution. In the EdS cosmology, the equation of motion has a scalling symmetry as
follows,

δ̃(x, τ) = δ(λxx, λττ) , (3.72)

ṽi(x, τ) = λτ
λx
vi(λxx, λττ) , (3.73)

Ψ̃(x, τ) =
(
λτ
λx

)2
Ψ(λxx, λττ) , (3.74)

where λx, λτ are arbitrary scalling factors. Inserting Eq. (3.74) into Eqs. (3.47), (3.48)
and (3.45), we can check the scaling solution follows the same equations of motion.
Though new solutions can be obtained by arbitrarily choosing scaling factors λx, λτ ,
not all solutions correspond to a realization of the same cosmology, and by choosing
the appropriate one, similar solutions can be obtained from the different realizations
with the same initial conditions.

Under the above scaling, the dimensionless matter power spectrum Eq. (3.32)
becomes

∆̄2(k, τ) = ∆2
(
k

λx
, λττ

)
. (3.75)

Assuming that all perturbations are Gaussian since the perturbation at each mode
grows independently, the time dependency of the scaled solutions is the same as
that of the solutions before scaling. After all, we only have to examine if the scaled
solutions follow the same power spectrum at initial time. If the initial dimensionless
matter power spectrum is written by ∆2

in ∝ τ4kn+3, which the growth factor in EdS
cosmology is D(τ) ∝ τ2, we find the scaled initial dimentionalless matter power
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spectrum is given by

∆̄in(k, τ) ∝ λ4
τ

λn+3
x

∆2
in(k, τ) . (3.76)

If we choise λ4
τ = λn+3

x , the rescaled solutions correspond to different realizations of
the same initial power spectrum and the power spectra of the rescaled solutions at
any time should be the one of the same as the unsclaed solution. Then we find that
the relation between the scaled power spectrum and the unscaled one becomes

∆2(k, τ) = ∆̄2(k, τ) = ∆2
(

k

λ4/(n+3) , λτ

)
. (3.77)

To be more practical, we introduce the non-linear scale kNL such as ∆L(kNL) = 1,
of which the time denpence is k3+n

NL ∝ τ−4. Then using the arbitrary function of the
self-similarity combination k/kNL, Eq. (3.77) can be rewritten as

∆2(k, τ) = ∆2(k/kNL) . (3.78)

This means that the power spectrum at the non-linear scale should be evaluated at
the only corresponding scale. Consequently, in the quasi-nonlinear region, by using
the contributions of the loop appears roughly as the loop times the linear power
spectrum, the dimensionless power spectrum can be evaluated as

∆2 = ∆2
L +

∑
l

∆2
l−loop , (3.79)

with

∆2
L =

(
k

kNL

)nL+3
, ∆2

l−loop ∝
(

k

kNL

)(l+1)(nL+3)
, (3.80)

where nL is defined as

nL ≡ d lnPL(k)/d ln k|k=kNL . (3.81)

Though we have discussed the case of the EdS cosmology and the simple power law
matter power spectrum, it is known that this result can be well approximated with the
present ΛCDM cosmology where the power of scale is explicitly given by nL = −1.7
at kNL = 0.25hMpc−1 (Fig. 3.2).
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Figure 3.2: This shows the dimensionless linear matter spectrum at
z = 0. The black dot line indicates that the amplitude of the spectrum
is unity. The red solid line is the line of fitting around which the am-
plitude of the spectrum is unity, corresponding to kNL = 0.25hMpc−1

and nL = −1.7. We set the Planck fiducial result Eq. (2.18) as the
cosmological parameters.
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Chapter 4

Galaxy Bias and scale dependent
bias

The distribution of galaxies and galaxy clusters, which is known as the Large Scale
Structure (LSS), provides the cosmological history because the observation of tracers
at cosmological distances leads to the search for deviations from homogeneous Uni-
verse. Such the structure can be expected to be formed by tracing the fluctuation
of the matter component of the Universe. However, we can only observe sources
emitting enough light to be observable, and we cannot directly observe anything else
(including dark matters). Therefore, we investigate the relationship between the lu-
minous tracer and matter, which is known as bias, to understand the observed picture
of the LSS and thus the evolution of the cosmological components.

As a simple case, for example, in a region where a sufficiently linear approximation
holds, we expect that the fluctuation of the number of the objects such as galaxies or
halos is given by

δn(x, τ) ≡ n(x, τ)− n̄(τ)
n̄(τ) = b(τ)δ(x, τ) , (4.1)

where n denotes the comoving number of objects per volume, n̄ means the comoving
spatial average of n and b is the bias parameter, which depends on the time and the
small scale physics. Though the spatial average of the 1-point functions is zero by
definition, the 2-point correlation provides the function with the square of the bias
parameter b2. Considering specific bias mechanisms such as peak bias or halo bias, we
can capture a physical picture of the bias mechanism. The peak bias is a simple picture
that the collapse objects are formed at the peak of linear density fluctuations above
threshold in spherically symmetric density fluctuations (see Fig. 4.1). In contrast, halo
bias is a mechanism based on the distribution of mass components at the initial time
based on Lagrangian pictures, not limited to spherical symmetry [95]. On the other
hand, the bias parameter can also be treated as a just coefficient without specifying
a unique bias mechanism in the analysis by expanding the perturbations.

In this chapter, according to Refs. [67, 68, 41, 96], we review the galaxy bias,
which is based on the galaxy shapes statistics without a specific bias mechanism.
Note that although we assume galaxy bias, this discussion is used in general tracers,
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Figure 4.1: We show the schematic picture of the peak bias. The
blue line shows the course-grained matter density field, and the orange
line indicates a matter density field. In the context of the peak bias,
the halos are formed at the peak above the threshold δth, which is the
critical density δc ' 1.69 for the spherical collapse. We can interpret
that the halos tend to be formed where the amplitude of the long-
wavelength mode is larger and the halo (or galaxy) is biased by the

long-wavelength perturbation.

including dark matter halos.

4.1 Bias expansion with primordial non-Gaussianity

Here we discuss the bias in accordance with the main interpretation of the effective
field theory (EFT), which is known as EFTofLSS. The EFTofLSS is one of the ana-
lytical frameworks to understand the LSS through the perturbative expansion of the
fluctuation and parameterizes by integrating out the contribution of short distance
non-linear physics at the long distances, such as the sound of speeds and viscosity and
so on. The details for these parameters require understanding all small-scale physics.
Therefore, the parameters themselves are determined from numerical simulations or
observations.

Let us consider the bias of the galaxy number density fluctuation. Using the non-
local functional N , the number density of the object at Eulerian position x and time
τ is given by

n(x, τ) = N [Ψi(y)](x, τ) , (4.2)

where Ψi denotes the primordial gravitational potential. This is the general relational
equation and includes all non-linear regions. However, the base function in the func-
tional can be simplified by using the equivalent principle, which states that only the
second derivatives of the metric become the local gravitational observable.From the
view of the equivalent principle, we can always transform to the free-falling frame
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along the fluid of the object. That is why we can remove any uniform and pure-
gradient potential perturbations.

Thus, the bias should be expanded with the tidal tensor Πij , defined as

Πij(x, τ) ≡ 2
3H2Ωm

∂i∂jΨ(x, τ) = Kij(x, τ) + 1
3δijδ(x, τ) , (4.3)

with the tidal field Kij , defined as

Kij(x, τ) ≡
[
∂i∂j
∇2 −

1
3δij

]
δ(x, τ) = Dijδ(x, τ) , (4.4)

which is a symmetric and traceless tensor. Consequencely, Eq. (4.2) becomes

n(x, τ) = N [Πij(x′fl(τ ′))](x, τ) , (4.5)

where x′fl(τ ′) is the position of the the fluid element at the time τ > τ ′ and at the
position x′ in the Eulerian coordinate. This still does not describe the fluid in local
gravitational terms and includes the non-local scale, which indicates that the position
argument in the functional N is not x but x′. The non-local scale is expected to be
about the object’s size, R∗. In the case of the dark matter halo, the scale of spatial
nonlocality corresponds to the Lagrangian radius, which defined as

R∗(M) ≡
( 3M

4πρ̄m0

)1/3
= 1.4h−1[Mpc]

(
M

1012h−1M�

)1/3 (Ωm0
0.31

)−1/3
. (4.6)

In fact, when we consider the number deinsity correlation, we use a scale larger
than the nonlocal scale. Therefore, spliting the perturbations into long- and short-
wavelengths relative to a smoothing scale Λ−1 > R∗, the long-wavelength in the
functional N becomes local in space and we obtain the cource-grained number denity
contrast as

nL(x, τ) = NL[ΠL ij(xfl(τ ′));Pm(kS|xfl(τ ′)), · · · ](x, τ) , (4.7)

where Pm(ks|xfl(τ ′)) is the local matter power spectrum of the small scale measured
at a given point along the fluid trajectory. And we defined the long-mode fluctuation
of a certain field X as

XL(x, τ) =
∫
dy WL(|x− y|)X(y, τ) , (4.8)

where WL(x) is the window function which vanishes for x > Λ−1 and the short-mode
fluctuation is given by XS = X −XL. Furthermore, from the convolution theorem,
the long-mode fluctuation in Fourier space becomes XL(k, τ) = WL(k)X(k, τ).

We have split the perturbations so that the overdensity contrast nL depends on
the short-mode perturbation through only on the local statistics since there is no
overlap between the long- and short-modes in Fourier space.
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For simplicity, let us first consider the case where the initial fluctuations follow the
Gaussian distribution. The initial Gaussian fluctuation leads to the long- and short-
modes of the gravitational fluctuations do not interact with each other at the initial
time and the local statistics of the short-mode depend on long-mode only through the
mode-coupling in the gravitational evolution later. Here we consider large scales that
the mode coupling due to gravitational evolution does not contribute significantly. In
this case, we can expect to expand the functional in Eq. (4.7) with the powers of the
long-mode fields and their derivatives, and the bias expansion up to the second order
fluctuation can be expressed by

δn,L(x, τ) = f0 + f ijΠ ΠL ij(x, τ) + f ijklΠ2 ΠL ij(x, τ)ΠL kl(x, τ) + · · · , (4.9)

where the coefficients fO depend on the short-mode statistics such as Pm(kS|xfl(τ ′)).
However, as mentioned above, under the assumption that the mode couplings due to
gravitational evolution are negligible and the initial fluctuation follows the Gaussian
distribution, we stress that there is no position dependence of the local short-mode
statistics in the fluid flow and the short-mode statistics do not contribute to the long-
mode. Thus, for the Gaussian initial condition, the coefficients fO are uncorrelated
with the long-mode fields and depend on only the cutoff-dependent parameters. By
imposing the homogenieity and isotropy, the coefficients fO can be written as

f0 = c0 (4.10)

f ijΠ = cδδ
ij (4.11)

f ijklΠ2 = cδ2δijδkl + 1
2cΠ2(δikδjl + δilδjk) , (4.12)

where the coefficents cO are the bare bias parameters. As a result, Eq. (4.9) can be
rewritten as

δn,L(x, τ) = c0 + cδδL(x, τ) + cδ2δ2
L(x, τ) + cK2(KL ij(x, τ))2 + · · · . (4.13)

We transformed several bare bias parameters as cδ2 → cδ2 + 1
3cΠ2 and cK2 = cΠ2 .

While the spatial average of the left-hand side of Eq. (4.22) becomes zero by defini-
tion, the spatial average of the right-hand side does not. Since the bare bias param-
eters depend only on the cutoff scale, we regard them as constant. Then, while the
coefficient c0 and the term including the spatial average of the density field become
zero, the products of fields evaluated at the same points such as δ2

L and K2
L are non-

zero and, in particular, their terms diverge when considering the galaxy correlation.
This divergence is a non-physical effect and therefore needs to be renormalized (see
Sec. 4.2).

Next, we consider the initial non-Gaussian condition case, from Eq. (2.64) in the
absence of the anisotropic stress, the short mode initial potential power spectrum at
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a given position of the long-mode fluctuation is modulated as

PΨ(kS|q) =
[
1 +

∫
kL

∑
`=even

A`

(
kL
kS

)∆
P`(k̂S · k̂L)φ(kL)eikL·q

]
Pφ(kS) , (4.14)

where q ≡ xfl(τ = 0). This modulation can be understood as follows. Following
Eq. (4.14), we split the initial gravitational potential as

Ψi(k) = Ψi,L(k) + Ψi,S(k) . (4.15)

For the initial non-Gaussian condition, using the separated Gaussian fields φL/S, we
can written as

Ψi(k) ' φL(k) +
∫
p
KNL(k − p,p)φS(p)φS(k − p)

+ φS(k) + 2
∫
p
KNL(k − p,p)φL(p)φS(k − p) , (4.16)

where the kernelKNL is given by the squeezed primordial bispectrum such as Eq. (2.64).
We abbreviated the square of the long-mode Gaussian fields since the second-order
becomes small enough to consider the perturbation in terms of the long-mode fields.
The first line corresponds to the long-mode statistics and the second line corresponds
to the short-mode statistics. While the term of φ2

S becomes the noise terms indepen-
dent of the long-mode, the term of φSφL encodes the dependence of the short-modes
on the long-mode fluctuation at intial time. As a result, we find that the short-mode
fluctuaion on the real space becomes

Ψi,S(q) ' φS(q) + 2
∫
kL

∫
kS
KNL(kL,kS)φL(kL)φS(kS)ei(kS+kL)·q , (4.17)

and the modulated local short-mode power spectrum leads to Eq. (4.14).
For ` = 0 in Eq. (4.14), this leads to the isotropic non-Gaussianity to the squeezed

limit and Eq. (4.14) becomes

PΨ(kS|q) =
[
1 +A0

(
k∗
kS

)∆
ϕ(q)

]
Pφ(kS) , (4.18)

where we defined the additional field as

ϕ(k) =
(
k

k∗

)∆
φL(k) . (4.19)

The scale k∗ is an arbitrary reference scale. This field ϕ parametrizes the dependence
of the initial short-scale statistics on the long-mode field. This means the coefficents
in Eq. (4.9) depends on the field ϕ, and specifically,

f0 = c0 + cϕϕ(q) (4.20)

f ijΠ = [cδ + cϕδϕ(q)]δij . (4.21)
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Figure 4.2: The schematic picture of the fluctuation with non-
gaussianity. Since in the Gaussian initial condition, the fluctuations
between the short-mode wavelength and the long-mode wavelength are
independent, no difference in amplitude by position occurs (orange
dashed-line). Since in the non-Gaussian initial condition, the fluctu-
ation of the short-mode wavelength is modulated due to the mode-
coupling, the fluctuation depends on the amplitude of the fluctuation

of the long-wavelength mode (green solid-line).

We note that the field ϕ is evaluated in Lagrangian space. Definiting ϕ̃(x, τ) ≡
ϕ(q(x, τ)) on the Eulerian space, the bias expansion with the isotropic non-gaussianity
becomes

δn,L(x) = c0 + cϕϕ̃(x) + cδδL(x) + cϕδϕ̃(x)δL(x) + cδ2δ2
L(x) + cK2(KL ij(x))2 + · · · .

(4.22)

We dropped the time-dependent, but this is evaluated at the same time τ .
Using the Zel’dovich approximation, which provides x(q, τ) = q−∇qΨ(q, τ), the

initial non-Gaussian field ϕ̃ can be expanded as

ϕ̃(x, τ) = ϕ(x) +∇ϕ(x) · ∇Ψ(x, τ) + · · · . (4.23)

The second terms in the right hand contains the single derivative of the gravita-
tional potential, which disappear by the equivalent principle. Then, the leading order
becomes ϕ̃(x, τ) = ϕ(x).

For ` = 2, we can consider the contribution of the anisotropic non-Gaussianity to
the squeezed limit with the same strategy of ` = 0 case. Eq. (4.14) becomes

PΨ(kS|q) =
[
1 +A2

(
k∗
kS

)∆
[k̂S,ik̂S,j −

1
3δij ]ϕ

ij(q)
]
Pφ(kS) , (4.24)

where we defined the additional tensor field as

ϕij(k) = 3
2[k̂ik̂j − 1

3δ
ij ]
(
k

k∗

)∆
φL(k) , (4.25)
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with the relation between the Legendre polynomial and the traceless tensor given by
Eq. (D.31). We denoted the unit vector of k as k̂.

Since this tensor field does not contribute to the scalar part, the contribution to
the bias expansion appears as

δn,L(x, τ) 3 ϕ̃ij(x, τ)KL ij(x, τ) , (4.26)

where ϕ̃ij(x, τ) ≡ ϕ(q(x, τ)). Since this leads to the effective second order statistics,
the contribution to the 2-point statistics on galaxy bias is negligble on the large scale
and this contributes significantly to the galaxy bispectrum [68].

In the same way, for ` > 2, the additional tensor field corresponds to ` appears.
However, since this contribution to the galaxy bias always appears the coupling to
the (higher-)derivative terms, the galaxy bias is not significantly affected.

4.2 Renomarization

By definition, the number density contrast is supposed to be zero in the spatial
average, and the bias expansion is expected to be zero as well. On the other hand, at
a non-linear scale, the bias expansion involves composite operators such as products
of fields evaluated at the same point. Since these operators generate a non-physical
divergence, it is natural to renormalize the basis for the expansion.

In the simplest case, the expectation value at same point 〈δ2〉 logarithmicly di-
vergences around large-k, since the matter power spectrum is proportional to k−3

on the k > keq. On the other hand, since we separate the fields by cutoff scale, the
expectation value of δ2 becomes σ2

Λ with dependent on the cutoff scale Λ. The cutoff
scale is determined by hand in the calculation process. On the other hand, since the
actual analysis does not depend on such a cutoff scale, it should be expanded on a
basis that does not depend on the cutoff. Then, we introduce the bias expansion in
terms of the new basis of the renormalized operators.

The expectation value of δ2 is given by the cutoff scale dependent variance 〈δ2〉 =
σ2

Λ, where is defined

σ2
Λ =

∫ Λ

0

dp

2π2 p
2PL(p) . (4.27)

Then, we find that the renormalized basis is given by removing this dependence

[δ2] ≡ δ2 − σ2
Λ , (4.28)

where [· · · ] means the renormalized operator. This is the lowest order result. Note
that the renormalized operator needs to be considered up to the contributions of
the loops when one expands the bias to the higher order. Significantly, the one-loop
contribution is sufficient for the galaxy bispectrum. We find that the expectation
value of K2 is straightforwardly given by 2σ2

Λ/3.
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Let us consider what happens to the bias parameters. For the simple discussion,
we consider the follwoing bias expansion as

δn(k) = cδδ(k) + 1
2cδ2δ2(k) + 1

6cδ3δ3(k) + ε(k) +O(δ4) , (4.29)

where ε(k) is the stochastic noise, which does not correlate the density fluctuation,
and we ignore the contribution from the tidal fields for simplicity. Moreover, we use
the matter density fluctuation up to the 3rd order, following Eq. (3.59). Then, we
obtain the galaxy auto-correlation as

〈δn(k)δn(k′)〉(2π)3δD(k + k′)Pg(k) , (4.30)

with the galaxy power spectrum Pg(k), which is 1

Pg(k) = N0 + [c2
δ + cδcδ3σ2

Λ + 68
21cδcδ2σ2

Λ]PL(k)

+ 2cδcδ2

∫
p
F2(p,k − p)PL(p)PL(|k − p|) + 1

2cδ2

∫
p
PL(p)PL(|k − p|) ,

(4.31)

where N0 is the noise term derived from the auto-correlation of the stochastic term.
This expression has the variance depending on the cutoff scale. However, on the large
scale, we expect that the linear bias parameter becomes a constant value regardless
of the cutoff scale. When we introduce the renormalize operators such as

cδδ → bδ[δ] ≡ bδδ , (4.32)

cδ2δ2 → bδ2 [δ2] = bδ2

{
δ2 − σ2

Λ

(
1 + 68

21

)}
, (4.33)

cδ3δ3 → bδ3 [δ3] = bδ3(δ3 − 3σ2
Λδ) , (4.34)

the bias expansion with the renormalized operators does not depend on the arbitrary
cutoff scale. Note that the last term in Eq. (4.31) is non-zero at k → 0 and is
k-independent on the large scale [97]. This term looks like the shot-noise term.

In the presence of PNGs, we should consider the contribution from ϕ̃. By using
Eq. (2.64), this contribution appears through the linear matter bispectrum as

〈[δ2](k)δ(k′)〉 = (2π)3δD(k + k′)
∫
p
B(p,k − p,k′) (4.35)

→ (2π)3δD(k + k′)A0σ̃
2
ΛPmϕ̃(k) , (4.36)

where we used k � p due to the squeezed bispectrum. Here we defined

Pmϕ̃(k) ≡
(
k

k∗

)∆
M−1(k)PL(k) , σ̃2

Λ ≡
∫ Λ

0

dp

2π2 p
2
(
k∗
p

)
PL(p) . (4.37)

1We use 〈δ2(k)δ(k)〉 = 2〈(δ(1)δ(2))(k)δ(1)(k′)〉
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Since the renormalized operators [δ2], [K2
ij ] are modulated by the non-Gaussian con-

tribution up to the leading order,

[δ2] = δ2 − σ2
Λ −A0σ̃

2
Λϕ̃ , (4.38)

[K2
ij ] = K2

ij −
2
3σ

2
Λ −

2
3A0σ̃

2
Λϕ̃ , (4.39)

the bias expansion in terms of the renormalized operators is given by

δn = bδδ + bϕ̃A0ϕ̃+ bδ2 [δ2] + bK2 [K2
ij ] + · · · , (4.40)

where bX means the renormalized bias parameter with respect to X. While the
bare bias parameters depend on the arbitrary cutoff scale, the renormalized bias
parameters have the physical meanings such as bδ = ∂ lnn/∂ ln ρ, which means the
response of the galaxy density to a change in the matter density, bϕ̃ = ∂ lnn/∂A0,
which means the response of the galaxy density to a change in the amplitude of the
primoridal power spectrum [98, 23].

4.3 Galaxy statistics with primordial non-Gaussianity

We examine the galaxy statistics by using the power spectrum, especially focusing
on the non-Gaussian contribution. As you can see from the bias expansion, since the
one-point correlation, which is the spatial average of the galaxy density, is expected
to be zero in leading order, the two-point correlation is the lowest order on the galaxy
statistics.

We consider the cross-correlation at the same time between the galaxy density
and the matter, which can reveal the bias parameters if we know the matter density
fluctuation completely, such as N -body simulation. From Eq. (4.40), we get

〈δ(k)δn(k′)〉 ≡ (2π)3δD(k + k′)Pgm(k)

= bδ〈δ(k)δ(k′)〉+ bϕ̃〈δ(k)ϕ̃(k′)〉

= (2π)3δD(k + k′)
[
bδ + bϕ̃A0

(
k

k∗

)∆
M−1(k)

]
Pm(k) , (4.41)

where we used the Possion equation δ(k, τ) = M(k, τ)ϕ̃(k) of Eq. (3.28). On the
large scale limit, while the cross-correlation Pgm for the Gaussian initial condition
has only the constant bias bδ, the one for the non-Gaussian initial condition has the
scale-dependent contribution, derived from M−1 ∝ k−2. When ∆ < 22, this scale-
dependency is important for the search of the primordial non-Gaussianities. For

2When ∆ = 2 (e.g., equilateral non-Gaussianity Eq. (2.56)), on the large scale, the bias from
the non-Gaussian contribution behaves the same as the linear bias. One might think that the non-
Gaussian contribution can be distinguished in principle, since the transfer function changes on smaller
scales k > keq, which leads us to M ∝ const. However, on small scales, the linear analysis is not
valid, and we should care of the degeneracy of the contribution of higher derivative terms such as
∇2δ.
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example, for local type non-Gaussianity, which corresponds to ∆ = 0, we can prove
the behavior of the primordial non-Gaussianity on the large scale where is valid for the
linear analysis. This is called the scale-dependent bias and confirmed by usingN -body
simulation firstly [22]. For actual observation, though the galaxy auto-correlation
might be helpful, we must not forget that there is a shot-noise contribution.
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Chapter 5

Galaxy Shapes as Cosmological
Tracers

As mentioned in Chapter. 4, the distribution of galaxy and galaxy clusters obeys
a biased tracer of the matter density distribution. Similar to this, the shape of
the virialized galaxy or halo might become a biased tracer of the surrounding tidal
fields, and these shapes correlate with the tidal fields, which is known as the intrinsic
alignment (see Sec. 5.2 in more detail). All the contributions to the galaxy shapes
Ĩi1···in with moment decomposition, which we will describe in next section, can be
constructed as

Shape observable Ĩi1···in


(I) Intrinsic shape Ĩ int

i1···in


(A) Linear alignment
(B) Non-linear alignment
(C) Noise

(II) Weak lensing shear ĨWL
i1···in

.

While the intrinsic shape (I) can be directly measured when the observer is close to
the galaxy, the weak lensing distortion (II) contributes the measurement of the distant
galaxy as the projection effect since the path of the photon emitted by the galaxy
is curved through the foreground inhomogeneous matter distribution. Furthermore,
the intrinsic shape is divided into the linear alignment (A), which behaves as a biased
tracer of the external tidal field at an individual galaxy, and the non-linear alignment
(B), which becomes the higher-order correction to the linear alignment. Since galaxy
shapes are non-spherical, even if we do not consider the environmental effects such as
the intrinsic alignments, the statistical shape of the galaxy has the noise contribution.

First, we define the shape of the galaxy and observables. Next, we discuss these
contributions, which appear regardless of the primordial non-Gaussianities. Finally,
we estimate the contribution of the primordial non-Gaussianities, including the fore-
cast for the future imaging survey. In this chapter, we mainly discuss the response
of galaxy to the angular-dependent primordial non-Gaussianities with global isotropy
given by Eq. (2.64) [41, 43, 44]. In other cases where angular-dependent primordial
non-Gaussianity appears, if the vector field sources the primordial curvature pertur-
bation, the primordial bispectrum depends on the direction of the vector field, which
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breaks the global isotropy (e.g., Ref. [99].) In this case, we investigated how the dif-
ference between the global symmetry case and the global symmetry case affects the
galaxy shape [43]. This is summarized in App. B.

Unless otherwise noted, we use the FLRW metric and choose the conformal New-
tonian Gauge to the perturbed FLRW metric, which is expressed as

ds2 = a2(τ)
[
−(1 + 2Ψ)dτ2 + (1 + 2Φ)δijdxidxj

]
, (5.1)

where Φ,Ψ correspond to the curvature perturbation and the gravitational potential,
respectively. In addition, we assume the absence of the anisotropic stress tensor,
which leads to Ψ = −Φ. Since we set the background spatial curvature to flat, the
raising and lowering of the indices are performed with a Kronecker delta.

5.1 Definition of galaxy shapes

In order to discuss the relation between the shape observables and the theoritical
physics later, first, we define the 3D shape function for a galaxy which is located at
(τ,x) and has the size of the radius R∗ as

gi1i2···in(x, τ) ≡ 1
B̄(x, τ)Rn∗

∫
y≤R∗

d3y yi1yi2 · · · yinB(x+ y, τ) , (5.2)

where x and y denote the 3D spatial coordinates for the centroid of the galaxy and
those measured from the 3D centroid of light emission from the galaxy, respectively.
The indices in run from 1 to 3. We have introduced the weight by using the bright-
ness of the emission, B(x, τ). As is clear from the definition, gi1i2···in is the rank-n
symmetric tensor in 3D. B̄(x, τ) is the total brightness of the galaxy, defined as
B̄(x, τ) =

∫
d3yB(x + y, τ). The centroid is defined so that gi(x, τ) vanishes. As

is obvious from Eq. (5.2), when one sets no indices, i.e., n = 0, it means the num-
ber count of galaxy, i.e., one object. Therefore, we turn out that this definition is
generalized.

As mentioned above, the deformation of galaxy shape is construced by the two
different origins such as

gi1i2···in(x, τ) = gint
i1i2···in(x, τ) + gWL

i1i2···in(x, τ) . (5.3)

The first term is the intrinsic galaxy shape deformation (I) and the second term is
the deformation due to the weak lensing (II).1 On the large scale, the intrinsic shape
deformation may respond to the large-scale tidal field.

In galaxy imaging surveys, we can only observe the galaxy shapes projected onto
the 2D sky which is orthogonal to the line of sight n̂. This is why we need to convert
the 3D shape observable to the 2D one on the sky. Operating with the projection

1Since the latter is the effect on appearance due to the gravitational field between galaxies and
us, there are always only the components orthogonal to the line of sight.
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tensor, defined as

Pij ≡ δij − n̂in̂j , (5.4)

with n̂i being the unit vector along the line of sight, we obtain the galaxy shape on
the projected plane as

Ii1i2···in(x, τ) = P j1
i1
P j2
i2
· · · P jn

in
gj1j2···jn(x, τ) . (5.5)

Over the area of an individual galaxy, which subtends a very small angle on the sky, we
can approximate the line of sight n̂ as constant so that the sky can be approximated
as a 2D plane with coordinates θ, where we choose the origin to correspond to the
centroid of the galaxy image.

The surface brightness can be obtained by integrating the emission along the line
of sight,

I(θ̄ + θ, τ) =
∫
dy‖B(x+ y, τ) , (5.6)

with y‖ ≡ y · n̂ and θ̄i, θi are defined as

θ̄i ≡
1
χ
P j
i xj θi ≡

1
χ
P j
i yj , (5.7)

which we used the comoving distance to the source χ. We ignore any absorption
or other radiative transfer effects. However, our results below are based solely on
symmetry considerations, so they continue to hold even in the presence of a more
complicated local mapping from emissivity to surface brightness. Here, the depen-
dence on x ·n̂ was identified with τ dependence. We then obtain the projected galaxy
moment as

Ii1i2···in(θ̄, τ) = 1
Ī(θ̄, τ)

(
χ

R∗

)n ∫
d2θ θi1 · · · θinI(θ̄ + θ, τ) , (5.8)

which is normalized by the total intensity Ī,

Ī(θ̄, τ) ≡
∫
d2θ I(θ̄ + θ, τ) = 1

χ2

∫
d3yB(x+ y, τ) . (5.9)

Since gi vanishes, so do Ii, satisfying Ii(θ̄, τ) = 0.
Next, we decompose Ii1···in into the spin±n components in order to clarify the

relation among physical quantities. Here, we generalize the approach of [100]. Related
to our formalism, the approach to higher-order moments for gravitational lensing has
been presented in Refs. [101, 102]. To clarify the below discussions, we explicitly set
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the coordinate of the line of sight as

n̂ =


sin ι cosψ
sin ι sinψ

cos ι

 , (5.10)

and the coordinates perpendicular to the line of sight in the right-hand system are
given by

eι = ∂n̂

∂ι
=


cos ι cosψ
cos ι sinψ
− sin ι

 , eψ = 1
sin ι

∂n̂

∂ψ
=


− sinψ
cosψ

0

 . (5.11)

Using these orthonormal basis, (n̂, eι, eψ), we introduce the spin±1 unit basis vectors
as

m± ≡
1√
2

(eι ∓ ieψ) = 1√
2


cos ι cosψ ± i sinψ
cos ι sinψ ∓ i cosψ

− sin ι

 , (5.12)

which satisfy

mi
±m± i = 0 , mi

±m∓ i = 1 , mi
±n̂i = 0. (5.13)

The projected nth moment tensor Ii1i2···in can be expanded by a product of m±i as

m±i1m±i2 · · ·m±in , (m±i1m∓i2 · · ·m∓in + (perms)), · · · . (5.14)

Apart from the first terms, m±i1m±i2 · · ·m±in , all other terms, which contain both
m+ and m−, have trace part contributions, as one can confirm by using Eq. (5.13).
Therefore, the traceless components of Ii1i2···in , Ĩi1i2···in , which satisfy, for any p, q ∈
[1, n],

Ĩi1···ip···iq ···in = Ĩi1···iq ···ip···in (symmetric condition by definition),
(5.15)

P ipiq Ĩi1···ip···iq ···in = δipiq Ĩi1···ip···iq ···in = 0 (traceless condition) ,
(5.16)

can be expanded by the first terms of Eq. (5.14) as

Ĩi1i2···in = nγ m+i1m+i2 · · ·m+in + −nγ m−i1m−i2 · · ·m−in , (5.17)

where the coefficients ±nγ are given by

±nγ ≡ mi1
∓m

i2
∓ · · ·min

∓ Ĩi1i2···in = mi1
∓m

i2
∓ · · ·min

∓ Ii1i2···in . (5.18)
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In the second equality, we inserted the trace part of Ii1i2···in , which does not contribute
to ±nγ, satisfying mi

±m
j
±δij = mi

±m
j
±Pij = 0. Namely, even if we make Ĩi1i2······in

operated by the traceless projection tensor in Eq. (5.5), instead of the projection
tensor, the spin decomposition yields the same coefficients ±nγ. Since m± transform
as spin±1 vectors under a rotation by an angle β, i.e. m± → e±iβm±, the n products
of m± transform as spin±n basis tensors, m± · · ·m± → e±inβm± · · ·m±, being
invariant under the rotation by an angle β = 2πN/n where N is an integer.

Expanding Eq. (5.18) with Ii1···in , we can express the coefficents ±nγ as

±nγ = 1
2n2

 [n2 ]∑
l=0

(−1)l
(
n

2l

)
Iιι · · ·ψψψψ︸ ︷︷ ︸

(n−2l,2l)

± i
[n−1

2 ]∑
l=0

(−1)l
(

n

2l + 1

)
Iιιι · · ·ψψψ︸ ︷︷ ︸
(n−2l−1,2l+1)

 , (5.19)

where [·] denotes the floor function and (m,n) means the numbers of the indices ι
and ψ, respectively. And we introduced

Ia1···an(x, τ) = ei1a1 · · · e
in
anIi1···in(x, τ) , (5.20)

where the indices an are the 2D coordinates on the projected plane and the indices
in are the 3D spatial coordinates. The binomial factors are given by(

n

k

)
≡ n!
k!(n− k)! . (5.21)

Furthermore, as the same of the 3D coordinates case, using the traceless components
of Ia1···an , Ĩa1···an , which satisfy for the any p, q ∈ [1, n],

Ĩa1···ap···aq ···an = Ĩa1···aq ···ap···an (symmetric condition by definition) , (5.22)

δapaq Ĩa1···ap···aq ···an = 0 (traceless condition) , (5.23)

the coefficents ±nγ can be given by a more compact expression as

±nγ = 2
n
2−1

Ĩιι · · · ιι︸ ︷︷ ︸
(n,0)

± iĨιι · · · ιψ︸ ︷︷ ︸
(n−1,1)

 . (5.24)

We explain the derivation of Eq. (5.24) in Appendix. D.3. This resulting expression
indicates that the coefficients ±nγ are characterized in terms of the only two inde-
pendent components of Ĩa1···an . The thing that Ĩa1···an has the only two independent
components can be easily checked by using the symmetric and traceless conditions
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and the relations among each component are given by

Ĩιιι · · · ιψψ · · ·ψ︸ ︷︷ ︸
(n−2k,2k)

= (−1)kĨιιι · · · ιιι︸ ︷︷ ︸
(n,0)

(k = 0, 1, · · · , [n2 ]) , (5.25)

Ĩ ιιι · · · ιψψ · · ·ψ︸ ︷︷ ︸
(n−(2k+1),2k+1)

= (−1)kĨιιι · · · ιιψ︸ ︷︷ ︸
(n−1,1)

(k = 0, 1, · · · , [n− 1
2 ]) . (5.26)

Next, let us visualize the spin decomposition in order to get the picture intuitively.
For this purpose, using the 2D polar coordinates (r, φ) with which θι ≡ eι

iθi and
θψ ≡ eψiθi are given by

θι = r cosφ , θψ = r sinφ , (5.27)

we express the surface brightness I(θa) in the Fourier series expansion as

I(θa) = c0(r)
2 +

∞∑
n=1

[cn(r) cos(nφ) + sn(r) sin(nφ)] , (5.28)

with

cn(r) ≡ 1
π

∫ π

−π
dφI(θa) cos(nφ) , sn(r) ≡ 1

π

∫ π

−π
dφI(θa) sin(nφ) . (5.29)

In practice, though the surface brightness I(θa) depends on the conformal time τ , we
abbreviate it here as it is irrelevant to this discussion. The coefficient c0 means the
amplitude of the circular distribution in the surface brightness and the coefficients
satisfying for n ≥ 1 correspond to the deviations from the circular shape. However,
the coefficients c1, s1 ensure zero since we set the centroid as the center of coordinates,
satisfying Ia(θ̄) = 0.

Finally, examining the relation between the coefficients cn, sn in the Fourier space
and Ĩa1···an , we can get the intuitive picture of the spin decompositions. As a simple
case, we consider the n = 2 case, which corresponds to the usual cosmic shear.
Inserting Eq. (5.28) into Ĩa1a2 = Ia1a2 − δa1a2Ibb/2, we obtain

Ĩa1a2 = 1
2C0

(
C2 S2

S2 −C2

)
, (5.30)

where we have introduced

Cn ≡ π
∫
drrn+1cn(r) , Sn ≡ π

∫
drrn+1sn(r) . (5.31)

If we set γ+ = C2/2C0 and γ× = S2/2C0, we find to reproduce the shear field, e.g., in
Ref. [103].
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Extending this discussion to n ≥ 3, we obtain

Ĩιι···ιι = Cn
2n−1C0

, Ĩιι···ιψ = Sn
2n−1C0

, (5.32)

where we can avoid a messy computation by virtue of the formulae (the derivation
can be found in App. D.1.1)

rn cos(nφ) = 2n−1 [θa1θa2 · · · θan ]TL2
∣∣
a1=···=an=ι , (5.33)

rn sin(nφ) = 2n−1 [θa1θa2 · · · θan ]TL2
∣∣
a1=···=an−1=ι,an=ψ , (5.34)

where TLd denotes the d-dimentional traceless (see App. D.1.2 for the explicit ex-
pression). Thus, we find that the spin-n components of the galaxy shape function
are directly related to a deviation from the circular symmetric distribution which is
proportional to cos(nφ) or sin(nφ). As it should be, these terms remain invariant
under the rotation by an angle ∆φ = 2πN/n where N is an integer. Figure. 5.1
shows the deviation of I(θ) from the circular symmetric distribution, described by
cn(r) and sn(r) for n ≥ 2.

By analogy with the eliptical shape (n = 2) from Figure. 5.1 (see also Ref. [104]
for the CMB polarization), in order to clarify the meaning about the coefficents Ĩιι···ιι
and Ĩιι···ιψ, we can express γ(n)

+ , γ
(n)
× correponding to the distorted strength of the

n-th moment of the galaxy shape, respectively. Thus, Eq. (5.24) can also be written
as

±nγ = 2
n
2−1

(
γ

(n)
+ ± iγ(n)

×

)
. (5.35)

Under the rotation of coordianate axis by α, this is transformed as ±nγ → ±nγe
±inα.

5.1.1 Angular power spectrum

In the case of CMB, the distance from the observer is not so necessary because the
time of emission is roughly fixed (z ' 1100). However, in the LSS, since galaxies
and clusters of galaxies exist in every redshift, the distance from the observer is an
important issue in their statistical analysis.

Of course, we can extract the distance information (or spec-z) from a sample
of galaxies by using spectroscopic surveys. However, this needs to be done in each
galaxy, which is quite costly and time-consuming. There is a method to obtain the
redshift distribution of large samples by examining the relationship between some
spectroscopic samples and the brightnesses of colors of each source and examining
the approximate distribution (or photo-z). It becomes equivalent to the galaxies’
distribution on the sky weighted by the distribution along line-of-sight.

Here, assuming photo-z imaging surveys and that the shape fields can be written
as the linear order of the matter density field δ(k, τ), we will provide a general ex-
pression for the shape moment of galaxy shape. On these assumption, we can write
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Figure 5.1: Contours of constant intensity I(θ), illustrating the
distortions of galaxy images from a circularly symmetric distribu-
tion I(θ) = I(|θ|) corresponding to the different moments; specif-
ically, we show nonzero C̄n ≡ Cn/(2n−1C0) (the upper row) and
S̄n ≡ Sn/(2n−1C0) (the lower row) with n = 2, 3, 4, 5, related to
the moments via Eq. (5.32). The blue lines correspond to positive
values and the red lines correspond to negative values. The dotted
lines denote the unit circle. In Refs. [105, 106], the n = 3 component
generated by the weak lensing is called “flexion.” Ref. [101] refers to a
very similar decomposition as “Fourier decomposition” of the image.

down to the relation between Ĩi1···in and the matter density field via

Ĩi1···in(n̂) =
[
Pi1 j1 · · · Pin jn

]TL3
in
∫
k

∫
dz
dN

dz

D(z)
D(0)F

(n)(k, µ, z)k̂j1 · · · k̂jnδm0(k)eixµ ,

(5.36)

where z is the redshift, dN/dz is the redshift distribution function of sources, D(z)
is the growth factor defined at Eq. (3.56), δm0(k) is the matter density fluctuation at
present, which related to be δ(k, z) = [D(z)/D(0)]δm0(k), and µ = k̂ · n̂, x = kχ(z).
The physical effects to the matter density fields are encoded in the kernel F (n)(k, µ, z) .

Inserting Eq. (5.36) into Eq. (5.18) and acting the spin-lowering operator ð̄, defined
as [100, 107]

ð̄ +nf(n̂) ≡ (1− µ2)
1−n

2

[
∂µ + i

1− µ2∂ψ

] [
(1− µ2)

n
2 +nf(n̂)

]
, (5.37)

on +nγ, we obtain a scalar quantities γ(n) as

γ(n)(n̂) = ð̄n+nγ(n̂) =
∫
k

∫
dz
dN

dz

D(z)
D(0)δm0(k)in ð̄n

[
F (n)(k, µ, z)

(
k̂+
)n
eixµ

]
,

(5.38)
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with k̂± ≡ mi
∓k̂i

2.
In the 3-dimensional space, the power spectrum is obtained as the correlation

corresponding to the wavelength of the fluctuation by using the Fourier transform.
However, since we consider the correlation on the sky, it is convenient to have the
similar quantity as the wavelength of the fluctuation in the 3-dimentional space.
Thus, we often use the angular power spectrum based on (spin-n weighted) spherical
harmonics functions, defined as

nYlm(n̂) =
√

(l − |n|)!
(l + |n|)!

{
ðnYlm(n̂) (n ≥ 0)
(−1)nð̄|n|Ylm(n̂) (n < 0)

, (5.39)

where Ylm(n̂) is the spherical harmonics function and the conjucate of nYlm(n̂) yields
nY
∗
lm = (−1)n+m

−nYl−m.
Let us expand γ(n) with the spin-n weighted sperical harmonics function as

±nγ(n̂) =
∞∑
l=0

l∑
m=−l

a
(n)
lm ±nYlm(n̂) , (5.40)

and the scalar quantity γ(n) from Eq. (5.18) is given by

γ(n)(n̂) =
∞∑
l=0

l∑
m=−l

a
(n)
lm ð̄n+nYlm(n̂) =

∞∑
l=n

l∑
m=−l

a
(n)
lm

√
(l + n)!
(l − n)! (−1)nYlm(n̂) , (5.41)

and we used the following relation

ðnð̄nYlm = ð̄nðnYlm = (−1)n (l + n)!
(l − n)!Ylm . (5.42)

Using the orthogonality of spherical harmonic functions, we obtain the relation be-
tween the coefficients and Eq. (5.18) as

a
(n)
lm =

√
(l − |n|)!
(l + |n|)! (−i)

n
∫
k

∫
dz
dN

dz

D(z)
D(0)δm0(k)

∫
dΩn̂Y ∗lm(n̂) ð̄n

[
F (n)(k, µ, z)

(
k̂+
)n
eixµ

]
,

(5.43)

where dΩn̂ denotes solid angle element.
We define the correlation of the coefficients Eq. (5.43) as

〈a(n)
lm a

∗(n′)
l′m′ 〉 ≡ C

(n, n′)
l δll′δmm′ , (5.44)

where C(n, n′)
l is the angular power spectrum between spin-n and n′ quantities. Here

since we used that the matter density fluctuation followed the global rotation sym-
metry and isotropy such as Eq. (3.31), the off-diagonal correlations disappeared.

2Applying the spin-raising operator ðn to −nγ, we can obtain the same quantity γ(n).
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Following Refs. [108, 109, 100], we can define the E-/B- mode of the spin-n
components as

a
E(n)
lm ≡

a
(n)
lm + a

∗(n)
l−m(−1)m

2 , a
B(n)
lm ≡

a
(n)
lm − a

∗(n)
l−m(−1)m

2i . (5.45)

The E-/B-mode distortions transform under the parity transformation (n̂→ −n̂) as

a
E(n)
lm → (−1)laE(n)

l m , a
B(n)
lm → −(−1)laB(n)

l m . (5.46)

The auto-correlation 〈aXlma∗Xl′m′〉 with X = (E,B) transforms as parity-even for l+l′ =
2N and parity-odd for l+ l′ = 2N + 1, where N is an integer. Meanwhile, the cross-
correlation 〈aElma∗Bl′m′〉 transforms as parity-even for l+ l′ = 2N + 1 and parity-odd for
l + l′ = 2N .

Since we do not use a(n)
lm alone, but consider correlations such as Eq. (5.44), we

finally use the matter density field δm as the global rotational symmetric matter
power spectrum Pm(k). This means that the contribution from each k to a(n)

lm does
not depend on the angular direction of k. Thus, we can compute the angular integral
in a(n)

lm , choosing k = (0, 0, k) as∫
dΩn̂Y ∗lm(n̂) ð̄n

[(
k̂+
)n
F (n)(k, µ, z)eixµ

]
=
∫
dΩn̂Y ∗lm(n̂) ∂

n

∂µn

[(
1− µ2
√

2

)n
F (n)(k, µ, z)eixµ

]
. (5.47)

Here we used that a spin-n function +nf with n > 0 which only depends on the polar
angle µ satisfies (see. App. C.2)

ð̄ssf = ∂s

∂µs

[
(1− µ2)s/2sf

]
. (5.48)

Furthermore, we can rewrite the angular integral as follows:

∂n

∂µn
[(1− µ2)nF (n)(k, µ, z)eixµ] = ∂n

∂µn
[(1 + ∂2

x)nF (n)(k,−i∂x, z)eixµ]

= in(1 + ∂2
x)nF (n)(k,−i∂x, z)[xneixµ] , (5.49)

Here we replaced the argument µ in the kernel F (n) with −i∂x, which means the
derivative operators on all x-dependent terms. If there is no dependency of pole µ
(or −i∂x) in the kernel F (n), by using the partial wave expantion, which is given by

eixµ = 4π
∞∑
l=0

l∑
m=−l

iljl(x)Ylm(n̂)Y ∗lm(k̂) , (5.50)
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and the following relation

(1 + ∂2
x)s[xsjl(x)] = (l + s)!

(l − s)!
jl(x)
xs

(s ≥ 0 , s ∈ Z), (5.51)

whose derivation is summarized in App. D.2, Eq. (5.49) becomes simpler formula as

a
(n)
lm ∼

√
2
π

√
(l + |n|)!
(l − |n|)!

∫
dkk2

∫
dz
dN

dz

D(z)
D(0)δm0(k)F (n)(k, z)jl(x)

xs
, (5.52)

where we use ∼ instead of the equality because we have already used the global
rotation symmetry of the matter power spectrum.

Finally, using Eqs. (5.52) and (5.45), we obtaion the angular power spectrum for
the E-mode of the spin-n galaxy shape components as

C
(n,n′)
l = 2

π

√
(l − |n|)!
(l + |n|)!

(l − |n′|)!
(l + |n′|)!

∫
dkk2Pm(k)F (n)

l (k)F (n′)
l (k), (5.53)

with

F (n)
l (k) =

(1
2

)n
2 (l + |n|)!

(l − |n|)!

∫
dz
dN

dz

D(z)
D(0)F

(n)(k, z)
[
jl(x)
xn

]
. (5.54)

In general, when written as a scalar quantity with no angular dependent mode cou-
pling on Fourier space, only the E-mode appears in the linear order of the density. In
the linear order, the B-mode distortion can be generated from the primordial gravi-
tational waves [110, 111], which is derived from the fact that the tensor perturbation
mimics the tidal field on the (conformal) Fermi normal coordinate, and from a vi-
olation of the global rotation symmetry in the primordial non-Gaussianity (refer to
App. B).

We dropped the index for E, since in later discussions it is sufficient to discuss
only the E-mode. In order to be convenient for discussion, we introduce

P (n,n′)(k, z) ≡
[
D(z)
D(0)

]2
F (n)(k, z)F (n′)(k, z)Pm0(k) , (5.55)

which is useful to understand the rough behaviors of the integrand of C(n,n′)
l at a

given wavelength k and the redshift z.

5.2 Intrinsic galaxy shape

Ref. [14] pointed out that the assumption that the intrinsic elliptical galaxy shapes
were uncorrelated, i.e., obeyed the random distributions, was not valid in the weak
lensing analysis derived from the mass inhomogeneous distributions (see Sec. 5.3 for
weak lensing effect). If the orientations of galaxy shapes obey halo shape or angular
momentum, they should not be randomly distributed, but aligned under the influence
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E-mode B-mode

Figure 5.2: The E (parity-even)/B (parity-odd) modes of elliptical
fields. If there exists the overdensity region in the center, we can imag-
ine the red shape in E-mode due to the tidal force. This corresponds
that γ(2)

+ is negative from Fig. 5.1 and we can expect that the 2nd
galaxy intrinsic shape function is proportional to the negative tidal
field. On the other hand, since the cosmic shear is derived from the
second partial derivative of the potential in the linear order, Eq. (5.71),

this shear corresponds to the blue shape in E-mode.

of the tidal field perpendicular to the line of sight direction. Then, this might produce
the distant correlation that mimics the distortions caused by weak lensing shear.

Two major models were considered as follows. First, the ellipticity of the isolated
elliptical source, which leads to the elliptical galaxy (red galaxy), is determined mainly
by the halo shape outside the source. This case suggests that the sources stretch along
the direction of the tidal field (Fig. 5.3) and the distant correlation of ellipticities
becomes proportional to the correlation of the tidal field. This is known as the linear
alignment model (Fig. 5.4). Second, the orientation of the galaxy image is determined
mainly by the angular momentum of the halo outside the source. This might be
applied to the spiral galaxy (blue galaxy). In the simple disk formation model, the
rotation axis of the disk plane turns to the direction of the angular momentum vector
of the halo surrounding the source (see, e.g., Ref. [112].) The ellipticity of the spiral
galaxy is determined by the disk orientation, namely the angular momentum. The
angular momenta of these halos are thought to be acquired by the tidal field disturbing
the collapsing galaxy to form an anisotropic momentum of inertia, which is then spun
up by further coupling with the tidal field. This leads to the angular momentum vector
L is given by Li ∝ εijkIjmKkm with the momentum of inertia tensor Iij and the tidal
field Kij . This contribution to the galaxy shapes becomes the second order of the
density field because the momentum of inertia must be proportional to the tidal field
in the linear order. This model is called the quadratic alignment model.
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Figure 5.3: We show the tidal force effect. If the gray shaded region
is the overdensity, the spherical object around the overdense is influ-
enced by the gravitational force from the overdensity. In this case,
the forces between at the center of gravity (red allow) and at other
positions (black arrow) change slightly. The deviation force from the
gravitational force on the center of gravity on the surface is called the
tidal force, which causes to distort the spherical object along with the

tidal force such as the right panel.

5.2.1 General bias expansion

In this section, we consider the general bias expansion of the galaxy shapes, including
the galaxy number density in Sec. 4.1, to capture the effect of long-wavelength modes
on these observables. In principle, by completely parametrizing this dependence with
bias parameters, it is possible to describe the large-scale statistics of galaxies and
their shapes strictly [113, 96], even though the formation of galaxies is extremely
complicated and obeys nonlinear physics. This approach works via an expansion
in perturbations and derivatives of ones, and thus applies only on scales where the
matter density δ � 1, which can be phrased as k < kNL where kNL is the nonlinear
wavenumber, and which are larger than the length scale R∗ on which galaxies form
(k < k∗ ' 1/R∗).

As discussed in Sec. 4.1, the position and shape of a galaxy at a given time τ
depend on the trajectory of the non-linear matter density around the galaxy forma-
tion. Then, the local matter density is affected by the small-scale physics such as
gas cooling, radiation pressure and star formation, and the past trajectory of matter
around the focused galaxy. However, when we consider the smoothing scale Λ−1,
which is a much larger scale than R∗, the position, and shape of galaxies are predom-
inantly determined by the coarse-grained gravitational potential ΨL. Hereafter, since
we always use the coarse-grained gravitational potential, we represent ΨL as Ψ.

Focusing on the smoothing scale Λ−1, we express the number density and shape
of galaxies evaluated at the Eulerian spacetime coordinates (x, τ) as

δn(x, τ) = N [δ(y, τ ′),Ki1i2(y, τ ′), {si1···in(y, τ ′)}n=3, 4, ···](x, τ) , (5.56)

gi1···in(x, τ) = Gi1···in [δ(y, τ ′),Ki1i2(y, τ ′), {si1···in(y, τ ′)}n=3, 4, ···](x, τ) , (5.57)
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Figure 5.4: The schematic picture of the linear alignment model.
The red ellipses show the elliptical galaxies. In the upper panel, the
blue region is the high-density region and the white region is the low-
density region, which corresponds to the density fluctuation on the
lower panel. Since elliptical galaxies are distorted by tidal fields, At

long distances, the shapes of the galaxies become correlated.

with δ and si1···in , which are defined as

δ(x, τ) ≡ ρm(x, τ)
ρ̄m(τ) − 1 = 1

4πGρ̄m(τ)a2∂
2Ψ(x, τ) , (5.58)

si1i2···in(x, τ) ≡ (R∗)n−2

4πGρ̄ma2∂i1∂i2 · · · ∂inΨ(x, τ) (n ≥ 3) , (5.59)

where ρ̄m denotes the background matter energy density and Ki1i2 is the tidal field
Eq. (4.4). We used the galaxy scale R∗ as the suppression factor in Eq. (5.59) since
we regard the smoothing scale Λ−1 as roughly serveral times of R∗.

On the second equality of Eq. (5.58), we used the Poisson equation. As discussed in
Sec. 4.1, the equivalence principle states that gravity can be locally eliminated, making
the system equivalent to a local inertial system. This ensures that we can eliminate
the gravitational potential Ψ and its derivative ∂iΨ by performing a local coordinate
transformation to choose a free-falling observer frame. Therefore, in Eqs. (5.56) and
(5.57), we did not include the gravitational potential and its first derivative. As a
result, the energy density δ and the tidal tensor Ki1i2 give the leading order local
contributions.

We emphasize that the galaxy density and shape, in general, depend on the grav-
itational potential of their entire past history, which composes the matter density,
tidal field and higher derivative terms, and so on. A key feature of the perturbative
approach is that this dependence can be incorporated order by order in perturbation
theory. Here, we use the fact that time and spatial dependence of the local matter
density and local tidal field at each order in perturbation theory factorize. One can
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capture the non-locality in time by allowing for the contributions at each order to
appear separately in the bias expansion. In the case of the galaxy density [114], con-
tributions from the non-locality in time appear at third-order density perturbation
as the non-locality operator Dijδ2. The same holds for the n = 4 moment of galaxy
shapes, while there is a contribution at second order in case of the 2nd moment [96].
Since we are interested in the leading contribution to n = 4 moments, which is given
by the second-order contribution, it is sufficient to work with the local, Eulerian
density and tidal field in the bias expansion.

To determine the functional form of N and Gi1···in , we need to trace the history
of the galaxy formation. With the same strategy in Sec. 4.1, we expand δn and the
traceless part of gi1i2 , using the dominant local contributions as

δn(x, τ) = b
(0)
δ (τ)δ(x, τ) + 1

2b
(0)
δ2 (τ)δ2(x, τ) + 1

2b
(0)
K2(τ)[K2

ij ](x, τ) + · · · , (5.60)

g̃i1i2(x, τ) = b
(2)
K (τ)Ki1i2(x, τ) + 1

2b
(2)
δK(τ)[δKi1i2 ](x, τ) + 1

2b
(2)
K2(τ)[Ki1jK

j
i2

]TL3(x, τ) + · · · ,

(5.61)

where b(n)
X with X = δ, δ2, · · · and n = 0, 2 denote the renormalized bias parameters

which are defined as the response of the mean nth moment galaxy shape to the change
of X. For example, the linear bias parameter for the number density, b(0)

δ , is given
by the response of the mean galaxy density with respect to the background matter
density as ∂ ln n̄g/∂ ln ρ̄m and the one for the 2nd moment galaxy shape, b(2)

K , is given
by the response of the mean 2nd galaxy shape to the external tidal field Ki1i2 and
so on. Here and hereafter we put a tilde to denote the symmetric traceless part of
gi1···in , i.e. g̃i1···in ≡ [gi1···in ]TL3,sym. In Eqs. (5.60) and (5.61), the higher order terms
in perturbation and the terms suppressed by |R∗∂| ∼ R∗k with k being the Fourier
mode are abbreviated.

Similarly, we can expand g̃i1···in with n ≥ 3, using δ, Ki1i2 , and si1···in . For
example, the 4th moment g̃ijkl up to the quadratic order in perturbation is given by

g̃i1i2i3i4(x, τ) = b
(4)
K2 [Ki1i2(x, τ)Ki3i4(x, τ)]TL3,sym +O

(
(kR∗)2

)
, (5.62)

where the coefficient b(4)
K2 describes the response to the course-grained quadratic exter-

nal tidal field3 The terms with si1i2i3i4 , [δ si1i2i3i4 ], and si1i2jsj i3i4 are all suppressed
3The explicit form of [Kij(x, τ)Kkl(x, τ)]TL3,sym is given by

3 [Kij(x, τ)Kkl(x, τ)]TL3,sym

=KijKkl +KikKjl +KilKjk

−

[
2
7
∑
p

(δijKkpKpl + δikKjpKpl + δilKjpKpk + δjkKipKpl + δklKipKpj + δjlKipKpk)

+ 2
35
∑
p,q

(δijδkl + δikδjl + δilδjk)KpqKqp

]
. (5.63)

.
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by (kR∗)2.

5.2.2 Linear and non-linear intrinsic alignment

We can compute the contributions of the linear and non-linear intrinsic alignment
through the bias expansion. Here, we note that the linear or non-linear alignments
do not mean to obey the linear density fluctuation or the non-linear one but the linear
order of δ or not. In other words, if the bias expansion of nth moment galaxy shapes
up to the first order of δ is given by the higher derivative operator si1···in , we call it
the linear alignment.

Using F (n), introduced in Eq. (5.54), the linear bias for general shape moments
including the number density, which corresponds to the linear alignment for the shape,
is given by

F (n)
LA (k, z) =


b
(0)
δ (z) (n = 0)

b
(2)
K (z) (n = 2)

b
(n)
s (z)

(
k

k∗

)n−2
(n ≥ 3)

, (5.64)

with k∗ ≡ 2π/R∗. Without loss of generality we left the time-dependency in the bias
parameters. When doing numerical calculations below, we set k∗ as k∗ = 1 Mpc−1,
which roughly corresponds to the Lagrangian halo radius of the typical luminous red
galaxy with Mhalo ∼ 3 × 1013h−1M� by using Eq. (4.6). For n ≥ 3, the leading
linear alignment term is suppressed for the powers of k � k∗ and corresponds to
the higher-derivative term. This implies that the most significant contribution of the
intrinsic alignment for n ≥ 3 on large scales becomes not the linear alignment but
the non-linear alignment (NLA).

There are the following two cases of the non-linearity for the galaxy bias and the
intrinsic galaxy alignments.

• The orignal bias expressions as the number density (5.56) and the shape function
(5.57) are written by the functional including the non-locality and the bias
expansions as shown in Eqs. (5.60) and (5.61) contain already non-linear terms.

• The density fluctuation δ and the tidal field Kij in Eqs. (5.56) and (5.57) evolve
with the non-linearity as discussion in Sec. 3.3, which corresponds to the non-
linear clustering effect.

For the 2nd moment shape, the non-linearities were discussed in the detail by
the simulations in Refs. [115, 116, 117], bias expansion in Refs. [118, 96] and galaxy
catalogs in Ref. [119].

Hereafter, we consider a rough estimation of loop integrals from the NLA for arbi-
trary shape moments, which contains the non-linearities mentioned above. Ref. [120]
computed the 1loop contribution to the power spectrum of the halo number density
based on EFTofLSS and showed that a representative term in the limit of k → 0 was
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given by

Phh(k) 3 2c2
2

∫
d3p

(2π)3

[
5
7 + 2

7
[p · (k − p)]2
p2|k − p|2

]2

PL(p)PL(|k − p|) , (5.65)

where Phh is the halo-halo power spectrum, c2 is an effective second-order bias coeffi-
cient, and the kernel, which corresponds to the square brackets, is second-order bias
contributions from matter density and tidal field squared. As mentioned in Sec. 4.2
(see also Ref. [97]), this contribution behaves k0 in the limit k → 0 and while the
1loop contributions of the matter density behave k2PL(k) and k4, which was discussed
in Refs. [121, 122]. These behaviors differences in the 1-loop contribution depend on
whether or not the mass and momentum conservations are imposed. Therefore, the
stochastic terms with ∝ k0 appear since the bias expansions do not impose these
conservations. Though we need to consider the stochastic noise such as the Poisson
noise for the auto-correlation, we evaluate this term as the stochastic noise, instead4.

We use Eq. (5.65) to evaluate the 1loop contribution from the second-order bias
expansion and noise for the shape moments. Though the shape moment functions
have dimensionless tensor legs, the correlations of these tensor legs roughly modify
results by an O(1) factor and we ignore these contributions. Then, we can use a
similar expression to Eq. (5.65),

P
(n,n)
NLA (k) = 2(b(n)

NLA)2
∫

d3p

(2π)3

[
5
7 + 2

7
[p · (k − p)]2
p2|k − p|2

]2

PL(p)PL(|k − p|) , (5.66)

which can be evaluated as roughly the NLA contribution to the auto-correlation for
the nth shape moments and this expression matches loop computations for the 2nd
moment up to a O(1) coefficient, previously derived in Refs. [118, 96].

This contribution is shown in Fig. 5.5 by brown dot-dashed lines. The bias param-
eter is set to |b(n)

NLA| = 0.1 both for the 2nd and 4th shape moments. Since the 1-loop
contribution which appears from the linear alignment term of gijkl is suppressed by
(k/k∗)2 for the cross-correlation and (k/k∗)4 for the auto-correlation, the above con-
tributions only appear from K2 type term like the one in Eq. (5.62) on the large
scale.

As disscussed in Sec. 3.4, the scaling of the l-loop contribution can be estimated
as

(
k

kNL

)(l+1)(nL+3) 1
k3 ∼

(
k

kNL,z=0

)(l+1)(nL+3) (
D(z)
D(0)

)2(l+1) 1
k3 . (5.67)

The 1-loop contribution shown in Fig. 5.5 or given by Eq. (5.66) follows this scaling
around kNL, which explicitly corresponds to nL = −1.7 at kNL,z=0 = 0.25hMpc−1.

4As discussed in Sec. 4.2, we should renormalize the loop contribution on the large scales, intro-
ducing the term

∫
p
P 2

L(p).
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Figure 5.5: The 3D power spectra of each contribution at z = 1.5
for the 2nd moment (left) and the 4th moment galaxy shape function
(right). The orange solid lines are the linear alignment and the brown
dash-dotted lines are the non-linear alignment contributions. The bias
parameters are set as (b(2)

K , b
(4)
K ) = (−0.1, 0.1). We used kNL,z=0 =

0.25[h/Mpc].

Here, the time evolution is computed, considering the EdS Universe. However, ac-
cording to Ref. [113], the result does not change significantly even if we consider the
ΛCDM Universe. In this paper, we took into account the redshift dependence, using
the linear growth factor. In Ref. [123], analyzing up to the 2loop EFTofLSS predic-
tions for matter power spectrum, it was shown that the counter term additionally
introduces tiny time dependence (see Fig. 13 in Ref. [123]). For the actual Universe,
since the power spectrum does not scale with a single power, the estimation becomes
more complicated (see e.g., Ref. [124]). Since k∗ > kNL, these loop contributions
dominate the linear alignment terms, suppressed by (k/k∗)2 for the 4th moment as
given in Eq. (5.64).

For the nth moment function with n = 2m (m = 1, 2, · · · ), the leading contribu-
tions, which are not suppressed by powers of k/k∗, only appear from the non-linear
bias expansion terms schematically in the form g̃i1···i2m ∼ (K)m, where the tensor
indices of Kij are abbreviated. For a larger n, the non-linear alignment contributions
without k/k∗ suppression start with higher loops. For instance, the auto-correlation
of g̃i1···i6 starts from 2-loop contributions.

5.3 Weak lensing

The inhomogeneities in the Universe between the light emitted from the source to us
distort the photon paths and this phenomenology is known as (gravitational) lensing.
In other words, the original shapes of the source objects appear distorted when we
observe these objects. To be more specific, as we will see in the process of solving
the null geodesic, the lensing effect occurs via metric perturbations Φ,Ψ. If we can
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measure the distortions due to the lensing effect, we directly infer information on the
Φ and Ψ contributions, i.e., the mass distribution in the structure.

In cosmology, the weak lensing is often used as one of the most important probes.
This is that the intrinsic shapes of distant galaxies are slightly distorted by foreground
overdensities between the sources and us. Roughly speaking, we use the fact that the
spatial average of the 1-point function in metric perturbation on the cosmological
scale is zero but the 2-point correlation remains. One powerful application of weak
lensing is the calibration for galaxy bias. Since the shear due to the weak lensing
is unbiased tracer, the cross-correlation between the shear and the galaxy number
density provides the galaxy bias itself.

Here, since we are interested in intrinsic galaxy shapes, the weak lensing contri-
bution becomes contamination. If we observe the shape at low redshifts, the weak
lensing contribution can be negligible. However, the sample size may become small
that a large-scale imaging survey would not be fully usable. Thus, evaluating the
contribution of lensing distortion is of importance. In this subsection, we consider
the weak lensing contribution to an arbitrary moment of the galaxy shapes. We
first consider the photon path through the inhomogeneities in the Universe and then
estimate how it affects the shape moment.

5.3.1 Derivation from the null geodesics

The relation between the intrinsic galaxy shape on the source plane and the apparent
galaxy shape on the image plane can be computed by tracing the photon propagation
in the perturbed FLRW spacetime. Using the affine parameter λ, the null geodesic
equation, which describes the photon propagation, is given by

d2xµ

dλ2 + Γµαβ
dxα

dλ

dxβ

dλ
= 0 , (5.68)

where Γµαβ is the Christoffel symbol of the perturbed spacetime. The Greek indices
µ, α, β run from 0 to 3. Solving the geodesic equation along the orthogonal direction
to n̂ with a use of the null condition

gµν
dxµ

dλ

dxν

dλ
= 0 , (5.69)

we obtain the lens equation as

θ̃s i(θ̃) = θ̃i +
∫ χ

0
dχ′

χ− χ′

χ
∂⊥i(Φ(χ′, θ̃)−Ψ(χ′, θ̃)), (5.70)

with ∂⊥i ≡ Pij∂j . Here, we have imposed the boundary condition as θ̃i(χ = 0) = θ̃i

and θ̃i(χ) = θ̃is. The projected coordinates θ̃i and θ̃s i correspond to those on the
image plane and the source plane, respectively. A detailed computation of Eq. (5.70)
can be found e.g. in Ref. [100]. We also use θ̃s i to express the mapping of a coordinate
on the image plane θ̃i to the corresponding one on the source plane as θ̃s i(θ̃).
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Figure 5.6: This figure shows the 2D coordinates on the source plane
and on the image plane. The orange and blue dots denote the centroids

and given points on each plane.

Taking the partial derivative of θ̃s i with respect to θ̃j , we obtain the deformation
matrix Aij [125] as

Aij(θ̃) ≡ ∂θ̃si

∂θ̃j
= δij +

∫ χ

0
dχ′

χ− χ′

χ
χ′∂⊥i∂⊥j(Φ(χ′, θ̃)−Ψ(χ′, θ̃)) . (5.71)

Because of the spatial inhomogeneity of Φ and Ψ, the deformation matrix Aij depends
on θ̃.

Now, let us compute the deviation from the centroid on the source plane, θs i ≡
θ̃s i − θ̄s i, decomposing it into the two parts as

θs i =
[
θ̃s i(θ̃)− θ̃s i(θ̄)

]
+
[
θ̃s i(θ̄)− θ̄s i

]
. (5.72)

These coordinates on the source plane and the image plane are visually explained in
Fig. 5.6. The first square brackets describe the difference between the two coordinates
on the source plane which are mapped from θ̃i and θ̄i on the image plane, respectively.
The second square brackets describe the difference between the coordinates on the
source plane mapped from the apparent centroid, θ̄i, and the actual centroid, θ̄s i.
Since we cannot directly measure the source distribution, the actual centroid θ̄s is
left undermined.

Using Eq. (5.70), we can compute the first square brackets in Eq. (5.72) minus θi
as

δθi ≡ θ̃s i(θ̃)− θ̃s i(θ̄)− θi = θs i − θi −
[
θ̃s i(θ̄)− θ̄s i

]
, (5.73)

as

δθi =
∫ χ

0
dχ′

χ− χ′

χ
∂⊥i

[
(Φ(χ′, θ̃)−Ψ(χ′, θ̃))− (Φ(χ′, θ̄)−Ψ(χ′, θ̄))

]
. (5.74)
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Here we are evaluating Φ and Ψ along the unperturbed photon path. This is only
correct in linear order in the deflection. If one includes the lower-order deflection
in the argument of these metric perturbations and expands this effect as well, one
obtains additional contributions which involve the integral over products of ∂k∂lΦ
and ∂k∂lΨ. These contributions, which are known as “post-Born corrections” (e.g.,
[126]), to the nth moment can be roughly approximated as being of order (δA(2))m,
with m = n if n is even and m = (2n+ 1)/2 if n is odd. This means that they are of
the same order as the nonlinear lensing contribution we will discuss below, and hence
we will not derive them in detail here.

Expanding δθi with respect to θi = θ̃i − θ̄i, we obtain

δθi(θ) =
∞∑
n=2

1
(n− 1)! δA

(n)
ii1···in−1

θi1 · · · θin−1 , (5.75)

with

δA
(n)
ii1···in−1

=
∫ χ

0
dχ′

χ− χ′

χ

[
n−1∏
k=1

(χ′∂)⊥ik

]
∂⊥i(Φ(χ′, θ̄)−Ψ(χ′, θ̄)) . (5.76)

The spatial variation of Aij yields the higher order terms of θi, characterized by
δA

(n)
ii1···in−1

with n ≥ 3. For n = 2, δA(2)
ij is nothing but the deviation of the defor-

mation matrix from the unit matrix. The traceless part of δA(n)
ii1···in−1

describes the
spin-n deformation due to the gravitational lensing, whose visual image is discussed
in Sec. 5.1.

5.3.2 Estimation of weak lensing effect

Using the formula derived in the previous subsection, let us compute the weak lensing
contribution in Eq. (5.3), which can be rewritten as

IWL
i1i2···in(θ̄) =

[
Ii1i2···in(θ̄)− I int

i1i2···in(θ̄s)
]

+
[
I int
i1i2···in(θ̄s)− I int

i1i2···in(θs(θ̄))
]
. (5.77)

Similarly to Eq. (5.8), using the projected coordinates on the source plane, θs i, the
n-th moment intrinsic galaxy shape function is defined as

I int
i1i2···in(θ̄s, τ) = χn

Ī int(θ̄s)Rn∗

∫
d2θs

n∏
m=1

θs imI
int(θ̄s + θs, τ) , (5.78)

with the normalization

Ī int(θ̄s, τ) ≡
∫
d2θs I

int(θ̄s + θs, τ) . (5.79)
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The brightness theorem, which states that the lensing does not change the surface
brightness, relates the apparent surface brightness I(θ̃) to the intrinsic surface bright-
ness I int(θ̃s) as I int(θ̃s) = I(θ̃) or equivalently in our notation,

I int(θ̄s + θs, τ) = I(θ̄ + θ, τ) . (5.80)

First, let us compute the first square brackets of Eq. (5.77) by using θi expressed in
terms of θs i. In the previous subsection, we derived the expression of δθi(θ), solving
the null geodesics. Using this expression, θs i in the left hand side of Eq. (5.72) can
be expressed in terms of θi and the global shift between the apparent and actual
centroids. Solving Eq. (5.72) recursively, we can express θi in terms of θs i and the
contribution due to the global shift of the centroid as

θi = θs i +
∞∑
n=2

1
(n− 1)! δB

(n)
ii1···in−1

θi1s · · · θin−1
s + Fi(θ̃s(θ̄)− θ̄s) , (5.81)

where, e.g., the leading contributions of δB(2)
i1i2

and Fi, which is a function of θ̃s(θ̄)−θ̄s,
are given by

δB
(2)
i1i2

= −δA(2)
i1i2

+ δA
(2)
i1j
δA

(2)j
i2

+ · · · ,

Fi(θ̃s(θ̄)− θ̄s) =
[
−δij + δA

(2)j
i + · · ·

] (
θ̃s j(θ̄)− θ̄s j

)
+ · · · . (5.82)

Since δA(n)
i1···in are the functions of θ̄, so are δB(n)

i1···in . Inserting Eq. (5.81) into Eq. (5.8),
we can expand Ii1i2···in(θ̄) in terms of I int

i1i2···in(θ̄s), where the coefficients are given by
products of δB(n)

i1···in and Fi.
The leading lensing effect on the nth moment of a galaxy image can be com-

puted by making the lensing operators derived above act on a perfectly symmetric
(spherical) intrinsic image, whose moments are given by

I int
i1i2···in(θ̄s) =

{
C2N [Pi1i2Pi3i4 · · · Pi2N−1i2N + perms.] n = 2N ,

0 n = 2N − 1 ,
(5.83)

where N is a natural number and C2N is of order the angular size of the image to the
nth power; Ref. [101] also presents the effects of non-symmetric intrinsic images. In
the following, we calculate the terms in the first brackets of Eq. (5.77) for n = 2N .
For the moment, let us ignore the contributions due to the shift of the centroid, which
turns out to be sub-leading. Inserting Eq. (5.81) into Eq. (5.8) and using Eq. (5.83),
we obtain

1st brackets of Eq.(5.77) 3
(R∗
χ

)2(M−1)
δA

(2M)
i1···im ,

δA
(2)
i1j1

δA(2)j1
i2 · · · δA

(2)
i2N−1jN

δA(2)jN
i2N , (perms) ,

· · · , (5.84)
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with M = 1, 2, · · · . The factor (R∗/χ)2(M−1) of the first contribution appears, since
Ii1···i2N and I int

i1···i2(N+M−1)
carry different powers of R∗/χ. In computing the terms in

the second line, which is given by 2N product of δA(2), we used δA(2)
ipj
δA(2)

iqj′Pjj
′ =

δA
(2)
ipj
δA(2)j

iq . The ellipses stand for the trace part and other non-linear terms in
perturbations. As discussed above, these include post-Born corrections which are
of similar order of magnitude. While we did not write it explicitly, for M < N , the
lacking indices should be supplied by the projection tensor Pij . Therefore, such terms
do not contribute to the traceless component. Since the order of δA(2M)

i1···i2M is given by∣∣∣δA(2M)
i1···i2M

∣∣∣ = O
(
(kχ′)2(M−1)

)
× |δA(2)| , (5.85)

the first contribution in Eq. (5.84) amounts to∣∣∣∣∣
(
R∗
χ

)2(M−1)
× δA(2M)

i1···i2M

∣∣∣∣∣ = O
(
(kR∗)2(M−1)

)
× |δA(2)| . (5.86)

In Eq. (5.85), we have replaced ∂/∂θ̄i with kχ′, where k is the Fourier mode of the
3D coordinates of the centroid on the image plane. Equation (5.86) indicates that at
the linear order of the perturbation, the traceless component of the first brackets of
Eq. (5.77) with n = 2N ≥ 4 is suppressed at least by (kR∗)n−2, which is much smaller
than 1 since we only consider larger scales than the typical size of galaxies. To be
precise, the integrand of δA(2) in Eq. (5.86) is further suppressed by (χ′/χ)2(M−1).
For example, for the 4th moment, the tree-level diagram which appears by contracting
the first contribution in Eq. (5.84) roughly scales as

(kR∗)4 × PL(k) . (5.87)

Meanwhile, for the 2nd moment with N = 1, the linear contribution simply gives the
deformation matrix δA(2)

i1i2
.

Similarly, all the non-linear contributions which include δA(n)
i1···in with n ≥ 3 are

suppressed by positive powers of kR∗. Therefore, the only contributions which are
not suppressed by kR∗ � 1 are products of δA(2), i.e. the second contribution in
Eq. (5.84). In the end of this subsection we will discuss the loop contributions from
the products of δA(2).

So far, we have not considered the contribution from the shift of the centroid.
According to Ref. [106], the centroid shift can be estimated by (see also Ref. [127])

|θsi(θ̄)− θ̄si| ∼ O(∆θj∂δA(2)/∂θj)×∆θi . (5.88)

Repeating a similar argument, we find that the leading contribution of the centroid
shift has more (kR∗) than the leading contribution and is suppressed more on the
large scale. For this reason, we do not consider the contribution of the centroid shift.

Next, let us discuss the first brackets of Eq. (5.77) for an odd number n. Repeating
the same argument, we find that the odd nth moment is always suppressed by kR∗,
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since the intrinsic nth moment of the galaxy shape function I int
i1i2···in(θ̄s) vanishes for

an odd n under the assumption of Eq. (5.83). In particular, the first brackets of
Eq. (5.77) is suppressed at least by (kR∗)n−2 at the linear perturbation.

In summary, we showed that the only contributions that are not suppressed by
kR∗(� 1) are the products of δA(2). A contraction of δA(2) yields weak lensing loops,
computed in the projected 2D plane. As emphasized in Sec. 5.2.2, these 2D loops are
qualitatively different from 3D loop contributions to the galaxy shape moments, which
are projected into 2D after computing loop contributions in 3D (see, e.g. Eq. (5.66)).
The 3D loop contributions are included as the non-linear alignment effect. For a
comparison of 2D and 3D loops, here we estimate their contributions to the angular
power spectrum of the 4th shape moment, C(4,4)

l . Taking the flat-sky limit, the 2D
weak lensing loops in C(4,4)

l is roughly estimated as,

C
(4,4)2D-1L
l ∼ 〈(δA(2)δA(2))(l)(δA(2)δA(2))(l′)〉 ∼ 2

∫
d2l1

(2π)2Cγ(l1)Cγ(|l− l1|) ,

(5.89)

where Cγ(l) is the lensing shear for 2nd moment and l is a 2D vector on the Cartesian
coordinate. We find that the contribution of 2D lensing 1-loop, given by Eq. (5.89), is
much smaller than the one of the 3D 1-loop(NLA). Therefore, evaluating the forecast
in this paper, we neglect the weak lensing contribution, whose linear contribution is
suppressed by kR∗ and whose loop contributions are much smaller than the 3D loops,
included in non-linear alignment effects.

Assuming the absence of the intrinsic deformation, i.e. assuming a circular in-
trinsic image, we have estimated the nth moment deformation of the galaxy shape
due to the weak lensing. To estimate the weak lensing contribution more accurately
by taking into account the intrinsic deformation, the assumption, (5.83), should be
abandoned.

5.3.3 Summary

The weak lensing contribution to the nth moment function, ĨWL
i1···in , should have n

tensor indices which are projected to the 2D plane. For the 2nd moment, the lensing
contribution, ĨWL

ij is nothing but the deformation matrix Aij . Meanwhile, for n ≥ 3,
the additional tensor indices are supplied either by acting with angular derivatives
or by multiplying several Aijs. The former yields a suppression by powers of k/k∗,
while the latter contributes as two-dimensional loop integrals.

The linear weak lensing (LWL) contribution, whose indices can thus only be sup-
plied by operating with the spatial derivative operator, are suppressed as

F
(n)
LWL(k, z) ∝

(
k

k∗

)n−2
(n ≥ 2) , (5.90)

where we have dropped the redshift dependence. This result is in agreement with
Eq. (84) of [101]. Therefore, similarly to the intrinsic alignment, for n > 2, the
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leading contribution for k � k∗ stems from the loop contributions. Notice that since
Aij , which is given by integrating along the line of sight, is a 2D object, loop integrals
of the weak lensing, expressed by non-linear terms of Aij , should be performed in the
projected 2D space. Therefore, weak lensing loops are qualitatively different from the
loop contributions in the intrinsic alignment, which are given by first computing loop
integrals in 3D space and subsequently projecting it to the 2D space. The lensing loops
obtained after projection are much smaller than the latter for the auto-correlation of
the 4th moment.

5.4 Intrinsic galaxy shape with PNGs

As discussed in Sec. 5.2.2, we found that the intrinsic shapes on the large scale could
respond to the density contrast and the external tidal fields at each time. In this sec-
tion, when there exist the primordial non-Gaussianities, especially for the primordial
bispectrum, we investigate how to modify the bias expansion of the intrinsic shapes.

5.4.1 Imprint of spin-2 particles on 2nd moment shape

Before the discussion on the 4th shape moment, we summarize the contribution of
the PNGs in the second shape moment. Ref. [41] showed that the contribution of the
PNG (2.57) in the second shape moment g̃i1i2 at first, and here we brief the derivation
along the line with Ref. [41].

First, we consider the cross-correlation the matter density field on the large scale
with the second moment galaxy shape function Eq. (5.61), which is written as

〈δ(x)g̃i1i2(y)〉 = b
(2)
K 〈δ(x)Ki1i2(y)〉+ 1

2b
(2)
δK〈δ(x)[δKi1i2 ](y)〉

+ 1
2b

(2)
K2〈δ(x)[Ki1jK

j
i2

]TL3(y)〉+ · · · , (5.91)

where we drop the time argument due to the evaluation at the same time. In the
initial Gaussian condition, the terms corresponding to the 3-point correlation vanish
on the large scale and contribute only to the nonlinear evolution on small scale. On
the other hand, in the initial non-Gaussian condition, the 3-point correlation terms
are sensitive to the squeezed-limit bispectrum since the 2-point fields are evaluated at
the same position. The same will be done later in the case of the 4th moment, then
here we omit the specific calculations, but for example, the second term corespoinding
to the 3-point functions on the squeezed primoridal bispectrum, given by the case of
∆2 = 0 in Eq. (2.64), becomes in Fourier space

〈δ(k)[δKi1i2 ](k′)〉 = 2
5A2[k̂i1 k̂i2 ]TL3M−1(k, z)Pm(k)〈δ2〉(2π)3δD(k + k′) . (5.92)

This means that the 2nd moment galaxy shape has the non-Gaussian contribution of
the primordial squeezed anisotropic bispectrum corresponding to A2 since [k̂i1 k̂i2 ]TL3

leads to the quadrupole mode P2.
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However, the 3-point functions such as Eq. (5.92) contain the matter density vari-
ance 〈δ2〉, which leads to the logarithmic divergence if the cutoff scale Λ−1 → 0. This
is also read as the unphysical dependence of the arbitrary cutoff scale. Then, we need
to introduce the counter-term in the bias expansion such as Di1i2Φ. As discussed in
Sec. 4.1, the need for the counter-term is natural since the bias expansion Eq. (5.61) is
implicitly assumed the statistics of the initial short-modes which influence local galaxy
formation are the same regardless of positions, which means that the short-modes un-
correlated the long-modes. In this situation, the small-scale matter power spectrum
is modulated by the long-mode potential perturbation such as Eq. (4.24). Then, we
must consider the dependence of galaxy shapes on the amplitude and anisotropy of
small-scale fluctuations.

After renormalization, we obtain

〈δ(x)g̃i1i2(y)〉 = b
(2)
K Di1i2ξ(|x− y|) + 3b(2)

NGA2Di1i2ξδΦ(|x− y|) , (5.93)

and in Fourier space

〈δ(k)g̃i1i2(k′)〉 =
[
k̂i1 k̂i2

]TL3 [b(2)
K + 3b(2)

NGA2M−1(k)]Pm(k)(2π)3δD(k + k′) . (5.94)

In the case of the scale dependence in the primoridal bispectrum, we can extend

〈δ(k)g̃i1i2(k′)〉 =
[
k̂i1 k̂i2

]TL3 [b(2)
K + 3b(2)

NG

(
k

k∗

)3/2
A2M−1(k) cos

[
ν2 ln

(
k

k∗

)
+ Θ2

]
]

× Pm(k)(2π)3δD(k + k′) , (5.95)

where k∗ is the pivot scale and the Θ2 is the phase depending on the halo model.

5.4.2 Imprint of spin-4 particles on 4th moment shape

We will show that similarly only the PNG generated by the spin-4 particle contributes
to the 4th shape moment, g̃i1i2i3i4 . Along the line with Sec. 5.4.1, we compute the
contribution of the PNG to g̃i1i2i3i4 by evaluating the correlation between δ and
g̃i1i2i3i4 .

In Sec. 5.2.1, various contributions to the 4th shape moment for the Gaussian
initial condition were computed. The angular dependent PNG leads to an additional
contribution to the correlation 〈δ(x)g̃i1i2i3i4(y)〉. For example, when the PNG is given
by Eq. (2.57) with ∆4 = 0, we obtain

〈δ(x)g̃i1i2i3i4(y)〉 = 2
9b

(4)
K2A4Di1i2i3i4ξδΦ(|x− y|)〈δ2〉 , (5.96)

with Di1i2i3i4 ≡ [Di1i2Di3i4 ]TL3,sym and ξδΦ being the cross-correlation between the
linear δ and Φ. A more detailed computation of Eq. (5.96) can be found in App. D.4.
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Performing the Fourier transformation, we obtain

〈δ(k)g̃i1i2i3i4(k′)〉 = 2
9b

(4)
K2A4[k̂i1 k̂i2 k̂i3 k̂i4 ]TL3(2π)3M−1(k, z)Pm(k, z)〈δ2〉δD(k + k′) ,

(5.97)

where Pm(k, z) is the linear matter power spectrum at z and M(k, z) is defined at
Eq. (3.28).

As the same in Sec. 5.4.1, since Eq. (5.97) depends on 〈δ2〉, which diverges when
we send the UV cutoff to the infinity, we need to perform the renormalization to
compute the observable effect. The renormalization proceeds analogously to the one
for the PNG generated by the spin-0 and spin-2 particles discussed in Refs. [41, 67,
68]. As one can see in Eq. (2.61), the counter term for the contribution of the PNG
generated by the spin-4 particle should be in the form, Di1i2i3i4Φ. In the presence
of the PNG generated by the spin-4 particle, the local matter density for the short
mode k is modified as

δloc(k;x) =
(

1 + 1
2αL i1i2i3i4(x)[k̂i1 k̂i2 k̂i3 k̂i4 ]TL3

)
δiso(k) , (5.98)

with

αL i1i2i3i4(x) ≡
∫

d3kL
(2π)3

35
8 A4[k̂L,i1 k̂L,i2 k̂L,i3 k̂L,i4 ]TL3Φ(kL)eikL·x . (5.99)

The renormalized bias is then defined through the response of 4th moment to α

b
(4)
NG ≡

∂〈g̃i1i2i3i4〉αL

∂αL i1i2i3i4

∣∣∣∣
αL=0

, (5.100)

which leads to

〈δ(k)g̃i1i2i3i4(k′)〉 = 35
4 b

(4)
NGA4[k̂i1 k̂i2 k̂i3 k̂i4 ]TL3(2π)3M−1(k, z)Pm(k, z)δD(k + k′) .

(5.101)

The detailed computation is summarized in App. D.4.2. As the same of the second
moment galaxy shape function, this result can be straightforwardly extended to the
PNG with ∆4 = 3/2± iν4 as

〈δ(k)g̃i1i2i3i4(k′)〉 = 35
4 b

(4)
NGA4

(
k

k∗

)3/2
[k̂i1 k̂i2 k̂i3 k̂i4 ]TL3 cos

[
ν4 ln

(
k

k∗

)
+ Θ4

]
× (2π)3M−1(k, z)Pm(k, z)δD(k + k′) . (5.102)

Here and hereafter, we set the pivot scale kp to k∗. For a different choice of k∗, the
corresponding b(4)

NG and Θ4 differ.
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5.4.3 Imprint of particle with a general integer spin

We can also evaluate the imprint of the PNG generated by the spin-n particle with
a general integer n, encoded in 〈δ(x)g̃i1···in(y)〉. The PNG from the spin-n particle
selectively appears in the traceless part of the nth shape moment, g̃i1···in . There-
fore, even if A0, which corresponds to fNL, is much larger than As with s ≥ 2, the
contribution of A0 does not contaminate g̃i1···in with n ≥ 2 in the linear regime.

Repeating a similar computation to App. D.4, we find that the spin-n contribution
in the squeezed PNG (2.57) yields the additional intrinsic alignment contribution
given by

F (n)
PNG(k, z) = Cnb

(n)
NGAn

(
k

k∗

)Re[∆n]
M−1(k, z) cos

[
Im[∆n] ln

(
k

k∗

)
+ Θn

]
, (5.103)

where F (n)
PNG denotes the PNG contribution in Eq. (5.54) and Θn is the phase de-

termined for a given halo model, i.e. it is a function of k∗. Hereafter, we denote
Im[∆n] as νn. The leading PNG contribution appears from the quadratic terms in
the bias expansion of the nth shape moment, which are accompanied with additional
spatial gradient for n > 4. However, the spatial gradient does not yield an additional
suppression by k/k∗ in Eq. (5.103), since it is replaced with (kS/k∗)n−4, where kS is
the short mode. Therefore, as written in Eq. (5.103), the leading PNG contribution
scales as ∝ kRe[∆n]M−1(k, z) for a general integer n. The coefficient Cn is determined
by conducting the renormalization. The counter term needed for the renormalization
differs for a different n. For n = 0, 2, 4, Cn is given by C0 = 1/2, C2 = 3 ([41]) and
C4 = 35/4 (Sec. 5.4.2).

Let us emphasize that the separability of the PNG contributions from different
spins no longer holds, once the loop contributions become important because the
kernel functions also induce the angular dependence. Then, the PNG generated by
the spin-s particles can contribute to the nth moment of the galaxy shape function
only for n = s. Having considered this, in the next section, we explore whether
there is a scale where the contribution from the PNG becomes dominant, keeping the
late-time non-linear contributions subdominant.

5.5 Forecast for future surveys

We have computed the contribution of the PNG generated by a spin-n particle, to
the nth moment galaxy shape function, Ĩi1···in . In this section, comparing it to other
contributions predicted in ΛCDM cosmology with the adiabatic Gaussian initial con-
dition, let us discuss whether we can observe the imprint of the higher spin particles
from future observations.
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Figure 5.7: The k-dependence of each contribution at z = 1.5 for
the 2nd moment galaxy shape function. The LA and NLA are the
same as Fig. 5.5. The left and right panels additionally include the
PNG contribution, given in Eq. (5.103), for ∆2 = 0 and b(2)

NGA2 = 0.5
(left) and for ∆2 = 3/2 and b

(2)
NGA2 = 3 × 103 (right), respectively.

The yellow shade shows the range of k at which the PNG contribution
exceeds those of LA and NLA.

5.5.1 Dominant contribution at different scales

Combining the results obtained in Sec. 5.2.1 and Sec. 5.3, we can evaluate which
effect is dominant at each scale or at each multipole moment. Figure 5.7 compares
the contributions of the PNG from the spin-2 particle to LA and NLA for the 2nd
galaxy moment. Here, considering the ΛCDM Universe, we set nL ∼ −1.7 and
kNL,z=0 = 0.25h/Mpc [113]. For ∆2 = 0, the contribution of the PNG dominates at
the large scales as pointed out in Ref. [41] (see also Ref. [42] for N-body simulation).
The colored region shows the range of k at which the PNG dominates the other con-
tributions. Meanwhile, for Re[∆2] = 3/2 (only scaling), the contribution of the PNG
is dominated by NLA at all scales with k < keq, where the galaxy imaging surveys
work as a spin-sensitive detector. When the perturbative expansion holds, satisfying
b
(2)
NGA2 � 104 (assuming b(2)

NG = 0.1), there is no range of k where the PNG generated
from the massive spin-2 particle with Re[∆2] = 3/2 dominates the 2nd moment of the
galaxy shape function. The PNG from the spin-2 particle in the principle mass series,
which is suppressed by the dilution, Re[∆2] = 3/2, exhibits the oscillatory resonance
feature as shown in Eqs. (2.57) and (2.58). Since our purpose here is to compare
the amplitudes of different contributions, for the illustrative purpose, the oscillatory
contribution in Eq. (5.103) is ignored.

The situation is different for the PNG generated from the spin-n particle with
n > 2, because the linear alignment and the linear weak lensing for Ĩi1i2···in are
both suppressed by (k/k∗)n−2. Meanwhile, as shown in Eq. (5.103), the PNG can
contribute to Ĩi1i2···in without being suppressed at large scales, especially for ∆s = 0.
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Figure 5.8: The k-dependence of each contribution at z = 1.5 for
the 4th moment galaxy shape function. The LA and NLA are the
same as Fig. 5.5. The left and right panels additionally include the
PNG contribution, given in Eq. (5.103), for ∆4 = 0 and b(4)

NGA4 = 0.5
(left) and for ∆4 = 3/2 and b

(4)
NGA4 = 3 × 103 (right), respectively.

The yellow shades show the range of k at which the PNG contribution
exceeds those of LA and NLA.

Figure 5.8 compares the different contributions to the auto-correlation of Ĩi1i2i3i4 .
Since the dominant contamination of the 4th shape moment comes from NLA, i.e.
the 3D loops under the Gaussian initial condition (even if we include the lensing
contribution), here let us compare it to the PNG contribution. Around kNL, where
the 1-loop NLA acquires the additional factor (k/kNL)nL+3, the PNG contribution
dominates the NLA contribution in the range of k which satisfies

(C4b
(4)
NGA4)2

(
k

k∗

)2Re[∆4]
M−2(k) >

(
k

kNL

)nL+3
. (5.104)

Here, focusing on the amplitude, the oscillatory contribution (if any) is again ignored.
On the other hand, for k < keq, the leading contribution of NLA, which corresponds
to the stochastic term, is roughly given by

PNLA(k < keq, z) ∼ b2NLA

[
D(z)
D(0)

]4 ∫ ∞
k

dpp2[PL(p)]2 ∼ b2NLA

[
D(z)
D(0)

]4
[PL(keq)]2k3

eq ,

(5.105)

which is almost scale independent like the white noise. In practice, this contribution
would be absorbed by the amplitude of the noise in the 4th moment, for which we
do not have a reliable estimate. In our idealized setting then, the PNG contribution
should exceed this to be detectable.

The PNG contribution is z-independent while the linear alignment contribution
varies as ∼ (1 + z)−2 and the NLA contribution depends on ∼ (1 + z)−4. Therefore,
a smaller amplitude of PNG can be detected for a deeper survey. This point is
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Figure 5.9: This plot shows the contributions of LA (orange dash-
dotted), NLA (red solid), linear WL (green dotted), and PNG (blue),
to the angular power spectrum of the second shape moment C(2,2)

l

for LSST-like survey, whose dN/dz is given by Eq. (5.106). The
black dashed curve shows the cross-correlation between LA and linear
WL, which becomes negative, and the other curves show the auto-
correlations of each contribution. The blue solid line corresponds to
∆2 = 0 and the blue dashed line corresponds to Re[∆2] = 3/2, ν2 = 3,

Θ2 = 0.

quantitatively analyzed in Fig. 5.14.

5.5.2 Angular power spectrum

Using Eq. (5.53), we can compute the angular power spectrum. Here, we focus
on C

(2,2)
l and C

(4,4)
l , by which we can explore the imprint of the spin-2 and spin-4

particles, respectively. In conducting the numerical computation, the Limber approx-
imation is employed for l > 20.

Inserting Eq. (5.103) into Eq. (5.53), we can compute the contribution of the
PNG from spin-s particle to the angular power spectrum C

(n,n′)
l , where n and (or) n′

are (is) equal to s. The PNG contribution from the spin-2 particle was addressed in
Ref. [41] (∆2 = 0). In Fig. 5.9, we show the contributions of LA, NLA, WL, and PNG
to C(2,2)

l , including NLA, which was not taken into account in Refs. [41, 43]. (and
we show also more realistic estimation expect for NLA in Appendix. A).Assuming an
LSST like lensing survey [8, 128], we have used the function dN/dz given by

dN

dz
∝
(
z

z∗

)1.24
exp

[
−
(
z

z∗

)1.01
]
, (5.106)

which is normalized as
∫
dz(dN/dz) = 1 and z∗ = 0.51 . In Fig. 5.9, we show the

auto-correlations of each contribution and the cross-correlations between the LA and
the linear WL.
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Figure 5.10: This plot shows each contribution in the auto-
correlation of 4th shape moment for LSST-like survey. The blue solid
line corresponds to ∆4 = 0 and the blue dashed line corresponds to
Re[∆4] = 3/2, ν4 = 3, Θ4 = 0 in Eq. (5.103). The purple dash-dotted
line is the LA contribution. The red solid line shows the 1-loop NLA
contribution evaluated by using Eq. (5.66). The green dotted line

corresponds to the linear WL.

Similarly, using Eqs. (5.53), (5.64), and (5.103), we can compute the auto-correlation
of each contribution in the angular power spectra for n = 4 as

C
(4,4)X
l = 2

π

(l − 4)!
(l + 4)!

∫
k2dkPm(k)|FXl (k)|2 (X = LA,PNG,LWL) , (5.107)

with

F Yl (k) = 1
4

(l + 4)!
(l − 4)!

∫
dz
dN

dz
F

(4)
Y (k, z)D(z)

D(0)

[
jl(x)
x4

]
x=kχ(z)

(Y = LA,PNG),

(5.108)

FLWL
l (k) = 1

4
(l + 4)!
(l − 4)!

∫ χmax

0
dχ′χ′DΦ(z(χ′))

(
k

k∗

)2 [jl(kχ′)
(kχ′)4

]
×
∫ χmax

χ′
dχH(χ)dN

dz

(
χ′

χ

)2 χ− χ′

χ
, (5.109)

and

DΦ(z) ≡ 3H2
0 Ωm0

(1 + z)D(z)
D(0) . (5.110)

Equation (5.109) can be derived by operating the source distribution function on the
expression for a source at fixed redshift given by Eq. (5.71)5.

Figure 5.10 compares different contributions to C(4,4)
l . The purple dash-dotted

5Since we estimated only the scaling of the linear WL for (kR∗χ′/χ)� 1, our Eq. (5.109) should
be additionally multiplied by 1/12 to match with Eq. (84) in Ref. [101].
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line shows the contribution of the LA, which is suppressed by (k/k∗)4. The green
dotted line shows the contribution of the linear weak lensing. The contribution of
the weak lensing 1-loop in the projected 2D space (2D 1LOOP), which is given by
Eq. (5.89), is much smaller and below the shown range in the figure, under the
assumption of this bias parameter values. The blue solid line shows the contribution
of the PNG with ∆4 = 0 and the blue dashed line shows the one of the PNG with
∆4 = 3/2 + iν4, which corresponds to the PNG from a spin-4 particle in the principle
mass series. For a larger ν4, the net contribution of the PNG to C(4,4)PNG

l becomes
smaller, being smoothed out by the integration over k. This aspect is common with
massive particles in the principal mass series with other spins, as discussed in Ref. [43]
(see also Appendix. A).

Since the PNG contribution with Re[∆s] = 3/2 is almost constant, being inde-
pendent of l, one may think it can be detected at high ls even if it is subdominant at
lower ls. However, at high ls, because of the mixing due to the non-linear evolution,
we cannot separately pick up the PNG contributions from particles with different
spins. (Roughly speaking, using the redshift of the peak of dN/dz, we can estimate
lNL ∼ kNL,z=0.5χ(z = 0.5) ∼ 470 as the non-linear angular scale.) In the range where
the non-linear evolution is negligible, while the PNG contribution does not become
dominant for n = 2, it can be dominant for n = 4 in l & 2006.

5.5.3 Forecast for future imaging survey

We investigate the detectability of the PNG generated by higher spin particles, con-
sidering the future galaxy survey, LSST. As discussed in Sec. 5.5.1, on large scales
the PNG from each particle with spin-s only contributes to the sth galaxy moment
of the galaxy shape function, leaving an imprint in the auto-correlation C(n, n)

l with
n = s and the cross-correlations C(n, n′)

l with n = s or n′ = s. Therefore, no matter
how large the angular independent PNG fNL is, this does not disturb probing the
signal of the higher spin particle encoded in Ĩi1···in with the corresponding value of
n (see [129] for a demonstration including fNL and A2). Furthermore, even if there
exists an infinite tower of higher spin particles as predicted in string theory, we can
single out the contribution of the spin-s particle by looking at the sth galaxy shape
moment.

On the other hand, when the contribution of the loops becomes important, the
non-trivial momentum dependence in the kernel functions allows the contribution of
the PNG from the spin-n′ particle to contaminate Ĩi1···in with n′ 6= n. Therefore, in
what follows, we focus on k < kNL, where the loop contribution remains subdominant.

In the 2nd moment induced by the spin-2 particles, since the noise estimation for
the galaxy shape was estimated, we investigate the forecast by using a Fisher analysis.

6The coefficients C2, C4, which are determined by renormarization in Eq. (5.103), are different
between the 2nd moment and the 4th moment. Therefore, even if b(2)

NGA2 = b
(4)
NGA4, the corresponding

contribution of the PNG for n = 4 is larger than the one for n = 2 by the factor (C4/C2)2 =
(35/12)2 ∼ 9.
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On the other hand, in the 4th moment induced by the spin-4 particles, since the shape
noise for the 4th moment shape is unknown, we study a rough forecast by estimating
the signal-to-noise ratio when the NLA is used as noise term up to the scale where
the non-linear is negligible.

Spin-2 case

We study how well future observations will be able to constrain the model parameters
by using the Fisher matrix formalism (see e.g., Refs. [130, 131, 132]). The Fisher
information matrix is given by

Fij =
∑
l

(2l + 1)fsky
2 Tr

(
C−1∂C

∂pi
C−1 ∂C

∂pj

)
, (5.111)

with the covariance matrix

C(l) ≡

 C
(0,0)
l C

(0,2)
l

C
(0,2)
l C

(2,2)
l

 . (5.112)

Here, pi is a model parameter. Recall that in this section, we consider the case with
the parity symmetry and the global rotational symmetry, which lead to the absence
of the B-mode and correlations among different multipoles under the consideration
on the large scale.

As a noise effect, here we consider the shot noise which we assume to be white
spectrum as

N (2,2) =
σ2
γ

n̄G
, N (0,0) = 1

n̄n
, N (0,2) = 0 , (5.113)

where σ2
γ is the dispersion of the intrinsic shape with instrumental noise per compo-

nent, n̄G is the projected surface density of galaxies with shapes per steradian, and n̄n

is the galaxies clustering density per steradian. We include this noise effect, changing
the angular power spectra in Eq. (5.112) as

Cαl → Cαl +Nα
l , (α = (0, 0), (0, 2), (2, 2)) . (5.114)

In the following, considering a noise estimation for an LSST-like measurement [8, 128],
we use fsky = 0.5, n̄G = 37/arcmin2, n̄n = 46/arcmin2, and σγ = 0.25 . Furthermore,
we use the function dNn/dz for the number density given by

dNn

dz
∝
(
z

1.0

)1.25
exp

[
−
(
z

1.0

)1.26
]
, (5.115)

and the function dN/dz for the 2nd moment galaxy shape as Eq. (5.106) with z∗ =
0.51. For simplicity, though we use the same distribution of the intrinsic shape and
the weak lensing, actually, the distribution of the intrinsic shape and the weak lensing
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are different because The former targets the only red galaxy, while the latter is all
samples. To study how the forecast on parameter uncertainties changes, depending
on the galaxy redshift distribution, we leave z∗I for the intrinsic shape, which we
assume to be equal to z∗G for the weak lensing, as a free parameter.

For a simple halo model, the non-linear bias parameter for the number density
b
(0)
NG is given by [22, 133, 134] (see also Ref. [135])

b
(0)
NG = (b(0)

δ − 1)δc , (5.116)

where δc (= 1.686) denotes the critical density for spherical collapse. Along the line
with the convention of the tidal alignment [136], we set the linear bias parameter b(2)

K

as

b
(2)
K (z) = b̄I1Ωm0

D(0)
D(z) , (5.117)

which is consistent with observations of luminous red galaxies. Meanwhile, the non-
linear bias parameter for the galaxy shape b(2)

NG is not very well known. Assuming
that b(2)

NG is a constant parameter which is comparable to b(2)
K [41], we parametrize

b
(2)
NG as

b
(2)
NG = b̄ING b̄

I
1 Ωm0 = b̄ING b

(2)
K (z)D(z)

D(0) . (5.118)

Here, b̄ING is another constant parameter.
The present setup includes the parameters

{b(0)
δ , b̄I1, A0, b̄

I
NGA2, As}, (5.119)

where As is the amplitude of the scalar power spectrum at the pivot scale kp =
0.05Mpc−1, and the parameters

{Re[∆0], ν0, Θ0, Re[∆2], ν2, Θ2}, (5.120)

which characterize the scale dependence of C(0,0)
l and C

(2,2)
l . Since b̄ING and A2

entirely degenerate, here we take b̄INGA2 as a single parameter. In the following,
considering a certain model of inflation, we fix the parameters (5.120) to specific
values. In particular, we consider the PNGs which are generated in two different
inflation models:

1. Inflation model with multi-light scalar fields and a massive spin-2 field in the
principal series coupled with the inflaton, where the PNG with A0, A2, ν2 6= 0
and ∆0 = ν0 = Θ0 = 0 and Re[∆2] = 3/2 can be generated.

2. Inflation model with a massive scalar field and a massive spin-2 field which are
both in the principal series and are both coupled with the inflaton, where the
PNG with A0, A2, ν0, ν2, 6= 0 and Re[∆0] = Re[∆2] = 3/2 can be generated.
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Here, marginalizing over other parameters, we discuss a possible constraint on the
parameters p1 ≡ A0 and p2 ≡ b̄INGA2. When all other parameters, leaving aside either
of p1 or p2, are fully marginalized, the 1σ bound on pi is given by σ(pi) =

√
(F−1)ii

(see e.g., Ref. [130]). Here, we choose the fiducial values of the parameters (5.119) as

(b(0)
δ , b̄I1, A0, b̄

I
NGA2, As) = (2, −0.1, 0, 0 , 2.2× 10−9) ,

where the fiducial value of As is set to the best fit value of Planck 15 [137]. For the
Fisher analysis, we use the angular power spectra with 3 ≤ l ≤ 600. Table 5.1 and
Table 5.2 show the 1-σ uncertainties of pi (i = 1, 2) for the model 1 and the model 2,
respectively.

ν2 = 3 σ(f loc
NL) σ(b̄INGA2) ν2 = 6 σ(f loc

NL) σ(b̄INGA2)
Θ2 = 0 1.9 7.5× 103 Θ2 = 0 1.9 2.1× 104

Θ2 = π/2 1.9 7.1× 103 Θ2 = π/2 1.9 2.5× 104

Table 5.1: 1-σ uncertainties of the non-Gaussian parameters A0 and
bINGA2 for the model 1 with the other parameters fully marginalized.
The parameter ν2 was set to ν2 = 3 (Left) and ν2 = 6 (Right). Here,
considering an LSST-like measurement, we set z∗ a with a = I, G as
z∗ I = z∗G = 0.51. Adjusting to the convention, we used f loc

NL, which is
related to A0 as f loc

NL = A0/4.

ν0,2 = 3 σ(A0) σ(b̄INGA2) ν0,2 = 6 σ(A0) σ(b̄INGA2)
Θ0,2 = 0 3.5× 103 1.0× 104 Θ0,2 = 0 7.4× 103 3.1× 104

Θ0,2 = π/2 4.3× 103 1.0× 104 Θ0,2 = π/2 8.7× 103 3.7× 104

Table 5.2: The same as Table 5.1 for the model 2. The parameter
ν0 and ν2 were set to ν0 = ν2 = 3 (Left) and ν0 = ν2 = 6 (Right). For

simplicity, we choose the same value for the phases Θ0 and Θ2.

In order to examine a possible degeneracy among the non-Gaussian parameters,
we also compute a partially marginalized bound on the parameters pi(i = 1, 2), using
the submatrix (F−1)i=[1,2],j=[1,2]. Here, we marginalize only over the parameters
{b(0)
δ , b̄I1, As}. The result is in Fig. 5.11. As is shown in the left panel, there is almost

no degeneracy between f loc
NL and b̄INGA2. This is because f loc

NL contributes to low ls, but
b̄INGA2 contributes to high ls. On the other hand, as is shown in the right panel, there
is some degeneracy between A0 and b̄INGA2, because both of them contribute to high
ls7.(A correlation between the PNGs from fields with different spins was discussed in
Ref. [139].)

The constraint on A0 with ν0 = Θ0 = 0, so no oscillatory feature, was discussed in
Ref. [140], including also the non-linear loop corrections. As is shown in Fig. A.2, the
enhancement due to the PNG becomes less significant for a larger value of νs, since

7Our constraint on f loc
NL is much tighter than the one in Ref. [41]. This is mainly because our

redshift distribution dNn/dz extends to higher redshift region than the one used in Ref. [41]. In fact,
when we use the redshift distribution for LSST red samples [138] and set n̄I, n̄G and n̄n to the values
used in Ref. [41], i.e., n̄I = n̄G = 3 and n̄n = 26, we obtain σ(f loc

NL) = 8.3, σ(b̄INGA2) = 3.0× 103 for
ν2 = 3 and Θ2 = 0. Now, σ(f loc

NL) = 8.3 is almost same as the one in Ref. [41].
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Figure 5.11: These plots show 1-σ and 2-σ uncertainties in the
non-Gaussian parameters A0 and b̄INGA2, when we marginalize over
{b(0)
δ , b̄I1, As}. The red solid lines show the 1-σ contours and the blue

dotted lines show the 2-σ contours. The left panel is the model 1
(with ∆0 = ν0 = Θ0 = 0 and the right one is the model 2 (with
Re[∆0] = 3/2). Other parameters are set to Re[∆2] = 3/2, ν2 = 3,
Θ2 = 0 (Left) and Re[∆0] = Re[∆2] = 3/2, ν0 = ν2 = 3, Θ0 = Θ2 = 0

(Right).

the oscillatory contribution is more smoothed out by integrating over k. Because of
that, constraints for ν0 = ν2 = 6 become weaker than those for ν0 = ν2 = 3.
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Figure 5.12: The left and right panels show R
(2)
σ and R(0)

σ , respec-
tively, which are defined in Eq. (5.121). The blue solid lines show the
case with ν0 = ν2 = 0 and the orange dotted lines show the case with

ν0 = ν2 = 3. For both cases, we set Θ0 = Θ2 = 0.

When Re[∆s] with s = 0, 2 are 3/2, the dominant signals of the PNG come
from the small scales with k > keq. Therefore, the possible constraints on the non-
Gaussian parameters are highly sensitive to kmax or lmax. In Fig. 5.12, to see the lmax

dependence of 1-σ uncertainty, we plotted

R(s)
σ ≡

σ3≤l≤lmax(xs)
σ(xs)

s = 0, 2 , (5.121)
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with x0 = A0 and x2 ≡ b̄INGA2. Here, σ3≤l≤lmax(xs) denotes the 1-σ uncertainty when
we only use 3 ≤ l ≤ lmax, i.e., σ(xs) = σ3≤l≤600(xs). For both s = 0 and s = 2,
R

(s)
σ,max does not change much until around lmax = 100 and it significantly drops for

lmax >∼ 100, approaching to 1.
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Figure 5.13: This plot shows how the 1-σ uncertainty of b̄INGA2
changes under a variation of z∗I = z∗G for different values of ν2. Here,

we chose Θ2 = 0.

The forecast of 1-σ uncertainties in the non-Gaussian parameters also depends on
the redshift distribution of galaxies dN/dz.

Figure 5.13 shows a change of the 1-σ uncertainty for the parameter b̄INGA2 under
a variation of z∗I(= z∗G). As we change z∗I to a smaller value, the peaks of the linear
spectra shift to lower multipoles, leaving more spaces for the PNG with Re[∆s] > 0
to exhibit the signal at the high multipoles. Because of that, a galaxy survey that
explores lower redshift tends to give a tighter constraint if it were to be no oscillation
(see the plot with ν2 = 0). Notice however that σ(b̄INGA2) does not monotonically
decrease as we decrease z∗I in the presence of the oscillation, i.e., ν2 6= 0. It is because
depending on the phase Θ2, the oscillation can reduce the signal of the PNG at the
high multipoles at which the contribution from the PNG can dominate the linear
contributions.

In the present analysis, we only considered a single tracer and integrated over the
whole redshift distribution of galaxies, losing the information about modes along the
line of sight (see also the discussion in Ref. [41]). Therefore, using tomographic infor-
mation for multi tracers will improve our constraints on the non-Gaussian parameters.
(For a multi-tracer analysis with ∆2 = ν2 = 0, see [129]. See also Ref. [83].)
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Figure 5.14: This plot shows the amplitude of the PNG b
(4)
NGA4 which

is required for a detection with S/N = 5 by a survey covering a fraction
fsky = 0.5 of the sky when including scales up to lmax = kNL(z)χ(z).
The blue solid line corresponds to ∆4 = 0 and the orange dotted line

corresponds to ∆4 = 3/2.

Spin-4 case

As discussed in Sec. 5.2.2, since the dominant contamination to the s = 4 signal at
k < kNL comes from NLA, in the following, we ignore the contributions of the linear
alignment and weak lensing. The signal to noise ratio (S/N) for each redshift, which
is not cumulative, is expressed by

[S/N]2(z) ∼ fsky

lmax∑
l=4

(2l + 1)
[

C(4,4)PNG(l, z)
C(4,4)PNG(l, z) + C(4,4)NLA(l, z)

]2

, (5.122)

where fsky is the sky fraction to the galaxy imaging survey and C(4,4)NLA(l, z) denotes
the NLA contribution which is crudely estimated by using Eq. (5.66). Here, we have
discarded the contribution from the non-linear scales, setting lmax = kNL(z)χ(z).

For ∆4 = 0 (without dilution), S/N becomes independent of lmax when we choose
a sufficiently large lmax, since the shape signal of PNG is significant at the large scales.
On the other hand, for Re[∆4] = 3/2 (with dilution), since the signal dominates the
shape noise only at the small scales, S/N depends on the choice of lmax. However, since
we cannot selectively single out the contribution of the spin-4 particle, we expect that
increasing lmax will not improve the actual S/N very much. Meanwhile, the forecast
depends on kNL, which determines the scales at which the PNG can be selectively
detected. The amplitude of the PNG b

(4)
NGA4 needs to be roughly factor 4 larger for

a detection, when we choose kNL,z=0 = 0.1h/Mpc.
Using Eq. (5.122) we can compute the corresponding amplitude of the PNG which

can be detected for a given S/N. Figure 5.14 shows the amplitude of b(4)
NGA4 which

is detectable with S/N = 5 for a survey covering a fraction fsky = 0.5 of the sky
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up to redshift z. The increasing volume and number of modes available at higher
redshift lead to improved constraints. Further, as discussed in Sec. 5.5.1, since the
NLA contribution is smaller at higher redshifts while the PNG contribution remains
constant, we find that the high redshift survey works in favor of PNG detection.
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Chapter 6

Conclusion

We have investigated the contributions of the PNGs on the galaxy shape correlations
for future galaxy imaging surveys, focusing specifically on the angular-dependent
PNGs. First, we have prepared galaxy shape functions for arbitrary moments through
the shape moment decomposition of the galaxy shapes. Moreover, for the observa-
tional analysis, we have generalized the angular power spectrum by using the conven-
tional cosmic shear analysis to arbitrary spin components of galaxy shape functions,
assuming that the leading term for shape functions is the matter density fluctua-
tion. Under this assumption, only the E-mode is generated since we perform the
spin-decomposition on a linear scalar field as a matter density field. This is useful for
shape analysis on the sky by using the photo-z samples.

In order to distinguish between a signal of new physics through PNGs and other
contributions, we need to understand the predictions of the galaxy shape correlations
in the concordance cosmology. Assuming ΛCDM cosmology with the Gaussian ini-
tial condition, which is a representative model of our Universe, we have estimated
the contributions of the linear and non-linear alignments, derived from the external
tidal fields, and the contributions of the linear and non-linear weak lensing to the nth
shape moment. The estimation of these contributions is necessary to test whether
the contribution of PNGs produces significant changes compared to these potentially
emerging signals. In the case of the 2nd moment galaxy shape, which corresponds to
the usual cosmic shear, the contributions both of the linear weak lensing and the linear
alignment mainly contaminate the signals of the new physics. Meanwhile, in the case
of the higher galaxy shape moment with n > 2, the linear contributions, including
the weak lensing distortion, are suppressed by a positive power of k/k∗ � 1, where k∗
is the reference scale. These suppressions lead to the dominant contaminations from
loop contributions through the non-linear alignment. We have investigated the con-
tributions of the non-linear alignments by the estimation of these loop contributions
with the self-similarity solutions.

This thesis focuses on the angular-dependent PNGs generated through the integer
spin particles during inflation. We have found that under an ideal galaxy imaging
survey, the different galaxy shape moments can supply the imprints of new particles
with different spins separately. However, the detection of the separate imprints of spin
particles only works on the larger scales than the non-linear scale kNL. This is because
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the contamination from the loop contributions contains the angular dependence by
different spins through the kernel functions.

Specifically, we have investigated the effects of the angular-dependent PNGs, in-
cluding the different scalings as ∆s = 0 and Re[∆s] = 3/2, for the 2nd moment and
the 4th moment shapes. As mentioned above, the 2nd moment shape is greatly af-
fected by the linear alignment and the weak lensing, while the 4th moment shape is
influenced by non-linearity effects. The effects of angular-dependent PNGs are the
same in both cases. The contribution of ∆s = 0 appears on a large scale while that
of Re[∆s] = 3/2 appears on a small scale. In the former case, the cosmic variance
can be problematic for its detection of the PNGs. However, as one possible solu-
tion, the multi-tracers technique, which uses not only red galaxies responding to the
external tidal fields but also blue galaxies, has the potential to improve the cosmic
variance [129]. On the other hand, in the case of Re[∆s] = 3/2, though the cosmic
variance is not an essential issue of the detection of the signal of PNGs, the non-
linearity contamination from the loop contributions appears. It leads to mixing the
contributions of the different spins and the contamination from the Gaussian pertur-
bation due to the time-evolution. However, the imprints of the oscillatory feature not
just scaling may allow us to distinguish other contributions.

We also have studied the forecast of the constraints on the amplitude of PNGs
assuming an LSST-like survey. For practical forecasts, we need to consider the shape
noise. Although the shape noise for the 2nd moment shape was estimated based
on LSST, the shape noise for the 4th moment is still unknown. Instead, for rough
estimation, we have used the contribution of k0 from the large scale limit (k → 0) of
the loop contribution of the non-linear alignment1. As a result, we have found that
the deeper galaxy imaging survey can detect the O(1) amplitude of the PNGs with
the scaling of ∆s = 0. Meanwhile, detecting the PNGs with Re[∆s] = 3/2 is rather
challenging. This is because the PNGs contribution appears at smaller scales.

We have considered another case of angular-dependent PNGs with global anisotropy.
Examining this case gives us whether the signal from the angular-dependent PNGs
generated by spin-particles, which have the property of the global rotational symme-
try, is unique or not. We have found that the distinctive contributions of the angular
dependent PNGs which violates the global rotational symmetry to galaxy shapes are
as follows; i) Non-zero B-mode signal, ii) Correlations between different multipoles l,
iii) Azimuthal dependence of angular spectra. These differences help distinguish the
PNGs with the global anisotropy and the one with global isotropy.

As for future works, the use of the biased tracers such as the galaxy density and
the galaxy shapes causes the bias from the long-wavelength mode perturbation and
the amplitude of the PNGs to degenerate. For the galaxy bias, though we can solve
the degeneracy of bias analytically by using the peak theory, there is no such theory
for the galaxy shapes. In order to extract the actual amplitude of the PNGs, we
also need to solve these degeneracies through a theoretical approach for the galaxy

1Note that we need to renormalize the loop contribution on the large scales with the noise terms.
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shape bias. The degeneracy in the 2nd moment has recently been approached from
N -body simulation [42]. A similar method may be useful for the 4th moment. In
addition, it may be beneficial to estimate the more realistic shape noise of higher-order
shape moments. However, it may be challenging to investigate the PNGs induced by
spin-4 in N -body simulations using the commonly used TreePM method. This is
because even if the spin-4 contribution is implemented in the initial conditions, it
may not reflect the effects of contributions above the third-order derivative as long
as the Poisson equation is used. This requires either ingenious calculations or direct
gravitational interaction calculations.
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Appendix A

Angular power spectra for
number density and 2nd
moment shape

In this appendix, using Eqs. (5.64) and (5.103), we numerically compute the angular
power spectra for the perturbation of the number density and the 2nd moment shape
(cosmic shear). Here, we adopt the Limber approximation [141, 142] for l ≥ 60.
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Figure A.1: These plots show the angular auto-power spectra
CEE
l (C(2,2)

l ) (Left) and Cnn
l (C(0,0)

l ) (Right) for initial conditions with
different PNGs. The blue solid lines show the case with b̄INGA2 = 0
(Left) and A0 = 0 (Right), including the Gaussian initial condition. In
the left panel, the green dotted line shows the case with b̄INGA2 = 100
and ∆2 = ν2 = Θ2 = 0 and the red dashed line shows the case
with b̄INGA2 = 8 × 103, Re[∆2] = 3/2, ν2 = 3, and Θ2 = 0. In
the right panel, the green dotted line shows the case with A0 = 10
and ∆0 = ν0 = Θ0 = 0 and the red dashed line shows the case with
A0 = 8× 103, Re[∆0] = 3/2, ν0 = 3, and Θ0 = 0. The shaded regions
show the noise due to the cosmic variance computed for the Gaussian

initial condition. Here, we set z∗ I = z∗G = 0.3.

The left panel of Fig. A.1 shows the angular spectrum of the E-mode cosmic shear
(the 2nd moment shape), given in Eq. (5.103) for three different initial conditions.
The blue line shows the case with A2 = 0, which includes the case with the Gaussian
initial condition. The green dotted line shows the case with b̄INGA2 = 100 and ∆2 =
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ν2 = Θ2 = 0, which was studied in Ref. [41]. The red dashed line shows the case
with b̄INGA2 = 8000, Re[∆2] = 3/2, ν2 = 3, and Θ2 = 0, which can be generated from
the massive spin 2 field. Here, we set the (remaining) bias parameters as b(0)

δ = 2,
b̄I1 = −0.1, and b̄ING = 1 [41] and the shape distribution as z∗ I = z∗G = 0.3. The
right panel of Fig. A.1 shows the angular power spectrum of δn for the three different
initial conditions: A0 = 0 (Blue), A0 = 10, ∆̃0 = ν0 = Θ0 = 0 (Green dotted), and
A0 = 8000, Re[∆0] = 3/2, ν0 = 3, Θ0 = 0 (Red dashed). The imprint of the PNG
with A0 6= 0 on Cnn

l appears in a similar way to the one of the PNG with A2 6= 0 on
CEE
l . In Fig. A.1, we set the non-Gaussian parameters b̄INGA2 and A0 to those which

roughly amount to the 1σ uncertainties obtained in Sec. 5.5.3. The deviations of the
cases with Re[∆s] = 3/2 (the red dashed lines) from the Gaussian case (the blue solid
lines), which are not visible in Fig. A.1, are manifestly shown in Fig. A.2.

Since M(k, z) scales as k2 in the limit k → 0, for ∆2 = 0, the contribution of
PNGs becomes larger at larger scales, leading the relative enhancement for small ls.
On the other hand, for Re[∆2] = 3/2, the enhancement at the low multipoles are
not significant. Instead, the imprint of the PNG becomes more and more significant
at higher multipoles. This can be understood as follows. For k � keq, where keq

denotes the comoving Hubble scale at the matter-radiation equality and is given by
keq ' 1.6 × 10−2h/Mpc, M(z, k) ceases to depend on k. Therefore, in the range
k � keq, the PNG contribution (5.103) can dominate the linear term (5.64) for
Re[∆2] > 0 and Re[∆0] > 0, respectively. For the higher multipoles on which the
information of the modes k > keq is encoded, using the Limber approximation, we
find that the auto-correlations of the contributions from the PNG scale as

C
(2,2),PNG
l ∝ l2Re[∆2]−3+ns−1 , C

(0,0),PNG
l ∝ l2Re[∆0]−3+ns−1 , (A.1)

where ns is the spectral index for the adiabatic perturbation. (Here, dropping the
oscillatory contributions, we only picked up the powers of l.) Therefore, especially for
Re[∆s] ' 3/2 with s = 0, 2, the contributions from the PNG in the angular spectra
stay almost constant at the higher multipoles in contrast to the linear contributions
which are suppressed.

To exhibit the enhancements of the contribution from the PNG at the high multi-
poles more clearly, in Fig. A.2, we plot the fractional changes of CEE

l and Cnn
l which

quantify the contributions from the PNG as

∆α
l ≡
|Cαl − Cαl ,Gauss|

Cαl ,Gauss
(α = EE, nn) , (A.2)

where Cαl ,Gauss denotes the angular power spectrum computed for the Gaussian initial
condition. The different lines show the PNG with the different periodic oscillations
and the phases. Notice that there is a phase difference between ∆EE

l and ∆nn
l with

the same oscillatory period, i.e., ν2 = ν0, and the phase, i.e., Θ2 = Θ0.
In Ref. [140], the modification of the halo bias due to the presence of the PNG
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Figure A.2: These plots show the fractional changes ∆α
l , defined in

Eq. (A.2), for α = EE (left) and for α = nn (Right). The parameters
Re[∆0] and Re[∆2] are both chosen to be 3/2. In the left panel, b̄INGA2
is set to b̄INGA2 = 8000 and in the right panel, A0 is set to A0 = 8000.
The shaded regions show the variance computed by taking into account

the cosmic variance. Here, we set z∗ I = z∗G = 0.3.

with A0 6= 0 and 0 ≤ Re[∆0] ≤ 2 was computed. It was shown that for a larger
Re[∆0], the signal of the PNG appears in the small scales (see also Ref. [143]). Here,
we have shown that the signal of the PNG with A2 6= 0 and Re[∆2] = 3/2 also
becomes more prominent at higher multipoles which capture the contributions of the
modes k > keq.

For ∆s = 0, the information of the PNG is encoded in large-scale fluctuations.
Therefore, the detection of such a PNG is usually limited by the cosmic variance.
On the other hand, for a larger value of Re[∆s], the situation becomes very different,
since the signal of the PNG appears in small scales. For an accurate computation,
we need to include non-linear evolution.
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Appendix B

Angular dependent PNG with
global anisotropy

In this appendix, we discuss the influence of the PNG with global anisotropy to the
galaxy shape. Similarly to the case with the angular dependent PNG with the global
isotropy (2.64), the angular dependent PNG without the global isotropy, which will
be introduced in Sec. B.1, also can deform intrinsic shapes of galaxies. Given that
these two different cases are not distinguishable from the power spectrum but the
difference shows up only from non-Gaussian correlators such as the bispectrum, can
we observationally distinguish these two cases? If this is not possible, the enhanced
cosmic shear due to the intrinsic alignment cannot be a unique signal which shows the
presence of massive fields with the spin s ≥ 2 in the early universe. We will address
this question in the succeeding sections.

B.1 PNG with global anisotropy

In order to assert that the enhanced intrinsic alignment is a unique signal of such
spinning fields, the signal has to be distinguishable from those generated by other
sources. As an example, let us consider a PNG given by

B̄Ψ(kL, kS; p̂) =
∞∑
l=0

[
Āl + B̄l k̂L · k̂S + · · ·

]
i

1−(−1)l
2 Pl(p̂ · k̂S)PΨ(kL)PΨ(kS) , (B.1)

where l sums over all non-negative integers. In addition to the terms which depend on
the angle between kL and kS, the bispectrum B̄Ψ also contains the terms which depend
on the constant unit vector p̂. While the global rotational symmetry is preserved in
Eq. (2.64), it is not the case for B̄Ψ. In the square brackets, we abbreviated terms
with more powers of k̂L · k̂S. The coefficients Āl and B̄l do not depend on k̂S, but
can depend on kL, kS, and k̂L · p̂.

The PNG (B.1), which depends on the constant vector can be generated, when the
primordial curvature perturbation is also sourced by a vector field (see e.g., Refs. [99,
144]). Even if the contribution from the vector field, which breaks the global rotational
symmetry, is suppressed in the power spectrum, being compatible with the current
CMB observations [3, 145], it is not necessarily suppressed also in the higher-point
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functions. (The global anisotropy in the galaxy and CMB spectra was studied e.g.,
in Refs. [146, 147, 148].) This possibility was explored in Ref. [99] and claimed that
this is in fact possible in the presence of an enhanced cubic interaction. (See also
Refs. [78, 149].)

B.2 PNG contribution to galaxy shape function

We consider the PNG (B.1) with a violation of the global rotational symmetry, which
may be sourced from a vector field during inflation. Repeating a similar computation
in Sec. 5.4.1, we find that the PNG (B.1) yields the following contributions in the
galaxy shape function g̃ij :

g̃ij ∝
(
p̂ip̂j −

1
3δij

)
Ψ ,

(
p̂i∂j + p̂j∂i −

2
3δij p̂

k∂k

)
Ψ , · · · , (B.2)

which breaks the global rotational symmetry. The computation becomes somewhat
lengthy and is summarized in Appendix D.5.1.

Including a typical contribution of the intrinsic alignment in the presence of the
global anisotropy, here, we consider the case where the galaxy shape function is given
by

g̃ij(x, z) =
∫

d3k

(2π)3 e
ik·x

[
b
(2)
K

(
k̂ik̂i −

1
3δij

)
δ(z, k)

+ 3bpNGĀ2

(
k

k∗

)∆p
(
p̂ip̂j −

1
3δij

)
Ψ(k)

]
, (B.3)

where bpNG denotes the bias parameter after the renormalization. (Here, we introduced
the factor 3 for the non-Gaussian contribution, adjusting to the notation in Sec. 5.4.1
) For instance, when the primordial bispectrum is given by Eq. (B.1) with Ā2 6= 0
and B̄2 = O((kL/kS)), the leading contribution of g̃ij takes the form of Eq. (B.3).

Meanwhile, any galaxy surveys can probe only a finite spatial region in the uni-
verse. Because of that, even if the primordial bispectrum preserves the global isotropy,
the limitation of the survey region can lead to an apparent anisotropic clustering of
galaxy distributions, depending on the shape of the survey region [150] (see also
Ref. [151]).

In the following, considering g̃ij given by Eq. (B.3) without specifying the origin
of the global anisotropy therein, we consider its observable imprints on the cosmic
shear. We assume the power spectrum of Ψ with the global isotropy. (According
to Ref. [99], the global anisotropy appears only from the bispectrum in a certain
parameter range of the model.)
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Following Sec. 5.1, we obtain the coefficient aIA
lm for the expansion series of the

intrinsic galaxy shear in terms of the spin weighted spherical harmonics as

aIA
lm = 2π

√
(l + 2)!
(l − 2)!

∫
d3k

(2π)3 δ(k)
2∑

s=−2
F

IA,(s)
l,m (k)il+sY ∗l+s,m(k̂) , (B.4)

where δ(k) is the matter perturbation at present and F IA,(s)
l,m (k) is given by

F
IA,(s)
l,m (k) ≡

∫
dz
dNI
dz

D(z)
D(0)jl+s(x)

×
[
−b

(2)
K

x2 δs,0 + 3bpNGĀ2

(
k

k∗

)∆p

M−1(z, k) (l − 2)!
(l + 2)!α

(s)
l,m

]
. (B.5)

The detailed computation and the expression of α(s)
l,m are summarized in Appendix

D.5.2. Notice that the violation of the global rotational symmetry leads to the con-
tamination of the different multipoles l + s with s = ±1, ±2. The first term in the
square brackets of Eq. (B.5) is the contribution which preserves the global rotational
symmetry and the second term is the one which does not. The overall factor of the
second term has the typical form of the scale dependent bias.

Notice that for the present pattern of the symmetry breaking, all of α(s)
l,m vanish

for l = 0 and l = 1. Therefore, the lowest multipole of the cosmic shear is still l = 2.
Also notice that αl,m takes a different value, depending on the value of m, and in
particular, we find

α
(s)
l,−m = α

(s)
l,m (s = 0, ±2) , α

(s)
l,−m = −α(s)

l,m (s = ±1) . (B.6)

In doing the harmonic expansion, we defined the z axis (with the colatitude angle
θ = 0) to be along the constant vector p̂. Some of the properties described here are
specific for this coordinate choice (see Appendix D.5.2).

B.3 Angular power spectrum

Using aIA
lm, given in Eq. (B.4), now we can compute the angular power spectrum of

the cosmic shear. The second term in the left-hand side of Eq. (B.3) only contributes
to the intrinsic alignment, leaving the perturbation of the number density and the
gravitational lensing shear intact. Therefore, simply changing the contribution of the
galaxy alignment into Eq. (B.4) in the computation of the previous section, we can
obtain the angular power spectra as

〈aXlmaY ∗l′m′〉 = CXYl,l′;mδm,m′ , (B.7)

where X, Y = n, E, B. Since the galaxy alignment has sensitivity to the direction
of the constant vector field p, the B-mode cosmic shear takes a non-vanishing value.
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For instance, the auto-correlation of the B-mode is given by

CBB
l,l′;m = 1

2π

√
(l − 2)!
(l + 2)!

√
(l′ − 2)!
(l′ + 2)! (3bpNGĀ2)2 ∑

s=±1

∑
s′=±1

δl+s, l′+s′α
(s)
l,mα

(s′)
l′,m

×
∫
dz
dNI
dz

∫
dz′

dNI
dz′

∫
dkk2 jl+s(kχ(z))jl′+s′(kχ(z′))

(
k

k∗

)2∆p

Pφ(k). (B.8)

Since the weak lensing contribution disappears at linear order, the B-mode cosmic
shear only appears from the intrinsic galaxy alignment. (The weak lensing effect
beyond Born approximation generates the BB correlation [152].)

Except for X = Y = n, on which the violation of the global rotational symmetry
does not affect, Cl,l′;m has non-diagonal components on l. This is summarized in Table
B.1. We find that the auto-correlations CEE

l,l′;m and CBB
l,l′;m and the cross-correlation

CnE
l,l′;m take non-vanishing values, when l − l′ are even numbers. On the other hand,

the cross-correlations CEB
l,l′;m and CnB

l,l′;m take non-vanishing values, when l − l′ are
odd numbers. This is because aE

lm consists of the density perturbation with l, l ± 2
and aB

lm consists of the one with l± 1. As discussed in Sec. 5.1.1, even if there exists
off-diagonal component, the parity of these correlations is conserved. For an

lm, there
is no mode coupling between different multipoles.

l′ l − 4 l − 3 l − 2 l − 1 l l + 1 l + 2 l + 3 l + 4
CEE
l,l′;m Red 0 Green 0 Blue 0 Red 0 Green

(solid) (dashed) (dotted) (dot- (cross)
dashed)

CEB
l,l′;m 0 0 0 0 0

CBB
l,l′;m 0 0 Red 0 Green 0 Blue 0 0

(solid) (dashed) (dotted)
CnE
l,l′;m 0 0 0 0 0 0

CnB
l,l′;m 0 0 0 0 0 0 0

Table B.1: For the components which identically vanish, we put 0,
otherwise non-zero. The modes with colour descriptions are shown
in those colours in Fig. B.2, which shows the auto-correlations of the

E-mode and the B-mode.

Figure B.1 shows the auto-correlations of the E-mode and the B-mode, when the
PNG is given by Eq. (2.64) with Ā2 6= 0 and B̄2 = ∆p = 0. In this case, the galaxy
shape function is given by Eq. (B.3) with ∆p = 0. For a comparison, we also plotted
the angular spectra for the Gaussian initial condition and also for the PNG (2.64),
which preserves the global rotation symmetry, with A2 6= 0 and ∆2 = ν2 = Θ2 = 0. In
this computation, we choose the bias parameters as Eq. (5.117) and bpNG = b̄pNG b̄

I
1 Ωm0

with b̄I1 = −0.1. Here, other bias parameters are irrelevant. The PNG (B.1) leads to
the enhancement of the E-mode at large scales likewise the PNG (2.64) with ∆2 = 0.
Because of the parity violation in the galaxy alignment, the B-mode takes a non-
vanishing value and is enhanced especially at low multipoles.
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Figure B.1: The left panel shows the E-mode cosmic shear and the
right panel shows the B-mode cosmic shear for three cases; the blue
solid line shows the case with the Gaussian initial condition, the green
dotted line shows the case with the PNG (2.64) with A2 6= 0 and
∆2 = ν2 = Θ2 = 0, and finally the orange dashed and dot-dashed lines
show the case with the PNG (B.1) with Ā2 6= 0 and B̄2 = ∆p = 0. The
non-Gaussian parameters are set to b̄INGA2 = b̄pNGĀ2 = 100. In the
first two cases, the global rotational symmetry is preserved, while it is
broken in the last one. The angular power spectra for the PNG (B.1)
has the non-diagonal components of l and the azimuthal dependence.
Here, we only plot the power spectra with l = l′. We plotted m = 0
and m = 2 for the E-mode and m = l and m = l − 1 for the B-mode.

Here, we set z∗I = z∗G = 0.51.
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Figure B.2: The angular power spectra of the E-mode (Left) and
the B-mode (Right) for the diagonal and non-diagonal components.
The left panel is the E mode auto-correlation with m = m′ = 0. The
right one is the B mode auto-correlation with m = m′ = l − 2. The
non-Gaussian parameters are set to b̄INGA2 = b̄pNGĀ2 = 100. Here, we

set zI = z∗G = 0.51.



Appendix B. Angular dependent PNG with global anisotropy 97

Figure B.2 shows the angular power spectra of the E-mode and the B-mode
for the diagonal and non-diagonal components of ls. For the E-mode, we find that
the diagonal component with l = l′ takes a larger amplitude than the non-diagonal
components with l−l′ = ±2 and l−l′ = ±4 and among the non-diagonal components,
the former takes a larger amplitude than the latter. This can be understood by
focusing on the contributions of the linear alignment term and the lensing term.
They do not contribute to CEE

l,l′;mwith l − l′ = ±4 and contribute to the one with
l − l′ = ±2 only as the cross-correlation with the term from the PNG.
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Figure B.3: The left panel shows the azimuthal dependence for
CEE
l,l;m′ and the right one shows the same for CBB

l,l;m′ . Here, the an-
gular power spectra are normalized by the maximum values for each

l. Here, we set z∗I = z∗G = 0.51.

As another consequence of the violation of the global rotational symmetry, the
angular power spectra (other than Cnn) take different values for different ms. This
is summarized in Fig. B.3, which shows the azimuthal dependence of CEE

l,l′;m and
CBB
l,l′;m with l = l′. Notice that the azimuthal modes m which are highly asymmetric

lead to the larger global rotational symmetry violation, generating larger values of
CBB
l,l′;m. In fact, CBB

l,l′;mvanishes for m = 0. In contrast, CEE
l,l′;mtakes non-vanishing val-

ues for all azimuthal modes and the amplitude does not change as much as CBB
l,l′;mdoes.
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Appendix C

Convenient formualae

C.1 Covolution integral

A general function f(x) in real space is transformed into the Fourier space by

f(x) =
∫

d3k

(2π)3 e
−ik·xf(k) . (C.1)

We note that the difference between the Fourier space and the real space is expressed
by the argument in the function. And the inverse Fourier transformation is given by

f(k) =
∫
d3x eik·xf(x) . (C.2)

When we want to transform the multiple function fn(x) in real space into the Fourier
space, this can be given by the convolution integral calculation.

fn(x) =
∫

d3k

(2π)3

∫
d3k1
(2π)3 · · ·

∫
d3kn
(2π)3 e

−ik·x(2π)3δD(k − k1 − · · · − kn)f(k1) · · · f(kn)

(C.3)

C.2 Spherical harmonics function

The shperical harmonics function on 3D spherical coordinates is given by

Y`m(θ, ψ) = εm

√
2`+ 1

4π
(`− |m|)!
(`+ |m|)!P

|m|
` (cos θ)eimψ ; εm =

{
1 (m > 0)
(−1)m (m ≤ 0)

,

(C.4)

where P |m|` is the associated Legendre function, which for m ≥ 0 satisfies

Pm` (µ) = (−1)m(1− µ2)m/2 d
m

dµm
P`(µ), P−m` (µ) = (−1)m (`−m)!

(`+m)!P
m
` (µ) . (C.5)

We summarize the property of the spherical harmonics function.

Complex Conjugate Y ∗`m = (−1)mY`−m

Orthogonal
∫
dΩ Y ∗`m Y`′m′ = δ``′δmm′
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Parity transformation Y`m(θ, ψ)→ Y`m(π − θ, π + ψ) = (−1)`Y`m(θ, ψ)

Trigonometric addition formula For the angle θ between (θ1, ψ1), (θ2, ψ2) points,

4π
2`+ 1

∑
m

Y ∗`m(θ1, ψ1)Y`m(θ2, ψ2) = P`(cos θ)

Recurrence formula

∂

∂θ
Y`m =

√
(`−m)(`+m+ 1)

2 Y`m+1e
−iψ −

√
(`+m)(`−m+ 1)

2 Y`m−1e
iψ

cos θ Y`m =
√

(`−m+ 1)(`+m+ 1)
(2`+ 1)(2`+ 3) Y`+1 m +

√
(`−m)(`+m)
(2`− 1)(2`+ 1)Y`−1 m

sin θe±iψY`m = ∓
√

(`±m+ 1)(`±m+ 2)
(2`+ 1)(2`+ 3) Y`+1m±1 ±

√
(`∓m)(`∓m− 1)

(2`− 1)(2`+ 1) Y`−1m±1

Integration of the 3-products of the spherical harmonics function∫
dΩY`1m1(θ, ψ)Y`2m2(θ, ψ)Y`3m3(θ, ψ)

=

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3

0 0 0

)(
`1 `2 `3

m1 m2 m3

)

This is used by Wigner 3j-Symbol.

The basis for the spin-function is used by the spin-weighted Spherical harmonics
fucntion, which is defined as

sY`m =
√

(`− |s|)!
(`+ |s|)!

{
ðsY`m (s ≥ 0)
(−1)sð̄|s|Y`m (s < 0)

, (C.6)

where ð is the ladder operator.

Ladder Operator When sf(θ, ψ) means the spin-s function on the sky,

s+1f = ðsf = − sins θ
(
∂

∂θ
+ i

sin θ
∂

∂ψ

)(
sf

sins θ

)
s−1f = ð̄sf = − 1

sins θ

(
∂

∂θ
− i

sin θ
∂

∂ψ

)
(sf sins θ)

And when you can separate variables as sf(θ, ψ) = eimψsf̃(µ) ; µ = cos θ,

s+1f = ðsf = −(1− µ2)
1+s

2

(
− ∂

∂µ
− m

1− µ2

)
(1− µ2)−

s
2 sf

s−1f = ð̄sf = −(1− µ2)
1−s

2

(
− ∂

∂µ
+ m

1− µ2

)
(1− µ2)

s
2 sf



Appendix C. Convenient formualae 100

Furthermore, you can convert spin-s functions into scalar functions as

f =


ð̄ssf = (−1)s

(
− ∂

∂µ
+ m

1− µ2

)s
(1− µ2)

s
2 sf (s > 0)

ð|s|sf = (−1)|s|
(
− ∂

∂µ
− m

1− µ2

)|s|
(1− µ2)

|s|
2 sf (s < 0)

(C.7)

Parity transformation sY`m(−n̂) = (−1)l −sY`m(n̂)

Complex Conjugate sY
∗
`m = (−1)s+m −sY`−m

Orthogonal
∫
dΩ sY

∗
`m sY`′m′ = δ``′δmm′
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Appendix D

Derivations

D.1 Symmetric traceless tensor

D.1.1 2-dimensional relation

We show the following identities by mathematical induction;

cos(nφ) =2n−1 [θa1 · · · θan ]TL2 |aι=···=an=ι, (D.1)

sin(nφ) =2n−1 [θa1 · · · θan ]TL2 |aι=···=an−1=ι,an=ψ, (D.2)

with (θι, θψ) = (cosφ, sinφ). For n = 2, it is straightforward to show

[θa1θa2 ]TL2 = 1
2

(
cos2 φ− sin2 φ 2 cosφ sinφ

2 sinφ cosφ −(cos2 φ− sin2 φ)

)
, (D.3)

and hence (no summation) [θιθι]TL2 = cos(2φ)/2 and [θιθψ]TL2 = sin(2φ)/2.
Let us assume that for n = k Eq. (D.1) and (D.2) hold. A symmetric traceless

(k + 1)-rank tensor is related to a symmetric traceless k-rank tensor 1

[
θa1 · · · θakθak+1

]TL2 = 1
k + 1

(
[θa1 · · · θak ]TL2 θak+1 + perms.

)
− 1
k(k + 1)

∑
i=1,2

(
δa1a2

[
θa3 · · · θak+1θa

]TL2 θa + perms.
)
.

(D.4)
1This relation can be shown as follows: We can assume a symmetric traceless (k + 1)-

rank tensor to be of the form;
[
θa1 · · · θakθak+1

]TL2 = 1
k+1

(
[θa1 · · · θak ]TL2 θak+1 + perms.

)
−

ck
∑

a=ι,ψ

(
δa1a2

[
θa3 · · · θak+1θa

]TL2
θa + perms.

)
, where ck is a k-dependent constant. The trace-

less condition δa1a2
[
θa1 · · · θakθak+1

]TL2 = 0 gives ck = 1/k(k + 1).
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Notice that with the assumption we have

∑
a=ι,ψ

[
θa1 · · · θak−1θa

]TL2 θa|a1=···=ak−1=ι = 1
2k−1 (cos(kφ) cosφ+ sin(kφ) sinφ) ,

(D.5)∑
a=ι,ψ

[
θa1 · · · θak−1θa

]TL2 θa|a1=···=ak−2=ι,ak−1=ψ = 1
2k−1 (sin(kφ) cosφ− cos(kφ) sinφ) .

(D.6)

Then, we get

[
θa1 · · · θakθak+1

]TL2 |a1=···=ak+1=ι

= 1
2k−1 cos(kφ) cosφ− 1

k(k + 1) ·
(
k + 1

2

)
· 1

2k−1 (cos(kφ) cosφ+ sin(kφ) sinφ)

= 1
2k (cos(kφ) cosφ− sin(kφ) sinφ)

= 1
2k (cos(k + 1)φ) , (D.7)[

θa1 · · · θakθak+1

]TL2 |a1=···=ak=ι,ak+1=ψ

= 1
k + 1 ·

1
2k−1 (cos(kφ) sinφ+ k sin(kφ) cosφ)

− 1
k(k + 1) ·

(
k

2

)
· 1

2k−1 (sin(kφ) cosφ− cos(kφ) sinφ)

= 1
2k (sin(kφ) cosφ+ cos(kφ) sinφ)

= 1
2k (sin(k + 1)φ) , (D.8)

which indicates that Eq. (D.1) and Eq. (D.2) are true for n = k + 1. Therefore,
Eq. (D.1) and Eq. (D.2) hold for all n ≥ 2.

D.1.2 Arbitrary dimension

We consider an nth symmetric traceless tensor in d-dimension, expressing it as

Ĩi1i2···in = Ii1i2···in +
[n/2]∑
k=1

C̃k
[
Iĩ1 ĩ1···̃ik ĩki2k+1···inδi1,i2 · · · δi2k−1,i2k + (perms.)

]
, (D.9)

where Ii1i2···in is an arbitrary rank-n symmetric tensor and Ĩi1i2···in is its traceless
part. In the square brackets of the right hand side, the indices Ii1i2···in are replaced
with the contraction by ĩm (m = 1, · · · , k) and the replaced indices appear as the
indices of the Kronecker delta. Imposing the traceless condition, we obtain

C̃k = C̃k+1[2k − (d+ 2n− 4)] . (D.10)
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For n ≥ 2, d ≥ 2 and 0 ≤ k ≤ [n/2], 2k − (d+ 2n− 4) ≤ 0. Then, we can obtain

C̃k =
(
−1

2

)k Γ(n− k − 1 + d/2)
Γ(n− 1 + d/2)! . (D.11)

For example, the coefficient for d = 2 is given by

C̃k =
(
−1

2

)k (n− k − 1)!
(n− 1)! , (D.12)

and the one for d = 3 is given by

C̃k = (−1)k (2n− 2k − 1)!!
(2n− 1)!! . (D.13)

The number of permutation in Eq. (D.9) is determined by counting the possible
number of this replacement as

1
k!

(
n

2

)(
n− 2

2

)
· · ·
(
n− 2(k − 1)

2

)
= 1

2kk!
n!

(n− 2k)! . (D.14)

For instance, for n = 2, Eq. (D.9) simply gives the familiar expression as

Ĩi1i2 = Ii1i2 + C̃1Iĩ1 ĩ1δi1,i2 = Ii1i2 −
Iĩ1 ĩ1
d
δi1,i2 . (D.15)

D.2 The derivative of spherical Bessel function

In this seciton, we describe the derivation of Eq. (5.51) for all integers s ≥ 0 by using
mathematical induction:

P (s) : (1 + ∂2
x)s[xsjl(x)] = (l + s)!

(l − s)!
jl(x)
xs

.

We can explicitly confirm P (s) for s = 0, 1, 2. Given that P (s) is true for s =
k, k − 1 (k ≥ 2), taking the derivative of P (k) with respect to x, we obtain

(1 + ∂2
x)k[xkj′l(x)] = (l + k)!

(l − k)!

[
j′l(x)
xk
− k jl(x)

xk+1

]
− (1 + ∂2

x)
[
k

(l + k − 1)!
(l − k + 1)!

jl(x)
xk−1

]
,

(D.16)

where we used

(1 + ∂2
x)k[kxk−1jl(x) + xkj′x(x)] = (1 + ∂2

x)
[
k

(l + k − 1)!
(l − k + 1)!

jl(x)
xk−1

]
+ (1 + ∂2

x)k[xkj′l(x)].

The left hand side of P (k + 1) is given by

(1 + ∂2
x)k+1[xk+1jl(x)]

=(1 + ∂2
x)k[{xk+1 + k(k + 1)xk−1}jl(x) + 2(k + 1)xkj′l(x) + xk+1j′′l (x)]. (D.17)
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Using P (k), Eq. (D.16) and the Bessel differential equation:

x2j′′l (x) + 2xj′l(x) + [x2 − l(l + 1)]jl(x) = 0,

we obtain

(D.17) = 2k (l + k)!
(l − k)!

[
j′l(x)
xk
− k jl(x)

xk+1

]
+ (l + k − 1)!

(l − k + 1)! [l(l + 1)− k(k − 1)](1 + ∂2
x)jl(x)
xk−1

= {l + (k + 1)}!
{l − (k + 1)}!

jl(x)
xk+1 .

Thus, P (k+1) is true, whenever P (k) and P (k−1) are true. Hence, by the Principle
of Mathematical Induction, P (s) is true for all integers s ≥ 0.

D.3 Rewriting Eq. (5.19) into Eq. (5.24)

We show the following formulae

Ĩιι · · · ιι︸ ︷︷ ︸
(n,0)

= 1
2n−1

[n/2]∑
l=0

(−1)l
(
n

2l

)
Iιι · · ·ψψ︸ ︷︷ ︸

(n−2l,2l)

, (D.18)

Ĩιι · · · ιψ︸ ︷︷ ︸
(n−1,1)

= 1
2n−1

[(n−1)/2]∑
l=0

(−1)l
(

n

2l + 1

)
I ιι · · ·ψψ︸ ︷︷ ︸

(n−2l−1,2l+1)

, (D.19)

with which we can rewrite Eq. (5.19) into Eq. (5.24).
Let us start with expressing Ĩιι···ιι and Ĩιι···ιψ, using Eq. (D.9). Counting the

numbers of Ii1···in with 2l indices being ψ and (n−2l) indices being ι for l = 1, · · · [n/2],
we obtain

Ĩιι···ι =
[n/2]∑
k=0

(−1)k2−2k (n− k − 1)!
(n− 1)!

n!
k!(n− 2k)!

k∑
q=0

(
k

q

)
I ιι · · ·ψψ︸ ︷︷ ︸

(n−2k+2q,2k−2q)

=
[n/2]∑
k=0

k∑
l=0

(−1)k2−2kn

l

(
n− k − 1
k − 1

)(
k − 1
k − l

)
Iιι · · ·ψψ︸ ︷︷ ︸

(n−2l,2l)

, (D.20)

where the summation over q counts the number of indices with ãi1 = · · · = ãiq = ι

among the k contracted indices of Iã1ã1···ãkãka2k+1···an (then the total number of index
ι becomes (2n− 2k) + 2q and the one of index ψ becomes 2k− 2q) and the numerical
factor, n!/(2kk!(n−2k)!) comes from the number of permutation, given in Eq. (D.14).
In the second equality, we have changed k − q → l. Similarly, we obtain

Ĩιι···ψ =
[(n−1)/2]∑
k=0

k∑
l=0

(−1)k2−2k
(
n− k − 1

k

)(
k

k − l

)
I ιι · · · ιψ︸ ︷︷ ︸

(n−2l−1,2l+1)

, (D.21)
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where the number of permutation is now given by

1
k!

(
n− 1

2

)(
n− 3

2

)
· · ·
(
n− 2(k − 1)− 1

2

)
= 1

2kk!
(n− 1)!

(n− 2k − 1)! , (D.22)

since the terms including διψ vanish.
Changing the summation from 0 ≤ k ≤ [n/2] and 0 ≤ l ≤ k to 0 ≤ l ≤ [n/2] and

l ≤ k ≤ [n/2], we can further rewrite Eq. (D.20) and Eq. (D.21) as

Ĩιι···ι =
[n/2]∑
l=0

n

l

(
−1

4

)l [n/2]−l∑
k=0

(
−1

4

)k (n− k − l − 1
k + l − 1

)(
k + l − 1

k

)
I ιι · · · ιψ︸ ︷︷ ︸

(n−2l,2l)

, (D.23)

Ĩιι···ψ =
[(n−1)/2]∑

l=0

(
−1

4

)l [(n−1)/2]−l∑
k=0

(
−1

4

)k (n− k − l − 1
k + l

)(
k + l

k

)
I ιι · · · ιψ︸ ︷︷ ︸

(n−2l,2l)

, (D.24)

where we have changed k − l → k. Rewriting the summation over k by using the
following formulae:

[n/2]∑
k=0

(
−1

4

)k (n− k + l − 1
k + l − 1

)(
k + l − 1

k

)
= 1

2n
(n+ 2l − 1)!
n!(2l − 1)! , (D.25)

[n/2]∑
k=0

(
−1

4

)k (n− k + l

k + l

)(
k + l

k

)
= 1

2n
(n+ 2l + 1)!
n!(2l + 1)! , (D.26)

we arrive at Eqs. (D.18) and (D.19).

D.4 Contribution of PNG with spin-4

We compute the contribution of the PNG generated by a spin-4 particle, given in
Eq. (2.57), to the 4th moment galaxy shape function.

D.4.1 Contributions to galaxy shape function

From Eq. (5.62), the cross-correlation of the matter density field with g̃ijkl is

〈δ(x)g̃ijkl(y)〉 = b
(4)
K2

〈
δ(x) [Kij(y)Kkl(y)]TL3, sym

〉
+O((kR∗)2). (D.27)
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Let us compute
〈
δ(x) [Kij(y)Kkl(y)]TL3, sym

〉
term in the presence of the non-Gaussian

initial condition such as Eq. (2.57).〈
δ(x) [Kij(y)Kkl(y)]TL3, sym

〉
=
∫

d3k

(2π)3 e
ik·rM(k)

∫
d3p

(2π)3 [p̂ip̂j p̂′kp̂′l]TL3M(p)M(|k + p|)BΨ(k, p, |k + p|)

(D.28)

=
∫

d3k

(2π)3 e
ik·rM(k)PΨ(k)

∫
p2dp

(2π)2M
2(p)PΨ(p)∫

dµ

∫
dϕ

2π [p̂ip̂j p̂′kp̂′l]TL3
∑
`

A`P`(µ)[2 + 2qµ{nΨ + nM(p)}+O(q2)]

(D.29)

with r = x − y, p̂′ = − ̂(k + p), q = k/p, µ = k̂ · p̂, nΨ = ns − 4, nM(p) ≡
∂ lnM(p)/∂ ln p. In the first line, we used the symmetric tensor property and in the
second line, we used Eq.(2.57) and expanded BΨ(k, p, |k+ p|) andM(|k+ p|) in the
powers of q � 1.

We also apply p̂′ ∼ p̂ in the powers of q � 1. Choosing the z direction of the
polar coordinates along the direction of k̂ and integrating over the azimuthal angle
ϕ, we obtain ∫

dϕ

2π [p̂i1 · · · p̂in ]TL3 ∝ [k̂i1 · · · k̂in ]TL3 . (D.30)

This can be understood by noticing that since the left-hand side of Eq. (D.30) should
be independent of ϕ, all the tensor indices should be along the direction of k̂, satisfying
the symmetric traceless condition.

The amplitude of the left hand side of Eq. (D.30) can be determined as follows.
As shown in Ref. [153] (in this paper, the spatial dimension is d, so here we set d = 3),
the contraction between [p̂i1 · · · p̂in ]TL3 and [k̂i1 · · · k̂in ]TL3 is given by

[p̂i1 · · · p̂in ]TL3 [k̂i1 · · · k̂in ]TL3 = n!
(2n− 1)!!Pn(µ). (D.31)

Operating [k̂i1 · · · k̂in ]TL3 on the left hand side of Eq. (D.30) and using Eq. (D.31),
we find that the amplitude of the left hand side of Eq. (D.30) should be Pn(µ), i.e.∫

dϕ

2π [p̂i1 · · · p̂in ]TL3 = Pn(µ)[k̂i1 · · · k̂in ]TL3 . (D.32)

Here, we used

[k̂i1 · · · k̂in ]TL3 [k̂i1 · · · k̂in ]TL3 = n!
(2n− 1)!!Pn(k̂ · k̂ = 1) = n!

(2n− 1)!! . (D.33)
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Using Eq. (D.32) in Eq. (D.29), we obtain

〈δ(x) {Kij(y)Kkl(y)}〉 = 2
9A4

∫
d3k

(2π)3 e
ik·rM(k)PΨ(k) [k̂ik̂j k̂kk̂l]TL3

∫
p2dp

2π2 M
2(p)PΨ(p) ,

(D.34)

where we haved used the orthonormality of the Legendre polynomials.

D.4.2 Renormalization

Next, we define the renormalized bias parameter b(4)
NG following the discussions in

Refs. [98, 41].

Gaussian initial conditions

First, we consider the case of Gaussian initial conditions. Let us introduce the coarse-
grained density field δL and tidal field KL,ij with a coarse-graining scale RL. Then,
using a functional FL,ijkl, we can formally express g̃ijkl(x) as

g̃ijkl(x) = FL,ijkl(δL(x);KL,pq(x); δs(x)), (D.35)

with δs(x) ≡ δ(x)−δL(x) being the small-scale fluctuations on which in principle the
4th moment depends other than δL and KL,ij . A formal Taylor expansion of FL,ijkl

in δL and KL,ij leads to

g̃ijkl(x) = c
(4)
K2(RL; δs(x)) [KL,ijKL,kl]TL3, sym (x) +O(δ3

L,∇2δL), (D.36)

In general, the coefficient c(4)
K2 depend on on the short modes δs and the coarse-

graining scale RL
2. In the Gaussian case, however, the short modes and long modes

are uncorrelated, so the c(4)
K2 can be regarded as an effective constant.

The spherical symmetry requires the expectation value of g̃ijkl(x) to vanish. Let
us consider the following modification of the tidal field:

KL,ij(x, τ)→ KL,ij(x, τ) +D(τ)βij ; δL(x, τ)→ δL(x, τ), (D.37)

or equivalently the modification of the Newtonian potential,

ΨN(x)→ ΨN(x) + 3
4Ωm0H

2
0 (1 + z)D(z)βijxixj , (D.38)

where βij is a constant symmetric traceless tensor. One can interpret this as the
leading observable effect of a potential perturbation in the k → 0 limit, as constant
and pure-gradient potential perturbations can be removed by coordinate transforma-
tions. Alternatively, this effect can be realized in simulations by implementing an
anisotropic expansion, roughly resembling a Bianchi I spacetime [154, 155, 156].

2RL is an arbitrary coarse-graining scale, while RL should satisfy RL > R∗, where R∗ corresponds
to the physical size of galaxies/halos.
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Under this modification, the expectation value of g̃ijkl changes to

〈g̃ijkl(x)〉β = c
(4)
K2 [βijβkl]TL3, sym +O(δ3

L,∇2δL). (D.39)

Notice that 〈g̃ijkl(x)〉 does not vanish owing to the presence the preferred direction
βij . Then, the renormalized bias parameters are introduced via

b
(4)
K2 ≡

[
∂2

∂βij∂βkl

]TL3, sym

〈g̃ijkl〉β

∣∣∣∣∣∣
β=0

= c
(4)
K2 +O([δL,KL,ij ]2). (D.40)

Note that here the summation is not taken. This definition of the bias parameter
b
(4)
K2 is independent of RL by construction. The point is that the renormalized bias is
defined as the response to the locally uniform transformation of the tidal field (second
derivatives of the potential).

Finally we get

〈δ(x)g̃ijkl(y)〉 = b
(4)
K2

〈
δ(x) [KijKkl]TL3, sym (y)

〉
+ · · · . (D.41)

For Gaussian initial conditions, the three-point function in Eq. (D.41) only arises
from non-linear evolution, therefore is relevant only on small scales.

Non-Gaussian initial conditions with no scaling (local-type)

In the presence of the primordial non-Gaussianity (2.57), Eq. (D.34) yields

〈
δ(x) [KijKkl]TL3, sym (y)

〉
= 2

9A4DijklξδΨ(|x− y|)〈δ2
L〉. (D.42)

This expression strongly depends on the coarse-graining scale through 〈δ2
L〉, so the bias

expansion Eq. (D.41) is not sufficient for non-Gaussian initial conditions. In this case,
we have to take into account the dependence of gijkl on the small-scale fluctuations δs

explicitly, since the primordial non-Gaussianity couples the long-modes with short-
modes. To do this, let us introduce the parameter yijkls as the hexadecapole anisotropy
of the local small-scale correlation function within a region of size RL,

yijkls (x) = 1
σ2
y

∫
d3r WL(|r|)

[
Kij

s

(
x− r2

)
Kkl

s

(
x+ r

2

)]TL3, sym
, (D.43)

σ2
y =

∫
d3k

(2π)3 W̃L(k)W̃ 2
s (k)Pm(k), (D.44)

where WL is an isotropic window function of the scale RL, Kij
s (x± r/2) ≡ Dijr δs(x±

r/2) with Dijr being the derivative operator acting on r and W̃s(k) ≡ 1− W̃L(k). We
now introduce explicitly the dependence of gijkl(x) on yijkls (x):

g̃ijkl(x) = FL,ijkl(δL(x);KL,pq(x); ypqrss (x)). (D.45)
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Expanding FL,ijkl to linear order in ypqrss leads to adding a term

c
(4)
NGy

ijkl
s (x) (D.46)

to the expansion on the r.h.s. of Eq. (D.36). Then, we have additional contribution
to matter-shape correlation,

〈δ(x)g̃ijkl(y)〉 =b(4)
K2

〈
δ(x) [KL,ijKL,kl]TL3, sym (y)

〉
+ c

(4)
NG〈δ(x)yijkls (y)〉+ · · · .

(D.47)

The Fourier transform of Eq. (D.43) is given by

yijkls (k) = 1
σ2
y

∫
d3p1
(2π)3

[
p̂i1p̂

j
1p̂
k
2 p̂
l
2

]TL3, sym
W̃L

(∣∣∣∣−p1 + 1
2k
∣∣∣∣) δs(p1)δs(p2), (D.48)

where we introduced p1 and p2 satisfying p1 + p2 = k. We then obtain

〈δ(x)yijkls (y)〉 = 1
σ2
y

∫
d3k

(2π)3 e
−ik·rM(k)

∫
d3p1
(2π)3 W̃L

(∣∣∣∣−p1 + 1
2k
∣∣∣∣) [p̂i1p̂j1p̂k2 p̂l2]TL3, sym

×Ms(p1)Ms(|k + p1|)BΨ(k, p1, |k + p1|) (D.49)

with r ≡ x − y and Ms(k) ≡ M(k)W̃s(k). Expanding this integrand in power of
q1 = k/p1 and performing the angle integral with respect to p1, we have

〈δ(x)yijkls (y)〉 = 1
σ2
y

∫
d3k

(2π)3 e
ik·rM(k)PΨ(k)

[
k̂ik̂j k̂kk̂l

]TL3
∫
p2

1dp1
(2π)2 W̃L(p1)M2

s (p1)PΨ(p1)

×
∫ 1

−1
dµ1P4(µ1)

∑
`

A`P`(µ1) [2 +O(q1)] , (D.50)

where we have used W̃L
(∣∣∣−p1 + 1

2k
∣∣∣) = W̃L(p1) + O(q1) and p̂2 = −p̂1 + O(q1).

Following the same strategy of the calculation of Eq. (D.34), we obtain

〈δ(x)yijkls (y)〉 = 2
9A4DijklξΨδ(|x− y|). (D.51)

Thus, there are two non-Gaussian terms which are proportional to A4DijklξΦδ, one
of which explicitly depends on RL. A renormalized bias b(4)

NG should consist of RL-
independent combination of these contributions. In other words, physically, b(4)

NG
should correspond to the response of the 4th moment to a specific (RL-independent)
transformation of the density field as implied in the previous subsection.

In fact, under the initial condition given by Eq. (2.57) the local power spectrum
is modulated like Eq. (2.61), which means that the long-wavelength potential per-
turbation leads an anisotropic modulation of the local initial matter power spectrum
described by

P ini
m,α(kS;x) =

[
1 + αL pqrs(x)

[
k̂pSk̂

q
Sk̂

r
Sk̂

s
S

]TL3
]
P ini

m,iso(kS), (D.52)
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with

αL pqrs(x) ≡ 35
8

∫
d3kL
(2π)3A4

[
k̂L,pk̂L,qk̂L,rk̂L,s

]TL3 Ψ(kL)eikL·x. (D.53)

Note that we treat αL,pqrs as a locally constant number. Here, we assumed f4(kL/kS) '
1. This implies that in terms of the density field the presence of the anisotropic non-
Gaussianity alters the local density field such that

δα(kS) =
[
1 + 1

2αL pqrs
[
k̂pSk̂

q
Sk̂

r
Sk̂

s
S

]TL3
]
δ(kS) . (D.54)

This is an anisotropic (hexadecapole), scale-independent rescaling of the density field.
After this transformation, the expectation value of the 4th moment galaxy shape
changes to

〈g̃ijkl〉α = b
(4)
K2

〈
[KL,ijKL,kl]TL3, sym

〉
α

+ c
(4)
NG

〈
yijkls

〉
α
, (D.55)

where

〈
[KL,ijKL,kl]TL3, sym

〉
α

=
∫

d3k

(2π)3

[
k̂ik̂j k̂kk̂l

]TL3
(

1 + αL pqrs
[
k̂pk̂qk̂rk̂s

]TL3
)
W̃ 2

L(k)Pm(k),

(D.56)〈
yijkls

〉
α

= 1
σ2
y

∫
d3k

(2π)3

[
k̂ik̂j k̂kk̂l

]TL3
(

1 + αL pqrs
[
k̂pk̂qk̂rk̂s

]TL3
)
W̃L(k)W̃ 2

s (k)Pm(k).

(D.57)

To proceed the computation of Eq. (D.57), we use the following identity:

∫
d2k̂

4π k̂i1 · · · k̂in = 1
(n+ 1)!! [δi1i2 · · · δin−1in ]sym , (D.58)

where [δi1i2 · · · δin−1in ]sym means to symmetrize the expression δi1i2 · · · δin−1in in the
indices i1 · · · in. For instance, the explicit expression for n = 4 case is given by

[δi1i2δi3i4 ]sym = δi1i2δi3i4 + δi1i3δi2i4 + δi1i4δi2i3 . (D.59)

After some algebra, we get

〈
[KL,ijKL,kl]TL3, sym

〉
α

/〈
δ2

L

〉
=
〈
yijkls

〉
α

= 4!
9!!αL ijkl. (D.60)

Then, the expectation of the 4th moment shape function is modified as

〈g̃ijkl〉α =
[ 8

315b
(4)
K2〈δ2

L〉+ 8
315cNG

]
αL ijkl. (D.61)
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This tells us that the linear response of the mean 4th moment of galaxies, through
which we define the renormalized bias b(4)

NG, is given by

b
(4)
NG ≡

∂〈g̃ijkl〉α
αL ijkl

∣∣∣∣∣
α=0

= 8
315b

(4)
K2〈δ2

L〉+ 8
315c

(4)
NG. (D.62)

This means that the counter term should be given by

c
(4)
NG = 315

8 b
(4)
NG − b

(4)
K2〈δ2

L〉. (D.63)

Plugging this into Eq. (D.47), we obtain

〈δ(x)g̃ijkl(y)〉 =35
4 b

(4)
NGA4DijklξδΨ(|x− y|). (D.64)

Non-Gaussian initial conditions with scaling

In this case, the modulation of the local initial matter power spectrum becomes

P ini
m,α(kS;x) =

[
1 + h4

(
kp
kS

)
αL pqrs(x)

[
k̂pSk̂

q
Sk̂

r
Sk̂

s
S

]TL3
]
P ini

m,iso(kS), (D.65)

with

αL pqrs(x) ≡ 35
8

∫
d3kL
(2π)3A4g4

(
kL
kp

)[
k̂L,pk̂L,qk̂L,rk̂L,s

]TL3 Ψ(kL)eikL·x. (D.66)

In terms of the density field, the presence of the anisotropic non-Gaussianity alters
the local density field such that

δα(kS) =
[
1 + 1

2h4

(
kp
kS

)
αL pqrs

[
k̂pSk̂

q
Sk̂

r
Sk̂

s
S

]TL3
]
δ(kS). (D.67)

Obviously, in this case the local density field is modulated with the scale-dependence,
unlike (D.54) where the local density field is rescaled uniformly. In this case, defining
the renormalized bias with respect to the locally uniform modulation leads to the
final expression in the Fourier space,

〈δ(k)g̃ijkl(k′)〉 =
[
k̂ik̂j k̂kk̂l

]TL3 35
4 b

(4)
NGA4g4

(
k

kp

)
M−1(k)Pm(k)(2π)3δ(k + k′).

(D.68)

D.5 Contribution of PNG with the global anisotropy

We derive the scale dependent bias for g̃ij and δn in the presence of the PNG with
the global anisotropy (B.1). Here, the constant vector p̂ is left arbitrary.



Appendix D. Derivations 112

D.5.1 Scale dependent bias

Galaxy shape

To compute the scale dependent bias for galaxy shape function, we compute the two
point function 〈δ(x)g̃ij(y)〉. Using Eq. (5.61), we find that this two point function
includes the three-point functions

〈δ(x)δ(y)Kij(y)〉 and 〈δ(x)
[
KikK

k
j −

1
3δij(Klm)2

]
(y)〉 . (D.69)

Here, we compute the contribution of the squeezed bispectrum to the first term. The
first term can be rewritten as

〈δ(x)δ(y)Kij(y)〉 ≈
∫

d3kL
(2π)3 e

ikL·rM(kL)
∫

d3k1
(2π)3

[
k1ik1j
k2

1
− 1

3δij
]

×M(k1)M(|k1 + kL|)BΨ(k1,−(k1 + kL),kL),
(D.70)

where k1 corresponds to the short mode. Since we only take into account the contri-
bution from the squeezed configuration, we used ≈ instead of the equality. Expanding
this three-point function in terms of q = kL/kS � 1, we obtain

〈δ(x)δ(y)Kij(y)〉 ≈
∫

d3kL
(2π)3 e

ikL·rM(kL)
∫

d3kS
(2π)3

[
kSikSj
k2

S
− 1

3δij
]

×M2(kS)PΨ(kL)PΨ(kS)
∞∑
l=0

[
Āl + B̄lµ+O(q)

]
i

1−(−1)l
2 Pl(p̂ · k̂S),

(D.71)

with µ = k̂S · k̂L. Here, we usedM(|kS + kL|) =M(kS) +O(q).
For our computational convenience, we change the coordinate system such that p

lies along the z axis as p̃i = Rij(p̂)pj = (0, 0, p̃), where Rij(p̂) is a rotational matrix.
Then, kS and kL are transformed into

ˆ̃ka =
(√

1− µ2
a cosψa,

√
1− µ2

a sinψa, µa
)
, (a = L, S) (D.72)

with

µ = k̂S · k̂L =
√

(1− µ2
S)(1− µ2

L) cos(ψS − ψL) + µSµL, (D.73)

where we introduced µX ≡ p̂ · k̂X . In this coordinate, we obtain

k̃Sik̃Sj
k2

S
=


cos2 ψS(1− µ2

S) cosψS sinψS(1− µ2
S) cosψSµS

√
1− µ2

S

cosψS sinψS(1− µ2
S) sin2 ψS(1− µ2

S) sinψSµS
√

1− µ2
S

cosψSµS
√

1− µ2
S sinψSµS

√
1− µ2

S µ2
S

 .
(D.74)
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Using this expression and integrating with respect to ψS, we obtain∫ 2π

0

dψS
2π

[
ˆ̃kSi

ˆ̃kSj −
1
3δij

]
= P2(µS)

[
ˆ̃pi ˆ̃pj −

1
3δij

]
, (D.75)

and∫ 2π

0

dψS
2π µ

[
ˆ̃kSm

ˆ̃kSn −
1
3δmn

]
= 1

5 [P1(µS)− P3(µS)]
[

ˆ̃pmˆ̃kLn + ˆ̃pnˆ̃kLm −
2
3µLδmn

]
+ µLP3(µS)

[
ˆ̃pm ˆ̃pn −

1
3δmn

]
. (D.76)

Notice that as is shown Eq. (D.73), µ depends on µS, , µL, ψS, and ψL. Using these
formulae, Eq. (D.71) can be recast into

〈δ(x)δ(y)Kij(y)〉

=
∫

d3kL
(2π)3 e

ikL·rM(kL)PΨ(kL)
∫

dkS
(2π)2k

2
SM2(kS)PΨ(kS)

×
∫ 1

−1
dµS

∞∑
l=0

i
1−(−1)l

2 Pl(µS)
{[
p̂ip̂j −

1
3δij

] [
ĀlP2(µS) + B̄lµLP3(µS)

]
+1

5B̄l [P1(µS)− P3(µS)]
[
p̂ik̂Lj + p̂j k̂Li −

2
3µLδij

]
+O(q)

}
=
∫

d3kL
(2π)3 e

ikL·rM(kL)PΨ(kL)
∫

dkS
(2π)2k

2
SM2(kS)PΨ(kS)

× 2
5

{1
3 iB̄1

[
p̂ik̂Lj + p̂j k̂Li −

2
3µLδij

]
+ Ā2

[
p̂ip̂j −

1
3δij

]
+5

7 iB̄3

[
µL

[
p̂ip̂j −

1
3δij

]
− 1

5

(
p̂ik̂Lj + p̂j k̂Li −

2
3µLδij

)]
+O(q)

}
.

(D.77)

Here, we used the orthogonality of the Legendre polynomials. Noticing the fact that
the second term in Eq. (D.69) is related to the first term as

〈δ(x)
[
KikK

k
j −

1
3δij(Klm)2

]
(y)〉 = 1

3〈δ(x)δ(y)Kij(y)〉+O(q), (D.78)

we can immediately compute the second term.
Using

ξ(r) =
∫

d3kL
(2π)3 e

ikL·rM2(kL)PΨ(kL), (D.79)

ξδΨ(r) =
∫

d3kL
(2π)3 e

ikL·rM(kL)PΨ(kL), (D.80)

I(r) =
∫

d3kL
(2π)3 e

ikL·rM(kL)
kL

PΨ(kL), (D.81)
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and the variance of the matter density field 〈δ2〉, given by

〈δ2〉 =
∫

dk

2π2k
2M2(k)PΨ(k), (D.82)

we finally obtain

〈δ(x)g̃ij(y)〉 = b
(2)
K Dijξ(r) + 1

10Ā2(b(2)
δK + 1

3b
(2)
K2)

(
p̂ip̂j −

1
3δij

)
ξδΨ(r)〈δ2〉

+ B1

(
p̂ip̂j −

1
3δij

)
p̂ · ∂x I(r) + B2

(
p̂i∂j + p̂j∂i −

2
3δij p̂

k∂k

)
I(r),

(D.83)

where B1, B2 are

B1 ≡
1
14(b(2)

δK + 1
3b

(2)
K2B̄3〈δ2〉, (D.84)

B2 ≡
1

210(7B̄1 − 3B̄3)(b(2)
δK + 1

3b
(2)
K2)〈δ2〉. (D.85)

Number density

To compute the scale dependent bias for the galaxy number density, we compute the
two-point function 〈δ(x)δn(y)〉, which includes the three-point functions

〈δ(x)δ2(y)〉 and 〈δ(x)(Kij)2(y)〉 . (D.86)

The first term is given by

〈δ(x)δ2(y)〉 =
∫

d3kL
(2π)3 e

ikL·rM(kL)PΨ(kL)
∫

d3kS
(2π)3M

2(kS)PΨ(kS)

×
∞∑
`=0

i
1−(−1)l

2
[
Āl + B̄lµ+O(q)

]
P`(µS), (D.87)

where we used Eq. (B.1) and M(|kS + kL|) = M(kS) + O(q). Since this formula
does not depend on the azimuthal direction, µ in the square brackets can be simply
replaced with µSµL after integrating over ψS. Using the orthogonality of Legendre
polynomials, we obtain

〈δ(x)δ2(y)〉 =
∫

d3kL
(2π)3 e

ikL·rM(kL)PΨ(kL)
∫

dkS
(2π)2k

2
SM2(kS)PΨ(kS)

×
[
2Ā0 + 2

3 iµLB̄1

]
+O(q). (D.88)

Using[
k̂Sik̂Sj −

1
3δij

] [
̂(kS + kL)

i ̂(kS + kL)
j
− 1

3δ
ij
]

= 2
3 +O(q2) , (D.89)
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we also can compute 〈δ(x)(Kij)2(y)〉 easily as 〈δ(x)(Kij)2(y)〉 = 2
3〈δ(x)δ2(y)〉 +

O(q2). Using these formulae, we obtain

〈δ(x)δn(y)〉 = b
(0)
δ ξ(r) + 1

2Ā0〈δ2〉(b(0)
δ2 + 2

3b
(0)
K2)ξδΨ(r) + 1

6B̄1〈δ2〉(b(0)
δ2 + 2

3b
(0)
K2)p̂ · ∂xI(r).

(D.90)

D.5.2 Derivation and Feature of Angular power spectra

Here, we perform the harmonic expansion of the intrinsic alignment term in the cosmic
shear. For our convenience, we decompose the contribution of the intrinsic alignment
aIA
lm as

aIA
lm = a

(0)
lm + a

(p)
lm ,

where a(0)
lm is the contribution from the first term of Eq. (B.3) and a(p)

lm is the one from
the second term. In the Fourier space, we obtain

±2γ
IA(z, n̂) =

∫
d3k

(2π)3 e
ixk̂·n̂mi

∓m
j
∓

[
b
(2)
K k̂ik̂jδ(z, k) + 3bpNGĀ2 p̂ip̂jΨ(k)

]
(D.91)

with x ≡ kχ(z) and k̂ ≡ k/k. In performing the expansion in terms of the spherical
harmonics, we choose the z axis along the direction of p̂, i.e., p̂ = (0, 0, 1). With
this choice, we obtain mi

± p̂i = − sin θ/
√

2. For our purpose, we write the basis of the
Fourier mode expansion as

eixk̂·n̂ =
∞∑
l=0

(2l + 1)iljl(x)Pl(k̂ · n̂) = 4π
∞∑
l=0

l∑
m=−l

iljl(x)Ylm(n̂)Y ∗lm(k̂) . (D.92)

Using k̂ieixk̂·n̂ = (1/ix)∂/∂n̂ieixk̂·n̂ and

±2Ylm(n̂) = 2
√

(l − 2)!
(l + 2)!m

i
∓m

j
∓

∂2

∂n̂i∂n̂j
Ylm(n̂) ,

we obtain the contribution from the first term as

a
(0)
lm = −b(2)

K

√
(l + 2)!
(l − 2)!

∫
d3k

(2π)3

∫
dz
dNI
dz

1
x2 i

ljl(x)Y ∗lm(k̂)δ(z, k) (D.93)

for l ≥ 2 and a(0)
lm = 0 for l = 0, 1. Here, we inserted the redshift distribution of the

galaxy sample dNI/dz. Using Eq. (D.92), the contribution from the second term can
be expressed as

a
(p)
lm = (3bpNGĀ2)(2π)

√
(l − 2)!
(l + 2)!

∞∑
l′=0

l′∑
m′=−l′

il
′
∫

d3k

(2π)3

∫
dz
dNI
dz

Ψ(k)jl′(x)Yl′m′(k̂)

×
∫
dΩnY ∗lm(n̂)ð̄2

[
Yl′m′(n̂) sin2 θ

]
.

(D.94)
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Since the constant vector p̂ violates the global rotation symmetry, a(p)
lm can be contam-

inated by non-diagonal multipoles with l′ 6= l and m′ 6= m, while a(0)
lm does not depend

on contributions of other multipoles. Performing the integral over the solid angle of
n̂, which is lengthy but straightforward, we obtain Eq. (B.4), where coefficients α(s)

l,m

are given by

α
(0)
l,m = −2(l − 1)(l + 2){l(l + 1)− 3m2}

(2l − 1)(2l + 3) (−l ≤ m ≤ l) , (D.95)

α
(+1)
l,m = −2m(l − 1)

√
(l −m+ 1)(l +m+ 1)

(2l + 1)(2l + 3) (l ≥ 1, −l ≤ m ≤ l) , (D.96)

α
(−1)
l,m = 2m(l + 2)

√
(l −m)(l +m)
(2l − 1)(2l + 1) (−l + 1 ≤ m ≤ l − 1) ,

(D.97)

α
(+2)
l,m = l(l − 1)

√
(l −m+ 2)(l +m+ 2)(l +m+ 1)(l −m+ 1)

(2l + 3)
√

(2l + 1)(2l + 5)
(l ≥ 2, −l ≤ m ≤ l) , (D.98)

α
(−2)
l,m = (l + 1)(l + 2)

√
(l −m)(l +m)(l +m− 1)(l −m− 1)

(2l − 1)
√

(2l − 3)(2l + 1)
(−l + 2 ≤ m ≤ l − 2) ,(D.99)

and otherwise 0.

Rotation of axis

We calculated the angular power spectrum, choosing the z-axis (with θ = 0) such
that being along p̂. With this choice, we found that there are no cross-correlations
between different ms. Next, we will show that the diagonalization over m is specific
for this choice of the axis and in general there exist the cross-correlations.

Rotating the z axis to the direction (θ, ψ) changes the coefficients salm of the
expansion in terms of the spin weighted spherical harmonics sY lm as

sãlm =
√

4π
2l + 1(−1)m

∑
m′
−mYl m′(θ, ψ)salm′ . (D.100)

Using this expression, we find that aE
lm and aB

lm both transform in the same way as

ãXlm =
√

4π
2l + 1(−1)m

∑
m′
−mYl m′(θ, ψ)aXlm′ (D.101)
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for X = E, B and the angular power spectra in the two frames are related as

〈ãXlmãY ∗l′m′〉 = (−1)m+m′
√

4π
2l + 1

√
4π

2l′ + 1
×
∑
m̄

−mYl m̄(θ, ψ)−m′Yl′ m̄∗(θ, ψ)〈aXlm̄aY ∗l′m̄〉 (D.102)

for X, Y = E, B. Now, we see that in a general frame, both of l and m are not
diagonal.
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