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Preface

Dark Matter (DM) is a mysterious massive source that occupies about 85 % of the matter
components in our universe. One of the most promising DM candidates is Weakly Interacting
Massive Particle (WIMP), which interacts with the ordinary matter and is thermalized in
the early hot universe. Electroweakly-charged DM candidates, in particular, are well-studied
because these candidates often appear in scenarios motivated to solve hierarchy problems such
as theories with supersymmetry and extra-dimension. These candidates are directly related
to physics beyond the Standard Model (SM). Therefore, identifying DM quantum numbers
should be crucial hints not only to narrow down the theoretical possibility for DM interactions
but also to probe the physics behind DM. One interesting scenario for DM identification is
the discrimination of spin-1/2 and spin-1 signatures predicted from the SU(2)L triplet DM
with Y = 0, which corresponds to the Wino DM (spin-1/2) in the Minimal Supersymmeric
SM and the Kaluza-Klein electroweak boson (spin-1) in the extra-dimensional scenario.

In this thesis, electroweakly interacting spin-1 DM and its experimental signatures are
studied to investigate the possibility to discriminate DM spin in the above scenarios. We use
the simplified model that realizes the essential features of DM candidates in extra-dimensional
setups. We focus on DM annihilation processes to determine the viable range to obtain
correct DM thermal relic abundance and the achievable region in the next-generation DM
indirect detection. It is well-known that the electroweak potential relevantly affects the
non-relativistic (NR) DM annihilation cross section, which is called the Sommerfeld effect.
To include this effect, we derive the NR effective theory to describe DM pair annihilation.
Solving the Schrödinger equations for two-body states composed of DM multiplets, we numer-
ically obtained the predictions on DM annihilation cross sections including the Sommerfeld
effect. We studied the DM annihilation in the early universe to evaluate predictions on DM
thermal relic abundance. Due to the difference in spin-statistics, signs of the Q = 1 two-
body state potentials are different between spin-1/2 and spin-1 DM system: A spin-1/2 DM
pair have the attractive potential, while a spin-1 DM pair feels repulsive potential. Since
spin-1 DM may have J = 2 partial wave cross section, where J is the total spin of two-body
states, the larger annihilation cross section is predicted compared to the spin-1/2 DM can-
didate. In our leading order calculation, the correct thermal relic abundance is predicted by
mDM ' 3.1 TeV (mDM ≳ 3.4 TeV) for the spin-1/2 (spin-1) DM candidate. We studied the
monochromatic gamma-ray signatures and reveal the current constraint and the achievable
region in the future gamma-ray observation. We also found that the heavier neutral spin-1
particle (Z ′), which is often associated with spin-1 DM theory, may play an important role
in DM identification. If spin-1 DM pair may annihilate into Z ′ and a photon, the separable
two monochromatic peaks are predicted in the photon energy spectrum. The peak loca-
tions are determined by masses of spin-1 DM and Z ′, and thus we can reconstruct the mass
spectrum in this theory. Considering the energy resolution, we specified the region where
separable two peaks may be probed in the Cherenkov Telescope Array. Our analysis of the
simplified model is straightforwardly applicable for extra-dimensional theories that predict
electroweakly interacting spin-1 DM candidates, which will be completed in our future work.
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1 Introduction

Since the lack of gravitational source in the clusters of galaxies is pointed out in the 1930s [1,
2], we have found overwhelming evidence of dark matter (DM). The various astrophysical ob-
servations such as the rotational curves of the galaxies [3, 4] imply existence of DM indirectly.
These experiments suggest the following qualitative features of DM:

• DM should be electrically neutral because we can not directly detect it in astrophysical
observations.

• DM should behave as a matter component in the structure formation of galaxies, which
is called cold DM, to be consistent with the numerical n-body simulation.

• DM is stable or sufficiently long-lived to survive in the current universe.

Besides, we know one more quantitative fact on DM. Assuming a specific cosmological model,
we can determine the ratio of the DM energy density in our universe by observing the Cosmic
Microwave Background (CMB). According to the latest analysis assuming the ΛCDM model
by the Planck collaboration [5], DM is a dominant matter content and occupies a quarter of
the energy density in the universe. There is no suitable candidate that satisfies all the above
conditions in the Standard Model (SM) of particle physics, and thus we need to extend the
framework to explain the mysterious matter component.

One interesting possibility is that DM is embedded in a theoretical framework of physics
beyond the SM (BSM), which is motivated to solve problems in the SM framework. Various
DM candidates, indeed, are proposed and studied in various contexts. If we obtain signals
of DM in upcoming experiments, the next step should be an identification of DM from these
various candidates. To archive this goal, it is essential to reveal the distinctive signatures from
each DM candidate. Understanding the nature of DM could provide significant information
on an underlying physics. In particular, it could give implications for other mysteries in our
universe such as the matter-antimatter asymmetry and the origin of neutrino masses.

One of the most promising DM candidates is Weakly Interacting Massive Particle (WIMP),
and its thermal history is called WIMP scenario. In this scenario, DM is assumed to have
interactions with ordinary matter and to be thermalized in the SM plasma in the early uni-
verse. Once we put this assumption, DM physics is independent of the initial conditions of
the universe, such as mechanisms of inflation and reheating, and thus this scenario is highly
predictable. The theoretical predictions can be tested through the various interaction chan-
nels such as scattering, annihilation, and production processes. These experimental searches
would also be powerful tools for DM identification.

Electroweakly interacting DM is one attractive class of WIMPs where DMmainly interacts
with the SM particles through electroweak couplings. The minimal framework to study this
hypothesis is to introduce one multiplet charged under the SU(2)L symmetry, which is called
Minimal DM scenario. We may systematically assign the electroweak charges such that
electrically neutral component presents in the new multiplet. DM masses that achieve the
correct DM energy density is determined for each DM multiplet, which is about O(1) TeV
range. In this scenario, therefore, all we have to specify is DM spin to write down the
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interaction theory between DM and the SM particles. The phenomenology has been studied
in many contexts [6, 7, 8], mainly focused on the spin-0 and spin-1/2 DM scenarios. The
most nontrivial question in this electroweakly interacting DM hypothesis is how to realize
electroweak charge and DM stability at the same time. It is because O(1) TeV DM with
electroweak decaying channels are not thermally abundant in the current universe due to
the short lifetime. This question is addressed in some BSM scenarios that naturally provide
discrete symmetry that stabilizes electroweakly interacting DM candidates. One example is
a theory with supersymmetry (SUSY). In this scenario, all the particles associate partners
with different spin-statistics. The simplest model is the Minimal Supersymmetric extension
of the Standard Model (MSSM) where all the SM matter fields are promoted to the chiral
superfields, and the gauge fields are promoted to the vector superfields, respectively. We
can define the discrete symmetry called R-parity that is depending on the baryon number,
the lepton number, and the spin of the particles [9]. The most remarkable feature of this
discrete symmetry is that all the SM fields turn out to be even while the superpartner is odd.
If this symmetry is exact, therefore, the Lightest Superpartner of the SM fields (LSP) can
be a stable DM candidate. The spectrum depends on the parameters in the model but one
popular benchmark candidate is the Wino DM. The Wino DM is the SU(2)L triplet Majorana
fermion (spin-1/2) and a superpartner of the SU(2)L gauge bosons. Through the electroweak
interactions, we may achieve the correct DM abundance with about 3 TeV DMmass. Another
example is a theory with extra-dimensions. The simplest extra-dimensional model is called
the Universal Extra-Dimension (UED) where the SM fields propagate in the five dimensional
spacetime with the flat metric. To realize the chiral theory with extra-dimensions, the five
dimensional coordinate y is compactified as the circle with the identification of the point
y = −y, which is called the orbifold compactification. After this compactification, the discrete
symmetry called Kaluza Klein parity (KK-parity) remains. Under this parity symmetry,
all the SM particles are even and associate the infinite number of particles with the same
quantum numbers such as spin and the charge of the SM symmetry. These particles are
called the Kaluza Klein partner (KK partner). If the Lightest KK-parity odd particle (LKP)
is electrically neutral, then it may be a stable DM candidate. Which spectrum turns out
to be the LKP is depending on the parameters in the theory but one interesting possibility
is that the LKP is the KK partner of the electroweak bosons. In this case, DM is SU(2)L
triplet vector (spin-1). This minimal model and its phenomenologies are studied in Ref. [10,
11, 12, 13]

In the coming decades, the next-generation DM experiments such as the XENONnT,
LZ, DARWIN, and Cherenkov Telescope Array (CTA) plan to upgrade their experimental
sensitivities. The electroweakly interacting DM predicts the signals that can be explored by
these experiments. Therefore, we expect to obtain further information about electroweakly
interacting DM. As mentioned above, some electroweakly interacting DM candidates directly
relate to the BSM scenarios. We may obtain remarkable implications on a theory behind
DM if we may specify the quantum numbers of DM, such as the electroweak charge and spin,
through the experimental tests.

One of the most important scenarios is the spin separation of the SU(2)L triplet DM
with spin-1/2 and spin-1, which corresponds to the separation of the Wino DM (spin-1/2)
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and the KK electroweak boson DM (spin-1). One powerful tool for spin discrimination is a
collider experiment where we can produce the BSM particles directly. However, if these DM
candidates have exact odd-parity and thus, DM only appears in pair production processes.
Consequently, TeV scale DM is difficult to produce even in the current Large Hadron Collider
(LHC) experiment. Besides, the viable searching channel is an event with large missing
energy, and thus we may not extract relevant information on DM spin from final states.
Other than the collider experiments, we may infer the DM features from direct and indirect
detection experiments where we try to observe the DM signals in the Milky-way galaxies.
However, the spin-discrimination is again a challenging issue. The averaged velocity of DM
in the current universe is totally non-relativistic (NR), and thus spin-dependent features tend
to decouple from low energy signatures.

In this thesis, we study the pair annihilation processes of DM and reveal the differences
caused by DM spin. In particular, we will consider the following two annihilation processes:

(1) Annihilation of DM multiplets in the early universe to determine the prediction of DM
energy density.

(2) DM pair annihilation processes in the current universe that may be probed by astro-
physical observation such as a gamma-ray search.

There are three reasons why we consider the annihilation channels to discriminate spin-1/2
and spin-1 DM candidates: First, DM is distributed with the NR velocity, and thus the
interaction processes are dominated by the s-wave contributions. This means that, in the
NR limit, the spin-statics directly determine the symmetricity of a wave function for a pair of
DM multiplets. Spin-1/2 and spin-1 DM candidates follow different spin-statistics and have
different numbers of spin degrees of freedom, which causes viable differences in the predicted
annihilation cross section between DM multiplets. Second, as shown in (1), the current DM
energy density is one of the most important predictions because we may specify the feasible
DM mass range to explain the correct DM energy density following the WIMP scenario. If
spin dependence is relevant in the annihilation cross section, we may have a finite gap of DM
mass that can achieve the correct abundance. Third, as shown in (2), signals from DM pair
annihilation are promising searching channels of electroweakly interacting DM. We focus on
the line gamma-ray channels in this thesis because this channel provides striking DM signals
due to the following reasons: If a TeV scale DM has annihilation channels into more than
one photon, it predicts the line-like peak in the photon energy spectrum. The peak location
is determined by masses of DM and final state particles. Since there is no astrophysical
background source that predicts the line gamma-ray monochromatic peak in the expected
energy range, it is easy to search TeV scale DM signatures. Moreover, we may reconstruct
the mass spectrum of DM from the energy value of a monochromatic peak. We may have
a great chance to probe gamma-ray from DM annihilation in next-generation gamma-ray
observation such as Cherenkov Telescope Array (CTA), which is sensitive for a photon with
O(1) TeV or higher energy. Specifying the DM mass and DM annihilation cross section in
light of gamma-ray search, we may discriminate spin-1/2 and spin-1 DM candidates and may
narrow down possibilities of DM theories.
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Since a DM pair annihilates with NR relative velocity in its center mass frame, perturba-
tive calculations may break down due to the effects of electroweak potential. The electroweak
potential force gets effectively larger in the NR limit of DM multiplets and distorts the wave
function of DM two-body states from the plane wave profile. This effect is called the Som-
merfeld effect, which is originally proposed for the Coulomb potential by Sommerfeld and is
applied to the Wino DM system with the electroweak potential [14]. The potential induced
by theW boson exchanging processes realizes mixing between electrically neutral DM states,
and thus DM can annihilate into photons without loop suppression. We have to construct
NR effective theory to systematically include electroweak potential effects in the evaluation
of annihilation cross sections. The NR effective theories for spin-0 and spin-1/2 DM are
already completed in contexts of the supersymmetric DM and the Minimal DM. We may
apply the same procedures for spin-1 DM to construct an effective theory. Precise evaluation
of DM annihilation cross section in each theory is crucial to conclude the possibility of DM
spin discrimination in the next-generation gamma-ray observation. This is our motivation to
study the Sommerfeld effects in spin-1 DM systems with electroweak interactions.

This thesis is organized as follows: In Sec. 2, We briefly show fundamental physics on
DM such as observational evidence. Then, focusing on WIMP DM candidate, we review
the standard thermal history called WIMP scenario and how to solve the time evolution
of WIMP in the expanding universe. In Sec. 3, we review electroweakly interacting DM
candidates, in which we discuss the possibility of discrimination between spin-1/2 and spin-
1 DM with SU(2)L triplet and Y = 0 interactions. These DM candidates correspond to
simplified models of the Wino DM and the KK electroweak boson DM. Section 4 is devoted
to showing a formalism to describe NR DM pair annihilation including electroweak potential
forces. We briefly review matching procedures to construct a NR effective field theory and
show results for the spin-1 DM system, which is one of the main results of this thesis. In
Sec. 5 and Sec. 6, we apply this formalism to evaluate the current DM energy density and the
annihilation cross section into photons, respectively. We show the parameter regions where
we may explain the correct DM energy density. We also specify regions where we expect
signatures in the CTA experiments considering the uncertainty of the local DM density. We
devote Sec. 7 to give our conclusions. Throughout this thesis, we use the natural unit where
ℏ = c = 1.
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2 WIMP Dark matter and its thermal history

We accumulated overwhelming evidence that suggest the existence of DM in our universe.
The various possibilities of DM are proposed in various contexts. One interesting possibility is
that DM is an unknown elementary particle. Besides, if DM couples to the SM particles and
is thermalized in the early universe, we may obtain predictions that are less dependent on the
initial conditions of the universe. Solving the Boltzmann equation for the DM number density,
we may derive a prediction on the current DM energy density. Requiring the predicted value
to realize the observed DM energy density, we may constrain the parameters in DM theory.
In Sec. 2.1, we briefly review DM evidence, which is pointed out in a wide range of the
cosmological scale. One of the most popular DM candidates is WIMP. We review the thermal
history of WIMP and summarize how to solve the time evolution of DM energy density. In
Sec. 2.2, we show a more dedicated treatment of solving DM density evolution assuming
the degenerated parity-odd particles in the system. The derived formulas are necessary to
discuss the electroweakly interacting DM system where we have a nearly degenerated parity-
odd spectrum.

2.1 Dark Matter evidence and WIMP hypothesis

DM evidence is discovered in various independent astrophysical observables of various cos-
mological scales. First, the total mass of the cluster can be estimated from the visible source
in the astrophysical observation where the missing mass in our universe is discovered [1].
The DM existence in our universe was first claimed by Zwicky [2] through the analysis of the
dynamical mass of the Coma galaxy cluster.

Second, the rotation curves of spiral galaxies also imply a missing gravitational source [3,
4]. The spiral velocities are measured through the Doppler shift of Hydrogen 21 cm line
observations. Applying the Newton’s gravitational law for the spiral galaxy, the circular
speed vc is estimated to be

vc =

√
GM<

r
, (2.1)

where G is the gravitational constant and M< is the mass in the range of radius r. The
observed velocity is flat in large r that is outside of the visible disc. This fact implies an
invisible massive source also exists around the visible disc to keep vc to be constant.

Third, DM existence is also essential to explain structure formation. The most successful
mechanism for structure formation is gravitational instability. In this mechanism, small initial
density fluctuations evolve by gravitational forces, which is crucial to realize structures such
as galaxies and galaxy clusters. Since the baryon component, which corresponds to the SM
particles, tightly couples to photons, perturbation of baryons can not grow fast enough to form
observed structures in our galaxy. On the other hand, the DM component does not couple
to photons due to the neutrality, and thus a power-low growth of perturbations is possible.
Therefore, DM provides a density fluctuation that the baryon component can follow after the
photon decoupling. This is one of the greatest reasons why DM is an essential component
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in our universe. Assuming this mechanism of the gravitational structure formation, we may
determine the energy density of DM in the current universe. In the Planck observation,
the CMB angular power spectrum is observed precisely. Since the baryon and DM density
affects the oscillation of the photon, the energy density of each component in the universe is
determined to realize the observed CMB data. In particular, they assume the ΛCDM model
where three major components of the universe, cosmological constant (Λ), cold DM (CDM),
and baryon, is assumed. According to the latest result [5], we obtain

ΩDMh
2 = 0.120± 0.001, (2.2)

where ΩDM is the density parameter of the universe and h is the Hubble parameter. This
observational fact put an important constraint when we study DM physics since this is only
the quantitative information that we know about DM.

As long as we can reach the correct value of DM energy density shown in Eq. (2.2), the
properties of DM are unknown. Therefore, we have vast possibilities in DM mass and DM
interactions with the SM particles. One of the most promising DM candidates is WIMPs.
This DM candidate has GeV to TeV DM mass range and ∼ O(1) pb cross section with the
SM particles. The standard thermal history of WIMP is called WIMP scenario, which is
frequently applied in many contexts of WIMP DM studies.

In this scenario, we assume that DM interacts with the SM particles and is thermalized in
the early universe. The time evolution of DM number density is described by the Boltzmann
equation.

dn

dt
+ 3Hn = 2

∫
dΠ C[E], (2.3)

where n denotes the DM number density and H denotes the Hubble parameters. The factor
of three in the second term on the left hand side (LHS) is originated from the number of
spatial dimensions. The right hand side (RHS) is called a collision term. If there is no
collision effect, the number density is conserved in the time evolution of n. Let us consider
the situation where we have the number changing processes, X + Y + · · · → A + B + · · · .
The collision term has the following form.

2

∫
dΠC[E] =

∫
dΠXdΠY dΠAdΠB · · · (2π)4δ4(pX + pY + · · · − pA − pB − · · · )

×
[
fAfB · · · (1± fX)(1± fY ) · · · |MA+B+···→X+Y+···|2

− fXfY · · · (1± fA)(1± fB) · · · |MX+Y+···→A+B+···|2
]
, (2.4)

where fi (i = X,Y, · · · , A,B, · · · ) denotes distribution functions for each particle species. The
factors of fi are for initial particles. The factors of (1 ± fi) are for final particles where the
positive and negative signs are for the Boson and Fermion, respectively. To discuss the more
specific situation for DM systems, we focus on the two-to-two process, X + X̄ → A + B,
where X and X̄ denote a DM and an anti-DM. To simplify the Boltzmann equation, We
assume the following assumptions, which can be widely applied to WIMP system.

6



• All the particles are in the kinetic equilibrium. We take the classical limit for the
distribution function.

fi =


[
exp

(
Ei−µi

kBT

)
− 1
]−1

(for Boson)

[
exp

(
Ei−µi

kBT

)
+ 1
]−1

(for Fermion)

 classical limit−−−−−−−→ exp

(
−Ei − µi

kBT

)
(� 1),

(2.5)

where Ei and µi are the energy and chemical potential for i-th particle, respectively.

• The process is invariant under the time-reversal.

|MXX̄→AB|2 = |MAB→XX̄ |2 ≡ |M|2. (2.6)

• DM number is equal to the anti-DM number, nχ = nχ̄.

• The final particles are in the thermal equilibrium, and thus number density is expressed
as nA(B) ' neq

A(B).

Under these assumptions, we may obtain a simpler expression of the Boltzmann equation.

dnX

dt
+ 3HnX = −〈σv〉

(
n2
X − (neq

X )2
)
. (2.7)

We define

neq
i ≡

∫
d3p

(2π)3
gie

− Ei
kBT =

gim
3

2π2

(m
T

)−1

K2(x) '


gi
(
mT
2π

) 3
2 e−

m
T (m� T ),

giT
3

π2 (m� T ),

(2.8)

where gi denotes the internal degree of freedom for i-th particle and Kn(x) denotes the
modified Bessel function. We also introduce a thermalized velocity weighted cross section as
defined below.

〈σv〉 ≡ 1

(neq
X )2

∫
d3pX
(2π)3

∫
d3pX̄
(2π)3

∫
d3pA
(2π)3

∫
d3pB
(2π)3

× (2π)4δ4(pX + pX̄ − pA − pB)|M|2 exp
(
−EX + EX̄

kBT

)
, (2.9)

The time evolution of nX is obtained by solving Eq. (2.7). For the numerical evaluation,
it is more convenient to change the variables into x = m/T where m denotes DM mass and
T denotes the temperature of the thermal bath. We define yield for DM as a function of x.

YX(x) ≡
nX

s
, (2.10)
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where s denotes the total entropy density

s =
∑
i

si, (2.11)

and si as the entropy density for the i-th particle as defined below.

si ≡
ρi + pi
T

, (2.12)

where ρi and pi denote internal energy and pressure for the i-th component, respectively.
For the relativistic particles, we can further simplify this expression by using the equation of
state, pi = ρi/3, and obtain the following expressions.

si =
4ρi
3T
' 2π2

45
giT

3
i


1 (Boson)

7
8

(Fermion)
, (2.13)

where Ti denotes the temperature of the i-th particle. It is convenient to introduce the
effective degrees of freedom for the total entropy density g∗s and the total energy density g∗.

g∗s(T ) '
∑

i:Boson

gi

(
Ti
T

)3

+
7

8

∑
i:Fermion

gi

(
Ti
T

)3

, (2.14)

g∗(T ) '
∑

i:Boson

gi

(
Ti
T

)4

+
7

8

∑
i:Fermion

gi

(
Ti
T

)4

. (2.15)

Using these expressions, the total entropy density s can be expressed as the function of the
temperature of photons, T .

s =
2π2

45
g∗s(T )T

3. (2.16)

Finally, Eq. (2.7) can be expressed as the differential equation of the yield, YX(x).

dYX
dx

= − s

xH

(
1− x

3g∗s(x)

dg∗s(x)

dx

)
〈σv〉

(
Y 2
X − (Y eq

X )2
)
, (2.17)

where we introduce the yield at the thermal equilibrium, Y eq
X (x) as defined below.

Y eq
X (x) ≡ neq

X

s
' 45

2π4

√
π

8

gX
g∗s(x)

x
3
2 e−x, (2.18)

where we assume m � T to approximate DM number density. If we assume the radiation
dominant universe, the Hubble constant, H, is expressed as follows.

H ≡
√
g∗(T )

10

π

3Mpl

m2

x2
. (m� T ) (2.19)
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We can solve Eq. (2.17) by giving g∗s as a function of T .
To read out the rough picture for the time evolution of DM number density, let us ap-

proximate g∗s to be constant and neglect the derivative of g∗s in Eq. (2.17).

x

Y eq
X

dYX
dx
' −ΓX

H

[(
Y 2
X

Y eq
X

)2

− 1

]
, (2.20)

where we define the annihilation rate of DM as ΓX ≡ 〈σv〉nX . From this approximated equa-
tion, we find the following behaviors of nX in each epoch of the thermal history. First, in the
early universe, we have plenty rate of all the interaction channels, production, annihilation,
and scattering processes for DM. Therefore, the yield of DM is expressed in the form of a
thermal equilibrium state, YX ' Y eq

X , and the RHS of Eq. (2.20) is negligible. Consequently,
if the effect of the cosmic expansion is also negligible, the DM number density is approxi-
mately fixed to be a constant value. Second, as the temperature of the thermal bath gets
decreased, it becomes more difficult to produce a pair of DM from the SM particles due to
the lack of thermal energy. After DM production processes are forbidden kinematically, pair
annihilation processes of DM only occur and decrease the number density of DM. As long
as we have rapid scattering processes between DM and particles in the thermal bath, DM
number density is expressed in the thermal equilibrium state. Therefore, the yield of DM
decreases exponentially as the temperature decreases. Third, DM annihilation processes are
forbidden if the cosmic expansion gets relevant and DM can not find an annihilation partner.
After closing both production and annihilation processes, DM number density per comoving
volume turns out to be constant. This succeeding thermal history of DM is called freeze-out,
and the thermally abundant DM is called thermal relic abundance. We may estimate when
the freeze-out occurs by comparing the typical time scale for DM pair annihilation ∼ 1/ΓX

and the cosmic age, ∼ 1/H. Therefore, the condition for DM annihilation processes to be
negligible is expressed below.

ΓX/H � 1. (2.21)

This condition implies that the RHS of Eq. (2.20) gets negligible and yield is again fixed to the
constant value. The temperature where the freeze-out occurs, Tfo, can be roughly estimated
by reading out where ΓX/H ' 1 is realized. We need to solve Eq. (2.17) numerically to
precisely determine the DM number density in the current universe, which is one of the most
important predictions of WIMP hypothesis.

2.2 Coannihilation

In the previous section, we gave general formalism to evaluate thermal relic abundance fol-
lowing the freeze-out mechanism. If we have a nearly degenerated mass spectrum in the DM
system, the evaluation of the thermal relic abundance is affected by not only DM but also
the heavier components. This effect is called coannihilation [15]. In particular, if the mass
difference between DM and a heavier component is smaller than the freeze-out temperature
of DM, the heavier component is still abundant in the thermal bath. Consequently, the
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heavier component may also affect the number density of parity-odd particles, and the DM
annihilation rate gets effectively increased. In this section, we review the general formalism
to evaluate the thermal relic abundance in the system with viable coannihilation effects.

Let us consider the system with Z2-odd charge, {χi} (i = 1, 2, · · · , n). This discrete
symmetry stabilizes the lightest Z2-odd particle and realizes a stable DM candidate. We
assign the label i so that m1 < m2 < · · · < mn, and thus DM is χ1. To simplify the notation,
we use m ≡ m1 to express DM mass. We also assume that χi has interaction channels with
the SM particles. The relevant interactions conserving the Z2 symmetry are listed below.

χiχj → XX ′, (2.22)

χiX → χjX ′, (2.23)

χj → χiXX ′, (2.24)

where X and X ′ denote the appropriate combination of the SM particles. Once we determine
X, the other X ′ is automatically fixed depending on each interaction theory of DM. Thanks
to the decay processes in Eq. (2.24), all the heavier components χj(j > 1) finally decay to
the lightest component χ1. Therefore, all we have to follow is the total number density n to
evaluate the thermal relic abundance of DM.

n ≡
∑
i

ni, (2.25)

where ni denotes the number density of χi.
We obtain the following Boltzmann equation for the i-th component by including the

processes shown in Eqs. (2.22)-(2.24) on the RHS.

dni

dt
+ 3Hni = −

∑
j,X

[
〈σijv〉 (ninj − neq

i n
eq
j )

+
(〈
σ′
ijv
〉
ninX −

〈
σ′
jiv
〉
njnX′

)
+ Γij(ni − neq

i )
]
, (2.26)

where we introduce the following notation.

σij ≡ σ(χiχj → XX ′), (2.27)

σ′
ij ≡ σ(χiX → χjX ′), (2.28)

Γij ≡ Γ(χi → χjXX ′). (2.29)

We assume that the SM particles are in the thermal equilibrium and relativistic at the freeze-
out temperature. To obtain the Boltzmann equation for total number density, n, we take
summation over i for Eq. (2.26) on both sides and obtain the following equation.

dn

dt
+ 3Hn = −

n∑
i=1

n∑
j=1

〈σijv〉 (ninj − neq
i n

eq
j ), (2.30)
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where we define

〈σijv〉 ≡
( m

4πT

)3/2 ∫
dv4πv2(σijv) exp

(
−mv

2

4T

)
. (2.31)

Note that the second and third terms on the RHS of Eq. (2.26) do not change the total number
density, and thus these terms do not contribute to Eq. (2.30). Besides, the symmetric part
of σij only contributes to the equation. Since we assume the SM particle is relativistic near
the freeze-out point, the number density of χi is exponentially suppressed compared to that
of the SM particles. Therefore, the processes in Eq. (2.23), which thermalizes χi, are more
relevant than the processes in Eq. (2.22). Consequently, we can approximately express the
number density of χi as ni ' neq

i . For later convenience, we define the ratio of the number
density.

ri ≡
neq
i

neq
=
gi(1 + ∆i)

3
2 e−x∆i

geff
, (2.32)

where gi denotes the internal degrees of freedom for χi. We also introduce the following
variables.

∆i ≡
mi −m
m

, (2.33)

geff ≡
n∑

i=1

gi(1 + ∆i)
3
2 e−x∆i . (2.34)

Using the above expressions, we express Eq. (2.30) as shown below.

dn

dt
+ 3Hn = −〈σeffv〉

(
n2 − n2

eq

)
, (2.35)

where effects of the coannihilation are imprinted in the effective annihilation cross section
σeff .

〈σeffv〉 ≡
n∑

i=1

n∑
j=1

〈σijv〉 rirj (2.36)

=
n∑

i=1

n∑
j=1

〈σijv〉
gigj
g2eff

(1 + ∆i)
3
2 (1 + ∆j)

3
2 exp [−x(∆i +∆j)] . (2.37)

The physical meaning of ri is stated below: If we have T ≲ mi −m, the ratio ri for i > 1 is
exponentially suppressed. This suppression represents the thermal decoupling of the heavier
components. In the limit of high temperature, all the heavier components decouple from the
thermal bath, and we obtain the following converged values.

geff → g1, (internal degrees of freedom for DM) (2.38)

ri →
{

1 for i = 1,
0 for i > 1.

(2.39)
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Therefore, we recover the results for DM annihilation cross section without degenerated
spectrum and obtain the same Boltzmann equation derived in the previous section.

Before we move to the next section, we mention concrete situations where the coannihi-
lation effects get viable. In this thesis, we consider spin-1/2 and spin-1 DM systems with the
SU(2)L triplet and Y = 0 electroweak interactions and study the possibility to discriminate
these signatures. DM candidate corresponds to the neutral component of the SU(2)L mul-
tiplet. We have typically O(100) MeV for the mass splitting between the neutral and the
charged components originated from the electroweak radiative corrections. Another source
of mass splitting is the higher dimensional operators that are suppressed by the cutoff scale.
In particular, nonzero contributions to the mass splitting only appear from the operator that
breaks SU(2)L symmetry after the SM Higgs develop the Vacuum Expectation Values (VEV).
The lowest operators are dimension seven for spin-1/2 DM and dimension eight for spin-1
DM, respectively. If we assume the cutoff scale is higher than O(10) TeV, the contribution
from the higher dimensional operators get irrelevant and the electroweak radiative corrections
dominate the mass splitting. Since the value of mass splitting is much smaller than the TeV
scale DM mass, which is expected to reach the correct value of thermal relic abundance, the
coannihilation effects are efficiently switched on. In Sec. 5, we will evaluate σeff in the system
of electroweakly interacting DM.
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3 Electroweakly interacting spin-1 DM

As reviewed in the previous section, the crucial constraint for the WIMP DM model is the
thermal relic abundance. There are various possibilities on DM mass and interactions with
the ordinary matter as long as the observationally fixed value Ωh2 = 0.120±0.001 is realized.
We note that the velocity-weighted annihilation cross section for DM, 〈σv〉, is the crucial
parameter to characterize the prediction of DM abundance. To realize the observed DM
energy density through the freeze-out scenario, we need the following value for the cross
section.

〈σv〉 ' 3× 10−26 cm3/s, (3.1)

which is called the canonical cross section.
Electroweakly interacting DM is one of the promising and most studied WIMP theories.

These DM candidates interact with the SM particles mainly through electroweak interactions.
Under this assumption, we may estimate the DM annihilation cross section through a simple
dimensional analysis.

σv ' α2

m2
DM

, (3.2)

where α2 is the fine structure constant of the SU(2)L gauge group, and we assume that DM
mass, mDM, is the typical energy scale for DM annihilation processes. Requiring this cross
section to be equal to the canonical cross section, we obtain the typical value for DM mass,

mDM ' O(100) GeV, for α2 ' 0.03, (3.3)

and obtain the accidental coincidence of the scale and mass which are both typical for elec-
troweak theory in the SM. This fact is called WIMP miracle, which is one of the greatest
motivations to consider electroweakly interacting DM.

Although this electroweakly interacting DM hypothesis is simple and works well following
the standard WIMP framework, we have one more nontrivial question: how to stabilize DM
candidates with electroweak interactions. If we have no stabilization mechanism for TeV
scale DM with electroweak interactions, DM may not survive in the current universe due to
the short lifetime. One may simply assume the discrete symmetry for the dark sector. Some
theoretical frameworks, motivated to solve the hierarchy problem, provide both DM stability
and electroweak interactions for DM at the same time.

One possibility to stabilize electroweakly interacting DM is the R-parity in the super-
symmetric scenario. The MSSM is the minimal supersymmetric model that realizes the SM
spectrum at low energy. In this model, all the SM matter fields are extended to the chi-
ral superfield while gauge bosons are promoted to the vector superfields. The Wino is the
spin-1/2 superpartner of the SU(2)L gauge bosons in the vector superfield. Therefore, its
electroweak charge is identical to that of gauge bosons, SU(2)L triplet with Y = 0. If the
neutral component of the spin-1/2 triplet is the LSP, it may be a stable DM candidate and is
called the Wino DM. Since the Wino DM has no Higgs coupling at the tree-level, electroweak
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channels dominate interactions between the Wino DM and the SM particles. The tree-level
mass m for electrically neutral and charged components are degenerated at the tree-level
due to the triplet features. This degeneracy is broken by the radiative corrections between
electroweak multiplets, and nonzero mass splitting is induced. This mass splitting, δm, is
calculated at the two-loop level [16, 17, 18], and obtained as δm ' 170 MeV in the limit of
m� mW . This Wino DM scenario is one of the most studied WIMP DM candidates.

Another framework to stabilize electroweakly interacting DM is the KK-parity in extra-
dimensional theories. Concrete models that predict electroweakly interacting spin-1 DM,
which has the non-abelian vector couplings with electroweak bosons, are proposed. We will
review this latter stabilization mechanism in the rest of this section. In Sec. 3.1, we review
extra-dimensional theory and spin-1 DM candidates that are stabilized by the KK-parity. We
also summarize properties of spin-1 DM such as couplings for spin-1 DM and mass spectrum
in each model. In Sec. 3.2, we introduce a simplified spin-1 DM model that realizes essential
features of KK electroweak boson DM of the extra-dimensional theory.

The goal of this work is to compare the predictions from the spin-1/2 and spin-1 DM
candidates that have the SU(2)L triplet and Y = 0 electroweak interaction. This comparison
corresponds to the discrimination between the Wino DM and the KK electroweak boson
DM. Let us add comments on the significance to discuss the discrimination of these scenar-
ios: The Wino DM is indeed embedded in the neutralino DM, which is the mixing of the
electrically neutral spin-1/2 fields, in a more general framework in the MSSM. The lightest
spectrum can be the LSP DM candidate. In this sense, the Wino DM is a special limit of the
general neutralino DM scenario where the LSP has purely SU(2)L triplet features. There-
fore, phenomenological studies focusing on the Wino DM are not enough. We have to study
more general neutralino DM to conclude the possibility of discrimination between spin-1/2
DM candidate predicted in supersymmetric scenarios and spin-1 DM in extra-dimensional
theories. Still, it is worth focusing on the Wino DM and the KK electroweak boson DM as
benchmark scenarios to discuss separations. This is because discrimination between these
DM candidates are highly non-trivial due to the same electroweak interactions with SU(2)L
triplet and Y = 0. It is essential to extract the spin-dependent features and signatures of
these theories. In Sec. 6, we will discuss further how to detect spin-dependence in experi-
mental observables.

3.1 Spin-1 DM candidate in extra-dimensional theory

If we have extra-dimensions, they should be compactified with the appropriate procedures
so that we can not observe the higher dimensions. The procedures to construct a concrete
model with extra-dimension(s) are summarized below.

1. Fix the number of extra-dimension(s)

2. Determine the metric for extra-coordinate(s)

3. Choose how to compactify extra-dimension(s)

4. Assign boundary conditions for each field to desire appropriate spectrum
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Throughout this thesis, we focus on five dimensional theories: four ordinary dimensions
({xµ} (µ = 0, 1, 2, 3) to express these coordinates) and one extra dimension (y to express
this coordinate). This is a minimal choice to realize a discrete symmetry originated from a
geometric reflection of an extra-dimension. We also discuss some possibilities for metric of
an extra-dimension. The simplest choice is a flat metric for the fifth coordinate, which is
often mentioned as universal.

d2s = d2x+ d2y. (3.4)

We may also consider a curved extra-dimension. The most well-studied setup is a warped

metric. The warped metric is parameterized by the warp factor, k, which has mass dimen-
sion 1.

d2s = d2x+ e−2kyd2y. (3.5)

Using this warped metric, some models are constructed to address the hierarchy problems [19].
The geometric symmetry is different between the flat and curved metric, and thus the discrete
symmetries are realized by the different mechanisms. The difference also appears in the mass
spectrum through the possibly large boundary terms as discussed in Sec. 3.1.2 and Sec. 3.1.3.

The way of compactification is also important to realize the desired spectrum in low
energy. The most nontrivial part is to realize chiral fermions. Besides, compactifications
crucially determine the residual symmetry for the four dimensional theory. We may find a
discrete symmetry that stabilizes a DM candidate. We review the above possibilities of model
construction using simple toy models with an extra-dimension and summarize distinctive
properties in each setup.

3.1.1 Universal Extra-Dimension

Let us start from the simplest example, which is called the universal extra dimension. In
this setup, we consider a five dimensional theory with a flat metric shown in Eq. (3.4). The
geometry of the fifth coordinate is orbifold, S1/Z2, where Z2 means the identification of the
point with y and −y. In other words, we require the theory to respect the parity symmetry
under the y 7→ −y. This discrete symmetry is called y-parity, In Fig. 1, we show the fifth
coordinate with the orbifold compactification. After this identification, the fifth coordinate
is mapped on the line segment of length L = πR. We have two boundaries on this line, y = 0
and y = πR, which are called fixed points. Each point is transformed into itself under the
symmetry transformation of y 7→ −y. These boundaries violate the translation invariance on
the fifth coordinate, which is originally guaranteed by the flatness of extra-dimension.

The discrete symmetry is found in this setup with orbifold compactification in the fol-
lowing way. Since the fifth dimension is S1, we have the following periodicity around the
extra-dimensional coordinate.

y ' y + 2πR. (3.6)

This is nothing but a U(1) symmetry, and this symmetry is exact before orbifolding. The
fifth momentum is discretized due to this periodic boundary condition, and five dimensional
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y = 0

...

y = πR

→

y = 0 (Fixed point)

y = πR
2

(Middle point)

y = πR (Fixed point)

Figure 1: The fifth coordinate with the orbifold compactification.

fields are expanded into each mode, which is called KK mode, with momentum n/R (n =
0, 1, 2, · · · ). The conserved quantum number exists associated with the U(1) symmetry if
the translation invariance is exact. This conserved number is called KK number. We have
the discrete symmetry even after orbifolding, which corresponds to the invariance under the
translation of πR in the y-direction. Expressing this translation within the domain of the
fifth coordinate, y ∈ [0, πR], this translation is equivalence to the flip of the line segment
about its center at y = πR/2.

y 7→ πR− y, (3.7)

where we use the invariance under the y 7→ −y and y 7→ y + 2πR. Note that we should
assume the equivalent boundary localized interactions on two branes to maintain this KK
parity exactly since y = 0 and y = πR are exchanged with each other.

Respecting the above symmetries, we can expand the y-dependence of each field. The
scalar field of five dimensional theory, Φ(x, y) is expressed as shown below.

ΦKK
+ (x, y) =

∞∑
n=0

ϕ
(n)
+ (x)f

(n)
+ (y) =

1√
πR

{
ϕ
(0)
+ (x) +

√
2

∞∑
n=1

ϕ
(n)
+ cos

(
y − πR

2

R
n

)}
, (3.8)

ΦKK
− (x, y) =

∞∑
n=0

ϕ
(n)
− (x)f

(n)
− (y) =

√
2

πR

∞∑
n=1

ϕ
(n)
− (x) sin

(
y − πR

2

R
n

)
, (3.9)
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where we use the following complete sets to expand y dependence.

f
(0)
+ (y) =

1√
πR

, (3.10)

f
(n)
+ (y) =

√
2

πR
cos

(
y − πR

2

R
n

)
(n = 1, 2, 3, · · · ), (3.11)

f
(n)
− (y) =

√
2

πR
sin

(
y − πR

2

R
n

)
(n = 1, 2, 3, · · · ). (3.12)

The normalization factors are fixed to satisfy the following conditions.∫ πR

0

dyf
(m)
+ f

(n)
+ = δmn, (m,n = 0, 1, 2, · · · ) (3.13)∫ πR

0

dyf
(m)
− f

(n)
− = δmn, (m,n = 1, 2, 3, · · · ) (3.14)∫ πR

0

dyf
(m)
+ f

(n)
− = 0. (m = 0, 1, 2, · · · and n = 1, 2, 3, · · · ) (3.15)

Under the symmetry transformation shown in Eq. (3.7), ϕ
(n)
± transforms in the following way.

ϕ
(n)
± (x) 7→ ±ϕ(n)

± (x). (3.16)

The zero mode ϕ
(0)
+ , which is constant, obviously transforms as even fields. We also note

that these parity assignments directly correspond to the choice of boundary conditions for
the fifth coordinate as found in Eqs. (3.8)-(3.9). If we have no boundary localized terms, we
obtain two types of natural boundary conditions by requiring that all the boundary terms
vanish. In particular, we can choose ϕ+ or ϕ− by switching these boundary conditions.

ϕ
(n)
+ (x)

∣∣∣
0,πR

= 0, (Neumann boundary condition) (3.17)

∂yϕ
(n)
− (x)

∣∣∣
0,πR

= 0. (Dirichlet boundary condition) (3.18)

Since the four dimensional Lagrangian is obtained after performing the y integral, the coeffi-
cients {ϕ(n)

± } correspond to the four dimensional fields. Therefore, the KK-parity is nothing
but the Z2-parity realization for the four dimensional fields as shown in Eq. (3.16). We also
note that the KK number is conserved in all the interactions of the four dimensional theory
due to the orthogonal relation between {f (n)

± }.
The higher KK modes with n ≥ 1 acquire O(n/R) mass from the kinetic term of the fifth

component, while the zero mode does not. Therefore, we have a mass gap characterized by
∼ 1/R between zero mode and higher KK modes. Making use of this property, we identify
the SM particles as zero modes in the KK expansion of each five dimensional field to realize
the observed SM spectrum in low energy while higher KK modes tend to decouple from the
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low energy physics. Since a zero mode only exists in KK-even modes, we may switch on and
off each field to realize the observed spectrum by choosing boundary conditions.

The SM spectrum realization in the flat five dimensional theory is proposed and studied
in Ref. [20]. In this model, all the SM fields are promoted to the field in a five dimensional
theory. We prepare field contents and assign appropriate boundary conditions to realize the
SM spectrum. For the scalar sector, we assign the Neumann boundary condition to realize a
zero mode for the SM Higgs.

H(x, y) =
1√
πR

{
H(0)(x) +

√
2

∞∑
n=1

H(n) cos
(ny
R

)}
, (3.19)

For gauge fields, we assign different boundary conditions for µ = 0, 1, 2, 3 components and
y component. The y component behaves as the Lorentz scalar under the SO(1,3) Lorentz
transformation and is eaten by the KK modes with n ≥ 1 through the Higgs mechanism
in the five dimensional theory. Therefore, we only have a zero mode as a physical degree
of freedom. We switch off the zero mode by assigning the Dirichlet boundary condition to
avoid extra scalar degrees of freedom in the low energy. The Neumann boundary condition is
assigned for µ = 0, 1, 2, 3 components to realize zero modes that behave as the Lorentz four
vectors. Imposing the above boundary conditions, we obtain the following expression for the
gauge field.

Aµ(x, y) =
1√
πR

{
A(0)

µ (x) +
√
2

∞∑
n=1

A(n)
µ cos

(ny
R

)}
, (3.20)

A5(x, y) =
∑
n=1

A
(n)
5 (x)

√
2

πR
sin
(ny
R

)
. (3.21)

The physical degrees of freedoms are A
(n)
µ and the KK modes with n ≥ 1 acquire masses of

O(n/R).
In the five dimensional theory, we need to consider vector like fermions to realize the

fermion mass term. To show this fact, we write down the kinetic term for a fermion field in
the fifth dimensional theory. The five dimensional Gamma matrices are expressed as shown
below.

{ΓM ,ΓN} = 2ηMN . (M,N = 0, 1, 2, 3, y) (3.22)

We choose the following four-times-four representation as shown below.

Γµ ≡ γµ, Γ5 = iγ5, (3.23)

where

Γµ =

(
0 σµ

σµ 0

)
, Γ5 =

(
−i1 0
0 i1

)
, (3.24)
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where we define σµ ≡ (1, σi). The fermion fields are also expressed in four component spinor
representations. From Eq. (3.24), we are no longer able to perform the chiral projection for
the five dimensional fermion. We use γ5 for the chiral projection in the four dimensional
theory using PR = (1 + γ5)/2 and PL = (1− γ5)/2. However, in the five dimensional theory,
we need γ5 to realize the Clifford algebras and can not define the projection operator into
two different chiralities. In other words, the kinetic terms can not be decomposed into the
left-hand field and the right-hand field. This can be shown by using the following notation
for the four component fermion.

Ψ(x, y) =

(
ψL(x, y)
ψR(x, y)

)
, (3.25)

and the kinetic term is decomposed into the following expression.

Ψ̄i/∂Ψ =ψ†
Ri∂µσ

µψR + ψ†
Li∂µσ̄

µψL + ψ†
R∂yψL − ψ†

L∂yψR. (3.26)

We find the left-handed and right-handed fermions are coupled in the last two terms, which is
necessary to realize the fifth kinetic terms. The SM is a chiral theory where left-handed field
and right-handed field are assigned to the different gauge assignments. To realize the chiral
fermion in the five dimensional theory, the following two methods are often discussed: (1)
introducing chiral fermions on boundaries and (2) imposing the orbifold compactification.
Both of these methods break the five dimensional Lorentz invariance. If we choose the
latter solution, we may realize the KK-parity by requiring the equivalent boundary terms on
boundaries. Besides, we can switch off and on zero modes by assigning appropriate boundary
conditions, which is crucial to realize four dimensional chiral fermions from five dimensional
theories. In particular, we introduce vector like fermion fields, corresponding to each of the
SM fermions, and assign the Neumann (Dirichlet) boundary condition for the fermion with
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correct (wrong) chirality. Under this setup, we obtain the following expressions.

Q(x, y) =
1√
πR

{
PLQ

(0)(x) +
√
2

∞∑
n=1

PLQ
(n) cos

(ny
R

)}

+
∑
n=1

PRQ
(n)(x)

√
2

πR
sin
(ny
R

)
, (3.27)

u(x, y) =
1√
πR

{
PRu

(0)(x) +
√
2

∞∑
n=1

PRu
(n) cos

(ny
R

)}

+
∑
n=1

PLu
(n)(x)

√
2

πR
sin
(ny
R

)
, (3.28)

d(x, y) =
1√
πR

{
PRd

(0)(x) +
√
2

∞∑
n=1

PRd
(n) cos

(ny
R

)}

+
∑
n=1

PLd
(n)(x)

√
2

πR
sin
(ny
R

)
, (3.29)

where indices of generations are implicit and fL(fR) denotes the left-handed (right-handed)
fermion field.

We omit the boundary localized term in the above argument. However, we need to include
the boundary localized term in the orbifold theory because the coefficients of boundary
localized terms receive the infinite loop corrections. In Ref. [21], one-loop calculations in the
five dimensional Yukawa theory are performed, and they showed the boundary interactions
acquire divergent corrections. This result implies that the boundary localized terms are
necessary to renormalize couplings, and thus it is inconsistent NOT to include these boundary
terms in the orbifold theory. These parameters are incalculable and treated as free parameters
in the theory, which also receive the corrections from the physics beyond the cut off scale
as well as the calculable radiative corrections. Therefore, it is worth discussing the physical
effects of the boundary localized terms. As mentioned above, if we have nonzero boundary
localized terms, the translation invariance for the fifth direction is broken. Therefore, these
boundary terms cause the KK number violation. However, if the boundary localized terms
are suppressed by some mechanism the KK number conservation can be the approximate
symmetry.

In the analysis called Minimal Universal Extra Dimension (MUED), it is assumed that
the boundary localized terms respect the reflection symmetry about the middle point of the
line segment. Under this setup, we have the exact KK-parity symmetry, and thus the LKP
turns out to be a stable DM candidate. It is also assumed that we have no boundary localized
term at the cutoff scale, which is a free parameter in this setup, and all the boundary localized
terms are induced through the renormalization group evolution. Consequently, boundary lo-
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calized terms always appear with loop suppression factors and the KK number conservation
is still good symmetry. In this MUED approach, the radiative corrections are well-defined
and calculable without cutoff dependence. The point is that the finite mass corrections are
only induced by the non-local effects, which have nonzero winding numbers around the com-
pactified finite fifth dimension. Therefore, we obtain the finite loop amplitude by subtracting
the corresponding amplitude in uncompactified theory. This subtraction formula is proposed
by Ref. [22], and the mass splitting for the SM spectrum in the MUED model is calculated
at the one-loop level. According to their analysis, the KK photon turns out to be the LKP
and stable DM candidate. Therefore, the DM candidate in the MUED approach has no
electroweak interactions.

3.1.2 Minimal Universal Extra-Dimension

This situation drastically changes if we consider relatively large boundary localized terms
as pointed out in Ref. [10]. To demonstrate the effects of boundary localized terms on the
mass spectrum, let us consider a simple scalar theory with relatively large boundary localized
terms.

S = Sbulk + Sbound, (3.30)

where

Sbulk =
1

2

∫
d5x

(
∂MΦ∂MΦ−m2Φ2

)
, (3.31)

Sbound =
1

2

∫
d5x

(
rΦ∂

MΦ∂MΦ−m2
bΦ

2
)
[δ(y) + δ(y − πR)] . (3.32)

In Eq. (3.32), we introduced dimension full parameters, rΦ (mass dimension −1) and m2
b

(mass dimension 1), to characterize the boundary localized terms. Due to the finite fifth
dimension, the boundary contributions are induced by the partial integral. We obtain the
following equation of motion, (

□− ∂2y +m2
)
Φ = 0, (3.33)

and boundary conditions. (
∂5 − rΦ□−m2

b

)
Φ
∣∣
y=0

= 0, (3.34)(
∂5 + rΦ□+m2

b

)
Φ
∣∣
y=πR

= 0. (3.35)

We expand the field using a complete set of functions.

Φ±(x) =
∑
n

ϕ
(n)
± (x)f

(n)
± (y). (3.36)
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Figure 2: Plots of quantization conditions with nonzero boundary terms. The solution corre-
sponds to the intersection of black and colored curves. The green, blue, and red curves show
RHSs of zero modes (n = 0), even modes (n ≥ 1), and odd modes (n ≥ 1) in each panel.
The intersections with the black dashed line in each panel show the UED solutions where we
switch off all the boundary localized terms. In the upper panel, we fix m2

b = 0 and change
the value of rΦ. The black dotted, black dashed, and black solid curves show the RHS of
Eq. (3.39) with rΦ = 0, R, and 4R, respectively. In the lower panel, we fix rΦ = 0 and change
the value of m2

b . The black dotted, black dashed, and black solid curves show the RHS of
Eq. (3.39) with m2

b = 0, 1/R, and 4/R, respectively.
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If we expand the trigonometric function to expand the y dependence,1 we obtain the following
relation from Eq. (3.33).

M2
n ≡

( n
R

)2
= m2

n −m2, (3.37)

where mn denotes the mass eigenvalue of the four dimensional Proca equation for the n-th
KK mode. (

□+m2
n

)
Φ(n)(x) = 0. (3.38)

The quantization conditions in Eq. (3.34) and Eq. (3.35) give the following constraint on mn.

rΦm
2
n −m2

b =


−Mn tan

(
MnπR

2

)
, (even)

Mn cot
(
MnπR

2

)
. (odd)

(3.39)

Since we consider relatively large boundary localized terms, we can not treat these parameters
perturbatively. Consequently, quantization conditions are altered, which also affects the mass
spectrum for the four dimensional fields.

In Fig. 2, we show the plots of the LHS and the RHS of the quantization conditions with
nonzero boundary kinetic terms. In each panel, the solution corresponds to the intersection
of black and colored curves. The black curves show the LHS. The green, blue, and red curves
show the RHS of zero modes (n = 0), even modes (n ≥ 1), and odd modes (n ≥ 1) in each
panel, respectively. If we switch off all the boundary localized terms, the LHS turns to be
zero as shown in the black dashed lines in each panel, which corresponds to the UED case.
Therefore, the intersections with the black dashed lines show the UED solutions. In the
upper panel, we fix m2

b = 0 and change the value of rΦ. The black dotted, black dashed, and
black solid curves show the RHS of Eq. (3.39) with rΦ = 0, R, and 4R, respectively. In the
lower panel, we fix rΦ = 0 and change the value of m2

b . The black dotted, black dashed, and
black solid curves show the RHS of Eq. (3.39) with m2

b = 0, 1/R, and 4/R, respectively. If we
take a limit of m2 → 0, the solutions saturate to be mn = 0, 1/R, 2/R, · · · in the UED case.
Due to the trigonometric profile, the RHSs for n = 0 (even) and n = 1 (odd) modes have
different behaviors. Consequently, we obtain the anomalously lighter mass for the lightest
zero mode and the first KK mode compared with the second KK mode and higher modes.

The solutions of mn and their dependence on the boundary localized terms are shown in
Fig. 3. The UED limit for mn are shown by gray horizontal lines in each panel. We take
1/R = 1 TeV,m = 0.5 TeV, and m2

b = 0 in the upper figure and shows rΦ-dependence of
mn. The boundary localized kinetic terms cause the drastic change of the mass splitting due
to the trigonometric profiles. We take 1/R = 1 TeV,m = 0.5 TeV, and rΦ = 0 in the lower
figure and shows m2

b-dependence of mn. The boundary localized mass terms cause almost
the overall shift since the LHS is shifted perpendicular to the y-axis. From this discussion

1The KK number conservation is broken if we introduce the large boundary localized term. Therefore,

another choice of the functional basis is the hyperbolic functions to expand the even and odd function {f (n)
± }

as discussed in Ref. [10].
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Figure 3: Plots of mn in the non-MUED approach. The green solid, blue dashed, and red
dotted curves show the zero mode, 1st KK mode, and 2nd KK mode, respectively. In the
upper panel, we fix m2

b = 0 and change the value of rΦ on the x-axis. In the lower panel, we
fix rΦ = 0 and change the value of m2

b on the x-axis.
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using the simple toy model, we find the mass spectrum will be drastically changed from
the UED scenario if we introduce boundary localized terms. In particular, the boundary
localized kinetic term may realize an anomalously lighter first KK mass compared with the
UED results.

We also note that the mass spectrum is not taken to be completely free even though we
take the arbitrary values of the boundary localized parameters. The most remarkable feature
is a mass relation between the first KK mode and the second KK mode. As can be seen from
Fig. 3, the first KK mass can be even lighter than zero mode mass in the UED setup while
the second KK mass is bounded by the first KK mass in the UED setup. Consequently, we
have m(2nd) > 2m(1st) in the whole range of plots in this non-MUED scenario.

According to Ref. [10], the KK mode for the electroweak neutral boson may be LKP if we
consider the large boundary localized term for the electroweak bosons. The KK parity is still
exact symmetry by assuming the same boundary localized term on each boundary. Therefore,
this first KK electroweak boson can be a stable spin-1 DM candidate with the electroweak
couplings of SU(2)L triplet. The model construction and the dedicated phenomenological
studies are done by Ref. [12]. The KK number violation may be significant in this non-
MUED scenario since we consider relatively large boundary localized terms.

3.1.3 Warped Extra-Dimension

Let us consider one more example to construct the extra-dimensional DM model with the
curved metric. In this case, the translation symmetry in the y axis does not exist from the
beginning. However, we are still able to realize the KK-parity in this curved extra-dimension
case such as the warped extra-dimension model. Note that the KK-parity is originated from
the geometric reflection symmetry about the middle point of extra dimensional coordinate.
To realize this symmetry, the symmetric warped metric is considered in Ref. [19].

d2s = d2x+ e−2k|y|d2y. (3.40)

In particular, the extra-dimensional coordinate is on y ∈ [−L,L] and symmetric under re-
flection about y = 0. Since this theory respects the reflection symmetry, we realize the
discrete symmetry corresponding to the KK parity in the UED model as long as we assume
the boundary localized terms are the same at the boundary point, y = −L and y = L. To
illustrate the effects of the boundary localized term in this setup, we review the abelian gauge
theory following Ref. [19].

L = −
∫
d4x

∫ L

−L

dy
√
−g 1

4g25

[
FMNFMN + 2rUVF

µνFµνδ(y)

+ 2rIRF
µνFµνδ(y − L) + 2rIRF

µνFµνδ(y + L)
]
, (3.41)

where we define FMN ≡ ∂MAN − ∂NAM . The determinant of the metric shown in Eq. (3.40)
is denoted by g, and thus we can express

√
−g as follows.

√
−g = a4(|y|). (3.42)
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where we introduce a warp factor a(y) ≡ e−ky. We also introduce g5 as a gauge coupling
(mass dimension −1/2) of the five dimensional theory. This action is invariant under y → −y.
Using this reflection symmetry about y = 0, we can rewrite Eq. (3.41) as shown below.2

L = −
∫
d4x

∫ L

0

dy
√
−g 1

4g̃5
2

[
FMNFMN + 2rUVF

µνFµνδ(y) (3.43)

+ 2rIRF
µνFµνδ(y − L)

]
, (3.44)

where the factor of 1/2 comes from the integral of y ⊃ [−L, 0] is absorbed in the squared
gauge coupling, g̃5

2 ≡ g25/2. This action reduced to the single-slice AdS5 with the gauge
coupling g̃5 = g5/

√
2. We again expand the five dimensional gauge field using the complete

set of the function.

Aµ±(x) =
∑
n

A
(n)
µ±(x)f

(n)
± (y). (3.45)

The FMN is defined as below.

F µν ≡ Fρσg
ρµgσν = Fρση

ρµησνa−4(|y|), (3.46)

F µ5 ≡ Fρτg
ρµgτ5 = Fρτη

ρµητ5a−2(|y|), (3.47)

Using these definition, we obtain the following equation of motion.

∂y

(
e−2y∂yf

(n)
± (y)

)
+m2

nf
(n)
± (y) = 0. (3.48)

The orthogonal relation is modified by the boundary localized terms.

1

g̃5
2

∫ L

0

dy [1 + 2rUVδ(y) + 2rIRδ(y − L)] f (m)(y)f (n)(y) = δmn, (3.49)

where the indices for ± are implicit. This condition realizes the canonical kinetic term for
the four dimensional gauge field. The boundary conditions are obtained as below.

e−2kL∂yf
(n)
± (L) = m2

n±rIRf
(n)
± (L), (3.50)

∂yf
(n)
+ (0) = −m2

n+rUVf
(n)
+ (0), (3.51)

f
(n)
− (0) = 0, (3.52)

where we impose the Neumann boundary condition for L = R to realize the zero mode while
we have two choices for the boundary condition for L = 0. We use (−+) and (++) to
express the parity of the wave function profiles on (y = 0, y = ±L) under y 7→ −y, which are

2The Chern-Simons term is Z2 odd if exist in five dimensional theory. Therefore, this violation term
may affect the stability of LKP [23]. The Chern-Simons term could arise in the presence of brane-localized
anomalies as studied in Ref. [24]. In the analysis of Ref. [19], they assume that all the brane-localized
anomalies cancel.
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Table 1: Summary table of the DM candidate, mass spectrum, and the KK number conser-
vation in each extra-dimensional DM model.

Scenario DM candidate mass spectrum KK number

MUED first KK mode for photon m(2nd) ' 2m(1st) conserved

non-MUED eg. first KK mode for electroweak boson m(2nd) > 2m(1st) violated

Warped eg. first KK mode for electroweak boson m(2nd) ≲ 2m(1st) violated

determined by the continuity condition. We obtain two towers of modes corresponding to
(−+) and (++) modes, which are KK-odd and KK-even, respectively. We have a massless
mode for (++) tower realized independent of the boundary localized terms. Besides, we have
two interlacing mass spectra that is originated from both (−+) and (++) modes. These
modes start at ∼ mKK ≡ ke−kL. In the limit of rIR � 1/k, we can read out the following
approximated mass spectrum for the lightest even and odd modes, respectively.

m2
1− '

2

krIR
m2

KK, (3.53)

m2
1+ '

rUV + rIR + L

rUV + L

2

krIR
m2

KK. (3.54)

The mass relation is obtained depending on the boundary parameters.

m1+

m1−
'
√
1 +

rIR
rUV + L

, (3.55)

which guarantees that m1+ ≳ m1−. The mass splitting between these modes is controlled by
the boundary kinetic terms. In particular, the value of rIR compared to L tunes, in principle,
arbitrary values of mass splitting. From this fact, we have wider possibilities in the mass
spectrum depending on the boundary localized terms than the case in the non-MUED setup.
The mass spectrum is no longer equally separated by 1/R, and we may have m(2nd) ≲ 2m(1st)

depending on the boundary localized terms. Besides, we have no KK number conservation
from the beginning in this setup, and there is no reason to consider the suppressed boundary
localized terms.

In Table 1, we summarize the features of the spin-1 DM candidates in each extra-
dimensional scenario. An electroweakly interacting spin-1 DM candidate is predicted in both
non-MUED and warped extra-dimension cases, but mass relations differ due to the difference
in quantization conditions. For the warped extra-dimension, we may have m(2nd) ≲ 2m(1st)

and the KK number violation. If these conditions are satisfied at the same time, we may
have new annihilation channels for a pair of first KK modes into zero mode and the second
KK mode as shown in Fig. 4. We will consider phenomenological implications of this possible
new annihilation channel in the succeeding sections.
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Figure 4: Examples for spin-1 DM annihilation diagrams into two vectors. The upper diagram
shows annihilation into γγ (zero mode + zero mode) where the KK number is conserved.
The lower diagram shows annihilation into γZ ′ (zero mode + second KK mode), which we
need mZ′ ≤ 2mV and the KK number violation.

Since we have wide possibilities in the mass spectrum, it is useful to perform the simplified
model analysis to reveal the phenomenology of spin-1 DM as general as possible. In the next
section, we introduce the spin-1 DM models that realize a similar spectrum as theories with
an extra-dimension. We will also review relations and correspondence between our simplified
model and the extra-dimensional model.

3.2 Non-abelian vector DM model

As revealed in Sec. 3.2, the mass spectrum and the interaction channels depend on the
setup of extra-dimensional models such as the metric and the boundary localized terms.
Since these variables directly affect the quantization condition of extra dimensions that give
physical mass spectrum. There are various possibilities for DM candidates as listed in Table 1.
One interesting possibility is that the first KK mode for the electroweak boson turns out to
be LKP, which appears in the non-MUED and the warped metric models. DM candidate
is SU(2)L triplet spin-1 particle in this case, and thus electroweak features may crucially
determine the procedure to test this scenario. The value of DM mass where we reach the
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correct thermal relic abundance tends to be heavier since non-abelian vector electroweak
interactions realize a larger number of DM annihilation channels. Throughout this thesis,
we will focus on the possibility that the first KK mode for the electroweak bosons is a stable
DM candidate.

We have two stabilization mechanisms for electroweakly interacting DM: R-parity in
the supersymmetric scenario and KK-parity in the extra-dimensional scenario. We may
construct models making use of each mechanism and have two DM candidates with the same
electroweak interactions but with different spins, the Wino DM (spin-1/2) and electroweak
KK boson (spin-1). It is important to discriminate the signatures from two DM candidates
because these candidates are directly related to the scenarios where we can address the SM
hierarchy problems.

For the spin-1 DM scenario, the mass relation between the first KK mode and the second
KK mode is important to reveal phenomenology. Annihilation modes into not only the SM
particles but also the final states including a second KK particle will be predicted if we
have m(2nd) > m(1st) and the KK number violation. This situation will be realized in the
warped extra dimension. DM annihilation processes are crucial to determine the thermal
relic prediction and the annihilation signatures in the current universe. To reveal the non-
abelian vector DM features as general as possible, we use a simplified model that realizes the
following features for DM predicted in a five dimensional setup.

• Z2 parity assignment for physical spectrum

• SU(2)L triplet spin-1 particles

• general mass spectrum for spin-1 particles

The simplest model, non-abelian spin-1 DM, is proposed in Ref. [25], which is constructed
by the inspired method of the deconstructing dimension [26, 27]. This method realizes
the mass spectrum of a five dimensional theory in the setup of four dimensional theory.
In particular, we consider the theory with many direct products of gauge symmetries and
impose the exchange symmetry between the gauge groups, which realizes the parity symmetry
corresponding to the KK parity in extra-dimensional theories. The original formalism chooses
the non-linear representation for the scalar fields, and thus the theory is not renormalizable.
Our model, on the other hand, is renormalizable since the linear representation is applied
for the scalar fields. We can still realize a similar mass spectrum as five dimensional setups
through the spontaneous symmetry breaking in the scalar sector. Consequently, we have
Z2-odd physical spectra in the electroweak vector sector, which corresponds to the KK DM
candidate in the context of the extra-dimensional theory.

3.3 Simplified model of spin-1 DM in extra-dimensional theory

Let us show the detailed setup of the electroweakly interacting vector DM model proposed
in Ref. [25]. The gauge symmetry is extended into

SU(3)c× SU(2)0× SU(2)1× SU(2)2× U(1)Y , (3.56)
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where SU(3)c and U(1)Y corresponds to the color and hypercharge symmetry in the SM.
Note that SU(2)L symmetry in the SM is promoted into the three direct products of SU(2)
gauge groups. The gauge bosons for SU(2)0, SU(2)1, SU(2)2, and U(1)Y are denoted as
W a

0µ, W
a
1µ, W

a
2µ, and Bµ, respectively (a = 1, 2, 3). The gauge couplings for each symmetry

are denoted as g0, g1, g2, and g′, respectively. In Table 2, we summarize the matter fields
and Higgs fields. Each fermion field corresponds to the SM fermion with the same SU(3)c
and U(1)Y charge assignment. To reduce the extended electroweak symmetry, we introduce
bi-fundamental scalar fields, Φj (j = 1, 2), expressed as two-by-two matrices. The real
conditions are imposed for Φj to reduce the degrees of freedom.

Φj = −ϵΦ∗
jϵ, where ϵ =

(
0 1
−1 0

)
. (3.57)

Thanks to this condition, each of Φj contains four real degrees of freedom. The gauge
transformations for Φj and H are expressed below.

Φ1 7→ U0Φ1U
†
1 , Φ2 7→ U2Φ2U

†
1 , H 7→ eiθY U1H, (3.58)

where Un denote the two-by-two matrices for the gauge transformation of SU(2)n symmetry
(n = 0, 1, 2) and θY denotes the phase of the U(1)Y symmetry. We further impose a discrete
symmetry under the following transformation.

Φ1 7→ Φ2, Φ2 7→ Φ1, W a
0µ 7→ W a

2µ, W a
2µ 7→ W a

0µ, (3.59)

where all the other fields remain unchanged. This transformation is equivalent to the ex-
change of SU(2)0 and SU(2)2, and thus this discrete symmetry requires g0 = g2.

The Lagrangian for the extended bosonic sector is shown below.

L ⊃− 1

4
BµνB

µν −
2∑

j=0

3∑
a=1

1

4
W a

jµνW
aµν
j

+DµH
†DµH +

1

2
TrDµΦ

†
1DµΦ1 +

1

2
TrDµΦ

†
2DµΦ2

− Vscalar, (3.60)

where Vscalar is the scalar potential.

Vscalar =m
2H†H +m2

Φ

[
Tr
(
Φ†

1Φ1

)
+ Tr

(
Φ†

2Φ2

)]
+ λ(H†H)2 + λΦ

[(
Tr
(
Φ†

1Φ1

))2
+
(
Tr
(
Φ†

2Φ2

))2]
+ λhΦH

†H
[
Tr
(
Φ†

1Φ1

)
+ Tr

(
Φ†

2Φ2

)]
+ λ12Tr

(
Φ†

1Φ1

)
Tr
(
Φ†

2Φ2

)
. (3.61)

We assume the following vacuum expectation values (VEVs) to realize the U(1)em symmetry
in the low energy.

〈Φ1〉 = 〈Φ2〉 =
1√
2

(
vΦ 0
0 vΦ

)
, 〈H〉 =

(
0
v√
2

)
, (3.62)
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Table 2: The matter and Higgs fields and their gauge charges. The generation indices for
the matter fields are implicit.

field spin SU(3)c SU(2)0 SU(2)1 SU(2)2 U(1)Y

qL
1
2

3 1 2 1 1
6

uR
1
2

3 1 1 1 2
3

dR
1
2

3 1 1 1 −1
3

ℓL
1
2

1 1 2 1 −1
2

eR
1
2

1 1 1 1 −1

H 0 1 1 2 1 1
2

Φ1 0 1 2 2 1 0

Φ2 0 1 1 2 2 0

where we assume the hierarchy between these VEVs, vΦ � v, throughout our analysis. We
define component fields around the VEVs.

Φj =

vΦ+σj+iπ0
j√

2
iπ+

j

iπ−
j

vΦ+σj−iπ0
j√

2

 , H =

(
iπ+

3
v+σ3−iπ0

3√
2

)
. (3.63)

The diagonal and the same VEVs for both Φ1 and Φ2 are important to realize the desired low
energy spectrum. Thanks to the diagonal structure, we still have the residual SU(2)×U(1)Y
gauge symmetry after Φ1 and Φ2 develop the nonzero VEVs. The corresponding gauge
transformation is shown below.

Φ1 7→ UΦ1U
†, Φ2 7→ UΦ2U

†, H 7→ eiθY UH, (3.64)

where U is a two-by-two matrix for the SU(2) gauge transformation. This SU(2) transforma-
tion corresponds to the SU(2)0× SU(2)1× SU(2)2 transformation with U0 = U1 = U2 ≡ U .
This SU(2) is regarded as the SU(2)L in the SM and simply called the SU(2)L in the following
discussion. The SU(2)L× U(1)Y symmetry is broken by 〈H〉 to the U(1)em symmetry.

After all the Higgs fields develop nonzero VEVs, we still have the exchange symmetry
since we assume the same VEVs for Φ1 and Φ2 fields. The discrete symmetry transformations
after the symmetry breaking are shown below.

σ1 7→ σ2, σ2 7→ σ1, W a
0µ 7→ W a

2µ, W a
2µ 7→ W a

0µ. (3.65)

We find out a Z2 parity from this residual discrete symmetry by anti-symmetrizing the
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exchanged fields.

hD ≡
σ1 − σ2√

2
, (3.66)

V 0
µ ≡

W 0
0µ −W 0

2µ√
2

, (3.67)

V ±
µ ≡

W±
0µ −W±

2µ√
2

, (3.68)

where

W±
nµ =

W 1
nµ ∓ iW 2

nµ√
2

(n = 0, 2). (3.69)

These fields are eigenstates of the U(1)em charge.3 These states acquire (−1) factors under
the transformation in Eq. (3.65) and correspond to the odd fields. All the other states remain
unchanged and correspond to the even fields. This is nothing but a Z2 parity assignment
for all the physical spectrum in our model. Note that the Z2-odd states are automatically
mass eigenstates since the mass mixing terms with other states are forbidden by Lorentz
symmetry, U(1)em symmetry, and Z2 parity.

We refer to Z2-odd spin-1 particles, V 0 and V ±, as V -particles. The V -particles are
approximately regarded as the spin-1 triplet of SU(2)L and have degenerated masses at the
tree-level.

m2
V 0 = m2

V ± =
g20v

2
Φ

4
≡ m2

V . (3.70)

The electroweak radiative corrections break this degeneracy, which makes the charged com-
ponent slightly heavier than the neutral one. We find the following value for mass splitting
at the one-loop level.

δmV ≡ mV ± −mV0 ' 168 MeV. (3.71)

We want to focus on the spin-1 DM scenario to study the low energy phenomenology corre-
sponding to the DM candidate from extra-dimensional setups and assume hD is heavier than
V 0. Consequently, V 0 is the lightest Z2-odd particle and our stable spin-1 DM candidate.

3.3.1 Physical spectrum

The physical spectra can be read out by diagonalizing the mass matrices. We obtain the
following mass eigenstates in the Higgs sector.hDh

h′

 =

1 0 0
0 sinϕh cosϕh

0 cosϕh − sinϕh

 1√
2
− 1√

2
0

1√
2

1√
2

0

0 0 1

σ1σ2
σ3

 . (3.72)

3The U(1)em symmetry generator is expressed as Q = T 3
0 + T 3

1 + T 3
2 + Y where T 3

n denote the third
generators of SU(2)n (n = 0, 1, 2).
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We take the scalar masses, {mh,mh′ ,mhD
}, and the mixing angle, ϕh, as input parameters.

The dimensionless couplings of Vscalar can be expressed in these input parameters.

λ =
m2

h cos
2 ϕh +m2

h′ sin2 ϕh

2v2
, (3.73)

λhΦ =− sinϕh cosϕh

2
√
2vvΦ

(m2
h′ −m2

h), (3.74)

λΦ =
m2

h sin
2 ϕh +m2

h′ cos2 ϕh +m2
hD

16v2Φ
, (3.75)

λ12 =
m2

h sin
2 ϕh +m2

h′ cos2 ϕh −m2
hD

8v2Φ
. (3.76)

For the charged gauge bosons, we obtain V ±
µ

W±
µ

W ′±
µ

 =

1 0 0
0 cosϕ± sinϕ±
0 − sinϕ± cosϕ±

 1√
2

0 − 1√
2

0 1 0
1√
2

0 1√
2

W±
0µ

W±
1µ

W µ
2µ

 , (3.77)

where

cosϕ± =

√
m2

V ± −m2
W

m2
W ′ −m2

W

, sinϕ± =

√
m2

W ′ −m2
V ±

m2
W ′ −m2

W

. (3.78)

The masses of charged Z2-even vectors are obtained as

m2
W =

1

8

{
g21v

2 + (g20 + 2g21)v
2
Φ −

√
−4g20g21v2v2Φ + [g21v

2 + (g20 + 2g21)v
2
Φ]

2

}
, (3.79)

m2
W ′ =

1

8

{
g21v

2 + (g20 + 2g21)v
2
Φ +

√
−4g20g21v2v2Φ + [g21v

2 + (g20 + 2g21)v
2
Φ]

2

}
. (3.80)

For the neutral gauge bosons, we obtain
V 0
µ

Aµ

Zµ

Z ′
µ

 =


1√
2

0 − 1√
2

0
e
g0

e
g1

e
g0

e
g′

ω0
Z ω1

Z ω0
Z ωB

Z

ω0
Z′ ω1

Z′ ω0
Z′ ωB

Z′



W 3

0µ

W 3
1µ

W 3
2µ

Bµ

 , (3.81)
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where

e =

(
2

g20
+

1

g21
+

1

g′2

)−1/2

, (3.82)

ω0
Z =

eg1√
g20 + 2g21g

′
cosϕ0 +

g0√
2(g20 + 2g21)

sinϕ0, (3.83)

ω1
Z =

eg0√
g20 + 2g21g

′
cosϕ0 −

√
2g1√

g20 + 2g21
sinϕ0, (3.84)

ωB
Z =− e

√
g20 + 2g21
g0g1

cosϕ0, (3.85)

ω0
Z′ =

g0√
2(g20 + 2g21)

cosϕ0 −
eg1√

g20 + 2g21g
′
sinϕ0, (3.86)

ω1
Z′ =−

√
2g1√

g20 + 2g21
cosϕ0 −

eg0√
g20 + 2g21g

′
sinϕ0, (3.87)

ωB
Z′ =

e
√
g20 + 2g21
g0g1

sinϕ0. (3.88)

We define ϕ0 that satisfies the following relation.

1

4

 g20g
2
1g

′2

e2(g20+2g21)
v2 −

√
2g0g31g

′

e(g20+2g21)
v2

−
√
2g0g31g

′

e(g20+2g21)
v2

(g20+2g21)
2v2Φ+2g41v

2

(g20+2g21)

(cosϕ0 − sinϕ0

sinϕ0 cosϕ0

)
=

(
cosϕ0 − sinϕ0

sinϕ0 cosϕ0

)(
m2

Z 0
0 m2

Z′

)
.

(3.89)

3.3.2 Couplings of V -particles

We show the couplings of the V -particles in the limit of vΦ � v to evaluate the V -particle
annihilation processes. The vector triple couplings are shown below.

L ⊃ igX+Y −Z0

[(
X+

ν

←→
∂ µY −ν

)
Z0

µ +
(
Y −
ν

←→
∂ µZ0ν

)
X+

µ +
(
Z0

ν

←→
∂ µX+ν

)
Y −
µ

]
, (3.90)

where

gW+V −V 0 = gV +W−V 0 ' gW , (3.91)

gW ′+V −V 0 = gV +W ′−V 0 = gV +V −Z′ ' gW√
m2

Z′
m2

V
− 1

≡ gZ′ , (3.92)

gV +V −A = e, (3.93)

gV+V−Z ' gW cW . (3.94)

We define sW ≡ sin θW and cW ≡ cos θW where θW is the Weinberg angle. We also define gZ′

in Eq. (3.92) to characterize the couplings between the V -particles and the Z2-even vectors,
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W ′ and Z ′. We have two types of vector quartic couplings,

L ⊃ Ccc
X−Y +Z−W+ X+

ρ Y
−
σ Z

+
µW

−
ν (2gρµgσν − gρνgσµ − gρσgµν) (3.95)

+ Ccn
X−Y +Z0W 0 X+

ρ Y
−
σ Z

0
µW

0
ν (g

ρµgσν + gρνgσµ − 2gρσgµν) ,

where

Ccc
V −V +W−W+ = Ccc

V −V +W−W ′+ ' g2W , (3.96)

Ccn
W−W+V 0V 0 = Ccn

W−W ′+V 0V 0 '
1

2
g2W , (3.97)

Ccn
V −V +ZZ '

1

2
g2W c

2
W , (3.98)

CV +V −AA =
e2

2
, (3.99)

CV +V −AZ ' egW cW , (3.100)

CV +V −AZ′ = egZ′ , (3.101)

Ccn
V −V +ZZ′ ' gW cWgZ′ . (3.102)

The V -particles have the Higgs coupling as well as above electroweak couplings. The
triple couplings are expressed as

L ⊃
∑

ϕ=h,h′

gϕϕ
(
V +
µ V

−µ + V 0
µ V

0µ
)
, (3.103)

The couplings are expressed as shown below.

gh '
(
2m2

V

vΦ

)
sinϕh√

2
, (3.104)

gh′ '
(
2m2

V

vΦ

)
cosϕh√

2
, (3.105)

where ϕh is the mixing angle between Z2-even Higgs bosons as introduced in Sec. 3.3.1. The
quadratic couplings are given as

L ⊃ (Chhhh+ 2Chh′hh′ + Ch′h′h′h′)

(
V +
µ V

−µ +
1

2
V 0
µ V

0µ

)
, (3.106)

where

Cϕ1ϕ2 ' gϕ1gϕ2 (ϕ1, ϕ2 = h, h′). (3.107)

3.3.3 Parameters and Constraints

The parameters in the Lagrangian in Eq. (3.60) are summarized below.{
g0, g1, g

′, m2, m2
Φ, λ, λΦ, λhΦ, λ12

}
. (3.108)
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We choose the following input parameters for our phenomenological study.

{e, mZ , v, mh, mZ′ , mV , mh′ , mhD
, ϕh} . (3.109)

The first four parameters are already fixed by the experiments, while the last five parameters
are free. Our spin-1 DM candidate has not only electroweak interactions but also Higgs
interactions. Couplings between V -particles and Z2-even Higgs are proportional to mixing
angle factors shown in Eq. (3.104) and Eq. (3.105). The Higgs exchange channels are already
probed by the latest direct detection experiment, and we obtain the following bound to evade
the direct detection constraints [25].

ϕh ≲ 0.1. (3.110)

Throughout our discussion, therefore, we take the small ϕh regime and the SM Higgs coupling
with the V -particles are suppressed by the small mixing factor, sinϕh. Although we do not
specify the values of mh′ and mhD

in the following discussion, we assume these scalar masses
are in the TeV scale to focus on the phenomenological aspects resulting from the electroweak
interactions. The constraints on these parameters in the scalar sector are studied in Ref. [25].
For later convenience, we introduce gW as defined below.

gW ≡
(

2

g20
+

1

g21

)−1/2

. (3.111)

This coupling corresponds to the SU(2)L gauge coupling approximately, and we obtain gW '
0.65, which is the same value as the SU(2)L gauge coupling in the SM, in the limit of vΦ � v.

We assume vΦ � v throughout our study, and it is useful to derive the approximated
forms for the physical values in this limit. For mW and mW ′ , we obtain

mW '
gWv

2
, (3.112)

mW ′ ' mZ′ , (3.113)

and thus we easily obtain the correct value of mW . The gauge couplings, g0 and g1, are
expressed as

g0 '
√
2gW

mZ′

mV

1√
m2

Z′
m2

V
− 1

, (3.114)

g1 'gW
mZ′

mV

. (3.115)

These couplings are constrained by the perturbative unitarity bounds. We obtain the follow-
ing constraints in the high energy regime [28].

gj <

√
16π√
6
' 4.53 (j = 0, 1). (3.116)
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From these bounds, we can narrow down the viable range of the mass ratio,
mZ′
mV

. If we take
gW ' 0.65, we obtain

1.02 ≲ mZ′

mV

≲ 6.97. (3.117)

More detailed explanations of our model are given in Ref. [25].
It is worth mentioning the relation between the spectrum of extra-dimensional models

and our renormalized model. We immediately find the following mass ratio between mV and
mZ′ from Eq. (3.114) and Eq. (3.115).

mZ′

mV

'

√
1 +

2g21
g20
. (3.118)

Noting that the Z2-odd V -particles (Z2-even mZ′) correspond to the first (second) KK mode
in the extra-dimensional model. The relation of mV < mZ′ is trivially followed from this
expression. Comparing with Eq. (3.55) and Eq. (3.118), the mass ratio between the first KK
and the second KK modes are characterized by the boundary localized terms {rIR, rUV} in
the extra-dimensional and by the gauge couplings {g0, g1} in our model, respectively. We
may realize the general mass spectrum for the vector sector by taking arbitrary values of g0
and g1, which are independent parameters. Let us mention two limits of the coupling values.
If we take g0 � g1, the mass splitting gets larger. This limit corresponds to the warped
metric model where the IR modes are localized around y = ±L, because a larger coupling
indicates the lower cutoff scale of the theory. If we take g0 � g1, the mass splitting gets
degenerated, which corresponds to the warped metric setup where the IR modes are localized
around the symmetric point y = 0. The corresponding extra-dimensional models are studied
in Ref. [19]. In Sec. 6.2, we will study the distinctive signatures predicted from the later
degenerated region, mZ′ ' mV .
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4 Non-relativistic effective field theory for spin-1 DM

V − V +

W

V 0 V 0

→

V − V +

V 0 V 0

■

Figure 5: The philosophy of the effective field theory approach.

In the non-relativistic (NR) DM pair annihilation with the electroweak interactions, the
electroweak potential gets effectively large, which is called the Sommerfeld effect. In this
region, perturbative calculations of the annihilation cross section break down, and we have
to use the distorted wave function profiles for a DM pair in order to include the potential
force. The distortion is represented as a factor, which is called the Sommerfeld factor, in the
final formula of DM annihilation cross section.

We take the effective field theoretical approach and perform the matching to determine
the effective couplings so that the effective operators realize the non-relativistic amplitudes
of the full theory. The philosophy of the effective field theory approach is shown in Fig. 5. In
the full theory, we calculate the scattering amplitudes, which is evaluated in the appropriate
regime. These results are described by the effective action. A effective coupling, which is
denoted by the black box in the figure, is determined to realize the same amplitude of the
full theory through the matching procedures. In particular, we take the non-relativistic limit
and focus on the region where mDM ≳ O(1) TeV � mW . In this limit, the electroweak
forces mediated by W/Z boson and γ are imprinted in the potential between a pair of DM
multiplets. The W,Z boson form the Yukawa potential while the photon form the Coulomb
potential. Although the Yukawa potentials are exponentially suppressed for r ≳ 1/mW/Z ,
the wave function of a heavy DM, which is typically localized r ≲ 1/mDM, feels effectively
long-range potential force. One of the most important features is that this potential force
may mix the two-body states with the same quantum numbers. In particular, as shown
in Fig. 5, the W boson exchanging process mixes V 0V 0 and V −V +. Therefore, the V 0V 0

state may annihilate into electrically neutral vectors such as photon and Z boson through
this mixing via potential effects. This mixing effect plays a crucial role to search the DM
annihilation signatures in the current universe.

These effects caused by the electroweak potential are crucial for our spin-1 DM because
the DM mass should be mV ≳ O(1) TeV to explain the correct DM relic abundance which
is the same as other electroweak interacting DM with other spins. In this region, the W
and Z bosons effectively form the long-range force potential for the V -particles. This implies
we have the sizable Sommerfeld enhancement in the DM annihilation processes such as the
evaluation of the thermal relic abundance and the predicted DM annihilation cross section
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in the current universe. In particular, the monochromatic gamma-ray line from the DM
annihilation is an excellent probe. This is our motivation to study the annihilation process
of our spin-1 DM including the Sommerfeld effects.

In Sec. 4.1, we review how to construct the NR effective field theory in the quantum
electrodynamics (QED). We also clarify the condition where viable Sommerfeld effects are
expected in electroweakly interacting DM systems by taking the analogy of electrodynamics.
In Sec. 4.2, we derive the effective action for electroweakly interacting spin-1 DM with triplet-
like features and show the matching procedure to determine the effective coefficients from
the full theory. The formulas of the DM annihilation cross section are derived including
the electroweak potential force in Sec. 4.3. We will apply the derived formalism to the SM
thermal relic evaluation in Sec. 5 and the DM annihilation signatures in Sec. 6, respectively.

4.1 Sommerfeld effect

The importance of the (effectively) long-range electroweak potential in DM pair annihilation
is found by taking the analogy with the annihilation of positronium. We may derive the
condition where the perturbative calculation breaks down and the Sommerfeld effects get
viable in annihilation processes. To demonstrate the essential part to construct the effec-
tive theory, we will start from the review of the non-relativistic quantum electrodynamics
(NRQED). The discussion in this abelian gauge theory is straightforwardly applied to elec-
troweakly interacting DM systems. In Sec. 4.1.1, we review NRQED and estimate each
operator in the power-counting regime of the velocity expansion. In Sec. 4.1.2, we derive the
effective action of NRQED systematically following the power-counting laws of the relative
velocity. In Sec. 4.1.3, we estimate the higher order corrections induced from the electromag-
netic forces and find when these corrections get relevant. We also apply the discussions for
annihilation processes of electroweakly interacting DM where we generalize the framework of
electromagnetism to the electroweak theory.

4.1.1 Non-relativistic quantum electrodynamics

We first review NRQED, which is the effective field theory for the QED in the low energy
regime. We follow Ref. [29] where the non-relativistic quantum chromodynamics (NRQCD)
in the quarkonium system is studied to construct the NR effective theory with the presence
of the gauge fields. The building blocks of NRQED are summarized below.

• NR fermion with a nonzero electrical charge (ψ)

• Electric field (E)

• Magnetic field (B)

Requiring the desired symmetry in the NR system, we may systematically construct operators
using the above building blocks. The coefficient of each operator is determined to realize QED
calculations in the NR limit according to the standard procedure to construct the effective
field theory. All the processes in NRQED are estimated by the following variables:
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• A fermion mass, M

• A relative velocity for two fermions, v

Since we are taking the NR regime, the relative velocity is treated as a perturbative parame-
ter, v � 1, the higher order corrections of v get irrelevant.4 Each building block of NRQED,
and thus each operator, is characterized by a certain order of M and v, which is consistent
with all the fundamental laws in the NR system. These laws provide a way to estimate the
order of physical processes. We have to consider a complete set of operators that contains
sufficiently higher order corrections of v to describe each physical process with the required
accuracy.

The NR regime to construct NRQED is described in terms of the typical momentum of
fermion fields, p, and its kinetic energy, K. These observables are characterized by using v
and M .

p ∼Mv, K ∼Mv2. (4.1)

Orders of other operators are also determined by the field equations in the NR system.
Let us consider the fermion (ψ) and anti-fermion system (χ) such as the positronium

system as a concrete application for NRQED. We will apply the same discussion to the
electroweakly interacting DM system. focusing on DM pair annihilation processes. In the
positronium-like system, the expectation value of the fermion number density operator is
nearly one. ∫

d3xψ†ψ ∼ 1. (4.2)

Noting that the fermions are localized within ∆x ∼ 1/p by the uncertainty principle, we may
read out the typical order of fermion field.

ψ ∼ p
3
2 . (4.3)

The master equation for NR fermions is the Schrödinger equation.(
iDt +

D2

2M

)
ψ = 0, (4.4)

where Dt and D denote covariant derivatives for time and spatial coordinates, respectively.
The kinetic energy is the expectation value of the second term in the equation.∫

d3xψ† D
2

2M
ψ ∼ K, (4.5)

4Note that we also have αem as a perturbative parameter in QED calculation, which is the same order as
v in NRQED power-counting rules. We will discuss in Sec. 4.1.3 that QED loop corrections appear as the
power of αem/v and thus perturbative calculations break down if αem ≲ v.
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and we obtain

D ∼ p ∼Mv. (4.6)

From Eq. (4.4), we obtain

Dt ∼
D2

2M
∼ K. (4.7)

The order counting for gauge fields can be read out from the Schrödinger equation with the
existence of the gauge field. If we take the Coulomb gauge, which is the suitable gauge to
describe the NR QED processes, the scalar potential, ϕ, is dominant compared with the
vector potential, A. The field equations in this gauge are expressed as shown below.

∇2eϕ = −e2ψ†ψ + · · · , (4.8)(
∂2t −∇2

)
eA =

e2

M
ψ†∇ψ + e2ϕ∇ϕ+ · · · , (4.9)

where ellipsis denotes the sub-leading terms in the NR expansion. The typical order of scalar
potential is obtained as follows.

eϕ ∼ e2

p2
p3 ∼ e2p ∼ K. (4.10)

The last result is obtained by noting that the Schrödinger equation with the electromagnetic
field is expressed as shown below. (

i∂t − eϕ+
∇2

2M

)
∼ 0. (4.11)

Therefore, we may read out the order of gauge coupling, e. In particular, the QED fine
structure constant, αem is estimated as shown below.

αem ≡
e2

4π
∼ v. (4.12)

Since the second term of LHS in Eq. (4.9) is relevant, we obtain the following estimation for
eA.

eA ∼ e2

p2M
p4 ∼ vK. (4.13)

The orders of electromagnetic fields are derived below.

eE = −∇eϕ+ · · · ∼M2v3, (4.14)

eB = ∇× (eA) + · · · ∼M2v4. (4.15)

The above power-counting rule is summarized in Table 3, which corresponds to TABLE I in
Ref. [29] for the NRQCD system.
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Table 3: The power-counting rule for each operator in NRQED. The same table for the
NRQCD, such as the quarkonium system, is summarized in TABLE I of Ref. [29].

Operator Order of estimate Description

ψ (Mv)3/2 Fermion field
χ (Mv)3/2 Anti-fermion field
Dt Mv2 Gauge covariant time derivative
D Mv Gauge covariant spatial derivative
eϕ Mv2 Scalar potential
eA Mv3 Vector potential
eE M2v3 Electric field
eB M2v4 Magnetic field

4.1.2 Effective interaction of NRQED

We derive effective interaction terms for NRQED. The time evolution of the NRQED system
is described by the Schrödinger equation. described by the following leading order action.

S0 =

∫
d4xψ†(x)

(
iDt +

D2

2M

)
ψ(x). (4.16)

These interactions are the order of O(v5) in the power-counting rules summarized in Table 3.
We may write down all the possible interactions by requiring the following symmetry, which
an original relativistic QED system respects in the NR limit.

• Gauge invariance

• Rotational invariance

• Charge conjugation invariance

• Parity invariance

• Unitarity

The relevant interaction terms are characterized by lower powers of v in the of NR expansion.
The bilinear form of fermions, which is suppressed by v2 relative to the leading order

interactions, are obtained as follows.

Lbilinear =
c1
M3

ψ†D4ψ

+
c2
M2

ψ† [D · (eE)− (eE) ·D]ψ

+
c3
M2

ψ†σ · [D × (eE)− (eE)×D]ψ

+
c4
M
ψ†σ · (eB)ψ, (4.17)
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where σ denotes the spin operator. We show the interaction terms focusing on the particle
sector. We may derive the effective couplings for χ straightforwardly from the requirement
of the charge conjugation invariance. The parity-odd intrinsic electric dipole moment inter-
action, ψ†σ · (eE)ψ, is not allowed because the parity invariance is required. The effective
coefficients are denoted by ci (i = 1, 2, 3, 4) starting at the zeroth order of the relative veloc-
ity. The interaction relating to the higher order of time derivatives, such as ψ†(iDt)

2ψ, can
be redefined as the first term of Eq. (4.17) using the zeroth order Schrödinger equation.

Besides, we also have contact interaction terms between fermion and anti-fermion.

Lcontact =
d1
M2

ψ†χ χ†ψ +
d2
M2

ψ†σχ χ†σψ. (4.18)

These interactions have no counterpart in the relativistic theory and are induced at the loop
level. This means that the effective coefficients, di (i = 1, 2), are the order of O(α2

em) ∼ v2.
These interaction terms, therefore, are suppressed by v3 compared with the leading order
terms. The annihilation and creation of (anti-)particles are described by these terms if the
coefficients have the nonzero imaginary part. The nonzero imaginary part breaks down
the unitarity requirement in the construction of effective field theory, but these effects are
consistently induced from the QED loop effects. In particular, the imaginary part of the
coefficient di is derived to realize the imaginary part of the amplitude calculated by QED in
the NR limit. Since these terms are the leading order effects to describe the annihilation and
creation of (anti-)particles, we have to include these higher order terms of O(v) to describe
these phenomena. The imaginary part of the forward scattering amplitude is related to the
cross section through the optical theorem. We will apply the same matching procedures
in Sec. 4.2 for the NR system of electroweakly interacting spin-1 DM. Before moving to the
spin-1 DM system, we show that the perturbative calculation will fail with the presence of the
(effectively) long-range potential. This fact can be found by estimating the loop diagrams in
the power-counting rule. We may straightforwardly generalize this fact to the electroweakly
interacting DM system.

4.1.3 Threshold singularity of loop corrections

We review the threshold singularity, which appears in the positronium-like system in the
NRQED framework. This singularity is related to a ladder diagram shown in Fig. 6. The
left panel shows an electron-positron annihilation process into two photons. This diagram
schematically shows the importance of the higher order corrections in the annihilation pro-
cesses. We can estimate each QED corrections, which is depicted in red color in Fig. 6,
by using the power-counting law and find the condition where the perturbative expansion
of the cross section by αem brakes down. A fermion propagator corresponds to an inverse
of the Schrödinger operator, (i∂t − D2

2M
)−1, and thus we estimate each fermion propagator

as ∼ 1/K. A photon propagator corresponds to an inverse of the wave equation operator,
(∂2t −∇2)−1. Since spatial derivatives are more relevant than time derivatives in the NRQED
power-counting law, a photon propagator scales as ∼ 1/p2. Applying these scaling laws, we
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Figure 6: Ladder diagrams for annihilation processes into two photons. We show (a) electron-
positron annihilation as an example of NRQED processes and (b) pair annihilation of an
electroweakly interacting DM, respectively.

estimate the order of each QED loop correction as below.

(QED loop) '
∫
dℓ0

2π

d3ℓ

(2π)3
· e2 · (NR fermion propagator)2 · (NR photon propagator)

' αem ·K · p3 ·
(

1

K

)2

· 1
p2

' αem

v
. (4.19)

This estimation immediately implies that higher order loop correction may be enhanced by
a factor of αem/v in the NR limit, v ≲ αem. A ladder amplitude with n-th loop corrections
scales as

iM∼ αem ·
(αem

v

)n
. (4.20)

Therefore, we obtain the following condition where the perturbative expansion of αem breaks
down.

αem ≲ v, (4.21)

which is known as a threshold singularity. In this region, we need to perform resummation
of the ladder diagrams in Fig. 6.

In the system of an electroweakly interacting DM, we have a similar situation as that
in NRQED system. The NR annihilation processes of the electroweakly interacting DM are
important to investigate in various contexts. The annihilation of DM multiplets in the early
universe is important to evaluate the thermal relic abundance. A DM pair annihilation in
the current universe is necessary to probe DM signatures through astrophysical observation.
Evaluating the annihilation cross sections in the NR limit is, therefore, relevant for DM
physics. We may construct the NR effective theory for electroweakly interacting DM in the
same procedures as those of NRQED. We may find a similar power-counting regime and
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estimate the electroweak corrections. In particular, we have to know the order of the propa-
gator for both NR DM and electroweak bosons to estimate the electroweak loop corrections
shown in diagram (b) of Fig. 6. The momentum p of this annihilation process is estimated
as p = mDMv ∼ mW , and thus the relative velocity is v ∼ mW/mDM . The kinetic energy K
is, therefore, estimated as K = mDMv

2 ∼ m2
W/mDM . Note that an initial DM pair nearly

satisfies the on-shell conditions, and the loop momentum for DM is typically a scale of DM
mass, mDM . Therefore, the propagator of DM scales as ∼ 1/mDM .5 On the other hand, W
boson in the loop has small momentum transfer and a propagator of W boson can be char-
acterized as ∼ 1/m2

W . Using these estimations, we may derive the order of each electroweak
loop correction in the same manner as that in QED.

(Electroweak loop) '
∫
dℓ0

2π

d3ℓ

(2π)3
· 4πα2

2 · (propagator of DM)2 · (propagator of W boson)

' α2 ·K · p3 ·
(
mDM

mW

)2

· 1

m2
W

' α2mW

mDM

. (4.22)

This is the same estimation as that in the NRQED system with replacing v to mW/mDM ,
and we obtain the condition where perturbative calculations broke down in the electroweakly
interacting DM system.

α2

mW

≲ 1

mDM

. (4.23)

This condition tells us a physical intuition why the perturbative calculations no longer work:
The LHS of Eq. (4.23) expresses the typical range for the Yukawa force induced by W
boson while the RHS expresses the typical range where DM wave functions are localized.
Therefore, the condition of Eq. (4.23) can be restated as the condition where DM wave
function is localized within the range of electroweak potential. If this condition is satisfied,
a wave function for DM is distorted from plane wave profiles due to the significant potential
force. This effect is called the Sommerfeld effect. To derive the annihilation cross section
including this effect, we have to use the distorted plane wave profile. In the final formula,
this distortion of the wave function is expressed as the Sommerfeld factor. We will review,
in Sec. 4.2, the derivation of annihilation cross section including the Sommerfeld effects by
constructing the NR effective theory of electroweakly interacting DM system.

4.2 Formalism

We show the effective action of the NR effective theory for spin-1 DM. The building block of
effective action is two-body states that are composed of elementary particles. In Sec. 4.2.1,
we will introduce the general framework for NR electroweakly interacting spin-1 theory and

5Interactions between spin-1 DM and electroweak bosons are derivative couplings where a derivative also
scales as ∼ mDM , and thus the scaling is the same as the spin-1/2 DM case.
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show the effective action in terms of two-body states. We decompose two-body states into
each partial wave mode for the later convenience to solve the Schrödinger equations. In
Sec. 4.2.2, we show the potential for SU(2)L triplet spin-1 theory with Y = 0. In Sec. 4.2.3,
we give the potential for the spin-1/2 system with the same electroweak charge and compare
results with those in the spin-1 system.

4.2.1 Derivation of effective action

The DM annihilation processes including the Sommerfeld effects are studied in many contexts
of the spin-1/2 DM system with electroweak interactions [14, 7]. The method to derive the
effective action is systematically summarized in Ref. [30, 31] We use the same method to
derive the effective theory for the spin-1 DM system with electroweak couplings. In particular,
we will focus on the SU(2)L triplet and Y = 0 spin-1 DM throughout this thesis, which
corresponds to the electroweakly charged KK DM in the extra-dimensional scenario. The
formalism is straightforwardly applicable to spin-1 DM system with more general interactions.

The asymptotic field operators of V -particles are expressed below.

V 0
µ (x) =

3∑
A=1

∫
d3p

(2π)3
1√
2Ep

[
aA(p)e−ip·xϵAµ (p) + aA†(p)eip·xϵA∗

µ (p)
]
, (4.24)

V −
µ (x) =

3∑
A=1

∫
d3p

(2π)3
1√
2Ep

[
bA(p)e−ip·xϵAµ (p) + dA†(p)eip·xϵA∗

µ (p)
]
, (4.25)

V +
µ (x) =

3∑
A=1

∫
d3p

(2π)3
1√
2Ep

[
dA(p)e−ip·xϵAµ (p) + bA†(p)eip·xϵA∗

µ (p)
]
. (4.26)

We introduce the physical polarization vectors, ϵAµ (p) (A = 1, 2, 3), which satisfy the following
transverse condition,

pµϵAµ (p) = 0, (4.27)

and the orthogonal relation.

ϵA∗
µ (p)ϵBµ(p) = −δAB. (4.28)

The annihilation and creation operators satisfy the canonical commutation relations.

[aA(p), aB†(p′)] = (2π)3δ3(p− p′)δAB, (4.29)

[bA(p), bB†(p′)] = (2π)3δ3(p− p′)δAB, (4.30)

[dA(p), dB†(p′)] = (2π)3δ3(p− p′)δAB. (4.31)

The NR two-body effective action for V -particles are derived by performing the NR expan-
sion for these operators and integrating out the large momentum modes. Since the zeroth
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component of the polarization tensor is sub-leading in the NR limit, we leave the spatial
components (i = 1, 2, 3) for the V -particle operators.

V 0
i (x) '

1√
2mV

[
e−imV tAi(x) + eimV tA†

i (x)
]
, (4.32)

V −
i (x) ' 1√

2mV

[
e−imV tBi(x) + eimV tD†

i (x)
]
, (4.33)

V +
i (x) ' 1√

2mV

[
e−imV tDi(x) + eimV tB†

i (x)
]
, (4.34)

where we define

Ai(x) =
3∑

A=1

∫
d3p

(2π)3
aA(p)e−ip·xϵAi (p), (4.35)

Bi(x) =
3∑

A=1

∫
d3p

(2π)3
bA(p)e−ip·xϵAi (p), (4.36)

Di(x) =
3∑

A=1

∫
d3p

(2π)3
dA(p)e−ip·xϵAi (p). (4.37)

We also express one particle states for NR V -particles with momentum p and polarization
A. ∣∣V 0;p, A

〉
'
√
2mV a

A†(p) |0〉 , (4.38)∣∣V −;p, A
〉
'
√
2mV b

A†(p) |0〉 , (4.39)∣∣V +;p, A
〉
'
√
2mV d

A†(p) |0〉 . (4.40)

The effective action is expressed in the two-body states composed of the NR V -particle
operators. If we focus on the leading-order effects in the NR limit, the orbital momentum
and spin angular momentum are conserved independently. This is because the potential at
the NR leading-order has a spherically symmetric form. Consequently, the total spin angular
momentum, J , and z-component of the spin angular momentum, Jz, are good quantum
numbers. The electric charge is also conserved in each process. Therefore, the effective
action is decomposed into each partial wave mode and diagonalized in the electric charge.

It is convenient to change the space-time coordinates into the center of mass coordinate,
R = (R0,R), and the relative coordinate, r.

R0 = t, R ≡ x+ y

2
, r ≡ x− y, (4.41)

where x and y denote spatial coordinates of two elementary particles. The effective action
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is obtained in the decomposed form into each partial wave state.

Seff =
∑
J,Jz

{∫
d4Rd3r ΦJ,Jz†

Q=0 ·
[(
i∂R0 +

∇2
R

4mV

+
∇2

r

mV

)
− V̂Q=0(r) + i

9

2
Γ̂J
Q=0δ

3(r)

]
· ΦJ,Jz

Q=0

+
∑

Q=±1,±2

∫
d4Rd3r ϕJ,Jz†

Q

[(
i∂R0 +

∇2
R

4mV

+
∇2

r

mV

)
− VQ(r) + i

9

2
ΓJ
Qδ

3(r)

]
ϕJ,Jz
Q

}
,

(4.42)

where r ≡ |r| and J = 0, 1, 2 with |Jz| ≤ J . For electrically neutral two-body states, we have
two states composed of V −V + or V 0V 0, and thus the potential for Q = 0 two-body states
is a two-by-two matrix form. We will show the explicit form for V and Γ in Sec. 4.2.2. We
introduce the Q = 0 two-body fields as defined below.

ΦJ,Jz
Q=0(R, r) =

(
ϕJ,Jz
C (R, r)

ϕJ,Jz
N (R, r)

)
. (4.43)

Each component is defined as

ϕJ,Jz
C (R, r) = Bi(R0,R+ r/2) SJ,Jz

ij Dj(R
0,R− r/2) (J = 0, 1, 2), (4.44)

ϕJ,Jz
N (R, r) =

1√
2
Ai(R

0,R+ r/2) SJ,Jz
ij Aj(R

0,R− r/2) (J = 0, 2), (4.45)

where the upper and lower components correspond to V −V + and V 0V 0, respectively. For
electrically charged states, we define

ϕJ,Jz
Q=−1(R, r) = Bi(R

0,R+ r/2) SJ,Jz
ij Aj(R

0,R− r/2) (J = 0, 1, 2), (4.46)

ϕJ,Jz
Q=1(R, r) = Di(R

0,R+ r/2) SJ,Jz
ij Aj(R

0,R− r/2) (J = 0, 1, 2), (4.47)

ϕJ,Jz
Q=−2(R, r) =

1√
2
Bi(R0,R+ r/2) SJ,Jz

ij Bj(R0,R− r/2) (J = 0, 2), (4.48)

ϕJ,Jz
Q=2(R, r) =

1√
2
Di(R

0,R+ r/2) SJ,Jz
ij Dj(R

0,R− r/2) (J = 0, 2). (4.49)

In the above definition, we introduce the basis of three-by-three matrices.

ŜJ,Jz ≡ SJ,Jz
ij (i, j = 1, 2, 3), (4.50)

48



where

Ŝ0,0 =
−1√
3

1 0 0
0 1 0
0 0 1

 , (4.51)

Ŝ1,1 =
1

2

0 0 −1
0 0 −i
1 i 0

 , Ŝ1,0 =
1√
2

 0 i 0
−i 0 0
0 0 0

 , Ŝ1,−1 =
1

2

0 0 −1
0 0 i
1 −i 0

 , (4.52)

Ŝ2,2 =
1

2

1 i 0
i −1 0
0 0 0

 , Ŝ2,1 =
1

2

 0 0 −1
0 0 −i
−1 −i 0

 , Ŝ2,0 =
1√
6

−1 0 0
0 −1 0
0 0 2

 ,

Ŝ2,−1 =
1

2

0 0 1
0 0 −i
1 −i 0

 , Ŝ2,−2 =
1

2

 1 −i 0
−i −1 0
0 0 0

 . (4.53)

These matrices satisfy the following orthogonal relation.

Tr
[
ŜJ,Jz ŜJ ′,J ′

z∗
]
= (−1)JδJJ ′

δJzJ
′
z , (4.54)

These matrices play a role to decompose two elementary operators into irreducible decom-
posed two-body operators. Note that ŜJ,Jz is symmetric matrices for J = 0, 2 while anti-
symmetric for J = 1. We have no ϕ1,Jz

N and ϕ1,Jz
Q=±2 because these states are composed of

two identical particles. The spin-angular momentum J is conserved as long as we focus on
the NR leading order contributions. Therefore, in our leading order calculations, the J = 1
contributions only arise in the annihilation of V −V + and V 0V ∓. For the thermal relic eval-
uation, the electrically charged components also contribute to change DM number density
before decoupling from the thermal bath. On the other hand, the initial state of DM is
fixed to be V 0V 0 to study DM annihilation signatures in the current universe because the
charged components V ∓ have already decoupled. The normalization factors in Eqs. (4.44)-
(4.49) are fixed to realize the canonical weights for the two-body propagators. The two-body
propagator of ϕJ,Jz

C is defined as the time-ordered product.

〈
0
∣∣∣TϕJ,Jz

C (R, r)ϕJ,Jz†
C (0,0)

∣∣∣ 0〉 =

∫
d3P

(2π)3
d3k

(2π)3
e
−i

(
|P |2
4m

+k2

m

)
R0+iP ·R

e+ik·r θ(R0), (4.55)

where θ(R0) is the Heaviside step function. This expression is obtained by substituting
the explicit forms of ϕJ,Jz

C and ϕJ,Jz†
C and using the canonical commutation relation between

them.6 The definition of ϕJ,Jz
N and ϕJ,Jz

Q=±2 has another normalization factor of 1/
√
2 because

these two-body states are composed of two identical particles.

6Note that (ŜJ,Jz )† = (−1)J(ŜJ,Jz )∗ because it is symmetric for J = 0, 2 but anti-symmetric for J = 1.
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4.2.2 Two-body potential for the non-abelian vector DM system

The leading-order expressions for the real part of the potential, V , are shown below.

V̂Q=0(r) =


2δmV −

α2s
2
W

r
− α2c

2
W e

−mZr

r
−
√
2α2e

−mW r

r

−
√
2α2e

−mW r

r
0

 , (4.56)

VQ=±1(r) =
α2e

−mW r

r
, (4.57)

VQ=±2(r) =
α2s

2
W + α2c

2
W e

−mZr

r
, (4.58)

where α2 ≡ g2W/4π corresponds to the SU(2)L fine structure constant in non-abelian vector
DM model. These potentials are read out from the NR scattering amplitudes of V -particles.
The derivation is shown in Appendix A.1. As mentioned above, the potential for Q =
0 two-body states has a two-by-two matrix form. The off-diagonal elements induced by
the W boson exchanging processes mix the ϕC and ϕN states, which realizes a sizable DM
annihilation cross section into neutral vector bosons such as a photon and Z boson. In
the above expressions, we focus on the potential induced by electroweak bosons. Compared
with these contributions, the other channels are sub-leading due to the following reasons:
The Higgs exchange contributions are suppressed by small ϕh. The W ′ and Z ′ exchange
contributions are exponentially suppressed by mW ′ and mZ′ . The contributions from the
vector quadratic couplings are suppressed by 1/m2

V .
The imaginary part of the potential, Γ̂J , is derived by operator matching between the

two-body operators and the calculations of the loop amplitudes of the V -particles. We may
derive Γ from the perturbative annihilation cross section of V -particles relating the forward
scattering amplitude and the annihilation cross section through the optical theorem.7 The
detailed derivation is given in Appendix A.2. As discussed in Sec. 4.1.3, a perturbative
expansion by α2 breaks down for the TeV scale DM scenario. The cross section formula
including the Sommerfeld effects is derived in Sec. 4.3.8

For the thermal relic evaluation discussed in Sec. 5, we need to treat all the annihilation
modes of V -particles including longitudinal contributions of the final massive vectors. We will
postpone to giving master formulas to express all the leading order perturbative annihilation
cross section until Sec. 5.2.2 where the same matching procedures are applied to derive Γ.
Here we give rather simpler results focusing on the line gamma-ray studies, which is more
useful for the comparison with the results in the spin-1/2 system. The annihilation channels
into more than one primary photon, γX, contribute to the narrow spectral line where X
denotes neutral particles that may appear in the final state. This monochromatic channel

7We choose the factor of 9/2 in Eq. (4.42) so that the (1,1)-component of Γ̂J is equal to the tree-level
spin-averaged velocity-weighted annihilation cross sections of V −V + with J . For spin-1/2 DM system, we
have to replace 9/2→ 2 to hold the same cross section formulas.

8See Eq. (4.95).
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is easy to separate with the astrophysical background and is expected to be a smoking-
gun signal from DM annihilation. In particular, we focus on X = γ, Z, Z ′ and derive Γ
induced from these channels. We have to calculate the one-loop forward scattering amplitudes
with XX ′ = γγ, Zγ, Z ′γ for the intermediate states to derive the corresponding Γ̂J . The
annihilation modes into hγ and h′γ induce J = 1 partial wave contributions only, which
is irrelevant to DM annihilation in the current universe.9 Noting that a photon has only
the transverse modes, all the longitudinal contributions vanish. Therefore, we may safely
take the massless limit of the SM particles in the final states. We decompose Γ̂J into each
contribution of the intermediate state, XX ′, as denoted by ΓJ

XX′ . The leading order results
are shown below where we omit the SM masses for the final states.

Γ̂J=0
γγ =

2

3

πα2
2

m2
V

(
s4W 0
0 0

)
, (4.59)

Γ̂J=2
γγ =

32

45

πα2
2

m2
V

(
s4W 0
0 0

)
, (4.60)

Γ̂J=0
Zγ =

2

3

πα2
2

m2
V

(
2c2W s

2
W 0

0 0

)
, (4.61)

Γ̂J=2
Zγ =

32

45

πα2
2

m2
V

(
2c2W s

2
W 0

0 0

)
, (4.62)

Γ̂J=0
Z′γ =

1

27

α2g
2
Z′

m2
V

(1− rZ′)(3− 2rZ′)2
(
s2W 0
0 0

)
, (4.63)

Γ̂J=2
Z′γ =

8

135

α2g
2
Z′

m2
V

(1− rZ′)(6 + 3rZ′ + r2Z′)

(
s2W 0
0 0

)
, (4.64)

where rZ′ ≡ m2
Z′/4m2

V , and gZ′ is defined in Eq. (3.92).

4.2.3 Two-body potential for Wino DM system

To compare with the spin-1 DM system, we show the result of two-body potential in the
Wino DM system, which the leading order result is derived in Ref. [32] including Q 6= 0
two-body states.

V̂Q=0(r) =


2δmV −

α2s
2
W

r
− α2c

2
W e

−mZr

r
−
√
2α2e

−mW r

r

−
√
2α2e

−mW r

r
0

 , (4.65)

VQ=±1(r) = −
α2e

−mW r

r
, (4.66)

VQ=±2(r) =
α2s

2
W + α2c

2
W e

−mZr

r
. (4.67)

9These channels contribute to thermal relic evaluation where electrically charged components are also
relevant. We will show the formulas of V -particle annihilation cross section into scalar and vector particles
in Eqs. (5.9)-(5.11).
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The leading-order results is the same as that of the SU(2)L triplet spin-1/2 DM except for
the potential for Q = ±1 two-body states where overall signs are opposite. In particular, the
potential is repulsive for spin-1 DM while attractive for spin-1/2 DM. The imaginary part of
the potential is shown below.

Γ̂Q=0
J=0 =

πα2
2

2m2

(
3
√
2√

2 2

)
, (4.68)

ΓJ=1
Q=0 =

25

24

πα2
2

m2
, (4.69)

ΓJ=0
Q=±1 =

1

2

πα2
2

m2
, (4.70)

ΓJ=1
Q=±1 =

25

24

πα2
2

m2
, (4.71)

ΓJ=0
Q=±2 =

1

2

πα2
2

m2
, (4.72)

where we sum over all the final states with neglecting masses of the SM particles. The partial
contributions from γγ and Zγ channels are shown below.

Γ̂J=0
γγ =

πα2
2

m2

(
s4W 0
0 0

)
, (4.73)

Γ̂J=0
Zγ =

πα2
2

m2

(
c2W s

2
W 0

0 0

)
. (4.74)

In the spin-1/2 DM system, we have two variations in two-body states with (Q, J) = (0, 0),
ϕC ' χ−χ+ and ϕN ' χ0χ0. Therefore, the potential has a two-by-two matrix form. This is
the same situation as the case of the spin-1 system. The diagonal component of Γ corresponds
to the velocity-weighted spin-averaged annihilation cross section in our matching procedure.
In particular, Γ11 corresponds to the tree-level total annihilation cross section of χ−χ+ while
Γ22/2 corresponds to that of χ0χ0.10

Let us mention the electroweak higher order corrections in our analysis. For the spin-1/2
DM, the Sudakov log corrections [33, 34, 35, 36, 37] and the one-loop correction for the real
part of the potential [38] are precisely evaluated in the context of the Wino DM study. In our
spin-1 DM system, those potentially large corrections have not been evaluated yet, and thus
our predictions have the uncertainty of O(1) factors. We focus on the leading-order results in
both DM systems to show the comparison. Although the electroweak corrections also induce
spin-dependence in signatures, these effects are sub-leading compared to the leading order
results.

Before we show the procedure to evaluate DM annihilation processes including these
potential effects, we remark the differences in effective action between spin-1 DM and spin-
1/2 DM system focusing on the line gamma-ray channels. First, the Sommerfeld enhancement
factor is approximately the same in both systems since we have the same V̂ and the mass

10Factor of 1/2 comes from the fact that the χ0χ0 state is composed of identical particles.
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splitting at the leading-order. Consequently, we have the same resonance structures as those
in the Wino system. Second, if we compare the annihilation cross section into γγ and Zγ, a
cross section value of spin-1 DM are larger than that of spin-1/2 DM by 38/9 ' 4.22 · · · .11
This is because spin-1 DM forms both J = 0 and J = 2 partial wave states while spin-1/2
DM forms only the J = 0 state. Third, our spin-1 DM may have a new annihilation mode
into Z ′γ If this new channel is kinematically opened, the associated photon also contributes
to a monochromatic peak. Besides, the photon energy is determined by mV and mZ′ . We
will study this topic in detail in Sec. 6.2.

4.3 Cross section formulas

We review how to evaluate the Sommerfeld factor and derive formulas for DM annihilation
cross section. Let us consider a scattering process of χiχj → χkχℓ where X i denotes DM
multiplet. The following derivation can be applied to arbitrary DM spin by adjusting a
spin-dependent factor. DM annihilation processes are described by two-body states. We
start from the Schwinger-Dyson equation for the Green functions of the two-body states.
This equation is derived by using equal time commutation relation for two-body states and
equations of motion.[(

i∂R0 +
∇2

R

4m
+
∇2

r

m

)
− VQ(r) + i

N

2
Γδ3(r)

] 〈
0
∣∣Tϕb(R

′, r′)ϕ†
a(R, r)

∣∣ 0〉
= iδ4(R−R′)δ3(r − r′)δba, (4.75)

wherem denotes DM mass and ϕa (ϕb) denotes a two-body state composed of the components
of the DM multiplet χiχj (χkχℓ). The factor of N in front of Γ denotes degrees of spin states.

N =

{
4, (spin-1/2)
9. (spin-1)

(4.76)

This Green function describes the process of ϕa(R, r) → ϕb(R
′, r′), and the corresponding

scattering process of components χi(t,x)χj(t,y) → χk(t,x′)χℓ(t,y′). The coordinate R =
(R0,R) denote the center mass coordinate and r denotes the relative coordinate of DM
multiplets as defined in Eq. (4.41). We also define R′ and r′ in the same manner. The
imaginary part for the diagonal component of this Green function,

〈
0
∣∣Tϕbϕ

†
a

∣∣ 0〉, relates
with the total annihilation cross section of χiχj. We expand the Green functions into each
partial wave mode.

〈
0
∣∣Tϕb(R

′, r′)ϕ†
a(R, r)

∣∣ 0〉 = ∫ dP 4

(2π)4
e−iP ·(R−R′)

∑
ℓ

2ℓ+ 1

4π
Pℓ(cos γ)(−i)G(E,ℓ)

ba (r′, r),

(4.77)

11For the γγ (Zγ) channel, for example, we simply add the values in Eq. (4.59) and Eq. (4.60) (Eq. (4.61)
and Eq. (4.62)) to compare with spin-1/2 results shown in Eq. (4.73). This is because the real part of the
potential is the same for both J = 0 and J = 2 states in the spin-1 system.
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where γ denotes the relative angle between r and r′. The NR kinetic energy for a DM pair
is denoted by E as defined below.

E ≡ P 0 − P

4m
=
mv2

4
, (4.78)

where v denotes the relative velocity between a DM pair. The NR kinetic energies for the
heavier components are expressed by subtracting the mass differences from E, E − (mi +
mj − 2m). Substituting Eq. (4.77) into Eq. (4.75), we obtain[

− 1

mr

d

dr2
r − ℓ(ℓ+ 1)

mr2
− E + V (r)− iΓNδ(r)

8πr2

]
G

(E,ℓ)
ba (r′, r) =

δ(r − r′)
r2

δba. (4.79)

Throughout our analysis, we focus on the s-wave annihilation processes (ℓ = 0), which
give leading order contributions in the NR limit. Therefore, the total angular momentum,
J , is equal to the total spin angular momentum, S. The leading order potential terms
are spherically symmetric, and thus J is conserved in annihilation processes. We also have
conservation of the total electric charge, Q. Consequently, the Green function is expressed
in the diagonal form of each eigenstate for Q and J . To simplify the differential equation,
we introduce

G
(E,ℓ=0)
ba (r′, r) ≡ 1

rr′
gba(r

′, r), (4.80)

and obtain [
− 1

m

d2

dr2
− E + V (r)− iΓNδ(r)

8πr2

]
gba(r

′, r) = δ(r − r′)δba. (4.81)

The cross section is expressed by the imaginary part of the solution. We obtain the leading
order solution in the perturbative expansion of α2 as shown below.12

gba(r
′, r)|leading−order =

iNm2

8π

[
g>(r

′) · Γ · gT>(r)
]
ba
. (4.82)

In the above expression, we introduce the solution of the following equation.[
− 1

m

d

dr2
− E + V (r)

]
g>ab(r) = 0, (4.83)

with the following boundary conditions.

g<ba(r = 0) = δba, (4.84)

g<ba(r = 0) = (outgoing mode only). (4.85)

We impose different profiles depending on each potential. The short-range Yukawa potential
damps at r → ∞, and thus the solution behaves as the outgoing plane wave. For the long-
range Coulomb potential, the asymptotic profile is also determined by solving the Schrödinger

12The real part of the potential is O(α2) while the imaginary part is O(α2
2).
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equation in Eq. (4.83). In particular, we put the following condition as the asymptotic
behavior.

g>ba(r)→


dba(Ea) e

i
√
mEbr, (short-range potential)

dba(Ea) e
i
√
mEbre

i mα

2
√

mEb
log(2

√
mEbr)

, (long-range potential)

(4.86)

where Ea and Eb denote the NR kinetic energy of ϕa and ϕb, respectively. Since we can not
take r →∞ in numerical calculations, we impose these asymptotic behaviors in a sufficiently
large value of r (≡ rf ) so that the numerical solutions turn to be independent of rf . The
distortion from the asymptotic (modified) plane wave profile is expressed by dba(Ea), which
is called the Sommerfeld factor.

ForQ = 0 two-body sector, we have matrix form of the Green function and the kinematical
accessibility of an off-diagonal process is nontrivial. This property is already imprinted in
the above boundary conditions. Let us consider the DM process of χiχj → χkχℓ. If we have
2m < mk +mℓ, this scattering channel is kinematically closed for

Eb =
mv2

4
− (mk +mℓ − 2m) < 0. (4.87)

In this region, the exponential factor e
√
mEbr damps the asymptotic solution at r → ∞.

This behavior is consistent with the kinematical suppression of this annihilation mode. This
property is automatically encoded in the boundary condition in Eq. (4.86). We introduce
Mij (Mkℓ) to denote the total mass of initial (final) states. The general relation between
initial and final relative velocities is expressed as

v2ij = v2kℓ −
4

m
(Mkℓ −Mij) ≡

4k2

m2
. (4.88)

From this relation, we may obtain the general expression for
√
mEb as shown below.√

mEb = k =

√
m
(mv2kℓ

4
− Mkℓ −Mij

m

)
. (4.89)

We find k is pure imaginary for mv2kℓ/4 < Mkℓ −Mij. Therefore, we have the exponential
damping of the solution, ∼ e−|k|r for r →∞, which is also consistent with the above discus-
sion. We solve the equation numerically and obtain the Sommerfeld factors as a function of
the relative velocity for the initial state, vij. This effect gets viable in the NR region, vij � 1,
since the potential energy becomes relevant compared with the kinetic energy, E ' mv2ij/4,
in the Schrödinger equations. On the other hand, the enhancement factors converge to 1
for vij � 1. Consequently, we can recover the perturbative cross section obtained by the
Born approximation if we replace the Sommerfeld factor with 1. Through the optical theo-
rem, ImGE,ℓ=0

aa (r′, r) is related to the s-wave spin-averaged and velocity weighted annihilation
cross section, (σav), and we obtain the following formula.

(σav)s-wave = ca
2π

k2
lim

E→ k2

E2

(
E − k2

m2

)2 ∫ ∞

0

drdr′ sin kr · Im
[
rr′G(E,ℓ=0)

aa (r′, r)
]
· sin kr′,

(4.90)
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where we do not take summation over a, and σa describes the annihilation cross section of
ϕa ∼ χiχj. We introduce a pre-factor ca as defined below.

ca =

{
2, for initial states composed of two identical particles
1. otherwise

(4.91)

If we substitute the leading order solution given in Eq. (4.82), we obtain

(σav)s-wave|leadingorder = ca
m2

k2
lim

E→ k2

E2

(
E − k2

m2

)2 [
A(k) · Γ · A†(k)

]
aa
, (4.92)

where we define

Aba(k) ≡
∫ ∞

0

dr sin kr[g>(r)]ba. (4.93)

The asymptotic behavior r → ∞ is important to evaluate Aba(k). Substituting Eq. (4.86)
into Eq. (4.93), we obtain13

Aba(k) '
∫ ∞

0

dr · dba(E) ei
√
mEr sin kr

= dba(E)×
(
− k
m

)
1

E − k
m2

. (4.94)

Using this approximated form, we express the annihilation cross section as below.

(σav)s-wave ' ca
∑
b,c

dab(E) Γbc d
∗
ac(E). (No summation for a) (4.95)

In particular, the velocity-weighted annihilation cross section for partial annihilation pro-
cesses, V 0V 0 → XX ′, are expressed using the notation introduced in Sec. 4.2.2.14

(σav)XX′ ' c
∑
α,β

∑
J,Jz

(
ΓJ
XX′

)
αβ
d2α(E) d

∗
2β(E), (4.96)

where c = 2 for the initial states composed of identical particles. We introduce E ' mV v2rel
4

as the NR kinetic energy of the V -particles, and dαβ(E) (α, β = 1, 2) as the Sommerfeld
enhancement factor. We numerically obtain dαβ(E) by solving the Schrödinger equation
following the method described above.

13We assume Im(
√
mE) > 0 to obtain this result. This assumption is consistent with the asymptotic

behavior shown in Eq (4.86) for the process with Mij < Mkℓ. See the discussion below Eq. (4.87).
14We have to choose the appropriate value of coupling constants at the typical scale of each process. We

use the couplings at the mZ scale for the potential in solving the Schrödinger equation, while we use the
couplings at DM mass for ΓJ

XX′ in Eq. (4.96).
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5 Thermal relic evaluation

We evaluate thermal relic abundance predicted in the electroweakly interacting DM system.
The DM thermal relic abundance is one of the most important predictions in WIMP scenario
because we can infer one constraint on the DM theory by requiring to realize the value
determined in the Planck experiments, Ωh2 ' 0.12. DM annihilation channels and cross
section differ in each theory. Therefore, specifying the viable DM mass region for the WIMP
scenario is the first step of DM identification.

In order to evaluate thermal relic abundance, we have to derive all the relevant annihila-
tion cross section formulas for DM multiplet. Besides, we need to numerically evaluate the
Sommerfeld factors for all the two-body states. We compare predictions between spin-1/2 and
spin-1 DM and discuss possibilities for discrimination. The derived formulas in this section
are also applied to study gamma-ray signatures discussed in Sec. 6. In Sec. 5.1, we classify
all the annihilation diagrams of V -particles systematically. Through this classification, we
specify the relevant modes to evaluate the DM abundance. The cross section formulas are
summarized in Sec. 5.2. In Sec. 5.3, we show the numerical result of thermal relic evaluation.

5.1 Classification of annihilation diagrams

To collect all the leading-order contributions, we categorize annihilation diagrams of spin-1
DM by the following features.

(1) Initial states

(2) Final states

(3) Topology of diagrams

The initial and final states are characterized by the particle spices and the total spin angular
momentum. We introduce labels for categorization in Sec. 5.1.1 and write down all the
possible combinations of each label in Sec. 5.1.2.

5.1.1 Labels for categorization

First, we define labels of the initial state particles. As revealed in Sec. 3.3, we have nearly
degenerated Z2-odd spin-1 particles, V 0 and V ∓ in our spin-1 DM system.15 If the mass
splitting between the V -particles, δm, is comparable with the temperature in the thermal
bath, the coannihilation effects are viable. To evaluate the DM thermal relic abundance, we
need to calculate the annihilation cross section of V -particles.16 Pairs of V -particles, which

15We assume mhD
> mV to focus on the spin-1 DM scenario, and thus hD has nothing to do with the

thermal relic evaluation. This relation is always achieved by choosing the parameters in the scalar sector.
16The scattering between V -particles and the decay of V ± into V 0 do not directly reduce the total number

of V -particles. Although these processes are assumed to occur with sufficient rate, we do not have to calculate
explicitly.
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are denoted by V1V2, are written down below.

V1V2 = {V 0V 0, V −V +, V 0V ∓, V ∓V ∓}. (5.1)

We also classify each initial state by the total spin angular momentum, Jinitial = 0, 1, 2 for
the later convenience. Each initial state mode is specified by (V1V2, Jinitial).

Second, we define the labels to express the final state particles.

X3X4 = {ϕ3ϕ4, ϕ3V4, f3f4, V3V4}, (5.2)

where ϕi, fi and Vi (i = 3, 4) denote final state particles with spin-0, 1, and 2, respectively.
The final states are composed of all parity-even particles due to the Z2-charge conservation.
Each final state is also classified by the total angular momentum, Jfinal = 0, 1, 2, and specified
by (X3X4, Jfinal).

Third, the annihilation diagrams for V -particles are classified into the following two classes
of the topology.

• Topology s

The diagrams of the s-channel are classified into this class. These classes of diagrams
are further labeled by the intermediate states. We use φ for spin-0 mediators and use
X for spin-1 mediators, respectively. Therefore, each s-channel diagram is assigned by
the labels of s-φ or s-X.

• Topology tu4

The diagrams of t-channel, u-channel, and quadratic channel are classified into this
class. We have nonzero amplitude in specific partial wave modes after adding up the
three channels if we focus on NR leading order contributions.

All the partial wave annihilation modes of V -particles are specified by the following labels.

(V1V2, Jinitial)-([Topology], X3X4, Jfinal), (5.3)

where [Topology] = s-φ, s-X for the topology s, and [Topology] = tu4 for the topology
tu4. Once we assign these labels to each annihilation mode, we treat all the contributions
systematically. Besides, possible annihilation channels are efficiently constrained due to the
physical reasons by decomposing into each partial wave mode. For instance, we focus on the
s-wave contribution throughout our analysis, and thus the total spin angular momentum is
conserved.

Jinitial = Jfinal ≡ J. (5.4)

This constraint drastically reduces the number of possible annihilation modes in the par-
tial wave basis. We also have p-wave or higher contributions if we include the relativistic
corrections, which is sub-leading to the s-wave contribution in the NR limit.
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5.1.2 Possible annihilation modes

Figure 7: Annihilation diagrams of V -particles categorized with the topology s.
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Figure 8: Annihilation diagrams of V -particles with the topology tu4.

We write down all the possible labels defined in Eq. (5.3). Only the limited combinations of
labels are consistent with the conservation laws of the total electric charge, Q, and the total
spin angular momentum, J .

• Possible initial states

We have the following combinations of two V -particles where all the possible values of
J are shown.

(V1, V2, J) = (V 0V 0, J = 0, 2),

(V −V +, J = 0, 1, 2),

(V 0V ∓, J = 0, 1, 2),

(V ∓V ∓, J = 0, 2). (5.5)

We do not have J = 1 state for V 0V 0 and V ∓V ∓ as long as we are focusing on the s-wave
contribution due to the following reasons: Note that these states are composed of the
two identical particles with Bose statics whose total wave function must be symmetric
under the exchange of two wave functions. Since the s-wave spatial wave function is
symmetric under the exchange of two V -particles, the spin wave function should be also
symmetric under the exchange. Therefore, J = 1 states are forbidden by the wrong
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spin-statics. If we consider the relativistic corrections, the J = 1 contributions appear
even for V 0V 0 and V ∓V ∓ states.

• Possible final states with the topology s

The diagrams with the topology s are categorized into the eight types of diagrams as
shown in Fig. 7. All the possible labels are listed below.

([Class]-[intermediate state], [final state], J) = (s-φ, ϕ3ϕ4, J = 0),

(s-φ, ϕ3V4, J = 0),

(s-φ, f3f4, J = 0),

(s-φ, V3V4, J = 0),

(s-X,ϕ3ϕ4, J = 0, 1),

(s-X,ϕ3V4, J = 0, 1),

(s-X, f3f4, J = 0, 1),

(s-X,V3V4, J = 0, 1), (5.6)

where φ = h, h′ denote the intermediate spin-0 particles andX = γ, Z,W,Z ′,W ′ denote
the intermediate spin-1 particles.17 We have no final states with J = 2 for the topology
s since we do not have spin-2 mediators.

• Possible final states with the topology tu4

The diagrams with the topology tu4 have three possibilities in the final state parti-
cles, ϕ3ϕ4, ϕ3V4, and V3V4.

18 In Fig. 8, we show these three types by specifying the
corresponding diagrams. The following combinations of labels are possible.

([Class], [final state], Jfinal) = (tu4, ϕ3ϕ4, J = 0, 1, 2),

(tu4, ϕ3V4, J = 0, 1, 2),

(tu4, V3V4, J = 0, 1, 2). (5.7)

Note that final state particles have nonzero momentum, and thus the total angular
momentum J acquires contributions not only from the spin angular momentum but
also the orbital angular momentum.19

In Table 4, we classify the initial and final states for each total angular momentum J . The
states with the same J are allowed to have nonzero annihilation amplitude due to the total
spin angular momentum conservation in the s-wave contribution. Thanks to this constraint,
we can reduce the number of annihilation modes we have to consider.

17We only have J = 1 contribution for X = γ since a photon has only transverse modes. On the other hand,
we have both J = 0 and J = 1 contribution from massive bosons since these particles have a longitudinal
mode corresponding to the NG boson.

18We have no annihilation mode into fermions for topology tu4 at the tree-level because we do not have
Z2-odd fermions.

19As shown in Sec. 5.2, nonzero cross sections are obtained only for specific values of J due to the
(anti)symmetricity of the amplitudes.
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Table 4: Possible combination of the initial and final states where X3X4 represents all the
possible final states introduced in Eq. (5.2).

angular momentum initial state final state

J = 0 (V 0V 0, 0) (s-φ, X3X4, 0) with φ = h, h′

(V −V +, 0) (s-X, X3X4, 0) with X = Z,W,Z ′,W ′ (longitudinal)

(V 0V ∓, 0) (tu4, ϕ3ϕ4, 0)

(V ∓V ∓, 0) (tu4, ϕ3V4, 0)

(tu4, V3V4, 0)

J = 1 (V −V +, 1) (s-X, X3X4, 1) with X = γ, Z,W,Z ′,W ′ (transverse)

(V 0V ∓, 1) (tu4, ϕ3V4, 1)

(tu4, V3V4, 1)

J = 2 (V 0V 0, 2) (tu4, ϕ3ϕ4, 2)

(V −V +, 2) (tu4, ϕ3V4, 2)

(V 0V ∓, 2) (tu4, V3V4, 2)

(V ∓V ∓, 2)
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5.2 Summary of annihilation modes

Combining initial and final states in the same row of Table 4, we can systematically obtain
all the possible annihilation modes of the V -particles. In Sec. 5.2.1, we write down the anni-
hilation modes by specifying the particle species in intermediate and final states. Focusing
on the leading order contributions, we show the master formulas of the annihilation cross
section in Sec. 5.2.2.

5.2.1 All the possible modes

All the possible annihilation modes are summarized in Table 5-8. The first column shows
the labels indicating each mode, the second column shows possible intermediate and final
states, and the third column shows descriptions for each mode, respectively. We specified
the leading order (LO) contributions in these columns as remarked by red characters. We
also show the reasons for suppression in the cross section for the sub-leading modes, which
depends both on the model parameters and on the specific limit. The detailed explanations
of each mode are listed below. These explanations are cited in Table 5-8.

♭ The neutral vector triple couplings are forbidden at the tree-level.

♯ The neutral vector quadratic couplings are forbidden at the tree-level.

∗ This mode may be kinematically allowed depending on mZ′ (' mW ′).

4 This mode may be kinematically allowed depending on mh′ .

⋆ The final states composed of two heavier Z2-even vectors (eg. W ′W ′, W ′Z ′, Z ′Z ′) are
forbidden kinematically since we have mZ′,W ′ > mV in our setup.

♠ A longitudinal mode of a massive boson contributes to this J = 0 mode, while a photon
only has transverse modes and does not contribute.

♣ The transverse modes of massive bosons may only contribute to this J = 1 mode.

♦ In order to realize J = 0 modes, a final massive vector must have a longitudinal
polarization that corresponds to the Nambu-Goldstone (NG) boson. Since we have
no tree-level coupling of neutral NG bosons such as V −-V +-πZ and V −-V +-πZ′

, these
modes are suppressed by O((v/vΦ)2).

♦ We have tree-level couplings of charged NG bosons such as V 0-V ∓-πW and V 0-V ∓-πW ′
,

and thus these modes do not have O((v/vΦ)2) suppression. However, these modes are
proportional to the initial DM momentum and sub-leading in the NR limit.

♥ If the final states are composed of two identical Bosons, J = 1 states are forbidden in
the s-wave contributions due to the spin-statistics.
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The following facts can be read out from these tables: We found the s-channel diagrams
are all sub-leading due to the sinϕh suppression and momentum suppression in the NR limit,
respectively. Lacking the s-channel annihilation modes, the annihilation modes into fermion
pairs do not contribute to the leading order effects. This is because we do not have the
Z2-odd fermion in our framework. Consequently, we can focus on the following final states
in the leading order calculation.

{(tu4, ϕ3ϕ4, J), (tu4, ϕ3V4, J), (tu4, V3V4, J)}. (5.8)

We will perform a more detailed classification of the annihilation modes and show the cross
section formulas in Sec. 5.2.2.

Table 5: Possible annihilation modes for V 0V 0 (J = 0, 2). The J = 1 modes are forbidden
in the s-wave contribution due to the spin-statics.

label intermediate/final state description

(V 0V 0, 0)-(s-φ, X3X4, 0) φ = h, h′/X3X4 Suppressed by (v/vΦ)
2 and (sin 2ϕh)

2

(V 0V 0, 0)-(s-X, X3X4, 0) — No contribution at the tree-level
♭

(V 0V 0, 0)-(tu4, ϕ3ϕ4, 0)

hh Suppressed by (sinϕh)
4

hh′ Suppressed by (sin 2ϕh)
2△

h′h′ LO if kinematically allowed△

(V 0V 0, 0)-(tu4, ϕ3V4, 0) — No contribution at the tree-level
♭

(V 0V 0, 0)-(tu4, V3V4, 0)

W∓W± LO

W−W ′+,W ′−W+ LO if kinematically allowed
∗

W ′−W ′+, Z ′Z ′ Kinematically forbidden⋆

γγ, γZ, ZZ, γZ ′, ZZ ′ No contribution at the tree-level
♭♯

(V 0V 0, 0)-(tu4, ϕ3ϕ4, 2)

hh Suppressed by (sinϕh)
4

hh′ Suppressed by (sin 2ϕh)
2△

h′h′ LO if kinematically allowed△

(V 0V 0, 2)-(tu4, V3V4, 2)

W∓W± LO

W−W ′+,W ′−W+ LO if kinematically allowed
∗

W ′−W ′+, Z ′Z ′ Kinematically forbidden⋆

γγ, γZ, ZZ, γZ ′, ZZ ′ No contribution at the tree-level
♭♯
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Table 6: Possible annihilation modes for V −V + (J = 0, 1, 2).

label intermediate / final state description

(V −V +, 0)-(s-φ, X3X4, 0) φ = h, h′/X3X4 Suppressed by (v/vΦ)
2 and (sin 2ϕh)

2

(V −V +, 0)-(s-X, X3X4, 0) X = Z,Z ′♠/X3X4

No direct emission of NG boson♦

and sub-leading in NR limit

(V −V +, 0)-(tu4, ϕ3ϕ4, 0)

hh Suppressed by (sinϕh)
4

hh′ Suppressed by (sin 2ϕh)
2△

h′h′ LO if kinematically allowed△

(V −V +, 0)-(tu4, ϕ3V4, 0) hZ, h′Z, hZ ′, h′Z ′ No direct emission of NG boson♦

(V −V +, 0)-(tu4, V3V4, 0)

W∓W±, γγ, γZ, ZZ LO

W−W ′+,W ′−W+, γZ ′, ZZ ′ LO if kinematically allowed
∗

W ′−W ′+, Z ′Z ′ Kinematically forbidden⋆

(V −V +, 1)-(s-X, X3X4, 1) X = γ, Z, Z ′♣/X3X4 Sub-leading in NR limit

(V −V +, 1)-(tu4, ϕ3V4, 1)
hγ, hZ, hZ ′ Suppressed by (sinϕh)

2

h′γ, h′Z, h′Z ′ LO if kinematically allowed△

(V −V +, 1)-(tu4, V3V4, 1)

W∓W± LO

W−W ′+,W ′−W+ LO if kinematically allowed
∗

γγ, ZZ Forbidden by the spin statistics♡

γZ, γZ ′, ZZ ′ Sub-leading in NR limit

W ′−W ′+, Z ′Z ′ Kinematically forbidden⋆

(V −V +, 2)-(tu4, V3V4, 2)

W∓W±, γγ, γZ, ZZ LO

W−W ′+,W ′−W+, γZ ′, ZZ ′ LO if kinematically allowed
∗

W ′−W ′+, Z ′Z ′ Kinematically forbidden⋆
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Table 7: Possible annihilation modes from V 0V ∓(J = 0, 1, 2).

label intermediate / final state description

(V 0V ∓, 0)-(s-φ, X3X4, 0) φ = h, h′/X3X4 Suppressed by (v/vΦ)
2 and (sin 2ϕh)

2

(V 0V ∓, 0)-(s-X, X3X4, 0) X = W,W ′♠/X3X4

We have direct emission of NG boson

but sub-leading in NR limit♢

(V 0V ∓, 0)-(tu4, ϕ3V4, 0)
hW, hW ′ Suppressed by (sinϕh)

2

h′W,h′W ′ LO if kinematically allowed△

(V 0V ∓, 0)-(tu4, V3V4, 0)

γW∓, ZW∓ LO

γW ′∓, Z ′W∓, ZW ′∓ LO if kinematically allowed
∗

Z ′W ′∓ Kinematically forbidden⋆

(V 0V ∓, 1)-(s-X, X3X4, 1) X = W,W ′♣/X3X4 Sub-leading in NR limit

(V 0V ∓, 1)-(tu4, ϕ3V4, 1)
hW, hW ′ Suppressed by (sinϕh)

2

h′W , h′W ′ LO if kinematically allowed△

(V 0V ∓, 1)-(tu4, V3V4, 1)
γW∓, ZW∓, Z ′W∓, Sub-leading in NR limit

Z ′W ′∓ Kinematically forbidden⋆

(V 0V ∓, 2)-(tu4, V3V4, 2)

γW∓, ZW∓, Z ′W∓, LO

γW ′∓, ZW ′∓ LO if kinematically allowed
∗

Z ′W ′∓ Kinematically forbidden⋆

5.2.2 Master formulas of annihilation cross section

We show formulas of spin-averaged perturbative annihilation cross section between V -particles
focusing on the leading order effects. In Table 9, we summarize the channels that may in-
duce the leading order effects. The first column shows the label of each mode, the second
column shows the relevant diagrams, the third column shows the definition of the types for
the cross section formulas, and the fourth column shows the factors of couplings in the cross
sections, respectively. We use the definitions for the scalar-vector couplings and the vector
triple couplings shown in Sec. 3.3.2. We use the relations between quadratic couplings and
triple couplings to simplify the cross section formulas.

There are nine labels of leading order channels divided into four types, Type-A, -B, -C,
and -D, which label the cross section formulas. The formulas for the spin-averaged cross
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Table 8: Possible annihilation modes from V ∓V ∓(J = 0, 2). The J = 1 modes are forbidden
in the s-wave contribution due to the spin-statistics. We only have two vector final states
since we lack charged scalars in our spectrum. The final states with two fermions are not
allowed since we have no doubly charged mediator.

label intermediate/final state description

(V ∓V ∓, 0)-(tu4, V3V4, 0)

W∓W∓ LO

W∓W ′∓ LO if kinematically allowed
∗

W ′∓W ′∓ Kinematically forbidden⋆

(V ∓V ∓, 2)-(tu4, V3V4, 2)

W∓W∓ LO

W∓W ′∓ LO if kinematically allowed
∗

W ′∓W ′∓ Kinematically forbidden⋆

section, which is divided by 1/9, are derived as follows.

(σvrel)
J=0

Type-A =
(PS)

36m2
V

· (coupling) · [40m
4
V − 2m2

V (m
2
3 +m2

4) + (m2
3 −m2

4)
2]

2

48m8
V (4m

2
V −m2

3 −m2
4)

2
, (5.9)

(σvrel)
J=1

Type-A = 0, (5.10)

(σvrel)
J=2

Type-A =
(PS)

36m2
V

· (coupling) · [16m
4
V − 8m2

V (m
2
3 +m2

4) + (m2
3 −m2

4)
2]

2

120m8
V (4m

2
V −m2

3 −m2
4)

2
, (5.11)

(σvrel)
J=0,2

Type-B = 0, (5.12)

(σvrel)
J=1

Type-B =
(PS)

108m4
V

· (coupling) ·
(

1

4m2
V −m2

3 −m2
4

)2(
4− m2

4

m2
V

)2

×
[
16m4

V − 8m2
V (m

2
3 +m2

4) + (m2
3 −m2

4)
2
]
, (5.13)

(σvrel)
J

Type-C =
(PS)

9m2
V

· (coupling) · |M̃J |2, (for J = 0, 2) (5.14)

(σvrel)
J=1

Type-C = 0, (5.15)

(σvrel)
J

Type-D =
(PS)

36m2
V

· (coupling) · |M̃J |2, (for J = 0, 1, 2) (5.16)

where mi(i = 3, 4) denote the masses of final state particles and (coupling) represents the
factors shown in the fourth column of Table 9. The phase space in the center mass frame is
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Table 9: Annihilation modes and topology of the diagrams that may induce the leading
order effects. We categorize these modes into four types, Type-A, -B, -C, and -D.

label of mode diagrams Type couplings

(V 0V 0, J)-(tu4, ϕ3ϕ4, J) 4-, t-, u-channel Type-A g2ϕ3
g2ϕ4

(V −V +, J)-(tu4, ϕ3ϕ4, J) 4-, t-, u-channel Type-A g2ϕ3
g2ϕ4

(V −V +, J)-(tu4, ϕ3V
0
4 , J) t-, u-channel Type-B g2ϕ3

g2
V +V −V 0

4

(V 0V ∓, J)-(tu4, ϕ3V
∓
4 , J) t-, u-channel Type-B g2ϕ3

g2
V +
4 V −V 0

(V 0V 0, J)-(tu4, V −
3 V

+
4 , J) 4-, t-, u-channel Type-C g2

V +
3 V −V 0g

2
V +V −

4 V 0

(V −V +, J)-(tu4, V −
3 V

+
4 , J) 4-, t-channel Type-D g2

V +
3 V −V 0g

2
V +V −

4 V 0

(V −V +, J)-(tu4, V 0
3 V

0
4 , J) 4-, t-, u-channel Type-C g2

V +V −V 0
3
g2
V +V −V 0

4

(V 0V ∓, J)-(tu4, V 0
3 V

∓
4 , J) 4-, u-channel Type-D g2

V +V −V 0
3
g2
V +
4 V −V 0

(V ∓V ∓, J)-(tu4, V ∓
3 V

∓
4 , J) 4-, t-, u-channel Type-C g2

V +
3 V −V 0g

2
V +
4 V −V 0

given below.

(PS) ≡ c34

∫
dΠ34 =

c34
8π

√
1− 2(m2

3 +m2
4)

s
+

(
m2

3 −m2
4

s

)2

, (5.17)

where c34 = 1/2 for the final states composed of two identical particles and otherwise c34 = 1.
In the NR limit of the initial V -particles, we have s ' 4m2

V .
To express the cross section for Type-C and Type-D, we introduce the following squared

amplitudes which are taken averaged for polarization indices and cos θ dependence.∣∣∣M̃J

∣∣∣2 ≡ 1

2

∫ 1

−1

d cos θ
∑
a,b

|M̃J,Jz
ab |

2, (|Jz| ≤ J) (5.18)

where the sum over a, b is taken over physical polarization for the final vectors. The most
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general expressions are shown below.∣∣∣M̃J=0

∣∣∣2 = 1

192m8
V (4m

2
V −m2

3 −m2
4)

2

×
[
18432m12

V − 15360m10
V

(
m2

3 +m2
4

)
+ 128m8

V

(
37m4

3 + 37m4
4 + 82m2

3m
2
4

)
− 640m6

V

(
m2

3 +m2
4

)3
+ 32m4

V

(
m8

3 +m8
4 + 2m6

3m
2
4 + 2m2

3m
6
4 + 10m4

3m
4
4

)
+m2

3m
2
4

(
m2

3 −m2
4

)4]
, (5.19)

∣∣∣M̃J=1

∣∣∣2 = 16m4
V (m2

3 +m2
4)− 8m2

V (m4
3 +m4

4 − 4m2
3m

2
4) + (m2

3 +m2
4) (m

2
3 −m2

4)
2

24m4
V (4m

2
V −m2

3 −m2
4)

, (5.20)

∣∣∣M̃J=2

∣∣∣2 = 1

480m8
V (4m

2
V −m2

3 −m2
4)

2

×
[
49152m12

V − 18432m10
V

(
m2

3 +m2
4

)
+ 256m8

V

(
2m4

3 + 2m4
4 + 149m2

3m
2
4

)
+ 128m6

V

(
m6

3 +m6
4 − 18m4

3m
2
4 − 18m2

3m
4
4

)
+ 32m4

V

(
m8

3 +m8
4 − 31m6

3m
2
4 − 31m2

3m
6
4 + 88m4

3m
4
4

)
+ 24m2

Vm
2
3m42

(
m2

3 −m2
4

)2 (
m2

3 +m2
4

)
+m2

3m
2
4

(
m2

3 −m2
4

)4]
. (5.21)

The comments on these derived formulas are summarized below: First, we obtain nonzero
results for the specific partial wave modes due to the following reasons. For Type-A, the
amplitude turns to be symmetric under two initial V−particles after adding all the diagrams.
Therefore, we have no J = 1 contribution. For Type-B, J = 0, 2 modes are exactly canceled
between t-channel and u-channel, and only J = 1 cross section remains nonzero. Although
both Type-C and Type-D have two vector states in initial and final states, we obtain different
formulas. The difference comes from the variations of the diagrams and the vector quadratic
couplings. For Type-C, the J = 1 contribution vanishes after adding up all the diagrams
while the J = 0, 2 contribution remains nonzero. For Type-D, on the other hand, we obtain
nonzero cross sections for J = 0, 1, 2 in general.

Second, we can apply Eqs. (5.12)-(5.16) even for the channels including photons in the
final state. For the photon channels, we have to omit the longitudinal contributions from
the polarization sum, which is automatically done by taking a massless limit of a final vector
mass. In Eq. (5.13) for Type-B mode, the longitudinal contributions are all canceled in the
final results. This is because a longitudinal mode corresponds to the NG boson contribution
of a final state vector, which can not form J = 1 states with the scalar particle. Therefore,
Eq. (5.13) can be applied for photon channels by taking m4 → 0. In Eqs. (5.14)-(5.16)
for Type-C and Type-D, we have nonzero contributions from the longitudinal modes in the
final forms but all these longitudinal contributions are proportional to masses of final vector
particles. Therefore, we can apply Eqs. (5.14)-(5.16) for photon channels by taking a massless
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limit of final vectors. We may derive these formulas for photon channels directly by switching
off the longitudinal polarization.

5.2.3 Perturbative cross section

In Figs. 9-18, we plot perturbative results of the spin-averaged cross section for the relevant
annihilation modes of V -particles as functions of DM mass. We changed the mass ratio
between DM and Z2-even vector (scalar), mZ′/mV (mh′/mV ), to show the parameter de-
pendence. The scalar mixing angle is fixed to be ϕh = 0.1 in all panels.20 The parameters
are shown on the upper sides of each panel. Since we fix the ratio mZ′/mV and mh′/mV

in these plots, the dominant parts of the spin-averaged annihilation cross sections scale as
∝ 1/m2

V for all the modes except for Type-D two vector channels with J = 1, which appear
in Fig. 12 and Fig. 15. This is because the cross sections of these channels are proportional
to the squared masses of the final state vectors, m2

3m
2
4 (See Eq. (B.24)). Each channel is

kinematically allowed for 2mV ≥ m3 +m4. Therefore, these annihilation cross sections into
the SM vectors scale higher negative order of mV . The cross section may depend on mZ′

through couplings. In Fig. 19, we plot the scalar-vector couplings, gϕ (ϕ = h, h′), and the
vector triple coupling for Z ′ and W ′, gZ′ . The scalar-vector couplings are normalized by DM
mass to show the dimensionless values. These couplings are enhanced for the degenerated
region, mZ′ ' mV , and thus the associated annihilation channels may get relevant.

In Fig. 9, we show the annihilation cross section for V 0V 0 (J = 0). We have five an-
nihilation modes {hh, hh′, h′h′,WW,WW ′}. The annihilation modes into the SM Higgs are
suppressed by small ϕh while the h′h′ mode may give leading order contribution if kine-
matically allowed. The scalar states get more relevant for mZ′/mV ' 1 due to the en-
hancement of the scalar-vector couplings. In all panels, two vector channels dominate the
cross section. The WW ′ mode is larger for mZ′/mV ' 1 due to the enhancement of gZ′ .
After decoupling of the WW ′ channel, the WW channel dominates the cross section. Fig-
ure 10 shows the V 0V 0(J = 2) annihilation cross sections into {hh, hh′, h′h′,WW,WW ′}.
The behaviors are the same as described in Fig. 9. In Fig. 11, we show the annihilation
cross section for V −V + (J = 0) into {hh, hh′, h′h′,WW,WW ′, γγ, γZ, ZZ, γZ ′, ZZ ′} where
final states of two neutral vectors newly appear compared with Fig. 9. The V −V + state
may annihilate into J = 1 states as shown in Fig. 12. we have eight annihilation modes
into {hγ, hZ, hZ ′, h′γ, h′Z, h′Z ′,WW,WW ′}. The h′V4 modes (V4 = γ, Z, Z ′) may dominate
cross section because we have no ϕh suppression. After decoupling of these h′V4 modes, the
hV4 modes get dominant. The cross sections for the two vector states are highly suppressed
by m2

W and sub-leading in all the panels. In Fig. 13, we show V −V +(J = 2) annihilation
cross section into {WW,WW ′, γγ, γZ, ZZ, γZ ′, ZZ ′}. In Fig. 14, we show V 0V −(J = 0) an-
nihilation cross section into {γW,ZW, γW ′, Z ′W,ZW ′}. In Fig. 15, we show V 0V −(J = 1)
annihilation cross section into {hW, h′W,hW ′, ZW,Z ′W,ZW ′}. The annihilation modes in-
cluding γW and γW ′ vanish since J = 1 contributions vanish in the massless limit of the
final vector mass. The Z ′W and ZW ′ modes almost degenerate in the figure. In Fig. 16,

20Although the SM Higgs channels are not the leading order due to the small ϕh suppression, we show
these modes in the figures to show the irrelevance to the other channels.
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we show V 0V −(J = 2) annihilation into {γW,ZW, γW ′, Z ′W,ZW ′}. In Fig. 17, we show
V −V −(J = 0) annihilation into {WW,WW ′}. In Fig. 18, we show V −V −(J = 2) annihila-
tion into {WW,WW ′}.

5.3 Evaluation of thermal relic abundance

The DM thermal relic abundance is numerically evaluated by solving the Boltzmann equa-
tions as reviewed in Sec. 2.1. Since we have degenerated spectrum of the Z2-odd particles
in the electroweakly interacting DM system, coannihilation effects, which are reviewed in
Sec. 2.2, get viable to evaluate the correct abundance. We apply the general formulas to
the concrete models. We derive the effective cross section predicted in the Wino system and
non-abelian vector DM system and compare the results.

5.3.1 Effective annihilation cross section for Wino DM

The effective annihilation cross section of DM multiplets is expressed as shown below.

σeffv =
∑
i

∑
j

σijv rirj, (5.22)

where i = 0,−,+ denotes the label of each component field and ri is defined in Eq. (2.32).21

In this system, we have

∆0 = 0, (5.23)

∆− = ∆+ =
δm

m
, (5.24)

g0 = g− = g+ = 2, (5.25)

where δm denotes a mass splitting in SU(2)L triplet of spin-1/2. The explicit forms of geff
and ri are shown below.

geff(x) = 2 + 4

(
1 +

δm

m

) 3
2

exp

[
−xδm

m

]
, (5.26)

r0(x) =
2

geff(x)
, (5.27)

r−(x) = r+(x) =
2(1 + δm

m
)
3
2 exp

[
−x δm

m

]
geff(x)

, (5.28)

which all depend on the temperature through the x dependence.
We show the plots of geff(x), r0(x), and r±(x) in Fig. 20. The black solid, red dashed,

and blue dot-dashed curves show geff , r0, and r±, respectively. From this figure, we read out
the following behavior.

21In Sec. 4.3, we use the label of two-body state, a, to express each partial wave mode of σv. In this
section, we explicitly show labels of component fields, Q, and J . See Eq. (5.29).
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• For T � δm (x� 1/∆±), all the components participate in the annihilation processes.
Therefore, we have ri ' 1/3 (i = 0,±) for all the component fields and geff ' 6.

• For T ' δm (x ' 1/∆±), the number density of charged components, χ±, is suppressed
compared with that of neutral components, χ0. This fact is reflected in r± as the
exponential suppression. The effective degree of freedom drops to geff ' 2 due to the
decoupling of the charged components.

• For T � δm (x� 1/∆±), we have r0 ' 1, r± ' 0 and geff ' 2.

Since we have the conservation of (Q, J), σijv is divided into the following partial contri-
butions.

σijv =
∑

Q=0,1,2

∑
J=0,1

(σijv)
Q,J . (5.29)

At the tree-level, we obtain the following results.

(σ00v)
Q=0,J=0 = 2

πα2
2

m2
, (5.30)

(σ−+v)
Q=0,J=0 = (σ+−v)

Q=0,J=0 =
3

2

πα2
2

m2
, (5.31)

(σ−+v)
Q=0,J=1 = (σ+−v)

Q=0,J=1 = 3 · 25
24

πα2
2

m2
, (5.32)

(σ∓0v)
Q=1,J=0 = (σ0±v)

Q=1,J=0 =
1

2

πα2
2

m2
, (5.33)

(σ∓0v)
Q=1,J=1 = (σ0±v)

Q=1,J=1 = 3 · 25
24

πα2
2

m2
, (5.34)

(σ−−v)
Q=2,J=0 = (σ++v)

Q=2,J=0 =
πα2

2

m2
. (5.35)

The above cross sections are related to the imaginary part of the two-body potential through
matching. We multiply the factor of two for σiiv where initial states are composed of two
identical particles. The factors of three for J = 1 mode come from the summation over
Jz = 0,±1.

These tree-level expressions are modified due to the NR potential force by the Sommerfeld
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factors.

(σ00v)
Q=0,J=0 =

πα2
2

m2
D00(E), (5.36)

(σ−+v)
Q=0,J=0 = (σ+−v)

Q=0,J=0 =
πα2

2

2m2
D−+(E), (5.37)

(σ−+v)
Q=0,J=1 = (σ+−v)

Q=0,J=1 = 3 · 25
24

πα2
2

m2
|d(Q=0,J=1)|2, (5.38)

(σ∓0v)
Q=1,J=0 = (σ0∓v)

Q=1,J=0 =
1

2

πα2
2

m2
|d(Q=1,J=0)|2, (5.39)

(σ∓0v)
Q=1,J=1 = (σ0∓v)

Q=1,J=1 = 3 · 25
24

πα2
2

m2
|d(Q=1,J=1)|2, (5.40)

(σ−−v)
Q=2,J=0 = (σ++v)

Q=2,J=0 =
πα2

2

m2
|d(Q=2,J=0)|2. (5.41)

We define the following functions to express the Sommerfeld factors for Q = 0, J = 0 modes
where the Schrödinger equation is expected in a two-by-two matrix form.

D00(E) ≡ 3|d(Q=0,J=0)
00,−+ |2 +

√
2d

(Q=0,J=0)
00,−+ d

∗(Q=0,J=0)
00,00 +

√
2d

(Q=0,J=0)
00,00 d

∗(Q=0,J=0)
00,−+ + 2|d(Q=0,J=0)

00,00 |2,
(5.42)

D−+(E) ≡ 3|d(Q=0,J=0)
−+,−+ |2 +

√
2d

(Q=0,J=0)
−+,−+ d

∗(Q=0,J=0)
−+,00 +

√
2d

(Q=0,J=0)
−+,00 d

∗(Q=0,J=0)
−+,−+ + 2|d(Q=0,J=0)

−+,00 |2.
(5.43)

For the other modes, we simply attached the squared factor of the Sommerfeld factors where
labels of the component fields are implicit. In the relativistic limit, vij → 1, we have the
following converged values for each factor.

D00(E)→ 2, (for Q = 0, J = 0 with χ0χ0 initial state) (5.44)

D−+(E)→ 3, (for Q = 0, J = 0 with χ−χ+ initial state) (5.45)

|d(Q,J)|2(E)→ 1, (otherwise) (5.46)

and thus we reproduce the tree-level results shown in Eqs. (5.30)-(5.35).
The Sommerfeld factors and the effective cross sections are calculated numerically as a

function of x. We use the mathematica module to solve the differential equations. In Fig. 21,
we show the Sommerfeld factors for each partial wave mode. We take m = 2.8 TeV and
δm = 170 MeV as benchmark values. We consider the scattering process, χiχj → χkχℓ, and
express these factors as the function of relative velocity between initial two particles, v ≡ vij.
For (Q, J) = (0, 0) mode, we show D00(E) and D−+(E) in the left and right panels in the
first row, respectively. For the other modes, we plot the squared Sommerfeld factors. The
converged values are shown as the horizontal dashed black lines in each plot. In the plot of
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χ0χ0, we have the singular behavior for D00(E) around v '
√

8δm/m. This is because the
charged states are not achievable kinematically if the mass splitting is larger than the kinetic
energy. This value is shown as the black vertical dashed line. We have the repulsive potential
for the state with Q = 2, J = 0, and thus the Sommerfeld factor gives suppression for v � 1.

In Fig. 22, we show the effective cross section in the Wino DM system. We show the
perturbative result in the top panel and show the result in the Sommerfeld effect in the center
panel. The black curves show 〈σeffv〉 in each panel. The orange dashed and red dot-dashed
curves show the partial contributions of (Q, J) = (0, 0)χ0χ0 and (0, 0)χ−χ+ , respectively.22 The
red dashed curve shows (Q, J) = (0, 1) contribution. The blue dashed, blue dot-dashed, and
green dashed curves show the contributions from states with (Q, J) = (1, 0), (1, 1), and (2, 0),
respectively. After the decoupling of the charged components, x ≳ 1/∆±, 〈σeffv〉 converges
to the value of (Q, J) = (0, 0)χ0χ0 mode. In the bottom panel, we show the comparison of
results without and with Sommerfeld effects. The green dashed curve shows the perturbative
result and the red dot-dashed curve shows the result including the Sommerfeld effect. We
find a large discrepancy between these two results for the NR region m/T � 1 where the
potential force effectively affects the DM annihilation.

5.3.2 Effective annihilation cross section for non-abelian vector DM

In the SU(2)L triplet spin-1 system, we have

∆0 = 0, (5.47)

∆− = ∆+ =
δmV

mV

, (5.48)

g0 = g− = g+ = 3. (5.49)

The explicit forms of geff and ri are shown below.

geff(x) = 3 + 6

(
1 +

δmV

mV

) 3
2

exp

[
−xδmV

mV

]
, (5.50)

r0(x) =
3

geff(x)
, (5.51)

r−(x) = r+(x) =
3(1 + δmV

mV
)
3
2 exp

[
−x δmV

mV

]
geff(x)

. (5.52)

We show the plots of geff(x), r0(x), and r±(x) in Fig. 23. The black solid, red dashed, and
blue dot-dashed curves show geff , r0, and r±, respectively. In this vector DM case, we have
geff ' 3 for x� 1.

We decompose the cross section into partial modes.

σijv =
∑

Q=0,1,2

∑
J=0,1,2

(σijv)
Q,J , (5.53)

22Lower subscription denotes the initial state.
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where i, j = 0,±. At the tree-level, we have the following expressions.

(σ00v)
Q=0,J=0 = 2 · (ΓJ=0

SM + ΓJ=0
Z′ ), (5.54)

(σ00v)
Q=0,J=2 = 2 · 5 · (ΓJ=2

SM + ΓJ=2
Z′ ), (5.55)

(σ−+v)
Q=0,J=0 = (σ+−v)

Q=0,J=0 = (ΓJ=0
SM + ΓJ=0

Z′ ), (5.56)

(σ−+v)
Q=0,J=1 = (σ+−v)

Q=0,J=1 = 3 · (ΓJ=1
SM + ΓJ=1

Z′ ), (5.57)

(σ−+v)
Q=0,J=2 = (σ+−v)

Q=0,J=2 = 5 · (ΓJ=2
SM + ΓJ=2

Z′ ), (5.58)

(σ∓0v)
Q=1,J=0 = (σ0∓v)

Q=1,J=0 = (ΓJ=0
SM + ΓJ=0

Z′ ), (5.59)

(σ∓0v)
Q=1,J=1 = (σ0∓v)

Q=1,J=1 = 3 · (ΓJ=0
SM + ΓJ=0

Z′ ), (5.60)

(σ∓0v)
Q=1,J=2 = (σ0∓v)

Q=1,J=2 = 5 · (ΓJ=2
SM + ΓJ=2

Z′ ), (5.61)

(σ−−v)
Q=2,J=0 = (σ++v)

Q=2,J=0 = 2 · (ΓJ=0
SM + ΓJ=0

Z′ ), (5.62)

(σ−−v)
Q=2,J=2 = (σ++v)

Q=2,J=2 = 2 · 5 · (ΓJ=2
SM + ΓJ=2

Z′ ), (5.63)

We multiply the factor of two for σiiv. The factors of five for J = 2 contributions come from
the summation over Jz = 0,±1,±2.

Including the Sommerfeld effect, we have to attach the Sommerfeld factors for each an-
nihilation mode.

(σ00v)
Q=0,J=0 = 2 · (ΓJ=0

SM + ΓJ=0
Z′ )DJ=0

00 (E), (5.64)

(σ00v)
Q=0,J=2 = 2 · 5 · (ΓJ=2

SM + ΓJ=2
Z′ )DJ=2

−+ (E), (5.65)

(σ−+v)
Q=0,J=0 = (σ+−v)

Q=0,J=0 = (ΓJ=0
SM + ΓJ=0

Z′ )DJ=0
00 (E), (5.66)

(σ−+v)
Q=0,J=1 = (σ+−v)

Q=0,J=1 = 3 · (ΓJ=1
SM + ΓJ=1

Z′ )DJ=1
−+ (E), (5.67)

(σ−+v)
Q=0,J=2 = (σ+−v)

Q=0,J=2 = 5 · (ΓJ=2
SM + ΓJ=2

Z′ )DJ=2
−+ (E), (5.68)

(σ∓0v)
Q=1,J=0 = (σ0∓v)

Q=1,J=0 = (ΓJ=0
SM + ΓJ=0

Z′ )|d(Q=1,J=0)|2, (5.69)

(σ∓0v)
Q=1,J=1 = (σ0∓v)

Q=1,J=1 = 3 · (ΓJ=1
SM + ΓJ=1

Z′ )|d(Q=1,J=1)|2, (5.70)

(σ∓0v)
Q=1,J=2 = (σ0∓v)

Q=1,J=2 = 5 · (ΓJ=2
SM + ΓJ=2

Z′ )|d(Q=1,J=2)|2, (5.71)

(σ−−v)
Q=2,J=0 = (σ++v)

Q=2,J=0 = 2 · (ΓJ=0
SM + ΓJ=0

Z′ )|d(Q=2,J=0)|2, (5.72)

(σ−−v)
Q=2,J=2 = (σ++v)

Q=2,J=2 = 2 · 5 · (ΓJ=2
SM + ΓJ=2

Z′ )|d(Q=2,J=2)|2, (5.73)

where we define the functionsDJ
00(E) andD

J
−+(E) in the same manner as defined in Eqs. (5.42),

(5.43) to express the Sommerfeld factors for Q = 0 modes.
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In Fig. 24, we show the Sommerfeld factors for each partial wave mode. We consider
the scattering processes, V iV j → V kV ℓ, as the function of relative velocity for the initial
two-body state v ≡ vij . We take mV = 2.8 TeV, δmV = 170 MeV, and mZ′ = 1.5 mV as
benchmark values to compare with spin-1/2 result. The left column shows the results for
J = 0 mode, and the right column shows the results for J = 2 mode. We have almost the
same plots for J = 0, 1, 2. For Q = 0 and Q = 2 modes, we have the same real part of the
potential both in the Wino system and the vector DM system, and thus we obtain almost the
same Sommerfeld factors. For Q = 1 mode, on the other hand, we obtain the opposite sign
compared with the potential of the Wino DM system. Consequently, we have the repulsive
potential not only for Q = 2 but also for Q = 1 modes. For these cases, the Sommerfeld
factor gives suppression in the NR region.

In Fig. 25, we show 〈σeffv〉 with and without the Sommerfeld factors in the vector DM
system. We show the tree-level result in the top panel and show the result with the Som-
merfeld effect in the center panel. The black curves show 〈σeffv〉 in each panel. The orange
dashed, orange dot-dashed, red dashed, and red dot-dashed curves show the partial contri-
butions from (Q, J) = (0, 0)V 0V 0 , (0, 2)V 0V 0 , (0, 0)V −V + , and (0, 2)V −V + respectively. The
blue dashed, blue dot-dashed, green dashed, and green dot-dashed curves show the partial
contributions from (Q, J) = (1, 0), (1, 2), (2, 0), and (2, 2), respectively. After the decoupling
of the charged components, x ' 1/∆±, 〈σeffv〉 converges to partial cross contribution from
V 0V 0 annihilation cross section. In the bottom panel, we show the comparison of the results
without and with the Sommerfeld effect. The green dashed curve shows the perturbative re-
sult without the Sommerfeld factor and the red dot-dashed curve shows the result including
the Sommerfeld factor.

The thermal relic abundance of DM is derived from the current value of the yield.

ΩDM ≡
mV YDM(T0)

ρc
, (5.74)

where ρc is the critical density of the universe, which is taken from Ref. [39], and T0 is the
temperature of the current universe determined in the CMB observations [40].

ρc = 1.05368× 10−5h2 GeV · cm−3, (5.75)

T0 = 2.7255± 0.0006 K, (5.76)

where h is the Hubble parameter.
We numerically evaluate the value of YDM(T0) by solving the Boltzmann equation. In

Fig. 27, we compare the predicted value of Ωh2 in SU(2)L triplet spin-1/2 and spin-1 DM
system. The green and red lines show the result without and with the Sommerfeld effects.
The dashed lines show the result for the Wino DM (spin-1/2) and the solid lines for Vector
DM (spin-1). The darker (lighter) gray regions show the value of Ωh2 in the 1σ(2σ) level
determined in the Planck observation [5].

The predicted value of Ωh2 depends on DM spin mainly for the following two reasons:
First, the potential for Q = 1 two-body states have opposite signs between the spin-1/2
DM and the spin-1 DM system. The spin-1/2 DM system has the attractive potential and
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Table 10: The DM masses to realize the correct value of Ωh2 for each DM system.

Wino DM (spin-1/2) Vector DM (spin-1)

3.1 TeV

6.4 TeV (mZ′/mV = 1.25)

4.6 TeV (mZ′/mV = 1.5)

3.8 TeV (mZ′/mV = 1.75)

3.4 TeV (mZ′/mV = 2.5)

the Sommerfeld effects turn out to enhance the cross section. In the non relativistic region,
vrel � 1, the Sommerfeld factor converges to |d|2 ' O(10) as shown in Fig. 21. The spin-1
DM system has the repulsive potential, which causes suppression. The Sommerfeld factor,
therefore, converges to |d|2 ' 0.1 for vrel � 1 with mZ′/mV = 1.5 as shown in Fig. 24.
Consequently, in the spin-1 DM system, theQ = 1 states are irrelevant in the DM annihilation
in the early universe as well as the Q = 2 states. Due to this decoupling of the Q = 1 states
for x ' 1, the deviation from the tree-level result gets smaller in the spin-1 DM system.

Second, V -particles predict the larger annihilation cross section compared with the Wino
DM multiplet. If we compare the annihilation cross section into the same SM particle pair
such as γγ mode, the cross section of V -particles are larger by 38/9, which realize the larger
value of 〈σeffv〉. Besides, V -particles have new annihilation channels into Z2-even vectors
such as W ′ and Z ′ if kinematically allowed. Therefore, the effective cross section for the V -
particles strongly depends on the mass ratio mZ′/mV . We show this dependence by taking
mZ′/mV = 1.25, 1.5, 1.75, and 2.5 in the upper left, upper right, lower left, and lower right
panels of Fig. 27, respectively. We also plot the ratio of Ωh2 without and with the Sommerfeld
effects. The dashed blue and solid blue curves show the result for the Wino DM (spin-1/2)
and the Vector DM (spin-1), respectively. This ratio in spin-1 DM is almost independent of
the value of mZ′/mV . This is because the mZ′/mV only change the tree-level annihilation
cross section, which is canceled in the ratio of tree-level and result with the Sommerfeld
effects. We have numerically checked this fact and show the plot taking mZ′/mV = 1.5.

If DM is a single component, the DM mass is constrained by the observed value in
the Planck experiments. The DM masses to realize the correct value of Ωh2 for each DM
system are summarized in Table. 10. Due to the difference in the predicted annihilation cross
section, we obtain the finite mass gap between predictions from spin-1/2 DM and spin-1 DM.
In particular, the value of mZ′/mV is crucial parameter to tune the predicted value of Ωh2.
This is because Z ′ orW ′ may appear in the final state if kinematically allowed, and we obtain
the larger annihilation cross section. Besides, the coupling between V -particles and Z ′/W ′

are enhanced for mZ′/mV ' 1 as shown in 19. The viable parameter region is, therefore,
separated by 0.3 TeV scale DM, which corresponds to ∼ 10 % of TeV scale DM. Therefore,
interesting DM mass regions are separately predicted for spin-1/2 and spin-1 DM through
the freeze-out mechanism.
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One interesting possibility is that we may test this prediction through the monochromatic
gamma-ray search in upcoming observations where we may reconstruct the DMmass from the
exotic peak location in the gamma-ray energy spectrum. In the current and future gamma-
ray observation, we expect the energy resolution is expected to be 10 % for TeV scale DM
mass. Therefore, we may separate spin of electroweakly interacting DM through the possible
signals in future experiments. We will give a detailed study of this direction in Sec. 6.
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Figure 9: Spin-averaged annihilation cross section of V 0V 0(J = 0).
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Figure 10: Spin-averaged annihilation cross section of V 0V 0(J = 2).
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Figure 11: Spin-averaged annihilation cross section of V −V +(J = 0).
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Figure 12: Spin-averaged annihilation cross section of V −V +(J = 1). The WW mode is
irrelevant and does not appear in all the panels.
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Figure 13: Spin-averaged annihilation cross section of V −V +(J = 2). All the annihilation
modes are independent of mh′ , and thus we fix mh′ = 2.5mV as a benchmark value.
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Figure 14: Spin-averaged annihilation cross section of V 0V −(J = 0). All the annihilation
modes are independent of mh′ , and thus we fix mh′ = 2.5mV as a benchmark value.
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Figure 15: Spin-averaged annihilation cross section of V 0V −(J = 1). The ZW mode is
totally irrelevant and does not appear in all the panels.
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Figure 16: Spin-averaged annihilation cross section of V 0V −(J = 2). All the annihilation
modes are independent of mh′ , and thus we fix mh′ = 2.5mV as a benchmark value.
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Figure 17: Spin-averaged annihilation cross section of V −V −(J = 0). All the annihilation
modes are independent of mh′ , and thus we fix mh′ = 2.5mV as a benchmark value.
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Figure 18: Spin-averaged annihilation cross section of V −V −(J = 2). All the annihilation
modes are independent of mh′ , and thus we fix mh′ = 2.5mV as a benchmark value.
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Figure 19: Plots of gh/mV , gh′/mV , and gZ′ as functions of mZ′ which are defined in
Sec. 3.3.2. All the couplings are enhanced in the degenerated regions, mZ′/mV ' 1.
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Figure 20: Coannihilation factors for SU(2)L triplet spin-1/2 DM system. The black solid,
red dashed, and blue dot-dashed curves show geff , r0, and r±, respectively.
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Figure 21: The relative velocity v dependence of the Sommerfeld factors in the Wino DM
system. We take m = 2.8 TeV and δm = 170 MeV as benchmark values. These factors
are evaluated by solving the Schwinger-Dyson equation for the Green function describing
χiχj → χkχℓ process. Each panel shows the factor for annihilation processes decomposed
into partial wave modes where we show [Q, J , χiχj] on the top of each panel. The converged
values are shown as the black horizontal dashed line. The black vertical dashed line in the
plot of [Q = 0, J = 0, χ0χ0] shows the velocity, v '

√
8δm/m, at which the final state with

charged components is closed.
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Figure 22: The x dependence of the effective cross section in the Wino system. We show the
perturbative result in the top panel and show the result with the Sommerfeld effect in the
center panel. We take m = 2.8 TeV and δm = 170 MeV as benchmark values. In the bottom
panel, we show the comparison of the results without and with the Sommerfeld effect.

88



10 1000 105 107
0.01

0.05
0.10

0.50
1

5
10

x=m/T

g
ef
f,r
0
,r
±

m=2.8 TeV, δm=170 MeV (Spin-1)

geff

r0

r±

Figure 23: Coannihilation factors for SU(2)L triplet spin-1 DM candidate. The black solid,
red dashed, and blue dot-dashed curves show geff , r0, and r±, respectively.
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Figure 24: The relative velocity v dependence of the Sommerfeld enhancement factors in the
non-abelian vector DM system. We take mV = 2.8 TeV, δmV = 170 MeV, and mZ′ = 1.5 mV

as a benchmark value. See the caption of Fig. 21 for details.
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Figure 25: The x dependence of the effective cross section in the vector DM system. We take
mV = 2.8 TeV, δmV = 170 MeV, and mZ′ = 1.5 mV as benchmark values to compare with
spin-1/2 system. We show the tree-level result in the top panel and show the result with the
Sommerfeld effect in the center panel. In the bottom panel, we show the comparison of the
results with and without Sommerfeld effect. 91
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Figure 26: The comparison of DM thermal relic abundance in unit of Ωh2. The dashed
lines show the result for the Wino DM (spin-1/2) and the solid lines for Vector DM (spin-1).
The green and red lines show the result without and with the Sommerfeld effects. We take
mZ′/mV = 1.25, 1.5, 1.75, and 2.5 in the upper left, upper right, lower left, and lower right
panels, respectively.
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Figure 27: The ratio of Ωh2 without and with the Sommerfeld effects. The dashed blue and
solid blue lines show the results for the Wino DM (spin-1/2) and the Vector DM (spin-1),
respectively. The ratio for the spin-1 DM system is almost independent of a value ofmZ′/mV ,
and we take mZ′/mV = 1.5 as a benchmark value.
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6 Gamma-ray signatures and DM spin discrimination

We will discuss how to discriminate spin-1/2 and spin-1 DM candidates with SU(2)L triplet
and Y = 0 interactions. In Sec. 6.1, we briefly review the DM indirect detection approach.
The monochromatic gamma-ray search is one of the most promising channels to search DM
annihilation signatures. We also show the way to derive the experimental constraints on
the theoretical prediction of DM annihilation cross section and review current and future
observations. In Sec. 6.2, we derive the constraint on the DM annihilation line cross section
in light of the current experimental data. We also reveal the parameter region that will be
tested in future gamma-ray observation.

6.1 Gamma-ray from DM annihilation

6.1.1 Indirect detection approach

The experimental target in the DM indirect detection is the annihilation or decay signals
from DM pair annihilation processes. As reviewed in Sec. 2.1, we assume the interaction
between DM and the SM particles in the WIMP hypothesis, and the DM annihilation cross
section should be 〈σv〉 ∼ 10−26 cm3/s to reach the correct DM abundance through the
freeze-out mechanism. DM annihilation processes may happen in the current universe even
after the freeze-out epoch, which may be probed in the astrophysical observation. This
is a fundamental idea of the indirect detection experiment. In this approach, DM signals
correspond to the excess from the expected background of the astrophysical source. If we
observe data that is consistent with the standard prediction, the upper bound on 〈σv〉 is
derived. Therefore, controlling the astrophysical background is crucial. Although this is a
challenging task, the canonical cross section in the WIMP scenario can be directly tested.

In Fig. 28, we show the schematic picture for the indirect detection of DM annihilation
processes. DM may have a variety of annihilation channels such as electroweak bosons and a
pair of quarks. The dominant DM annihilation or decaying channels differ in each DM theory.
What we may observe in the observation are fragments of particles in DM annihilation.

As pointed out in Ref. [41], including electroweak corrections in the final states is crucial
especially to predict the low energy spectrum. The point is that the electroweak radiative
corrections do not cancel and have the Sudakov double log corrections, ∼ α2 log

2(s/m2
W ).

This double log structure cancels in the QED processes if we sum over the soft final states
inclusively, which are almost degenerated with the hard indices. In the QCD processes,
initial states are color singlet states, and thus the soft singularities also cancel out due to
the inclusive summation of the color indices. These facts are known as the Bloch-Nordsieck
theorem [42, 43, 44]. In the electroweak processes, on the other hand, initial states have fixed
electroweak charges. Therefore, the soft corrections do not compensate with each other known
as the violation of the Bloch-Nordsieck theorem, as pointed out in Ref. [45]. The situation
is the same in DM annihilation processes, especially for electroweakly charged DM. Since
the initial DM pair is non-relativistic, the center mass energy

√
s ∼ 2mDM is much larger

than mW assuming mDM ≳ O(1) TeV. The soft electroweak corrections to the final state
legs are enhanced by the Sudakov double log corrections. After the primary processes, the
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energy is distributed into a large number of stable particles produced through electroweak
corrections. Consequently, the low energy spectrum (≲ 100 GeV) is enhanced. All the
particles charged under SU(2)L×U(1)Y may appear, in principle, in the final spectrum. Note
that these final leg corrections are calculated independently from the primary annihilation
processes, which are included in numerical code released in [46], while the primary channels
in DM pair annihilation depend on each DM theory. The following representative primary
states are considered.

charged lepton pair: e+Le
−
L , e

+
Re

−
R, µ

+
Lµ

−
L , µ

+
Rµ

−
R, τ

+
L τ

−
L , τ

+
R τ

−
R ,

neutral lepton pair: νeν̄e, νµν̄µ, ντ ν̄τ ,

quark pair: qq̄, cc̄, bb̄, tt̄,

massless vectors: γγ, gg,

massive vectors: W+
L W

−
L ,W

+
L W

−
L , ZLZL, ZTZT ,

scalar pair: hh,

where q = u, d, s denotes light quarks and VT (VL) denotes the transverse (longitudinal)
polarization for massive vector V . These primary states experience parton showers and
hadronization. These processes are calculated by the Monte Carlo simulation programs such
as PYTHIA [47] and HERWIG [48].

Comparing the theoretical predictions and the observed astrophysical data, we may per-
form the DM signatures as the unexpected excess from the background. Various searching
channels are proposed and studied.

• Antiprotons were suggested by [49, 50] for the sensitive channels to excess originated
from DM annihilation. The more systematical study is given by [51, 52, 53]

• Positrons were studied in [49, 51, 52, 54]

• Antideuterons were studied in [55, 56, 57]

• Gamma-ray was first studied as DM searching channel in [58, 59, 60] and revisited by
[51].

For the electrically charged channels, well-studied targets are the antimatter such as
positron and antiproton as listed above. The greatest advantage of focusing on the antiparti-
cles is to suppress the abundance of the background. For instance, the antiproton-proton flux
ratio is ≲ 10−4 in the 1−100 GeV region [61], and thus the antiproton channel is sensitive to
the small exotic injection from DM annihilation or decay. The antimatter signals are searched
by the magnetic spectrometer such as the PAMELA experiment [62, 63] and the AMS-02
experiments [64], which are sensitive to the GeV to TeV mass range of DM. The magnetic
spectrometer identifies the electric charge, energy, and momentum of the cosmic-ray. The
electrically charged final particles are affected by the magnetic fields in Milky Way galaxy,
called galactic transport, and thus it is important to trace the propagation in the diffusion
disc. The uncertainty in the galactic transport is one of the main sources of uncertainty in
the standard prediction for the cosmic-ray [65].
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Figure 28: Indirect detection of DM annihilation processes. The fragments are stable
particles such as a photon, neutrino, electron and their anti-particles.

The electrically neutral channels, such as neutrino and gamma-ray, propagate without
suffering the uncertainty of the galactic transport. Therefore, we may choose the targets
to search DM signals in each strategy. For the gamma-ray channel, one of the most effi-
cient target region is the Galactic Center (GC) region. The most DM-dense circumstance
is realized in the GC region because DM is gravitationally trapped and distributes with the
high density. Since the gamma-ray flux from a DM pair annihilation is proportional to the
squared DM density, the GC region is the suitable region to search the gamma-ray signals.
The observed gamma-ray spectrum is composed of two parts: One is the continuum spectrum
induced from the quarks, heavy charged leptons, and electroweak bosons. These particles
emit the secondary photon through inverse Compton scatterings and bremsstrahlung of elec-
trons. This continuum spectrum is predicted up to DM mass where all the annihilation
channels kinematically vanish. The other one is the line spectrum associated with the pri-
mary photon emission. This narrow spectrum is predicted by the final state of γX where X
denotes a neutral particle such as γ and Z. These line signatures are broadened by the addi-
tional photon emissions from the final state radiation in the charged modes and the virtual
bremsstrahlung [66, 67]. In the succeeding section, we give theoretical formalism to derive
constraints on DM theories from the observational gamma-ray search.

6.1.2 Monochromatic gamma-ray search

The photon flux from a DM pair annihilation is given by

dΦ

dEγ

(Eγ,∆Ω) =
〈σv〉
8πm2

dN

dEγ

(Eγ) · J(∆Ω), (6.1)

where 〈σv〉 denotes the velocity weighted DM annihilation cross section and dN/dEγ denotes
the energy spectrum for the number of photons. For a DM annihilation channel into two
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photons, the dN/dEγ is constrained to be

dN

dEγ

(Eγ) = 2× δ(mDM − Eγ), (6.2)

and thus the narrow peak at Eγ ' mDM is predicted. The astrophysical properties are all
included in J(∆Ω), which is called J-factor [68].

J(∆Ω) =

∫
∆Ω

∫
LOS

ds dΩ ρ2 (r(s, θ)) . (6.3)

The squared DM density is integrated along with the line of sight (LOS) for fixed solid angle
∆Ω. The variable r for DM density is defined as

r ≡ (r2⊙ + s2 − 2r⊙s cos θ)
1
2 , (6.4)

where s denotes the distance along the LOS, θ denotes the angle between the direction of
the GC and observation, and r⊙ = 8.5 kpc denotes the distance from the GC [69].

The High Energy Stereoscopic System (H.E.S.S.) is the imaging air Cherenkov array,
which is released the latest gamma-ray search in the GC region [70]. In this analysis, the
constraint on DM annihilation cross section is derived from ten years of observation taken
by the initial four telescopes. The large photon statistics are realized, and thus the wide
sensitivity of DM mass, 300 GeV-70 TeV, is covered.

In the H.E.S.S analysis, the event selection and reconstruction are performed by the
advanced semi-analytical shower model technique developed in Ref. [71]. This technique is
based on χ2 comparison of the observed shower images, which are images of photons induced
electromagnetic shower in the camera, with calculated shower images from a model of the
Cherenkov light distribution in electromagnetic showers. The Cherenkov light distribution
of a shower is characterized by the longitudinal, lateral, and angular distributions of charged
particles in the shower, which are derived from Monte Carlo simulations and parametrized
to realize analytical description. The contribution of the night sky background noise is also
treated by modeling its camera images in every pixel and performing a detailed statistical
analysis. To observe the GC region, it is important to mitigate this background because the
night sky noise may affect the normalization of the signal and background region exposure
through the systematic effects in the event acceptance [72, 73]. This technique enables us
to reconstruct the energy value and the direction of each event, and the energy resolution,
∆Eγ/Eγ, has a root mean square of 10 % above 300 GeV DM mass.

The signal and background events are separated by comparing the two separated regions.
The DM annihilation signals are searched in the region of interest (ROIs), the annuli with
inner radii of 0.3◦-0.9◦ in radial distance from the GC. These regions are named the ON

region. Some regions are excluded from the ON regions to avoid the astrophysical very-
high-energy (VHE, Eγ ≳ 100 GeV) gamma-ray source. In the analysis of Ref. [70], a region
with ±0.3◦ for the Galactic latitude and ±1◦ for the Galactic longitude is eliminated to
avoid the contamination of the VHE gamma-ray source observed by the previous H.E.S.S
observations such as the super massive black hole Sagittarius A∗[74, 75], the supernova and
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pulsar wind nebula G0.9 + 0.1 [76], and a diffuse emission extending along the Galactic
plane [77, 78, 79]. A disk region with 0.4◦ is also excluded to avoid the supernova remnant
named HESS J1745-303 [80]. An OFF region is defined symmetrically to the ON regions with
respect to each observational pointing position and is observed with the same acceptance and
observational conditions. See Fig. 1 in Ref. [70] for the schematic picture showing how to
choose ON and OFF regions. The values of the J-factor differ between ON and OFF regions
due to the location relative to the GC. If we assume the cusped Einasto profiles, the value
for the ON region is larger by 3.5 than the OFF region.

The two dimensional (2D) binned Poisson maximum likelihood analysis is performed for
the signal search. The spectral and spatial features of DM annihilation signals are exploited
in this method. Each event is divided by the value of observed gamma-ray energy and
spatial information. The whole energy region, 300 GeV-70 TeV, is divided into 60 bins on
a logarithmic scale. The ON region is divided into seven regions of annuli of 0.1◦ and each
annulus has different value of the J-factor. The numerical values, assuming cusped profiles,
are listed in TABLE I of Ref. [81]. There is no statistically significant excess in the ON region
compared with the OFF region, and thus we obtain the upper bound on the monochromatic
flux, Φ, from DM annihilation for each energy bin. This upper bound on 〈σv〉 is also obtained
since the differential flux is proportional to 〈σv〉. If we assume the final state particles have
negligible masses compared to DM mass, we obtain Eγ ' mDM. This relation enables us to
draw the excluded region on the mDM vs Φ (〈σv〉) plane as shown in Ref. [70], see the left
(right) panel of Fig. 2.

The CTA is next-generation imaging Air Cherenkov Array, which is sensitive to higher
energy regions. The Observatory is distributed to two places, La Palma in the northern
hemisphere and Chile in the southern hemisphere. The greatest feature of the CTA is that
different sizes of telescopes will be constructed to maximize the sensitivity. We have three
types of telescopes in the CTA.

• The 4 m Small-Sized Telescope (SST) covering 2 TeV - 200 TeV

• The 12 m Medium-Sized Telescope (MST) covering 100 GeV - 10 TeV

• The 23 m Large-Sized Telescope (LST) covering 20 GeV - 2 TeV

The SSTs are only sensitive to the high energy region due to the limitation of area. and thus
the low- and mid- energy region will be covered by LST and MST. The northern hemisphere
array will be composed of the four LST, fifteen MST, and MAGIC. Since there is no SST,
which is important to observe the high energy region, this array will focus on the energy
range of 20 GeV to 10 TeV. The southern hemisphere array will be composed of the four
LST, twenty-five MST, and seventy SST. To increase sensitivity in the high energy region, it
is important to increase the number of SST to enlarge their effective area as much as possible.
The full range of energy sensitivity 20 GeV to 200 TeV is realized in this southern array. The
GC region is observed by this southern array. Compared to the H.E.S.S. experiment, the
differential flux sensitivity of the CTA will be improved by an order of magnitude. Besides,
the energy sensitivity will be pushed up by an order of magnitude. The CTA experiments
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may observe sufficient numbers of events since its effective area (after gamma-ray/hadron
separation cuts) will reach ∼ O(1) km2 for a large gamma-ray energy region. Therefore, the
sensitivity tend to be saturated for the long time observation.

6.2 Monochromatic gamma-ray search of electroweakly interact-
ing DM

We study the gamma-ray line signatures from electroweakly interacting DM and compare the
predictions of spin-1/2 and spin-1 DM. We study signatures of monochromatic gamma-ray
lines in the GC region. Since predicted flux is proportional to the squared DM density, the
derived constraints highly depend on the density profiles. We take some benchmark profiles
to show this uncertainty in our result.

6.2.1 Line cross section

The latest analysis for the gamma-ray line signals from DM annihilation is performed by the
H.E.S.S. collaboration using the ten years of data for the gamma-ray observation in the GC
region [70]. In our model, we have three annihilation modes involving the gamma-ray line
signals, {γγ, Zγ, Z ′γ}. The annihilation cross section formulas are derived in Sec. 4.2.2 and
Sec. 4.2.3. For the γγ/Zγ modes, the photon energy is approximately equivalent to the DM
mass, Eγ ' mV , where we take the NR limit for the initial DM pair and neglect mZ . For the
Z ′γ mode, we can not neglect mZ′ because mZ′ must be heavier than mV , see Eq. (3.117).
The photon energy in the Z ′γ annihilation mode depends on both mV and mZ′ .

Eγ ' mV

(
1− m2

Z′

4m2
V

)
≡ mV −∆Eγ, (6.5)

where ∆Eγ ≡ m2
Z′/(4mV ). If the Z ′γ mode is kinematically allowed, mZ′ ≲ 2mV , we

may observe the double-peak gamma-ray spectrum at Eγ ' mV − ∆Eγ and Eγ ' mV .
To distinguish between these two peaks, ∆Eγ/mV should be larger than the instrumental
energy resolution. In the H.E.S.S. experiment, the energy resolution is about 10 % for
mDM ≳ 300 GeV in gamma-ray observation. Our interesting region, to search double peak
signatures, is specified below.

1.02 ≲ mZ′

mV

< 2, (6.6)

where the lower and upper values come from the g0 perturbative unitarity and the kinematical
suppression of the Z ′γ annihilation mode, respectively. The condition to discriminate between
two peaks, ∆Eγ

mV
≳ 0.1, is always satisfied if we focus on this region. Therefore, we can

discriminate the gamma-ray peak originated from the γγ/Zγ modes and the peak from the
Z ′γ mode. This double-peak gamma-ray spectrum is an outstanding signal of our DM model,
and we can read out the values of mV and mZ′ from this double-peak spectrum.23

23Similar signals are predicted in the context of the extra-dimensional models. See Ref. [82] for the
discussion in a model with six-dimensions.

99



We define the line cross section, which contributes to the monochromatic gamma-ray line
signal. We introduce two types of line cross sections that predict final photon energies.

〈σvrel〉lineγγ,Zγ = 〈σvrel〉γγ +
1

2
〈σvrel〉Zγ Energy peak: Eγ ' mV , (6.7)

〈σvrel〉lineZ′γ =
1

2
〈σvrel〉Z′γ Energy peak: Eγ ' mV

(
1− m2

Z′

4m2
V

)
. (6.8)

We derive the excluded region by using the experimental bound shown in Fig. 6 of Ref. [70].
In their analysis, all the masses for final state particles are assumed to be negligible, and thus
we can directly compare these constraints with 〈σvrel〉lineγγ,Zγ. We can also derive a constraint

on 〈σvrel〉lineZ′γ by noting that the horizontal axis of Fig. 6 in Ref. [70] corresponds to Eγ. These
constraints are derived by assuming these three cuspy DM density profiles as defined below.

• Einasto profile [82]/Einasto2 profile [46]

ρEinasto(r) ≡ ρs exp

[
− 2

αs

((
r

rs

)αs

− 1

)]
. (6.9)

• Navarro-Frenk-White (NFW) profile [83]

ρNFW(r) ≡ ρs

(
r

rs

(
1 +

r

rs

)2
)−1

. (6.10)

In Table. 11, we summarize the parameters for the cuspy DM density profiles used in Ref. [70].
Another choice is the cored DM density profile. The core radius, rc, depends on the model
of baryonic physics, and cores extending to rc ∼ 5 kpc can potentially be obtained [84]. The
cored Einasto profile is defined as shown below.

ρ(r) =

{
ρEinasto(r) for r > rc,
ρEinasto(rc) for r < rc,

(6.11)

where ρEinasto(r) is defined in Eq. (6.9). For the cored profile, ρs is chosen to realize the
value of the local DM density. We show the current excluded region with the cusped DM
density profiles assumed in the analysis of the H.E.S.S. collaboration [70]. The sensitivity of
the H.E.S.S. experiment is studied for the cored profiles in Ref. [85], which is focusing on the
pure Wino DM search.24 From this study, the upper bound on the line cross section will be
weakened by a factor of O(10− 100) if we use the cored DM density profile.

6.2.2 Constraint from gamma-ray line signatures

We compare the predicted line cross section between our spin-1 DM and the Wino DM system.
In Fig. 29, we show the predicted value of 〈σvrel〉lineγγ,Zγ and experimental upper bounds. The

24See the left panel of Fig. 7 in Ref. [85].
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Table 11: The cuspy DM density profiles used in Ref. [70].

Profiles Einasto [82] NFW [83] Einasto2 [46]
ρs [GeV cm−3] 0.079 0.307 0.033

rs [kpc] 20.0 21.0 28.4
αs 0.17 – 0.17

solid (dashed) black curve shows the line cross section including the Sommerfeld effects for
our spin-1 DM (the pure Wino DM). The green region with a solid boundary is the excluded
region by the H.E.S.S. observation [70] for the Einasto profile [82]. We also show green
dashed and green dotted curves as the upper limits on the cross section for the cusped NFW
profile [83] and the Einasto2 profile [46], respectively. Since our spin-1 DM and the Wino DM
have the SU(2)L triplet features, the Sommerfeld resonance structures are almost the same.
The line cross section for the spin-1 DM is larger than that for the Wino DM by 38/9, and
thus we obtain more severe constraints on the spin-1 DM. We find the following excluded
regions for our spin-1 DM depending on the DM density profiles.25

• Einasto profile

300 GeV ≲ mV ≲ 14.4 TeV (Excluded region 1), (6.12)

16.5 TeV ≲ mV ≲ 22.9 TeV (Excluded region 2), (6.13)

33.8 TeV ≲ mV ≲ 37.5 TeV (Excluded region 3). (6.14)

• Cusped NFW profile

300 GeV ≲ mV ≲ 12.5 TeV (Excluded region 1), (6.15)

17.9 TeV ≲ mV ≲ 22.2 TeV (Excluded region 2), (6.16)

34.8 TeV ≲ mV ≲ 36.7 TeV (Excluded region 3). (6.17)

• Einasto2 profile

300 GeV ≲ mV ≲ 11.7 TeV (Excluded region 1), (6.18)

18.6 TeV ≲ mV ≲ 21.6 TeV (Excluded region 2), (6.19)

35.0 TeV ≲ mV ≲ 36.1 TeV (Excluded region 3). (6.20)

The lower value of 300 GeV comes from the limitation for the energy resolution in the H.E.S.S
experiment. Let us again note that these bounds are weakened by O(10− 100) if we choose
cored DM density profiles.

25If we take mh′ ' mV , the parameter region in Fig. 30 may be constrained by the perturbative unitarity
bounds on the scalar couplings, which is studied in our previous collaboration [25]. We can evade these
unitarity bounds by taking sufficiently small values of ϕh and mh′ .
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Figure 29: The comparison of the line cross sections between our spin-1 DM and the Wino
DM. The solid (dashed) black curve shows 〈σvrel〉lineγγ,Zγ for our model (pure Wino). The green
shaded region shows the constraint from the H.E.S.S. observation in the GC region [70] for
the Einasto profile [82]. The green dotted and green dashed curves show the upper limit for
the NFW profile [83] and Einasto2 profile [46], respectively. The upper bound is expected
to be weakened by a factor of O(10− 100) for the cored DM density profile. Reprinted from
[?], Copyright 2021, The Authors licensed under CC-BY 4.0.

In Fig. 30, we show the current bound on the line cross section by the H.E.S.S. observation
for the Einasto DM density profiles [82] focusing on the region in Eq. (6.6). The green regions
are excluded by 〈σvrel〉lineγγ,Zγ shown in Eqs. (6.12)-(6.14). These green regions are extended
for mZ′/mV ≥ 2 where the annihilation into Z ′γ is forbidden kinematically. The blue region
is excluded by 〈σvrel〉lineZ′γ. The black solid, dashed, dot-dashed, and dotted contours show

the predicted value of 〈σvrel〉lineZ′γ for 10−24, 10−25, 10−26, and 10−27 in the unit of cm3/s,
respectively. The red solid lines show the g0 contours. In Fig. 31, we show the constraints for
the NFW [83], and Einasto2 DM density profiles [46]. The derived constraints depend on the
DM density profiles. The blue excluded regions from 〈σvrel〉lineZ′γ give stronger constraints for
mZ′ ' mV . This is due to we have the enhancement factor in the coupling of Z ′, gZ′ , defined
in Eq. (3.92). Note that g0 gets larger in the same region, and thus we expect relatively large
higher-order correction for our perturbative calculations.

We have a further chance to explore the parameter region in the upcoming CTA ex-
periment [86, 87]. The prospect sensitivity for the line gamma-ray signals is studied by
Ref. [88] for the Wino and Higgsino DM. In Fig. 32, we show the current bound and sensi-
tivity expected in the CTA. The green region is excluded by the H.E.S.S. observation for the
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Figure 30: The current bound on the line cross section by the H.E.S.S. observation assuming
the Einasto profile [82]. The green regions are excluded by 〈σvrel〉lineγγ,Zγ while the blue regions

are excluded by 〈σvrel〉lineZ′γ. The black solid, dashed, dot-dashed, and dotted contours show

the predicted value of 〈σvrel〉lineZ′γ for 10−24, 10−25, 10−26, and 10−27 in the unit of cm3/s,
respectively. The red solid lines show the g0 contours. Reprinted from [?], Copyright 2021,
The Authors licensed under CC-BY 4.0.

cusped Einasto2 profile shown in the lower panel of Fig. 31. We use the prospect derived in
Ref. [88] to show the CTA sensitivity. The orange region with the dashed boundary shows
the most conservative sensitivity assuming the core radius, rc = 5 kpc, and we will obtain
mV ≳ 25.3 TeV as the prospect bound. The whole parameter region in Fig. 32 will be covered
if we take rc ≲ 2 kpc.

As found from this figure, we may probe gamma-ray signatures from spin-1 DM. If we
choose cusped DM density profiles, DM mass region for mV ≲ 10 TeV is already excluded.
If we choose cored DM profiles, on the other hand, we may find the viable parameter regions
where we may achieve the correct value of Ωh2. Compared with the Wino DM, we only
expect one peak at Eγ ∼ mDM. In this discrimination between these two DM models,
therefore, a double peak spectrum will be a distinctive signature for spin-1 DM. Besides, we
may reconstruct not only DM mass but also Z ′ mass from the peak locations. If we may
detect Z ′ mass through this double peak search, we may perform the consistency check such
as Z ′ search in High Luminosity LHC [89] as studied in our previous work [25].
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Figure 31: The constraints on the line cross section for the different DM density profiles.
The upper and lower panels show the constraints for the NFW profile [83] and the Einasto2
profile [46], respectively. Descriptions for each plot are given in the caption of Fig. 30.
Reprinted from [?], Copyright 2021, The Authors licensed under CC-BY 4.0.
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H.E.S.S Excluded  (Einasto2, cusped) 

CTA Prospect  (Einasto, cored  kpc) rc = 5

H.E.S.S 
Excluded

Einasto2 
cusped

CTA  
Prospect

Figure 32: The current bound from the H.E.S.S. observation and the prospect in the CTA.
The green region is excluded by the H.E.S.S. collaboration for the Einasto2 profile [46] shown
in the lower panel of Fig. 31. The orange region with the dashed boundary is the prospect
sensitivity in the CTA for the cored Einasto profile with rc = 5 kpc, which is the most
conservative one studied in Ref. [88]. If we take rc ≲ 2 kpc, the prospect sensitivity will
cover the whole region of this figure. Reprinted from [?], Copyright 2021, The Authors
licensed under CC-BY 4.0.
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7 Conclusions

The electroweakly-charged DM is one of the most promising DM candidates and predicts
possible signals in the next-generation DM searches such as XENONnT, LZ, and CTA ex-
periments. These experiments will provide an unprecedented chance to obtain DM signatures
from these candidates. Preparing for this exciting era, the possibility of the model construc-
tion for the electroweakly-charged DM is systematically studied mainly focused on the spin-0
and spin-1/2 scenarios.

Since our goal is not only to obtain the DM signatures but also to identify DM theory, sig-
nal discrimination between various DM candidates is an essential issue. Determination of the
quantum numbers of DM, such as spin and electroweak charges, is important. In particular,
DM spin is one of the most fundamental quantum numbers that determine DM physics. To
discriminate DM spin from the experimental data, we need to study DM phenomenologies,
determine the interesting parameter region, and specify spin-dependent features from the
observables.

The most nontrivial discrimination is a comparison between DM candidates that have the
same interactions but with different spins. One interesting separation is discrimination be-
tween electroweakly interacting DM candidates predicted from a supersymmetric theory and
a theory with extra-dimension. In these two scenarios, discrete symmetry to stabilize DM,
such as R-parity and KK-parity, are realized. The lightest parity-odd particle is stabilized
and stable DM candidate. Several DM candidates appear depending on each model, and
electroweakly interacting DM with the same SU(2)L triplet and Y = 0 interaction appear in
both of these scenarios, the Wino DM (spin-1/2 DM) and the KK electroweak boson DM
(spin-1 DM). Since these DM candidates are directly related to BSM scenarios, we may obtain
implications on the physics behind DM by discriminating signatures from spin-1/2 and spin-1
DM candidates. However, DM spin determination is highly nontrivial in this case. This is
because spin-dependent features tend to decouple from the low energy signatures. We need
to carefully study predictions in each model and extract non-decoupling spin-dependent fea-
tures. Although spin-1/2 DM phenomenologies are studied in detail in contexts of the Wino
DM study, spin-1 DM phenomenologies are only studied in some benchmark models. In par-
ticular, we have wide varieties of the spectrum of KK modes, which may crucially determine
phenomenologies. If the second KK mode may appear in the final states of DM annihilation,
we have new annihilation modes, which realize an effectively larger annihilation cross section
for DM.

In this thesis, phenomenologies of electroweakly interacting spin-1 DM are studied. We
use a simplified renormalizable model of spin-1 DM to reveal phenomenologies of elec-
troweakly interacting DM candidates in an extra-dimensional setup with assuming as a gen-
eral mass spectrum as possible. In this model, DM interacts with the SM electroweak vectors
through SU(2)L triplet and Y = 0 non-abelian vector couplings. Therefore, the electroweak
interaction may dominate DM physics, and similar features are realized in the spin-1/2 DM
system such as the nearly degenerated mass spectrum and the electroweak forces between
DM multiplet. Comparing predictions between spin-1/2 and spin-1 DM system, DM spin
discrimination is discussed by focusing on a benchmark scenario, which corresponds to dis-

106



crimination between the Wino DM and the KK electroweak boson DM.
In this system, the electroweak potential force plays an important role to evaluate pre-

dictions on DM annihilation, which is known as the Sommerfeld effects. To describe the
DM annihilation processes, the NR effective field theory for electroweakly interacting spin-1
DM system is derived following the method systematically formulated in the spin-1/2 DM
system. The matching procedure and formalism in this thesis are applicable for the spin-1
DM with arbitrary electroweak charges. We applied our general formalism for the SU(2)L
triplet DM system and compare our results with the prediction in the spin-1/2 DM system,
with SU(2)L triplet and Y = 0 interactions, derived in the previous studies at the leading
order in the NR limit.

In order to specify the relevant annihilation processes, we systematically listed up spin-
1 DM annihilation modes, which are classified by the initial states, final states, and the
topology of the diagrams. We specify the leading order contributions. The general formulas
for these leading order annihilation cross sections are also derived. Including the effects of
the degenerated charged spectrum and the Sommerfeld effects, we numerically solved the
Boltzmann equation and evaluated the DM thermal relic abundance for spin-1 DM. The
spin-1 DM has an effectively larger annihilation cross section compared with that of spin-1/2
DM due to the larger number of DM spin. Consequently, DM thermal relic abundance is
predicted in the heavier DM mass region compared with the spin-1/2 scenario. We also found
that the Z2-even heavier vectors such as Z ′ and W ′ in the spin-1 DM system realize the new
DM annihilation channels if kinematically allowed. These modes affect the DM abundance
depending on the mass ratio between Z ′ and spin-1 DM, mZ′/mV . In particular, if we take
mZ′/mV = 1.5, then the correct abundance is predicted with 4.6 TeV in the spin-1 system.
This value is larger than the spin-1/2 DM prediction by 15 %.

We compared the DM signals in the indirect detection experiments in order to conclude
the possibility of DM spin discrimination in our benchmark comparison. In particular, we
reveal the testable region of monochromatic gamma-ray line signatures from electroweakly
interacting spin-1 DM in the CTA experiments. We found spin-1 DM predicts the larger
cross section by roughly a factor of 38/9 at the leading order due to the larger number
of spin states. Besides, an interesting possibility is seen: our spin-1 DM may predict the
separable two peaks in the photon energy spectrum. The one peak originates from the γγ
and Zγ final states, while the other peak arises from the Z ′γ state where Z ′ is the heavier
parity-even neutral vector in our spectrum. The double peak spectrum can be probed in
the CTA, wherein both the DM and Z ′ mass can be reconstructed from the peak locations.
Since the mass relation between spin-1 DM and Z ′ would be predictable in extra-dimensional
DM models, we revealed the possibility to test these scenarios by studying the counterpart
of this signal in the extra-dimensional theory. Our analysis in the simplified renormalizable
model of spin-1 DM can be applied straightforwardly to the extra-dimensional setup, which
corresponds to the more realistic scenario to realize DM stability and electroweak interaction
for DM at the same time. We are going to extend our study in this direction in our future
collaboration.
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A Derivation of effective action

We give the derivation of the effective action shown in Sec. 4.

A.1 Real part of potential

Figure 33: The relevant tree-level diagrams to derive the real part of the potential. The
diagrams for V −V + → V 0V 0 mode are implicit.

The real part of the potential is obtained from the amplitudes of the V -particles evaluated
in the NR limit. We focus on the electroweak scattering processes which give the leading-
order corrections. The corresponding diagrams are shown in Fig. 33. We comment about
other contributions which are sub-leading to the electroweak corrections. The exchanges of
the Higgs bosons, h and h′, and heavy Z2-even vector bosons, W ′ and Z ′, also induce the
real part of the potential. The h exchange contribution is suppressed by small ϕh. The h′,
W ′, and Z ′ exchange contributions are exponentially suppressed by masses. In our model,
V -particles have the vector quadratic couplings, which are suppressed by 1/m2

V .
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In the NR limit, we obtain the following amplitude at the leading-order.

iMQ=0
Z,γ ' i4m2

V

(
e2

|p− p′|2
+

g2W c
2
W

|p− p′|2 +m2
Z

)
ϵi(p)ϵ

∗
i (k)ϵj(p

′)ϵ∗j(k
′), (A.1)

iMQ=0
W ' i4m2

V

(
g2W

|p− p′|2 +m2
W

ϵi(p)ϵ
∗
i (k)ϵj(p

′)ϵ∗j(k
′)

+
g2W

|p− k′|2 +m2
W

ϵi(p)ϵ
∗
i (k

′)ϵj(p
′)ϵ∗j(k)

)
, (A.2)

iMQ=±1
W ' −i4m2

V

g2W
|p− p′|2 +m2

W

ϵi(p)ϵ
∗
i (k)ϵj(p

′)ϵ∗j(k
′), (A.3)

iMQ=±2
Z,γ ' −i4m2

V

[( e2

|p− p′|2
+

g2W c
2
W

|p− p′|2 +m2
Z

)
ϵi(p)ϵ

∗
i (k)ϵj(p

′)ϵ∗j(k
′)

+
( e2

|p− k′|2
+

g2W c
2
W

|p− k′|2 +m2
Z

)
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∗
i (k

′)ϵj(p
′)ϵ∗j(k)

]
, (A.4)

whereMQ
Z,γ andMQ

W are induced from the neutral and charged boson exchange processes,
respectively, and contribute to the two-body state with a total charge Q = 0,±1,±2. The
labels of the polarization are implicit. From these amplitudes, we read out the effective action
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composed of the NR V -particle operators, which are defined in Eqs. (4.35)-(4.37).

SQ=0
eff =

∫
d4Rd3r

α2s
2
W + α2c

2
W e

−mZr

r

×
[
B†
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D†

j(R
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+
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] [
A†

j(R
0,R− r/2) Dj(R

0,R− r/2)
]

+ h.c.

}
, (A.5)
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SQ=±2
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∫
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−mZr

r

×
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(A.7)

We want to express the two-body effective action in the decomposed form into each partial
wave mode. We reform the SO(3) vector indices, i and j, by using the Fierz identity for
Grassmann-even operators.

δijδkℓ =
∑
J,Jz

(−1)JSJ,Jz
iℓ SJ,Jz∗

kj (i, j, k, ℓ = 1, 2, 3), (A.8)

where SJ,Jz
ij is defined in Eqs. (4.51)-(4.53). After the decomposition, we can express the

effective action in terms of the two-body states in Eqs. (4.44)-(4.45). We obtain V̂ as given
in Eq. (4.65).
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A.2 Imaginary part of potential

A.2.1 Matching procedure

To derive the imaginary part of the potential, Γ̂J , we perform the operator matching be-
tween the two-body field operators and the calculations of the one-loop amplitudes of the
V -particles. Since we focus on the annihilation modes into the neutral vectors, the (1, 1)-
component of Γ̂J only has the nonzero value. Therefore, we can use the optical theorem to
calculate the imaginary part of the one-loop amplitude.

ImM|JV −V +→XX′→V −V + = 2m2
V 〈σvrel〉

J
V −V +→XX′ (XX ′ = γγ, Zγ, Z ′γ), (A.9)

where the LHS denotes the imaginary part of the forward scattering amplitude for V −V + →
XX ′ → V −V + with J which is expressed by (Γ̂J

XX′)11. On the RHS, 〈σvrel〉JV −V +→XX′ denotes
the partial wave annihilation cross section of V −V + → XX ′ for the initial state with J . In the
evaluation of the annihilation cross section, we only leave the leading-order terms in the NR
limit and take the massless limit for all the SM particles in the final states while we leave the
masses of Z ′. We derive Γ̂J through the above procedure as summarized in Eqs. (4.59)-(4.64).
In the succeeding section, we show how to determine Γ̂J

γγ as a demonstration.

A.2.2 Derivation of Γ̂J
γγ

Figure 34: The tree-level diagrams which contribute to V −V + → γγ annihilation.

We show the derivation of Γ̂J
γγ as a concrete example. We can focus on the nonzero

component, (Γ̂J
γγ)11. First, we calculate the velocity-weighted annihilation cross section for

V −V + → γγ. The tree-level diagrams in the unitarity gauge are shown in Fig. 34. The
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amplitudes that correspond to each diagram are obtained as follows.

iM4 =ie
2(gµρgνσ + gνρgµσ − 2gµνgρσ)ϵσ(p−)ϵρ(p+)ϵ

∗
µ(k1)ϵ

∗
ν(k2), (A.10)

iMt =ie[(p− + q)µgασ + (−p− − k1)αgµσ + (k1 − q)σgµα]
−i

q2 −m2
V

(
gαβ −

qαqβ
m2

V

)
× ie[(q − p+)νgβρ + (−q − k2)ρgβν + (k2 + p+)

βgρν ]ϵσ(p−)ϵρ(p+)ϵ
∗
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∗
ν(k2),(A.11)

iMu =ie[(p− + q′)νgασ + (−p− − k2)αgνσ + (k2 − q′)σgνα]
−i

q′2 −m2
V

(
gαβ −

q′αq
′
β

m2
V

)
× ie[(q′ − p+)µgβρ + (−q′ − k1)ρgβµ + (k1 + p+)

βgρµ]ϵσ(p−)ϵρ(p+)ϵ
∗
µ(k1)ϵ

∗
ν(k2),

(A.12)

where q ≡ p− − k1 and q′ ≡ p− − k2.
In the NR limit for the initial V -particles, the zeroth components of the polarization

vectors are sub-leading, and we focus on the spatial component, ϵi(p−)ϵj(p+). We decompose
the amplitude into each partial wave contribution by replacing the initial state polarization
vectors with SJ,Jz

ij defined in Eqs. (4.51)-(4.53).

ϵi(p−)ϵj(p+)→ SJ,Jz
ij . (A.13)

Note that SJ,Jz
ij is symmetric matrices for J = 0, 2 and anti-symmetric for J = 1. Thanks to

these properties, the amplitudes in the center-of-mass frame are obtained in the decomposed
form,MJ,Jz .

M0,0 =2e2
[
4ϵ∗i (k1)S

0,0
ij ϵ

∗
j(k2)− ϵ∗i (k1)ϵ∗i (k2)

(
S0,0
ii −

2

m2
V

kjS
0,0
jk kk

)]
, (A.14)

M1,Jz =0, (A.15)

M2,Jz =2e2
[
4ϵ∗i (k1)S

2,Jz
ij ϵ∗j(k2) + ϵ∗i (k1)ϵ

∗
i (k2)

2

m2
V

kjS
2,Jz
jk kk

]
, (A.16)

where |Jz| ≤ J , and ki denotes the spatial components of k1µ. We use S2,Jz
ii = 0 to obtain

the above result. The polarization vectors for the photons are given by

ϵ±i (k1) =
1√
2

∓ cos θ
−i
± sin θ

 , ϵ±i (k2) =
1√
2

± cos θ
−i
∓ sin θ

 , (A.17)

where θ is the scattering angle for the photon with its momentum k1.
After taking the sum over the final state spins, the squared amplitudes can be expressed
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as follow. ∑
final

|M0,0|2 = 24e4, (A.18)∑
final

|M1,Jz |2 = 0, (Jz = 0,±1), (A.19)

∑
final

|M2,Jz |2 =


48e4 sin4 θ, (Jz = 0)
16e4 sin2 θ(3 + cos 2θ), (Jz = ±1)
8e4(1 + 6 cos2 θ + cos4 θ). (Jz = ±2)

(A.20)

We obtain the cross section for each partial wave mode.

〈σvrel〉J=0
V −V +→γγ = 6

πα2
2

m2
V

s4W , (A.21)

〈σvrel〉J=1
V −V +→γγ = 0, (A.22)

〈σvrel〉J=2
V −V +→γγ =

32

5

πα2
2

m2
V

s4W . (A.23)

The spin-averaged total cross section is obtained by adding up all the partial wave cross
sections.

〈σvrel〉
tot

V −V +→γγ =
38

9

πα2
2

m2
V

s4W . (A.24)

This cross section is larger than that of the Wino DM by a factor of 38
9
. For the Zγ mode,

we take the massless limit of the Z boson, and the calculation procedure is the same. For
the Z ′γ mode, we do not neglect mZ′ , and the longitudinal mode also contributes to the final
result.

Next, we calculate the imaginary part of the forward scattering amplitude using the two-
body effective action shown in Eq. (4.42). Namely, we use the following coupling to calculate
the γγ contribution to ImM.

Seff ⊃
∑
J,Jz

i
9

2
(Γ̂J

γγ)11

∫
d4R ϕJ,Jz†

C (R,0) ϕJ,Jz
C (R,0). (A.25)

Using this coupling, we obtain

ImM|JV −V +→γγ→V −V + = 2m2
V · 9(Γ̂J

γγ)11. (A.26)

Comparing with (A.9), we can determine (Γ̂J
γγ)11 as shown below.

(Γ̂J
γγ)11 =

1

9
〈σvrel〉JV −V +→γγ =


2
3

πα2
2

m2
V
s4W ,

0,
32
45

πα2
2

m2
V
s4W .

(A.27)

This result is summarized in Eqs. (4.59)-(4.60). We can also determine Γ̂J
Zγ and Γ̂J

Z′γ in the
same procedure.
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B Amplitude decomposed into partial waves

We obtain the amplitudes for each type (type-A, -B, -C, and -D) where overall factors of
couplings, shown in the fourth column of Table 9, are factorized.

MJ=0,Jz
∣∣
Type-A

=
√
3

(
1

2m2
V

− 4

4m2
V −m2
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4

, (B.1)
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(B.10)

In the above expressions, we introduce the momentum, k, and the energy of the final state
particles in the center mass frame, Ei(i = 3, 4), respectively.
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We take the average for the scattering angle θ to obtain the cross section We also add up all
the polarization for the final state particles.

For Type-A, we obtain the following squared amplitude.
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We obtain the same result for Jz = 0,±1.
For Type-B, we need to add up all the polarization label (b = ±, L). and obtain the

following squared amplitude.
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(B.18)

where we obtain the same result for Jz = 0,±1.
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For Type-C and Type-D, the amplitude is expressed in M̃J,Jz
ab defined in Eqs. (B.9)-(B.10).

After adding up all the polarization label (a, b = ±, L)26 and performing the cos θ integral,
we obtain the following results.∣∣∣M̃J

∣∣∣2 ≡ 1

2

∫ 1

−1

d cos θ
∑

a,b=±,L
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ab

∣∣∣2 . (|Jz| ≤ J) (B.19)

The explicit forms are shown below for each J .
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(B.21)

m3,m4≪mV−−−−−−−→ 6 +O(1/m2
V ), (B.22)
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m3,m4≪mV−−−−−−−→ 1

12
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2
4(m

2
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4)

m6
V

+O(1/m8
V ), (B.25)

26The applicability of Type-B, -C, and -D formulas for photon channels are discussed after Eq. (B.28).
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(B.27)

m3,m4≪mV−−−−−−−→ 32

5
+O(1/m2

V ), (B.28)

where we show the polarizations of the final vectors in the first line. We also show the leading
order behaviors for m3,m4 � mV in the last lines.

Note that we only add up the transverse modes for final states including photons. This
manipulation is automatically incorporated in the above formulas as explained below. For the
Type-B formula, shown in Eq. (B.18), the longitudinal contributions are canceled. For the
Type-C and Type-D formulas, shown in Eqs. (B.20)-(B.26), the longitudinal contributions

in |M̃J |2 vanish if we take the massless limit of final vectors. Therefore, all these formulas
for annihilation cross sections can be applied even for the photon channels by taking the
massless limit of m3 or/and m4. This point is also mentioned in Sec. 5.2.2. The cross section
formulas are expressed using the above expressions and the final results are summarized in
Eqs. (5.9)-(5.16).

The relevance of each partial mode is determined by |M̃J |2 for Type-D annihilation modes
where we have nonzero contributions from all the J = 0, 1, 2 partial modes. In Fig. 35, we
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show |M̃J |2 as functions of the final vector mass, m4. The red solid, blue dashed, and black
dotted curves show J = 0, J = 1, and J = 2, respectively. We take mV = 4 TeV in all
panels. In the upper left panel, we take m3 = 80.4 GeV (� mV ), and thus we obtain the
converged values shown in Eqs. (B.22)-(B.28) for m4 � mV . In the upper right and lower
panels, we take m3 = 4 TeV and 6 TeV, respectively. In these cases, m3 is comparable to
mV , and we obtain the following asymptotic values for m4 � mV .
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(B.29)

For our interesting region, 1 ≤ m3/mV ≤ 2, the J = 0 (J = 2) contributions decrease
(increase) for larger m3/mV . The J = 1 contributions are proportional to m2

4 and negligible
for m4 � mV .

50 100 5001000 5000
10-13

10-10

10-7

10-4

0.1

m4 [GeV]

|M˜
J2

mV=4 TeV, m3=80.4 GeV

10 50 100 5001000

10-5

0.001

0.100

10

m4 [GeV]

|M˜
J2

mV=4 TeV, m3=4 TeV

5 10 50 100 5001000

10-5

0.001

0.100

10

m4 [GeV]

|M˜
J2

mV=4 TeV, m3=6 TeV

J=0

J=1

J=2

Figure 35: Plots for |M̃J |2 as functions of the final vector mass. The red solid, blue dashed,
and black dotted curves show J = 0, J = 1, and J = 2, respectively.
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