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Abstract

The angular momentum of a molecular cloud core plays a key role in star for-
mation, since it is directly related to the outflow and the jet emanating from the
new-born star and it eventually results in the formation of the protoplanetary disk.
However, the origin of the core rotation and its time evolution are not well un-
derstood. Recent observations reveal that molecular clouds exhibit a ubiquity of
filamentary structures and that star forming cores are associated with the densest
filaments. Since these results suggest that dense cores form primarily in filaments,
the mechanism of core formation from filament fragmentation should explain the
distribution of the angular momentum of these cores. In this thesis, I investigate
the origin and evolution of the angular momentum of molecular cloud cores formed
through filament fragmentation process.

First, I semi-analytically derive the relation between the turbulent velocity field
and resultant core angular momentum in filamentary molecular clouds. I show
that the sub sonic (or transonic) Kolmogorov turbulent velocity field model can
reproduce the observed property of the angular momentum of cores. I conclude
that the origin of the angular momentum of cores is sub sonic (or transonic)
Kolmogorov turbulent velocity field. Recent theoretical research shows that the
filamentary structures are formed when the molecular cloud is swept by the shock
wave. I also analyse the results of filament formation simulations and show that the
the line mass and velocity power spectrum along the filaments follow Kolmogorov
turbulence. Therefore, I conclude that filament formation scenario can explain the
origin of the angular momentum of cores.

Finally, I perform the three-dimensional simulations to investigate the time
evolution of angular momentum of molecular cloud core formed through filament
fragmentation process. As a result, I find that the angular momenta of cores change
only by 30% in their formation process. I also find that most of the cores rotate
perpendicular to the filament axis. In addition, I analyze the internal angular
momentum structure of cores. Although the cores gain various angular momen-
tum from the initial turbulent velocity fluctuations in the filament, the angular
momentum profile in a core converges to the self-similar solution. I also show that
the degree of complexity of the angular momentum structure in a core decreases
over time. Moreover, I perform synthetic observation and show that the angular
momentum profile measured from the mean velocity map is compatible with the
observations. The present result provides a convenient test for the theory of core
formation in the filament with the observed velocity field in the filaments and
angular momentum structures in the cores.
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Chapter 1

Introduction

1.1 Star Formation in Molecular Clouds

The stars are formed in the galaxies, and they evolve with galaxies. For example,
the massive stars scatter the heavy element to the interstellar space at the end of
their life. Hence how the stars are born in the galaxies is the important question
to understand the history of galaxy, that is, fate of the universe. Stars are born in
molecular clouds with mean number density around 10−3 cm−3, and these molecu-
lar clouds are formed by multiple compression of HI gas (Inoue & Inutsuka, 2008,
2009). Molecular cloud cores are dense regions in molecular clouds, and eventually
evolve to stars due to gravitational contraction. Therefore, to study properties of
molecular cloud cores is significantly important to determine the initial condition
of star formation. Recent observations reveals that the filamentary structure is
common in the molecular clouds (e.g., André et al., 2014). We introduce recent
observational progress in the following section.

1.2 Filamentary Molecular Cloud

In this section, we summarize the observational results about filamentary molecular
clouds. Recent Herschel Gould Survey using dust continuum observation reveals
that the filamentary structure is ubiquitous in the molecular clouds (André et al.,
2010; Arzoumanian et al., 2019; Hacar et al., 2018). Figure 1.1 shows the obser-
vational result in Aquira molecular cloud by using Herschel Space Observatory
(André et al., 2010). The color corresponds to the column density. As you can see
from Figure 1.1, many elongated dense regions can be observed in Aquira molecu-
lar cloud. These dense gas structures are called filamentary structure (or filament).
These filamentary structures are found in all nearby star forming region (Arzou-
manian et al., 2019). In addition, the filamentary structure is also observed even
in the no star forming region, for example Polaris molecular cloud (André et al.,
2010). The analysis of Herschel Observational data give us the information that
the filaments have universal width 0.1 pc (Arzoumanian et al., 2011, 2019). Ob-
servations also suggest that the most stars are formed in the filamentary molecular
cloud. In Figure 1.1, the green and blue dots represent the protostar and prestellar
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core, respectively. Hence Figure 1.1 shows that the protostar and prestellar core
are along the filaments. Moreover, the protostar and prestellar core are located
only along filaments with line mass larger than critical line mass (See next sec-
tion). These observations in molecular clouds suggest that thermally supercritical
filamentary structure plays a crucial role in the star formation process.

The velocity structure in the filaments is observed using line emission. An
example is shown in Figure 1.2. Hacar & Tafalla (2011) measure the velocity
fluctuations along the filament axis in Taurus molecular cloud shown in upper
panel of Figure 1.2. The lower left and lower right panel are line-of-sight velocity
and velocity dispersion along the filament axis, respectively. The blue and red
dots are results from C18O and N2H

+, respectively. Both line-of-sight velocity
and velocity dispersion show that the velocity fluctuations in the filament is sub
(or tran) sonic. Moreover, Hacar et al. (2016) claims that the velocity structure
function deviates from so-called Larson’s law Larson (1981), so the velocity field
in the site of star formation is more quiet than previously thought.

In addition, the power spectrum in the molecular cloud is also important quan-
tity to predict the distribution of physical properties of cores, that is, stars. For
example, the core mass function (CMF) that is initial distribution function of
core mass can be theoretically predicted by using Press-Schechter formalism if the
initial power spectrum of line mass fluctuations along a filament is given (Inut-
suka, 2001). The observed shape of CMF is similar to initial mass function of star
(IMF), but the peak position of CMF is about three times larger than that of IMF.
Therefore, to investigate the initial density power spectrum is very important to
understand the origin of IMF. Roy et al. (2019) presents the power spectrum of
column density fluctuations in Polaris molecular cloud as shown in Figure 1.3.
They measure the power spectrum of column density fluctuations using dust con-
tinuum data from Herschel, and the resultant spectrum is displayed in right panel
of Figure 1.3. The black dots are the resultant power spectrum, and the red solid
line is fitting result. The slope index is −2.63 ± 0.1. Moreover, Roy et al. (2015)
investigate the power spectrum of line mass fluctuations statistically. The upper
panel of Figure 1.4 is an example of filaments that they studied. The black line is
the filament axis that they defined using DisPerSE algorithm (Sousbie, 2011). The
lower left panel is an example of observed line mass fluctuations along the filament
axis. They derived the power spectrum of these line mass fluctuations of each
filament. The resultant histogram of the slope index of the power spectrum of line
mass fluctuations is shown in lower right panel of Figure 1.4. The black and green
histogram are results without and with noise subtraction, respectively. The peak
position of the green histogram is located around ∼ −1.5. This is good agreement
with theoretical prediction in Inutsuka (2001) that, if the line mass fluctuations
in the filaments follows the power spectrum with slope index −1.5, the origin of
CMF slope can be explained.

These observations suggest that the filament is suitable initial condition of star
formation in the molecular clouds, and it makes the study of star formation process
simplify compared to molecular cloud scale simulation with supersonic turbulence
(e.g., Offner et al., 2008).
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Figure 1.1: Column density map in Aquira molecular cloud by using Herschel
Space Observatory (André et al., 2010). The green and blue dots represent the
protostar and prestellar core, respectively. The color also corresponds to the sta-
bility parameter which is defined as the ratio of line mass to critical line mass.
The line mass is calculated by using universal filament width 0.1 pc.

1.3 Theoretical Understanding of Filamentary Molec-

ular Cloud

In this section, we summarize the theoretical works about filamentary molecular
clouds. The hydrostatic equilibrium of filament is described as follows (Stodólkiewicz,
1963; Ostriker, 1964):

ρ(r) = ρc

[
1 +

(
r

H0

)2
]−2

, (1.1)

where r is the radius in cylindrical coordinate. H0 is defined as follows:

H0 ≡
√

2c2s
πGρc

, (1.2)

where cs is the sound speed. The line mass (mass per unit length) is defined as
follows:

Mline, crit ≡
∫ ∞

0

2πρ(r)rdr = πH2
0ρc =

2c2s
G

. (1.3)
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Figure 1.2: Velocity structure in the filament. The lower left and lower right panel
are line-of-sight velocity and velocity dispersion along the filament axis (black
dashed line in the upper panel), respectively. The blue and red dots are results
from C18O and N2H

+, respectively.

Note that the line mass is determined only by sound speed, that is, temperature.
The filament with line mass larger than Mline, crit cannot be in the hydrostatic
equilibrium state, and it collapses radially. Therefore, Mline, crit is called critical
line mass. At T = 10K (typical temperature of molecular cloud), the critical line
mass is equal to 18 M⊙pc−1. This can be understood as follow. From Poisson
equation, the gravity at r = R can be described as follows:

Fg,cyl = 2
GMline

R
∝ 1

R
. (1.4)

On the other hand, the pressure term is

Fp =
1

ρ

∂P

∂r
∝ R1−2γeff , (1.5)

where γeff is polytropic index. Using Equation 1.4 and eq:Ff, the ration of
pressure to gravity is

Fp

Fg,cy1

∝ R2−2γeff . (1.6)

Equation 1.6 indicate that Fp = Fg at certain line mass when γeff = 1 (isohtermal).
This line mass is called critical line mass. When the line mass is larger than critical
line mass and γeff = 1, the collapse cannot be stopped at any radius.
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Figure 1.3: Column density map (left) and power spectrum of column density
fluctuations (Right) using dust continuum data from Herschel. The black dots are
the resultant power spectrum, and the red solid line is fitting result. The slope
index is −2.63± 0.1.

The linear stability analysis for filamentary structure was done in Inutsuka &
Miyama (1992). Figure 1.5 is a dispersion relation of filament derived in Inut-
suka & Miyama (1992). The vertical axis is the growth rate normalized by free
fall time, and horizontal axis is the wavenumber of the z-direction (longitudinal
axis of filament). The upper and lower dashed line are the dispersion relation
for isothermal compressible and incompressible case, respectively. The solid lines
represent n = 1, 2, 3, 4, 5 (P = Kρ1+1/n) from bottom to top. Since, in this thesis,
we treat the isothermal and compressible filamentary molecular cloud, we focus on
the top dashed line in Figure 1.5. As one can see from Figure 1.5, the dispersion
has the most unstable wavelength. Therefore, the filament can fragment and form
the chain of cores before they globally collapse (i.e. before longer waves grow).
While the most unstable wavelength can be derived analytically in the incompress-
ible case (Chandrasekhar, 1961), in the compressible case we have to calculate the
most unstable wavelength numerically using shooting method, or finite differential
method, so on. The numerical calculation suggests that the filament is unstable
against m = 0 mode (sausage mode), but stable m ≥ 1 modes (Nagasawa, 1987).
The resultant most unstable wavelength is as follows (Nagasawa, 1987):

km = 0.284 (4πGρc)
1/2 /Cs, (1.7)

and growth rate is

|ωm| = 0.339 (4πGρc)
1/2 . (1.8)

Equation 1.7 indicate that the most unstable wavelength is about 8 times larger
than H0. Even if the effect of magnetic field is included, the filaments are unstable
for fragmentation (Nagasawa, 1987; Matsumoto et al., 1994; Hanawa et al., 2017).
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Figure 1.4: Power spectrum analysis shown in Roy et al. (2015). The upper panel
is an example of filaments that they studied. The black line is the filament axis
that they defined using DisPerSE algorithm (Sousbie, 2011). The lower left panel
is an example of observed line mass fluctuations along the filament axis. The lower
right panel is the histogram of the slope index of the power spectrum of line mass
fluctuations. The black and green histogram are results without and with noise
subtraction, respectively.

1.4 Role of Angular Momentum in Star Forma-

tion Process

One of the common properties of astronomical objects is rotation. In large scale,
the galaxies (halo) have rotation because they acquire the angular momentum from
interaction of the initial density fluctuations (Peebles, 1969; Doroshkevich, 1970;
White, 1984). The velocity gradient of giant molecular clouds can be observed,
and the origin is often attributed to shear motion in the galaxy (Braine et al., 2018,
2020; Imara et al., 2011; Imara & Blitz, 2011). However, galaxy shear is too small
to explain the velocity gradient observed in molecular cloud core scale. Hence
we have the following question: what is an origin for the angular momentum
of molecular cloud cores? Burkert & Bodenheimer (2000) pointed out that the
observed angular momentum of cores can be reproduced by turbulence in the
cores. This kind of previous works and observational results of angular momentum
of cores are discussed in the following sections. In this section, we summarize the
role of the angular momentum of molecular cloud cores during the star formation
process.
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Figure 1.5: Dispersion relation of filament derived in Inutsuka & Miyama (1992).
The vertical axis is the growth rate normalized by free fall time, and horizontal
axis is the wavenumber of the z-direction (longitudinal axis of filament). The
upper and lower dashed line are the dispersion relation for isothermal compressible
and incompressible case, respectively. The solid lines represent n = 1, 2, 3, 4, 5
(P = Kρ1+1/n) from bottom to top.

1.4.1 Angular Momentum Problem

Typical value of the angular momentum of molecular cloud cores is ∼ 1021cm2 s−1.
On the other hand, the angular momentum of our Sun is ∼ 1015cm2 s−1. There-
fore, to create our Sun, molecular cloud cores have to lose the angular momentum
during their gravitational contraction phase. Otherwise they cannot contract to
form the Sun because their centrifugal radius is several hundreds AU. This prob-
lem is referred to angular momentum problem (Spitzer, 1978; Bodenheimer, 1995;
Belloche, 2013a). The evolution of angular momentum from the molecular cloud
core to the protostar has already been well studied using magneto hydrodynamics
simulations. Recent theoretical works shows that the outflow and the jet launched
from central region and the magnetic braking can sufficiently remove the angular
momentum(Machida et al., 2007). However, the evolution of angular momentum
from the filamentary molecular cloud to the cores is still unclear.

1.4.2 Formation of Multiple System

Most stars are in the multiple systems (Duquennoy &Mayor, 1991; Raghavan et al.,
2010; Sana et al., 2012, 2014; Duchêne & Kraus, 2013; Moe & Di Stefano, 2017;
Moe et al., 2019). Moreover, young stars have higher multiplicity compared with
field stars (Looney et al., 2000; Chen et al., 2013). Therefore, to understand the
star formation process, it is crucial to reveal the formation mechanism of multiple
system. The fragmentation process during the evolution from molecular cloud

7



core to protostar has been investigated by many authors (e.g., Price & Bate, 2007;
Hennebelle & Teyssier, 2008; Machida et al., 2008). Machida et al. (2008) perform
the magneto hydrodynamics simulations to calculate the collapse of molecular
cloud cores and to investigate the how and when the cloud fragments to multiple
system. They change the initial condition and study the dependence of property of
resultant multiple system on initial condition of molecular cloud core. Figure 1.6
displays final outcome of simulations Machida et al. (2008). The vertical axis the
initial angular velocity of core normalized by initial free fall time, and it is directly
related to the angular momentum of cores. The horizontal axis is the strength
of magnetic field normalized by thermal pressure. The color behind the panels
shows that the object fragments to multiple system at the first core (blue), at the
second core (red), no fragmentation (grey), and no collapse (green). Figure 1.6
shows that resultant properties of multiple system depend on the initial angular
momentum and magnetic field of initial molecular cloud core. Therefore, deriving
the distribution of angular momentum of cores is important to understand the
formation of multiple system.

One of the interesting observational results is shown in Tobin et al. (2016).
Figure 1.7 is the separation distribution of multiple system observed in Perseus
molecular cloud. As one can see from Figure 1.7, the separation distribution of
multiple system shows the bi-modal distribution. This can be interpreted as the
result from the disk fragmentation and turbulent fragmentation. The short pe-
riod binary can be formed by the same mechanism as shown in Machida et al.
(2008). On the other hand, the mechanism of the long period binary is proposed
in Offner et al. (2010), which is called turbulent fragmentation. In this process,
the long period binaries are formed by local compression due to turbulence and
fragmentation in resultant asymmetric structure. This process has been also stud-
ied in other paper (Offner et al., 2016; Lee et al., 2019; Kuffmeier et al., 2019), but
theoretical explanation of statistical properties of multiple system is not enough.
In addition, The relation between the mechanism of formation of wide binary and
filament fragmentation process is not well understood. Therefore, more theoretical
explanation for statistical properties of multiple system, especially for wide binary
system, is needed.

1.4.3 Misaligned Protoplanetary Disks and Planets

Protoplanetary disk is a birth place of the planets. The properties of protoplane-
tary disk (e.g., size, mass) inherit from the properties of parental molecular cloud
core. Therefore, studying the angular momentum distribution in cores is impor-
tant to understand the diversity of protoplanetary disk. Recent observations find
the diversity of protoplanetary disk. For example, the disk whose rotation axis
depends on the distance from the central star is frequently observed, and it is
called warp disk (Marino et al., 2015; Stolker et al., 2017; Benisty et al., 2017;
Casassus et al., 2018; Muro-Arena et al., 2020; Loomis et al., 2017; Mayama et al.,
2018; Sakai et al., 2019). Moreover, the misalignment between spin axis of star
and direction of orbital angular momentum is also observed in exoplanet system
using Rossiter-McLaughlin effect (Winn & Fabrycky, 2015). While the formation
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Figure 1.6: Final outcome of simulations Machida et al. (2008). The vertical axis
the initial angular velocity of core normalized by initial free fall time, and it is
directly related to the angular momentum of cores. The horizontal axis is the
strength of magnetic field normalized by thermal pressure. The color behind the
panels shows that the object fragments to multiple system at the first core (blue),
at the second core (red), no fragmentation (grey), and no collapse (green).

mechanism of these complex structures is still under debate, it should be related
to the angular momentum structure in the parental molecular cloud core. In fact,
numerical simulations show that warp and complex structure of disk can be cre-
ated in the turbulent molecular cloud core (Matsumoto et al., 2017; Takaishi et al.,
2021). Hence, to determine the frequency of these complex structures is impor-
tant to predict the diversity of protoplanetary disk and exoplanet system and to
understand whether our solar system is general or not.

1.5 Observations of Angular Momentum of Molec-

ular Cloud Cores

In this section, I summarize the observational results of angular momentum of
molecular cloud cores. In observations, the angular momentum of objects is esti-
mated using line-of-sight velocity (or moment 1) map (e.g., Fleck & Clark, 1981;
Goldsmith & Arquilla, 1985). They interpret the velocity gradient in the line-of-
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Figure 1.7: Separation distribution of multiple system observed in Perseus molec-
ular cloud. The dashed line is the fitting result from Raghavan et al. (2010).

sight velocity map as rotation. Observed angular momenta among various scales
are summarized in Figure 1.8. The vertical axis and horizontal axis are the specific
angular momentum and the size of objects. The figure is divided by vertical dashed
lines. In the left region, It is expected that the rotation profile follows j ∝ r0.5 due
to the formation of rotational support disk, that is, Keplerian disk. In the middle
region, flat profile is observed. This is because the inner region collapses faster than
inner region, so the initial angular momentum profile is stretched (Takahashi et al.,
2016). In the right region, the objects correspond to the molecular cloud cores and
molecular cloud. Many authors carried out observations (Goodman et al., 1993;
Caselli et al., 2002; Pirogov et al., 2003; Chen et al., 2007; Tatematsu et al., 2016;
Chen et al., 2019b). The relation between anuglar momnetum and radius j ∝ R1.6

has been observed. More recently, Punanova et al. (2018) measured j-R relation
in Taurus molecular cloud, and their resultant relation is j ∝ R1.6−2.4, consistent
with result of Goodman et al. (1993). This relation is often attributed to the tur-
bulence(e.g., Dib et al., 2010), so called Larson’s law (Larson, 1981), but the origin
of this relation is still unclear. Internal angular momentum profile of envelope of
protostar has also been observed (Pineda et al., 2019; Gaudel et al., 2020). Their
results also show that the internal profile seems to be compatible with j ∝ r1.6 in
outer region of envelope. However, the origin of this internal structure is also well
not understood.

1.6 Previous Works for Angular Momentum of

Molecular Cloud Cores

The time evolution and origin of core angular momentum have been investigated
using numerical simulations which start from molecular cloud scale.(Offner et al.,
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Figure 1.8: Observed angular momentum of astronomical objects. The vertical axis
and horizontal axis are the specific angular momentum and the size of objects.

2008; Dib et al., 2010; Chen & Ostriker, 2018; Ntormousi & Hennebelle, 2019;
Kuznetsova et al., 2019, 2020; Arroyo-Chávez & Vázquez-Semadeni, 2021). How-
ever, they do not focus on the filament fragmentation process. They put the
supersonic turbelence in the molecular cloud and perform the three-dimensional
simulations. The simulations of Chen & Ostriker (2018) includes the large scale
converging flow. Dib et al. (2010), Chen & Ostriker (2018), and Ntormousi &
Hennebelle (2019) also include the effect of magnetic field. In Offner et al. (2008)
and Dib et al. (2010), their resultant angular momentum of cores is smaller than
the observed angular momentum. Dib et al. (2010) claimed that the observa-
tion of angular momentum of core tends to overestimate the angular momentum
measured in three-dimensional space by an order of magnitude. However, Zhang
et al. (2018) showed that the observation underestimates the angular momentum
of core within a factor of two or three. On the other hand, Chen & Ostriker (2018)
showed the j-R relation measured in their simulations, and their results seem
to be consistent with observations. Ntormousi & Hennebelle (2019) also showed
the j-R relation, but their resultant angular momentum seems to be larger than
observations. Kuznetsova et al. (2019) claimed that the median of AM is consis-
tent with observations, but they did not show the j-r relation. Arroyo-Chávez &
Vázquez-Semadeni (2021) investigate the time evolution of angular momentum of
core using smoothed particle hydrodynamics (SPH) method. They showed that
the core evolves to the observed j-R relation on j-R diagram as time progresses.
They also suggest that the angular momentum is transferred by the Reynolds
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stress and the pressure gradient terms in the momentum equation. While Offner
et al. (2008), Dib et al. (2010), Chen & Ostriker (2018), Ntormousi & Hennebelle
(2019) consider that the origin of angular momentum of cores is the turbulence,
Kuznetsova et al. (2019) claimed that the cores acquire the angular momentum
through the gravitational torque between the high density regions. As described
above, the time evolution and origin of angular momentum of core are still un-
clear, especially the relation between the core angular momentum and filamentary
structure in the molecular cloud is not well understood because in previous works,
their initial condition is molecular cloud and do not focus on the core formation
through the filament fragmentation. In addition, they did not investigate the inter-
nal structure of angular momentum of cores in detail. Therefore, the evolution of
angular momentum profile in the cores formed through the filament fragmentation
process is also still unclear.
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Chapter 2

An Origin for the Angular
Momentum of Molecular Cloud
Cores

This chapter is based on a published paper, Misugi, Inutsuka, & Arzoumanian
2019, Astrophysical Journal, Volume 881, pp. 11-20 (Misugi et al., 2019).

2.1 Short Introduction

The angular momentum of molecular cloud cores plays an essential role in the star
formation process, since it is at the origin of the outflow and the jet, results in
the formation of the protoplanetary disk, and defines the multiplicity of a stellar
system (single star, binary, multiple stars). The angular momentum of a core is
defined at the initial conditions of the core formation (e.g., Machida et al., 2008)
and understanding how molecular cloud cores obtain their angular momentum is a
key question in the star and planet formation studies. The angular momentum of
cores has been derived from molecular line observations using the NH3 transition
(Goodman et al., 1993) and N2H

+ line (Caselli et al., 2002). More recently, Tatem-
atsu et al. (2016) studied a sample of cores in the Orion A cloud and derived their
rotation velocity using N2H

+J = 1 − 0. These observational results have mainly
shown two properties of the specific angular momentum of cores j (angular mo-
mentum per unit of mass). 1) The range of the specific angular momentum of the
cores is j = 1020−22cm2s−1, and 2) it is a weakly increasing function of the core
mass M , j ∝ M0.5−0.9. These results are shown in Figure 2.1 (see also Punanova
et al. 2018 for other correlations derived from new observations).

Recent results derived from the analysis of Herschel data revealed that stars
mainly form in filamentary structures (André et al., 2010; Arzoumanian et al.,
2011; Könyves et al., 2015) and the characteristic width of filaments is ∼ 0.1 pc
(Arzoumanian et al., 2011, 2019; Koch & Rosolowsky, 2015). Moreover, obser-
vations show that prestellar cores and protostars form primarily in the thermally
critical and supercritical filaments (Mline ≳ Mline,crit) (André et al., 2010; Tafalla &
Hacar, 2015). The line mass Mline of filaments is important for the star formation
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process. Theoretically, a thermally supercritical filament is expected to be the site
of self-gravitational fragmentation and the birth place of star forming cores (In-
utsuka & Miyama, 1997). Therefore, if most of the star forming cores are formed
along critical/supercritical filaments, the theory of core formation out of filament
fragmentation is expected to explain the origin of angular momentum of the cores.

The three-dimensional velocity structure along the filaments is needed to infer
the distribution of the angular momentum of cores. However, the line of sight com-
ponent of the velocity is solely accessible from molecular line observations. Notse
that the line of sight velocity may be dominated by the velocity perpendicular to
the axis of filament when the line of sight is nearly perpendicular to the filament
axis. The fluctuations of the centroid velocity of filaments close to equilibrium
(Mline ∼ Mline,crit) is observed to be sub (tran) sonic (Hacar & Tafalla, 2011; Ar-
zoumanian et al., 2013; Hacar et al., 2016). While deriving the velocity power
spectrum from molecular line data is observationally difficult, the power spectrum
of the column density fluctuation has been already measured in the interstellar
medium (ISM) (Miville-Deschênes et al., 2010; Roy et al., 2019) and along a sam-
ple of filaments observed by Herschel (Roy et al., 2015). These observations reveal
that the power spectrum of the column density fluctuation is consistent with the
power spectrum generated by subsonic Kolmogorov turbulence down to the scales
of ∼ 0.02 pc in the nearest regions (distance ∼ 140 pc).

In this paper, we try to establish the relation between velocity fluctuations
along the filament and the angular momentum of the cores that result from the
fragmentation of the parent filament. Using the available observational data we
examine whether we can explain the origin of the angular momentum of cores as
a result of the filament fragmentation process.

The structure of the paper is as follows: The method of our calculation is
given in Section 2, in Section 3 we show our results. The comparison of the
derived models is given in Section 4. Section 5 presents a discussion and suggests
implications of our results in the context of star formation. We summarize this
paper in Section 6.

2.2 Analyses

In this section, we first mention the observational data used in this paper. Then,
we explain the method for calculating the angular momentum of molecular cloud
cores formed by filament fragmentation.

2.2.1 Core Angular Momentum Derived from the Obser-
vations

Observationally, the specific angular momentum, j = pRvrot (angular momentum
per unit of mass) of a molecular cloud core may be derived from the observed radius
R of the core, the rotational velocity vrot, and p, which is related to the density
profile of the core. For a uniform density sphere, p = 2/5, while for a singular
isothermal sphere p = 2/9. Figure 2.1 shows the relation between the specific
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Figure 2.1: Observations of angular momentum of molecular cloud cores. The
horizontal axis is the core mass and the vertical axis is the core specific angular
momentum (see text for details). The up-triangles, down-triangles, and circles
are observational data from Tatematsu et al. (2016), Goodman et al. (1993), and
Caselli et al. (2002), respectively. The green, blue, and magenta solid lines are the
results of the fits by applying the least square method to the data of Tatematsu
et al. (2016), Goodman et al. (1993), and Caselli et al. (2002), respectively. The
values of the slopes of the fits to the data of Tatematsu et al. (2016), Goodman
et al. (1993), and Caselli et al. (2002) are 0.5, 0.5, and 0.9, respectively.

angular momentum and their mass for a sample of cores studied by Goodman
et al. (1993), Caselli et al. (2002), and Tatematsu et al. (2016). Since the specific
angular momentum of the cores is not given in Caselli et al. (2002), we derived
them using j = pRvrot, with the values of vrot from Table 5 in Caselli et al. (2002),
R from their Table 3, and p = 2/5, which is the same value used in Goodman et al.
(1993). For the core masses, we used the Mex values given in Table 4 of Caselli
et al. (2002). Note that Figure 2.1 includes very large objects with sizes up to 0.6
pc, which may be clumps instead of real cores (Goodman et al., 1993). While the
sample of Goodman et al. (1993) includes very large objects, Caselli et al. (2002)
and Tatematsu et al. (2016) do not include such clumps. Our conclusion do not
depend on whether these large objects are included or not.

2.2.2 Filament Setup

We consider an unmagnetized isothermal model of filament with a width of 0.1
pc (Arzoumanian et al., 2011, 2019), a uniform density, and a line mass equal
to the critical line mass, Mline,crit = 16 M⊙pc−1 for T = 10 K. An isothermal
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Figure 2.2: Schematic figure describing the calculation of the angular momentum
of a core. We calculate the angular momentum and the mass within model cores
defined by their length (see Section 2.4). We vary the position of the cores and
their length between λmin and λmax to generate the model j −M relation.

gas filament with line-mass larger than the above value cannot be in equilibrium,
without non-thermal support such as magnetic field or internal turbulence.

We define the z-axis along the main axis of the filament and the x- and y-axis
the transverse directions (see Figure 2.2). We use 32 grid cells in x and y-axis,
and 1024 grid cells in z-axis. We use the periodic boundary condition in this
domain. The length of the filament is Lz = 3.2 pc, and the total mass of the
filament is Mmax = Mline,critLz. M = Mline,critLcore is a mass of a section of the
filament where Lcore is an arbitrary length λmin < Lcore < λmax, where λmin = 0.03
pc and λmax = 3.2 pc. This length range corresponds to the core mass range
0.48 M⊙ < M < 51.2 M⊙. In our model we consider a uniform density filament,
while density fluctuations are observed along filaments (Roy et al., 2015). Taking
into account such density fluctuations would require a more detailed analysis,
which are beyond the scope of this paper presenting first-order calculations toward
understanding the angular momentum in the context of filament fragmentation.

2.2.3 Velocity Field

First we numerically generate the velocity field v in the filament following the
method described in, e.g., Dubinski et al. (1995)

v(x) =
∑

k

V (k) exp(ik · x), (2.1)

where V (k) is the Fourier transform, k is the wave vector. Since we consider only
the periodic function for the velocity fluctuation, we include only the modes that
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satisfy the following condition:

v(x, y, z) = v(x+ Lx, y, z) = v(x, y + Ly, z) = v(x, y, z + Lz), (2.2)

where we choose Lx = Ly = 2Rfil for simplicity. Rfil is the radius of the filament,
0.05 pc in this paper. We define the power spectrum as

P (k) =
〈
|V (k)|2

〉
, (2.3)

where ⟨ ⟩ represents the ensemble average. We describe in the following how we
generate the Fourier component of V (k) for a given power spectrum P (k) for both
incompressible and compressible velocity fields.

Incompressible Velocity Field

For an incompressible fluid, v = ∇×A, where A is the vector potential,

A(x) =
∑

k

Ak exp(ik · x), (2.4)

where Ak is its Fourier transform. The Fourier component of the velocity field is

V (k) = ik ×Ak. (2.5)

We generate the Fourier component of the vector potential Ak as a random Gaus-
sian number with a prescribed power spectrum, P (k) = (2/3)k2 ⟨|Ak|2⟩. Finally,
we derive the velocity field in real space by performing the inverse transform of
V (k).

Compressible Velocity Field

We can also setup a compressible velocity field as, v = ∇ϕ, where ϕ is the scalar
potential,

ϕ(x) =
∑

k

ϕk exp(ik · x), (2.6)

and ϕk is the Fourier transform. The Fourier component of the velocity field is

V (k) = ikϕk. (2.7)

We generate the Fourier component of the scalar potential ϕk as a random Gaussian
number with a prescribed power spectrum, P (k) = k2 ⟨|ϕk|2⟩. Finally, we derive
the velocity field in real space by performing the inverse transform of V (k).
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2.2.4 Numerical Calculation of the Angular Momentum

Since Inutsuka (2001) has shown that the core mass function can be described by
Press-Schechter formalism (Press & Schechter, 1974), we use the Press-Schechter
formalism to derive the core mass and angular momentum of cores. In the Press-
Schechter formalism, the length scale is defined as the collapsed region which would
form a core in the future and the mass scale is defined as the mass in that collapsed
region. Therefore, for a uniform filament, the mass is determined by the length
(Figure 2.2). By assuming conservation of the angular momentum in that region,
we adopt the angular momentum in that region as the angular momentum of the
future core.

Following this concept, first, we choose an arbitrary length, Lcore, at a random
position along the longitudinal direction of the filament. Next, we calculate the
angular momentum in that region as follows:

J(M) = ρ

∫
x× v d3x, (2.8)

where ρ is the density, x is the position vector. We repeat this procedure for 99
values of Lcore between λmin and λmax to obtain j − M relation. By using this
method, we can study how the j −M relation depends on the power spectrum of
the velocity field.

In this work we examine four power spectrum models: a three-dimensional (3D)
Kolmogorov power spectrum (Section 3.1), a log-normal power spectrum (Section
3.2), an anisotropic power spectrum (Section 3.3), and a one-dimensional (1D)
Kolmogorov power spectrum (Section 3.4).

2.2.5 Analytical Solution for Isotropic Velocity Field

For an isotropic velocity field, we can analytically derive the angular momentum
as follows.

Incompressible Velocity Field

The angular momentum in the region with a length scale Lcore = M/Mline,crit is
given by

J(M) = ρ

∫
x× vd3x

= −ρ
∑

k

V (k)×
∫

x exp(ik · x)d3x

= 2iM
∑

k

V (k)×R(k;Lcore). (2.9)

R(k;Lcore) is defined as

R(k;Lcore) ≡
i

2πR2
filLcore

∫
x exp(ik · x)d3x. (2.10)
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R(k;Lcore) corresponds to the Fourier transform of the position vector x. The
detailed derivation of R(k;Lcore) is shown in Appendix A. Using Equation 2.9, we
can derive the specific angular momentum

j(M) =

√
⟨J(M)2⟩
M

=

√
2
∑

k

P (k)

[
{R(k)}2 + {k ·R(k)}2

k2

]
, (2.11)

where P (k) is the power spectrum as introduced in Section 2.3. j2 is the sum of the
product of the square of the Fourier components of the velocity (P (k) = ⟨|V (k)|2⟩)
and the position (R(k;Lcore)

2).

Compressible Velocity Field

In the case of the potential velocity field, we can also derive an analytical expression
for the specific angular momentum similar to Equation 2.11. The specific angular
momentum is

j(M) =

√
⟨J(M)2⟩
M

= 2

√∑

k

Pϕ(k)[k
2{R(k)}2 − {k ·R(k)}2], (2.12)

where Pϕ is defined as

Pϕ(k) =
〈
|ϕk|2

〉
. (2.13)

2.3 Results

In this section, we examine four power spectrum models: three isotropic models
(3D Kolmogorov power spectrum model in Section 3.1, log-normal power spectrum
model in Section 3.2, and 1D Kolmogorov power spectrum model in Section 3.4)
and one anisotropic power spectrum model in Section 3.3. We compare the j−M
relations derived from our four models over the mass range 0.48 M⊙ < M <
51.2 M⊙ (cf., Section 2.1) with the observational results to discuss the origin of
the observed angular momentum of cores.

2.3.1 3D Kolmogorov Power Spectrum Model

In this subsection, we adopt a 3D Kolmogorov power spectrum compatible with
the observed Kolmogorov turbulent power spectrum of the ISM (Armstrong et al.,
1995),

P (k)dkxdkydkz = Ak−11/3dkxdkydkz, (2.14)
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Figure 2.3: j −M relation obtained from 3D Kolmogorov turbulence power spec-
trum model (Section 3.1). The red filled circles and the solid line represent the
numerical and the analytical results, respectively. The observational data are the
same as in Figure 2.1.

where k =
√

k2
x + k2

y + k2
z . Note, however, that hereafter we consider only the

discrete modes that are periodic in the domain (−Lx/2 < x < Lx/2,−Ly/2 < y <
Ly/2,−Lz/2 < z < Lz/2) as in Equation 2.2. If we define the major axis of the
filament as the z-axis (x = y = 0), we can define the velocity along the filament
as follows,

v1D(z) =
1

Mline

∫ ∫ √
x2+y2<Rfil

ρv dxdy, (2.15)

where Rfil is the radius of the filament. If we use v following to the power spectrum
Equation 2.14, the slope of the power spectrum of v1D(z) is −11/3 (cf., Section
5). The coefficient A reflects the 3D velocity dispersion, σ3D, along the filament
crest. The observed velocity dispersion towards filaments with Mline ∼ Mline,crit is
cs ≲ σ1D ≲ 2cs (Hacar & Tafalla, 2011; Arzoumanian et al., 2013; Hacar et al.,
2016) with σ1D = σ3D/

√
3. Since σ3D and j are proportional to

√
A, setting σ3D

between cs and 2cs will change the result by a factor of only 2. We therefore
choose σ3D = cs as our fiducial value for the models and for the figures shown
in this paper. In Section 4 we compare the results obtained with σ3D = cs and
σ3D = 2cs.

Figure 2.3 shows the j −M relation obtained from the 3D Kolmogorov power
spectrum model. The red filled circles and the solid line represent the numerical
and the analytical results, respectively. The analytical result is calculated using
Equation 2.11. Since, as can be seen in Figure 2.3, the analytical result (Equation

20



Figure 2.4: Example of the superposition of different fluctuating modes along the
filament. In the region with a length Lcore the wave represented by the solid line
arrows is the most important for the angular momentum (left) and the wave rep-
resented by the dashed line arrows mostly cancels and hence does not significantly
contribute to the angular momentum of this region (right).

2.11) agrees with the numerical result, in the following Section 3.2 and Section 3.4
we will continue the discussion using the analytical calculation.

Figure 2.3 suggests that for the 3D Kolmogorov power spectrum, the observed
j −M relation is not reproduced. This result can be understood as follows. The
velocity fluctuations along a filament correspond to a superposition of different
modes with different wavenumbers. The wavenumber which is the most important
for the angular momentum in the region with a length Lcore is k = 2π/(2Lcore).
The modes with large wavenumbers do not contribute to the integration of the
right hand side of Equation 2.8 since these modes cancel out (Figure 2.4). Hence
the small angular momentum derived with this model for low mass regions is due to
the small amount of energy in small wavelength (large wavenumber) regions. The
large angular momentum derived for the high mass region is also inconsistent with
the observations (Figure 2.3). In the following section we address this problem.

2.3.2 Log-normal Power Spectrum Model

To analyze the problem mentioned in the previous subsection, one may increase
the power in large wavenumber region compared to the 3D Kolmogorov power
spectrum. To do so, in this subsection, we adopt a log-normal energy spectrum,

E(k) = AG exp

[
−{log(k)− log(kpeak)}2

2σ2
G

]
, (2.16)

where AG, σG, and kpeak are the amplitude, the dispersion, and the peak of the
log-normal function, respectively. The energy spectrum is defined as follows,

⟨|v|2⟩
2

=
∑

k

E(k). (2.17)

The power spectrum is described as

P (k)dkxdkydkz =
AG

2πk2
exp

[
−{log(k)− log(kpeak)}2

2σ2
G

]
dkxdkydkz. (2.18)
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Figure 2.5: (left) The horizontal axis is the wavenumber and the vertical axis is
the energy spectrum. The region between the two black dashed lines represents
the range of wavenumber that we used. (right) j − M relation derived from the
log-normal power spectrum model with fixed value, kpeak = 2π/(0.1pc). The red,
blue, and green solid lines correspond to σG = 0.35, 0.5, and 0.65, respectively.
The observational data are the same as in Figure 2.1.

As in Section 3.1, we consider only the discrete modes that are periodic in the
domain.

Log-normal Power Spectrum Model for Incompressible Velocity Field

We regard kpeak and σG in Equation 2.18 as parameters to study how j − M
relation depends on the shape of the energy spectrum, and choose AG to satisfy
the constraint σ3D = cs. Figure 2.5 shows the j−M relation derived from Equation
2.11 and Equation 2.18. Here we use kpeak = 2π/(0.1 pc) for a filament width of
0.1 pc, and regard only σG as a variable parameter (σG = 0.35, 0.5, and 0.65).
Figure 2.6 shows the j − M relation for fixed σG = 0.5 and varying λpeak = 1.0,
0.5, 0.1, and 0.05 pc, respectively with λpeak defined as kpeak = 2π/λpeak. In this
model the power of the wave with wavelength λpeak is the largest. Since, in our
calculation, the waves along x- or y-axis with wavelength larger than 0.1 pc are
truncated, their component along the z-axis has the largest power in the models
with λpeak > 0.1 pc. The results shown in Figure 2.5 and Figure 2.6 indicate that
the power spectrum described by Equation 2.18 reproduces the observed trend
of the angular momentum of cores. Figure 2.7 shows how the index depends on
the two parameters kpeak and σG. Since the j − M relations derived from the
log-normal model are not straight lines, we apply the least square fitting method
to the derived j − M curves in the mass range, 1 − 10 M⊙ to derive the power
law index of each model curve. While the comparison with observations suggests
that the index is approximately 0.5− 0.9, future observations are needed to better
constrain this index value. Once the j − M relation for the angular momentum
distribution is accurately determined by observations, we would be able to give,
using our model, a more accurate description of the velocity fluctuations along the
parent filament.
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Figure 2.6: (left) Same as Figure 2.5 for fixed σG = 0.5 and varying λpeak. (right)
j − M relation derived from the log-normal power spectrum model with fixed
value σG = 0.5. The green, red, blue, and magenta solid lines correspond to
λpeak = 1.0, 0.5, 0.1, and 0.05 pc. λpeak is defined as kpeak = 2π/λpeak. The
observational data are the same as in Figure 2.1.

Log-normal Power Spectrum Model for Compressible Velocity Field

We also calculate the angular momentum in the case of compressible velocity field
using Equation 2.12 for σ3D = cs. Figure 2.8 shows the j−M relation for a potential
velocity field using the log-normal power spectrum model described by Equation
2.18, for σG = 0.5 and λpeak = 0.1 pc. As shown in Figure 2.8, the compressible
velocity field hardly contributes to the angular momentum of cores. This result
suggests that the solenoidal component of the velocity field in filaments mainly
accounts for the origin of the angular momentum of the molecular cloud cores.
Therefore, hereafter we consider only the incompressible velocity component.

2.3.3 Anisotropic Power Spectrum Model

As mentioned in Section 3.2.1, with an isotropic power spectrum (Equation 2.16),
we can reproduce the properties of the angular momentum of cores with the avail-
able observed data points. However, such an increase in the power of velocity or
density fluctuations in larger wavenumber (small scales) has not been observation-
ally reported, possibly because of the limited spatial resolution (Roy et al., 2015).
In contrast, for the density distribution in the larger wavelength range (>0.02 pc),
relatively simple Kolmogorov-like power laws are observed along filaments and in
the diffuse ISM (Roy et al., 2015; Miville-Deschênes et al., 2010; Roy et al., 2019).
According to the recently proposed scenario of filamentary structure formation
where filaments may be formed by large scale compressions (e.g., Inoue & Inut-
suka, 2012; Inutsuka et al., 2015; Inoue et al., 2018; Arzoumanian et al., 2018),
it is expected that the waves along the x- and y-axis (transverse direction) have
more energy than those along z-axis (longitudinal direction) as a result of energy
shift from large to small scales due to the compression. In addition, transverse ve-
locity gradients are reported by recent observations in several molecular filaments
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Figure 2.7: Dependence of the index of the j − M relation slope on the two
parameters, σG and kpeak. The horizontal axis is kpeak and the vertical axis is σG.
The indices are derived by applying the least square fitting method to the j −M
relation in the mass range 1− 10 M⊙.

(e.g., Fernández-López et al., 2014; Dhabal et al., 2018). Hence it is interesting to
examine whether anisotropic power spectrum reproduces the observed j−M rela-
tion. In this paper, for simplicity, we adopt the following simple Kolmogorov-like
anisotropic power spectrum

P (k)dkxdkydkz = A(Ark
2
r + k2

z)
−11/6dkxdkydkz, (2.19)

where kr =
√
k2
x + k2

y, and Ar corresponds to the degree of anisotropy. As in
Section 3.1 and 3.2, we consider only the discrete modes that are periodic in the
domain. Figure 2.9 shows the color contour for isotropic and anisotropic power
spectra. Figure 2.10 shows the result from the anisotropic power spectrum with
Ar = 0.01 as shown in Figure 2.9 (right) with more energy in the transverse
direction than in the longitudinal direction. We find that such an anisotropic power
spectrum reproduces the observed properties of angular momentum of cores.

2.3.4 1D Kolmogorov Power Spectrum Model

In this subsection, we examine the 1D Kolmogorov power spectrum model. The
power spectrum is described as

P (k)dkxdkydkz = Ak−5/3dkxdkydkz, (2.20)

where k =
√

k2
x + k2

y + k2
z . We consider only the discrete modes that are periodic in

the domain again. We can calculate the velocity along the filament using Equation
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Figure 2.8: j−M relation for a compressible velocity field. The red solid line is the
result obtained from the expression for the potential field shown in Equation 2.12,
and the log-normal power spectrum Equation 2.18 with σG = 0.5 and λpeak = 0.1
pc. The observational data are the same as in Figure 2.1.

2.15. If we use v following the power spectrum Equation 2.20, the slope of the
power spectrum of v1D(z) is −5/3 (cf., Section 5). The coefficient A is chosen
to satisfy the constraint σ3D = cs. Since the slope of the 1D Kolmogorov power
spectrum is shallower than that of the 3D Kolmogorov power spectrum, the power
in large wavenumber region is larger than for the 3D Kolmogorov power spectrum.
Figure 2.11 shows the j − M relation derived from the 1D Kolmogorov power
spectrum. We find that such a 1D Kolmogorov power spectrum also reproduces
the observed properties of angular momentum of cores.

We think that the power spectrum of the filament should be determined in
the formation process of the filament and the resultant power spectrum should
be related to the 3D power spectrum in the parent molecular cloud. We discuss
possible implications from our results in the formation of filamentary molecular
clouds in Section 5.

2.4 Comparison of the Derived Power Spectrum

Models

In this section, we attempt to evaluate the appropriateness of the different models
presented above. To do so, we calculate σ2

error, the dispersion of the observational
data points relative to the analytical j−M relations for the different models. The
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Figure 2.9: Color contour of power spectrum. Isotropic 3D Kolmogorov power
spectrum (left) and anisotropic model derived from Equation 2.19 with Ar = 0.01
(right).

Table 2.1: Relative appropriateness of the models. The values in Table 2.1 are the
dispersions σ2

error of the observational points relative to the analytical solution in
j −M diagram calculated using Equation 2.21 and normalized by σ2

error of the 3D
Kolmogorov model (cf., Section 4).

3D 1D Anisotropy Log-normal Compressible
Kolmogorov Kolmogorov (σG = 0.65, λpeak = 0.1)

σ3D = cs 1 0.40 0.39 0.43 1.32
σ3D = 2cs 1 0.39 0.48 0.57 0.53

dispersion of a model is defined as follows,

σ2
error =

1

Ndata

Ndata∑

i=1

(log(j(Mi))− log(jobs,i))
2, (2.21)

where i, Ndata, j(Mi), and jobs,i are each data point, the total number of data
points, the analytical solution described by Equation 2.11, and the observational
points, respectively. Table 2.1 shows the accuracy of the models normalized by
that of the 3D Kolmogorov model. We give values of σ2

error for the different models
calculated with a velocity dispersion σ3D equal to cs and 2cs corresponding to
the observed range (cf. Section 3.1). Table 2.1 shows that our conclusions are not
affected by the choice of σ3D within the observed range. Note that the evaluation of
appropriateness is tentative and future observations may give us more information
to better constrain the models.
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Figure 2.10: j −M relation for anisotropic power spectrum. The red dashed line
and blue solid line are isotropic 3D Kolmogorov power spectrum (same as Figure
2.3) and anisotropic power spectrum model derived using Equation 2.19, Ar = 0.01
respectively. The observational data are the same as in Figure 2.1.

2.5 Discussion

In the following, we attempt to provide a link between the velocity fluctuations
along a star-forming filament and that of its surrounding molecular cloud. In
particular we suggest that the 1D Kolmogorov velocity power spectrum along the
filament described in Section 3.4 is linked to the 3D Kolmogorov velocity power
spectrum of the parent cloud.

Recent observational results show that a small fraction of the total mass of
molecular clouds (< 20%) is in the form of dense gas, for column densities ≳
7 × 1021 cm−2, and that a large fraction of this dense gas is in the form of criti-
cal/supercritical filaments (∼ 80% on average, André et al., 2014; Arzoumanian
et al., 2019, see also Torii et al. 2018). This column density value has been ob-
servationally identified as the threshold above which the star formation activity
is significantly enhanced (e.g., Heiderman et al., 2010; Lada et al., 2010, 2012;
Könyves et al., 2015). This star formation threshold is now understood as being
equivalent to the line mass of 0.1 pc-wide filaments that is of the order of the
critical value (Mline,crit) for gravitational fragmentation (e.g., Arzoumanian et al.,
2013; André et al., 2014).

If we define the major axis of the filament as the z-axis (x = y = 0), we can

27



10−1 100 101 102

M [M�]

1019

1021
j[

cm
2
s−

1
]

1D Kolmogorov

3D Kolmogorov

Tatematsu et al. 2016

Goodman et al. 1993

Caselli et al. 2002

Figure 2.11: j −M relation for 1D Kolmogorov power spectrum. The red dashed
line and blue solid line are 3D Kolmogorov power spectrum (same as Figure 2.3)
and 1D Kolmogorov power spectrum model derived using Equation 2.20, respec-
tively. The observational data are the same as in Figure 2.1.

calculate the line mass of the filament as follows,

Mline(z) =

∫ ∫ √
x2+y2<Rfil

ρ dxdy. (2.22)

Likewise the velocity vfil along the filament is defined as follows,

vfil(z) =
1

Mline

∫ ∫ √
x2+y2<Rfil

ρv dxdy. (2.23)

The 1D Fourier component of the velocity field along the filament z-axis is

ṽ(kz) =
1

Lz

∫ Lz/2

−Lz/2

vfil(z) exp(−ikzz)dz

∼ 1

Lz

∫ Lz/2

−Lz/2

v(0, 0, z) exp(−ikzz)dz, (2.24)

where, Lz is the length of the z direction of the molecular cloud and ṽ is the
1D Fourier component of the velocity field. In the second step of Equation 2.24,
we take the limit Rfil → 0, because the mass of a critical/supercritical filament
(i.e., the mass of dense gas) is much smaller than the total mass of the parental
molecular cloud as suggested by observations (see above). The limit of vfil(z) as
Rfil approaches to 0 is v(0, 0, z). Note that while the velocity field is integrated
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with x and y in Equation 2.15, in Equation 2.24 the velocity field is not integrated
because of the approximation vfil(z) ∼ v(0, 0, z). The 1D power spectrum Pṽ of ṽ
is defined as

Pṽ(kz) = ⟨|ṽ(kz)|2⟩ . (2.25)

Using Equation 4.4, Equation 2.24, and Equation 2.25, the 1D velocity power
spectrum can be rewritten as

Pṽ(kz) =
∑

k′x

∑

k′y

P (k′
x, k

′
y, kz). (2.26)

The derivation of Equation 2.26 is given in Appendix B. The left hand side of
Equation 2.26 is the 1D power spectrum Pṽ(kz) of the velocity along the fila-
ment, which is equal to the integration of the 3D Kolmogorov-like power spectrum
P (k′

x, k
′
y, kz) with respect to k′

x and k′
y. This integration can be done as follows,

Pṽ(kz) =
∑

k′x

∑

k′y

P (k′
x, k

′
y, kz)

∼ LxLy

(2π)2
A

∫ kmax

0

∫ kmax

0

(k′2
x + k′2

y + k2
z)

−11/6 dk′
xdk

′
y

∼ LxLy

(2π)2
A

∫ ∞

0

∫ ∞

0

(k′2
x + k′2

y + k2
z)

−11/6 dk′
xdk

′
y

=
LxLy

(2π)2
A

∫ ∞

0

(k′2
r + k2

z)
−11/6 π

2
k′
rdk

′
r

∝ k−5/3
z , (2.27)

where Lx and Ly are the length of x and y directions of the molecular cloud. kmax

is the maximum wavenumber, which might correspond to an energy dissipation
scale. The approximation that the summation can be replaced by an integral up
to +∞ is valid only for kz < kmax. Here we assume that the largest wavenumber is
the same along all the three (x, y, and z) directions, i.e., isotropic at small scales.
Therefore, we can use the approximation that the summation can be replaced by
an integral up to +∞. This result shows that the 1D approximation in Equation
2.24 leads to the 1D Kolmogorov power spectrum along the filament. While the
width of the filament considered in Section 3.1 is also small (0.1 pc) compared to
the size of the cloud (∼ 10 pc), the resulting slope of the power spectrum of v1D(z)
is −11/3, very different from the slope −5/3 found here. This is mainly due to
the periodic boundary condition for the functional dependence of the modes in
the x- and y-directions in Section 3.1: i.e., the modes in the x- and y-directions
cancels in Equation 2.15, these modes are not contributing to the power spectrum
of v1D(kz), unlike in Equation 2.26. In this section, since we consider the velocity
field that is extended in the parent cloud outside the filament, here the modes are
not anymore periodic within the filament.

We can thus link the observed 3D power spectrum of the parent cloud to the
1D velocity power spectrum along the filament. A filament with Mline ∼ Mline,crit
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and velocity fluctuations along its crest characterized by the 1D Kolmogorov power
spectrum with a slope of −5/3 would fragment into a series of cores presenting the
observed distribution of angular momentum as shown in Section 3.4.

In addition to providing an origin to the observed angular momentum of cores,
we also emphasize that these velocity fluctuations along star-forming filaments
with a power spectrum of P (k) ∝ k−5/3 may also be key in understanding the
origin of the shape of the core mass function (cf., Inutsuka, 2001; Roy et al., 2015;
Lee et al., 2017). Note also that the 1D approximation of star-forming filaments
might be justified by the observed small mass fraction of the dense gas in the form
of critical/supercritical filaments with respect to the total mass of the cloud. We
suggest that this small mass fraction of dense gas may also provide a hint to the
origin of the observed low star formation efficiency in molecular clouds.

2.6 Summary of this Chapter

In this chapter we provide a causal link between properties of filaments and cores.
We suggest that the observed angular momentum distribution of cores as a func-
tion of core mass can be understood by the fragmentation of filaments having
velocity fluctuations close to the sonic speed and anisotropic, log-normal, and 1D
Kolmogorov power spectra. We demonstrate that the 3D Kolmogorov velocity and
density power spectra observed at the scale of the cloud implies a 1D Kolmogorov
velocity spectrum along a filament when the mass of this latter is a small fraction
of the total mass in the cloud, consistent with recent observational results (André
et al., 2014; Arzoumanian et al., 2019; Torii et al., 2019). The results presented in
this paper reinforces the key role of filament fragmentation in our understanding of
the star formation process and the observed properties of cores. Future systematic
observations tracing the velocity structure of cores are needed to derive the kine-
matic properties of cores to better constrain our models and examine the relation
between the properties of filaments and cores, to understand the origin of the an-
gular momentum of molecular cloud cores, multiple systems, and protoplanetary
disks.
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Chapter 3

Power Spectrum Measured in
Filament Formation Simulation

As shown in previous chapter, the sub (tran) sonic Kolmogorov turbulence in the
filaments is large enough to give the angular momentum to the molecular cloud
cores. Recent theoretical researches reveal that the filaments are created when a
shock wave interacts with a molecular clouds with density fluctuations (Inoue &
Fukui, 2013; Inoue et al., 2018; Abe et al., 2021). If this filament formation mecha-
nism is correct, the velocity fluctuations in the filaments should follow Kolmogorov
power spectrum. To study this scenario, in this chapter, we analyse the data ob-
tained by using three-dimensional magnetohydrodynamic (MHD) simulation done
by Inoue et al. (2018) and Abe et al. (2021).

3.1 Simulation Setup

The Setup of simulation is shown in Figure 3.1. The color represents the number
density of hydrogen molecule. The black line is magnetic field, and their direc-
tion along the y direction at the initial state. The strength of magnetic field is
10µG. The mean density at the initial state is n = 103cm−3. They put the den-
sity fluctuations in the molecular cloud at the initial state. They set the initial
converging flow along the z-axis. The box size is 6 pc, and the number of cell
is 5123. They solve the MHD equations including self-gravity by using the SFU-
MATO code (Matsumoto, 2007). The equation of state is isothermal, and sound
speed is cs = 0.2km s−1. The parameter used in this analysis is the velocity of
converging flow. They adopt the periodic boundary condition along the x and y
directions.

Since we also analyse the data from Inoue et al. (2018), we explain the setup
of Inoue et al. (2018) below. Figure 3.2 displays the schematic figure of setup of
Inoue et al. (2018) (their Figure 1). The color represents the column density. The
small cloud with turbulence is swept by plain parallel shock wave. The domain
size is 0.6 pc, and the initial density is n = 104cm−3. The finest resolution of the
simulation is 1.5 × 10−3 pc. The magnetic field is perpendicular to the collision
direction, and the strength of magnetic field is 20µG. They also solve the MHD
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Figure 3.1: Schematic figure of simulation of Abe et al. (2021) (their Figure 1).
The color represents the number density of hydrogen molecule. The black line is
magnetic field, and their direction along the y direction at the initial state.

equations including self-gravity by using the SFUMATO code (Matsumoto, 2007).
The equation of state is isothermal, and sound speed is cs = 0.3km s−1. They
use the periodic boundary condition for the x and y directions, and free boundary
condition for the z direction. The speed of converging flow is 5km s−1 If the reader
wants to know the setup of their calculations in more detail, please refer to their
papers.

3.2 Analysis

Figure 3.3 displays the column density map at each time step using data from Abe
et al. (2021). We use FilFinder algorithm (Koch & Rosolowsky, 2015) to identify
the filament axis on the column density maps. The resultant filament axes are
shown in Figure 3.4 as white lines. We calculate the power spectrum along these
filament axes as follows.

The line mass of filament is defined as follows:

M line (z) =

∫
ρdxdy. (3.1)

The line mass fluctuations of filament is defined as follows:

δ line (z) =
M line (z)−Mline,ave

Mline,ave

, (3.2)

where

Mline,ave =

∫ L

0
Mline(z)dz

L
, (3.3)
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Figure 3.2: Schematic figure of setup of Inoue et al. (2018) (their Figure 1). The
color represents the column density. The small cloud with turbulence is swept by
plain parallel shock wave.

L is the filament axis. The Fourier transform is defined as follows:

δ̃ line (kz) =
1

L

∫
δ line (z) exp

−ikzz dz. (3.4)

The power spectrum is calculated as follows:

P line (kz) =

〈∣∣∣δ̃line (kz)
∣∣∣
2
〉
, (3.5)

where ⟨ ⟩ represents the ensemble average. The velocity properties along the fila-
ments are derived using the same way

V line (z) =

∫
ρvdxdy/M line (3.6)

Ṽ line (kz) =
1

L

∫
V line (z) exp

−ikzz dz (3.7)

P Vline (kz) =

〈∣∣∣Ṽline (kz)
∣∣∣
2
〉

(3.8)
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Figure 3.3: Column density map on x− y plane. The color is the column density

The power spectrum of column density is derived as follows.

Σ̃ (kx, ky) =
1

L2

∫
Σ(x, y) exp−i(kxx+kyy) dxdy, (3.9)

PΣ (kx, ky) =

〈∣∣∣Σ̃ (kx, ky)
∣∣∣
2
〉
. (3.10)

3.3 Results

The left and right panel of Figure 3.5 are the examples of power spectrum of
velocity and line mass fluctuations. The blue dots result from analysis explained
in previous section, and the red lines are fitting results. We did this analysis all
filament found in simulation of Abe et al. (2021), and the statistical results shown
in Figure 3.6 and Figure 3.7. Figure 3.6 and Figure 3.7 are histograms of slope
index of line mass and velocity fluctuations, respectively. The top left, top right,
bottom left, and bottom right panels are the results at 0.3, 0.4, 0.5, and 0.6 Myr,
respectively. In Figure 3.6 and Figure 3.7, the peaks of histogram are located
around −2 ≲ α ≲ −1.5. This result indicate that the measured power spectrum
slope in Abe et al. (2021) is compatible to Kolmogorov turbulence (α = −5/3).

We also show the results from Inoue et al. (2018). In Inoue et al. (2018), the
filament formed in their simulation is more massive and longer than that of Abe
et al. (2021). The line mass reaches ∼ 200 M⊙pc−1 at the final state of their
simulation. The column density is shown in the left panel of Figure 3.8. The
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Figure 3.4: Same as Figure 3.3, but the white lines represent the filament axis.

black line is the filament axis identified by using FilFinder. The right panel of
Figure 3.8 is the power spectrum of column density. The red dots are resultant
power spectrum derived from Equation 3.10, and the blue solid line is the fitting
line whose slope index is −2.4 ± 0.6. This slope index is also compatible with
Kolmogorov slope (−8/3). Moreover, the power spectrum of line mass fluctuations
has slope index −1.9 ± 0.5, and this is also compatible with Kolmogorov slope
(−5/3). This result suggest that the Kolmogorov turbulence is realized even in
the massive filamentary molecular cloud.

3.4 Summary and Discussion

In previous section, we analysed the power spectrum along the filaments formed
in the filament formation simulation. As a result, the derived power spectra are
compatible with Kolmogorov turbulence. This result indicates that the model
presented in Chapter 2 is consistent with the results in filament formation scenario.
Therefore, we conclude that the filament formation mechanism proposed in Inoue
et al. (2018) can explain the origin of the angular momentum of molecular cloud
cores.

The histograms shown in previous section have peaks around Kolmogorov-like
slope, but they have dispersion of distribution in some degree. The origin of some
filaments with shallower slope might be attributed to the growth of the shorter
wavelength due to the gravitational instability. When the filament become mas-
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Figure 3.5: Examples of power spectrum of velocity and line mass fluctuations.
The blue dots result from analysis explained in previous section, and the red lines
are fitting results.

sive enough, the gravity dominates the pressure force, and the filaments begin to
fragment to cores. If the collapse (fragmentation) continues infinitely, the central
density is divergent, and this is described by delta condition. While, in reality,
the collapse is halted when the equation of state becomes stiff and the isothermal
approximation is violated, the power spectrum become shallow due to the gravi-
tional instability. On the other hand, the filament with steep slope might be due
to the cancellation of waves with short wavelength.

In this analysis we studied the power spectra only along the filament axis. An
anisotropy of velocity field in filaments affects the properties of angular momentum
(Chapter 2), especially the direction of rotation axis. Therefore, to investigate the
anisotropy of velocity field is very important work to reveal the properties of angu-
lar momentum of cores in more detail, but at present the resolution of simulation is
limited, for example, the resolution of Abe et al. (2021) is ∼ 0.02 pc (c.f. filament
width ∼ 0.1 pc). Hence, we reach the conclusion that the isotropic Kolmogorov
turbulence is the simplest and most reliable model at present to explain the origin
for the angular momentum of molecular cloud cores.
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Figure 3.6: Histograms of slope index of line mass fluctuations, respectively. The
top left, top right, bottom left, and bottom right panels are the results at 0.3, 0.4,
0.5, and 0.6 Myr, respectively.
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Figure 3.7: Histograms of slope index of velocity fluctuations, respectively. The
top left, top right, bottom left, and bottom right panels are the results at 0.3, 0.4,
0.5, and 0.6 Myr, respectively.
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Figure 3.8: Column density map (left panel) and the power spectrum of column
density (right panel). The black line in the left panel is the filament axis identified
by using FilFinder. The red dots in right panel are resultant power spectrum
derived from Equation 3.10, and the blue solid line is the fitting line whose slope
index is −2.4± 0.6.

38



Chapter 4

Time Evolution of the Angular
Momentum of Molecular Cloud
Cores

4.1 Numerical Setup

We use the Godunov-type smoothed particle hydrodynamical (SPH) method (In-
utsuka, 2002) to solve the following equation of motion:

dv

dt
= −1

ρ
∇P +∇

∫
dx′3Gρ (x′)

|x− x′| , (4.1)

where ∇ is the derivative with respect to x. We have used FDPS (Iwasawa et al.,
2016) in our SPH code to accelerate the calculation. We have applied a periodic
boundary condition in the z-direction which is parallel to the filament axis. We
adopt an isothermal equation of state. We use the Barnes-Hut tree algorithm
(Barnes & Hut, 1986) with opening angle of 0.4 to solve the gravity. We adopt
the hydrostatic equilibrium density profile of a filament as initial condition:

ρ(r) = ρc0

[
1 +

(
r

H0

)2
]−2

, (4.2)

where ρc0 is the density along the axis, r is the radius of the cylindrical coordinate,
and H0 is the scale height defined by

H0 ≡
√

2c2s
πGρc0

, (4.3)

where cs = 0.2 km s−1 is sound speed. We consider an unmagnetized isothermal
model filament with a width of 0.1 pc (Arzoumanian et al., 2011, 2019) and a line
mass equal to the critical line mass, Mline,crit = 18 M⊙pc−1 for T = 10 K. In this
paper we choose H0 = 0.05 pc. To mimic the periodic boundary condition in the
z-direction, we put N copies of the filament on both sides. In this paper, we use
N = 4.
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Figure 4.1: Time sequence of the fragmentation of a filament (from panel (a) to
(d)). The color scale is the column density derived by integrating the density
along the y-axis. The elapsed time and maximum density are denoted in each
panel, where tff is the free fall time defined by tff = (4πGρc)

−1/2.

First we numerically generate the velocity field v in the filament following the
method described in, e.g., Dubinski et al. (1995)

v(x) =
∑

k

V (k) exp(ik · x), (4.4)

where V (k) is the Fourier transform, k is the wave vector. The detail description is
shown in Misugi et al. (2019). We use σ = cs for our fiducial model, where σ is the
three-dimensional velocity dispersion. Note that this transonic velocity turbulence
is consistent with the recent measurement of fluctuations of line-of-sight velocity
along critical filaments in nearby molecular clouds (Hacar & Tafalla, 2011; Arzou-
manian et al., 2013; Hacar et al., 2016). Misugi et al (2019) concluded that, if
the filament is embedded in the molecular cloud with Kolmogorov tur-
bulence, the resultant core AM is consistent with observations and the
velocity power spectrum along the filament axis follows 1D Kolmogorov
power spectrum. Hence, we adopt Kolmogorov turbulence as the initial
velocity field in this paper. Although Misugi et al. (2019) found that
Kolmogorov-like, anisotropic power spectrum model was also compati-
ble with the observed angular momentum of the cores, in this paper we
focus on the isotropic Kolmogorov turbulence.
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4.2 Results

4.2.1 Overview

We run a filament fragmentation simulation until the maximum density reaches
ρcrit = 2.8 × 10−14g cm−3 (ncrit = 7.3 × 109cm−3), which corresponds to ρcrit =
2 × 105ρc0, where ρc0 = 1.4 × 10−19g cm−3 (ncrit = 3.4 × 104cm−3) is the initial
peak density of the filament. Therefore, our simulation is stopped before the first
core forms in the central high density region (n ≃ 5 × 1010cm−3) (Masunaga &
Inutsuka, 2000). First, we describe the filament fragmentation due to the growth
of initial perturbations. Figure 4.1 displays the time sequence of fragmentation
of a filament. The color scale is the column density derived by integrating the
density along the y-axis. The z-axis is parallel to the filament axis, and the
x and y-axis are perpendicular to the filament axis. The elapsed time and
maximum density are denoted in each panel, where tff is the free fall time defined
by tff = (4πGρc0)

−1/2.

4.2.2 Core Angular Momentum

In this subsection, we measure the core angular momentum and investigate its
time evolution. As we mentioned in the previous subsection, we stop the
simulations before the first core forms in the central high density region
(n ≃ 5× 1010cm−3). Then, we find and analyze the core with the highest
density in the filament (the fastest collapsing core). We define the core
using a density contour threshold and we measure the enclosed mass
in the contour. We repeat this procedure changing the density threshold until
the enclosed mass reaches 1 M⊙. Thus, in this section, all cores have the same
mass, 1 M⊙. The core finding algorithm takes into account the periodic boundary
conditions. Then, we trace the trajectories of the SPH particles from the final state
to the initial state of the simulation. Figure 4.2 shows the time sequence of the
morphology and the specific angular momentum of a core from our simulations.
The first, second, and third rows show the column density on the x-y, x-z, and
y-z planes, respectively. The color scale is the specific angular momentum of the
SPH particles around the barycenter of the core. The panels from left to right
are snapshots at the stages of n = 4.192 × 104cm−3, n = 1.675 × 105cm−3, and
n = 7.574 × 109cm−3, respectively. The elapsed time and maximum density are
denoted in each panel. Next, we derive the specific angular momentum of the core
with respect to the center of mass using the definition of the core explained above:

J =
∑

i

mi(xi − xc)× (vi − vc), (4.5)

where xi and vi are the position and velocity vectors of the SPH particles, xc and
vc are the position and velocity of the center of mass of the core. The specific
angular momentum of a core is defined as follows:

j =
|J |
M

, (4.6)
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Figure 4.2: Time sequence of morphology and specific angular momentum of a
core from left to right. The first, second, and third row are on the x-y, x-z plane,
and y-z plane, respectively. The color scale is the specific angular momentum of
SPH particles. This core is defined by the density contour enclosing a
mass of 1 M⊙ at final time step. The panels from left to right are snapshots
at stages of n = 4.192× 104cm−3, n = 1.675× 105cm−3, and n = 7.574× 109cm−3,
respectively. The elapsed time and maximum density are denoted in each panel.

where M is the total mass of the core (here M = 1 M⊙). Figure 4.3 displays
the time evolution of j of the core shown in Figure 4.2. The horizontal axis is
the elapsed time. The left panel is for the absolute value of the specific angular
momentum, and the right panel shows each component of the specific angular
momentum. The red dashed line, blue solid line, and green dotted line in
the right panel are the x, y, and z components of the specific angular momentum.
Note that the angular momentum should be conserved in the absence of interac-
tion with surrounding matter. As one can see from Figure 4.3, the core angular
momentum changes by around 30%. In the right panel of Figure 4.3, jx and
jz are smaller than jy. The reason why jx is smaller than jy is due to
a phase of initial turbulence in the filament studied in this subsection.
Statistically, the jx and jy follow the same distribution because the ve-
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Figure 4.3: (left)The time evolution of the absolute value of the specific angular
momentum of the core shown in Figure 4.2. The horizontal axis is the maximum
density of the core. The density evolution traces also the time evolution as the
core collapses. (right)The time evolution of the component of the specific angular
momentum of the core shown in Figure 4.2. The red dashed line, blue solid
line, and green dotted line are the x, y, and z components of the specific
angular momentum. The vertical axis is logarithmic in the left panel but linear in
the right panel.

locity field is isotropic and the filament is axis symmetric. The reason
why jz is smaller than jy will be explained in Section 4.2.3.

To analyze this evolution in more detail, we calculate the torque exerted on
the core. The gravitational torque (T g) and pressure torque (T f) are derived
separately as follows:

T g =
∑

i

(xi − xc)× F g,i, (4.7)

T f =
∑

i

(xi − xc)× F f,i, (4.8)

where F f,i and F g,i are the pressure (the first term of the right hand side
of Equation 4.1) and the gravity force (the second term of the right hand
side of Equation 4.1) of ith particle, respectively. The gravitational torque and
the pressure torque are shown in Figure 4.4. The total torque T = T f + T g is
plotted in Figure 4.5. The horizontal axis is the maximum density of the core,
that is, time evolution. Since our initial filament is in hydrostatic equilibrium,
the total torque exerted on the core is zero at t = 0. As time progresses, both
the gravitational and the pressure torques decrease as shown in Figure 4.4. This
is because the core evolves to the sphere-like shape as shown in Figure 4.2. The
specific angular momentum of the core changes by 30% due to the fluctuations
of gravity and pressure generated by the initial Kolmogorov velocity fluctuations.
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Figure 4.4: Gravitational torque (left) and pressure torque (right) exerted on the
core. The horizontal axis is the maximum density of the core and the vertical axis
is the torque. The red, blue, and green curves are the x, y, and z components of
the torque.

Note that the angular momentum decreases by around 30% at the early stage and
is almost constant at the later stage. The reason why the angular momentum
of the cores does not change at the later stage will be explained in the next
subsection (see Equation 4.9).
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Figure 4.5: Total torque exerted on the core. The horizontal axis is the maximum
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Figure 4.6: The time evolutions of the specific angular momentum of the 38 cores.
The horizontal axis is the maximum density of the cores. The different colors of
solid lines correspond to the different cores derived from the 38 runs.

4.2.3 Statistical Properties of the Total Angular Momen-
tum of the Core

We run 40 sets of simulations using different turbulence seeds and statistically an-
alyze the properties of the core angular momentum. The analysis described in the
previous subsections is applied to all the resultant filaments in these simulations.
We build a sample of 40 cores selecting the fastest growing core of each simulation.
The time evolutions of 38 cores are shown in Figure 4.6. Because two cores have
two peaks within their 1 M⊙ contour, we exclude these two cores from the analysis
in this section. The horizontal axis of Figure 4.6 is the maximum density of the
cores. The different colors of the solid lines correspond to different cores. Figure
4.7 is the averaged time evolutions of specific angular momentum of all cores. The
red solid line is the averaged specific angular momentum of the cores shown in
Figure 4.6.

As we can see from Figures 4.6 and 4.7, the core angular momentum is almost
constant during the runaway collapse phase. This result can be understood as fol-
lows. First, the change of the angular momentum can be estimated by integrating
the gravitational torque with respect to time. Figure 4.8 displays the averaged
time evolutions of the gravitational torque exerted on the cores. The vertical axis
is the gravitational torque. The horizontal axis is the maximum density of the
core. Figure 4.8 shows that the averaged gravitational torque during the runaway
collapse phase is Tg ∼ 2.5× 1019 cm2 s−1 t−1

ff . Using this value, the change of the
angular momentum during the runaway collapse phase is estimated as follows:

∆j =

∫
Tgdt

= Tg[tff(ρr)− tff(∞)]

∼ 2.5× 1019
√

ρc0
ρr

cm2 s−1, (4.9)
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where ρc0 is the initial peak density of the filament, and ρr is the lower limit
of the integration. In this analysis, we use ρr = 10−17g cm−3 because we conform
that the collapse follows the runaway collapse when ρr ≳ 10−17g cm−3. If we
substitute ρr = 10−17g cm−3 into Equation 4.9, the resultant change of the angular
momentum is ∆j ≃ 2.5 × 1018 cm2 s−1. Since this is smaller than the averaged
specific angular momentum at the later stages (j ≃ 3 × 1020 cm2 s−1) shown in
Figure 4.6 by two orders of magnitude, we can conclude that the total angular
momentum of the core is almost constant during the runaway collapse phase.

Figure 4.6 also shows that the specific angular momentum of the cores decreases
initially by around 30% as shown in the previous subsection. To investigate the
time evolution of the specific angular momentum of the cores statistically, we show
the histograms for the specific angular momentum of the cores at both the initial
stage (left panel of Figure 4.9) and at the final stage (right panel of Figure 4.9).
Figure 4.9 shows that the initial specific angular momentum decreases by 30% as
shown in Figure 4.3 and Figure 4.6.

The typical value of the core angular momentum can be estimated by using the
method shown in Peebles (1969). The shape of cores tend to be elliptical rather
than spherical at the initial stage (Figure 4.2). The angular momentum of the
initial elliptical core can be written formally as follows:

J =

∫
ρr × vd3x. (4.10)

This integration is calculated as follows (See Appendix A for more details):

J = −M

5

∑

k

V (k)× k′′f(y) cosϕk (4.11)

where k′′ = (kxa
2
1, kya

2
2, kza

2
3), y = |k′|, k′ = (kxa1, kya2, kza3). M = 4πρa1a2a3/3

and ai (i = 1, 2, 3) are the mass and the principal axes of the ellipsoid, respectively.
ϕk is the phase of initial velocity field. For simplicity, we assume the density is
constant. f(y) is defined as follows:

f(y) = 45

(
sin y

y5
− cos y

y4
− sin y

3y3

)
. (4.12)

Then we can derive the specific angular momentum

j ≡

√〈
J2

〉

M

=

√
1

75

∑

k

P (k)k′′2f(y)2, (4.13)

where ⟨⟩ represents the ensemble average. P (k) is the power spectrum of the
velocity field. If we substitute the typical value a3 = 0.085pc, a1 = a2 = a3/2 =
0.0425pc into Equation 4.13, the specific angular momentum of the core becomes

j = 5.6× 1020cm2s−1. (4.14)
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Figure 4.7: The averaged time evolutions of the specific angular momentum of the
cores. The red solid line is the averaged specific angular momentum of the 38 cores
shown in Figure 4.6. The vertical bars show the dispersion.

This is consistent with the peak position of Figure 4.9.
Additionally, We also derived the time evolution of the angle between the

filament axis and the core angular momentum axis. The angle between the filament
axis and the core angular momentum axis is defined as cos θ = Jz/J . The time
evolution of θ is plotted in Figure 4.10. The vertical axis is the number of cores per
θ bin. Figure 4.10 describes that most of the cores are nearly perpendicular to the
filament axis. Since the core is formed through filament fragmentation, the core is
elongated along the z-axis (filament longitudinal direction) at the initial state as
shown in Figure 4.2. As shown in Equation 4.5, the angular momentum of
the core depends on the distance from the barycenter. Only the x and
y components of the angular momnetum is affected by the z component
of the distance from the barycenter. Therefore, most cores rotate nearly
perpendicular to the filament axis even though the initial velocity turbulence field
is isotropic. We stress that this trend can be observed even at the final state of
simulation (right panel of Figure 4.10).

Figure 4.11 shows the time evolution of the rotation energy normalized by
thermal energy, Erot/2Eth. The horizontal axis is the maximum density of the
core. Each color corresponds to each core. The rotation energy Erot is calculated
as follows:

Erot =
∑

i

mi

[
(xi − xc)× (vi − vc)

|xi − xc|

]2
, (4.15)

where i is a subscript of SPH particle.Figure 4.11 shows that the rotation en-
ergy decreases during the core formation stage and increases at the later stage.
This evolution can be understood as follows. Since the angular momentum of a
core decreases during the core formation stage, the rotation energy also decreases
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Figure 4.8: The averaged time evolutions of the gravitational torque exerted on
the cores. The vertical axis is the gravitational torque. The horizontal axis is the
maximum density of the core.

when the central density 10−19g cm−3 ≲ ρc ≲ 10−18g cm−3. Since we trace the
trajectories of particles in this analysis, the mass M defined in Equation 4.15 is
constant, the rotation energy Erot ∼ Iω2 ∼ J2/MR2 ∝ R−2. Therefore, the ro-
tation energy increases during the runaway collapse phase. As we can see from
Figure 4.11, Erot/2Eth ∼ 0.01 at the initial state, then Erot/2Eth increases up to
Erot/2Eth ∼ 0.1 at the final state, just before the first core formation.

Figure 4.12 displays the distribution of axis ratios of all cores. To estimate the
shape of a core, we calculate the moment of coordinates,

Kln =
∑

i

mi(xl,i − xl,c)(xn,i − xn,c). (4.16)

The shape of the core is estimated from the three principal axes (a1 < a2 < a3)
defined by the square roots of three eigenvalues of Kln. This analysis is essentially
the same as that used in Matsumoto & Hanawa (2011).
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Figure 4.9: Histograms of the specific angular momentum of the cores at the initial
state (left) and at the final state (right) with statistical error bars. The vertical
axis is the number of cores per log j bin.

0 10 20 30 40 50 60 70 80 90
Angle between filament axis and core rotation axis [Degree]

0

5

10

15

20

N
u

m
b

er
of

co
re

s
p

er
an

gl
e

b
in

0 10 20 30 40 50 60 70 80 90
Angle between filament axis and core rotation axis [Degree]

0

5

10

15
N

u
m

b
er

of
co

re
s

p
er

an
gl

e
b

in

Figure 4.10: Histogram of the angle θ between the filament axis and core angu-
lar momentum axis at the initial state (left) and at the final state (right) with
statistical error bars. The vertical axis is the number of cores per θ bin.
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Figure 4.11: Time evolution of the rotation energy normalized by the thermal
energy. The horizontal axis is the maximum density of the core. Each color
corresponds to each core.

50



0.0 0.2 0.4 0.6 0.8 1.0
a2/a3

0.0

0.2

0.4

0.6

0.8

1.0

a
1
/a

3

Figure 4.12: Distribution of axis ratios of all cores. Each blue circle corresponds
to each core. The axis of a core are the eigenvalue of inertia moment, and a1 <
a2 < a3. The three dashed lines are the boundaries between prolate, triaxial, and
oblate shapes from left to right.
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Figure 4.13: Internal angular momentum structure. The vertical axis is the specific
angular momentum of a shell. The horizontal axis is the total mass enclosed
by the shell. The different colors of solid lines coresspond to the different cores.
The black dashed line represents j ∝ M .

4.2.4 Internal Structure of Core Rotation

Observations show that the internal motion of protostellar cores is not always
coherent (e.g., Gaudel et al., 2020). Moreover, warped disks are discovered in young
stellar objects (e.g., Sakai et al., 2019). Some observations even reported that
the outflows/jets were driven in multiple directions, which was interpreted as the
incoherent angular momentum axis distribution inside a parental dense core (e.g.,
Okoda et al., 2021). To elucidate the formation mechanism of observed complex
structures, studying the internal structure of cores at the core formation stage in
the filamentary molecular cloud is very important. In the previous subsection we
provide the results for time evolution of the total angular momentum of the cores.
In this subsection, we focus on the internal angular momentum structure of a core.

Angular Momentum Profile inside a Core

First, we divide the core in concentric shells using density contours at each time
step of the simulations. We measure the angular momenta of the shells around
the density maxima as follows:

J shell =
∑

i∈shell, j

mi(xi − xρmax)× (vi − vρmax), (4.17)

where xρmax and vρmax are the position and velocity of the density maxima, re-
spectively. The summation is calculated for SPH particles contained in each shell
j. Figure 4.13 displays the specific angular momentum of shells. The vertical axis
is the specific angular momentum of a shell. The horizontal axis is the total
mass enclosed by the shell. The different colors of solid lines correspond to
the different cores. The black dashed line represents j ∝ M . Figure 4.14 displays
the time evolution of j-M profile in a core. The j-M profiles evolve from the blue
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Figure 4.14: Time evolution of j-M profile in a core. The black dashed line is
j ∝ M . The j-M profiles of the core evolve from the blue line to the red line.
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Figure 4.15: Averaged j-M profile for the 38 cores. The red solid line is the
averaged j-M profile using all j-M profiles of the cores shown in Figure 4.13. The
black dashed line is j ∝ M .

line to the red line. The density shown in the legend of Figure 4.14 corresponds
to the maximum density of the cores at each time step. In addition, Figure 4.15
displays the averaged j-M profile. The red solid line is the averaged j-M profile
using all j-M profiles of the cores shown in Figure 4.13. Figure 4.13, 4.14, and
4.15 show that the j-M profile evolves to j ∝ M with time during the runaway
collapse phase. j ∝ M is the self-similar solution discussed in Saigo & Hanawa
(1998) and Basu (1997), and we will explain this later. This convergence to
j ∝ M was reported in Tomisaka (2000) where they investigated the evolution
of the angular momentum profile in collapsing magnetized molecular cloud core
without turbulence.

Figure 4.16 shows j ∝ r profile in the cores, where r is the distance from the
density peak. The vertical axis is the specific angular momentum of a core, and
the horizontal axis is the distance from the density peak of the core. The black
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Figure 4.16: Angular momentum profile in the cores. The vertical axis is the
specific angular momentum of a core, and the horizontal axis is the distance from
the density peak of the core. In the left panel, each color corresponds to each core.
The black dash-dotted line, dashed line, and dotted line are j ∝ r1, j ∝ r1.5, and
j ∝ r2, respectively. The blue line in the right panel is the averaged j-r profile of
the cores shown in the left panel.

dash-dotted line, dashed line, and dotted line are j ∝ r, j ∝ r1.5, and j ∝ r2,
respectively. The blue line in the right panel is averaged j-r profile of the cores
shown in the left panel. j ∝ r can be seen in the inner region of the cores. This is
because Larson-Penston solution (Larson, 1969; Penston, 1969) has density profile
ρ ∝ r−2, this means M ∝ r. Using this relation and j ∝ M (Figure 4.14), we can
derive the j ∝ r relation. Please note that the slope index j-r relation in the inner
region of the core expected from the self-similar solution (j ∝ r) is different from
the slope index expected from Larson’s law (j ∝ r1.5).

Figure 4.17 displays the time evolution of the angle between the rotation axis
of the inner region of the core and the filament axis. The color scale represents
the ensemble average of the angle between the rotation axis of the inner
region of the core and the filament axis over all the cores. The vertical
axis is the maximum density. The horizontal axis is the enclosed mass within the
shell and corresponds to the distance from the center of the core. Figure 4.17
indicates that the angle between the rotation axis and the filament axis is almost
constant over time and nearly perpendicular to the filament axis over the whole
mass range, even in the inner region of the core. Note that θ of the inner region of
the core slightly changes with time, while the outer region is almost constant, as
shown in Equation 4.9. The reason why the angular momentum of the inner region
of the core continues to evolve in the early stage of runaway collapse is discussed
below. At the initial stage, the rotation axis of the inner region of the core tends
to be more parallel to the filament axis compared to the outer region. This is
because the inner region of the core is not significantly affected by the filament
geometry.

In the following, we study the mechanism of angular momentum transfer in
the cores. First, we evaluate the gravity and pressure torque as follows:

T f,shell =
∑

i∈shell, j

(xi − xρmax)× F f,i, (4.18)
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Figure 4.17: Time evolution of the angle between the core rotation axis and the
filament axis. The vertical axis is the maximum density of a core. The horizontal
axis is the enclosed mass within the shell.

T g,shell =
∑

i∈shell, j

(xi − xρmax)× F g,i. (4.19)

In Figure 4.18, we show the efficiency of the angular momentum transfer due
to the total torque during the runaway collapse phase. The vertical axis is the
maximum density of a core. The horizontal axis is the enclosed mass within the
shell. The color shows the efficiency of the angular momentum transfer
which is defined by the ratio of Ttff to the angular momentum of the
shell J, where tff is the free fall time at each time step, T is the total
torque exerted on the shell, and ⟨ ⟩ represents the ensemble average
for the 38 cores. Since Ttff corresponds to the amount of the angular
momentum transferred in later runaway collapse phase, we can estimate
the efficiency of the angular momentum transfer in subsequent runaway
collapse. Figure 4.18 shows that the transfer of the angular momentum due to
the total torques is efficient to change their angular momentum only when the
central density ≲ 10−16g cm−3. The angular momentum is an increasing function
of enclosed mass as shown in Figure 4.14. This is the reason why the total
torque acting on a core remains more efficient in the inner region than
in the outer region until a later evolutionary stage. Figure 4.19 displays the
sign of the total, pressure, and gravitational torques with respect to the angular
momentum during the runaway collapse phase. The vertical axis and the
horizontal axis are the same as Figure 4.18. The hat symbol means the
unit vector. The color shows the inner product between the unit vector of the
angular momentum and the unit vector of the total, pressure, and gravitational
torques. The upper panel of Figure 4.19 indicates that the total torque exerted on
the cores reduces the angular momentum of the cores. This is because the initial
shape of the core has a complex structure as shown in Figure 4.2. The reason
why the negative pressure torque acts on the core in the initial eevoulutional
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Figure 4.18: Rate of angular momentum transfer due to the total torque during the
runaway collapse phase. The vertical axis is the maximum density of a core. The
horizontal axis is the enclosed mass within the shell. The color shows the efficiency
of angular momentum transfer which is defined by the ratio of the torque acting
on the shell during the collapse Ttff to angular momentum of the shell J , where
tff is the free fall time at each time step, and ⟨ ⟩ represents the ensemble average
for the 38 cores.

stage is as follows. At the initial state, the major axis of the core is not
aligned to the filament axis as shown in Figure 4.2 (d). However, as
time progresses, the core rotates towards the main axis of the filament
(Figure 4.2 (e)). For the case of Figure 4.2(d)-(f), the core rotates in
the counterclockwise direction, then the major axis of the core passes
through the z-axis. This is typical evolution observed in our simulations.
This rotation direction is preferred to gather the mass of a core. Since the initial
filament is in hydrostatic equilibrium, the direction of the pressure torque and the
gravitational torque are opposite. However, in the later runaway collapse phase,
the cores forget the initial filament geometry, and both torques become negative
with respect to the rotation direction as shown in Figure 4.19.

56



−1.5 −1.0 −0.5 0.0
logM [M�]

−18

−17

−16

−15

lo
g
ρ

c[
g

cm
−

3
]

−1.0

−0.5

0.0

0.5

1.0

〈 T̂
·Ĵ
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Figure 4.19: Sign of the total (upper panel),pressure (lower left panel), and gravi-
tational (lower right panel) torques with respect to the angular momentum during
the runaway collapse phase. The vertical axis is the maximum density of a core.
The horizontal axis is the total mass within the shell. The hat symbol means the
unit vector. The color shows the inner product between the unit vector of angular
momentum and the unit vector of the total (upper panel), pressure (lower left
panel), and gravitational (lower right panel) torques.
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Complexity of the Internal Angular Momentum Structure

Figure 4.20 is the comparison between the clean rotation (nearly uniform angular
momentum distribution in the core) and the complex rotation structure found in
our simulations. The upper and lower panels are the smooth and complex velocity
structure cases, respectively. The isosurfaces represent the isodensity surfaces,
ρ = 3.0 × 10−19g cm−3 (upper panel) and ρ = 3.5 × 10−19g cm−3 (lower panel).
The blue arrows are the direction of the rotation velocity. The rotation velocity
vrot is defined as follows:

vrot = v − vρmax − [(v − vρmax) · r]r/r2, (4.20)

where vρmax is the velocity of density peak, and r is the distance from the density
peak. The central densities of the cores are ρ = 8.0× 10−19g cm−3 (upper panel)
and ρ = 1.2 × 10−18g cm−3 (lower panel). Although a smooth rotation pat-
tern can be seen in the upper panel of Figure 4.20, a complex velocity
structure can be observed in the lower panel. In the lower panel, the
rotation velocity pattern around the central region is different from the
rotation velocity pattern of the outer region of the core. This kind of com-
plex rotation structure appears due to the combination of different phases of the
initial turbulent velocity field. Figure 4.21 displays the angle between the rotation
axis of the inner region and the outer shell both with the same mass. Here, we
define the inner region as the region enclosed by the outer shell. The
color scale represents the angle between the rotation axis of the inner
region and the outer shell averaged over all the cores. Figure 4.21 indi-
cates that the complexity of the angular momentum structure of the cores decrease
with time. This trend also can be slightly seen in Figure 4.17. However, the outer
shell of the core (∼ 1 M⊙) has relatively large inclination even at the final stage
of our simulation as shown in Figure 4.21. This is because the outer shell of the
core does not have enough time to transfer its large angular momentum during the
runaway collapse phase. Figure 4.22 shows histograms of the angles between
the angular momentum of the inner region with mass 0.02 M⊙ and that
of the outer shell with the same mass for 38 cores at the initial state
(left) and at the final state (right) with statistical error bars. These
histograms also show that the complexity of the core angular momentum structure
decreases as time progresses.

While the complexity of the rotation of the inner region decreases with time,
Figure 4.22 shows that the complexity of the rotation still remains at the final
state of our simulation, just before the first core formation. Therefore, this kind
of complex angular momentum structure might be related to the observed warped
(or misaligned) disk around the protostar (e.g., Sakai et al., 2019). In future, we
will perform the long term and high resolution simulations to form such misaligned
disks.
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Figure 4.20: 3D plots of the velocity structure in cores formed in our simulations.
The upper and lower panels are smooth and complex velocity structure cases, re-
spectively. The isosurfaces represent the isodensity surfaces, ρ = 3.0×10−19g cm−3

(n = 7.8×104cm−3) (upper panel) and ρ = 3.5×10−19g cm−3 (n = 9.1×104cm−3)
(lower panel). The blue arrows are the direction of the rotation velocity. The cen-
tral densities of the cores are ρ = 8.0 × 10−19g cm−3 (n = 2.0 × 105cm−3) (upper
panel) and ρ = 1.2× 10−18g cm−3 (n = 3.1× 105cm−3) (lower panel)
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Figure 4.21: Angle between the angular momentum vector of the inner region and
the outer shell with the same mass as the inner region. Here, we define the
inner region as the region enclosed by the outer shell. The color scale
represents the angle between the rotation axis of the inner region and
the outer shell averaged over all the cores. The horizontal axis is the total
mass within the shell. The vertical axis is the maximum density of a core.

Figure 4.22: Histograms of the angles between the angular momentum of
the inner region with mass 0.02 M⊙ and the outer shell with the same
mass for 38 cores at the initial state (left) and at the final state (right)
with statistical error bars. Note that the scales of the x-axis are not the same
on both panels.
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4.2.5 Angular Momentum in the Central Region of the
Cores

In this subsection, we analyze the central high density region of the cores. In this
analysis, the central high density region is defined as the gas with ρ > 0.1ρmax. The
rotation and shape of the central high density region of a core are important for
the formation of multiple systems (Matsumoto & Hanawa, 2003; Machida et al.,
2005) and the subsequent formation of protostar-disk systems. We calculate the
angular momentum and moment of inertia of the central region of a core as follows:

J01 =
∑

i,ρi>0.1ρmax

mi(xi − x01,c)× (vi − v01,c), (4.21)

and

Iln,01 =
∑

i,ρi>0.1ρmax

mi[(xi − x01,c)
2δln − (xl,i − xl,01,c)(xn,i − xn,01,c)], (4.22)

x01,c and v01,c are the position and velocity of the center of mass of the core central
region. We also estimate the angular speed of the core central region as follows:

ω01,l =
∑

n

I−1
01,lnJ01,n, (4.23)

where I−1
01,ln is the inverse matrix of I01,ln. Figure 4.23 displays the time evolu-

tion of the normalized angular speed of the central region, ω̃01 = ω01tff , where
tff = 1/

√
4πGρc is the free fall time of the central region at each time step. The

vertical axis is the normalized angular velocity of the central region of a core.
The horizontal axis is the maximum density of the core. The different colors of
solid lines correspond to the different cores. The black dashed line is ω ∝ ρ

1/6
c ,

which corresponds to the growth rate of ω̃01 discussed in Hanawa & Nakayama
(1997). In Hanawa & Nakayama (1997), they did the linear analysis for
Larson-Penston solution and found that there is a spin-up mode which
can grow slowly in self-similar collapse. Figure 4.24 is the histogram of ω̃01

at the final state. Figure 4.24 shows that the peak position of the histogram is
ω̃01 ∼ 0.2. This result indicates that the central region of the cores converges
to the self-similar solution characterized by a rotation consistent with the values
discussed in Matsumoto et al. (1997) and Matsumoto & Hanawa (2003).
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Figure 4.23: Time evolution of the angular velocity derived from Equation 4.23.
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colors of the solid lines correspond to the different cores. The black dashed line is
ω ∝ ρ

1/6
c discussed in Hanawa & Nakayama (1997).

0.0 0.1 0.2 0.3 0.4
ω

0

4

8

12

16

N
u

m
b

er
of

co
re

s
p

er
b

in
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4.3 Discussion

4.3.1 An Origin for the Specific Angular Momentum Pro-
file in a Core

As shown in Section 4.2.4 and 4.2.5, the rotation profile in the cores converges
to the self-similar solution, j ∝ M . As discussed in Saigo & Hanawa (1998),
the self-similar solution with rotation can be derived analytically by assuming the
geometrically thin disk and symmetry around the rotation axis (see also Basu
(1997)). Saigo & Hanawa (1998) found that if the normalized rotation
parameter satisfies the condition jcs/GM < 0.5, the self-similar solution
with rotation can be exist because the gravity can overcome the cen-
trifugal force. The origin of the j ∝ M relation can be understood as follows.
The mass of the central high density region is given by

M ∼ ρcλ
3 ∝ ρ−1/2

c , (4.24)

where λ is the Jeans length of the central region. The specific angular momentum
of the central region can be estimated as follows:

j ∼ λ2ω ∝ ρ−1/2
c , (4.25)

where we used ω ∝ ρ
1/2
c . This is because the time scale of the system is only the

free-fall time. Using Equation 4.24 and 4.25, we can derive

j ∝ M. (4.26)

The radial extent of the region in which the j ∝ M scaling is expected
is determined by whether ω̃ is larger than 0.2 or not. Matsumoto et al.
(1997) shows that ω̃ increases due to the spin up during the collapse
and eventually it reaches ω̃ = 0.2. Once it reaches ω̃ = 0.2, ω̃ remains
constant although some oscillations can be observed in Figure 4.24 and
in Matsumoto et al. (1997). To estimate the radial extent of j ∝ M
scaling, it is important to know when ω̃ is saturated since we used
ω ∝ ρ

1/2
c to derive Equation 4.26. In Figure 4.23, ω̃ ∼ 0.1 even at the

early stage of the collapse (ρc ∼ 10−18 g cm−3). Hence, for simplicity,
the radial extent of j ∝ M scaling is estimated from the intersection
of the self-similar profile (j ∝ M) and j-M profile at the initial state.
At initial state, we can estimate the specific angular momentum as
follows. The specific angular momentum of the core gained from the
initial Kolmogorov turbulent velocity field at the initial state is written
as

j =
2

5
σ(R)R, (4.27)

where σ(R) is velocity dispersion and the factor comes from the iner-
tia moment. In Equation 4.27, we assume the uniform density, ρc0. This
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assumption is justified since we focus on the small mass scale (< 1M⊙).
In small mass scale, the equilibrium profile of the filament has flat den-
sity region. After some calculations, we can derive the specific angular
momentum profile at the initial state as follows:

j = 3.5× 1020cm2 s−1
( σ0

0.2 km s−1

)(
M

M⊙

)4/9

, (4.28)

where we used σ(R) = σ0(R/1.6 pc)1/3 and M = 4πρc0R
3/3. We adopt

σ0 = 0.2 km s−1. The self-similar profile can be roughly estimated as
follows:

j =
2

5
R2ω. (4.29)

Using ω = 0.2
√
4πGρc and the surface density Σ =

√
2c2sρc/πG, we can

derive the self-similar profile,

j = 6.3× 1020cm2 s−1

(
M

M⊙

)
. (4.30)

The intersection of Equation 4.28 and Equation 4.30 gives us the
boundary of self-similar solution (radial extent), Mss = 0.26 M⊙. This is
compatible with the result shown in Figure 4.15.

4.3.2 Effect of Filamentary Structure on the Angular Mo-
mentum of Cores

As discussed in Chapter 1, Observations show that the filamentary
structure is ubiquitous in molecular clouds, and the molecular cloud
cores along the filaments. This indicates that the cores (i.e., stars) are
formed in the filamentary structures. This scenario is often called “fila-
ment paradigm”. In this subsection, we summarize the role of filament
paradigm in the evolution of the angular momentum of cores.

In Section 4.2.4 and 4.3.1, we discussed the convergence of internal
angular momentum profile to the self-similar solution.This tendency has
been already reported in, for example, Matsumoto & Hanawa (2003) in
which they adopted the spherical core as the initial condition. There-
fore, our results about the internal angular momentum profile agree
with the previous works although we adopt the filamentary molecular
cloud with subsonic (transonic) turbulent velocity field as the initial
condition.

On the other hand, the direction of the angular momentum of cores
is affected by filament geometry. As shown in Section 4.2.3, the rotation
direction of the cores tend to be perpendicular to the longitudinal axis

64



of the filament since the initial shape of cores is elongated to the longi-
tudinal axis of the filament. In observations, the relation between the
rotation axis of a core and the filament axis is studied by using the angle
between the outflow and the filament axis. For example, Kong et al.
(2019) reported that the outflow orientation tends to be parpendicular
to the filament axis using Atacama Large Millimeter/submillimeter Ar-
ray (ALMA) CO(2-1) observations in G28.37+0.07 . However, Stephens
et al. (2017) and Baug et al. (2020) claimed that the outflow is randomly
oriented with respent to the filament axes using CARMA-NRO Orion
survey data and ALMA, respectively. In Feddersen et al. (2020), they
showed that the distribution of the angle between the outflow and the
filament axis is a random distribution in the full sample of outflows
using CARMA-NRO Orion survey data. However, they also showed
that the outflow direction is moderately perpendicular to the filament
axis in the most reliable subsample. Hence, the observations of distri-
bution of the angle between the outflow and the filament axis is still
under debate. In addition, Machida et al. (2020) investigated the ef-
fect of misalignment of the initial rotation axis of core with respect to
the initial magnetic field and showed that the outflow direction changes
with time. These theoretical studies indicate that we cannot simply
derive the angle between the rotational axis and filament axis using the
data of the angle between the outflow direction and the filament axis.
Studying the relation between the outflow direction and the filament
axis is our future work. Note that the anisotropy of turbulent veloc-
ity field in a filament might affect the rotation direction of a core with
respect to the filament axis. As discussed in Misugi et al. (2019), the
anisotropy of turbulent velocity field in filaments might be created since
the filaments are formed by large scale compression perpendicular to
the filament axis (e.g., Arzoumanian et al., 2018; Inoue et al., 2018; Abe
et al., 2021). It is expected that the waves perpendicular to the filament
axis has larger energy than the waves parallel to the filament axis. This
anisotropy leads to increase the parallel rotation with respect to the fil-
ament axis compared with isotropic velocity field. Therefore, studying
the anisotropy of velocity turbulent field in filament formation simula-
tion and observations is important for the distribution of the rotation
axis of cores.

Observations show that the radial density profile of the filaments has
shallower slope compared with the equilibrium profile (e.g., Arzouma-
nian et al., 2011). The different density profile might affect the direction
of the angular momentum of the cores. If we adopt the shallower den-
sity profile, the cores would have slightly larger parallel component of
the angular momentum with respect to the filament axis compared with
the case of the equilibrium profile. This effect might be small since the
mass of filament still concentrate on the main axis of the filament and
the cores can accumulate their mass along the filament even if the fil-
ament has shallower radial density profile. Although this effect should

65



Figure 4.25: Column density map (left) and line-of-sight velocity map (right)
around the core at the final state of the simulation. In these plots, the longi-
tudinal axis of the filament is parallel to the plane of sky.

Figure 4.26: Same as Figure 4.25 for the case where the filament is inclined by 30◦

with respect to the plane of the sky.

be estimated quantitatively, this is out of the scope of the paper.

4.3.3 Comparison with Observations

In the previous section, we derived various properties of the three-dimensional
angular momentum of the cores. However, in observations, the specific angular
momentum is measured using the line-of-sight velocity in two-dimensional plane
(Goodman et al., 1993; Caselli et al., 2002; Tatematsu et al., 2016; Punanova et al.,
2018). To mimic a line-of-sight velocity map, we integrate the velocity along the
line-of-sight direction as follows:

vlos(x, z) =
1

Σ(x, z)

∫
ρvydy, (4.31)
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Figure 4.27: Relation between the specific angular momentum and the radius
from the core center. The red solid line is the relation between specific angular
momentum and radius from core center derived from the line-of-sight velocity map.
The blue solid line is result from the rigid body rotation fitting using Equation 4.33.
The left and right panels are for not-inclined and for inclined model, respectively.
The black dots are the observation data. The circles, squares, crosses, pluses,
stars, down-triangles, and up-triangles are observational data from Pineda et al.
(2019), Chen et al. (2019a), Punanova et al. (2018), Tobin et al. (2011), Caselli
et al. (2002), Goodman et al. (1993), and Tatematsu et al. (2016). The green and
purple solid lines are j ∝ r1.5 and j ∝ r2 just for comparison.

where Σ(x, z) is the column density defined as

Σ(x, z) =

∫
ρdy. (4.32)

Figure 4.25 displays the resultant column density and mean velocity maps. The
left panel of Figure 4.25 is the column density map calculated using Equation
4.32, and the right panel of Figure 4.25 is the mean velocity map derived from
Equation 4.31. In these plots, the longitudinal axis of the filament is
parallel to the plane of sky. Though we mimic the observation of the core
specific angular momentum below, the longitudinal axis of the filament (z-axis) is
not always parallel to the plane of the sky. For this reason, we also show the column
density and mean velocity maps in Figure 4.26 by rotating the filament around
the x-axis by 30◦. Using the mean velocity map, we derive the two-dimensional
specific angular momentum as follows. First, we fit the mean velocity map using
the following equation:

vlos,fit(x, z) = vc,fit + Ωxz − Ωzx, (4.33)

where vc,fit, Ωx, and Ωy are the free parameters of the fitting. This fitting method
is used in a lot of previous works (Goodman et al., 1993; Caselli et al., 2002;
Tatematsu et al., 2016; Punanova et al., 2018). We determine these parameters
by minimizing

σerror =

∫ ∫
(vlos(x, z)− vlos,fit(x, z))

2dxdz. (4.34)
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Figure 4.28: j-r relation for all cores. The different colors correspond to the
different cores. The others are same as Figure 4.27.
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Figure 4.29: Averaged j-r relation for without the inclination (left) and with
inclination(right). The error bars refer to the standard deviation. The others are
same as Figure 4.27.

Next, we calculate θ2d,fit = arctan (Ωz/Ωx) and define θ2d,fit as the core rotational
axis. Then, we measure the distance R from the rotational axis. Finally, we
calculate the average angular momentum in each dR bin. The results are shown
in Figure 4.27. The red solid line is the relation between the specific angular
momentum and the distance from the rotation axis derived from the line-of-sight
velocity map. The blue solid line is the result from the rigid body rotation fitting
using Equation 4.33. The left and right panels are for not-inclined and inclined
models, respectively.

Figure 4.29 displays the averaged j-r relation for all cores shown in Figure 4.28
without inclination (left) and with inclination (right). The error bars refer to the
standard deviation. We also derived the total specific angular momentum in the
line-of-sight velocity map as follows:

j2d =
2

5
r2coreΩ, (4.35)

here we use rcore = 0.05 pc for simplicity, and Ω =
√

Ω2
x + Ω2

z derived from the
fitting using Equation 4.33 and Equation 4.34. j2d is compared with the observa-
tional results in Figure 4.30. Figure 4.28, 4.29, and 4.30 show that the observed
absolute value of the specific angular momentum and the slope index of the j-r
relation in the filaments with inclination are larger than without inclination. This
is due to the accretion onto the cores along the filaments. To confirm this, we
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Figure 4.30: Comparison of j2D to the observational data. The left and right
panels are for not-inclined and for inclined models, respectively. The blue and red
histograms are distributions of j2d and measured specifinc angular momentum in
Punanova et al. (2018).

run the simulation in which the filament has only the z-component of fluctuations,
kz = 2π/(0.4pc), at initial state. We stop the simulation just before the first core
formation, and then we measure the angular momentum using the same analysis.
The result with inclination by 30◦ is shown in Figure 4.31. The blue solid line is
the averaged j-r relation with inclination of the filament. The purple solid line is
the j-r relation with only fluctuations along the z-axis. Figure 4.31 shows that,
with the inclination, the accretion onto the core affects the observed j-r relation.
To investigate this effect in more detail, we also calculate the mean velocity map
changing the minimum core density. The mean velocity map is derived from only
SPH particles with density larger than the minimum core density. The dependence
of the effect of accretion along the filament axis on the apparent measured rotation
observed on the mean velocity map is shown in Figure 4.32. The vertical axis is
the ratio of angular momentum of core measured in the mean velocity map with
inclination to that without inclination. Please note that the core definition
adopted here differs from that used in Section 4.2.2. Figure 4.32 clearly
shows that the contamination from the accretion along the filament decreases with
the minimum density to calculate the mean velocity map. In high density regions,
the flow tends to be spherical accretion rather than accretion along the filament
longitudinal axis.

Figure 4.33 shows that the time evolution of the angular momentum observed
in the line-of-sight velocity map, for example Figure 4.25 and 4.26. In this plot,
we measure the 2d angular momentum in the line-of-sight velocity map
whose area is 0.05pc × 0.05pc at each time step. Note that, since the
size of area of the line-of-sight velocity map is fixed in this measurement,
the mass contained in the region increases with time. The horizontal axis
is the maximum density of the core, and the vertical axis is the specific angular
momentum measured in line-of-sight velocity maps. The solid line is the specific
angular momentum evolution that is averaged over all cores. The red and blue
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Figure 4.31: Effect of accretion onto cores on j-r diagram. The blue solid line is
the averaged j-r relation with inclination of the filament. The purple solid line is
j-r relation with only z-component of fluctuations. The others are same as Figure
4.27.

solid lines are the results with the inclination and without inclination, respectively.
Figure 4.33 shows that the observed angular momentum of the cores increases with
time. This is because the gas with larger angular momentum accretes onto the
core at later stages.
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Figure 4.32: Effect of accretion along the filament axis on the apparent measured
angular momentum of the core. The vertical axis is the ratio of the core angular
momentum measured in the line of sight velocity map with inclination with respect
to that without inclination. The horizontal axis is the minimum density for the
definition of core. Please note that the core definition adopted here differs
from that used in Section 4.2.2.
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Figure 4.33: Averaged time evolution of specific angular momentum measured
in line-of-sight velocity maps such as Figure 4.25 and 4.26. In this plot, we
measure the 2d angular momentum in the line-of-sight velocity map
whose area is 0.05pc × 0.05pc at each time step. Note that, since the
size of area of the line-of-sight velocity map is fixed in this measurement,
the mass contained in the region increases with time. The horizontal axis
is the maximum density of the core, and the vertical axis is the specific angular
momentum measured in line-of-sight velocity maps. The solid line is the specific
angular momentum evolution that is averaged over all cores. The red solid line
and blue solid line are the results with the inclination and without inclination,
respectively.
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Figure 4.34: Comparison of averaged j-M profile. The blue, red, orange, and
green solid lines are j-M relations with σ = 0.5cs, σ = 0.7cs, σ = cs, and σ = 2cs,
respectively. The black dashed line is j ∝ M .

4.3.4 Dependence on the Turbulence of the Velocity Field

In this subsection, we discuss the dependence of the results shown in the previ-
ous section on the initial velocity dispersion of turbulence. First, we discuss
the dependence of the j-M relation on the initial 3D turbulent velocity
dispersion σ in the filament. Figure 4.34 displays the comparison of averaged
j-M profile. The blue, red, orange, and green solid lines are j-M relations with
σ = 0.5cs, σ = 0.7cs, σ = cs, and σ = 2cs, respectively. Figure 4.34 shows that,
with larger initial velocity dispersion, a wider portion of the j-M profile con-
verges to the self-similar solution. Figure 4.35 displays the comparison of the
observed j-r relation without inclination of filament (left) and with inclination of
filament (right). Figure 4.35 clearly shows that larger specific angular momentum
is observed in the filaments with larger initial velocity dispersion.

4.3.5 Properties of Cores Defined by Density Contours

So far, we use only one core from each filament to compare the core properties at
the same evolutionary stage of the cores. However, in reality, we observe all cores
formed in each filament. In this subsection, we show the properties of all cores
formed in the filaments at the same evolutionary stage of the filaments using the
same density contour value in all simulations. The cores shown in this subsection
have different masses. By adopting 1 ρc as the minimum density for the
definition of core, we identify 115, 124, 101, and 52 cores at 2, 3, 4, and
5 tff , respectively. For the case of 2ρc, we identify 51, 79, 93, and 45
cores at 2, 3, 4, and 5 tff , respectively. When we choose much higher
density threshold, 3 ρc, we identify 20, 44, 69, and 39 cores at 2, 3, 4,
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Figure 4.35: Comparison of the observed j-r relation without inclination of fila-
ment (left) and with inclination of filament (right). The orange and green solid
lines are observed j-r relations with σ = cs and σ = 2cs, respectively. The black
dashed line and dotted line are j ∝ r1.5 and j ∝ r2 just for comparison.

and 5 tff , respectively. The reason why the number of core is small at
5 tff is that we stop the simulations when the maximum density of the
core reaches the first core formation density. Some of the simulations
finish before 5 tff .

Figure 4.36 displays j-M diagram for all cores in our simulations. The verti-
cal axis and horizontal axis are the specific angular momentum and the mass of
core, respectively. The red, blue, green, and magenta symbols represent the cores
defined at t = 2, 3, 4, and 5 tff , respectively. The plus, star, and circle symbols
represent the critical density used for definition of core (1, 2, and 3ρc). The black
dots are observational data. The black dashed line is j ∝ M . The black solid line
is fitting result for all cores in the simulations. The fitting result is j ∝ M0.72±0.02.
Figure 4.37 is the j-R diagram for all cores in our simulations. The vertical axis
and horizontal axis are the specific angular momentum and the radius of core,
respectively. The black dashed line and dotted line are j ∝ R1.5 and j ∝ R2,
respectively. The fitting result is j ∝ R2.02±0.04. Figure 4.38 shows β-M diagram
for all cores in our simulations. β = R3Ω2/3GM is the ratio of the rotational
energy to the gravitational energy (e.g., Belloche, 2013b). Ω is calcu-
lated by Equation 4.33. The fitting result is β ∝ M0.18±0.02. These slope values
are different from the results obtained in Section 4.2.4, especially for j-R diagram.
In Figure 4.36, 4.37, and 4.38, since we plot all cores found in our 40 filaments at
the same elapsed time of the simulation (t = 2, 3, 4, and 5tff), we observe the cores
at different evolutionary stage (different central maximum density). That is why
we find the steeper slope in Figure 4.37 compared to that in Figure 4.16 which
shows internal j-r profile.

Figure 4.39 is a histogram of ratio of specific angular momentum derived from
line-of-sight velocity map to that measured in 3D. The horizontal axis is logarith-
mic. Dib et al. (2010) claims that the specific angular momentum is overestimated
by an order of magnitude when measured from the line-of-sight velocity map,
although Zhang et al. (2018) pointed out that the specific angular momentum is
underestimated by a factor of 2 or 3 in synthetic observations. Our result shown in
Figure 4.39 supports the results in Zhang et al. (2018). The average and standard
deviation of the distribution shown in Figure 4.39 are 0.49 and 0.55, respectively.
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Figure 4.36: j-M diagram for all cores in our simulations. The vertical axis and
horizontal axis are the specific angular momentum and the mass of core, respec-
tively. The red, blue, green, and magenta symbols represent the cores defined
at t = 2, 3, 4, and 5tff, respectively. The plus, star, and circle symbols represent
the critical density used for definition of core (1, 2, and 3ρc). The black dots are
observational data. The black dashed line is j ∝ M . The black solid line is fitting
result for all cores in simulations. The fitting result is j ∝ M0.72±0.02.

This is because we cannot observe the component of the angular momentum par-
allel to the line-of-sight-direction. This effect leads to an underestimation of the
angular momentum.
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Figure 4.37: j-R diagram for all cores in our simulations. The vertical axis and
horizontal axis are the specific angular momentum and the radius of core, respec-
tively. The black dashed line and dotted line are j ∝ R1.5 and j ∝ R2, respectively.
The fitting result is j ∝ R2.02±0.04.
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Figure 4.38: β-M diagram for all cores in our simulations. The fitting result is
β ∝ M0.18±0.02.

75



−2 −1 0 1
log j2d/j3d

0

100

200

N
u

m
b

er
of

co
re

s
p

er
b

in

Figure 4.39: Histogram of ratio of specific angular momentum derived from line-
of-sight velocity map to that measured in 3d. The horizontal axis is logarithmic.
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4.4 Summary of this Chapter

In this paper we study the time evolution of core angular momentum using three-
dimensional hydrodynamics SPH simulations. We find that a core tends to lose
about 30% of the angular momentum initially gained from turbulent fluctuations
by the time the maximum density of core reaches the density of a first hydrostatic
core, ρcrit = 2.8 × 10−14g cm−3. We also find that the rotation axis of most cores
are nearly perpendicular to the filament axis. This is because the initial core
shape is elliptical and its longer axis is along the filament axis. The analysis of
the internal structure of the angular momentum of cores shows that the profile of
angular momentum in the cores converges to the self-similar solution (j ∝ M) with
time. The region of the self-similar solution in the cores become wider with larger
velocity dispersion in the initial filament. Moreover, the degree of complexity in
the core slightly decreases with time. However, the complex velocity field survives
even just before the first core formation. We also perform the observations of
simulation results and find that the angular momentum properties of the cores
measured in line-of-sight velocity map is compatible with the observations.
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Chapter 5

Summary and Future Prospects

5.1 Summary of this Thesis

The angular momentum of molecular cloud cores plays an essential role in the star
formation process, for example, driving the outflow/jet, prompt the formation
of multiple formation, and formation of protoplanetary disk. Recent observation
shows that the filamentary structure is ubiquitous in the molecular clouds, so the
molecular cloud cores should be formed in filamentary molecular clouds (André
et al., 2010). However, the origin and detailed evolution of angular momentum of
molecular cloud cores are still unclear. In this thesis, we investigate the origin and
detailed evolution of angular momentum of molecular cloud cores formed through
the filament fragmentation process.

First, we investigate an origin of the angular momentum of molecular cloud
cores formed through filament fragmentation process. To do so, we study the
relation between the velocity field and the resultant angular momentum of core
semi-analytically. Our results show that Kolmogorov velocity power spectrum
model can reproduce the observed angular momentum of cores. The anisotropic
velocity fluctuations model can also reproduce the observed angular momentum
of cores. We stress that the amplitude of velocity fluctuations of our model is
subsonic (transonic). This is consistent with observations of velocity fluctuations
(Hacar & Tafalla, 2011; Hacar et al., 2016). Inutsuka (2001) shows that, if the
line mass fluctuations along the filaments follows Kolmogorov power spectrum,
Salpeter slope of core mass function can be reproduced using Press-Schechter for-
malism. Therefore, we can explain the mass distribution and angular momentum
distribution of core if we adopt Kolmogorov turbulence as initial condition.

Next, we investigate whether our Kolmogorov turbulence model is consistent
with filament formation simulations or not. Using data from Inoue et al. (2018)
and Abe et al. (2021) that investigate the filament formation mechanism in in-
homogeneous molecular cloud swept by shock wave, we identify the filament axis
and derive the power spectra of line mass and velocity along the filament. The
results of our analysis show that line mass and velocity power spectra along the
filaments follow Kolmogorov power spectrum. In addition, observations support
our results. Roy et al. (2015) measure the line mass power spectrum along the
filements using Herschel data. Their result is also compatible with Kolmogorov
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power spectrum. This indicates that the filament formation scenario can explain
the mass distribution and angular momentum distribution of core.

Finally, since Misugi et al. (2019) assume the conservation of angular momen-
tum to derive it analytically, we study the time evolution of angular momentum of
molecular cloud core. To do so, we perform the three-dimensional simulations us-
ing smoothed particle hydrodynamics (SPH) method. As a result, we find that the
angular momenta of cores change only by 30% in their formation process. We also
find that most of the cores rotate perpendicular to the filament axis. In addition,
we analyze the internal angular momentum structure of cores. Although the cores
gain various angular momentum from the initial turbulent velocity fluctuations in
the filament, the angular momentum profile in a core converges to the self-similar
solution. We also show that the degree of complexity of the angular momentum
structure in a core decreases over time. Moreover, we perform synthetic obser-
vation and show that the angular momentum profile measured from the mean
velocity map is compatible with the observations. We also find the candidate of
wide binary whose separation is ∼8000AU formed by adjacent cores in filaments.

In next section, we explain our future works.

5.2 Future Prospects

5.2.1 Effect of Magnetic field

While in reality the filaments are threaded by magnetic field (Sugitani et al., 2011;
Palmeirim et al., 2013), our study have not yet included the effect of magnetic field.
Although the magnetic field impact on the angular momentum transfer due to
magnetic braking in the protostar formation phase, how much angular momentum
is transferred by magnetic field in filament fragmentation phase is still unclear.
The implementation of magnetic field in Godunov SPH has already been studied
(Iwasaki & Inutsuka, 2011, 2013; Tsukamoto et al., 2013). By including the effect
of magnetic field in our SPH code, we will investigate the role of magnetic field
in angular momentum transfer during filament fragmentation. Moreover, while
large scale magnetic field is perpendicular to the filament axis, recent observation
show that the structure of core scale magnetic field is more complex and has kind
of random distribution (Eswaraiah et al., 2021). Since our simulation include the
effect of turbulence, this kind of complex magnetic structure is expected to be
appear in core scale once we include the effect of magnetic field in our simulation.
In addition, recently the angle between the filament axis and the outflow launched
from protostar is often discussed in observational papers (Stephens et al., 2017;
Kong et al., 2019; Feddersen et al., 2020; Baug et al., 2020). These observations
show that the outflow direction is perpendicular or random with respect to filament
axis, not parallel. This tendency is also investigated by our future calculations.
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5.2.2 Formation of Multiple System

Statistical properties of multiple system should be also explained theoretically.
For example, observations show that the mean separation of multiple system is
weakly increasing function of mass (Duchêne & Kraus, 2013). There is no theory
to explain the reason why this kind of statistical properties of multiple system
are observed, so the theoretical explanation is not enough, especially for wide
binary. Some numerical simulations reproduces the wide binary system (Li et al.,
2018), but the formation mechanism is not well understood theoretically. We will
tackle on the statistical properties of wide binary system in future. Actually, the
candidate of wide binary has already been observed in our simulation. Using sink
particle technique, we will do long term calculation to trace the evolution of this
kind of wide binary system in future.

5.2.3 Application for Massive Star Formation

One of the most important study is to investigate the formation process of massive
stars. Massive star plays important role in the evolution of interstellar medium
and galaxy because massive stars scatter heavy elements. However, the relation
between massive star formation and filamentary structure is not theoretically un-
derstood since theoretical previous works adopt the spherical symmetrical cloud
as the initial condition (e.g., Krumholz et al., 2009). Recent observations show
that the massive protostars are formed in hub structure which is a intersection of
multiple filaments (Kumar et al., 2020), so the filament structure plays an essential
role in not only the low mass star formation but also high mass star formation
process. Therefore, we will extend our current research for low mass star formation
process to high mass star formation process.
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Appendix A

Derivation of Equations

A.1 Derivation of R(k;Lcore)

In this appendix, we show the detailed derivation of the Fourier component of
the position R(k;Lcore) of Equation 2.10. Using the Bessel Functions of the first

kind J
(1)
B , J

(2)
B and the spherical Bessel functions j

(0)
B , j

(1)
B , the x-component of

R(k;Lcore) is

Rx(k;Lcore) = −Rfil
kx
kr

j
(0)
B (X)

J
(2)
B (Y )

Y
, (A.1)

the y-component of R(k;Lcore) is

Ry(k;Lcore) = −Rfil
ky
kr

j
(0)
B (X)

J
(2)
B (Y )

Y
, (A.2)

the z-component of R(k;Lcore) is

Rz(k;Lcore) = −Lcore

2
j
(1)
B (X)

J
(1)
B (Y )

Y
, (A.3)

where X ≡ kzLcore/2, Y ≡ krRfil, and kr =
√

k2
x + k2

y. The kx, ky, and kz are the
wavenumber of x, y, and z directions, respectively. To derive these expressions,
we have used the following equations (Abramowitz & Stegun, 1965):

d

dx
[x−νJ

(ν)
B (x)] = −x−νJ

(ν+1)
B (x), (A.4)

d

dx
[x−νj

(ν)
B (x)] = −x−νj

(ν+1)
B (x), (A.5)

j
(0)
B (X) =

1

Lcore

∫ Lcore/2

−Lcore/2

dz exp(ikzz), (A.6)
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J
(0)
B (Y ) =

1

2π

∫ π

−π

dϕ exp(ikrr cosϕ), (A.7)

J
(1)
B (Y ) =

kr
Rfil

∫ Rfil

0

J
(0)
B (krr)rdr, (A.8)

where ν denotes the index of Bessel Function. In this paper we consider only
integer values of ν.

A.2 Derivation of Equation 2.25

In the following we detail the derivation of Equation 2.26. Using Equation 4.4,
Equation 2.24 can be written as,

ṽ(kz) =
1

Lz

∫ Lz/2

−Lz/2

∑

k′x

∑

k′y

∑

k′z

V (k′) exp(ik′ · x) exp(−ikzz)dz

=
1

Lz

∑

k′x

∑

k′y

∑

k′z

V (k′) exp(ik′xx + ik′yy)

×
∫ Lz/2

−Lz/2

exp(ik′zz− ikzz)dz, (A.9)

where ṽ(kz) is the 1D Fourier component of the velocity field and V is the 3D
Fourier component of the velocity field. Here, x and y are the cloud coordinates in
the x-y plane perpendicular to the filament axis. Since we take the limit Rfil → 0,
we do not take the integration in the x-y plane in this appendix (cf., Equation

2.23). Since
∫ Lz/2

−Lz/2
exp(ik′

zz − ikzz)dz = Lzδkz ,k′z , where δkz ,k′z is the Kronecker

delta, Equation A.9 can be rewritten as

ṽ(kz) =
∑

k′x

∑

k′y

∑

k′z

V (k′) exp(ik′xx + ik′yy)δkz,k′z . (A.10)

Finally, ṽ can be written as,

ṽ(kz) =
∑

k′x

∑

k′y

V (k′
x, k

′
y, kz) exp(ik

′
xx + ik′yy). (A.11)

Using Equation 2.3 and Equation A.11, we can derive Equation 2.26.

A.3 Derivation of Equation 4.11

In this appendix, we detail the derivation of Equation 4.11. We consider the
turbulent velocity field

v(x) =
∑

k

V (k) sin(k · x+ ϕk), (A.12)
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where V (k) is the Fourier transform. Using Equation A.12, Equation 4.10 can be
written as follows:

J = ρ
∑

k

∫
r × V (k) sin(k · x+ ϕk)d

3x (A.13)

= ρ
∑

k

V (k)× ∂

∂k

∫
cos(k · x+ ϕk)d

3x. (A.14)

Using the addition theorem and change of variables x′ = (a1x, a2y, a3z), Equation
A.14 can be written as

J = ρa1a2a3
∑

k

cosϕkV (k)× ∂

∂k

∫
cos(k′ · x′)d3x′, (A.15)

where k′ = (kxa1, kya2, kza3). We can easily calculate the integration,

J = 4πρa1a2a3
∑

k

cosϕkV (k)× ∂

∂k

sin y − y cos y

y3
, (A.16)

where y = |k′|. Then we can evaluate the derivative in Equation A.16,

J = −12πρa1a2a3
∑

k

cosϕkV (k)×
(
sin y

y4
− cos y

y3
− sin y

3y2

)
∂k′

∂k
(A.17)

= −M

5

∑

k

V (k)× k′′f(y) cosϕk. (A.18)

This is the exactly same with Equation 4.11.
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