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1 Introduction

1.1 BCS theory

Superconductivity is an interesting phenomenon in condensed matter physics. In the super-
conducting (SC) state below critical temperature Tc, the resistivity becomes zero. At the
same time, the magnetic field is rejected from the material. It is called the Meissner effect.
Superconductivity was found by Kamerlingh Onnes in 1911. However, its microscopic mech-
anism had not been clarified for a long time until the BCS theory is proposed in 1957 by
Bardeen, Cooper, and Schrieffer.

Here, we explain the outline of the BCS theory. In the BCS theory, we consider the
following Hamiltonian:

H =
∑
k

εkc
†
k,σck,σ +

∑
k,k′

Vk,k′c
†
k,↑c

†
−k,↓c−k′,↓ck′,↑, (1)

where c†k,σ (ck,σ) is the creation (annihilation) operator for electron with wave vector k and
spin σ. The second term is the attractive electron-electron interaction. In BCS supercon-
ductors, the origin of attractive interaction is the electron-phonon interaction. Because the
electron and crystal lattice have negative and attractive charges, respectively, two electron-
phonon interactions can be an effective electron-electron attractive interaction. If an attrac-
tive interaction exists, the two electrons with (k,↑) and (−k,↓) near the Fermi level form a
pair irrespective of the origin of the attractive interaction. This pair is called the Cooper
pair and the expectation value

∆k =
∑
k′

Vk,k′ < ck′↑c−k′↓ > (2)

becomes finite. Here, ∆k is called gap function, which is the order parameter of the SC. The
Cooper pair can be regarded as a boson because it consists of two fermions. Thus, Cooper
pairs can condense like bosons in low temperature. The coherent behavior of the condensed
Cooper pairs is the origin of the zero resistivity. Next, we can obtain BCS Hamiltonian by
performing the mean-field approximation

H =
∑
k

εkc
†
k,σck,σ +

∑
k

(
∆kc

†
k,↑c

†
−k,↓ +∆∗

kc−k,↓ck,↑

)
=

∑
k

(c†k,↑, c−k,↓)

(
εk ∆k

∆∗
k −ε−k

)(
ck,↑
c†−k,↓

)
, (3)

The second line is called Nambu representation, which is useful to analyze the supercon-
ducting state. By performing diagonalization of the second line, we obtain the excitation
energy

Ek =
√

ε2k + |∆k|2 (4)

4



Therefore, finite energy ∆k is at least needed to excite the ground state. Furthermore, by
considering the effect of finite temperature, the gap function satisfies

∆k(T ) = −1

2

∑
k′

Vk,k′
∆k′√

ε2k′ + |∆k′(T )|2
tanh

(√
ε2k′ + |∆k′(T )|2

2kBT

)
. (5)

For the electron-phonon interaction, we can ignore the k,k′-dependence of V and considering
the Debye frequency ωD,

∆ = 2ℏωD exp

(
− 1

ρV

)
, (6)

where ρ is the density of states at the Fermi level. Thus, large ρ and V make the supercon-
ducting gap larger. The superconducting gap is s-wave in BCS superconductors because the
electron-phonon interaction is isotropic in the wave vector space. The transition temperature
Tc is evaluated as

kBTc ≈ 1.13ℏωD exp

(
− 1

ρV

)
(7)

T -dependence of gap function is obtained as

∆d(T ) = ∆d
0 tanh

(
1.74

√
Tcd

T
− 1

)
. (8)

By using (6) and (7) the relation between the size of gap function at zero-temperature and
Tc is obtained as follows

2∆

Tc

≈ 3.52 (9)

this coefficient is universal in all materials. In addition, the observed jump in heat capacity
at Tc can be explained. In the BCS theory, the upper limit of the critical temperature Tc

is about 40K. However, in 1986, cuprate superconductors that have a higher Tc than the
BCS limit were found and the mechanism of the unconventional superconductivity became
an important issue in condensed matter physics.

1.2 Strongly Correlated Electron Systems

1.2.1 Cuprate superconductors

In the cuprate superconductors, the spin fluctuations mediate the d-wave superconductiv-
ity. Figure 1 shows the schematic diagram of the antiferromagnetic fluctuations in cuprate
superconductors. By doping carrier in the antiferromagnetic (AFM) Mott insulator, AFM
order is suppressed, Eventually, the magnetic order vanishes even at T = 0. This point is
called the magnetic quantum critical point (QCP). Near the QCP, the normal state with
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strong magnetic fluctuations is realized. In strongly correlated electron systems, various un-
conventional superconductivity is induced near QCP. The origin of this AFM fluctuations
is the nesting of the Fermi surface. These AFM fluctuations work as an effective repulsive
interaction between electrons with wave vector k and k + q. Thus, the gap function ∆(k)
and ∆(k + q) has the opposite sign, and the d-wave SC gap is realized. [1–6].

On the other hand, below T ∗, pseudo-gap (PG) is observed as the Fermi arc [7–10], which
is the vanishing of the part of Fermi surface. The mechanism of pseudo-gap is an important
unsolved problem.

In addition, in the normal state of cuprate superconductors, the non-Fermi liquid phe-
nomena such as the T -linear resistivity above the pseudo-gap temperature T ∗ is explained by
the effect of the strong spin fluctuations. [11–14]. Furthermore, the spin fluctuation-driven
quasiparticle scattering strongly increases the Hall coefficient and magnetoresistance [15–17].

In recent years, the axial and uniform charge-density-wave (CDW) is observed in various
optimally- and under-doped cuprate superconductors [18–21]. The mechanism of the CDW
attracts a lot of attention in the field of strongly correlated electron systems. To explain the
CDW mechanism, spin-fluctuation-driven CDW mechanisms have been proposed [22–33]

Because various interesting phenomena are induced by spin fluctuations, it is significant
to clarify how the spin fluctuations are affected by the real-space structures. However, theo-
retical studies have been limited because of its huge numerical calculation cost.

(a) (b)

T

doping, presure

AFM

SC

AFMcheckerboard

CDW

PG
(                )

Figure 1: (a) Antiferromagnetic fluctuations developing in cuprate superconductors. (b)
Schematic diagram of d-wave SC. In the area painted in red (blue), the sign of the gap
function is positive (negative). The yellow arrow represents the AFM fluctuations, which
work as a repulsive interaction between k and k + q. The black curve is the Fermi surface.

1.2.2 Iron-based superconductors

The iron-based superconductor was found in 2008. It has been attracting a lot of attention
because superconductivity is not expected in Fe compounds. To date, many compounds were
found such as LaFeAsO [34], BaFe2As2, LiFeAs, and FeSe. The crystal structure consists of
a block layer and a 2-dimensional conducting layer. The conducting layer is composed of
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Fe and pnictogen. In iron-based superconductors, the band structure near the Fermi level
consists of multiple Fe 3d orbitals. Thus, we must treat them as a multi-orbital system,
while cuprate superconductors can be treated as a single orbital system. Figure 2 shows
the phase diagram of typical iron-based superconductors [35–39]. The blue region below
Ts is the nematic state, where the rotational symmetry broken from C4 to C2. To explain
the nematic order, orbital order due to the interference between the spin fluctuations is
proposed [22, 30, 31]. In almost iron-based superconductors, the stripe antiferromagnetic
order emerges below TN , while FeSe does not have a magnetic phase. Therefore, FeSe is a
favorable system to clarify the relation between superconductivity and nematic order. In
the green region in Fig. 2, superconductivity is realized. The mechanism and symmetry of
superconductivity has been studied actively. The spin fluctuation mediated s±-wave [40–43]
and orbital fluctuation mediated s++ wave [44] are proposed.

T

doping, presure

Nematic state

AFM

SC

AFMstripe

Figure 2: Schematic phase diagram of typical iron-based superconductors. In the blue region
below Ts, nematic order is realized. Below TN, stripe type AFM order is realized. In the
green region, superconductivity is realized.

1.3 Effect of Real-Space structure in Strongly Correlated Electron
Systems

In strongly correlated electron systems, real-space structures such as the surface and impurity
drastically modify the many-body electronic states, and various quantum phenomena are
expected. It is the main theme in this study. For example, the development of local magnetic
moment (∼ 1µB) around the impurity is observed in cuprate superconductors YBa2Cu3O7−x

(YBCO) [45,46] and La2−δSrδCuO4 (LSCO) [47]. By the NMR experiments [48–50], strongly
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enhancement of the local and the staggered spin susceptibilities are observed around the
impurity site. In addition, dilute nonmagnetic impurities cause huge residual resistivity
beyond the s-wave unitary scattering limit in cuprate superconductors [51] and heavy-fermion
systems [52, 53]. Thus, the system approaches the magnetic quantum-critical point (QCP)
by introducing dilute point defects. [54].

To examine the exotic electronic state created by the impurities, it is important to con-
struct theoretical methods of analyzing the strongly correlated metals without translational
symmetry. Many theoretical studies on the effects of point impurity in cuprates have been
performed [55–61]. In the random-phase-approximation (RPA), enhancement of the antifer-
romagnetic spin susceptibility near a defect is reproduced for nonlocal impurity site, while
spin susceptibility is suppressed for local impurity [59–61]. By considering the site-dependent
self-energy based on the GVI method, impurity-induced enhancement of AFM fluctuations
is obtained even if the impurity potential is local [54].

Next, we explain the intuitive physical picture of impurity-induced strongly correlated
states. Due to the Friedel oscillation, the local density of states (LDOS) is modified around
an impurity, and the LDOS increases at some sites as shown by the red circle in Fig. 3
(b). In these sites, strong electron correlation is realized. These results indicate that the
open edge of the cluster Hubbard model strongly enhances the AFM fluctuations because
the edge can be regarded as the aligned impurity sites in a straight line. The effect of the
nonmagnetic impurities and open edges in graphene have been discussed in Refs. [62, 63].
However, detail behavior of spin fluctuations in the “open edge cluster Hubbard model” have
not been analyzed yet.

D
O
S

r

impurity

Strong Correlation Sites

Figure 3: Strong correlation sites created by the Friedel oscillation around an impurity The
red circle represents strong correlation sites, which is driven by the increase of LDOS.

1.4 Andreev Bound State

In the superconducting state surfaces or interfaces cause various interesting phenomena. For
example, the surface Andreev bound state (ABS) is a drastic phenomenon peculiar in the
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anisotropic superconductor. It is originated from the sign change in the bulk superconducting
gap. In dx2−y2-wave superconductors, the ABS is formed at the (1, 1) edge or interface.
[64–69]. The ABS is formed when the quasiparticle feels sign change of gap function before
and after the reflection by the edge as shown in Figure 4. (1, 1) edge is the most favorable
direction for the formation of the ABS. On the other hand, ABS completely vanishes for (1, 0)
edge, because the quasiparticle feels the same sign through the reflection process. For dx2−y2-
wave superconductors, ABS has flat dispersion at zero energy. Thus, the LDOS increases
at the Fermi level near the edge. The ABS is observed by scanning tunneling spectroscopy
(STS) experiments as the zero-bias conductance peak [71–75] Because of the large increase in
the LDOS, enhancement of the electron correlation is expected. However, the effects of ABS
on the electron correlation have not been clarified yet. Furthermore, time-reversal symmetry
breaking (TRSB) SC state can be induced by the real space structure such as a surface or
an interface. For example, emergence of d ± is-wave SC is predicted at the (1, 1) edge of a
d-wave superconductor [76–78]. In this case, the edge-induced s-wave gap has non-zero phase
difference π/2 measured from the bulk d-wave gap. The real-space structure induced TRSB
SC state has been studied in polycrystalline YBCO [79] or twined iron-based superconductor
FeSe in the nematic phase [80]. However, the origin of the pairing interaction of edge-induced
SC is not evaluated microscopically. To understand such surface or interface-induced SC, we
have to study the effect of the ABS on the spin fluctuations, which can work as the pairing
interaction of surface-induced SC.

+

−

(1
,1

) 
e
d
g
e

Figure 4: Andreev bound state of d-wave superconductor. The red and blue arrows represent
the injection and reflection direction of quasiparticle, respectively. The bulk d-wave gap works
as the positive (negative) potential to the injection (reflection) quasiparticle.

1.5 Singlet and Triplet Superconductivity

Superconductivity is realized by the condensation of cooper pairs. The Cooper pair consists
of two electrons. The possible total spin of the Cooper pair is S = 0 or S = 1 as shown in
Figure 5. S = 0 case is called spin singlet superconductivity and S = 1 case is called spin
triplet superconductivity.
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spin singlet spin triplet

S=0 S=1

Figure 5: Spin singlet and triplet Cooper pairs. Singlet gap is odd for exchange of spins,
while triplet gap is even for exchange of spins.

The order parameter of the superconductivity is called gap function. It is represented as
∆σρ(k) ≈ V < ckσc−kρ >, where ckσ is the annihilation operator. V is the pairing interaction.
σ and ρ are the spin index. Due to the Fermion anticommutation relation, all type of gap
functions satisfy

∆σρ(k) = −∆ρσ(−k) (10)

The definition of the singlet superconductivity is

∆singlet
σρ (k) = −∆singlet

ρσ (k). (11)

From (10) and , the singlet gap is even parity in the space.

∆singlet
σρ (k) = +∆singlet

σρ (−k) (12)

Thus, singlet s-wave, d-wave, · · · are allowed as the singlet superconductivity. On the other
hand, the definition of the triplet superconductivity is

∆triplet
σρ (k) = +∆triplet

ρσ (k). (13)

From (13) and (14), the triplet gap is odd parity in the space

∆triplet
σρ (k) = −∆triplet

σρ (−k). (14)

Thus, triplet p-wave, f -wave, · · · are allowed as the triplet superconductivity. Above relations
are summarized in table 2. In the BCS theory, phonon mediates the spin singlet s-wave
superconductivity. d-wave superconductivity in cuprate is also spin singlet superconductivity.
On the other hand, spin triplet superconductivity is rare. In the superfluidity of 3He, spin
triplet state is realized. Also, UPt3 are the candidates of the spin triplet superconductivity.

s-wave p-wave d-wave

Figure 6: Various k-dependence of superconducting gap function. s and d-wave gap have
even parity for k → −k, while p-wave gap has odd parity.
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Table 1: Difference between singlet and triplet superconductivity.

Spin

TripletSinglet

Odd

Fermion

anticommutation 

relation

Wave number

Even

OddEven

Odd

In strongly correlated electron systems, spin and charge fluctuations can be the effective
interaction of the superconductivity [81]. For singlet superconductivity, they work as

V singlet(q) =

(
3

2
χs(q)− 1

2
χc(q)

)
. (15)

For triplet superconductivity, they work as

V triplet(q) =

(
−1

2
χs(q)− 1

2
χc(q)

)
. (16)

The sign and coefficient of spin susceptibility in V are different in singlet and triplet cases.
When strong spin fluctuations develop at wave vector q, the gap equation is approximately
represented as

∆(k) ∝ −∆(k + q)V (q). (17)

For large ferromagnetic fluctuations, V singlet ≈ 3
2
χs(q = 0) works as repulsive interaction.

It suppresses the singlet superconductivity. ∆singlet(k) ∝ −∆singlet(k)χs(q = 0) However,
for the the triplet superconductivity V is works as an attractive interaction ∆triplet(k) ∝
+∆triplet(k)χs(q = 0) Therefore, when the strong ferromagnetic (FM) fluctuations develop,
the triplet superconductivity can be realized [82–86].

1.6 Odd-frequency superconductivity

In the previous subsection, we implicitly assumed that the gap function is even for frequency
iεn. However, the gap function with odd-frequency dependence is not prohibited by the
fermion anticommutation relation. This odd-frequency gap function is also odd function for
relative time between paring electrons. As shown in Figure 7, Cooper pair is formed only
for non-zero relative time t, while superconducting correlation vanishes at t = 0. Table 2
shows the possible superconductivity including the frequency. To satisfy the fermion anti-
commutation relation, four combinations are allowed. The mechanisms and properties of the
odd-frequency SC states have been actively discussed by many theorists [87–99].
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relative time

Figure 7: Time-dependence of odd-frequency gap function. t is the relative time between
two electrons. The red line represents odd-frequency gap function in t-representation ∆(t).

Theoretically, it is proposed that the FM (AFM) spin fluctuations can be a pairing in-
teraction of odd-frequency s wave triplet (p wave singlet) SC [96, 100–104]. However, if we
assume Hermite odd-frequency gap, bulk odd-frequency SC state is inevitably unstable due
to the “paramagnetic Meissner (para-Meissner) effect” [88,89,105]. Because of the difference
in the sign of the Meissner kernel, the magnetic field is infinitely taken into the inside of
the bulk off-frequency superconductor. To overcome this problem, inhomogeneous SC states
with large center of mass momentum of the gap function have been considered [106]. In con-
trast, a homogeneous non-Hermite odd-frequency gap function with usual Meissner has been
proposed [97–99]. However, coexistence between Hermite and non-Hermite odd-frequency
“pair amplitudes” yields unphysical imaginary part of Josephson current and superfluid den-
sity [94]. At present, the essential properties of the odd-frequency gap function has not
been revealed yet. To address this unsolved problem, study on the coexisting states of the
odd-frequency and “well-known” even-frequency gap functions should be valuable.

It is known that odd-frequency pair amplitude can be induced from conventional even-
frequency superconducting gap by introducing external symmetry breaking. In supercon-
ductor/ferromagnet junction, the breaking in spin-rotational symmetry induces the odd-
frequency spin-triplet s-wave pairing from conventional spin-singlet one. [107–118]. On the
other hand, odd-frequency pair amplitude is also induced from bulk even-frequency super-
conducting gap by introducing translational symmetry breaking [91, 119–122]. In this case,
spin-singlet odd-parity (spin-triplet even-parity) pairing can be generated from spin-singlet
even-parity (spin-triplet odd-parity) bulk superconductors [91, 119–122]. In these cases, the
anomalous proximity [123, 124] and para-Meissner effects [125–130] are induced even if the
sodd wave gap function is zero. In particular, the odd-frequency amplitude is enlarged by
the zero-energy surface Andreev bound state (SABS), and it can induce the sodd wave gap
function through the enhancement of electron correlation effect in this study. In this thesis,
we study the edge-induced odd-frequency superconducting gap function in the paramagnetic
state, mediated by strong FM fluctuations.
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Table 2: Possible superconductivity including parity of frequency
TripletSinglet

Even-f Even-f

TripletSinglet

Odd-f Odd-f

Spin

Fermion

anticommutation 

relation

Wave number

Frequency

1.7 The contents of this thesis

To construct a theory of edge induced strong correlation and predict exotic phenomena, we
study the cluster Hubbard model with open edge.

In section 2, we explain the formalism used in this thesis. The detail of the cluster Hub-
bard model Hamiltonian with the open edge is introduced here. Next, we explain the real
space random phase approximation and fluctuation exchange approximation, which is neces-
sary to analyze the open edge model. Then, to analyze the edge induced superconductivity,
we introduce the linearized gap equation in the presence of bulk d-wave SC gap.

In section 3, we explain the edge-induced quantum critical phenomena in the normal
state. By introducing the edge, spin susceptibility is enhanced near the edge, especially for
the (1,1) edge. The mass-enhancement factor and the damping are also enhanced near the
edge.

In section 4, we explain the Andreev bound state induced quantum critical phenomena.
To examine the electron correlation near the edge, we perform the real space RPA in the
presence of the bulk d-wave SC gap. The ABS plays an important role in the development
of the ferromagnetic fluctuations near the edge. It is a favorable situation for the emergence
of triplet superconductivity.

For the possible edge-induced triplet superconductivity, both even-f and odd-f supercon-
ductivity have to be considered. In section 5, we discuss the edge-induced even frequency
triplet superconductivity. We analyze the linearized gap equation, and time-reversal symme-
try breaking d+ ip wave SC state is obtained

In section 6, we discuss the edge-induced odd frequency triplet superconductivity. By
analyzing the linearized gap equation, we obtain the odd-frequency SC gap localized at the
edge. In the d + sodd-wave state, spin current flows along the edge. In addition, we explain
the Hermite relation is the correct relation for the triplet superconductivity.

In section 7, we study the nematic state of iron-based superconductor FeSe. We analyze
the DW equation for dxz, dyz, and dxy orbitals, and the orbital polarization dxz between dyz
and d-wave bond order for dxy are obtained. In this case, the Y electron pocket vanished in
the nematic state, and the observed Fermi surface is reproduced.
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2 Model

2.1 Cluster Hubbard model with edge

In this study, we consider following cluster Hubbard model Hamiltonian

H =
∑
i,j,σ

ti,jc
†
iσcjσ + U

∑
i

ni↑ni↓ +
∑
i,j

∆d
i,j

(
c†i↑c

†
j↓ + h.c

)
, (18)

where U is the on-site Coulomb interaction. niσ = c†iσciσ is the number operator of electron
at site i. ti,j denotes the hopping integral between sites i and j. In this study, we set
(t1, t2, t3) = (−1, 1/6,−1/5), where tn is the n-th nearest neighbor hopping integral and this
set of values correspond to YBa2Cu3O7−x (YBCO) model [14,131–133]. In this study, we set
|t1| as the energy unit, which corresponds to ∼ 0.4eV in cuprate superconductors without
renormalization. The Fermi surface (FS) in the periodic system is shown in Fig. 8 (b). ∆d

i,j

is the bulk dxy wave (=dX2−Y 2 wave) SC gap function given as ∆d
i,j = (∆d/4)(δri−rj ,±X̂ −

δri−rj ,±Ŷ ). Similar bulk d wave gap function is microscopically obtained based on spin-

fluctuation theories. Considering this fact, we introduce ∆d as the model parameter to
simplify the analysis. In the following numerical study, we set the filling as n = 0.95. The
numerical results are essentially unchanged for n = 0.8–1.2.

(1,1) edge

2

3

d wave(

4

5

Figure 8: (a) Cluster Hubbard model with (1,1) edge. The orthogonal unit vectors (x̂, ŷ)
and (X̂, Ŷ ) are illustrated. (b) Bulk Fermi surface in the normal state.

To examine the temperature dependence of the system, we suppose that ∆d(T ) obeys the
BCS-like T -dependence:

∆d(T ) = ∆d
0 tanh

(
1.74

√
Tcd

T
− 1

)
, (19)
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where ∆d
0 ≡ ∆d

0(T = 0).
Near the edge layer (y = 1), ∆d

i,j should be suppressed in the range of 1 ≤ y ≤ ξd,
where ξd is the coherence length of the d-wave gap. In order to take into account this
suppression, we multiply ∆d

i,jby the suppression factor (1− exp[(yi + yj − 2)/2ξd]) [133]. For
ξd = 10, we illustrated |∆d

i,j| for i = (x, y) and j = (x + 1, y + 1) in Fig. 9. Based on the
experiments [134–137], the coherence length in the a-b plane of YBCO is evaluated as 1nm
for T ≪ Tcd Therefore, ξd = 10 is reasonable value.

1 10 20 30 40
0

Figure 9: |∆d
i,j| for i = (x, y) and j = (x+ 1, y + 1) for ξd = 10.

2.2 Nambu Green function in the bulk d-wave SC state

In this study, we introduce the 2Ny×2Ny Nambu Green function in the presence of the bulk d

wave gap ∆d
y,y′(kx) ≡ ∆d↑↓

y,y′(kx). To simplify the analysis, we assume that ∆d
i,j is real. Thus,{

∆d
y′,y(kx)

}∗
= ∆d

y,y′(kx) is satisfied. The Nambu Hamiltonian is given as follows [132,133]:

Hd =
∑
kx

(
tĉ†kx,↑,

t ĉ−kx,↓

)( Ĥ0(kx) ∆̂d(kx)

∆̂d(kx) −tĤ0(−kx)

)(
ĉkx,↑
ĉ†−kx,↓

)
, (20)

where ĉkx,↑ and ĉ†−kx,↓ represent the Ny-component column vector of sites. Next, the Green
functions in the bulk d wave SC state are defined as follows:(

Ĝd(kx, iϵn) F̂d(kx, iϵn)

F̂ †
d (kx, iϵn) −tĜd(−kx,−iϵn)

)
=

(
iϵn1̂− Ĥ0(kx) −∆̂d(kx)

−∆̂d(kx) iϵn1̂ +
t Ĥ0(−kx)

)−1

, (21)

where εn = (2n + 1)πT represents the fermion Matsubara frequency. F and F † are the
anomalous Green functions, which are finite only in the superconducting state. The Green
functions G and F are Ny ×Ny matrix of sites.
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2.3 LDOS

To demonstrate the emergence of the ABS in the present (1, 1) edge TB model in the bulk
d-wave SC state, we evaluate the LDOS using the Green function G as follows:

Dy(ϵ) =
1

2π2

∫ π

−π

dkxImGy,y(kx, ϵ− iδ). (22)

Figure 10 shows the obtained LDOS for ∆d(T ) = 0.08 by setting δ = 0.01. For simplicity,
we ignore the suppression of the bulk d-wave gap near the edge. There is a large peak at the
Fermi level (ϵ = 0), at the edge layer (y = 1), due to the ABS. In the bulk (y = 300 = Ny/2),
LDOS is suppressed around the Fermi level due to the d-wave SC gap, and exhibits a V-shape
ϵ-dependence. The height of the zero-energy peak is proportional to the size of bulk d-wave
gap [77]. In the present model, a secondary minor peak emerges at ε = 0.1. It is originated
from a superconducting surface state that is different from the surface ABS. We explain it
in Appendix B.

0
0

1

0.4-0.4

2

3

-0.2 0.2

: (1,1) edge

: bulk

Figure 10: LDOS in the (1, 1) edge cluster Hubbard model in the d-wave SC state for ∆d =
0.08. The unit of energy is |t| = 1. y = 1 and y = 300 correspond to the (1, 1) edge and
bulk, respectively. For convenience, we set δ = 0.01.

2.4 Random Phase Approximation (RPA) in the real space

To evaluate the enhancement of the electron correlation near the edge, we calculate the site-
dependent spin susceptibility χs

y,y′(qx, iωl) using the real-space random-phase-approximation
(RPA). Here, we adopt the kx representation by considering the translational symmetry in
the x direction, and ωl = 2πT l represents the boson Matsubara frequency. The irreducible
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susceptibilities are given by Ĝd, F̂d, and F̂ †
d as

χ0
y,y′(qx, iωl) = −T

∑
kx,n

Gdy,y′(qx + kx, iωl + iϵn) (23)

φ0
y,y′(qx, iωl) = −T

∑
kx,n

Fdy,y′(qx + kx, iωl + iϵn)Fd
†
y′,y(kx, iϵn). (24)

φ0 is finite only in the SC state. The Feynman diagram of χ0 and φ0 are represented by
bubble diagram illustrated in Figure 11.

G

G

+

Figure 11: Diagram of the irreducible susceptibility, χ0 or φ0, in the (kx, y, y
′) representation.

The line with an arrow is G. The line with two arrows is F or F †.

The Ny ×Ny matrix of the spin (charge) susceptibility χ̂s(c) is calculated using χ̂0 and φ̂0

as

χ̂0s(c)(qx, iωl) = χ̂0(qx, iωl) + (−)φ̂0(qx, iωl), (25)

χ̂s(c)(qx, iωl) = χ̂0s(c)(qx, iωl)
{
1̂− (+)Uχ̂0s(c)(qx, iωl)

}−1
. (26)

The spin Stoner factor is the largest eigenvalue of Uχ̂0s(qx, iωl) at ωl = 0. The magnetic order
is realized when αS ≥ 1. The spin and charge fluctuations can mediate superconductivity
and the pairing interaction for triplet SC is given by

V̂ (qx, iωl) = U2

(
−1

2
χ̂s(qx, iωl)−

1

2
χ̂c(qx, iωl)

)
.

(27)

2.5 Fluctuation Exchange approximation (FLEX) in the real space

In the FLEX approximation, the self-energy effect due to the spin and charge fluctuations is
considered self-consistently. The self-energy is given by

Σy,y′(kx, ϵn) = T
∑
qx,l

Gy,y′(kx + qx, ϵn + ωl)Vy,y′(qx, ωl), (28)

17



where V̂ FLEX(qy, ωl) = U2

(
3

2
χ̂s(qy, ωl) +

1

2
χ̂c(qy, ωl)− χ̂0(qy, ωl)

)
. Figure 12 shows the di-

agram of self-energy Σx,x′(ky, ϵn). In this real-space analysis, the FLEX self-energy also has
site dependence. In the FLEX approximation, we solve Eqs. (23)-(28) self-consistently.

Figure 12: Diagram of the FLEX self-energy Σy,y′(kx, ϵn). The line with an arrow is Green
function G. The wavy curve corresponds to V FLEX.

Based on the FLEX self-energy, we can evaluate the site-dependent mass-enhancement
factor Z and quesiparticle damping γ as follows.

γx =
1

2π

∫ π

−π

dkxImΣy,y(kx, 0− iδ) (29)

Zy = 1− 1

2π

∫ π

−π

dkx
∂

∂ϵ
ReΣy,y(kx, ϵ− iδ)|ϵ=0, (30)

When the strong electron correlation develops, Zy increases from 1, while Zy = 1 for U = 0.
The self-energy also renormalizes the bulk d-wave gap. In this approximation, we evaluated
the renormalized bulk d-wave gap by ∆d

0
∗
= ∆d

0/Zbulk, where Zbulk is the on-site mass-
enhancement factor in the bulk.

2.6 Modified FLEX (GV I-FLEX) approximation

Next, we explain the modified FLEX (GV I-FLEX) approximation developed in Ref. [54].
In the conventional FLEX approximation, the negative feedback effect of self-energy on χ̂
is overestimated near the impurity due to the absence of vertex corrections. In fact, vertex
corrections suppresses the negative feedback effect of the FLEX self-energy near the impu-
rity [54]. In the modified FLEX, the cancellation between negative feedback and vertex
corrections is assumed, and then enhancement of spin susceptibility is reproduced for single
impurity problem [54].

To perform the modified FLEX in the present model, we first calculate the self-energy in
the periodic system without the edge, Σ0(kx, ky, iεn), using the conventional FLEX approx-
imation. Then, its (kx, y, y

′)-representation Σ0(kx, y, y
′, iεn) = Σ0(kx, y − y′, iεn) is obtained

by Fourier transformation in y-direction, Next, the Green functions are calculated by using
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(1, 1) edge model hamiltonian Ĥ0(kx) and self-energy Σ0(kx, y, y
′, iεn) as follows:(

ĜI(kx, ϵn) F̂ I(kx, ϵn)

F̂ I
†
(kx, ϵn) −ĜI(kx,−ϵn)

)
=

(
ϵn1̂− Ĥ0(kx)− Σ̂0(kx, iεn) −∆̂d(kx)

−∆̂d(kx) ϵn1̂ + Ĥ0(kx) + Σ̂0(kx,−iεn)

)−1

.

(31)

The spin susceptibility is calculated using ĜI , F̂ I , and F̂ I
†
instead of Ĝ, F̂ , and F̂ † in

Eqs.(23)–(26) in the GV I-FLEX.

2.7 Nambu representation for coexisting SC state in (kx, y, y
′)-representation

In this subsection, we explain the Nambu representation in the coexisting SC state to analyze
the edge-induced superconducting state. When the bulk d-wave gap ∆y,y′(kx) ≡ ∆↑↓

y,y′(kx)

defined in (48) and the edge triplet gap ϕy,y′(kx) ≡ ϕ↑↓
y,y′(kx) are both finite, Hamiltonian is

given by

H =
∑

k,y,y′,σ

H0
y,y′(kx)c

†
kx,y,σ

ckx,y,σ +
1

2

∑
kx,y,y′,σρ

{
Dσρ

y,y′(kx)c
†
kx,y,σ

c†−kx,y′,ρ
+ h.c.

}
, (32)

where Dσρ
y,y′(kx) is the total gap function, which includes both singlet d-wave gap and triplet

gap. σ and ρ represent the spin index. In this study, we ignore the spin orbit interaction for
simplicity. Thus, we can set the d-vector as d̂(kx) = (0, 0, ϕ̂(kx)), where hat means Ny ×Ny

matrix of sites. Then, the total gap is given by

D̂(kx) = id̂0(kx)σ2 + id̂(kx) · σσ2

=

(
0 ∆̂(kx) + ϕ̂(kx)

−∆̂(kx) + ϕ̂(kx) 0

)
, (33)

where σ = (σ1, σ2, σ3) is the Pauli matrix for spin space. Then, the 2Ny × 2Ny Nambu
representation is obtained as follows:

H =
∑
kx

(
tĉ†kx,↑,

t ĉ−kx,↓

)( Ĥ0(kx) D̂↑↓(kx){
D̂↑↓(kx)

}†
−Ĥ0(−kx)

)(
ĉkx,↑
ĉ†−kx,↓

)
, (34)

where ĉkx,↑ and ĉ†−kx,↓ represent the Ny-component column vector of sites. The corresponding
Nambu Green function is given as(

Ĝ↑↑(kx, εn) F̂↑↓(kx, εn)

F̂ †
↑↓
(kx, εn) −tĜ↓↓(−kx,−εn)

)
=

(
iεn − Ĥ0(kx) −D̂↑↓(kx)

−
{
D̂↑↓(kx)

}†
iεn +

tĤ0(−kx)

)−1

. (35)

Ĝ, F̂ , and F̂ † are the Ny×Ny Green function in the coexisting SC state. The Green function

in the band representation Gb in section 5 is obtained by usingthe unitary matrix Û on (73).

19



2.8 linearized triplet gap equation

In the coexisting SC state, the total gap is represented by the anomalous Green function as
follows:

D↑↓
y,y′(kx, iεn) = T

∑
k′x,n

′,σ

V ↑↓σσ̄
y,y′ (kx − k′

x, iεn − iε′n)Fσσ̄
y,y′(k

′
x, iε

′
n), (36)

where V triplet
y,y′ (qx, iωn) is the pairing interaction (76). σ̄ represents the opposite spin to σ.

Because of the large calculation cost of eq. 36, the linearized equation is useful for numerical
analysis. Thus we derive the linearized triplet gap equation in the presence of the bulk d-wave
gap.

First, we extract the triplet component ϕy,y′(kx) from (36) by considering the relation

ϕy,y′(kx) = {D↑↓
y,y′(kx)+D↓↑

y,y′(kx)}/2 Then, we obtain the equation for the triplet gap ϕy,y′(kx)
as follows:

ϕy,y′(kx) = T
∑
k′x,n

V triplet
y,y′ (kx − k′

x, iεn − iε0)F
triplet
y,y′ (k′

x, iεn) (37)

where F triplet
y,y′ (kx, iεn) ≡ {F↑↓

y,y′(kx, iεn) + F↓↑
y,y′(kx, iεn)}/2 is triplet part of anomalous Green

function in the coexisting SC state. V triplet
y,y′ (qx, iωn) ≡ V ↑↓↑↓

y,y′ (qx, iωn) + V ↑↓↓↑
y,y′ (qx, iωn) is the

pairing interaction for triplet SC, which corresponds to (76). Here, we derive the linearized
triplet gap equation in the presence of finite d-wave gap from (37). We expand the full
Nambu Green function in (73) with respect to ϕ̂ and ϕ̂†, using the following identity:

(73) =


(

Ĝ F̂

F̂ † − ˆ̄G

)−1

−
(

0 ϕ̂

ϕ̂† 0

)
−1

=

(
Ĝ F̂

F̂ † − ˆ̄G

)

+

(
Ĝϕ̂F̂ † + F̂ ϕ̂†Ĝ −Ĝϕ̂ ˆ̄G+ F̂ ϕ̂†F̂

F̂ †ϕ̂F̂ † − ˆ̄Gϕ̂†Ĝ −F̂ †ϕ̂ ˆ̄G− ˆ̄Gϕ̂†F̂

)
+ higher order terms of ϕ and ϕ†. (38)

where Ĝ ≡ Ĝ(kx, iεn), F̂ ≡ F̂ (kx, iεn), F̂
† ≡ F̂ †(kx, iεn),

ˆ̄G ≡ tĜ(−kx,−iεn) are the Green
function in the pure d-wave SC state introduced in (54). The second term in the right-hand-
side of (38) is the first order terms of ϕ̂ and ϕ̂†. Because F̂ satisfies the relation in (55),

we obtain the relation F̂ triplet = −Ĝϕ̂ ˆ̄G+ F̂ ϕ̂†F̂ . By substituting it into (37), we obtain the
linearized triplet gap equation in the presence of bulk d-wave gap, equation (74).

λedgeϕy,y′(kx, iϵn) = −T
∑

k′x,Y,Y
′,m

Vy,y′(kx − k′
x, iϵn − iϵm)

×{Gy,Y (k
′
x, iϵm)ϕY,Y ′(k′

x, iϵm)Gy′,Y ′(−k′
x,−iϵm)

− Fy,Y (k
′
x, iϵm)ϕ

†
Y,Y ′(k

′
x, iϵm)FY ′,y′(k

′
x, iϵm)

}
, (39)
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λedgeϕ†
y,y′(kx, iϵn) = −T

∑
k′x,Y,Y

′,m

Vy,y′(kx − k′
x, iϵn − iϵm)

×
{
GY,y(−k′

x,−iϵm)ϕ
†
Y,Y ′(kx, iϵ

′
m)GY ′,y′(k

′
x, iϵm)

− F †
y,Y (k

′
x, iϵm)ϕY,Y ′(k′

x, iϵm)F
†
Y ′,y′(k

′
x, iϵm)

}
. (40)

(We did not study the singlet gap equation because FM fluctuations suppress spin-singlet
gaps.) The triplet SC state is realized when the eigenvalue λ in eqs. (74) and (75) reaches
unity. Because the odd-frequency pairing state ϕ̂(kx, iϵn) = −ϕ̂(kx,−iϵn) is not prohibited
in principle.

+

+

Figure 13: Diagram of the linearized triplet SC gap equation in the presence of the bulk d-
wave SC gap. The undulating lines are pairing interactions of the triplet superconductivity.
The line with a single arrow represents the Green function Ĝ and the line with double arrows
represents anomalous Green functions F̂ andF̂ †.

In figure 13 the diagrams of the linearized gap equation (74) and (75) are represented.
The pairing interactions V due to spin fluctuations are illustrated by the wavy lines. The
GG terms in the diagram correspond to the conventional gap equation in the normal state.
In this study, we added the FF terms, which corresponds to the coupling effect between bulk
d-wave SC gap and edge-induced triplet gap. Note that we can determine the relative phase
between the bulk d-wave gap and edge triplet gap uniquely because mixing of ϕ̂ and ϕ̂† are
included via the effect of the d-wave gap in FF terms. From the view point of the Ginzburg-
Landau (GL) theory, the diagrams with GG and those with FF in Fig. 13, respectively
correspond to the fourth-order term |∆|2|ϕ|2 or Re{∆2ϕ∗2} in the free energy. The latter GL
term depends on the relative phase between ∆̂ and ϕ̂. and the relative phase is determined
to minimize the free energy.
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3 Edge-induced Strongly Correlated Electronic States

in the normal state

3.1 Introduction

In this section, we study the effect of edge on the electron correlation in the normal state
by evaluating the site-dependence of spin susceptibility and self-energy based on the RPA
and the fluctuation-exchange (FLEX) approximation [1]. In both approximations, the spin
fluctuations are enhanced near the open edge. Especially at the (1, 1) open edge, prominent
FM correlation is developed along the edge. Because of this strong electron correlation, both
the mass-enhancement factor (Z = m∗/m = 1−∂Σ(ϵ)/∂ϵ|ϵ=0) and the quasiparticle damping
(γ = ImΣ(−iδ)) given by the spin-fluctuation-induced self-energy increase near the open edge.
These results can be understood as the emergence of exotic edge electronic states in strongly-
correlated metals, like the quantum-critical phenomena, which induce superconductivity, and
spin-fluctuation-driven CDW order.

3.2 Model and Theoretical Method

In this section, to understand the exotic electronic state induced at the normal state we study
the square-lattice cluster Hubbard model

H =
∑
i,j,σ

ti,jc
†
iσcjσ + U

∑
i

ni↑ni↓, (41)

where U is the on-site Coulomb interaction, and ti,j is the hopping integral between sites i
and j. We set the nearest, the next nearest, the third-nearest hopping integrals as (t, t′, t′′) =
(−1, 1/6,−1/5) for YBCO tight-binding (TB) model, and (t, t′, t′′) = (−1, 1/6, 0) for LSCO
TB model. Figure 14 (a) shows the Fermi surfaces of YBCO and LSCO TB models for the
filling n = 0.95 without edges. Figures 14 (b) and (c) show the cluster models with (1, 0)
and (1, 1) open edges, respectively. In both clusters, the layer y = 1 or Ny is the edge layer.
Both models are periodic along the x direction. The (1, 0) edge cluster model is shown in
Fig. 14 (b). For the (1, 1) edge model, we analyze the one-site unit cell structure shown in
the right-hand-side of Fig. 14 (c).
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Figure 14: (a) Fermi surfaces in the YBCO and LSCO TB models at filling n = 0.95. (b)(c)
Cluster models with (1, 0) and (1, 1) open edges, respectively. To simplify the analysis, we
modified the original (1, 1, ) edge model to the one-site unit cell structure shown in the right-
hand-side of (c). In (b) and (c), the solid lines correspond to the nearest-neighbor bonds
connected by t.

3.3 Site-dependent spin susceptibilities

Hereafter, we explain the result of the RPA and FLEX analyses for the cluster Hubbard
models. The Stoner factor αS is given as the largest eigenvalue of Uχ̂0(qx, iωl) at iωl = 0.
The magnetic order is realized when αS ≥ 1. In both edge models, site number in y-direction
is Ny = 64, and the models have translational symmetry along x-direction. The number of
kx-meshes is Nx = 64, and the number of Matsubara frequencies is 1024. We set the electron
filling n = 0.95, and the temperature T = 0.02. Here, the unit of the energy is |t|, which
corresponds to ∼ 0.4eV in cuprate superconductors without renormalization.

First, we study χ̂s(qx) at iωl = 0 using the RPA. Figures 15 (a) and (b) show the static
RPA susceptibilities χs

y,y(qx) for the LSCO TB model at U = 1.39. The Stoner factor is
αS = 0.804 and αS = 0.900 for (a) (1, 0) edge model and (b) (1, 1) edge model, respectively.
Both open edge system approaches to the magnetic QCP because αS = 0.781 in the periodic
system. In Fig. 15 (a), χs

y,y(qx) in the (1, 0) edge model has the largest peak in the second
layer y = 2, at the wave vector qx = π. Thus, the AFM correlation increases in the second
layer. In Fig. 15 (b), χs

y,y(qx) in the (1, 1) edge model has large peak in the first layer y = 1
at qx = 0. This result means that strong ferromagnetic (FM) fluctuations develop along the
(1, 1) open edge. The obtained FM fluctuations along the edge are consistent with the bulk
AFM correlation between next-nearest-neighbor.

Figures 15 (c) and (d) show the static χs
y,y(qx) for the YBCO TB model at U = 2.13

for (1, 0) and (1, 1) edge model, respectively. The obtained Stoner factor is αS = 0.707
in the (c) (1, 0) edge model, and αS = 0.900 in the (d) (1, 1) edge model, respectively.
Because αS = 0.639 in the periodic system without edge, the spin fluctuations are strongly
enlarged near the edge. The obtained spin susceptibility exhibits the essentially similar
(qx, y)-dependence both in the LSCO and YBCO cluster Hubbard model. i(In Fig. 15 (c),
χs
y,y(qx) has the largest peak in the first edge layer y = 1.) To summarize, strong magnetic

fluctuations are generated by introducing the open edge, insensitive to the detail of the TB
model parameters.

In Figs. 15 (a)-(d), the y-dependence of χs
y,y(qx) is represented, and it well corresponds to
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that Friedel oscillation of the local density-of-states (LDOS),Dy(ϵ) =
1

2π2

∫ π

−π

dkxImG0
y,y(kx, ϵ−

iδ), at ϵ = 0. Therefore, the enhancement of the spin-fluctuation is caused by the increment
in the LDOS due to the Friedel oscillation by the open edge [54].
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Figure 15: (a) χs
y,y(qx) in the (1, 0) edge LSCO model obtained by the RPA (b) LDOS at

the Fermi level Dy(0) in the (1, 0) edge LSCO model y = 1 is the edge layer. (c) χs
y,y(qx) in

the (1, 0) edge YBCO model obtained by the RPA (d) LDOS at the Fermi level Dy(0) in the
(1, 0) edge YBCO model

3.4 FLEX results

Next, we explain the result of χ̂s(qx) using the FLEX approximation, in order to consider
the negative feedback effect due to the site-dependent self-energy. Figures 16 (a) and (b)
show the obtained static χs

y,y(qx) in the LSCO TB model at U = 1.78, in the (a) (1, 0) edge
model and (b) (1, 1) edge model. The Stoner factor αS is 0.900 for both (a) and (b). Note
that αS = 0.896 in the periodic system without edges. Figures 16 (c) and (d) show the static
χs
y,y(qx) in the YBCO TB model at U = 3.54, in the (c) (1, 0) edge model (αS = 0.880)

and (d) (1, 1) edge model (αS = 0.900), respectively. Note that αS = 0.836 in the periodic
system.

Therefore, the edge-induced spin-fluctuation enhancement is also obtained by the FLEX
approximation. In the YBCO TB model, in the (1, 1) edge system, αS increases from 0.836
(0.641) to 0.900 in the FLEX approximation (RPA). Due to the negative feedback between
χs and self-energy, the increment of αS is moderate compared to that in RPA.
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Figure 16: (a)(b) In LSCO TB model: χs
y,y(qx) given by the FLEX approximation (a) (1, 1)

edge model and (b) (1, 0) edge model, respectively. (c)(d) In YBCO TB model: χs
y,y(qx) for

the (c) (1, 0) edge model and (d) (1, 1) edge model, respectively.

3.5 Site-dependent damping and mass-enhancement

Hereafter, we discuss the site-dependence of the self-energy Σ̂(ky, ϵ− iδ) given by the FLEX
approximation. First, we explain the numerical results in the LSCO TB model. Figure 17 (a)

shows the local quasiparticle damping rate at Fermi energy γx =
1

2π

∫ π

−π

dkxImΣy,y(kx, 0−iδ)

in LSCO at U = 1.78. In the (1, 0) edge model, the site-dependence of γy is moderate. In
contrast, γy at the edge (y = 1) takes large value in the (1, 1) edge model, due to the strong
spin fluctuations near the edge. Figure 17 (b) shows the local mass-enhancement factor

Zy = 1 − 1

2π

∫ π

−π

dkx
∂

∂ϵ
ReΣy,y(kx, ϵ − iδ)|ϵ=0. In the (1, 0) edge model, Zy ≈ 1.3 for any

y (≥ 1). On the other hand, in the (1, 1) edge model, Zy increases to 1.75 at the edge.
Next, we show the numerical results in the YBCO TB model. Figure 17 (c) shows the

obtained γy in YBCO at U = 3.54. The increase of γy is obtained in both (1, 0) and (1, 1)
edge models. In particular for the (1, 1) edge model, γy drastically increases to 0.022 at the
edge layer. Figure 17 (d) shows the obtained Zy. In the (1, 1) edge model, Zy increases from
2 in the bulk to 3.2 at the edge.
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Figure 17: Result of FLEX approximation in the (1, 0) edge and (1, 1) edge cluster models
at T = 0.02: (a) Local damping rate γy and (b) local mass-enhancement factor Zy obtained
in the LSCO TB model. (c) γy and (d) Zy obtained in the YBCO TB model. T -dependences
of the FLEX results in the (1, 0) edge and (1, 1) edge cluster models, and in the bulk model
(without edges). (e) Stoner factor αS and (f) maximum local mass-enhancement factor Zmax

obtained in the LSCO TB model. (g) αS and (h) Zmax obtained in the YBCO TB model.

Therefore, by introducing the open edge, strong AFM or FM fluctuations are induced near
the open edge, even if the bulk AFM fluctuations are moderate (αS ∼ 0.9). The induced
strong spin fluctuations give rise to huge quasiparticle damping rate and mass enhancement
near the open edge. These results indicate that various exotic quantum critical phenomena
are expected to emerge near the open edge.

3.6 T -dependences of the electronic states

Finally, we examine the T -dependences of the electronic states in detail based on the FLEX
approximation. Figures 17 (e)-(h) show the Stoner factor αS and the largest local mass-
enhancement factor Zmax = maxx{Zy}. The results in LSCO model are shown in Figs. 17
(e) and (f). Zmax strongly increases as T decreases near (1, 1) edge by reflecting the large χs

at the edge layer shown in Fig. 16 (b). In YBCO model, as shown in Figs. 17 (g) and (h),
both αS and Zmax strongly increase as T decreases by introducing the (1, 1) edge. Therefore,
we predict the edge-induced quantum critical phenomena. In Appendix A we investigate
the filling-dependence of the edge-induced quantum critical phenomena by using the FLEX
approximation. The enhancement of spin fluctuations is obtained for filling n = 0.90−−1.10.
This information can be a guideline to search the edge-induced quantum criticality in real
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materials. We expect that the pseudo-gap behavior due to the large damping is observed
experimentally.

3.7 Summary

In this section, we investigated the effect of the edge in the Hubbard model in the normal
state. We evaluated the site dependence of the spin susceptibility and self-energy by perform-
ing the RPA and FLEX approximation in the real space. The obtained spin susceptibility
is modified by the edge and the strong electron correlation is created near the edge layer.
Especially, for the (1, 1) edge, ferromagnetic fluctuations drastically develop along the edge.
In the FLEX, both the local mass-enhancement factor Zx and the local quasiparticle damping
γy given by the spin-fluctuation-induced self-energy becomes huge near the open edge. Thus,
interesting edge-induced quantum critical phenomena are predicted by the present study.
However, in the framework of the conventional FLEX, the enhancement of χs and γ are
inevitably underestimated because the vertex corrections to the spin susceptibility are not
included [54]. To obtain qualitatively more accurate prediction, the GVI FLEX is a reliable
method because the impurity-enhanced spin fluctuations observed in cuprate are reproduced
by this method [54]. Another important future problem is to study the novel edge-induced
phenomena because the strong spin fluctuations drive the superconductivity and nematic
order proposed in Refs. [22, 24,30,33]
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4 Emergence of edge-induced strong ferromagnetic fluc-

tuations caused by the Andreev bound state in d-

wave superconductors

4.1 Introduction

In this section, we investigate the drastic effects of the ABS on the surface electron corre-
lation. For this purpose, we analyze the two-dimensional cluster Hubbard model with the
(1, 1) edge in the bulk d-wave SC state, and calculate the site-dependent spin susceptibil-
ity by performing random-phase-approximation (RPA) and modified FLEX approximation
(GV I-FLEX) in the real space [54]. In the bulk d-wave SC state, the strong FM fluctuations
are induced at the (1, 1) edge compared to the normal state without bulk d-wave gap. Fur-
thermore, this strong surface ABS-induced FM fluctuations may drive interesting emerging
phenomena, such as edge-induced SC.

4.2 Model

In this analysis, we analyze the square-lattice cluster Hubbard model in the presence of the
d-wave SC gap:

H =
∑
i,j,σ

ti,jc
†
iσcjσ + U

∑
i

ni↑ni↓ +
∑
i,j

∆d
i,j

(
c†i↑c

†
j↓ + cj↓ci↑

)
, (42)

where ti,j is the hopping integral between sites i and j. We set the nearest, next nearest,
and third-nearest hopping integrals as (t, t′, t′′) = (−1, 1/6,−1/5), which correspond to the
YBCO tight-binding (TB) model. c†iσ and ciσ are the creation and annihilation operators of
an electron with spin σ, respectively. U is the on-site Coulomb interaction, and ∆d

i,j ≡ ∆d,↑↓
i,j

is the d-wave SC gap between sites i and j.

4.3 Numerical result of χ̂ and αS by the RPA in real space

Next, we calculate the site-dependent spin susceptibility by the RPA in real space. We set
the number of kx-meshes as Nx = 64, that of sites along the y-direction as Ny = 64 and that
of Matsubara frequencies as Nω = 1024. The electron filling, n = 0.95. We set the Coulomb
interaction as U = 2.25 in the RPA. Here, the unit of energy is |t| = 1, which corresponds
to ∼ 0.4eV in cuprate superconductors. We set the transition temperature for the d-wave
SC as Tcd = 0.04. In addition, ∆max is defined as the maximum value of the d-wave gap
on the Fermi surface. In the present model, ∆max = 1.76∆d

0 for n = 0.95. Experimentally,
4 < 2∆max/Tcd < 10 in YBCO [138, 139]. Therefore, we set ∆d

0 = 0.06 or 0.09, which
corresponds to 2∆max/Tcd = 5.28 or 7.92 for Tcd = 0.04. By performing this analysis, we
show that the FM fluctuations are drastically enhanced by the ABS at the (1, 1) edge, and
the system rapidly approaches a magnetic-order phase.
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First, we explain the site-dependent static spin susceptibility, χ̂(qx, ωl = 0), in the d-wave
SC state using the RPA. Hereafter, χ̂(n) denotes the spin susceptibility in the normal state.
To analyze the origin of the enhancement in the FM fluctuations, we introduce the following
susceptibilities:

χ̂′ = Φ̂′(1− UΦ̂′)−1 (Φ̂′ = χ̂0), (43)

χ̂′′ = Φ̂′′(1− UΦ̂′′)−1 (Φ̂′′ = χ̂0(n) + φ̂0). (44)

Here, χ̂0 and χ̂0(n) are the irreducible susceptibilities in the bulk d-wave SC and normal
states, respectively. In susceptibilities χ̂′ and χ̂′′, the effect of d-wave gap in φ̂0 and χ̂0 are
dropped, respectively.
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Figure 18: (a)qx-dependence of χy,y(qx) obtained by the RPA for ∆d
0 = 0.09 at T = 0.0365.

The value of y corresponds to the depth from the (1, 1) edge. y = 1 is the (1, 1) edge and

y = 32 corresponds to the bulk. (b)Comparison between χ1,1(qx), χ
(n)
1,1 (qx), χ

′
1,1(qx), and

χ′′
1,1(qx) for ∆

d
0 = 0.09 at T = 0.0365.

Figure 18 (a) shows the spin susceptibilities for ∆d
0 = 0.09 at T = 0.0365. χy,y(qx)

represents the correlation between spins in the same layer y at ωl = 0. χy,y(qx) has a large
peak at qx = 0 in the edge layer (y = 1). It means that strong FM fluctuations develop along
the (1, 1) edge layer. The FM correlation in the edge layer is consistent with the next-nearest-
neighbor correlation of the bulk AFM correlation.This strong enhancement occurs only for
y = 1 and y = 2. The Stoner factor is αS = 0.990 with the edge, whereas αS = 0.673 in the
periodic model. Therefore, this system approaches the magnetic quantum critical point with
introduction of the edge.

Next, we compare the d-wave SC and normal state. Figure 18 (b) shows χ1,1 and χ
(n)
1,1 in

the model with edge. The enhancement in the FM fluctuations is much more drastic in the
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d-wave SC state compared to that in the normal state discussed in section 3Therefore, this
strong enhancement cannot be explained only by the existence of edge.

Furthermore, we examine the contribution from φ̂0 and χ̂0 to the enhancement of total
spin susceptibility. In Figure 18 (b), χ′

1,1(qx) and χ′′
1,1(qx) are represented. The height of

the peak of χ̂′ is much smaller than that of χ̂. Although χ̂′′ is smaller than χ̂, χ̂′′ has a
larger and sharper peak at qx = 0 than that of χ̂′. Therefore, increment of χ̂ can be mainly
explained by the emergence of φ̂0 due to anomalous Green functions. Also χ̂0 − χ̂0(n) gives
minor contribution since χ̂′ > χ̂(n).

Figure 19(a) shows the qx-dependence of φ̂0. In the bulk, φ0
32,32 is zero because x-axis

corresponds to the direction of d-wave gap node. Interestingly, φ0
1,1 has a peak at qx = 0.

This is explained as an effect of the ABS, which corresponds to the odd-frequency SC pairing
amplitude induced at the (1, 1) edge as discussed in Refs. [91, 119]. We give brief discussion
on this issue in Appendix C. In Figure 19(b), we show the qx-dependence of χ̂0 and χ̂0(n).

At the edge, χ0
1,1 is slightly larger than χ

0(n)
1,1 due to the emergence of large ABS peak in the

d-wave SC state.
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Figure 19: qx-dependence of irreducible susceptibilities for ∆d
0 = 0.09 at T = 0.0365. (a)

Comparison between φ0
y,y(qx) at the edge (y = 1) and in the bulk (y = 32). (b) Comparison

between χ0
1,1(qx) and χ

0(n)
1,1 (qx).
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Figure 20: T -dependence of αS in the RPA. The inset shows the T -dependence of the size
of the d-wave gap. We assume that the BCS-like T -dependence given by (19). We set the
transition temperature of the d-wave SC as Tcd = 0.04.

Figure 20 shows the T -dependence of αS in the RPA. The inset is the T -dependence of the
d-wave gap given in Eq.(19). As T decreases, αS in the SC state increases sharply compared
to that in the normal state, due to the development of the ABS.

The increase for ∆d
0 = 0.09 is steeper than that for ∆d

0 = 0.06 because the height of the
ABS peak is proportional to ∆d

0. αS reaches unity at T ≈ 0.036 for ∆d
0 = 0.09, and the edge

FM order is realized. To summarize, we found the emergence of FM order at (1, 1) edge of
dx2−y2-wave superconductors.

4.4 FLEX analysis

4.4.1 GV I-FLEX

In this section, we investigate the spin susceptibility using modified FLEX (GV I-FLEX) ap-
proximation proposed in Ref. [54], since the negative feedback effect on χ̂ near the impurity is
prominently overestimated in conventional FLEX. The negative feedback is suppressed near
the impurity by vertex corrections, which is not taken into account by the FLEX approxi-
mation [54]. In the modified FLEX, the cancellation between negative feedback and vertex
corrections is assumed, and the experimental result is reproduced even for the single impurity
problem [54].

To apply the modified FLEX to the present model, we first calculate the self-energy
in the periodic system without the edge, Σ0(kx, ky, iεn), using the conventional FLEX ap-
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proximation. Then, by performing the Fourier transformation for y-direction, we obtain
Σ0(kx, y, y

′, iεn) = Σ0(kx, y − y′, iεn). Next, we calculate the Green functions in the (1, 1)
edge model with Σ0(kx, y, y

′, iεn)(
ĜI(kx, ϵn) F̂ I(kx, ϵn)

F̂ I
†
(kx, ϵn) −ĜI(kx,−ϵn)

)

=

(
ϵn1̂− Ĥ0(kx)− Σ̂0(kx, iεn) −∆̂d(kx)

−∆̂d(kx) ϵn1̂ + Ĥ0(kx) + Σ̂0(kx,−iεn)

)−1

,

(45)

where Ĥ0(kx) is the tight-binding model with the (1, 1) edge. In the GV I-FLEX, the spin

susceptibility is calculated by ĜI , F̂ I , and F̂ I
†
instead of Ĝ, F̂ , and F̂ † in Eqs.(23)–(26).

In this approximation, the renormalized bulk SC gap function is evaluated by ∆d
0
∗
=

∆d
0/Zbulk, where Zbulk is the on-site mass-enhancement factor in the bulk.

4.4.2 Numerical result of χ̂ and αS in real space

In the numerical study of GV I-FLEX, we set the number of kx-meshes as Nx = 64, that of
sites along the y-direction as Ny = 64, and that of Matsubara frequencies as Nω = 1024. We
set the electron filling, n = 0.95; the transition temperature for the d-wave is Tcd = 0.04.
The Coulomb interaction is U = 2.65.

Figure 21 shows the qx-dependence of χy,y(kx) in the GV I-FLEX for ∆d
0 = 0.12 at T =

0.036. With this parameter, we obtain Zbulk = 1.37, ∆d
0
∗ ≈ 0.087 and 2∆max

∗/Tcd ≈ 7.69.
At the (1, 1) edge (y = 1), χ1,1(qx) has a large peak at qx = 0. The Stoner factor increases
to αS = 0.989 by introducing the (1, 1) edge, whereas αS = 0.699 in the periodic system
with FLEX self-energy. Therefore, the enhancement in the FM fluctuations at the edge is
obtained by both the RPA and GV I-FLEX.
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Figure 21: (a)qx-dependence of χy,y(qx) obtained by the GV I-FLEX for ∆d
0 = 0.12 at T =

0.036. y = 32 corresponds to the bulk. With this parameter, we obtain Zbulk = 1.37. The
renormalized gap is ∆d

0
∗ ≈ 0.087 and 2∆max

∗/Tcd ≈ 7.69. (b)T -dependence of αS in the
GV I-FLEX. We set the transition temperature of the d-wave SC as Tcd = 0.04. We obtained
∆d

0
∗ ≈ 0.058 and 2∆max

∗/Tcd ≈ 5.11 for ∆d
0 = 0.08.

Figure 21 shows the T -dependence of αS in (1, 1) edge cluster model given by the GV I-
FLEX. In the normal state, αS increases gently as T decreases. On the other hand, in the
presence of bulk d-wave SC gap, αS shows a drastic increase as T decreases. For ∆d

0 = 0.08,
the mass-enhancement factor is Zbulk = 1.38 at T = 0.032. Thus, we obtain ∆d

0
∗ ≈ 0.058

and 2∆max
∗/Tcd ≈ 5.11. For ∆d

0 = 0.12, αS reaches 0.99 at T = 0.036. For a fixed ratio
2∆max

∗/Tcd, the obtained T -dependence of αS is comparable in both the RPA and GV I-
FLEX.

4.5 Effect of the finite d-wave coherence length on the edge-induced
spin fluctuations

In the real cuprate superconductors, the d-wave gap is suppressed near the edge for a finite
range, 1 ≤ y ≤ ξd, where ξd is the coherence length of the d-wave SC. In this section, we
examine the effect of the suppression of the d-wave gap on the edge-induced FM fluctuations.
The suppression of the d-wave gap is treated as follow:

∆d
y,y′(kx, T )

{
1− exp

(
y + y′ − 2

2ξd

)}
. (46)

Note that, the anomalous self-energy for the d-wave SC gap is calculated self-consistently in
the SC FLEX approximation below Tcd [4]. If the SC FLEX is applied to the edge cluster
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model, the d-wave gap for y ≲ ξd should be naturally suppressed. Instead, we set ξd as a
parameter to simplify the analysis. From the experimental results [134–137], ξd is estimated
as 3 sites for T ≪ Tcd. For T ≲ Tcd, ξd ≫ 3 due to the relation ξd ∝ (1−T/Tcd)

−1/2 in the GL
theory. Therefore, we set ξd = 3 and 10 in this analysis. Figure 22(a) shows the y-dependence
of given |∆d

x=0,y+1;x=0,y|. The inset represents the corresponding nearest neighbor bonds in
the real space. Figure 22(b) shows the LDOS at the edge. Although the height of the peak
of the ABS is reduced, the peak structure remains for finite ξd (≲ 10).
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Figure 22: (a) Site-dependence of the d-wave gap suppressed near the edge over ξd. We set
∆d

0 = 0.08, and plot it at T = 0.032. ξd = 0 corresponds to the site-independent d-wave gap.
The inset shows the nearest neighbor bonds corresponding to |∆d

x=0,y+1;x=0,y|. (b) LDOS at
the (1, 1) edge for the finite ξd.

Next, we discuss the effect of the coherence length of d-wave gap on the enhancement of
the FM fluctuations. In Figure 23 (a), αS for ∆d

0 = 0.06 is represented. When the suppression
of d-wave gap is taken into account (ξd = 3, 10), the increase in αS becomes moderate, because
the ABS is suppressed by ξd as shown in Fig. 22. Especially for ξd = 10, αS ≈ 0.97 even
at T = 0.03. On the other hand, for ∆d

0 = 0.06 shown in Fig. 23 (b), αS reaches 0.986 at
T = 0.03 even for ξd = 10. Therefore, we conclude that the drastic enhancement in the FM
fluctuations is realized under the conditions 2∆max/Tcd ≳ 6 and ξd ≪ 10, both of which are
satisfied in real cuprate superconductors.
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Figure 23: T -dependence of αS by the RPA for (a) ∆d
0 = 0.06 or (b) 0.09 with finite ξd.

The red dashed line represents αS for the site-independent d-wave gap. The black solid line
represents αS in the normal state.

4.6 Summary

In this section, we discussed the effect of the ABS on the electron correlation near the
(1, 1) edge. We found that the FM fluctuations are drastically enhanced by the ABS in
the presence of the bulk d-wave SC gap. We construct the two-dimensional square lattice
Hubbard model with the open edge in the presence of the bulk d-wave SC gap. Then we
perform the numerical calculation of the site-dependent RPA. By the detailed analysis, we
clarified that the ABS enhances the FM fluctuations through the increment of irreducible
susceptibility φ̂0. Furthermore, the Stoner factor αS exhibits drastic increase just below the
bulk d-wave Tc, and edge-induced FM order or strong fluctuations is realized. We obtained
this ABS-induced magnetic critical phenomena also in the GV I-FLEX. The present analysis
is performed under the conditions 2∆max/Tcd ≳ 6 and ξd ≪ 10, which are satisfied in cuprate
superconductors. Therefore, we conclude that the ABS-induced FM order or strong FM
fluctuations emerge in real cuprate superconductors. If the edge FM order is realized, the
ABS peak splits due to the time-reversal-symmetry breaking. Figure 24 shows the LDOS
for up and down spins at the edge with the magnetization (M0 = 0.10). The magnetization
is given by the Zeeman term HM = M0/2

∑
kx,σ

σc†kx1σckx1σ. This splitting may be observed
by STM/STS experiment. In addition, an edge-induced triplet SC is expected to be realized
theoretically, and we examine this scenario in the next section.
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Figure 24: LDOS at the edge of d-wave superconductor (∆d = 0.20) when the magnetization
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down spins, respectively. For convenience, we set δ = 0.01.
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5 Edge-induced d± ip-wave superconducting state me-

diated by Andreev-bound-state-driven ferromagnetic

fluctuations in d-wave superconductors

5.1 Introduction

In the superconducting (SC) states, the effects of real-space structures on the electron cor-
relation had not been revealed until recently. Recently, interesting impurity-induced critical
phenomena have been analyzed theoretically [140, 141]. In addition, we discussed surface-
induced critical phenomena in the d-wave superconductors in section 4, and we found that
the key ingredient is the surface Andreev bound states (ABS) [64–69], which is observed
in the STM experiment as the zero-bias conductance peak [71–74]. In the previous section
we revealed that the strong FM fluctuations around the (1, 1) edge is triggered by the huge
edge DOS due to the ABS by performing the site-dependent random-phase approximation
(RPA) and modified fluctuation-exchange (FLEX) approximation. In this case, the strong
FM fluctuations may induce exotic phenomena such as the triplet superconductivity [82–86].

At surface or interface, emergence of exotic SC state that cannot be realized in the bulk
is expected and has been studied very actively. Near the (1, 1) edge of the dx2−y2-wave
superconductor, the s-wave superconductivity can emerge by using the ABS, and an d± is-
wave SC state is realized [76–78,142–145]. In this case, the zero-bias conductance peak splits
and the edge current flows along the edge due to the time-reversal symmetry breaking. At
the domain wall, the emergence of time-reversal breaking superconductivity is also pointed
out with regards to the polycrystalline YBa2Cu3O7−x (YBCO) [79,146,147] and twined iron-
based superconductor FeSe in the nematic phase [80]. However, the site-dependence of pairing
interaction has not been considered, although the edge-induced strong FM fluctuations are
large only near the edge and have strong site-dependence. Recently, the emergence of the
fractional vortices and supercurrent near the (1, 1) edge is proposed [148, 149]. In this case,
the ABS is shifted to the finite energy, and the time-reversal symmetry is broken.

In this section, we explain the emergence of the triplet superconductivity near the (1, 1)
edge of the d-wave superconductors. The origin of the triplet gap is the strong FM fluctuations
discussed in section 4. We first explain the linearized gap equation for the even-frequency
triplet superconductivity and apply it to the two-dimensional cluster Hubbard model with the
(1, 1) edge in the bulk d-wave SC state. We calculate the site-dependent pairing interaction
based on the RPA or GV I-FLEX. By analyzing the linearized gap equation, we found that
the relative phase difference between the bulk d-wave gap and the edge triplet gap is π/2 in
the k-space. Therefore, we predict the emergence of the exotic edge-induced d± ip-wave SC
state at T = Tcp, which is slightly low temperature compared to the bulk d-wave transition
temperature Tcd. This (1, 1) edge system may be used for a platform of realizing exotic SC
states.
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5.2 Theoretical method of triplet gap equation

To study the edge-induced triplet superconductivity, we introduce a two-dimensional square
lattice Hubbard model with the (1, 1) edge in the bulk d-wave SC state:

H =
∑
i,j,σ

ti,jc
†
iσcjσ + U

∑
i

ni↑ni↓ +
∑
i,j

(
∆↑↓

i,jc
†
i↑c

†
j↓ + h.c.

)
, (47)

where ti,j is the hopping integral between sites i and j. We set the nearest, next nearest,
and third-nearest hopping integrals as (t, t′, t′′) = (−1, 1/6,−1/5), which correspond to the
YBCO TB model. c†iσ and ciσ are creation and annihilation operators of an electron with spin
σ, respectively. U is the on-site Coulomb interaction, and ∆↑↓

i,j = −∆↑↓
i,j ≡ ∆i,j is the bulk

d-wave SC gap. y = 1 corresponds to the (1, 1) edge layer. In this model, the translational
symmetry along y direction is violated, whereas the model is periodic along the x direction.
Thus, following analysis have to be analyzed in (kx, y, y

′)-representation obtained by the
Fourier transformation only on the x direction. Next, we assume that ∆i,j is real and nonzero
only between the nearest neighbor sites, and set it as ∆i,j = ∆/2(δx,x′+1δy,y′+1+δx,x′−1δy,y′−1−
δx,x′δy,y′+1− δx,x′δy,y′−1). By performing the Fourier transformation on x direction, we obtain
its (kx, y, y

′)-representation as

∆y,y′(kx, T ) = ∆(T )

{
e−ikx − 1

2
δy,y′+1 +

eikx − 1

2
δy,y′−1

}
, (48)

∆(T ) = ∆0 tanh

(
1.74

√
Tcd

T
− 1

)
, (49)

where ∆(T ) is the temperature-dependent d-wave gap and ∆0 ≡ ∆(T = 0). Note that the
k-dependence of d-wave gap in the bulk is represented by ∆(k, T ) = ∆(T )(cos kx−cos ky).Tcd

is the transition temperature of the d-wave superconductivity.
Next, we confirm the relations of the bulk d-wave gap because it is important for the

analysis of the relative phase between bulk d-wave gap and edge-induced triplet gap. Due to
the anticommutation relation of the fermion, the SC gap satisfies

∆y,y′(kx) ≡ ∆↑↓
y,y′(kx) = −∆↓↑

y′,y(−kx). (50)

The singlet SC gap is defined as

∆↑↓
y,y′(kx) = −∆↓↑

y,y′(kx). (51)

By using (50) and (51), the singlet gap satisfies

∆↑↓
y,y′(kx) = ∆↑↓

y′,y(−kx). (52)

Because we set ∆i,j without the loss of generality, the present real d-wave gap given by (48)
satisfies

∆↑↓
y,y′

∗
(−kx) = ∆↑↓

y,y′(kx). (53)
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Hereafter, we introduce the Ny×Ny matrix representations of the d-wave gap function ∆̂(kx),

which is defined as {∆̂(kx)}y,y′=∆y,y′(kx).

Then, Ny×Ny Green functions in the d-wave SC state Ĝ, F̂ , and F̂ † are defined as follows:(
Ĝ(kx, iϵn) F̂ (kx, iϵn)

F̂ †(kx, iϵn) −Ĝ(kx,−iϵn)

)
=

(
iϵn1̂− Ĥ0(kx) −∆̂(kx)

−∆̂(kx) iϵn1̂ + Ĥ0(kx)

)−1

, (54)

where ϵn = (2n+ 1)πT is the fermion Matsubara frequency. F̂ and F̂ † are anomalous Green
functions, which have non-zero value only in the bulk d-wave SC state. Due to the relation
about the d-wave gap (51), the anomalous Green function F̂ satisfies the relation

F̂ ↑↓ = −F̂ ↓↑ ≡ F̂ . (55)

In this model, the edge-induced strong FM fluctuations are obtained by the RPA or GV I-
FLEX approximation as discussed.

Next, we explain the formulation of the edge-induced triplet superconductivity in the
presence of the bulk d-wave SC gap. Here, we represent the triplet SC gap in (kx, y, y

′)-
representation as ϕ↑↓

y,y′(kx). In this study, we ignore the spin orbit interaction. The d-vector

can be set as d̂(kx) = (0, 0, ϕ̂(kx)) without losing generality. In this case, it is enough to
consider only ϕ↑↓

y,y′(kx) and ϕ↓↑
y,y′(kx). Due to the anticommutation relation of the fermion,

the SC gap satisfies

ϕy,y′(kx) ≡ ϕ↑↓
y,y′(kx) = −ϕ↓↑

y′,y(−kx). (56)

The definition of the triplet gap is

ϕ↑↓
y,y′(kx) = ϕ↓↑

y,y′(kx). (57)

From, (56) and (57), the triplet gap follows

ϕ↑↓
y,y′(kx) = −ϕ↑↓

y′,y(−kx). (58)

Here, we introduceNy×Ny matrix representation ϕ̂(kx), which is defined as {ϕ̂(kx)}y,y′=ϕy,y′(kx).
To determine the edge-induced SC state, we need the phase difference between the bulk d-
wave gap and the edge triplet gap. Although we can use the Bogoliubov-de Gennes (BdG)
equation, heavy self-consistent calculation at various temperatures is required. To perform
the numerical analysis efficiently, we derive the linearized gap equation for the edge triplet
superconductivity, by extracting the first-order terms of ϕ̂ and ϕ̂† in the BdG equation. λ
denotes the eigenvalue of the linearized equation. When λ ≥ 1, the triplet superconduc-
tivity emerges and coexists with the bulk d-wave superconductivity. In this method, we
can judge the emergence of triplet superconductivity by the temperature-dependence of the
eigenvalue, which is obtained by just performing the diagonalization, The detail derivation
of linearized equation is explained in section 2. Note that we use the relation (55) and (57)
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in the derivation of the linearized gap equation, and it is given as

λϕy,y′(kx) = = −T
∑

k′x,Y,Y
′,n

Vy,y′(kx − k′
x, iϵn − iϵ0)

×
{
Gy,Y (k

′
x, iϵn)ϕY,Y ′(k′

x)Gy′,Y ′(−k′
x,−iϵn)− Fy,Y (k

′
x, iϵn)ϕ

†
Y,Y ′(k

′
x)FY ′,y′(k

′
x, iϵn)

}
,

(59a)

λϕ†
y,y′(kx) = −T

∑
k′x,Y,Y

′,n

Vy,y′(k
′
x − kx, iϵn − iϵ0)

×
{
GY,y(−k′

x,−iϵn)ϕ
†
Y,Y ′(k

′
x)GY ′,y′(k

′
x, iϵn)− F †

y,Y (k
′
x, iϵn)ϕY,Y ′(k′

x)F
†
Y ′,y′(k

′
x, iϵn)

}
,

(59b)

V̂ (qx, iωl) = U2

(
−1

2
χ̂s(qx)−

1

2
χ̂c(qx)

)
C(ωl, ωd),

(60)

where V̂ (qx, ωl) is the site-dependent pairing interaction for triplet superconductivity. χ̂s(c)(qx)
is the static spin (charge) susceptibility in the d-wave SC state obtained by the RPA or GV I-
FLEX approximation. Here, ωl = 2lπT is the boson Matsubara frequency. To simplify the
analysis, we introduced the cut off function C(ωl, ωd) = ω2

d/ (|ωl|2 + ω2
d),where ωd is the cutoff

energy, and we set ωd = 0.5. We then solve the gap equation (59) under the restriction (58).
In this section, the frequency dependence of the gap function is not considered, because we
assume the even-frequency superconductivity. Note that the first and second terms of the
gap equation have different sign due to the relation (55). This fact greatly affects the phase
difference between the bulk gap function and the edge one. As we explained in section 2,
This equation can determine the relative phase because the FF terms mix ϕ and ϕ+.

5.3 Numerical result of triplet gap equation

In this section, we explain the result of the linearized triplet gap equation (59). kx-mesh is
Nx = 64, site number along y-direction is Ny = 64, the number of Matsubara frequencies
is 1024. The transition temperature of the bulk d-wave superconductivity is Tcd = 0.04.
The Coulomb interaction is U = 2.25 in the RPA, and U = 2.65 in the GV I-FLEX. Here,
the unit of energy is |t|, which corresponds to ∼ 0.4eV in cuprate superconductors. In
addition, we define ∆max as the maximum value of the d-wave gap on the Fermi surface. In
the present model, ∆max = 1.76∆0 for n = 0.95. Experimentally, 4 < 2∆max/Tcd < 10 in
YBCO [138, 139]. Therefore, in the RPA, we set ∆0 = 0.06 or 0.09, which corresponds to
∆max = 5.28 or 7.92 for Tcd = 0.04.
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5.3.1 d± ip-wave SC state

First, we analyze the linearized triplet gap equation for the RPA based pairing interaction.
In figure 25 (a), kx-dependence of the obtained triplet gap in the same layer y is represented.
This is the px-wave gap with a node at kx = 0. We can consider that this triplet SC is
induced by the large LDOS and triplet pairing interactions caused by the ABS.
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1
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0.5

-0.5

0

1

0.5 in normal state

in SC state

in SC state
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Figure 25: (a) kx-dependence of obtained px-wave SC gap ϕy,y(kx) for ∆0 = 0.09 at T =
0.0375. The pairing interaction is calculated by the RPA. y = 1 and y = 32 correspond
to the edge and bulk, respectively. We normalize the gap as max

kx,y
|ϕy,y(kx)| = 1. (b) T -

dependence of λ for the pairing interaction by the RPA. The red and green line represent λ
for ∆0 = 0.06 and 0.09, respectively. The blue line shows λ(n) in the normal state (∆0 = 0).
Below Tcp, the p-wave superconductivity emerges. At T = TM , αS reaches unity in the RPA.

Next, we discuss the phase difference between the d- and p-wave gap. The triplet SC gap
in the real space ϕx,y,y′ is given by the Fourier transformation on the x-direction of ϕy,y′(kx).
By using (58), we obtain

ϕx,y,y′ = −

{∑
kx

ϕ†
y,y′(kx)e

ikxx

}∗

. (61)

This relation holds for the general triplet SC gap. In addition, the obtained p-wave gap
satisfies

ϕy,y′(kx) = −ϕ†
y,y′(kx), (62)

in the present numerical study. Thus, we find that the obtained p-wave gap is ϕx,y,y′ = ϕ∗
x,y,y′

in real space representation, On the other hand, by the Fourier transformation, the phase
difference in the k-space is ±π/2 and the obtained coexistence SC state corresponds to the
d ± ip-wave SC state. Therefore, by selecting the relative phase as ±π/2 in the k-space,
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the edge-induced triplet p-wave SC can coexist with the bulk d-wave SC gap rather than
competing with each other. To understand the origin of this phase difference ±π/2, we
examine the contribution from the second term of (59). Since the triplet pairing interaction
Vy,y′(kx − k′

x, ϵn − ϵ0) has large value only at the edge (y = 1) and ∆i,j is real function, By
setting Y = Y ′ = 1, the contribution to ϕ1,1(kx) from second term of (59a) is approximately
evaluated as

second term of (59a) ≈ −T
∑
k′x,n

|V1,1(kx − k′
x, ϵn − ϵ0)||F1,1(k

′
x, ϵn)|2ϕ∗

1,1(k
′
x). (63)

Here, Vy,y′(kx − k′
x, ϵn − ϵ0) has a large peak at kx = k′

x. Therefore, the triplet superconduc-

tivity is stabilized if ϕ∗
1,1(kx) = ϕ†

1,1(kx) = −ϕ1,1(kx) is satisfied, and it is actually confirmed
by numerical calculation.

In the d± ip-wave SC state, the time-reversal (TR) symmetry is broken. To verify it, we
apply the time-reversal operator Θ = −iσyK to the present gap functions.

∆↑↓
y,y′(kx) + ϕ↑↓

y,y′(kx) −−→
TR

−∆↓↑
y,y′

∗
(−kx)− ϕ↓↑

y,y′
∗
(−kx). (64)

By using the conditions (51), (53), (57), and (62), we confirm that the d + ip-wave gap is
transformed to the d−ip-wave gap. In Appendix D, we calculate the LDOS in the d±ip-wave
SC state. The LDOS for up and down spin electrons are separated because the time-reversal
symmetry is broken in the d± ip-wave SC state. The LDOS for up and down spin electrons
are separated because the time-reversal symmetry is broken in the d± ip-wave SC state.

5.3.2 Temperature-dependence of λ

Next, we examine the T -dependence of the eigenvalue of the edge p-wave superconductivity.
Here, λ and λ(n) denotes the eigenvalue in the d-wave superconductivity and normal state,
respectively. Figure 25 (b) shows the T -dependence of the eigenvalue based on the RPA.
λ(n) hardly increases and does not reach unity. On the other hand, λ drastically increases
as T decreases and exceeds unity below Tcp ≲ Tcd. At these temperatures, the d ± ip-wave
SC state is realized. Note that the edge FM order is realized at TM ≲ Tcp. For ∆0 = 0.09
(2∆max/Tcd = 7.92), the increase in λ is steeper than that for ∆0 = 0.06 (2∆max/Tcd = 5.28)
due to the stronger development of the FM fluctuations.

To examine the effect of the FM fluctuations on the increase in λ, we introduce two types
of gap equations, (i) and (ii), from which the effect of the d-wave gap is partially subtracted.
In (i), we use the pairing interaction in the normal state V̂normal instead of V̂ in the d-wave
SC state, and λ′ denotes the eigenvalue. In (ii), we replace the Green functions Ĝ, F̂ and
F̂ † with those in the normal state, Ĝ0 and F̂ = F̂ † = 0. In this case, the eigenvalue is
represented by λ′′. Figure 26 shows the T -dependence of λ′ and λ′′. λ′ is strongly suppressed
from λ, and it does not reach unity. On the other hand, λ′′ is almost equal to λ and exceeds
unity at T ≲ Tcp. Therefore, we conclude that the ABS-driven FM fluctuations cause the
drastic increase in λ under Tcd Therefore, we conclude that the ABS-driven FM fluctuations
cause the drastic increase in λ under Tcd
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Figure 26: (a)T -dependence of λ′ and λ′′. We set ∆0 = 0.09 The red dotted line and blue
solid line represent λ and λ(n) in the d-wave SC state and normal state, respectively. (b)T -
dependence of λ for the pairing interaction by the GV I-FLEX. ∆0

∗ is renormalized gap by
the self-energy. We obtain ∆0

∗ = 0.058 for ∆0 = 0.08 and ∆0
∗ = 0.087 for ∆0 = 0.12.

5.3.3 Result of the GV I-FLEX approximation

In this section, we analyze the linearized triplet gap equation for the pairing interaction based
on the GV I-FLEX approximation in the (1, 1) edge cluster Hubbard model.In the conven-
tional FLEX, the suppression of the spin susceptibility due to the negative feedback effect
is overestimated near an impurity because the vertex corrections for the spin susceptibility
are not considered [54]. In the GV I-FLEX, the cancellation between negative feedback and
vertex corrections is assumed, and then reliable results are obtained for the single impurity
problem [54].

∆0
∗ is the renormalized gap by the normal self-energy. We obtain ∆0

∗ ≈ 0.087 and
2∆max

∗/Tcd ≈ 7.69 for ∆0 = 0.12, and ∆0
∗ ≈ 0.058 and 2∆max

∗/Tcd ≈ 5.11 for ∆0 = 0.08.
To simplify the analysis, the normal self-energy is not included in the Green functions in the
gap equation.

Figure 26 shows the T -dependence of λ based on the GV I-FLEX. λ increases as T de-
creases also in the GV I-FLEX. In the case of ∆0 = 0.08, λ exceeds unity at T ≈ 0.02. For
∆0 = 0.12, the increase in λ is sharper than that for ∆0 = 0.08 because of the stronger devel-
opment of the FM fluctuations. Due to the negative feedback effect of self-energy, λ increases
more moderately than that in the RPA. However, the emergence of a d±ip-wave superconduc-
tivity is obtained even if the self-energy effect is considered. Note that the T -dependence of λ
based on the RPA and GV I-FLEX is comparable when (2∆max/Tcd)RPA ≈ (2∆max

∗/Tcd)FLEX.
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5.3.4 Effect of finite d-wave coherence length on edge-induced triplet supercon-
ductivity

In this subsection, we examine the effect of coherence length ξd of the bulk d-wave super-
conductivity on the emergence of the edge-induced p-wave superconductivity. We set the
y-dependence of the d-wave gap as follows:

∆y,y′(kx, T )

(
1− exp

(
y + y′ − 2

2ξd

))
. (65)

For convenience, we set ξd as a parameter to simplify the analysis. For T ≲ Tcd, ξd ≫ 3
because of the relation ξd ∝ (1− T/Tcd)

−1/2 in the GL theory. Thus, we set ξd = 3 and 10 in
the present analysis.

Figure 27 (a) shows the site-dependence of the d-wave gap expressed by (65). Fig. 27 (b)
shows the obtained LDOS. At the (1, 1) edge, the LDOS has a large peak at ε = 0 due to
the ABS. The peak structure due to the ABS still exists for finite ξd although the height of
the peak becomes lower.

The inset shows the LDOS in the bulk, and it shows V -shaped ε-dependence because the
d-wave gap has line nodes. In section 4, we confirmed that αS increases as T decreases for
finite ξd.
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Figure 27: (a) Site-dependence of d-wave gap suppressed near the edge over ξd. The inset
shows the nearest neighbor bonds corresponding to |∆x=0,y+1;x=0,y|. We set ∆0 = 0.08 and
calculated at T = 0.032. (b) ε-dependence of LDOS at the (1, 1) edge for the d-wave gap
with finite ξd. The inset shows the LDOS in the bulk (y = 400).
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Figure 28: T -dependence of λ for (a) ∆0 = 0.06 or (b) ∆0 = 0.09 with finite ξd. The pairing
interaction is calculated by the RPA for finite ξd.

Then, we explain the result of the gap equation based on the RPA for finite ξd. Figure 28
shows the T -dependence of λ. For ∆0 = 0.09, λ increases as the temperature decreases and
exceeds unity even for finite ξd. On the other hand, the increase in λ is mild for ∆0 = 0.06
and ξd = 10, and λ ≈ 0.68 even at T = 0.03. Therefore, we confirm that the strong increase
in λ is still realized under the conditions 2∆max/Tcd ≳ 6 and ξd ≪ 10. These conditions are
satisfied in real cuprate superconductors.

5.4 Cancellation of edge supercurrent in d± ip-wave SC state

In the d ± p SC state, we expect the emergence of the edge supercurrent because the time-
reversal symmetry is broken. Thus, we calculate the edge supercurrent in the d± ip-wave SC
state in this subsection. The current operator for σ-spin electron along x-direction is given
as [150]

Jx
y,y′(kx) =

∂

∂kx
H0

y,y′(kx). (66)

Note that the SC gaps are not included in Jx
y,y′(kx). We calculate the spontaneous super

current between layer y and layer y′ as follows:

⟨Jx
y,y′⟩ = −e

2

∑
kx

{
Jx
y,y′(kx)n

σσ
y,y′(kx) + (y ↔ y′)

}
, (67)

where nσσ
y,y(kx) is given as

nσα
y,y′(kx) = ⟨c†kx,y,σckx,y′,α⟩ =

∑
b

U(yσ),b(kx)U
∗
(y′α),b(kx)

{
T
∑
n

ReGb(kx, ϵn) +
1

2

}
. (68)
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Û is the unitary matrix used in the diagonalization of BdG hamiltonian. Here, the edge
current though the layer y is defined as

⟨Jx
y ⟩ =

∑
y′

⟨Jx
y,y′⟩. (69)

Then, the total super current is obtained by ⟨Jx⟩ =
∑

y⟨Jx
y ⟩.

Figure 29 shows the obtained y-dependence of the edge current in the d+ip- and d+is-wave
SC state. For simplicity, we assume the the edge s-wave gap as i∆sδy,y′=1 and ∆s = 0.09. In
spite of the time-reversal symmetry breaking, no edge current does flows. On the other hand,
the non-zero edge current emerges in the d+ is-wave SC state as pointed out in Refs. [77].
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Figure 29: y-dependence of edge supercurrent ⟨Jx
y ⟩ in the d + ip- and d + is-wave SC state.

We set ∆0 = 0.09 and max
i,j

|ϕi,j| = 0.09. We set the size of edge s-wave gap as ∆s = 0.09.

To explain why the spontaneous edge current cancels in the d + ip-wave SC state, we
analyze the Green function G↑↑

y,y′(kx, iεn), which corresponds to the transfer process of up

spin electron from site y′ to y. Here, its second-order term in proportion to ∆ϕ† is evaluated
as

δG↑↑
y,y′(kx, iεn) = −G0

y,y1
(kx, iεn)∆

↑↓
y1,y2

(kx)G
0
y3,y2

(−kx,−iεn)ϕ
↑↓
y3,y4

†
(kx)G

0
y4,y′(kx, iεn), (70)

where G0
y,y′(kx, iεn) is the Green function in the normal state. Then, we consider the second
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order term contributing to G↑↑
y′,y(−kx, iεn), which is the inverse transfer process of (70).

δG↑↑
y′,y(−kx, iεn) = −G0

y′,y4(−kx, iεn)ϕ
↑↓
y4,y3

(−kx)G
0
y2,y3

(kx,−iεn)∆
↑↓
y2,y1

†
(−kx)G

0
y1,y

(−kx, iεn).

(71)

Note that Ĝ0 satisfies G0
y,y′(kx, iεn) = G0

y′,y(−kx, iεn). In addition, by using (52), (53), (58),

and (62), δG↑↑
y,y′(kx, iεn) = δG↑↑

y′,y(−kx, iεn) is obtained. It means nσσ
y,y′(kx) = nσσ

y′,y(−kx), and
therefore the current does not flow.

5.5 Summary

In this section, we discussed the emergence of the the d ± ip-wave SC state at the (1, 1)
edge of the d-wave superconductors. We analyzed the linearized triplet SC gap equation
numerically in the (1, 1) edge cluster Hubbard model in the presence of the bulk d-wave SC
gap. To consider FM fluctuation-induced triplet SC, the site-dependent pairing interaction
is calculated based on the RPA or GV I-FLEX. By solving the linearized gap equation, we
obtain the edge-localized p-wave gap. In addition, the phase difference between the bulk
d-wave gap and the edge p-wave gap is determined as π/2 in the k-space, and it corresponds
to the time-reversal symmetry breaking d ± ip-wave SC state. Next, we discussed the T -
dependence of the eigenvalue λ for the edge-induced triplet SC state. In the bulk d-wave
SC state (T < Tcd), λ for the triplet state increases drastically as T decreases, and reaches
unity at T = Tcp. The edge current does not flow nevertheless the time-reversal symmetry is
broken in the d± ip-wave SC state.

The realization of the d ± ip-wave SC state is also expected when the direction of the
open edge is near the (1, 1) edge. The present edge p-wave SC is generated by the ABS-
induced strong FM fluctuations, and the ABS is formed for other edges as pointed out in
Refs. [65,78,143]. Therefore, or the small deviation from the (1,1) edge, we consider that the
FM fluctuations develop and the d± ip-wave SC state is induced.

In the derivation of the linearized edge gap equation (59), we linearize the equation only
for the first-order terms of triplet gap ϕ, and the effect of the bulk SC gap is still fully
included. This method is useful in analyzing edge-induced superconductivity in the presence
of bulk superconductors. Due to the interference between the bulk and edge gap functions,
interesting d± ip-wave state becomes naturally stable.

In the present study, we can regard the edge layer as a 1-dimensional p-wave supercon-
ductor due to the absence of the d-wave gap in the edge layer. In Ref. [151], the Majorana
fermion emerges at the endpoint of the 1-dimensional p-wave superconductor. Therefore,
we expect that the Majorana fermion appears at the endpoint of the (1, 1) edge. Thus, the
present edge-induced novel superconductivity may be a useful platform for SC devices Finally,
we note that the emergence of the p-wave SC and Majorana edge state had been discussed
at the interface between the bulk s-wave superconductor and magnetic material [152,153].
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6 Generation of edge-induced odd-frequency super-

conductivity with spontaneous spin current due to

zero-energy Andreev-bound-state

6.1 Introduction

In the previous section, we discussed the edge-induced p wave SC state on the d wave su-
perconductors. Another possible scenario is the edge-induced “odd-frequency SC state”.
However, regardless of the difficulties in its realization, the odd-frequency SC state has at-
tracted a lot of attention in the field of superconductivity because the possibility of the
pairing symmetry is doubled by allowing the odd-parity with respect to frequency [87–92].
Therefore, we propose an accessible method to induce the odd-frequency gap function in this
study.

In this section, we study the edge-induced odd-frequency spin-triplet SC mediated by the
strong FM fluctuations originated from the ABS. To analyze edge-induced odd-frequency
superconductivity, we consider the open (1, 1) edge cluster Hubbard model used in the pre-
vious sections. In addition, we include the frequency-dependence of the triplet gap in the
analysis of the linearized gap equation. By this extension, we can treat the both even and
odd-frequency SC gap in the same equation. We obtain the edge-localized odd-frequency
s-wave gap as the largest eigenvalue solution. The coexistent state between bulk d-wave and
edge odd-frequency s conserve the time-reversal symmetry (TRS). Interestingly, we obtain
non-zero spontaneous spin current flowing along the edge. This is a useful probe to detect
the emergence of the odd-frequency SC gap. Furthermore, by calculating the edge current,
the Hermite relation of the odd-frequency gap is justified. Finally, we analyze the triplet gap
equation without linearization, and the finite odd-frequency gap is obtained for λ ≲ 1. This
unconventional behavior is understood from the viewpoint of free energy.

6.2 Model and Theoretical Method

The Hamiltonian is expressed as:

H = H0 + U
∑
i

ni↑ni↓ +
∑
i,j

∆d
i,j

(
c†i↑c

†
j↓ + h.c

)
, (72)

where U denotes the on-site Coulomb interaction. H0 =
∑

i,j,σ ti,jc
†
iσcjσ represents the kinetic

term, where ti,j denotes the hopping integral between sites i and j. In this study, we set
(t1, t2, t3) = (−1, 1/6,−1/5), where tn is the n-th nearest neighbor hopping integral and it
corresponds to YBa2Cu3O7−x (YBCO) model [14, 131–133]. The energy unit is |t1| = 1.
The Fermi surface (FS) in the periodic system is illustrated in Fig. 8 (b) in section 2.
∆d

i,j is the bulk dxy wave (=dX2−Y 2 wave) gap function given as ∆d
i,j = (∆d/4)(δri−rj ,±X̂ −

δri−rj ,±Ŷ ). Similar bulk d wave gap function is microscopically obtained based on spin-

fluctuation theories. Considering this fact, we introduce ∆d as the model parameter to
simplify the discussion. To reproduce the suppression of the d wave gap near the edge, we

48



multiplied the d wave gap function by decay factor (1− exp[(yi + yj − 2)/2ξd]) [133]. Then,
we set the coherence length ξd = 10. In this system, LDOS has a sharp SABS-induced peak,
and it drives the system towards a strong correlation state as discussed in section 4

In the following numerical study, we set the filling as n = 0.95. The numerical results are
essentially unchanged for n = 0.8–1.2.

Next, we introduce the 2Ny × 2Ny Green functions in the bulk+edge SC state as follows:

ĜNam ≡

(
Ĝ↑↑(kx, iϵn) F̂↑↓(kx, iϵn)

F̂+
↑↓
(kx, iϵn) −tĜ↓↓(−kx,−iϵn)

)

=

(
iϵn − Ĥ0(kx) −∆̂d(kx)− ϕ̂(kx, iϵn)

−∆̂d(kx)− ϕ̂+(kx, iϵn) iϵn +
tĤ0(−kx)

)−1

. (73)

The linearized triplet gap equation for ϕ̂(kx, iϵn) (∝ ⟨ckx↑c−kx↓⟩) and ϕ̂+(kx, iϵn) (∝
⟨c†−kx↓c

†
kx↑⟩) is represented in Fig. 13 in section 2, and its analytic expression is

λedgeϕy,y′(kx, iϵn) = −T
∑

k′x,Y,Y
′,m

Vy,y′(kx − k′
x, iϵn − iϵm)

×{Gy,Y (k
′
x, iϵm)ϕY,Y ′(k′

x, iϵm)Gy′,Y ′(−k′
x,−iϵm)

× −Fy,Y (k
′
x, iϵm)ϕ

+
Y,Y ′(k

′
x, iϵm)FY ′,y′(k

′
x, iϵm)

}
, (74)

λedgeϕ+
y,y′(kx, iϵn) = −T

∑
k′x,Y,Y

′,m

Vy,y′(kx − k′
x, iϵn − iϵm)

×
{
GY,y(−k′

x,−iϵm)ϕ
+
Y,Y ′(kx, iϵ

′
m)GY ′,y′(k

′
x, iϵm)

−F+
y,Y (k

′
x, iϵm)ϕY,Y ′(k′

x, iϵm)F
+
Y ′,y′(k

′
x, iϵm)

}
. (75)

The pairing interaction for the triplet SC is given by

V̂ (qx, iωl) = U2

(
−1

2
χ̂s(qx, iωl)−

1

2
χ̂c(qx, iωl)

)
. (76)

In this study, we consider only the triplet gap because FM fluctuations suppress spin-singlet
gaps. For convenience, we assume that d ∥ z (Striplet

z = 0) in the triplet gap without the loss
of generality because we ignore the spin-orbit interaction in the present analysis. In section
5, we discussed the emergence of even-frequency p wave triplet gap ϕ̂(kx, iϵn) = ϕ̂(kx,−iϵn),
where ϵn = (2n+ 1)πT . However, this is not a unique possibility because the odd-frequency
pairing state ϕ̂(kx, iϵn) = −ϕ̂(kx,−iϵn) is not prohibited in principle.

6.3 Numerical Results

In the triplet state, the even/odd-frequency gap exhibits an odd/even-parity in space due
to fermion anticommutation relations. Considering both possibilities equally, we analyze
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the linearized gap equation by considering the iϵn-dependence of ϕ̂(kx, iϵn) comprehensively.
Here, we assume the Hermite odd-frequency gap function [93,94]:

ϕ+
y,y′(kx, iϵn) = [ϕy′,y(kx,−iϵn)]

∗ (77)

The reliability of this relationship will be clarified later. We assumed the BCS-type bulk
gap function ∆d(T ) = ∆d

0 tanh(1.74
√
Tcd/T − 1) with the transition temperature Tcd =

0.06, which corresponds to ∼ 100K in cuprates for z|t1| ∼ 1500K with z = m/m∗ ∼ 0.3.
Experimentally, 4 < 2∆d

0/Tcd < 10 in YBCO [138, 139]. Thus, we set ∆d
0 = 0.12 or 0.16,

which corresponds to 2∆d
0/Tcd = 4.0–5.3. We set U = 2.32, where the spin Stoner factor αS

is 0.975 at T = Tcd.

6.3.1 sodd-wave SC state

Figures 30 (a) and (b) exhibit the kx- and iϵn-dependences of the odd-frequency s wave (sodd

wave) gap for ∆d
0 = 0.16 at T = 0.05, respectively. Note that, the odd-frequency sodd wave

state is the largest eigenvalue state in the solutions of the linearized gap equation. At the
edge, pure sodd state is realized because the direction of the d wave gap node is along the
(1, 1) edge.

T -dependence of the spin Stoner factor αS and the eigenvalue λedge are plotted in Figures
30 (c) and (d), respectively. When λedge ∼ 1 is satisfied, the edge-gap function appears
because SC susceptibility is proportional to 1/|1− λedge|,

In the normal state (∆d
0 = 0), λedge decreases as T decreases because the pairing interac-

tion for the odd-frequency SC gap is proportional to Tχs(qx, 0) ∝ T/(1− αS) [96, 100–104].
Thus, there is a difficulty for the emergence of the spin-fluctuation mediated odd-frequency
SC in the bulk. In contrast, at the edge of d wave superconductor, LDOS has a large peak at
the Fermi level due to the SABS, and spin fluctuations drastically develop. [132,154]. There-
fore, λedge rapidly approaches unity owing to the SABS-induced magnetic criticality [133].
Thus, the SABS-driven odd-frequency SCis naturally realized at the edge of d wave super-
conductors.
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Figure 30: (a)(b) Obtained sodd wave triplet gap at the edge: (a) ϕ1,1(kx,±iπT ) in the
1st BZ (−π/2 < kx ≤ π/2) and (b) ϕ1,1(kx = π/2, iϵn) in ∆d

0 = 0.16 case at T = 0.05.
(c)(d) Obtained T -dependences of (c) the Stoner factor αS and (d) the eigenvalue λedge for
the sodd wave state. Here, the bulk d wave SC gap appears at Tcd = 0.06. In addition,
2∆d

0/Tcd = 4.0–5.3 for ∆d
0 = 0.12–0.16. The edge sodd wave gap is obtained for αS ≳ 0.95 at

T = Tcd.

6.3.2 sodd wave SC state dominates peven wave SC state

Here, we discuss the reason behind the edge sodd wave state dominating the edge even-
frequency peven wave state in this study. In this subsection, we consider the reason why edge
sodd wave state dominates the edge even-frequency peven wave state.In the kx-space argument,
nodeless sodd wave state can gain the larger condensation energy than nodal p-wave gap. On
the other hand, in the ϵn-space argument, closeness to the magnetic criticality (αS ≲ 1) is
essential.The edge pairing interaction V1,1(qx, iωl) ∝ χs

1,1(qx, iωl) at qx ∼ 0 is well fitted by
the function Ω(ωl;ωd) = ωd/(|ωl| + ωd). The obtained ωd based on the real-space RPA is
shown in Fig. 31 (a). ωd (∝ 1 − αS) approaches 0 at the magnetic critical point, and the
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eigenvalues of even- and odd-frequency solutions become comparable [96,100–104]. To verify
this discussion, we examine the eigenvalue λedge of both sodd wave and peven wave states, by
introducing a separable pairing interaction Vy,y′(qx, iωl) ∝ χs

y,y′(qx, 0) · Ω(ωl;ωd). Fig. 31

shows the obtained results for (b) ωd = 0.04 and (c) ωd = 0.1. It is verified that the sodd

wave dominates the peven wave near the quantum criticality ωd = 0.04, which corresponds
to the RPA study demonstrated in Fig. 30. The obtained sodd wave state should be robust
against impurity scattering according to the Anderson theorem.
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Figure 31: (a) Obtained energy-scale of the dynamical spin susceptibility ωd (∝ 1−αS) as a
function of T . (b)(c) Eigenvalues λedge obtained by the pairing interaction χ̂s(qx, 0)Ω(ωl;ωd)
for (b) ωd = 0.04 and (c) 0.1. As it approaching to the magnetic criticality ωd → 0, T odd

cs

increases whereas T even
cp decreases. In (b), T odd

cs is higher than T even
cp .

In the present analysis, we set the bulk d-wave gap ∆d as real, and the obtained edge
sodd wave gap is also real in the ϵn-representation. That is, ϕ1,1(kx, iϵn) ∝ ϵn is real for
small ϵn. Then, by the analytic continuation, ϕ′ = [ϕR

1,1(kx, ϵ) + ϕA
1,1(kx, ϵ)]/2 ∝ iϵ becomes

purely imaginary. In addition, the triplet gap function is odd with respect to the time-
reversal. Therefore, the obtained state is the TRS “d + sodd wave state”. Because ϕ′′ =
[ϕR

1,1(kx, 0)−ϕA
1,1(kx, 0)]/2 also approaches to zero near the magnetic criticality [96], the edge

sodd wave gap will not affect the LDOS at zero-energy. This result is consistent with the
ubiquitous presence of zero-bias conductance peak observed by the tunneling spectroscopy
of cuprates [73, 75,155,156]

6.3.3 Edge Super Current

Next, we explain the emergence of spontaneous edge current in the d+ sodd wave state. The
charge current along the x-axis from layer y to any layer is given by:

JC
x (y) =

∑
kx,y′,σ,ρ

{
(−eδσ,ρ)vx(kx, y, y

′)Gσ,ρ
y′,y(kx, iϵn)e

−iϵn0 + (y ↔ y′)
}
, (78)
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where vx(kx, y, y
′) ≡ ∂H0

y,y′(kx)/∂kx [150], and Gσ,ρ
y′,y presents the Green function for the

d+ sodd state. For simplicity, we set ϕy,y′(iϵn) = ϕof o(ϵn)δy,1δy′,1 with ϕo = ∆d
0 = 0.16, where

f o(ϵn) is the obtained frequency-dependence shown in Fig. 30 (b).
We note that the total edge current is JC

x =
∑

y J
C
x (y). In addition, we consider the

spin current along the x-axis JSµ
x (y), where µ is the direction of spin polarization. We can

evaluate the spin current by using (ℏσ̂µ
σ,ρ) instead of (−eδσ,ρ)in Eq. (80), where σ̂µ is the

Pauli matrix. JSx
x (y) and J

Sy
x (y) are zero because of the conservation of szin the present SC

state, We stress that JSµ
x (y) does not change under the operation of time-reversal.

Figure 32 (a) exhibits the obtained edge currents in the d + sodd wave state by setting
e = ℏ = 1. The charge-current JC

x (y) does not flow identically. This result is consistent
with the experimental result of µ-SR [157]; however, the non-zero spin current JSz

x (y) flows
spontaneously. The polarization of the obtained spin current is parallel to the d-vector. Note
that the total gap function changes the sign by the mirror operation Mx because the dxy
and sodd gap have odd and even parity,respectively. In addition, the total gap function is
odd for the exchange of spin index due to the coexistence between singlet and triplet SC.
Consequently, conduction electrons acquire spin-dependent velocity, and therefore JSz

x (y) ̸= 0.
The obtained total spin current JSz

x ≡
∑

y J
Sz
x (y) is proportional to ϕo, as shown in Fig. 32

(b). We expect the emergence of a sizable amount of spin current enough to observe because
JSz
x is linear in |ϕo|.
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Figure 32: (a) Obtained edge currents in the d + sodd state derived from the edge gap
equation.Here, d = dxy. The edge currents in the p+ isodd, d+ iseven, and p+ seven states are
illustrated in Appendix Dand listed in Table 3. Here, we set ∆d = 0.16 while the sodd wave
gap function is set as ϕy,y′(iϵn) = ϕof o(ϵn)δy,1δy′,1 with ϕo = 0.16, where f o(ϵn) is given in
Fig. 30 (b). (b) Obtained total edge current JSz

x for ∆d = 0.16 as a function of ϕo.

Moreover, we also consider the emergence of the edge currents for the other coexistent
SC state such as d+ iseven, p+ isodd, and p+ seven wave states. In the TRS breaking p+ isodd

wave state (p = px), non-zero charge current flows as shown in Fig. 33 (a), whereas spin
current is absent. On the other hand, the p+ isodd wave state is odd for Mx, while the parity
of the spin part is even. Consequently, JC

x ̸= 0 is obtained. The present study is a nontrivial
extension of the theory of the d+ iseven wave state Refs. [77].

We notice that, the bulk px wave SC gap does not induce the SABS, which can drive the
edge sodd wave SC gap. However, the SABS is formed at the edge of the bulk pX wave SC
state, which is not completely even for the mirror operation Mx. Therefore, the pX wave SC
state is favorable to realize the odd-frequency SC state that accompanies finite edge current.
The pX wave can be realized by applying the uniaxial strain in the chiral or the helical p
wave state.

Next, we discuss the edge-induced currents due to the edge even-frequency s wave states.
Figures 33 (b) and (c) are the obtained edge currents in the d + iseven wave the p + seven

wave states, respectively. The non- zero charge current in Fig. 33 (b) is consistent with the
Matsumoto-Shiba theory [77]. The relation between parities and edge currents in the edge
odd- and even-frequency SC states are summarized in table 3.
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Figure 33: Obtained edge currents in (a) the p + isodd wave state, (b) the d + iseven wave
state, and (c) the p + seven wave state. Here, p = px and d = dxy, and ∆p,d = 0.16. We set
the sodd wave gap function as ϕy,y′(iϵn) = ϕof o(ϵn)δy,1δy′,1 with ϕo = 0.16, where f o(ϵn) is
given in Fig. 2 (b). We also set the seven wave gap ϕy,y′(iϵn) = ϕeδy,1δy′,1 with ϕe = 0.16.

Table 3: Parities and edge currents in d+ sodd p+ isodd, d+ iseven, and p+ seven wave states
for d = dxy and p = px. These states satisfy Mx = −1. All currents disappear if phase of the
edge gap is shifted by π/2. No currents flow for d = dx2−y2 and p = py because Mx = +1.

SC state time-reversal spin exchange JC
x JSz

x

d+ sodd + − 0 non-zero
p+ isodd − + non-zero 0
d+ iseven − + non-zero 0
p+ seven + − 0 non-zero

6.4 Relationship between ϕ and ϕ+

Next, we discuss an important problem on the relationship between ϕ and ϕ+ in the odd-
frequency gap function. In this study, we use the relationship in Eq. (77) which is consistent
with the Lehmann representation of Green functions. The para-Meissner effect is caused
by this relationship and therefore odd-frequency SC state is unstable as a bulk SC state.
Nonetheless, the edge-localized odd-frequency gap function is expected to be realized. On
the other hand, a non-Hermite relationship ϕ̄+

y,y′(kx, iϵn) = [ϕy′,y(kx,+iϵn)]
∗ [88,97–99], which

exhibits usual Meissner effect gives rise to imaginary spin current in the d+ sodd wave state.
Therefore, the Hermite condition (77) should be the true equation.

To observe the edge sodd gap function, it is helpful to focus on the anomalous proximity
effect in a diffusive normal metal (DN), where the quasiparticle in the DN exhibits a zero-
energy peak of LDOS [123]. If the sodd gap function is absent at the interface, the emergence
of the odd-frequency singlet p wave is expected. However, it cannot penetrate into the DN.
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Once the interface induced sodd triplet SC state is realized, it penetrates into the DN, and
the zero-energy peak of LDOS is generated.

6.5 Analysis of gap equation without linearization

To discuss the behavior of ϕ below Tc, we analyze gap equation without linearization, and
we obtain finite odd-frequency gap. Figure 35(a) shows the αS dependence of odd-f gap ϕ
at the edge. The non-zero ϕ is obtained in 0.85 < αS < 0.93. Figure 35(b) shows the λ
dependence of odd-f gap ϕ at the edge. ϕ is finite in the range of 0.35 < λ < 1. At λ = 0.35,
odd-f gap appears by the first order transition, while the odd-f gap vanishes by the second
order transition at λ = 1. It is quite different from even-frequency superconductivity, which
is realize λ > 1.
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Figure 34: (a) αS dependence of ϕ (b) λ dependence of ϕ
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Figure 35: (a) Free energy for even-frequency superconductivity (b) λ dependence of even-
frequency gap ∆ (c) Free energy for odd-frequency superconductivity (d) λ dependence of
odd-frequency gap ϕ

To explain this behavior, we discuss free energy based on GL theory. First, we explain GL
theory for even-frequency superconductivity. In this case, free energy is expanded as follows:

F = a(1− λ)|∆|2 + b|∆|4 + c|∆|6 · · · (79)

a is a positive coefficient for even frequency superconductivity. Figure 35 is the free energy
for even-frequency superconductivity. For λ < 1, ∆ = 0 gives the minimum of F and
it corresponds to the normal state. For λ > 1, there is a minimum at non-zero ∆ and
superconducting state is realized. Therefore, the second order transition is realized at λ = 1,
and the superconducting state is realized in λ > 1.

In contrast, the free energy for odd-frequency SC is expanded as follows:

F = −a(1− λ)|ϕ|2 + b|ϕ|4 + c|ϕ|6 · · · (80)

There is a negative sign in the first term for odd frequency superconductivity, because
ϕ(iεn)ϕ

+(iεn) = −|ϕ(iεn)|2 is satisfied. For λ > 1, the normal state is realized because
the free energy has a minimum at ϕ = 0. At λ = 1, odd-f superconductivity emerges by the
second order transition. As λ becomes smaller, the minimum gradually moves to larger ϕ. For
small λ, the minimum of the free energy suddenly vanishes and the odd-f superconductivity
is broken by first order transition.

In the present system, the magnetic field does not diverge by the para-Meissner effect
because the odd-frequency SC is localized at the edge. Therefore, the edge-localized odd-f SC
can be realized stably. However, if the size of ϕ becomes too large, free energy increases by the
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induced magnetic field and odd-f SC state is expected to be broken. The free energy should be
evaluated including the effect of the magnetic field, while this effect is not considered in this
discussion. If the magnetic field is taken into account, minimum of the free energy becomes
ϕ = 0 at high temperature or λ ≪ 1. The detailed analysis of the realization condition of
the odd-f SC gap is an important future work.

6.6 Evaluation of Free energy by Luttinger-Ward theory

Next, we evaluate the free energy of this system by using the Luttinger-Ward theory. By
Luttinger-Ward theory, we can evaluate the free energy of strongly correlated superconduc-
tors. The free energy is given by

Ω = ΩF + Φ (81)

ΩF = −T
∑
kx,n

log

(
det Ĝ(kx, iεn)

det Ĝ0(kx, iεn)

)
−T

∑
kx,n

Tr
(
Ĝ(kx, iεn)∆Σ̂(kx, iεn) + D̂(kx, iεn)Σ̂(kx, iεn) + D̂(kx, iεn)Σ̂(kx, iεn)

)
,

(82)

Φ = T
∑
qx,n

Tr

{
1

2
log
(
1− Uχ̂0

sz(qx, iωn)
)}

+ T
∑
qx,n

Tr
{
log
(
1− Uχ̂0

s±(qx, iωn)
)}

+T
∑
qx,n

Tr
{
log
(
1 + Uχ̂0

c(qx, iωn)
)}

+T
∑
qx,n

1

4
U2
{
(χ̂0

sz(qx, iωn))
2 + (χ̂0

s±(qx, iωn))
2
}

+T
∑
qx,n

U

{
1

2
χ̂0
sz(qx, iωn) + χ̂0

s±(qx, iωn)−
1

2
χ̂0
c(qx, iωn)

}
, (83)

∆Σ̂(kx, iεn) = Σ̂(ϕ)− Σ̂(ϕ0 = 0). (84)

Ω is total free energy. Φ is Luttinger-Ward functional which represents contributions from
spin fluctuations. In the d+ sodd state, ∆Σ̂ is normal self-energy due to ϕ ̸= 0 In this study,
we only consider ∆Σ̂ for normal self-energy to simplify the analysis. ∆Σ̂ is calculated by
FLEX approximation by using self-energy ∆Σ̂ instead of whole Σ̂.

Figure 36 shows free energy calculated by (81), (82), (83), (84). Φ increases as ϕ increases
because, edge odd-f gap suppresses χs±. When U = 2.32, there is no minimum. Then, odd-f
superconductivity does not realize. On the other hand, for U = 2.35, there is a minimum at
ϕ ̸= 0. For U = 2.37, the minimum moves to smaller ϕ than that of U = 2.35. It corresponds
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to αS dependence of ϕ. Therefore, we verified the realization of odd-f superconductivity from
the viewpoint of free energy.
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Figure 36: Free energy calculated by Luttinger-Ward theory. (a) U = 2.32 (b) U = 2.32 (b)
U = 2.32 as a function of ϕ.

6.7 Summary

In this section, we proposed the emergence of the odd-frequency spin-triplet s wave gap
function at the edge of d wave superconductors, which is mediated by the zero-energy SABS-
induced ferromagnetic fluctuations. This prediction is obtained from the analysis of the edge
SC gap equation based on the cluster Hubbard model with bulk d wave gap.

This odd-frequency s wave gap function is expected to be robust against randomness
because it has even parity in k-space. The obtained SC state preserves the TRS and accom-
panies the spontaneous edge spin current because the coexistence of singlet and triplet SC
gap causes asymmetry in the spin space. The predicted edge spin current in the d+sodd wave
state is a useful signal for detecting the “hidden” odd-frequency SC gap function. We also
verified that the Hermite relationship (Eq. (77)) is the correct relation for the odd-frequency
gap function because imaginary spin current emerges in the non-Hermite relationship. In
addition, to analyze the behavior of the odd-f SC below Tcsodd , we solved the gap equation
without linearization. We found that the non-zero odd-f SC gap emerges when λ ≲ 1. This
unconventional behavior is caused by the minus sign in the coefficient of the free energy
due to the odd-frequency dependence. Finally, we evaluate the free energy based on the
Luttinger-Ward theory, and confirmed that the edge-induced odd-frequency state is stable
in the strongly correlated system. The analysis including the magnetic field is an important
problem because the para-Meissner effect induces a magnetic field and it may contribute to
the free energy greatly.
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7 Nematic state of FeSe

7.1 Introduction

In strongly correlated electron systems, the nematic order, which is the rotational symmetry
braking from C4 to C2 in the electron system attracts a lot of attention. In iron-based
superconductors, various materials such as BaFe2As2 [158], NaFeAs [159], and FeSe [39,160–
167] have the nematic phase. The development of nematic fluctuations at Ts is observed by
the softening of the shear modulus C66 [22,168–170], and Raman spectroscopy [171–173], and
in-plane resistivity anisotropy ∆ρ [174].

In iron-based superconductor FeSe, the nematic transition is realized below T = Ts ≈ 90K
without magnetic phase, while other iron-based superconductors have magnetic phase. Thus,
FeSe is a favorable system for examining the relation between superconductivity and the
nematic phase. The nematic state of FeSe is examined by various experiments. Recently,
in the ARPES experiments, the transformation of the hole pocket at Γ point and absence
of Y electron pocket are observed. The absence of Y electron pocket is also suggested by
observation of Shubnikov-de Haas oscillations [177].

Theoretically, to explain the mechanism of the nematic state, spin-nematic scenario [178–
183] and orbital order scenario [22, 184–189] are studied by many theorists. In the orbital
order scenario, the order parameter is called “form factor”, which is the C2 component in the
self-energy. In the C4 state, the levels of dxz and dyz orbitals are degenerate. On the other
hand, in the nematic state, form factor yields the difference in the levels of dxz and dyz orbitals,
and the occupation numbers of dxz and dyz orbitals become non-equivalent. The form factor
has been analyzed by Density-wave (DW) equation. The DW-equation includes higher-order
many-body effects beyond the mean-field theory. For example, Aslamazov-Larkin (AL)-term
in the DW-equation corresponds to the interference effect between two spin fluctuations. By
the analysis of the DW-equation for dxz and dyz orbitals [30], modulation of Fermi pockets
at Γ and X points are reproduced. However, electron pocket at Y point does not vanish in
contrast to the experiments, because the form factor for dxy orbital is not considered.

The absence of Y electron pocket is related to the level of d-orbitals at Y point [164]. In
this study, Exz and Exy denote the level of dxz and dxy orbitals, respectively. In Figure 37,
dyz and dxy band at Y point are shown. A band gap opens at Y point when Exy > Exz. It
can be understood by the discussion of parity of each orbitals. However, for Exy < Exz, band
gap does not open. Therefore, if Exy > Exz and Exy > 0 are realized, Y electron pocket
vanishes.
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Figure 37: Schematic diagram of dxz and dxy band at Y point. (a) For Eyz < Exy. (b) For
Eyz > Exy. A band gap opens at the intersection of dxz and dxy band, and the left figure is
realized.

In this study, we analyze the DW-equation for dxz, dyx, and dxy orbitals without lineariza-
tion. We confirm that the form factor for dxz and dyz orbitals correspond to experimental
results. The obtained form factor for dxy orbital is d-wave bond order. At Y points, the
band gap opens and the Fermi pocket vanishes. In addition, we calculate the T -dependence
of the Form factor, and second order transition at Ts is verified. Relative phase between
form factors of dxz and dxy are analyzed by Luttinger-Ward free energy. The relative phase is
determined to decrease the free energy. In addition, we analyzed the linearized DW equation
based on the FLEX approximation. λ reaches unity at T ≈ 0.007. Therefore, we confirm
that the nematic order in FeSe is driven by the quantum interference effect. Furthermore,
to elucidate the self-energy effect, we solve the 3-orbital DW-equation including FLEX self-
energy without linearization. We also obtain the orbital polarization and bond order, and
the absence of the Y electron pocket is reproduced even if FLEX self-energy is taken into
account.

7.2 Model

In this study, we use the 5-orbital Hubbard model.

H = HM + rHU
M (85)

HM is 8-orbital Hubbard model. rHU
M is the Coulomb interaction obtained by the first

principle calculation. r is a parameter to adjust the size of Coulomb interaction.
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Figure 38: (a) Band of this study near the fermi level. (b) Fermi surface in the normal state
(with rotational symmetry). (c) Spin susceptibilities χs

xz, χ
s
yz, and χs

xy calculated by RPA.

Figure 38(a) shows the band near the fermi level in this model. The level of dxz, dyz, and
dxy orbitals are represented by Exz, Eyz, and Exy, respectively. We set Exz ≈ Exy ≈ −0.07
which corresponds to experiments by considering the renormalization factor z ≈ 2.5. We
set the ratio of the renormalization factor zxy/zxz = 1.6. Fig. 38(b) is the Fermi surface
in the normal state. In the normal state, the system has C4 symmetry. Fig. 38(c) is the
spin susceptibilities calculated by the RPA. Anti-ferromagnetic fluctuations at q = (0, π) and
(π, 0) develops. It corresponds to experiments.

In this study, we analyze DW-equation without linearization. DW-equation can treat the
rotational symmetry braking component ∆Σ̂ emerging in the FLEX self-energy Σ̂FLEX. In
this analysis, Green function is represented by a matrix of orbitals and it is given by

Ĝ(k) = (ẑ−1iεn + µ− ĥ0
M(k)−∆Σ̂(k))−1, (86)

where εn = (2n + 1)πT is Matsubara frequency. k = (kx, ky, iεn) = (k, iεn). z−1 is the
renormalization factor. The spin (charge) susceptibility χ̂s(c)(q) is given by

χ̂s(c)(q) = χ̂0(q)[1− Γ̂s(c)χ̂0(q]−1, (87)

(Γ̂s)l1,l2,l3,l4 =


Ul1,l1 l1 = l2 = l3 = l4
U ′
l1,l2

l1 = l3 ̸= l2 = l4
Jl1,l3 l1 = l2 ̸= l3 = l4
Jl1,l2 l1 = l4 ̸= l2 = l3
0 otherwise.

(88)

(Γ̂c)l1,l2,l3,l4 =


−Ul1,l1 l1 = l2 = l3 = l4
U ′
l1,l2

− 2Jl1,l2 l1 = l3 ̸= l2 = l4
−2U ′

l1,l3
+ Jl1,l3 l1 = l2 ̸= l3 = l4

−Jl1,l2 l1 = l4 ̸= l2 = l3
0 otherwise.

(89)
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where χ̂0(q) is the irreducible susceptibility. We assume J = J ′ and U = U + 2J . Next, we
calculate ΣFLEX as follows:

ΣFLEX = ΣH
l,l′ + T

∑
q,m,m′

Vl,m;l′m′(q)Gm,m′(k − q), (90)

Vl,m;l′m′(q) =
3

2
Γ̂sχ̂s(q)Γ̂s +

1

2
Γ̂cχ̂c(q)Γ̂c

−1

2

[
Γ̂cχ̂0(q)Γ̂c + Γ̂sχ̂0(q)Γ̂s − 1

4

(
Γ̂s + Γ̂c

)
χ̂0(q)

(
Γ̂s + Γ̂c

)]
(91)

where ΣH
l,l′ is the Hartree term. Γ̂s(c) is the Coulomb interaction for spin (charge) channel.

To obtain C2 component in self-energy, we subtract ΣA1g from ΣFLEX. ΣA1g represents the
A1g component in the self-energy, which has C4 rotational symmetry.

∆Σ̂ = Σ̂FLEX − Σ̂A1g (92)

where k′ = (ky, kx). We solve (86)–(92) self-consistently by performing iteration.
In this numerical analysis, k-mesh is Nx × Ny = 64 × 64, the number of Matsubara

frequencies is 512. We set the size of Coulomb interaction as r = 0.27. Here, the unit of
energy is |t|, which corresponds to ∼ 0.1eV in FeSe.

7.3 Numerical Results of DW equation

Figure 39: k-dependence of form factors ∆Σ obtained by the DW equation without lineariza-
tion. ∆Σxz and ∆Σyz cause the orbital polarization. ∆Σxy corresponds to the d-wave bond
order.

Figure 39 shows the solution of the DW-equation. Form factor gives the shift of the level
of each orbital. ∆Σxz lowers the level of dxz orbitals at Y point. On the other hand, ∆Σyz

raises the level of dyz orbitals at X point. They correspond to the orbital order. The hole
pocket at Γ point extends in y-direction because ∆Σxz and ∆Σyz have opposite sign at the
Γ point. The obtained ∆Σxy is proportional to cos kx − cos ky. It is the d-wave bond order,
which yields modulation in the hopping integrals between dxy orbitals in the different sites.
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Figure 40 shows its physical explanation. The hopping integral in y-direction increases by δ,
while it decreases in x-direction by δ.

Figure 40: Modulation in the hopping integrals by the d-wave bond order. In the y (x)
direction, hopping integral increases (decreases) by δ.

Figure 41 (a) shows the band in the nematic state based on the obtained form factor ∆Σ.
At X point, due to the form factor ∆Σ level of dyz and dxy move upward and downward,
respectively. In this case, Eyz > Exy holds, and gap does not open. On the other hand, at X
point, level of dxz and dxy move downward and upward, respectively. In this case, Exz < Exy

holds, and gap opens. If Exy > 0, Fermi pocket at Y point vanishes as shown in Fig. 41 (b).

(a)
(b)

Figure 41: (a) Band in the nematic state. Form factor ∆Σ is taken into account. (b) Fermi
surface in the nematic state.
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7.4 Temperature dependence
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Figure 42: T -dependence of the form factors obtained by the DW equation without lineariza-
tion.

In this study, we analyze the DW-equation without linearization. Thus, we can obtain the
size of the form factor. Figure 42 (a) shows the temperature dependence of form factor.
Nematic transition is second order transition, and realized at Ts ≈ 0.045. In Fig. 42 (b),
Stoner factor αS increases below Ts because the spin fluctuation at q = (0, π) is enhanced as
shown in 42 (b) in the nematic state. This behavior is consistent with the experiments.

7.5 Physical meaning of Relative Phase between ∆Σ22 and ∆Σ44

In this study, the obtained form factor ∆Σ22 and ∆Σ44 satisfy following relation:

∆Σxz(0, π)∆Σxy(0, π) < 0. (93)

This relative phase is important for vanishing of Y electron pocket. If relative phase satisfies
∆Σxz(0, π)∆Σxy(0, π) > 0 Exz and Exy shift same direction. Thus, Exz < Exy is not realized.

In this section, we discuss the reason for obtained relative phase from the viewpoint of
free energy. We evaluate the free energy based on Luttinger-Ward theory, which can treat
the strongly correlated system.

Ω = ΩF + Φ (94)

∆Σ =

 ∆Σxz

∆Σyz

r∆Σxy

 (95)

ΩF = −T
∑
kx,n

log

(
det Ĝ(kx, iεn)

det Ĝ0(kx, iεn)

)
− T

∑
kx,n

TrĜ(kx, iεn)∆Σ̂(kx, iεn) (96)
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Φ = T
∑
q,n

Tr

{
3

2
log
(
1− Γ̂sχ̂0(q, iωn)

)}
+ T

∑
q,n

Tr
{
log
(
1 + Γ̂cχ̂0(q, iωn)

)}
+T

∑
q,n

1

4
(Γ̂sχ̂0(q, iωn))

2 + T
∑
q,n

{
Γ̂s3

2
χ̂0(q, iωn)−

1

2
Γ̂χ̂0(qx, iωn)

}
(97)

Here, we introduce r as a parameter to modulate the size of the form factor and the
relative phase. r > 0 corresponds to the correct relative phase. If r < 0, the relative phase
is opposite.

Figure 43 (a) shows obtained free energy. Total free energy Ωtotal has a minimum in
the range of r > 0. When r > 0, the relative phase corresponds to the solution of DW-
equation and the Y electron pocket is absent as shown in Fig 43 (b). On the other hand,
Ωtotal increases in the range of r < 0. In this case, the relative phase is opposite from the
solution of DW-equation, and Y electron pocket does not vanish as shown in Fig 43 (c). The
contribution from Ω0 is dominant. Therefore, the relative phase is determined to decrease
the free energy by opening the band gap.

(solution of DW-equation)

(opposite phase)

(a) (b)

(c)

Figure 43: (a) r dependence of Free energy. (b) r∆xy for r = 1. Green curve represents the
Fermi surface for r = 1. (c) r∆xy for r = −1 Green curve represents the Fermi surface for
r = −1.

7.6 Linearized DW equation based on FLEX approximation

We analyzed linearized DW-equation based on FLEX approximation to consider the effect of
self-energy. The diagram of linearized DW-equation is shown in figure 44. AL terms include
two spin fluctuations. Thus they correspond to interference between spin fluctuations. The
linearized DW-equation is derived by expanding the FLEX self-energy by ∆Σ and considering
only the first order terms. λ is the eigenvalue of DW-equation. By solving the linearized
DW equation, we can obtain the form factor ∆Σ and eigenvalue λ. If λ > 1 is realized, the
nematic order corresponding to ∆Σ emerges. In this calculation, we set the size of Coulomb
interaction as r = 0.4.
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Figure 44: (a) Diagram of linearized DW-equation. The arrow represents the Green function
G. The wavy line corresponds to the spin fluctuations. The blue circle is the form factor.
(b) Temperature dependence of eigenvalue of DW equation.

The eigenvalue λ reaches unity at T ≈ 0.008. Due to the self-energy effect, Ts is lower
than Fig 42 based on RPA. It means that the nematic order is realized if we consider the
self-energy effect. In addition, we verify that the origin of the nematic order is quantum
interference of spin fluctuations.

7.7 DW equation based on FLEX approximation

In this section, we analyze the DW-equation including ΣFLEX without linearization, while we
did not consider ΣFLEX in the previous section. Green function in this analysis is given by

Ĝ(k) = (ẑ−1iεn + µ− ĥ0
M(k)− ΣFLEX(k)−∆Σ̂(k))−1. (98)

We first perform the conventional FLEX calculation, and obtain self-energy in C4-symmetry
system ΣFLEX. Then, we fix ΣFLEX, and calculate C2-symmetry part ∆Σ̂ self-consistently.
Figure 45(a)–(c) shows the renormalized form factor ∆Σ∗ obtained by this analysis. The
renormalization factor is evaluated by FLEX self-energy. k-dependence of Form factor is
qualitatively the same as that based on the RPA.
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(a) (b) (c) (d)

Figure 45: Renormalized form factors obtained by DW equation without linearization in-
cluding ΣFLEX. Green curves are the Fermi surface in the obtained nematic state.

Figure 45 (d) shows the k-dependence of ∆Σ∗
xz and ∆Σ∗

yz along with the blue arrows
illustrated in Figure 45 (a), (b). Sign change between Γ and X point is consistent with the
experiments [164,165].

Figure 46 (a) shows the band in the nematic state. We confirmed that the Y electron
pocket vanishes also considering the FLEX self-energyas shown in Fig. 46 (b)
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Figure 46: Band structure and Fermi surface in the nematic state obtained by the analysis
including the FLEX self-energy. (a) Band structure. The bold curves are the band in the
nematic state. The thin curves are the band in the normal state. (b) Fermi surface in the
nematic state.

Figure 47 shows the temperature dependence of the renormalized form factor ∆Σ∗ =
z−1∆Σ. z−1 for each orbitals are obtained from FLEX self-energy ΣFLEX(0, π). The obtained
values are z−1

xz = z−1
yz ≈ 0.27 and z−1

xy ≈ 0.17. The nematic transition is realized at Ts ≈ 0.0081
by the second order transition. In the previous subsection, we analyze the linearized DW
equation based on the FLEX, and obtained Ts ≈ 0.08 for r = 0.4. It is consistent with the
result of the full DW equation.
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Figure 47: Temperature dependence of renormalized form factors. We set r = 0.4 in the
FLEX calculation. Transition temperature is Ts ≈ 0.0081.

Figure 48: r dependence of Free energy including the FLEX self-energy. The red line is the
total free energy Ωtotal. The green and blue line are Ω0 and Φ, respectively.

Finally, we evaluate the free energy by Luttinger-Ward theory. To include FLEX self-
energy, we substitute following Σtotal instead of ∆Σ in eq (95).

Σtotal = ΣA1g +

 ∆Σxz

∆Σyz

r∆Σxy

 . (99)

We adjust the size of ∆Σ by using parameter r. The size of ΣA1g is fixed in this analysis.
Figure 48 shows the obtained free energy. When r < 0, the relative phase is opposite to
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that of the obtained solution. When r > 0, the relative phase corresponds to the obtained
solution. Ωtotal has a minimum at r ≈ 1 because the DW equation is derived from the
minimum condition of free energy. Therefore, we confirmed that the relative phase between
∆Σxz and ∆Σxy is determined to open the band gap also including the FLEX self-energy.

7.8 Summary

In this study, we discussed the nematic state of FeSe by analyzing the DW-equation for dxz,
dyz, and dxy orbitals without linearization. The form factor of dxz and dyz orbitals corresponds
to orbital order. Sign change between Γ and Y(X) point is consistent with the experimental
band shift. For dxy orbital, d-wave bond order is realized. It shits the level of dxy orbital
upward at Y point. Then, the band gap opens, and the Y electron pocket vanishes. We
also obtained the T -dependence of form factor because we analyzed DW-equation without
linearization. We confirmed that the nematic transition is second order transition. The
Stoner factor αS increases in below Ts because spin susceptibility at q = (π, 0) grows in the
nematic state. In addition, we discussed the relative phase between ∆Σxz and ∆Σxy from
the viewpoint of free energy based on Luttinger-Ward theory. We verified that the correct
relative phase reduces the free energy and minimum yields r ≈ 0.5, while the free energy
increases for the wrong relative phase. Finally, we analyzed the linearized DW-equation
based on the FLEX approximation to consider the effect of self-energy. We confirmed that
λ reaches unity even if the self-energy effect is included. Therefore, the nematic transition is
driven by the quantum interference effect represented by the AL term.
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8 Summary

In section 3, we studied the effect of edge on the strongly correlated electron systems in the
normal state. Due to the Friedel oscillation by the edge, the spin fluctuations are enhanced
near the edge. In the FLEX, the site-dependent mass-enhancement factor Zx and quasipar-
ticle damping γy have large value near the open edge. Thus, we proposed the edge-induced
quantum critical phenomena in the normal state.

In section 4, we studied the drastic development of the FM fluctuations at the (1, 1) edge
of the d-wave superconductor. By detailed analysis, we found that the ABS induces the strong
FM correlation mainly through the increase of irreducible susceptibility φ̂0. Furthermore, we
examined the temperature dependence, and predicted the drastic increase of Stoner factor
αSjust below the bulk d-wave Tc. Finally, we verified that the enhancement in FM fluctuations
are still prominent under the conditions 2∆max/Tcd ≳ 6 and ξd ≪ 10, which are satisfied in
cuprate superconductors. Therefore, the ABS-induced FM order or strong FM fluctuations
is expected to appear in real cuprate superconductors.

In section 5, we discussed the emergence of the even-frequency spin-triplet gap function
at the (1, 1) edge of the d-wave superconductors. We revealed that the edge-localized p-
wave SC is mediated by the strong FM fluctuations caused by the ABS. The bulk d-wave
gap and the edge p-wave gap are coexistent as the time-reversal symmetry braking d ± ip-
wave SC state by choosing the relative phase as π/2 in the k-space. Next, we explain the
T -dependence of the eigenvalue λ for the edge-induced triplet SC state. Below the bulk
d-wave transition temperature Tcd, λ increases drastically as T decreases, and reaches unity
at T = Tcp. Therefore, the d± ip-wave SC state is realized at Tcp ≲ Tcd. By the calculation
of the edge current, we found that no spontaneous edge current emerges in the d ± ip-wave
SC state although the time-reversal symmetry is broken.

In section 6, we discussed the emergence of the odd-frequency spin-triplet s wave gap
function due to the ABS-driven strong FM fluctuations. We analyzed the linearized triplet
gap equation including the frequency-dependence of the triplet gap in the cluster Hubbard
model with bulk d wave gap. The predicted odd-frequency s wave gap function is expected to
be robust against randomness. The obtained solution is odd-frequency s wave gap function,
which is expected to be robust against impurities. The obtained SC state preserves the TRS,
and the spontaneous edge spin current flows along the edge. We can experimentally detect
the “hidden” odd-frequency SC gap function if this spontaneous spin current is observed.
We also verified that the Hermite relationship (Eq. (77)) is the correct relation of the odd-
frequency gap function. In addition, we solve the gap equation without linearization. We
found that the odd-frequency gap is non-zero for λ ≲ 1. This behavior is originated from
the sign of the coefficient of free energy. Finally, we evaluated the free energy based on
the Luttinger-Ward theory, which includes contributions from the electron correlation, and
confirmed realization of the edge-induced odd-frequency SC state.

In section 7, we analyzed the nematic state of FeSe. We analyzed the DW-equation
for dxz, dyz, and dxy orbitals without linearization. For dxy orbital, d-wave bond order is
obtained. It shits the level of dxy orbital upward at Y point. Then, the band gap opens and
the Y electron pocket vanishes. By the non-linearized analysis, the T -dependence of form
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factor is obtained, and the nematic transition is second order transition. In addition, the
relative phase between ∆Σxz and ∆Σxy is determined to minimize the free energy. Next, we
analyzed the DW-equation including the FLEX self-energy, and confirmed that the emergence
of nematic order and the absence of the Y Fermi pocket. By the analysis of the linearized
DW-equation, we confirmed that the nematic transition is driven by the quantum interference
effect represented by the AL term.

In this study, we examined the effect of real space structure on the strongly correlated
electron systems by constructing the real space formalism. In the normal state, Friedel oscil-
lation due to the edge induced the strong correlation state near the edge. In the bulk d-wave
SC state, the Andreev bound state enhances edge ferromagnetic fluctuations strongly. Then,
ferromagnetic fluctuations induce even-frequency spin-triplet p-wave or odd-frequency spin-
triplet s-wave. Therefore, the real space structure can induce various interesting phenomena,
which can not be realized in the bulk. We exhibited that the “edge induced superconduc-
tivity” can be a valuable method to realize exotic superconductivity. Finally, we analyzed
the nematic state in FeSe by the DW equation. We found that the interference effect of spin
fluctuations can induce nematic order, and the experimental Fermi surface is reproduced.

As a future work, to examine the nematic order induced by the real space structure is
an important problem. If we analyze the DW-equation in the open edge Hubbard model,
edge-induced nematic order of fluctuations may be obtained. In addition, the time-reversal
symmetry breaking SC at the boundary of nematic order in FeSe is also an interesting
problem [80]. The site-dependence analysis developed in this study should be a useful method
to analyze the boundary-induced SC based on the microscopic pairing interaction.
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A Filling dependence in the normal state

A.1 Filling dependence in LSCO TB model

In the main text, we fix the electron filling at n = 0.95, which corresponds to under-doped
region of hole-doping compounds. Interesting edge-induced quantum critical phenomena are
realized in both LSCO TB and YBCO TB cluster Hubbard models. In this Appendix, we
present the numerical results for n = 0.90 ∼ 1.10 in order to understand the origin of the
edge-induced quantum criticality. We find the realization condition of the prominent edge-
induced quantum criticality.

First, we explain the numerical results for the LSCO TB model. We set T = 0.02 and
U = 1.78 in unit eV, for n = 0.90, 0.95, 1.05 and 1.10. Figure 49 presents the (a) χs

x,x(qy)
and (b) quasiparticle damping γ∗

x, mass-enhancement factor Zx, and the bare local density
of states (LDOS) at the Fermi level Dx(0). The obtained spin Stoner factors are shown in
Fig. 49 (a). The oscillation in Dx(0) is understood as the Friedel oscillation caused by the
open edge.

In the (1, 1) edge model, the edge-induced quantum criticality is prominent in both hole-
doped case (n < 1) and electron-doped case (n > 1). χs

x,x(qy) is strongly enlarged at x = 1
and qy = 0. By reflecting this fact, both γ∗

x and Zx are strongly enlarged in both hole-
and electron-doped cases. In the (1, 0) edge model, the edge-induced quantum criticality is
moderate. In electron-doped case, χs

x,x(qy) takes the maximum at x = 1 and qy = π. In
hole-doped case, in contrast, χs

x,x(qy = π) is moderately enlarged at x ≥ 2. Both γ∗
x and Zx

show similar x-dependences to Dx(0).
The obtained nontrivial n-dependences for both (1, 1) and (1, 0) edge models are well

understood in terms of the LDOS without interaction shown in Fig. 49 (b). In the (1, 0)
edge model, the LDOS at x = 1 is strongly suppressed in hole-doped case. Due to this
fact, the edge electronic states deviate from the quantum criticality. In electron-doped case,
the LDOS at x = 1 is larger than the balk DOS, so the edge effect becomes moderate. In
the (1, 1) edge model, the x-dependence of the LDOS is essentially n-independent. For this
reason, the edge electronic states approach the quantum criticality in both hole-doped and
electron-doped cases.

A.2 Filling dependence in YBCO TB model

Next, we explain the numerical results for the YBCO TB model for n = 0.90, 0.95, 1.05 and
1.10. The obtained χs

x,x(qy), γ
∗
x, Zx, and Dx(0) are shown in Fig. 50. The YBCO TB model

with n > 1 corresponds to the electron-doped cuprate superconductors, NCCO and PCCO.
The obtained spin Stoner factors are shown in Fig. 50 (a).

In both (1, 0) and (1, 1) edge models, the obtained n-dependences are qualitatively similar
to those obtained in the LSCO TB model. In the (1, 1) edge model, χs

x,x(qy = 0), are strongly
enlarged at x ≈ 1. Thus, the edge electronic states approach to the quantum criticality. This
result originates from the large LDOS on the (1, 1) edge in YBCO model, shown in Fig. 50
(b). In the (1, 0) edge model, the edge-induced quantum criticality is moderate. For both
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n > 1 and n < 1 cases, χs
x,x(qy = π) takes the maximum at x = 1. In hole-doped case,

in contrast χs
x,x(qy = π) is moderately enlarged at x ≥ 2. Both γ∗

x and Zx show similar
x-dependences.

To summarize, prominent edge-induced quantum criticality is realized when the edge
LDOS is large. This result is a useful principle to control the quantum criticality driven by
real-space structure because it is easy to calculate the LDOS in non-interacting systems. The
YBCO TB model with n > 1 corresponds to NCCO and PCCO. In the YBCO TB model,
very large quasiparticle damping rate γ∗

x is obtained in the (1,1) open edge. This result may
lead to the pseudo-gap formation in the LDOS in the (1,1) open edge in YBCO, NCCO, and
PCCO cuprate superconductors.
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Figure 49: (a) Obtained χs
x,x(qy) in LSCO TB model with (1, 1) open edge and (1, 0) open

edge, respectively. The results for n = 0.90, 0.95, 1.05, and 1.10 are shown. (b) Obtained
filling-dependences of the mass-enhancement factor Zx and quasiparticle damping γ∗

x, and
LDOS at the Fermi level Dx(0) in the LSCO TB model (n = 0.90 ∼ 1.10).
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Figure 50: (a) Obtained χs
x,x(qy) in YBCO TB model with (1, 1) open edge and (1, 0) open

edge, respectively. The results for n = 0.90, 0.95, 1.05, and 1.10 are shown. (b) Obtained
filling-dependences of the mass-enhancement factor Zx and quasiparticle damping γ∗

x, and
LDOS at the Fermi level Dx(0) in the YBCO TB model (n = 0.90 ∼ 1.10).

B The origin of the minor peak in the LDOS

In this appendix, we explain the origin of the secondary minor peak of the edge LDOS at
ε = 0.1 shown in Fig. 10. For this purpose, we calculate the energy spectra of the d-wave
SC cluster model with the (1, 1) edge. Figure 51 (a) shows the obtained energy spectra for
∆d = 0.09 (∆max = 0.158) We can see the surface ABS as the flat band at Fermi level.
Moreover, two isolated curves separated from the bulk band are formed in the range of
3π/4 ≲ kx ≲ 5π/4. The LDOS at y = 1 (y = 2) is exhibited in Figure 51 (b). In layer y = 1
(y = 2), the minor peak appears at ε = 0.1 (ε = −0.1), which corresponds to the energy of
the isolated curve. Therefore, we confirm that the energies of the minor peaks are originated
from these finite-energy surface states.
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Figure 51: (a)Band structure of the d-wave SC cluster model with the (1, 1) edge. The flat
dispersion at ε = 0 corresponds to the ABS. There are two surface states separated from
the bulk states in the range of 3π/4 ≲ kx ≲ 5π/4. These surface states are pointed out by
arrows. (b) LDOS near the (1, 1) edge in the bulk d-wave SC state. The minor peaks at
ε = ±0.1 correspond to the edge states in (a).

C Relation between enhanced FM fluctuations and odd-

frequency superconductivity

In this Appendix, we consider the detail mechanism of the development of φ̂0 near the (1, 1).
First, we analyze the anomalous Green function, by which φ̂0 is composed. Figure 52 (a)
shows the εn-dependence of ReFy,y(π/4, εn). In the bulk, ReFy,y(π/4, εn) = 0 because the
d wave gap has a line node in x-direction in the bulk. Interestingly, ReF1,1(π/4, εn) is non-
zero, and its frequency-dependence is an odd function. This odd-frequency component can
be understood as another physical picture of the ABS as pointed out in Refs. [91,119]. Figure
52 (b) shows the kx-dependence of ReFy,y(kx, iπT ). At the edge, ReF1,1(kx, iπT ) has peaks
at kx ≈ 4π/5 and kx ≈ 6π/5, whereas ReFy,y(kx, iπT ) = 0 in the bulk. These peaks give
rise to the enhancement of φ0

1,1 at qx = 0 because the convolution integral about F becomes
largest for qx = 0 Therefore, we can explain the enhancement of the FM fluctuations as the
direct effect of the odd-frequency nature, which is another interpretation of the ABS.
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Figure 52: Anomalous Green function calculated for ∆d
0 = 0.09 at T = 0.0365. (a) εn-

dependence of ReFy,y(kx = π/4, εn). The red and green points represent the component in the
edge (y = 1) and bulk (periodic system), respectively. (b) kx-dependence of ReFy,y(kx, iπT ).
The red solid line and the green dotted line represents the component in the edge and bulk,
respectively.

Next, we explain how the large odd-frequency component emerges near the edge by using
the atomic picture, assuming that t is the small parameter. Here, the zeroth-order Green
function at the same site i in the normal state is

G0
i,i(εn) =

1

εn − E
, (100)

where E is the atomic energy level. The Green function between the nearest neighbor sites
i and j is represented by the first-order perturbation of hopping integral t as follows:

G0
i,j(εn) =

1

εn − E
t

1

εn − E

=
t

(εn − E)2
. (101)

In figure 53, we exhibit the the lowest order contributions to the anomalous Green function
F1,2 visually. They are represented as follows:

F1,2(εn) =−G0
1,1(εn)∆

d
1,3G

0
2,3(−εn)

−G0
1,3(εn)∆

d
3,2G

0
2,2(−εn)

=−
2∆d

1,3tεn

(E2 − ε2n)
2
. (102)
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In the second equal sign, we use ∆d
1,3 = −∆d

3,2. The obtained F1,2(εn) is proportional to εn,
and therefore the odd-frequency component emerges at the edge of d-wave superconductor.
In contrast, F is absent in the bulk due to the perfect cancellation of contributions via site 4
and those via site 3.

(1,1) edge

Figure 53: Contributions to the anomalous Green function at the (1, 1) edge, F1,2. The
solid line with two arrows represents F1,2. The red and blue circles show the d-wave SC gap
between the nearest neighbor sites. The dotted line with an arrow is the Green function in
the normal state, G0. At the edge, F1,2 is finite because the contributions through site 4 are
dropped.
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D LDOS in the d± ip-wave SC state

In this Appendix, we calculate the LDOS in the d+ ip-wave SC state. For simplicity, we can
set the d-vector of the p-wave gap as z-direction, because we ignore the spin-orbit interaction
in this study. We use the p-wave gap obtained by the numerical analysis. In the numerical
calculation, we use the p-wave gap obtained as the solution of the linearized gap equation.
The LDOS is obtained by Green function as follows:

Dy(ϵ) =
1

π

∑
kx,σ

ImGσ,σ
y,y (kx, ϵ− iδ). (103)

We set δ = 0.01 in the numerical calculation.

0-0.4 0.2 0.4
0

0.5

1

-0.2

up spin
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sum

1.5

Figure 54: ε-dependence of the LDOS at the (1, 1) edge in the d + ip-wave SC state. We
set ∆0 = 0.09 and max

i,j
|ϕi,j| = 0.05. The red dashed line and blue doted line represent the

LDOS for up and down spin, respectively. The green solid line is the sum of spins.

Figure 54 shows the obtained LDOS at the edge. The emergence of edge p-wave SC makes
a difference between up and down spins in the LDOS because the d± ip-wave SC state breaks
the time-reversal symmetry.

80



E kx-dependence of sodd gap
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Figure 55: Weight of the edge layer state in the normal state; Wy=1(kx, ϵ).

In this Appendix, we explain the reason for the obtained kx-dependence of sodd wave gap.
To explain this, we calculate the weight of the edge layer state Wy=1(kx, ϵ) in the whole
band of the present cluster tight-binding model without ∆d. We evaluate it by Wy(kx, ϵ) =∑

b δ(Eb,kx − ϵ)|U(y, b, kx)|2, where Eb,kx is the b-th band energy at kx measured from µ and
U(y, b, kx) is the Unitary matrix. Note that Wy(kx, ϵ) is associated with the LDOS Dy(ϵ) by
the relation Dy(ϵ) =

∑
kx
Wy(kx, ϵ). Figure 55 shows the obtained weight of the edge layer

state (y = 1). Because the edge weight is large for |kx| ∼ π/2, the magnitude of the sodd

wave gap function in Fig. 2 (a) is large for |kx| ∼ π/2.

F Analysis by modified FLEX approximation

In section 6, site-dependent pairing interaction Vy,y′(kx, iωn) is obtained by using the site-
dependent RPA theory. In this Appendix, we estimate Vy,y′(kx, iωn) using the modified
FLEX approximation, and solve the linearized triplet gap equation to study the effect of the
self-energy effect We set U = 2.8 in this Appendix.

Figures 56 (a) and (b) represent the qx- and ωn-dependences of the obtained odd-frequency
sodd wave gap at T = 0.05, respectively. Due to the self-energy in the FLEX approximation,
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the d wave gap is renormalized as ∆d
0
∗
= 0.17 (0.14) for ∆d

0 = 0.24 (0.20). We obtain the
similar result to those in Fig. 30 (a) and (b) based on the RPA without self-energy effect.

Figures 56 (c) and (d) exhibit the obtained spin Stoner factor αS and the eigenvalue λedge

as functions of T , respectively. Without bulk d-wave gap (∆d
0
∗
= 0), αS exhibits moderate

increase at low temperatures. In contrast, λedge decreases at low T because the pairing
interaction for the odd-frequency SC gap is proportional to Tχs(qx, 0). On the other hand,
in the presence of the d wave gap ∆d

0
∗
, αS rapidly increases due to the huge zero-energy

surface-Andreev-bound-state (SABS) peak. Therefore, λedge rapidly increases owing to the
SABS-induced magnetic criticality [133]. These results are also similar to those in Fig. 30 (c)
and (d) in the main text. Thus, we conclude that the SABS-driven odd-frequency SC state
is naturally induced at the edge of d wave superconductors, even if the negative feedback
effect of the self-energy is taken into consideration by using the modified FLEX theory.
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Figure 56: Odd-frequency gap functions obtained by the modified FLEX theory for U = 2.8.
(a)(b) Obtained sodd wave triplet gap at edge: (a) ϕ1,1(kx,±iπT ) and (b) ϕ1,1(kx = π/2, iϵn)
in case of ∆d

0
∗
= 0.17 at T = 0.05. (c)(d) T -dependences of (c) the Stoner factor αS and

(d) the eigenvalue λedge for the sodd wave state. Here, the bulk d wave SC gap appears at
Tcd = 0.06. 2∆d

0
∗
/Tcd = 4.7 and 5.6 for ∆d

0
∗
= 0.14 and 0.17, respectively. The edge sodd

wave gap is obtained for αS ≳ 0.968 at T = Tcd.
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