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Chapter 1

General Introduction

The use of photochemistry of organic dye molecules has covered a wide range of applications.

For example, the energy of photon absorbed can be used for intramolecular reaction of the dye

molecules, such as the cis-trans isomerization of cinnamate derivatives for UV protection,1–5

or cyclization/cycloreversion reactions of diarylethenes as photochromic molecules.6,7 The

absorbed energy can also be retained to emit light as fluorescence or phosphorescence. In

recent years, the imaging techniques using fluorescence of organic dye molecules have become a

powerful tool for visualizing biosystems.8–12 In other fields, organic molecules with thermally

activated delayed fluorescence (TADF) have been extensively studied for their potential use in

organic light-emitting diodes (OLEDs) with high electroluminescence efficiency.13–15 On the

other hand, the absorbed energy can be used for catalyzing other reactions.16–18 These various

applications indicate that the use of photochemistry of organic dye molecules is indispensable

for our life.

This variety of applications is originated from various usages of the absorbed energy. In

usual organic molecules, dipole-allowed fluorescent decay occurs with the lifetime of several

nanoseconds.8 When the absorbed energy is used for intramolecular reaction, it usually pro-

ceeds faster than fluorescent decay. For example, photo-excited cinnamate derivatives decays,

reaching its electronic ground state within several picoseconds,19,20 and the photo-induced

diarylethenes in its closed form do within tens-of-picoseconds.7,21 On the other hand, organic

photocatalysts usually reach a triplet state rather than causing fluorescent decay.16,22 As the

typical lifetime of triplet states is long enough to encounter reactants, the photocatalytic

reaction occurs via triplet state-assisted channels. Considering the difference in the process

after photoabsorption, one can say that the application of the organic dye molecules should

be controlled by the rate constant of electronic transitions after photoabsorption.

From this context, theoretical estimation of the rate constants for electronic transitions in

organic molecules have attracted growing attention toward theory-based molecular design.

The possible methods to estimate rate constants are the nonadiabatic molecular dynamics

simulations,23–25 perturbative methods like Fermi’s golden rule26–36 or Marcus theory,37 or

application of Eyring’s equation38 to the activation energy at the excited state. Of these

methods, the nonadiabatic dynamics simulations have been applied mainly to the ultrafast

decays, such as the cycloreversion of cyclohexatriene,39–41 cis-trans isomerization of azoben-



zenes,42–44 partially because longer lifetime requires a larger computational cost. Hence, for

the relatively slow decays, the perturbative approach has been applied in recent years. Wu et

al. employed this method for theoretically designing a pH-responsive organic photocatalyst

for polymerization.45 Several studies have investigated the rate constant of reverse inter-

system crossing (rISC) in TADF molecules to gain some insight for accelerating the rISC

process.46–50 This perturbative method to estimate rate constants has been becoming a tool

for theory-based molecular design.

However, the accessibility to computer programs for estimating rate constant is still limited.

Wu et al. employed MOMAP program28 in their study. I also have ever used this program;51

at that time, I found that it was short of some methods. Neese et al. implemented these

computational methods to their quantum chemistry calculation package ORCA.52,53 Sev-

eral studies have investigated the rate constant of reverse intersystem crossing (rISC) in

TADF molecules to gain some insight for accelerating the rISC process using their in-house

codes.49,50,54 Except for the FCClasses by Santoro et al.55 in its β version, program codes

with its source code accessible are not publically available. In order for me to conduct these

calculations, access to the further feasible program code is desirable.

Another problem in the perturbative method is that the necessity of applying harmonic

approximation to potential energy surfaces to compute the overlap of vibrational wavefunction

makes it impossible to study anharmonic events under this method.29 One of the important

anharmonic events is the thermally activated decay through conical intersection.56–58 Decay

through a conical intersection can be seen among several organic dye molecules, such as

stilbene59 and nucleic acids.60,61 Assuming that the nonadiabatic transition at the conical

intersection is not a rate-determining step and that the whole decay process is much slower

than vibrational redistribution, the rate constant of the decay is considered to be controlled

by activation energy.56–58 In such a case, the rate constant of the decay should be estimated

using Eyring’s equation. Some studies employed Kramers’ barrier-crossing theory instead of

Eyring’s equation.58,62 Using these methods, the rate constant of electronic transition can

be theoretically estimated.

In the theoretical estimation of the rate constants, the accuracy of the quantum mechanical

calculation can be an important matter. According to the energy gap law, the rate constant

of radiationless electronic transition in the rigid molecule is proportional to the exponential

of the energy gap.33,63 The rate constant in Eyring’s equation is also proportional to the

exponential of the activation energy.38 This sensitivity of the rate constants to relative

energy indicates that the use of highly accurate quantum mechanical calculation methods is

highly recommended for reasonably estimating the rate constants. Actually, Marian et al.

have employed a combination of density functional theory and multireference configuration

interaction (DFT/MRCI methods) to reliably estimate the relative energy.30–33,64 Kim et

al. employed spin component scaled variant65 of the second-order algebraic diagrammatic

construction method66 (SCS-ADC(2)) to reliably estimate the geometry and Hessian.49,50

If possible, the use of functional-free wavefunction theories is desirable to obtain reliable

computational results.
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In recent years, the applicability of the several high-level wavefunction theory has been

extended thanks to the development of efficient approximations and the release of publically

available programs. Neese et al. have developed an efficient approximation for handling

electron correlation, known as domain-based local pair natural orbital-based (DLPNO-) ap-

proaches, and implemented them into their ORCA program package.53,67–70 In the framework

of these methods, the energy of the medium size of molecules may be reasonably estimated

at the usual geometry. However, computation at the specific geometry can be out of range of

the applicability of these single reference methods; at such geometry, so-called multireference

(MR) methods71–81 may properly work. The multireference methods have also been extended

by the introduction of the density matrix renormalization group (DMRG) algorithm. Chan

and Yanai et al. have introduced DMRG to extend the size of applicable molecule.82–86 As

well as the extension to a large system, the analytical nuclear derivative at the MR level

of theory has been developed and implemented,77,87–93 which enables the optimization of

molecular geometry at the MR level of theory. These recent techniques indicate that the

infrastructure of the methods to reasonably estimate the energy of molecules is being con-

structed.

In my three years, I tried to theoretically estimate the rate constant of electronic transition

in the excited organic dye molecules using both Eyring’s equation and perturbative approach.

In validating the application of Eyring’s equation to estimate a rate constant, I chose silepin

molecules as a subject of research. The silepin molecules are cis-stilbene derivatives bridged

by SiMe2 moiety as they have a 7-membered ring. The radiative and nonradiative decay rate

constants were experimentally obtained;94 however, the mechanism of the nonradiative decay

was unknown. By assuming that the decay process is the thermally activated decay triggered

by the twisting of the central C=C bond, I tried to compute the rate constants by applying

Eyring’s equation,95 which is given in Chapter 3. In the study, the use of multireference theory

for the evaluation of geometry as well as energy was critical to obtain reasonable activation

energy. The findings obtained in this study were useful in the collaborative research with Dr.

Okuno and Mr. Nomoto.96

Motivated by the collaborative research with Yamaguchi group51 and the discussions with

Dr. Okuno, who is my double-mentor in the GTR program, I wrote a Python code for

computing the rate constants using perturbative approach; the code was mainly derived from

FCClasses in the β version which was kindly provided by Prof. Santoro. For handling weakly

allowed transitions in radiative decay and intersystem crossing, the 1st-order derivative of

the couplings are also treated (so-called Herzberg-Teller (HT) approximation); using this

method, rate constants of a characteristic TADF molecule (DABNA)14 was estimated and

compared with the experimentally obtained value and theoretical one in a previous study.50

There, a reliable prediction of the relative energies as well as the treatment of the spin-orbit

coupling matrix elements (SOCMEs) at a higher level than the constant model (Franck–

Condon level) were required for a reasonable estimation of the rate constant. Thanks to

my Python code, I got to compute the rate constants using an editable program. This code

will be potentially used to estimate rate constants with coupling terms estimated at higher-
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level quantum mechanical methods under the development in Yanai group. The theories,

validation of my code, and application to DABNA are given in Chapter 2.

Using my code, I investigated the nonradiative decays of the bis-phosphanyl-bridged stil-

bene analogues. Yamaguchi et al. synthesized the bis-phosphanyl-bridged stilbene and its

dioxide (bis-phosphoyyl-bridged stilbene) in 2008,97 where the oxidation turned out to in-

crease the fluorescence quantum yield (ΦF). When they synthesized the thiophene-fused

phospholo[3,2-b]phosphole and its dichalcogenides, which are the thiophene-fused analogue

of bis-phosphanyl-bridged stilbenes, in 2010,98 it turned out to be that the oxygenation of

thiophene-fused phospholo[3,2-b]phosphole drastically reduced its ΦF. To theoretically gain

insight into the changes in ΦF, I computed the rate constants of the transitions from the

first excited state of these molecules; there, the perturbative method and conical intersec-

tion search were both necessary. The study of these P-bridged stilbene analogues is given in

Chapter 4.

The rest of this thesis is composed of 4 other chapters. The theories employed in this study

and implementation of the rate constant calculations are provided in Chapter 2, where some

computations to be compared with the FCClasses codes and application to DABNA are also

provided. Theoretical investigation of the nonradiative decay of silepin molecules is shown in

Chapter 3. Investigation of the effect of the phosphorus oxigenation in the bis-phosphanyl-

stilbene analogues on nonradiative decays is provided in Chapter 4. Concluding remarks are

given in Chapter 5. After that, other publications are included.

Bibliography

[1] A. Gunia-Krzyżak et al., Int. J. Cosmet. Sci. 40, 356 (2018).

[2] J. Kockler, M. Oelgemöller, S. Robertson, and B. D. Glass, J. Photochem. Photobiol. C

Photochem. Rev. 13, 91 (2012).

[3] L. A. Baker et al., J. Phys. Chem. Lett. 7, 56 (2016).

[4] M. Promkatkaew et al., Photochem. Photobiol. Sci. 13, 583 (2014).

[5] J. Luo et al., J. Phys. Chem. Lett. 8, 1025 (2017).

[6] M. Irie, Chem. Rev. 100, 1685 (2000).

[7] M. Irie, T. Fukaminato, K. Matsuda, and S. Kobatake, Chem. Rev. 114, 12174 (2014).

[8] J. R. Lakowicz, Principles of fluorescence spectroscopy, Springer science & business

media, third edition, 2013.

[9] T. Terai and T. Nagano, Pflügers Archiv-European Journal of Physiology 465, 347

(2013).

[10] J. Chan, S. C. Dodani, and C. J. Chang, Nat. Chem. 4, 973 (2012).

[11] Y. Tsuchiya et al., Science 349, 864 (2015).

[12] C. Wang et al., Angew. Chem. Int. Ed. 127, 15428 (2015).

[13] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, Nature 492, 234 (2012).

[14] T. Hatakeyama et al., Adv. Mater. 28, 2777 (2016).

[15] Y. Kondo et al., Nat. Photonics 13, 678 (2019).

6



[16] J. C. Theriot et al., Science 352, 1082 (2016).

[17] Y. Lee and M. S. Kwon, Eur. J. Org. Chem. 2020, 6028 (2020).

[18] D. Liu et al., Org. Lett. 20, 5700 (2018).

[19] Y. Peperstraete et al., Phys. Chem. Chem. Phys. 18, 28140 (2016).

[20] J. M. Woolley et al., Phys. Chem. Chem. Phys. 21, 14350 (2019).

[21] H. Sotome et al., J. Am. Chem. Soc. 139, 17159 (2017).

[22] N. A. Romero and D. A. Nicewicz, Chem. Rev. 116, 10075 (2016).

[23] J. C. Tully, J. Chem. Phys. 93, 1061 (1990).

[24] D. B. Lingerfelt, D. B. Williams-Young, A. Petrone, and X. Li, J. Chem. Theory Comput.

12, 935 (2016).

[25] J. W. Park and T. Shiozaki, J. Chem. Theory Comput. 13, 3676 (2017).

[26] Y. Niu, Q. Peng, C. Deng, X. Gao, and Z. Shuai, J. Phys. Chem. A 114, 7817 (2010).

[27] Q. Peng, Y. Niu, Q. Shi, X. Gao, and Z. Shuai, J. Chem. Theory Comput. 9, 1132

(2013).

[28] Y. Niu et al., Mol. Phys. 116, 1078 (2018).

[29] A. Humeniuk et al., J. Chem. Phys. 152, 054107 (2020).

[30] M. Etinski, J. Tatchen, and C. M. Marian, J. Chem. Phys. 134, 154105 (2011).

[31] M. Etinski, V. Rai-Constapel, and C. M. Marian, J. Chem. Phys. 140, 114104 (2014).

[32] J. Tatchen, N. Gilka, and C. M. Marian, Phys. Chem. Chem. Phys. 9, 5209 (2007).

[33] T. J. Penfold, E. Gindensperger, C. Daniel, and C. M. Marian, Chem. Rev. 118, 6975

(2018).

[34] V. Lawetz, G. Orlandi, and W. Siebrand, J. Chem. Phys. 56, 4058 (1972).

[35] R. Valiev, V. Cherepanov, G. V. Baryshnikov, and D. Sundholm, Phys. Chem. Chem.

Phys. 20, 6121 (2018).

[36] R. R. Valiev, V. N. Cherepanov, R. T. Nasibullin, D. Sundholm, and T. Kurten, Phys.

Chem. Chem. Phys. 21, 18495 (2019).

[37] N. Aizawa, Y. Harabuchi, S. Maeda, and Y.-J. Pu, Nat. Commun. 11, 1 (2020).

[38] H. Eyring, J. Chem. Phys. 3, 107 (1935).

[39] A. Ohta, O. Kobayashi, S. O. Danielache, and S. Nanbu, Chem. Phys. 459, 45 (2015).

[40] A. Ohta, O. Kobayashi, S. O. Danielache, and S. Nanbu, Chem. Phys. 485, 45 (2017).

[41] I. Polyak, L. Hutton, R. Crespo-Otero, M. Barbatti, and P. J. Knowles, J. Chem. Theory

Comput. 15, 3929 (2019).

[42] A.-H. Gao, B. Li, P.-Y. Zhang, and K.-L. Han, J. Chem. Phys. 137, 204305 (2012).

[43] L. Liu, Y. Wang, and Q. Fang, J. Chem. Phys. 146, 064308 (2017).

[44] R. Liang, J. Chem. Theory Comput. 17, 3019 (2021).

[45] C. Wu et al., J. Am. Chem. Soc. 141, 8207 (2019).

[46] J. Gibson, A. P. Monkman, and T. J. Penfold, ChemPhysChem 17, 2956 (2016).

[47] T. Northey and T. Penfold, Org. Electron. 59, 45 (2018).

[48] L. Lv, K. Yuan, T. Zhao, and Y. Wang, J. Mater. Chem. C 8, 10369 (2020).

[49] I. Kim et al., J. Chem. Theory Comput. 16, 621 (2020).

[50] I. Kim et al., JACS Au 1, 987 (2021).

7



[51] Y. Sugihara et al., Chem. Sci. 12, 6333 (2021).

[52] B. de Souza, F. Neese, and R. Izsák, J. Chem. Phys. 148, 034104 (2018).

[53] F. Neese, F. Wennmohs, U. Becker, and C. Riplinger, J. Chem. Phys. 152, 224108

(2020).

[54] S. Lin, Z. Pei, B. Zhang, H. Ma, and W. Liang, J. Phys. Chem. A 126, 239 (2022).

[55] FCclasses 3.0 beta release, http://www.pi.iccom.cnr.it/fcclasses.

[56] Y. Harabuchi, T. Taketsugu, and S. Maeda, Phys. Chem. Chem. Phys. 17, 22561 (2015).

[57] Y. Harabuchi, T. Taketsugu, and S. Maeda, Chem. Lett. 45, 940 (2016).

[58] J. Hoche et al., Chem. Sci. 10, 11013 (2019).

[59] I. N. Ioffe and A. A. Granovsky, J. Chem. Theory Comput. 9, 4973 (2013).

[60] C. E. Crespo-Hernández, B. Cohen, P. M. Hare, and B. Kohler, Chem Rev 104, 1977

(2004).

[61] S. Yamazaki and T. Taketsugu, J. Phys. Chem. A 116, 491 (2012).

[62] T. S. Blacker, R. J. Marsh, M. R. Duchen, and A. J. Bain, Chem. Phys. 422, 184 (2013).

[63] J. Shi et al., Org. Chem. Front. 6, 1948 (2019).

[64] A. Rodriguez-Serrano, F. Dinkelbach, and C. M. Marian, Phys. Chem. Chem. Phys. 23,

3668 (2021).

[65] S. Grimme, J. Chem. Phys. 118, 9095 (2003).

[66] J. Schirmer, Physical Review A 26, 2395 (1982).

[67] P. Pinski and F. Neese, J. Chem. Phys. 150, 164102 (2019).

[68] C. Riplinger and F. Neese, J. Chem. Phys. 138, 034106 (2013).

[69] M. Saitow, U. Becker, C. Riplinger, E. F. Valeev, and F. Neese, J. Chem. Phys. 146,

164105 (2017).

[70] R. Izsák, Int. J. Quantum Chem. 121, e26327 (2021).

[71] B. O. Roos et al., Chem. Phys. 48, 157 (1980).

[72] K. Andersson, P.-Å. Malmqvist, and B. O. Roos, J. Chem. Phys. 96, 1218 (1992).

[73] J. Finley, P.-Å. Malmqvist, B. O. Roos, and L. Serrano-Andrés, Chem. Phys. Lett. 288,

299 (1998).

[74] K. Hirao, Chem. Phys. Lett. 190, 374 (1992).

[75] H. Nakano, J. Chem. Phys. 99, 7983 (1993).

[76] A. A. Granovsky, J. Chem. Phys. 134, 214113 (2011).

[77] T. Shiozaki, W. Győrffy, P. Celani, and H.-J. Werner, J. Chem. Phys. 135, 081106

(2011).

[78] C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, and J.-P. Malrieu, J. Chem. Phys.

114, 10252 (2001).

[79] C. Angeli, R. Cimiraglia, and J.-P. Malrieu, Chem. Phys. Lett. 350, 297 (2001).

[80] C. Angeli, R. Cimiraglia, and J.-P. Malrieu, J. Chem. Phys. 117, 9138 (2002).

[81] C. Angeli, S. Borini, M. Cestari, and R. Cimiraglia, J. Chem. Phys. 121, 4043 (2004).

[82] D. Ghosh, J. Hachmann, T. Yanai, and G. K.-L. Chan, J. Chem. Phys. 128, 144117

(2008).

[83] T. Yanai, Y. Kurashige, D. Ghosh, and G. K.-L. Chan, Int. J. Quantum Chem. 109,

8



2178 (2009).

[84] S. Guo, M. A. Watson, W. Hu, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput.

12, 1583 (2016).

[85] Y. Kurashige and T. Yanai, J. Chem. Phys. 135, 094104 (2011).

[86] T. Yanai et al., J. Chem. Theory Comput. 13, 4829 (2017).

[87] B. Vlaisavljevich and T. Shiozaki, J. Chem. Theory Comput. 12, 3781 (2016).

[88] T. Shiozaki, WIREs Comput. Mol. Sci. 8, e1331 (2018).

[89] J. W. Park, R. Al-Saadon, N. E. Strand, and T. Shiozaki, J. Chem. Theory Comput.

15, 4088 (2019).

[90] J. W. Park, J. Chem. Theory Comput. 15, 5417 (2019).

[91] J. W. Park, J. Chem. Theory Comput. 16, 326 (2020).

[92] J. W. Park, J. Chem. Theory Comput. 17, 6122 (2021).

[93] Y. Nishimoto, J. Chem. Phys. 151, 114103 (2019).

[94] L. G. Mercier et al., Organometallics 30, 1719 (2011).

[95] N. Inai, D. Yokogawa, and T. Yanai, J. Phys. Chem. A 125, 559 (2021).

[96] A. Nomoto, N. Inai, T. Yanai, and Y. Okuno, J. Phys. Chem. A, in press.

[97] A. Fukazawa et al., Org. Lett. 10, 913 (2008).

[98] A. Fukazawa, T. Murai, L. Li, Y. Chen, and S. Yamaguchi, C. R. Chim. 13, 1082 (2010).

9



10

Chapter 2

Theoretical Background

2.1 Overview

In this chapter, some of the methods employed in this thesis are summarized: 1. The

multireference quasi-degenerate perturbation theory (MR-QDPT), 2. The method to opti-

mize the molecular geometry on the intersection space of adiabatic potential energy surfaces

(PESs), 3. The method to compute the rate constant of vibronic transition. The main

theme of this thesis is related to how the photo-excited organic dye molecules lose their en-

ergy. To handle the complicated electronic structure of the photo-excited organic molecules,

MR-QDPT methods,1–4 which can effectively expand the complicated electronic state by in-

cluding all configurations in the important orbitals, were employed. For understanding the

decay of photo-excited molecules, both radiative and nonradiative decays should be consid-

ered. The nonradiative decays consist of the decay at the intersection of PESs and the one

between vibronic states. For the computation of the former ones, geometry optimization on

the intersection seam between PESs is an effective approach, while a perturbative approach

like Fermi’s golden rule is effective to the latter ones. In this study, MR-QDPT level calcu-

lations and geometry optimization on the intersection space were conducted using existing

programs,2,5 while rate constant calculations based on perturbation theory were conducted

using the program that I coded. In coding my program, modules for handling internal coor-

dinate of molecular geometry were adopted from Psi4 program,6 and several parts are coded

based on β version of FCClasses 3.0 by Santoro et al.7 Some computed results were compared

with results produced using MOMAP by Shuai et al.8 and DUSHIN by Reimers.9 In cod-

ing, Python 3 was employed, and numerical operations such as matrix operation and Fourier

transformation are conducted by Numpy module.10 In the last, several calculations were

conducted to validate my code. First, the data computed by my code is compared with that

by FCClasses to verify that I successfully implemented these theories; there, some analysis of

the computed results is provided. Then, the rate constants of the reverse intersystem crossing

(rISC) in a characteristic MR-TADF molecule were computed.
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2.2 Multireference quasi-degenerate perturbation theory
(MR-QDPT)

2.2.1 Complete-active-space self-consistent-field (CASSCF) method

The complete-active-space self-consistent-field (CASSCF) method is a method to obtain

a wavefunction better than the Hartree-Fock (HF) approximation. The HF theory11,12 is

one of the basic theories in quantum chemistry. There, the ground state wavefunction is

approximated by a ground state electronic configuration. The HF approximation is considered

to cover almost 99% of the total energy; however, the residual part, called the electron

correlation, is often important in the chemical discussion.

The electron correlation can be handled by including the electrically excited configurations

to expand the wavefunction. If all of the configurations were included, known as the full-

configuration interaction (Full-CI) method, the exact electronic energy would be obtained.

In practice, only a fraction of the configurations is included to save the computational cost.

Because only a fraction of the configurations is included, the quality of the HF reference

becomes important.

When the quality of the HF wavefunction is reasonable, the single-reference methods such

as the configuration interaction including all single and double excitations (CISD)13 and the

coupled-cluster method with the singles and doubles (CCSD)14 can reasonably include the

electronic correlation using the HF solution as a reference state. On the other hand, when

the electronic state has any possible degeneracy, the quality of the HF reference becomes

questionable. In such cases, the reference wavefunction should be re-constructed by including

some of the other configurations.

Occupied 
(Active space)

Closed

Virtual

Fig. 2.1: A schematic figure of the expansion of wavefunction in the CASSCF method

A popular method to handle the electronic state with possible degeneracy is the CASSCF

method.15 In the CASSCF method, molecular orbitals are separated into three classes as

shown in Fig. 2.1. The first one contains the closed orbitals, which are kept doubly occupied

11



2.2 Multireference quasi-degenerate perturbation theory (MR-QDPT)

during CASSCF calculation. The second one contains the occupied orbitals, whose occupa-

tion number is between 0 to 2; this class is also called the active space. The last one contains

the virtual orbitals, which are unoccupied during the CASSCF calculation. The CASSCF

calculation is composed of the Full-CI step in the active space (CAS-CI) and orbital optimiza-

tion step (SCF). Originally, these steps were conducted at the same time (1-step algorithm).

On the other hand, the programs I employed, such as orz and QSimulate-QM,16 compute

these steps separately (two-step algorithm).17

CAS-CI part is the diagonalization of the active space Hamiltonian. Because the CAS-CI

part is the Full-CI calculation in the active space, the order of the computational cost is

factorial to the size of the active space employed. Usually, an active space where 14 electrons

in 14 orbitals is located near the upper limit of the application. SCF part is the optimization

of the molecular orbitals to minimize the energy of the electronic state given by the CAS-CI

part. The optimization of the molecular orbitals is expressed by the unitary transformation

of the MO coeficient matrix as,17

Cnew = ColdU. (2.1)

A unitary matrix can be parameterized using a antysymmetric matrix X as,

U = exp(X), (2.2)

X† = −X. (2.3)

Using the derivative of the CAS-CI energy with respect to the matrix element of X, the

CAS-CI energy can be expanded to the 2nd order as,

E(X) ≈ E(0) + g†X+
1

2
X†HX, (2.4)

where g and H are the 1st-order and 2nd-order derivative of the CAS-CI energies. Note that

X in Eqn. 2.4 is regarded as a column vector, where a pair of indices p and q behaves as an

index. X for orbital rotation is determined by taking the eigenvector with lowest eigenvalue

the augmented Hessian, (
0 g†

g H/λ

)(
1/λ
X

)
= ϵ

(
1/λ
X

)
. (2.5)

In the two-step algorithm, CAS-CI and SCF steps are repeated until the CASSCF calculation

reaches convergence.

2.2.2 Extended multistate complete-active-space 2nd-order pertur-
bation (XMS-CASPT2) method

The extended multistate complete-active-space 2nd-order perturbation (XMS-CASPT2)

method was developed as an extension of the complete-active-space 2nd-order perturbation

theory (CASPT2). Although the description of the CASSCF solution is usually better than

that of the HF solution, the reliability of the CASSCF result is usually insufficient. To increase

the reliability of the computed results, some corrections should be conducted based on the

12



2.2 Multireference quasi-degenerate perturbation theory (MR-QDPT)

CASSCF solution. In the multireference perturbation theory (MRPT), such as CASPT2,18

the correction is conducted perturbatively. In the CASPT2 theory, by constructing the gener-

alized Fock matrix as the zeroth-order Hamiltonian, the 1st-order wavefunction is computed

so as to minimize the Hylleraas functional. Because the generalized Fock matrix is not di-

agonal, the 1st-order wavefunction is computed iteratively. Note that only the diagonal part

of the generalized Fock matrix was considered in the original paper by Roos et al.18 Other

MRPT methods include the multireference 2nd-order Møller–Plesset perturbation theory

(MRMP2) by Hirao19 and the N-electron valence 2nd-order perturbation theory (NEVPT2)

by Angeli et al.20–22

In handling the degenerate electronic states, the perturbative correction should be con-

sidered based on the quasi-degenerate perturbation theory (QDPT). Roos et al. extended

the CASPT2 to the multistate formulation, resulting in the multistate (MS-) CASPT2.23

Similarly, Nakano extended the MRMP2 to the multiconfigurational quasi-degenerate 2nd-

order perturbation theory (MCQDPT2)24 while Angeli et al. extended the NEVPT2 to the

QD-NEVPT2.25 As a reference state, the CASSCF is solved so as to minimize the average

of the energies of the states of interest, which is called state-averaged (SA-) CASSCF.

In 2011, Granovsky introduced the concept of the extended-MRPT to develop the extended

MCQDPT2 (XMCQDPT2).26 There, the reference state is prepared by diagonalizing the

multistate Fock matrix to include the off-diagonal elements of the multistate Fock matrix.

This extension resulted in smooth potential energy surfaces near the conical intersections

with a negligible additional computational cost. Then Shiozaki et al. combined this concept

with the MS-CASPT2 to develop the XMS-CASPT2.1 Up to date, several extensions have

been conducted to the XMS-CASPT2 method, including the analytical derivative coupling3

and the use of the imaginary level-shift.4

Here, equations related to the XMS-CASPT2 were summarized based on Ref 2. First,

the SA-CASSCF calculation should be conducted to obtain a set of wavefunctions {|M⟩}
(M = 1, 2, · · · , N) to be used for constructing the reference states. The reference state

employed for the perturbative correction is constructed by diagonalizing the multistate Fock

matrix. The Fock operator can be defind as,

f̂ =
∑
pq

fpqÊpq, (2.6)

where Êpq is the spin-summed single excitation operater and fpq is the generalized Fock

matrix constructed using the state-averaged 1-body reduced density matrix (SA-1-RDM).

The formula of the Êpq and 1-RDM (Dp
q (L,M)) are given as,

Êpq = a†pαaqα + a†pβaqβ , (2.7)

Dp
q (L,M) = ⟨L|Êpq|M⟩ . (2.8)

Note that the Dp
q (L,M) is called 1-RDM when L=M; otherwise, it is called 1-body transition

RDM (1-TRDM). The matrix element of the multistate Fock matrix is given as,

fLM = ⟨L|f̂ |M⟩ =
∑
pq

fpqD
p
q (L,M). (2.9)
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2.2 Multireference quasi-degenerate perturbation theory (MR-QDPT)

The reference states are constructed by diagonalizing the multistate Fock matrix. When this

diagonalization is given using a diagonal matrix f̃ as,

U†fU = f̃ , (2.10)

the reference states {|M̃⟩} (M = 1, 2, · · · , N) are given by,

|M̃⟩ =
∑
L

|L⟩ULM . (2.11)

Note that the use of an identity matrix 1 as U is equivalent to the original MS-CASPT2,

because this diagonalization was not conducted.

Using the reference states {|M̃⟩} thus obtained, perturbative correction is considered. The

1st-order wavefunction is expanded using the internally contracted basis (ICB), which is a

set of wavefunctions produced by operating the double excitation operators to the reference

state. There are two variants of the choice of the ICBs employed in the expansion.27 One

is the multistate multireference (MS-MR) scheme, where the 1st-order wavefunction for the

reference {|M̃⟩} (|Ψ(1)
M ⟩) is expanded using ICBs produced by all of the references as,

|Ψ(1)
M ⟩ =

∑
L

∑
Ω

ÊΩ |L̃⟩TΩ,LM , (2.12)

where ÊΩ are the spin-summed double excitation operaters ({ÊΩ} = {ÊpqÊrs}), and TΩ,LN

is the amplitude for the corresponding ICB. The other is the single-state single-reference (SS-

SR) scheme, where the 1st-order wavefunction for the reference {|M̃⟩} (|Ψ(1)
M ⟩) is expanded

using ICBs produced by {|M̃⟩} itself as,

|Ψ(1)
M ⟩ =

∑
Ω

ÊΩ |M̃⟩TΩ,MM . (2.13)

Although the MS-MR contraction is better in accuracy than the SS-SR one, the computa-

tional cost in MS-MR one is larger than that in the SS-SR one. The amplitudes are computed

by solving the amplitude equations for each reference state as,

⟨M̃ |Ê†
Ω(f̂ − E

(0)
L )|Ψ(1)

L ⟩+ ⟨M̃ |Ê†
ΩĤ|L̃⟩ = 0. (2.14)

Note that this equation is usually modified by introducing the level-shift technique, especially

with the imaginary level-shift,4,28 because the CASPT2 method is known to have the so-called

intruder state problem. The amplitude equation with an imaginary shift iϵ is rewritten as,

⟨M̃ |Ê†
Ω(f̂ − E

(0)
L ) + iϵ|Ψ(1)

L ⟩+ ⟨M̃ |Ê†
ΩĤ|L̃⟩ = 0. (2.15)

Using the 1st-order wavefunctions thus obtained, the symmetrized effective Hamiltonian is

constructed as,

Heff
ML = Href

ML +
1

2

(
H

(2)
ML +H

(2)
LM

)
(2.16)

= ⟨M̃ |Ĥ|L̃⟩+ 1

2

(
⟨M̃ |Ĥ|Ψ(1)

L ⟩+ ⟨L̃|Ĥ|Ψ(1)
M ⟩
)
. (2.17)

Finally, diagonalization of the effective Hamiltonian gives the XMS-CASPT2 energies.
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2.2 Multireference quasi-degenerate perturbation theory (MR-QDPT)

2.2.3 Density matrix renormalization group (DMRG-)XMS-
CASPT2 method

The density matrix renormalization group (DMRG-) XMS-CASPT2 is an approximation

of the XMS-CASPT2 method to reduce the computational cost in the CAS-CI step.2 The

DMRG was first introduced by White to study the model 1-dimensional system with a strong

correlation.29,30 Then, Chan and Yanai et al. introduced the DMRG into the diagonalization

in the CAS-CI step of the CASSCF calculation. Using the resulting DMRG-CASSCF method,

a CASSCF calculation with an active space of 24 electrons in the 24 orbitals, i.e. (24e,24o)

was conducted,31 although the upper limit of the conventional CASSCF was located near

(14e,14o).

The DMRG algorithm is so complicated that only the concept of the DMRG-CASSCF is

shown here in accordance with Ref. 32. The key concept of the DMRG-CASSCF is the low-

rank approximation to the CAS-CI step based on the singular value decomposition (SVD).

The DMRG-CAS-CI is composed of three steps: blocking, sweeping, and decimation. In the

DMRG-CAS-CI, localized molecular orbitals are regarded to form a 1-dimensional system.

The k molecular orbitals in the active space are transformed to the k localized orbitals and

put into a 1-dimensional box. The position in the box is expressed by a set of indices {i}
(i = 1, 2, · · · , k). By defining an electron configuration using the occupation state of each

box ni, where the occupation state is composed of empty, an α electron, a β electron and 2

electrons, the Full-CI wavefunction can be expressed as,

|ΨFCI⟩ =
∑

n1n2···nk

Cn1n2···nk
|n1n2· · ·nk⟩ . (2.18)

In the DMRG-CAS-CI, the box of the localized orbitals is separated into 4 blocks; from

the site 1 to site p− 1 form the block L, the site p forms the block ∆L, the site p+ 1 forms

the block ∆R, and the others form the block R. Using these blocks, the DMRG-CAS-CI

wavefunction is given as,

|ΨDMRG⟩ =
∑

lnpnp+1r

Clnpnp+1r |l⟩ |np⟩ |np+1⟩ |r⟩ , (2.19)

where the basis of wavefunction of the block L (|l⟩) and R (|r⟩) are composed of the electronic

configurations given by their components. When the bases |l⟩ and |r⟩ form a complete set,

the DMRG wavefunction may cover the Full-CI wavefunction. In practice, the numbers

of |l⟩ and |r⟩ are truncated by a user-defined constant M . Hence, the dimension of the

DMRG wavefunction is at most 16M2, whereas the scaling of the dimension in the Full-CI

is k!. Thanks to the small dimensions the coefficients in Eqn. 2.19 is determined by the

diagonalization of the CI matrix.

Similar calculations should be conducted at other sites. In Eqn. 2.19, the block L is

regarded as the system while R is regarded as the environment. Then, the next system is

constructed using the old |L⟩ and |np⟩. In other words, p is replaced by p+1. This change in

the system is repeated until the environment become empty; after that similar calculations
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are conducted by regarding block R as the system and L as the environment. This gradual

change in the position of the system is called the sweeping.

The dimensions of |l⟩ and |np⟩ are M and 4, respectively. To sweep the position, the

dimension of L̄ = L
⊗

∆L should be reduced from 4M to M . This decrease in the dimension

is achieved by the low-rank approximation of the density matrix. The set of 4M basis |l̄⟩ is

given by the unitary transformation as,

|l̄⟩ =
M∑
l=1

∑
np

U l̄
lnp

|l⟩ |np⟩ . (2.20)

In this process, the unitary matrix is given by the diagonalization of the reduced density

matrix DL
lnp,l′n′

p
, where DL

lnp,l′n′
p

is given as.

DL
lnp,l′n′

p
=
∑

np+1r

Clnpnp+1rC
∗
l′n′

pnp+1r. (2.21)

Using the eigenvalues of DL
lnp,l′n′

p
{ωm}, the relation between DL

lnp,l′n′
p

and U l̄
lnp

is given as,

DL
lnp,l′n′

p
=

4M∑
l=1

ωl̄U
l̄
lnp
U l̄
l′n′

p
. (2.22)

Of the 4M eigenvalues, M highest eigenvalues and related eigenvectors are used; while oth-

ers are truncated to reduce the dimension. This truncation process is called the decimation

process. The total discarded weight, which is an index of the reliability of the DMRG ap-

proximation, is computed using the truncated eigenvalues.

To sum up, in the DMRG-CAS-CI, by iterating the blocking, decimation, and sweeping

to reach convergence, a reasonable low-rank approximation to the CAS-CI calculation is

conducted. By using the DMRG-CASSCF wavefunction for the construction of the reference

states, DMRG-XMS-CASPT2 calculations are conducted.

2.3 Geometry optimization on the intersection of PESs

In the calculations in this thesis, minimal energy geometry of the conical intersection be-

tween singlet states or linear intersection between singlet and triplet states were optimized.

The methods employed to write my Python code are summarized. First, a definition of

potential energy surface (PES) is given. Second, geometry optimization is expressed as the

numerical optimization of the energy on PES. Third, techniques unique to geometry opti-

mization, such as handling cartesian coordinates or internal coordinates are shown. Finally,

geometry optimization on the intersection space between PESs is shown.

2.3.1 Potential Energy Surfaces (PESs)

Here, the definition of a potential energy surface (PES) is briefly described. The time-

independent Schrödinger equation is given as,

Ĥ(r,R)Ψ(r,R) = E Ψ(r,R), (2.23)
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Ĥ(r,R) =
∑
A

P̂ 2
A

2MA
+
∑
a

P̂ 2
a

2me
+ V (r,R), (2.24)

where Ĥ(r,R) is the Hamiltonian, Ψ(r,R) is the wavefunction, P̂A is the momentum operator

of the Ath nuclear, P̂a is the momentum operator of the ath electron, MA is the mass of

the Ath nuclear, me is the mass of electron, and V (r,R) is the potential energy arising

from nuclei and electrons, respectively. In Eqn. 2.23, the energies are obtained as scalar

eigenvalues, which depend on the quantum number of the eigenstates. Due to the difficulty

in solving Eqn. 2.23, the electron Schrödinger equation (Eqn. 2.25), which is obtained by

fixing the atomic coordinate at R in Eqn. 2.23, is solved in practice.

Ĥ(r;R)Ψe(r;R) = E(R)Ψe(r;R), (2.25)

Ĥ(r;R) =
∑
a

P̂ 2
a

2me
+ V (r;R). (2.26)

In Eqn. 2.25, the atomic coordinates are regarded as parameters, making the eigenvalue of

energy a function of the atomic coordinate. A potential energy surface is defined as the plot

of the energy E(R) with respect to atomic coordinate R.33

2.3.2 Geometry optimization as a numerical optimization

Geometry optimization of a molecule in theoretical chemistry can be regarded as the search

for the geometry of minimal energy point or saddle point on the PES. Because the analytical

formula of PES with respect to nuclear coordinate cannot be obtained, the geometric search

should be done numerically. In such a case, iterative procedure using derivatives of the target

function, such as steepest descent method, Newton-Raphson method, and rational function

optimization method (or augmented Hessian method), can be a possible choice.34

Taylor expansion of energy around the current geometry R at the 1st order is given using

the 1st-order derivative (gradient, g) as,

E(R+∆R)− E(R) ≈ gT∆R (2.27)

gi =
∂E

∂Ri
(2.28)

To reduce the energy, the right side of Eqn. 2.27 should be negative. Considering that an

inner product of the same real vector is a positive value, substitution of ∆R = −g yields,

E(R− g)− E(R) ≈ −gTg < 0 (2.29)

The numerical optimization method based on Eqn. 2.29 is known as the steepest descent

method. Because the use of ∆R = −g tends to give a too large displacement, the dis-

placement is scaled before updating variables in practice; this scaling is common among the

numerical optimization methods. This method is the simplest of the methods using gradient;

however, this method is known to be a bad convergence.

Taylor expansion of energy around the current geometry R at the 2nd-order is given using
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g and the 2nd-order derivative (Hessian matrix or force constant matrix, H) as,

E(R+∆R)− E(R) ≈ gT∆R+
1

2
∆RTH∆R (2.30)

Hij =
∂2E

∂Ri∂Rj
(2.31)

Because Eqn. 2.30 is a collection of parabolas, their stationary points can be defined. Setting

the partial derivative of the right-side of Eqn. 2.30 equal to 0, we obtain,

∆R = −H−1g. (2.32)

The numerical optimization based on Eqn. 2.32 is known as the Newton-Raphson method.

From Eqn. 2.30 and 2.32, the change in energy can be estimated as,

E(R+∆R)− E(R) ≈ −1

2
∆RTH∆R. (2.33)

Using the unitary matrix which diagonalizes H and corresponding eigenvalues h, Eqn. 2.33

can be rewritten as,

E(R+∆R)− E(R) ≈ −1

2

∑
i

hi∆R
′
i
2
, (2.34)

∆R′ = U†∆R (2.35)

Because the Newton-Raphson method employs the 2nd-order Taylor expansion, its conver-

gence is known to be better than the steepest descent method. However, according to Eqn.

2.34, negative eigenvalue in h cause destabilization; hence, the positive definiteness of H is

important to reach a local minimum, not any saddle point.

To ensure the positive definiteness of H in determining displacement, the use of the aug-

mented Hessian is an effective choice. In the rational function optimization (RFO) method,35

energy is expanded using rational function as,

E(R+∆R)− E(R) ≈
gT∆R+ 1

2∆RTH∆R

1 + ∆RTS∆R
, (2.36)

where the S is a unit matrix or a scaled unit matrix.35,36 By setting the partial derivative of

the right-side of Eqn. 2.36 with respect to ∆R equal to 0, we obtain,(
H g
gT 0

)(
∆R
1

)
= λ

(
S 0
0T 1

)(
∆R
1

)
. (2.37)

Practically, ∆R is computed by diagonalizing the augmented Hessian, i.e. the matrix on the

left-side of Eqn. 2.37, and being scaled so as to the last term become 1. Separation of 2.37

yields,

(H− λS)∆R+ g = 0, (2.38)

gT∆R = λ. (2.39)

Because S in Eqn. 2.38 a scaled unit matrix, the RFO method can be regarded as a method

to add a constant shift (−λα when S = αI) to the eigenvalues of H in the Newton-Raphson
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method.35 In case the eigenvector of the augmented Hessian with the smallest eigenvalue

is chosen, all of the eigenvalues of (H − λS) become positive, resulting in the guarantee of

the decrease in energy by a Newton-Raphson step. Similarly, when the eigenvector of the

augmented Hessian with the second smallest eigenvalue is chosen, all of the eigenvalues of

(H− λS) except the smallest one become positive; this property is useful to search the 1st-

order saddle point, i.e. the transition states in the PES.35 As a modification, a method to

strict the step size in RFO was proposed as the restricted-step RFO (RS-RFO) method.36 In

my Python code to optimize geometry, the RS-RFO method was mainly applied to determine

the displacement.

As shown above, the Hessian matrix is required for Newton-Raphson and RFO methods.

Computation of the Hessian matrix at each geometry might be possible; however, its large

computational cost has encouraged us to take other approaches. Especially, in employing

a method with its analytical hessian unavailable, the cost to compute the semi-numerical

Hessian tends to become huge. In practice, geometry optimization with Hessian computed at

each geometry is a rare procedure; instead, the initial Hessian is chosen from a guess Hessian

or analytical/semi-numerical Hessian, then the Hessian is updated at each step by using the

change in gradient because the Hessian matrix is the derivative of the gradient. This popular

method, where an approximated Hessian is applied to Newton-Raphson step, is called the

Quasi-newton method. There are several scheme to update Hessian. One of the popular

methods, which is employed in my code, is the BFGS method, named after its inventors,

Broyden, Fletcher, Goldfarb, and Shanno.34 In the BFGS procedure, the Hessian matrix at

the (k+1)th geometry is updated using the changes in the geometry (∆R(k,k+1) = Rk+1−Rk)

and gradient (∆g(k,k+1) = gk+1 − gk) as,

H(k+1) = H(k) − H(k)∆R(k,k+1)∆R(k,k+1)TH(k)

∆R(k,k+1)TH(k)∆R(k,k+1)
+

∆g(k,k+1)∆g(k,k+1)T

∆g(k,k+1)T∆R(k,k+1)
. (2.40)

The main advantages of the BFGS method are that the Hessian is updated by using Rank 2

matrix and that BFGS-updating of a positive-definite Hessian matrix gives a positive-definite

Hessian matrix when the curvature condition is satisfied.

Note that the inverse of the Hessian matrix (H−1) is updated in usual quasi-Newton meth-

ods to avoid the computation of the inverse of Hessian matrix in Eqn. 2.32, because the

computation of the inverse of a matrix tends to be numerically unstable and its computa-

tional cost is larger than that of matrix multiplication. Nevertheless, the Hessian matrix

itself is updated in quantum mechanical geometry optimization; the possible reasons are that

a reasonable guess Hessian can be prepared using the information of internal coordinates,

and that conversion into internal coordinate space is a usual choice, which requires Hessian

matrix itself.37 In addition, the updating subroutine in the famous program Gaussian38 uses

gradient and geometry before kth step as well.

In optimization using the quasi-Newton method, the choice of the initial Hessian is also

important because its quality affects the number of steps to reach convergence. The simplest

guess is the use of a unit matrix, where the first step is equivalent to the steepest descent
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method. In quantum mechanical geometry optimization, a guess diagonal Hessian can be

constructed using the information of internal coordinate. Details are shown in the geometry

optimization using Cartesian/internal coordinate sections.

2.3.3 Geometry optimization in Cartesian coordinate

Molecular geometry can be optimized based on Cartesian coordinate. The steepest de-

scent method can be employed without any additional consideration; however, use of the

other methods where Hessian matrix is employed requires additional manipulation. The

Newton-Raphson method given in Eqn. 2.32 can be rewritten using the unitary matrix

whith diagonalize Hessian matrix like Eqn. 2.35 as,

g′ = U†g, (2.41)

∆R′ = −h−1g′, (2.42)

∆R′
i = − g′i

hi
, (2.43)

where hi is the i-th eigenvalue of the Hessian matrix. Eqn. 2.43 have the eigenvalues as a

denominator; however, this is not suitable for molecular geometry optimization. The Hessian

matrix is a (3N × 3N) square matrix. Because the 3N dimension contains translational and

rotational contributions, which do not affect the energy of the molecule, the Hessian matrix

is intrinsically 3N − 6 dimension. This means that the Hessian matrix has 6 zeros as its

eigenvalue, resulting in the divergence in Eqn. 2.43.

To avoid the divergence by zero-division, the translational and rotational contributions

should be projected out from the full Hessian matrix. The translational (c1, c2, c3) and

rotational vectors (c4, c5, c6) before normalization are given when the center of geometry, i.e.

center of mass with all atomic masses equals, as,39

cT1 = cTtrx = (1, 0, 0, 1, 0, 0, · · · , 1, 0, 0), (2.44)

cT2 = cTtry = (0, 1, 0, 0, 1, 0, · · · , 0, 1, 0), (2.45)

cT3 = cTtrz = (0, 0, 1, 0, 0, 1, · · · , 0, 0, 1), (2.46)

cT4 = cTrotx = (0, z1,−y1, 0, z2,−y2, · · · , 0, zN ,−yN ), (2.47)

cT5 = cTroty = (−z1, 0, x1,−z2, 0, x2, · · · ,−zN , 0, xN ), (2.48)

cT6 = cTrotz = (y1,−x1, 0, y2,−x2, 0, · · · , yN ,−xN , 0). (2.49)

After (ortho-)normalizing these vectors, the Hessian and gradient are projected in a similar

way in the internal coordinate40 as,

P = 1−
6∑

i=1

ccT, (2.50)

g̃ = Pg, (2.51)

H̃ = PHP+ α(1−P)1(1−P), (2.52)

where α is a large constant; α = 1000 was employed in Ref. 40, whereas α = 5000 was

employed in my case. Using these projected Hessian and gradient, the displacement to the
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2.3 Geometry optimization on the intersection of PESs

next geometry is computed as,

∆R = −H̃g̃. (2.53)

In this process, the zero eigenvalues are replaced by α. Because α is a large constant,

displacements along the modes with zero eigenvalues become negligible under Eqn. 2.43.

This corresponds to the concept of constrained optimization technique.40

Hessian must be prepared before projecting it. A typical guess Hessian for Quasi-Newton

method is prepared by Badger’s method.41,42 A guess of the force constant of the stretch(i-j)

is given as,

∂2E

∂R2
ij

= 0.3601 exp(−1.944(Rij −Rcov
i −Rcov

j )). (2.54)

By converting force constants from i-j distance basis into Ri and Rj basis using the chain

rule, a guess Hessian can be obtained. Note that this guess Hessian has 6 zero eigenvalues

because this is prepared based on bond distance, which is an element of internal coordinate.

2.3.4 Geometry optimization in internal coordinate

Molecular geometry can also be optimized based on internal coordinate space. The internal

coordinate here contains the stretch (bond), bend (angle), and torsion (dihedral angle). The

mathematical treatment of these internal coordinates is given Ref. 43 or source code of Psi4.6

Here, the construction of internal coordinate and matrix operations are shown.

To construct the internal coordinate at the given geometry, a matrix representing the

bond connectivity, i.e. a connectivity matrix, is constructed. The i-th and j-th atoms are

considered to have connectivity between them when,

|Ri −Rj | < c(Rcov
i +Rcov

j ), (2.55)

where Rcov
i is the covalent radius of i-th atom and c is a scaling factor, respectively; and

c = 1.3 is usually employed. When i-th and j-th atoms have connectivity, an internal

coordinate of stretch(i-j) is assigned. Then, bends are assigned by connecting the stretches,

i.e. a bend(i-j-k) is assignd when stretch(i-j) and stretch(j-k) exist. Similarly, a torsion(i-j-

k-l) is assigned when bend(i-j-k) and bend(j-k-l) exist. Note that the inclusion of hydrogen

bonds and handling bends at almost linear requires additional care. In my case, N, O, F, and

Cl atoms are assigned to be hydrogen bond acceptors (X). H-X2 bond is added when X1-H

bond exists, H-X2 bond doesn’t, and X1-H-X2 angle is larger than 90◦.6 On the other hand,

the linear bend is expressed as the sum of two angles.6,43,44 Then, the torsion containing a

linear bend is replaced by other possible dihedrals. The intrinsic dimension of the internal

coordinate is 3N − 6; however, the number of the internal coordinated thus obtained is

usually larger than it. Therefore, this set of internal coordinates is called redundant internal

coordinates.

Based on the internal coordinates prepared, the Wilson’s B matrix45 is constructed as,

Bij =
∂qi
∂Rj

, (2.56)
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2.3 Geometry optimization on the intersection of PESs

where qi is i-th internal coordinate and Rj is the j-th cartesian coordinate, respectively.

Because each internal coordinate is involved in at most 4 atoms, the B matrix is sparse.

For determining displacement, the Hessian and gradient must be transformed into internal

coordinate space. Based on the chain rule, gradient and Hessian in two coordinate system

satisfies the relation as,40,43

gR = BTgq, (2.57)

HR = BTHqB+B′Tgq, (2.58)

where the subscript R and q represent Cartesian and internal coordinate system, respectively,

and B′ is the derivative of the B matrix given analytically as,

B′
ijk =

∂2qi
∂Rj∂Rk

. (2.59)

To convert the gradient and Hessian from Cartesian to internal space, the inverse of the B

matrix is required; however, the B matrix is a rectangular matrix when the number of the

internal coordinates is larger than 3N−6. In such a case, an operation using the pseudoinverse

(or generalized inverse) properly works. Wilson’s G matrix is given as

G = BuBT, (2.60)

where u is an arbitrary matrix; usually, a unit matrix is employed in this context. Note

that a diagonal matrix composed of the inverse of atomic masses is employed for vibrational

analysis, as written later. G matrix a singular matrix with its rank at 3N − 6. By neglecting

the zero eigenvalues, the generalized inverse of the G matrix is given using the unitary matrix

which diagonalize G matrix.40,46 When eigenvectors with nonzero eigenvalues build K and

those with zero eigenvalues build L, diagonalization of the G matrix can be written as,

G( K L ) = ( K L )

(
Λ 0
0 0

)
, (2.61)

where Λ is a diagonal matrix composed of nonzero eigenvalues. Using matrices in Eqn. 2.61,

generalized inverse of the G matrix is given as,

G− = ( K L )

(
Λ−1 0
0 0

)(
KT

LT

)
. (2.62)

Then, the pseudoinverse of the B matrix is given as,40,46

B− =
(
G−Bu

)T
= uTBTG−, (2.63)(

BT
)−

= G−Bu. (2.64)

Finally, the gradient and Hessian are converted as,

gq = G−BugR, (2.65)

Hq = G−Bu(HR −B′Tgq)u
TBTG−. (2.66)

Using the Hessian and gradient in the internal coordinate space, the corresponding displace-

ment can be computed; however, there are two problems: 1. treatment of the zero eigenvalues

and 2. conversion of displacement into Cartesian coordinate.
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2.3 Geometry optimization on the intersection of PESs

When the internal coordinates constructed are redundant, the Hessian in internal coordi-

nate becomes singular. To remove components with zero eigenvalue, a projector is constructed

using eigenvectors of G matrix with zero eigenvalue (L in eq. 2.62 ) as,

P = 1−
∑
c∈L

ccT = GG−. (2.67)

Then, the gradient and Hessian are projected as,

g̃q = Pgq, (2.68)

H̃q = PHqP+ α(1−P)1(1−P). (2.69)

The displacement in internal coordinate space is computed in Newton-Raphson scheme as,

∆q = −H̃qg̃q. (2.70)

To obtain the next geometry, the displacement must be transformed into cartesian coordi-

nate space. Because the relation between them is given by Wilson’s B matrix (Eqn. 2.56) in

infinitesimal manner, the conversion of a finite displacement (∆q) into ∆R cannot be con-

ducted analytically; instead, this conversion is done in iterative method.40,46 A pseudocode

for this conversion follows.

1: procedure ∆q to ∆R(∆q,R)

2: ∆R = 0

3: while RMS(∆∆R) > 1e− 10 do

4: ∆∆q = ∆q− (q(R+∆R)− q(R))

5: ∆∆q = P∆∆q

6: ∆∆R = BT−
∆∆q

7: ∆R = ∆R+∆∆R

8: end while

9: end procedure

In the last, preparation of the initial Hessian for the quasi-Newton method is noted. In this

context, the Hessian in internal coordinate is prepared rather than that in Cartesian basis,

because a reasonable diagonal guess can be made for each internal coordinate. In the simple

method, a constant is assigned for each internal coordinate type; namely, 0.5 for stretch, 0.2

for bend, and 0.1 for torsion, respectively. Other guess methods are suggested by Ficsher et

al.42 and Schlegel.47

2.3.5 Intersection of PESs

Geometry optimization on the intersection of PESs is regarded as an optimization of the

higher-level state with constraints to keep the same adiabatic energy among states involving

intersections. The number of constraints depends on the type of the intersection. Here,

the intersection of the PESs is introduced before going into geometry optimization there.

A famous type is the conical intersection, where two adiabatic states with the same spin
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2.3 Geometry optimization on the intersection of PESs

multiplicity are degenerate. The adiabatic energies of the state 1 (E1) and state 2 (E2) are

represented by their diabatic energies (U11 and U22) and diabatic coupling (U12 = U21) as,48

E1 =
1

2
(U11 + U22)−

1

2

√
(U11 − U22)2 + 4U2

12, (2.71)

E2 =
1

2
(U11 + U22) +

1

2

√
(U11 − U22)2 + 4U2

12. (2.72)

These energies are obtained by diagonalizing the Hamiotonian in diabatic basis. On the

conical intersection seam, E1 = E2 holds, which means U11 = U22 and U12 = 0. Assum-

ing the diabatic energies and diabatic couplings are linearly dependent on the geometrical

displacement, the gradient of the square of the difference in adiabatic energies are given as,

∂(E2 − E1)
2

∂R
= 2(U22 − U11)

(
∂U22

∂R
− ∂U11

∂R

)
+ 8U12

∂U12

∂R
. (2.73)

This means that the energy gap changes when geometry changes along the specific 2 di-

rections; one is the difference gradient vector (dU22/dR − dU11/dR), and the other is the

derivative coupling vector (dU12/dR).48,49 Hence, a plane composed of the difference gradi-

ent vector and derivative coupling vector is called the brancing plane, while the other space is

called the intersection seam. Because the adiabatic states are given by the linear combination

of the diabatic states, these vectors for adiabatic energies are also given by the linear com-

bination of those for diabatic energies, resulting in the same branching plane.48 This means

that we can apply the vectors for adiabatic energies to define the blanching plane; they are

the difference gradient vector (g2 − g1) and the derivative of the interstate coupling, which

is so closely related to the nonadiabatic coupling vector.49–51 Because displacement in two

dimensions (branching plane) lifts the degeneracy, the intersection seam is 3N −8 dimension.

Note that the conical intersection was named from that the plot of the adiabatic energies in

the branching plane construct two cones.

Another type of intersection is the linear intersection, where two adiabatic states with

different spin multiplicity are degenerate. The difference from the conical intersection is that

the interstate diabatic coupling always becomes zero due to the spin-symmetry; hence, it

is no longer a constraint. This results in the one-dimensional constraint given by gradient

difference vector; therefore, the dimension of the linear intersection seam becomes 3N − 7.

The intrinsic dimension of the conical and linear intersection seams are 3N −8 and 3N −7;

however, practically this dimension is affected by the quantum mechanical methods employed

to compute the PES. Martínez and Olivucci et al. investigated the shape of the PES of

Penta-2,4- dieniminium Cation Model around the conical intersection at the several quantum

mechanical theories;52 there, they found that some methods fail to produce the 3N − 8

dimensional intersection space. Some important findings are: (1)MRCISD properly gave a

conical intersection; however, the inclusion of the Davidson correction gave a linear crossing

because it lacks the correction to the coupling term. (2)Multi-state MR-QDPT methods,

such as MS-CASPT2, QD-NEVPT2, and XMCQDPT2 methods, gave a conical intersection

only when the MS-CASPT2 Hamiltonian is symmetrized; nevertheless, they gave a 3N − 9

dimensional intersection space. (3)TD-DFT using the restricted DFT as the reference gave a
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2.4 Geometry optimization in the intersection space of PESs

linear intersection. (4)Spin-flip TD-DFT without spin projection gave a conical intersection.

I did not pay attention to this point in this thesis because the objective is to obtain a geometry

with the degeneracy of the states.

2.4 Geometry optimization in the intersection space of
PESs

In this section, the geometry optimization on the intersection seam is provided. Because

the linear intersection can be regarded as a special case of conical intersection, where the

interstate diabatic coupling is always zero, the optimization on conical intersection seam is

mainly written here.

There are several methods to optimize geometry on the intersection seam; the famous

methods are the Lagrange-Newton method by Yarkony et al.,50 the penalty function method

by Persico et al.,53 and the gradient projection method by Schlegel and Robb et al.54,55

Thiel et al. compared these methods;49 there, use of the gradient projection or the Lagrange-

Newton methods is recommended unless the nonadiabatic coupling terms cannot be obtained,

because the penalty function method is free from computing the nonadiabatic coupling. Then,

Maeda et al. developed an updating scheme of the branching plane and combined it with the

gradient projection method to make it free from the nonadiabatic coupling.48 Blancafort et al.

improved the convergence of the geometry optimization by introducing the double-Newton-

Raphson method.56 In this study, I employed these methods based on the gradient projection

methods. These methods are briefly introduced. Other important extensions which I did not

employ contain the combination with the single component artificial force induced reaction

method (SC-AFIR) by Maeda et al.57

The key concept of the gradient projection is the separation of the full dimension (3N − 6)

into the intersection space (3N − 8) and the branching plane (2).54 The gap between states

to be degenerate is minimized in the branching plane while the energy at the higher state is

minimized in the intersection seam. Because the branching plane is given by the difference

gradient vector and coupling derivative vector, unit vectors parallel to them (x, y) are used

to build a projector as,

PCI = 1− xxT − yyT. (2.74)

Using this projector, the gradient in intersection space (gIS) is given as,54,55

gIS = Pg2 =
1

2
P(g1 + g2), (2.75)

while the gradient with respect to the energy gap (gBP) is given as,

gBP = 2(E2 − E1)x. (2.76)

Note that these projections must be conducted after transforming into the internal coordinate

system.56 In the original gradient method, the total gradient was defined as the sum of gIS

and gBP, this is to be minimized to obtain the minimal energy conical intersection geometry.
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2.5 Computation of the rate constant of transitions between vibronic states

An approximated Hessian for the quasi-Newton method is updated by using the gradient in

the optimization step.

However, the inclusion of the component in the branching plane can be problematic for

updating Hessian, because this component may produce the displacement in the branching

plane, resulting in the increase of energy gap.56 To separate these components, Blancafort et

al. employed two Hessians; one is for intersection space updated using gIS, and the other for

the branching space updated using gBP. Using two Hessians, the displacement is obtained

as,

∆q = ∆qIS +∆qBP, (2.77)

∆qIS = −H̃ISgIS, (2.78)
∆qBP = −HBPgBP (2.79)

By separating the two components, the number of steps to reach the space with degeneracy

can be reduced.56 However, in their paper, the treatment of HBP contains a problem related

to a lot of zero eigenvalues. The authors avoided this problem by changing the optimization

step from Newton-Raphson to the steepest descent after minimizing the energy gap. I think

this problem can be removed by projecting HBP into 2 dimention as,

H̃BP = (1−PCI)HBP(1−PCI) + αPCI1PCI. (2.80)

Note that the projection to remove zero eigenvalues is also necessary for actual optimization.

2.5 Computation of the rate constant of transitions
between vibronic states

I coded a Python program to estimate the rate constant of transitions between vibronic

states. Theoretical details of the method and my implemantation are provided in this section.

2.5.1 Vibronic state and adiabatic approximation

Almost all of this subsection is written based on Ref. 33. The time-independent Schrödinger

equation is written as Eqn. 2.23. The eigenvalues of Eqn. 2.23 is scaler values, and the eigen-

functions are the vibronic wavefunction, which is composed of electronic part and vibrational

part. Eqn. 2.25 can be obtained by freezing the nuclear coordinates in Eqn. 2.23, resulting

eigenvalues are scaler functions with respect to nuclear coodinate and eigenfunctions are the

electronic wavefunctions. Because the eigenstates of Eqn. 2.25 form a complete set, the

vibronic state in Eqn. 2.23 should be expanded using eigenstates of Eqn. 2.25. Using the

coefficients which are functions of the nuclear coordinates (ϕn(R)), the vibronic state can be

expanded as,

Ψ(r,R) =
∑
n

ϕn(R)ψen(r;R). (2.81)
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2.5 Computation of the rate constant of transitions between vibronic states

Substitution of Eqn. 2.81 into Eqn. 2.23 yields,[∑
A

P̂ 2
A

2MA
+
∑
a

P̂ 2
a

2me
+ V (r,R)

]∑
n

ϕn(R)ψen(r;R) = E
∑
n

ϕn(R)ψen(r;R). (2.82)

Integration of Eqn. 2.82 after multiplying ψm(r;R) from left side yields,33

∑
A

{
1

2MA

[
P̂ 2
Aϕm(R) + 2

∑
n

(
P̂Aϕn(R)

∫
ψ∗
em(r;R)P̂Aψen(r;R)dr

)

+
∑
n

(
ϕn(R)

∫
ψ∗
em(r;R)P̂ 2

Aψen(r;R)dr

)]}
+ Em(R)ϕm(R) = Eϕm(R) (2.83)

Although Eqn. 2.83 determines the expansion coefficients ϕn(R) for ψen(r;R), off-diagonal

elements, such as ψen(r;R) and ψem(r;R), are included; this means that a vibronic wave-

function should be expanded using 1 or more electronic wavefunctions.

An approximation to Eqn. 2.83 where the off-diagonal elements of the momentum and

momentum square are assumed to be 0 is called Born–Huang adiabatic approximation, or

adiabatic approximation. In this approximation, Eqn. 2.83 is simplified to,{∑
A

[
1

2MA

(
P̂ 2
A +

∫
ψ∗
em(r;R)P̂ 2

Aψem(r;R)dr

)]
+ Em(R)

}
ϕm(R) = Eϕm(R). (2.84)

Because ϕm(R) is determined using only the terms related to ψem(r;R) in Eqn. 2.84, a

vibronic wavefunction is expanded using only an electronic wavefunction (ψem(r;R)). There

the expansion coefficient ϕm(R), i.e. the vibrational function, should be described by using

the vibrational quantum number v as,

Ψmv(r,R) = ϕmv(R)ψem(r;R). (2.85)

The name of the "Adiabatic" approximation comes from that a vibronic wavefunction is

described with just an electronic wavefunction. In other words, off-diagonal terms of the

momentum which are neglected here are the electronic nonadiabatic coupling (NAC), which

enables the nonadiabatic transitions.

On the other hand, the approximation where all terms related to the momentum of the

electronic wavefunction are neglected is called the Born–Oppenheimer approximation. In this

approximation, Eqn. 2.83 is simplified to,{∑
A

[
1

2MA

(
P̂ 2
A

)]
+ Em(R)

}
ϕm(R) = Eϕm(R). (2.86)

In this approximation, a vibronic wavefunction is again expanded using only an electronic

wavefunction (ψem(r;R)). The difference from the Born–Huang approximation is that the

vibrational wavefunctions are obtained as the eigenstates of the Schrödinger equation of nuclei

moving on the PES (Em(R)).
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2.5.2 Vibronic states employed in this study

The vibrational part of the vibronic states employed in this study is given under the har-

monic potential approximation. By assuming that the PES is given by a collection of harmonic

potential, the energy on the PES is given using the Hessian matrix at the R0 (Hm(R0)) as,

Em(R) = Em(R0) + (R−R0)
THm(R0)(R−R0). (2.87)

The eigenstates of a harmonic oscillator can be analytically obtained, and the whole vibra-

tional wavefunction is given by a collection of the eigenstates of each harmonic oscillator. In

this study, this collection of the harmonic wavefunction is expressed as Θmv. In the formu-

lations shown later, the initial (iv), final (fu), and intermediate (nw) vibronic states appear;

these are given as,

|Ψiv⟩ = |ΦiΘiv⟩ , |Ψfu⟩ = |ΦfΘfu⟩ , |Ψnw⟩ = |ΦnΘnw⟩ , (2.88)

where Ψ and Φ are the vibronic and electronic wavefunctions, respectively, while v/u/w

represents the vibrational state for corresponding vibronic state.

Note that the terms corresponding to electronic wavefunctions such as the transition dipole

moment, NAC, and SOC are computed at a specific geometry: the minimum at the initial

state. The choice of the geometry to compute these terms tends to affect the results. In this

study, assuming that the major population at the initial state is located around the optimized

geometry and that geometry does not change within the vibronic transition, these terms were

computed at the minimum of the initial state. Discussion of the reference geometry can be

seen in Ref. 58.

In computing these terms, the ordering of the electronic states can depend on the geometry

employed. Thus, the character of the electronic state should be checked in computing cou-

pling properties; there, visualization of the natural transition orbitals59 can be an effective

technique.

2.5.3 Correlation function formalism

(1) Absorption and fluorescence spectrum

The methods employed in this study are traces of the time-dependent formulations called

the thermal vibration correlation function (TVCF) formalism proposed in Refs. 60, 61, and

8. There are similar studies using the time-dependent formalism,62–65 as well as those using

time-independent formalism.44,58,66,67 The absorption spectrum is given as a function of

angular frequency ω as,8,60,68

σabs(ω) =
4π2ω

3c

∑
v,u

exp(−βEiv)

Zi
|⟨Ψfu|µ⃗fi|Ψiv⟩|2 δ (−Efi + Eiv − Efu + ℏω) , (2.89)

where, c, Zi, and Efi are the velocity of light, vibrational partition function at the initial

state, and adiabatic energy, respectively. The population of the vibrational state at the initial
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2.5 Computation of the rate constant of transitions between vibronic states

state is given by the Boltzmann distribution in Eqn. 2.89, where the partition function is

given from the depth of the harmonic potential because the vibrational energies here must

be the eigenvalues of the vibrational Hamiltonian. Note that Ei < Ef in photoabsorption

results in Efi = Ef − Ei > 0. |⟨Ψfu|µ⃗fi|Ψiv⟩|2 in Eqn. 2.89 represents the transition dipole

moment between initial/final vibronic state. Here, expressions at the Franck–Condon (FC)

level and Herzberg–Teller (HT) level are shown. In the FC approximation, the transition

dipole moment is regarded as a constant vector with respect to nuclear geometry as,∣∣⟨Ψfu|µ⃗FC
fi |Ψiv⟩

∣∣2 ≈
∣∣⟨Φf |µ⃗FC

fi |Φi⟩ ⟨Θfu|Θiv⟩
∣∣2 =

∣∣µ⃗FC
fi

∣∣2 |⟨Θfu|Θiv⟩|2 . (2.90)

Substituting Eqn. 2.89 into Eqn. 2.91 yields,

σFC
abs(ω) =

4π2ω

3c

∑
v,u

exp(−βEiv)

Zi

∣∣µ⃗FC
fi

∣∣2 |⟨Θfu|Θiv⟩|2 δ (−Efi + Eiv − Efu + ℏω) . (2.91)

In the time-independent formalism, or sum-over-state formalism, Eqn. 2.91 is calculated by

computing the overlaps between vibrational wavefunctions, i.e. Franck–Condon factors.58

On the contrary, in time-dependent formalism, the delta function in Eqn. 2.91 is Fourier

transformed as,

δ (−Efi + Eiv − Efu + ℏω) = δ (Efi − Eiv + Efu − ℏω)

=
1

2π

∫ ∞

−∞
dt exp (it (Efi − Eiv + Efv − ℏω))

=
1

2πℏ

∫ ∞

−∞
dt exp

(
it

(
Efi

ℏ
− Eiv

ℏ
+
Efu

ℏ
− ω

))
. (2.92)

Because the vibrational wavefunctions Θiv/fu are the eigenfunctions of the vibrational Hamil-

tonian Ĥi/f with Eiv/fu as eigenvalue, substitution of Eqn. 2.92 into Eqn. 2.91 yields,

σFC
abs(ω) =

2πω

3ℏcZi

∣∣µ⃗FC
fi

∣∣2 ∫ dt e−iωteiωfit
∑
v,u

〈
Θfu

∣∣∣ e−i(−iβ+ t
ℏ )Ĥi

∣∣∣Θiv

〉〈
Θiv

∣∣∣ e−i−t
ℏ Ĥf

∣∣∣Θfu

〉
.

(2.93)

The last term in Eqn. 2.93 is called the thermal vibration correlation function, which is given

by the trace of matrices as,

ρFCabs(t, T ) = Tr

[
exp

(
−i
(
−iβ +

t

ℏ

)
Ĥi

)
exp

(
−i−t

ℏ
Ĥf

)]
. (2.94)

Eqn. 2.93 and 2.94 indicate that the absorption spectrum at the Franck–Condon level can be

theoretically estimated by computing the time-propagation of eiωfitρFCabs(t, T ) and subsequent

Fourier transformation.

The fluorescence spectrum can also be estimated in a similar manner. The fluorescence

spectrum at the Franck–Condon level is given by,

σFC
ems(ω) =

4ω3

3c3

∑
v,u

exp(−βEiv)

Zi

∣∣µ⃗FC
fi

∣∣2 |⟨Θfu|Θiv⟩|2 δ (−Efi + Eiv − Efu − ℏω) . (2.95)
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2.5 Computation of the rate constant of transitions between vibronic states

Note that Efi = Ef − Ei < 0 in Eqn. 2.95 because Ei > Ef in the fluorescent decay. Similar

to the computation of absorption spectrum, the Fourier transformation of the delta function

in Eqn. 2.95 yields,

σFC
ems(ω) =

2ω3

3πℏc3Zi

∣∣µ⃗FC
fi

∣∣2 ∫ dt e−iωte−iωfit
∑
v,u

〈
Θfu

∣∣∣ e−i(−iβ− t
ℏ )Ĥi

∣∣∣Θiv

〉〈
Θiv

∣∣∣ e−i t
ℏ Ĥf

∣∣∣Θfu

〉
.

(2.96)

Then, the thermal vibration correlation function for the fluorescence spectrum is defined as,

ρFCems(t, T ) = Tr

[
exp

(
−i
(
−iβ − t

ℏ

)
Ĥi

)
exp

(
−i t

ℏ
Ĥf

)]
(2.97)

Because the difference between the correlation functions in Eqn. 2.94 and 2.97 is the time

for each vibrational Hamiltonian, they are given in the same expression as,

τi =

{
−iβ + t

ℏ (abs)

−iβ − t
ℏ (ems)

, τf =

{
− t

ℏ (abs)

+ t
ℏ (ems)

, (2.98)

ρFC(t, T ) = Tr
[
exp

(
−iτiĤi

)
exp

(
−iτfĤf

)]
, (2.99)

where τi/f is the time for the vibrational Hamiltonian Ĥi/f . The difference in the time comes

from the sign of Eiv/fu/ℏ in the delta function in Eqn. 2.91 and 2.95 when the sign of t/ℏ is

"-". A similar discussion for the sign of time is given in Ref. 62. In my implementation, this

sign is chosen so that Fourier transformation can be conducted using Numpy.fft.fft.10 Note

that this correlation function appears not only in the calculation of absorption/fluorescence

spectra but also in that of the intersystem crossing rate constants at the FC level.

The absorption and emission spectra at the FC level are shown in Eqn. 2.91 and 2.95,

where the transition dipole moment is assumed to be independent on nuclear coordinate. This

assumption can be reasonable when the magnitude of the transition dipole is large enough; in

other words, this assumption is insufficient for treating dipole-forbidden transitions. In such

a case, the derivatives of the transition dipole moment with respect to geometry can have

major contribution. Inclusion of the 1st-order derivatives is known as the Herzberg–Teller

(HT) approximation, where the transition dipole moment at the FCHT level is given as,

µ⃗FCHT
fi = µ⃗FC

fi +
∑
k

(
∂µ⃗FC

fi

∂Qfk

)
Qfk ≡ µ⃗FC

fi +
∑
k

µ⃗kQfk. (2.100)

Similar manipulation to Eqn. 2.90 yields,∣∣⟨Ψfu|µ⃗FCHT
fi |Ψiv⟩

∣∣2 ≈
∣∣⟨Φf |µ⃗FC

fi |Φi⟩ ⟨Θfu|Θiv⟩
∣∣2

+ 2
∑
k

µ⃗FC
fi · µ⃗k ⟨Θfu|Θiv⟩ ⟨Θiv|Qfk|Θfu⟩

+
∑
kl

µ⃗k · µ⃗l ⟨Θfu|Qfk|Θiv⟩ ⟨Θiv|Qfl|Θfu⟩ . (2.101)

Substitution of Eqn. 2.101 into Eqn. 2.89 yields the expression of the absorption spectrum
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2.5 Computation of the rate constant of transitions between vibronic states

at the Herzberg–Teller level as,

σFCHT
abs (ω) = σFC

abs(ω) + σ
FC/HT
abs (ω) + σHT

abs(ω), (2.102)

σ
FC/HT
abs (ω) =

8π2ω

3c

∑
v,u

exp(−βEiv)

Zi
δ (−Efi + Eiv − Efu + ℏω)

×
∑
k

µ⃗FC
fi · µ⃗k ⟨Θfu|Θiv⟩ ⟨Θiv|Qfk|Θfu⟩ , (2.103)

σHT
abs(ω) =

4π2ω

3c

∑
v,u

exp(−βEiv)

Zi
δ (−Efi + Eiv − Efu + ℏω)

×
∑
kl

µ⃗k · µ⃗l ⟨Θfu|Qfk|Θiv⟩ ⟨Θiv|Qfl|Θfu⟩ . (2.104)

The thermal vibration correlation function at this level are given as,

σ
FC/HT
abs (ω) =

4πω

3ℏcZi

∑
k

µ⃗FC
fi · µ⃗k

∫
dt e−iωteiωfitρ

FC/HT
abs,k (t, T ), (2.105)

ρ
FC/HT
abs,k (t, T ) = Tr

[
Qfk exp

(
−i
(
−iβ +

t

ℏ

)
Ĥi

)
exp

(
−i−t

ℏ
Ĥf

)]
, (2.106)

σHT
abs(ω) =

2πω

3ℏcZi

∑
kl

µ⃗k · µ⃗l

∫
dt e−iωteiωfitρHT

abs,kl(t, T ), (2.107)

ρHT
abs,kl(t, T ) = Tr

[
Qfk exp

(
−i
(
−iβ +

t

ℏ

)
Ĥi

)
Qfl exp

(
−i−t

ℏ
Ĥf

)]
. (2.108)

The expression of the fluorescence spectrum can be obtained in a similar manner to the

Franck–Condon approximation. The important point is that the analytical formula of these

correlation functions are formulated in the previous studies;8,60 the analytical expressions

are shown later.

Finally, integration of the fluorescence spectrum gives the radiative decay rate constant.

kr =

∫ ∞

0

dω σems(ω). (2.109)

(2) Internal conversion

In this section, the correlation function formalism proposed in Refs. 60,69, and 8 is shown.

The rate constant of the internal conversion can be derived from the 1st-order perturbation

to the time-dependent Schrödinger equation as,8,60,68,69

kic =
2π

ℏ
∑
v,u

exp(−βEiv)

Zi

∣∣HnBO
fu,iv

∣∣2 δ (−Efi + Eiv − Efu) . (2.110)

According to Ref. 60, HnBO can be written under the Condon approximation as,

⟨ΦfΘfu|ĤnBO|ΦiΘiv⟩ = −ℏ2
∑
k

〈
ΦfΘfu

∣∣∣∣ ∂Φi

∂Qfk

∂Θiv

∂Qfk

〉
≈
∑
k

⟨Φf |P̂fk|Φi⟩ ⟨Θfu|P̂fk|Θiv⟩ . (2.111)

The first bracket in the right side of Eqn. 2.111 is the off-diagonal element of the momen-

tum with respect to electronic wavefunction, which can be computed by multiplying −iℏ
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2.5 Computation of the rate constant of transitions between vibronic states

to derivative coupling (or nonadiabatic coupling) in QM calculations. The latter one is the

off-diagonal element with respect to vibrational wavefinctions. Substitution of Eqn. 2.111

into 2.110 yields,

kic =
∑
kl

kic,kl, (2.112)

Rkl = ⟨Φf |P̂fk|Φi⟩ ⟨Φi|P̂fl|Φf⟩ , (2.113)

kic,kl =
2π

ℏ
Rkl

∑
v,u

exp(−βEiv)

Zi
⟨Θf |P̂fk|Θi⟩ ⟨Θi|P̂fl|Θf⟩ δ (−Efi + Eiv − Efu) . (2.114)

Fourier transformation of the delta function in Eqn. 2.115 yields,

kic,kl =
1

ℏ2Zi
Rkl

∫
dt e−iωfitρic,kl(t, T ), (2.115)

ρic,kl(t, T ) = Tr

[
P̂fk exp

(
−i
(
−iβ − t

ℏ

)
Ĥi

)
P̂fl exp

(
−i t

ℏ
Ĥf

)]
, (2.116)

or simply,

kic =
1

ℏ2Zi

∫
dt e−iωfit

∑
kl

Rklρic,kl(t, T ). (2.117)

Note that the thermal vibration correlation function shown in Eqn. 2.116 contains the oper-

ator of the momentum P̂fk, rather than normal coordinate Qfk; hence, ρic,kl(t, T ) is different

from ρHT
kl (t, T ) in Eqn. 2.108. Eqn. 2.117 indicates that kic can be theoretically estimated

by computing the time-propagation of
∑

klRklρic,kl(t, T ) and subsequent Fourier transfor-

mation. To satisfy ωfi > 0 for the use of Numpy.fft.fft, times for vibrational Hamiltonian are

chosen as,

τi =

{
−iβ + t

ℏ (ωfi < 0)

−iβ − t
ℏ (ωfi > 0)

, τf =

{
− t

ℏ (ωfi < 0)

+ t
ℏ (ωfi > 0)

, (2.118)

ρic,kl(t, T ) = Tr
[
Pfk exp

(
−iτiĤi

)
Pfl exp

(
−iτfĤf

)]
. (2.119)

This selection corresponds to the sign in the delta function in Eqn. 2.114; when ωfi <

0, manipulation in Eqn. 2.92 is conducted for changing e−iωfit → eiωfit = e−i|ωfi|t. The

analytical expression of this correlation function has also been derived,8,60,69 as shown later.

(3) Intersystem crossing

This section is also based on the correlation function formalism in Refs. 61, and 8, while

information of spin-sublevels is included in accordance with other papers.70–72 The rate

constant of intersystem crossing between the singlet and triplet states can be separated by

the spin-sublevel of the corresponding triplet state as,70,72

kisc(S → T) =

1,0,−1∑
M

kisc(S → TM ) ≡
1,0,−1∑

M

kMisc, (2.120)

kisc(T → S) =
1

3

1,0,−1∑
M

kisc(T
M → S) ≡ 1

3

1,0,−1∑
M

kMisc. (2.121)
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2.5 Computation of the rate constant of transitions between vibronic states

The rate constant of the intersystem crossing can be obtained by a 2nd-order perturbation

to the time-dependent Schrödinger equation as,61,68

kMisc =
2π

ℏ
∑
v,u

exp(−βEiv)

Zi

∣∣∣∣∣H ′,M
fu,iv +

∑
n,w

H ′,M
fu,nwH

′,M
nw,iv

Eiv − Enw

∣∣∣∣∣
2

δ (−Efi + Eiv − Efu) , (2.122)

where H ′,M is the interaction Hamiltonian composed of non-Born–Oppenheimer coupling

and spin-orbit coupling as,

Ĥ ′,MΨiv = ĤnBOΦi(r;Q)Θiv(Q) + ĤSO,MΦi(r;Q)Θiv(Q). (2.123)

Eqn. 2.122 contains the matrix elements of H ′ involving the intermediate states, such as

the element between the final and intermediate states (H ′
fu,nw) or the element between the

intermediate and initial states (H ′
nw,iv). Expansion of Eqn. 2.122 yields,

kMisc = k
M,(0)
isc + k

M,(1)
isc + k

M,(2)
isc , (2.124)

k
M,(0)
isc =

2π

ℏ
∑
v,u

exp(−βEiv)

Zi

∣∣∣H ′,M
fu,iv

∣∣∣2 δ (−Efi + Eiv − Efu)

=
2π

ℏ
∑
v,u

exp(−βEiv)

Zi

∣∣⟨Φf |HSO,M |Φi⟩
∣∣2 |⟨Θfu|Θiv⟩|2 δ (−Efi + Eiv − Efu)

≡ 2π

ℏ
∑
v,u

exp(−βEiv)

Zi

∣∣∣HSO,M
fi

∣∣∣2 |⟨Θfu|Θiv⟩|2 δ (−Efi + Eiv − Efu) . (2.125)

The term in Eqn. 2.125 comes from the 1st-order perturbation, where NAC vanishes due to

the different spin multiplicity between the initial and final states. Similarly, Fourier transfor-

mation of the delta function in Eqn. 2.125 yields,

k
M,(0)
isc =

1

ℏ2Zi

∣∣∣HSO,M
fi

∣∣∣2 ∫ dt e−iωfitρFC(t, T ). (2.126)

Again, depending on the sign of Efi, τi and τf are chosen according to Eqn. 2.98. The

estimation of kisc using Eqn. 2.126 can be reasonable when the direct SOC (
∣∣∣HSO,M

fi

∣∣∣) is

large enough. In other words, when direct SOC is not so large, other terms can show a major

contribution.

The second and third terms in Eqn. 2.124 arise from the 2nd-order perturbation; and they

are evaluated via intermediate electronc state. In order to expand Eqn. 2.122, H ′,M
fu,nw is

expanded as,

H ′,M
fu,nw = ⟨ΦfΘfu|ĤnBO + ĤSO,M |ΦnΘnw⟩

≈ HSO,M
fn ⟨Θfu|Θnw⟩+

∑
k

⟨Φf |P̂fk|Φn⟩ ⟨Θfu|P̂fk|Θnw⟩ . (2.127)
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Then, the second-order term in Eqn. 2.122 is expanded as,

∑
n,w

H ′,M
fu,nwH

′,M
nw,iv

Eiv − Enw

≈
∑
nw

1

Eiv − Enw

(
HSO,M

fn HSO,M
ni ⟨Θfu|Θnw⟩ ⟨Θnw|Θiv⟩

+HSO,M
fn ⟨Θfu|Θnw⟩

∑
k

⟨Φn|P̂fk|Φi⟩ ⟨Θnw|P̂fk|Θiv⟩

+HSO,M
ni ⟨Θnw|Θiv⟩

∑
k

⟨Φf |P̂fk|Φn⟩ ⟨Θfu|P̂fk|Θnw⟩

+
∑
kl

⟨Φf |P̂fk|Φn⟩ ⟨Θfu|P̂fk|Θnw⟩ ⟨Φn|P̂fl|Φi⟩ ⟨Θnw|P̂fl|Θiv⟩
)
. (2.128)

In the case of the intersystem crossing, the spin multiplicity of the final state is different from

that of the initial state; hence, either ⟨Φf |P̂fk|Φn⟩ of ⟨Φn|P̂fl|Φi⟩ is equal to 0, resulting in

the vanish of the last line of Eqn. 2.128. Because the spin-orbit coupling between triplet

electronic states can be nonzero, the term in the second line in Eqn. 2.128 do not vanish;

however, this term is assumed to be smaller than terms in the third and fourth lines, resulting

in the vanish of the term in the second line of Eqn. 2.128. In this way, Eqn. 2.128 can be

written as,

∑
n,w

H ′,M
fu,nwH

′,M
nw,iv

Eiv − Enw
≈
∑
nw,k

HSO,M
fn ⟨Θfu|Θnw⟩ ⟨Φn|P̂fk|Φi⟩ ⟨Θnw|P̂fk|Θiv⟩

Eiv − Enw

+
∑
nw,k

HSO,M
ni ⟨Θnw|Θiv⟩ ⟨Φf |P̂fk|Φn⟩ ⟨Θfu|P̂fk|Θnw⟩

Eiv − Enw
. (2.129)

Furture, application of the Placzek approximation, where the difference in energies of the

initial and intermediate vibronic states are approximated as the vertical excitation energies,

and the resolution-of-identity of the complete set |Θnw⟩ yields,

∑
n,w

H ′,M
fu,nwH

′,M
nw,iv

Eiv − Enw
≈
∑
k

⟨Θfu|P̂fk|Θiv⟩
∑
n

(
HSO,M

fn

⟨Φn|P̂fk|Φi⟩
Ei − En

+
⟨Φf |P̂fk|Φn⟩
Ei − En

HSO,M
ni

)
(2.130)

≡
∑
k

⟨Θfu|P̂fk|Θiv⟩ tMk . (2.131)

In practice, again because the spin multiplicity of the final state is different from that of the

initial state, either the first or second term in the parenthesis of Eqn. 2.130 becomes zero.

Using Eqn. 2.131, the second term in Eqn. 2.124 is written as,

k
M,(1)
isc =

2π

ℏ
∑
v,u

exp(−βEiv)

Zi

(
HSO,M

fi

∗
⟨Θfu|Θiv⟩∗

∑
k

⟨Θfu|P̂fk|Θiv⟩ tMk

+ HSO,M
fi ⟨Θfu|Θiv⟩

∑
k

⟨Θfu|P̂fk|Θiv⟩
∗
tMk

∗
)
δ (−Efi + Eiv − Efu) .

(2.132)
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As is shown in Ref. 70, this term sometimes vanishes. Summation of Eqn. 2.132 with respect

to spin-sublevel M yields,

k
(1)
isc =

1

ℏ2

∫
dt e−iωfit

∑
k,M

(
wM

k ρ
(1)
isc,k

′
(t, T ) + wM

k

∗
ρ
(1)
isc,k(t, T )

)
, (2.133)

where wM and correlation functions are given as,

wM = HSO,M
fi

∗
tM , (2.134)

ρ
(1)
isc,k

′
(t, T ) = Tr

[
Pfk exp

(
−iτiĤi

)
exp

(
−iτfĤf

)]
, (2.135)

ρ
(1)
isc,k(t, T ) = Tr

[
exp

(
−iτiĤi

)
Pfk exp

(
−iτfĤf

)]
. (2.136)

Path-integration of these correlation functions gives the same analytical solution; then, Eqn.

2.133 yields,

k
(1)
isc =

2

ℏ2

∫
dt e−iωfit

∑
k

Re

[∑
M

wM
k

]
ρ
(1)
isc,k(t, T ). (2.137)

Using the property of the singlet-triplet spin-orbit coupling, HSO,1
fi = −HSO,−1

fi

∗
, and mo-

mentum, P̂ ∗
k = −P̂k, a relation between wk is obtained as,

w1
k
∗
= −w−1

k . (2.138)

This means that w1
k +w−1

k is purely imaginary for all vibrational modes. Thus, when HSO,0

and momentum are purely imaginary, w1
k + w−1

k + w0
k is purely imaginary for all vibrational

modes, resulting in the vanish of term in Eqn. 2.137. Note that I found that the SOC

between excited singlet state and excited triplet state produced by Q-Chem satisfies HSO,1
fi =

−HSO,−1
fi

∗
, while that between ground singlet and triplet state or SOC produced by ORCA

satisfies HSO,1
fi = HSO,−1

fi

∗
. In this case, similar manipulation leads to w1

k + w−1
k + w0

k ∈ Re

as well; and this term vanishes in such a case as well in Eqn. 2.132.

Using Eqn. 2.131, the third term in Eqn. 2.124 is written as,

k
(2)
isc =

2π

ℏ
∑
v,u

exp(−βEiv)

Zi

∑
kl

1,0,−1∑
M

⟨Θiv|P̂fk|Θfu⟩ tMk
∗ ⟨Θiv|P̂fl|Θfu⟩

∗
tMl δ (−Efi + Eiv − Efu)

=
2π

ℏ
∑
v,u

exp(−βEiv)

Zi

∑
kl

Tkl ⟨Θiv|P̂fk|Θfu⟩ ⟨Θfu|P̂fl|Θiv⟩ δ (−Efi + Eiv − Efu) , (2.139)

where a matrix T was introduced as,

T ≡
1,0,−1∑

M

tMtM
†
. (2.140)

Note that substitution of T into R in Eqn. 2.113 yields the rate constant of internal conversion

(Eqn. 2.114); hence, the Fourier transformation of Eqn. 2.139 can be written by using the

thermal vibration correlation function for internal conversion as,

k
(2)
isc =

1

ℏ2Zi

∫
dt e−iωfit

∑
kl

Tklρic,kl(t, T ). (2.141)

To sum up, all the terms in Eqn. 2.124 were shown.
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(4) Intersystem crossing including the Herzberg–Teller term

In the formulations above, the intersystem crossing in the molecules with small direct SOC

can be handled by considering the intermediate states in the expansion of the interaction

Hamiltonian. On the other hand, the inclusion of the derivatives of SOC like HT approx-

imation is another approach to handle the molecule with small direct SOC. Some previous

studies have applied HT approximation to the SOC,64,72–76 because SOCMEs of usual organic

molecules are so small that its 1st-order derivatives tend to show the major contribution.77

Although Shuai et al. did not handle the HT contribution to the intersystem crossings as

far as I know, I tried to implement this level of computation. Including the Herzberg–Teller

terms, SOC between triplet state with spin-sublevel of M and singlet state is given as,

HSO,M,FCHT
fi = HSO,M,FC

fi +
∑
k

∂HSO,M,FC
fi

∂Qfk
Qfk ≡ HSO,M,FC

fi +
∑
k

HSO,M
fi,k Qfk, (2.142)

where the subscript FC was added to HSO,M
fi for clarity. Similar manipulation to Eqn. 2.101

yields,∣∣∣⟨Ψfu|HSO,M,FCHT
fi |Ψiv⟩

∣∣∣2 ≈
∣∣∣⟨Φf |HSO,M,FC

fi |Φi⟩ ⟨Θfu|Θiv⟩
∣∣∣2

+ 2Re

[∑
k

HSO,M,FC
fi

∗
HSO,M

fi,k ⟨Θfu|Θiv⟩ ⟨Θiv|Qfk|Θfu⟩

]
+
∑
kl

HSO,M
fi,k

∗
HSO,M

fi,l ⟨Θfu|Qfk|Θiv⟩ ⟨Θiv|Qfl|Θfu⟩ . (2.143)

Note that
∑

M HSO,M
fi,k

∗
HSO,M

fi,l is real when HSO,0,FC
fi is purely imaginary, because HSO,1,FC

fi =

−HSO,−1,FC
fi

∗
. Again, in case with HSO,1

fi = HSO,−1
fi

∗
,
∑

M HSO,M
fi,k

∗
HSO,M

fi,l is real. Substitu-

tion of Eqn. 2.143 as the interaction Hamiltonian in Eqn. 2.125 yields,

kM,FCHT
isc = kM,FC

isc + k
M,FC/HT
isc + kM,HT

isc , (2.144)

kM,FC
isc =

2π

ℏ
∑
v,u

exp(−βEiv)

Zi

∣∣∣HSO,M,FC
fu,iv

∣∣∣2 |⟨Θfu|Θiv⟩|2 δ (−Efi + Eiv − Efu) , (2.145)

k
M,FC/HT
isc =

4π

ℏ
∑
v,u

exp(−βEiv)

Zi
Re

[∑
k

HSO,M,FC
fi

∗
HSO,M

fi,k ⟨Θfu|Θiv⟩ ⟨Θiv|Qfk|Θfu⟩

]
× δ (−Efi + Eiv − Efu) , (2.146)

kM,HT
isc =

4π

ℏ
∑
v,u

exp(−βEiv)

Zi

∑
kl

HSO,M
fi,k

∗
HSO,M

fi,l ⟨Θfu|Qfk|Θiv⟩ ⟨Θiv|Qfl|Θfu⟩

× δ (−Efi + Eiv − Efu) . (2.147)

Eqn. 2.145 is the same as Eqn. 2.125. Eqn. 2.146 and 2.147 are quite simlar to those for

absorption/fluorescence spectrum at the FCHT level (Eqn. 2.103 and 2.104 ); hence, the

Fourier transformation of them can be written by using the same vibrartional correlation
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2.5 Computation of the rate constant of transitions between vibronic states

functions as,

k
M,FC/HT
isc =

2

ℏ2Zi

∑
k

Re
[
HSO,M,FC

fi

∗
HSO,M

fi,k

] ∫
dt e−iωfitρ

FC/HT
k (t, T ), (2.148)

kM,HT
isc =

1

ℏ2Zi

∑
kl

HSO,M
fi,k

∗
HSO,M

fi,l

∫
dt e−iωfitρHT

kl (t, T ). (2.149)

Broadening of delta function

In the formulations above, the delta function is employed to ensure energy conservation

in the vibronic transitions. The use of delta function may suppress the convergence of cor-

relation function with low temperature or small vibronic coupling;60,65,78,79 instead, other

functions, such as the Gaussian, Lorentzian, and Voigt functions are employed. This change

introduces a broadening of the energy conservation in the vibronic transition. The use of

the Gaussian function causes inhomogeneous broadening, which corresponds to the fluctu-

ation of the solvent-solute interaction.78,79 On the other hand, the use of the Lorentzian

function cause homogeneous broadening, which comes from the finite lifetime of vibrational

states, resulting from the Heisenberg uncertainty principle.78 The use of the Voigt function

includes both inhomogeneous and homogeneous broadening. Theoretically, the use of the

Voigt function may be better; however, the inclusion of homogeneous broadening may show a

large effect on computed results.78 In my code, only the Gaussian broadening is considered.

Note that I found that the use of Gaussian function is recommended in the manual of ORCA

5.0.1.76

The inclusion of the broadening effect introduces the Fourier transformation of the broad-

ening function. This effect is handled by multiplying a factor to the time domain. The

Gaussian function is given as60

G(ω′, ω, σ) ≡ 1

σ
√
2π

exp

(
− (ω − ω′)2

2σ2

)
, (2.150)

where σ is the standard deviation, which is related to the half width at half maximum

(HWHM) as HWHM = σ
√
2 ln 2. To include the broadening by Gaussian function, the

function to be Fourier transformed is multiplied by exp(−σ2t2/2). This factor ensures the

convergence to 0 at the long time region.

2.5.4 Analytical expression of correlation functions under harmonic
approximation

Shift vector and Duschinsky matrix

There are 5 types of thermal vibration correlation functions in previous sections: ρFC(t, T )

in Eqn. 2.99, ρFC/HT
k (t, T ) in Eqn. 2.106, ρHT

kl (t, T ) in Eqn. 2.108, ρic,kl(t, T ) in Eqn. 2.119,

and ρ(1)isc,k(t, T ) in Eqn. 2.136. The analytical formula for them under the harmonic oscillator

framework have been derived.60,61,69–72,80,81 In these expressions, displacements along the

normal modes (Shift vector) and the transformation matrix between normal modes at the

initial and final PESs (Duschincky matrix) are employed. In this section, Shift vector and
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2.5 Computation of the rate constant of transitions between vibronic states

Duschinsky matrix are introduced before showing the analytical expression of the correlation

functions.60,61,69–72,80,81 In addition, the transformation of derivatives, such as NAC and

derivatives of transition dipole moment or SOC, from the cartesian to normal coordinate

system is also discussed. These derivatives may be given as the derivative with respect

to cartesian coordinate by QM calculations, while the derivatives with respect to normal

coordinate are required for the calculation of correlation function.

In the vibronic transitions, how much the harmonic oscillators move in the transition is

an important element, because it is related to the overlaps of the vibrational wavefunctions

(Franck–Condon factors). To compute the Franck–Condon factors, the normal coordinates

at the initial state should be expanded using those at the final state. This transformation,

which is called Duschinsky transformation, is given by,

Qil =
∑
k

SlkQfk +Dl, (2.151)

where S and D are the Duschinsky matrix and the Shift vector, respectively. The Duschinsky

matrix represents the transformation of the normal modes, which can be determined based

on the cartesian coordinate as,

S = LT
i Lf , (2.152)

where Li/f is a matrix composed of the normal modes at the initial/final PES. The shift

vector represents the displacements along the normal modes at the initial state, which can

be determined based on the cartesian coordinate as,

D = LT
i M

1
2 (Rf −Ri) , (2.153)

where M is a 3N × 3N diagonal matrix of the atomic masses.

The normal vibrational modes Li/f in cartesian representation can be computed from the

second-order derivative matrix of the energy (Hessian matrix, H) in accordance with Gaus-

sian,38,82 and the vibrational partition function Zi can be computed using their frequencies.83

To compute the vibrational modes, first H in Cartesian coordinate is converted to the repre-

sentation in the mass-weighted coordinate as,

Hmwc
ij =

Hij√
MiMj

, (2.154)

where Mi is the mass of the i-th atom. Remember to convert the mass from the atomic

mass unit into the atomic unit. Because Hmwc
ij is a (3N × 3N) matrix, translational (3

dimensions) and rotational (3 dimensions) components must be projected out to reduce to

3N − 6 dimension. To conduct that, the origin of the geometry should be set to the center

of mass; this translation do not affect the Hmwc
ij itself. When the origin of the geometry is

the center of mass, the translational vector for x, y, and z direction before normalization are

given as,

cT1 = cTtrx = (
√
M1, 0, 0,

√
M2, 0, 0, · · · ,

√
MN , 0, 0), (2.155)

cT2 = cTtry = (0,
√
M1, 0, 0,

√
M2, 0, · · · , 0,

√
MN , 0), (2.156)

cT3 = cTtrz = (0, 0,
√
M1, 0, 0,

√
M2, · · · , 0, 0,

√
MN ). (2.157)
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Note that replacing the diagonal mass matrix with a unit matrix results in the translational

vectors used for geometry optimization in Cartesian coordinate. To obtain the rotational vec-

tor, the matrix to diagonalize the moment of inertia tensor is required. Using the coordinate

with the center of mass as origin, the moment of inertia tensor I is given as,

I =

 Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 =

 ∑
iMi(y

2
i + z2i ) −

∑
iMi(xiyi) −

∑
iMi(xizi)

−
∑

iMi(xiyi)
∑

iMi(x
2
i + z2i ) −

∑
iMi(yizi)

−
∑

iMi(xizi) −
∑

iMi(yizi)
∑

iMi(x
2
i + y2i )

 .

(2.158)

Because the assignment of indeces in Ref. 82 looks confusing,7 here the matrix to diagonalize I

is explicitly defined as X, where IX = Xi. Then, elements of the rotational vectors (c4, c5, c6)

before normalization are given as,

P = RX, (2.159)

c4[3(i− 1) + (j − 1) + 1] =
√
Mi (Pi2Xj3 − Pi3Xj2) , (2.160)

c5[3(i− 1) + (j − 1) + 1] =
√
Mi (Pi3Xj1 − Pi1Xj3) , (2.161)

c6[3(i− 1) + (j − 1) + 1] =
√
Mi (Pi1Xj2 − Pi2Xj1) , (2.162)

where i = 1, 2, 3, · · · and j = 1, 2, 3 are the indices of the atoms and eigenvectors in X, re-

spectively. Then, a projector to remove translation and rotation is constructed by normalized

c vectors as,

P = 1−
6∑

k=1

ckc
T
k . (2.163)

Then, the normal modes are obtained by diagonalizing projected Hessian in a similar way for

geometry optimization40 as,

H̃mwc = PHmwcP+ 1000(1−P)Hmwc(1−P), (2.164)

H̃mwcL = Lh. (2.165)

Note that H̃mwc has 6 eigenvalues equal to 1000; corresponding eigenvectors are characterized

as rotation or translation. The other 3N − 6 eigenvalues and eigenvectors are force constants

and normal vibrational modes, respectively. Then, angular frequencies are obtained as the

square root of the force constants. This projection treatment is quite similar to the one in

the geometry optimization, where atomic masses are not considered. Finally, the partition

function of molecular vibration can be computed using angular frequencies by,83

Θv,i =
ℏωi

kB
, (2.166)

Zv =

3N−6∏
i=1

exp(−Θv,i

2T )

1− exp(−Θv,i

T )
, (2.167)

where Θv,i are the vibrational temperatures.

In using Cartesian coordinate, however, the geometry at the final state must be superposed

onto the one at the initial state before computing the Duschinsky matrix and shift vector
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2.5 Computation of the rate constant of transitions between vibronic states

so as to minimize the displacements in the mass-weighted coordinate. In my code, rotation

using quaterion84,85 was employed in accordance with FCClasses.7 For a given quaternion,

qT = (q0, q1, q2, q3), where q0 is a scalar part and (q1, q2, q3) is a vector part, its corresponding

rotation matrix URot(q) is given by,

URot(q) =

 q20 + q21 − q22 − q23 2(−q0q3 + q1q2) 2(q0q2 + q1q3)
2(q0q3 + q1q2) q20 − q21 + q22 − q23 2(−q0q1 + q2q3)
2(−q0q2 + q1q3) 2(q0q1 + q2q3) q20 − q21 − q22 + q23

 . (2.168)

Suppose the Cartesian coordinate at the final state Rf(N × 3) is rotated as RRot
f =

RfU
Rot(q)T so as to minimize the deviation of the mass-weighted coordinate with the

Cartesian coordinate at the initial state Ri. Deviation of the mass-weighted coordinate is

given by,

m(q) =

N∑
α

Mα

∣∣Rf,αU
Rot(q)−Ri,α

∣∣2 , (2.169)

where Rf/i,α is the α-th row of Rf/i and Mα is the mass of the α-th atom. The quaternion q

for minimizing m(q) is obtained as the eigenvector with the smallest eigenvalue of a matrix

M+ as,

M+ =

N∑
α=1

(
Mα

(
|Rf,α|2 − |Ri,α|2

)
1− 2F

)
, (2.170)

where a (4× 4) matrix F is given by,

F =

N∑
α=1

Mα

(
Rf,αR

T
i,α (Rf,α ×Ri,α)

(Rf,α ×Ri,α)
T Pα − (RT

f,αRi,α)1

)
, (2.171)

Pα = RT
f,αRi,α +RT

i,αRf,α. (2.172)

Note that Rf/i,α is a row vector and RT
f/i,α is a column vector. Using the quaternion q thus

obtained, URot(q) is computed to rotate Rf . As well as the geometry, other vectors related

to Rf , such as gradient gf , normal modes Lf etc., must be rotated as,

gRot
f = gfU

Rot(q)T, (2.173)

LRot
f = URotL(q)Lf , (2.174)

where the (3N × 3N) matrix URotL(q) to rotate Lf is given as,

URotL =


URot(q) 0 · · · 0

0 URot(q) · · · 0
...

...
. . .

...
0 0 · · · URot(q)

 . (2.175)

Then, the Duschinsky matrix and shift vector is given as,

S = LT
i L

Rot
f (2.176)

D = LT
i M

1
2

(
RRot

f −Ri

)
. (2.177)
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Finally, derivetives with respect to cartesian coordinates (dR(3N × 1)) is transformed into

normal coordinate space at the final state PES (dQf(Nvib× 1)) as,

dQf = STLT
i M

1
2dR = LT

f M
1
2dR. (2.178)

The normal modes can also be computed in the internal coordinate space. In this study,

the redundant internal coordinate system43,46,86 composed of stretch, bend, and torsions,

was employed. In our implementation, the module for handling internal coordinates and

building matrices, such as Wilson’s B matrix,45 was inserted from Psi4 program.6 Operation

of the matrices was coded in accordance with the beta version of FCClasses 3.0.7 The use

of internal coordinate in this context was discussed in previous studies.9,44,66,87 In the case

of flexible molecules, the use of internal coordinates is considered to improve the accuracy of

the line shape of the predicted spectrum.87

Due to the chain rule in the derivatives, the use of internal coordinate requires Wilson’s B

matrix,45 and G matrix,

Bij =
∂qi
∂Rj

, (2.179)

G = BM−1BT, (2.180)

where qi is i-th internal coordinate, Rj is the j-th cartesian coordinate, and M is a 3N × 3N

diagonal matrix of the atomic masses, respectively. Note that the B matrix here is constructed

using cartesian coordinate, not mass-weighted coordinate; instead, the G matrix contains

atomic masses. In the usual case where the internal coordinates are redundant, the B matrix

is a rectangular matrix and the G matrix is a square, but singular matrix. Because the G

matrix is singular, its inverse cannot be obtained; instead, psuedo inverse (or generalized

inverse) matrix G− can be defined. Using the generalized inverse of G matrix, that of B

matrix is obtained as,

B− =
(
G−BM−1

)T
= M−1BTG−T

. (2.181)

Because Hessian in cartesian coordinate HR is computed at the minimum of PES here, which

is known as Adiabatic Hessian model PES, Hessian in internal coordinate is given as,

Hq = B−T
HRB

−. (2.182)

Then, normal coordinates in internal coordinate space Lq are expressed as,

GHqLq = Lqh (2.183)

After multiplying G− 1
2 from left side of Eqn. 2.183, substitution of Lq = G

1
2L′

q like orthog-

onalization of Roothaan equation yields,

G
1
2HqG

1
2L′

q = L′
qh. (2.184)

Eqn. 2.184 indicates that L′
q is obtained by diagonalizing G

1
2HqG

1
2 ;7 then, the normal modes

are obtained by Lq = G
1
2L′

q. This means that the normal modes Lq are not orthonormal,
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2.5 Computation of the rate constant of transitions between vibronic states

while L′
q are orthonormal. Note that there are nonzero Nvib eigenvalues, while the others

are zero. Only the eigenvectors in L′
q with nonzero eigenvalues are used to obtain normal

modes Lq. Using the normal modes thus obtained, the Duschinsky matrix and shift vector

are given as,87,88

S = L′
qi
T
G

− 1
2

i G
1
2

f L
′
qf , (2.185)

D = L′
qi
T
G

− 1
2

i (qf − qi) . (2.186)

Note that this definition employed in FCClasses and my code is slightly different from that

by Barone et al..44 Finally, derivetives with respect to cartesian coordinates (dR(3N × 1)) is

transformed into normal coordinate space at the final state PES (dQf(Nvib× 1)) as,

dQf = STLT
qiB

−T
dR. (2.187)

To sum up, computation of the Duschinsky matrix, shift vector, and how to convert cartesian

derivatives into normal coordinate space was presented both for cartesian coordinate and

internal coordinate space.

Using the shift vector thus obtained, Huang–Rhys factor Sj and reorganization energy

Ereorg
j along j-th mode are given as,

Sj =
ωjD

2
j

2ℏ
, (2.188)

Ereorg
j = ℏωjSj . (2.189)

The Huang–Rhys factor is related to overlap of vibrational wavefunction, i.e. the Franck–

Condon factor. The Franck–Condon factor of j-th vibrational mode between vibrational

groud state at the initial state χi0 and vibrational state at the final state χfaj
is expressed

under the harmonic approximation as,89

∣∣⟨χfaj |χi0⟩
∣∣2 =

S
aj

j

aj !
exp(−Sj). (2.190)

In case with aj = 0 and aj = 1, Eqn. 2.190 yields,

|⟨χf0|χi0⟩|2 =
1

0!
exp(−Sj), (2.191)

|⟨χf1|χi0⟩|2 =
Sj

1!
exp(−Sj). (2.192)

This means that the ratio between Franck–Condon factors with aj = 0 and aj = 1 is given

as Sj . This relation reflects the intensity of peaks in the spectrum between 0-0 and 0-1

transitions.

Analytical expression of thermal vibration correlation functions

In this section, the analytical expression of the thermal vibration correlation function de-

rived in previous studies60,61,69–73,80,81 are shown. In this study, formulation by Shuai et

al. is employed, while there are similar studies based on time-dependent formalism.62–65,90
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Some studies say that formulation by Shuai et al. is numerically unstable,62,65 probably due

to the small vibrational partition function and small determinants.65 However, I think my

code works except for low temperature; I failed to compute the correlation function of Ito’s

molecule91 at 5 K, while succeeded in it at 10 K. A similar problem was reported by Marian

et al.,64 where computation at the extremely low temperature was avoided by employing the

formula at 0 K.

As menthioned above, there are 5 types of thermal vibration correlation functions in the

computation of vibronic transitions: ρFC(t, T ) in Eqn. 2.99, ρFC/HT
k (t, T ) in Eqn. 2.106,

ρHT
kl (t, T ) in Eqn. 2.108, ρic,kl(t, T ) in Eqn. 2.119 and ρ

(1)
isc,k(t, T ) in Eqn. 2.136. Their

analytical formula under the harmonic approximation are derived by path-integration; the

details are shown in previous studies.60,61,69–73,80,81 The simplest case, correlation function

at the Franck–Condon level is given as,

ρFC(t, T ) =

√
det [afai]

det[K]
exp

{
− i

ℏ

[
1

2
FTK−1F−DTED

]}
. (2.193)

The definition of the matrices in Eqn. 2.193 are given by,

ai/f,kl(τi/f) = δkl
ωi/f,k

sin(ωi/f,kτi/f)
(Nvib×Nvib), (2.194)

bi/f,kl(τi/f) = δkl
ωi/f,k

tan(ωi/f,kτi/f)
(Nvib×Nvib), (2.195)

A = af + STaiS (Nvib×Nvib), (2.196)

B = bf + STbiS (Nvib×Nvib), (2.197)
E = bi − ai (Nvib×Nvib), (2.198)

K =

[
B -A
-A B

]
(2Nvib× 2Nvib), (2.199)

F =
[

DTES DTES
]T

(2Nvib× 1), (2.200)

where ωi/f is the angular frequency of normal nodes at the initial/final state PES, D is the

shift vector, and S is the Duschinsky matrix, respectively, and the size of each matrix is

shown using the number of vibrational modes denoted as Nvib. Note that the prefactor in

Eqn. 2.193 is a complex value since τi is a complex. In the implementation, this term must

be handled very carefully. Then, correlation function of FC/HT and HT terms are,

ρ
FC/HT
k (t, T ) = −ρFC(t, T )

{(
H

FC/HT
k

)T
K−1F

}
, (2.201)

ρHT
k (t, T ) = ρFC(t, T )

{
iℏTr

[
GHT

kl K−1
]
+
(
K−1F

)T
GHT

kl

(
K−1F

)}
, (2.202)

where the auxilialy matrices are given as,

H
FC/HT
k i

= δik (2Nvib× 1), (2.203)

G
FC/HT
kl ij

= δikδj(l+Nvib) (2Nvib× 2Nvib). (2.204)

These auxiliary matrices are so sparse that actual operation is simpler than Eqn. 2.201 or
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2.202. The other correlation functions are given by,

ρic,kl(t, T ) = ρFC(t, T )
{
iℏTr

[
Gic

klK
−1
]
+
(
K−1F

)T
Gic

kl

(
K−1F

)
−
(
Hic

kl

)T (
K−1F

)}
,

(2.205)

ρ
(1)
isc,k(t, T ) = −ρFC(t, T )

{(
H

isc(1)
k

)T
K−1F

}
, (2.206)

where the auxilialy matrices are given as,

Hic
kl =

[
Hic

kl,1

Hic
kl,2

]
(2Nvib× 1), (2.207)

H ic
kl,1i

= bfkδki
(
DTES

)
l

(Nvib× 1), (2.208)

H ic
kl,2i

= −afkδki
(
DTES

)
l

(Nvib× 1), (2.209)

Gic
kl =

[
Gic

kl,11 Gic
kl,12

Gic
kl,21 Gic

kl,22

]
(2Nvib× 2Nvib), (2.210)

Gic
kl,11ij

= −bfkδki
(
STaiS

)
lj

(Nvib×Nvib), (2.211)

Gic
kl,12ij

= bfkδki
(
STbiS

)
lj

(Nvib×Nvib), (2.212)

Gic
kl,21ij

= afkδki
(
STaiS

)
lj

(Nvib×Nvib), (2.213)

Gic
kl,22ij

= −afkδki
(
STbiS

)
lj

(Nvib×Nvib), (2.214)

H
isc(1)
k =

[
H

isc(1)
k,1

H
isc(1)
k,2

]
(2Nvib× 1), (2.215)

H
isc(1)
k,1 i

= bfkδki (Nvib× 1), (2.216)

H
isc(1)
k,1 i

= −afkδki (Nvib× 1). (2.217)

Again, these auxiliary matrices are so sparse that actual operation is simpler than Eqn. 2.201

or 2.202. To sum up, the analytical formulas of the correlation functions are given. It should

be noteworthy that all formula contains ρFC(t, T ) as a prefactor, resulting in the simpler

calculation of correlation function at each time. Using Eqn. 2.94, 2.102, 2.105-2.108, 2.193,

2.201, and 2.202, absorption spectrum at the FCHT level including broadening effect is given

as,8,60

σFCHT
abs (ω) =

2πω

3ℏc

∫
dt e−iωteiωfite−

σ2t2

2
1

Zi
µ̃2(t, T )ρFC(t, T ), (2.218)

µ̃2(t, T ) ≡
∣∣µ⃗FC

fi

∣∣2 −∑
k

µ⃗FC
fi · µ⃗k

{(
H

FC/HT
k

)T
K−1F

}
+
∑
kl

µ⃗k · µ⃗l

{
iℏTr

[
GHT

kl K−1
]
+
(
K−1F

)T
GHT

kl

(
K−1F

)}
. (2.219)

Eqn. 2.218 indicates that the Herzberg–Teller contribution can be treated by making µ

time-dependent, and that only once of the Fourier transformation is required. Similarly, rate

constant of internal conversion is given as,

kic =
1

ℏ2

∫
dt e−iωfite−

σ2t2

2
1

Zi
ρFC(t, T )

×
∑
kl

Rkl

{
iℏTr

[
Gic

klK
−1
]
+
(
K−1F

)T
Gic

kl

(
K−1F

)
−
(
Hic

kl

)T (
K−1F

)}
. (2.220)
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Rate constant of intersystem crossing from singlet to triplet state based on 2nd-order pertur-

bation is given by,

1,0,−1∑
M

kMisc =
1

ℏ2

∫
dt e−iωfite−

σ2t2

2
1

Zi
ρFC(t, T )

×

[∑
M

∣∣∣HSO,M,FC
fi

∣∣∣2 +∑
k

Re

(∑
M

wM
k

){(
H

isc(1)
k

)T
K−1F

}

+
∑
kl

Tkl

{
iℏTr

[
Gic

klK
−1
]
+
(
K−1F

)T
Gic

kl

(
K−1F

)
−
(
Hic

kl

)T (
K−1F

)}]
,

(2.221)

while Rate constant of intersystem crossing from singlet to triplet state at the FCHT level is,

1,0,−1∑
M

kM,FCHT
isc =

1

ℏ2

∫
dt e−iωfite−

σ2t2

2
1

Zi
ρFC(t, T )

×

[∑
M

∣∣∣HSO,M,FC
fi

∣∣∣2 −∑
k

Re

[∑
M

HSO,M,FC
fi

∗
HSO,M

fi,k

]{(
H

FC/HT
k

)T
K−1F

}

+
∑
kl

∑
M

(
HSO,M

fi,k

∗
HSO,M

fi,l

){
iℏTr

[
GHT

kl K−1
]
+
(
K−1F

)T
GHT

kl

(
K−1F

)}]
.

(2.222)

2.5.5 Implementation

Overview

I implemented a module for rate constant calculation based on correlation function formal-

ism using Python 3. Numerical operation including matrix operation and discrete Fourier

transformation is conducted using Numpy module.10 In accordance with MOMAP,8 three

files are coded; one contains the main part, another is "evc.py" for handling data from QM cal-

culations to obtain input for computing correlation function, and the other is "abs_ems.py"

for computing correlation functions. The rate constant of radiative decay, internal conver-

sion, and intersystem crossing can be estimated through my code; however, ρ(1)isc,k(t, T ) is

NOT implemented, because this term vanishes in usual cases.

Molecular geometry, energy, gradient, nonadiabatic coupling, and Hessian at the ini-

tial/final states must be given in fchk format for my code. A tool for producing an fchk

file using user-defined data is also coded. Change in the adiabatic energy can be defined

by users; if not, adiabatic energy is computed from energies in the fchk files. Because the

working equation in my code depends on the sign of adiabatic energy, users MUST be

careful of the sign. Adiabatic energy in my code is defined as Ef − Ei for any calculation

types. Because the rate constant of internal conversion and intersystem crossing is very

sensitive to the adiabatic energy, higher-level methods, such as domain-based local pair

natural orbital similarity transformed equation of motion-coupled cluster singles and doubles

(DLPNO-STEOM-CCSD)76,92–94 may help with a reasonable estimation of the adiabatic

energy.
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2.5 Computation of the rate constant of transitions between vibronic states

The derivatives for computing the Herzberg–Teller terms can be obtained numerically

(SOC) or analytically (transition dipole moment). The analytical derivative of the tran-

sition dipole moment can be obtained from the gaussian log file for TD-DFT calculation with

"#p" and freq in the root section. A Python code to get the derivative from the gaussian

log file was written (anal_tdip.py). As well as analytical one, some codes for performing

numerical differentiation were coded. Because the sign of the term related to the transition

density may be changed by the slight geometric change, that at the distorted geometry is

chosen so that it resembles the term at the original geometry. To correctly differentiate the

value, the terms should be extracted from the output file in an exponential format. Use "#p"

for transition dipole by Gaussian 16, while "%tddft printlevel 3" for SOC by ORCA.

Users can choose the coordinate type (Cartesian or internal coordinate) and whether or not

including vibrational mode-mixing. The exclusion of the mode-mixing is done by substituting

a unit matrix as the Duschinsky matrix, which is called the adiabatic shift frequency model.78

Conceptually, the use of internal coordinate and inclusion of mode-mixing is better.

The range of time for computing the correlation function must be chosen so that the

correlation function reaches convergence. In the usual case, the maximum time of 1000 fs

with dt of 0.01 fs may work well. In a difficult case, computation with the maximum time of

10000 fs with dt of 0.1 fs may be better. Now, I would like to recommend the latter setting,

because the use of the small dt results in a wide range of the energy domain, while users may

have interest on the small energy range. This selection of the time range is also affected by

the magnitude of dephasing. Note that ρFC(t, T ) is computed for t = [0.5×dt, tmax+0.5×dt]
because ai/f diverges when t = 0. In addition, to reduce the computational cost, ρ(t, T ) at

negative time is evaluated by,

ρ(−t, T ) = ρ(t, T )∗. (2.223)

This may cause problems when treating SOC with a specific M value.

Smoothening correlation function

Almost all of the equations I implemented was already shown above; the exception is the

treatment of ρFC(t, T ). As already written, the computation of ρFC(t, T ) is numerically un-

stable,62,65 probably due to the small vibrational partition function and small determinants.

In addition, because ρFC(t, T ) contains the square root of a complex value, its phase must be

taken care of. Here, the detail of my treatment of ρFC(t, T ) is shown.

Because the vibrational partition function and determinants in ρFC(t, T ) (Eqn. 2.193)

are small, not the values themselves but the logarithm of them are used. For example, the

vibrational partition function of the silepin molecule (noPh) in this thesis has the order of

10−118; division by such a small value is unfavorable. Considering the square-root in Eqn.

2.193 contains complex values, the logarithm of Eqn. 2.193 yields,

X =

[
1

2
FTK−1F−DTED

]
, (2.224)

det[Y] = | det[Y]| exp(iθY), (2.225)
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ln

(
ρFC(t, T )

Zi

)
= − ln(Zi)−

i

ℏ
Re[X] +

1

ℏ
Im[X]

+
ln(| det[ai]|) + ln(| det[af ]|)− ln(| det[K]|)

2
+
θai

+ θaf
− θK

2
i. (2.226)

Then, the real and imaginary parts of Eqn. 2.226 are,

Re

[
ln

(
ρFC(t, T )

Zi

)]
=

ln(| det[ai]|) + ln(| det[af ]|)− ln(| det[K]|)− 2 lnZi

2
+

Im[X]

ℏ
,

(2.227)

Im

[
ln

(
ρFC(t, T )

Zi

)]
=
θai + θaf

− θK
2

− Re[X]

ℏ
. (2.228)

By using logarithm, division by an extremely small value was avoided. In addition, this

manipulation is effective to treat the phase of ρFC(t, T ). Because the angle of a complex is

usually expressed by its principal value, the angle has a range (π ≤ θ < π). Similarly, the

angle of det [afai] / det[K] should be a principal value, resulting in −π ≤ θai
+ θaf

− θK < π.

In this case, the square-root in Eqn. 2.193 causes,

−π
2
≤ θai

+ θaf
− θK

2
<
π

2
. (2.229)

This range of angle causes discontinuity in ρFC(t, T ). To make ρFC(t, T ) smooth, this angle

must be smoothened so that,7

−π ≤ θai
+ θaf

− θK
2

< π. (2.230)

This comes from that the actual square-root of a complex is given as,

√
exp(iθ) = exp

(
i
θ + 2nπ

2

)
(n = 0, 1). (2.231)

The proper square-root can be chosen by properly choosing n in Eqn. 2.231. In my im-

plementation, to compute ρFC(t, T ) in parallel, terms in Eqn. 2.227 and 2.228, instead of

ρFC(t, T ) itself, are computed at each time, then angle in Eqn. 2.229 is smoothened so as to

satisfy Eqn. 2.230 by detecting its discontinuity. Finally, ρFC(t, T ) is comuted as,

ρFC(t, T )

Zi
= exp

(
Re

[
ln

(
ρFC(t, T )

Zi

)])
exp

(
Im

[
ln

(
ρFC(t, T )

Zi

)]
i

)
. (2.232)

In this way, ρFC(t, T ) can be computed in parallel except for the part for smoothening the

angle.

Validation of my code

I validated my code using data produced by MOMAP8 and the β version of FCClasses

3.0.7 First, through comparison of the fluorescence spectrum of azulene and corresponding

correlation function computed using the Cartesian coordinate with those by MOMAP, the

validity of ρFC(t, T ) was checked. Then, the internal conversion rate of silepin molecules was

compared with FCClasses to check ρic,kl(t, T ). Finally, through comparison of the fluorescence

spectrum of free-base porphyrin at the FCHT level, ρFC/HT(t, T ) and ρHT(t, T ) are checked.
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Fig. 2.2: Comparison of data concerning fluorescence of azulene at the Franck–Condon level

using Cartesian coordinate produced by mycode with that by MOMAP. The real part of the

correlation function without smoothening (a) and that with smoothening (b) are compared

with MOMAP data. The change in angle by smoothening is shown in (c). The fluorescence

spectrum produced by my code is compared with that by MOMAP in (d).

As the first validation, I tried computing the fluorescence spectrum of azulene molecule at

the Franck–Condon level. Quantum chemical calculations were conducted using Gaussian 16

at the (TD-)B3LYP/6-31G(d) level of theory, which was determined in accordance with the

tutorial of MOMAP program. The fluorescence spectrum was computed using the transition

dipole moment at the Franck–Condon level computed at the geometry optimized at the S1

state. The time for computing the correlation function was set to [0, 1000 fs] with a time

step of 0.01 fs, where the time in my code was automatically changed to [0.005 fs, 1000.005

fs]. The correlation function was computed based on Cartesian coordinate without including

any dephasing to the delta function. A temperature of 300 K and pressure of 1.0 atm were

employed while the scaling factor for vibrational frequency was unused.

In Fig. 2.2, the fluorescence spectrum and its corresponding data computed by my code are

compared with that by MOMAP. The correlation function in Fig. 2.2(a) shows a discontinuity

at ca. 17 fs. At the same time step, the angle in Fig. 2.2(c) shows a jump by π, which should

cause a discontinuity in the sign of the correlation function. By smoothening this angle as
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shown in Fig. 2.2(c), the smooth correlation function was obtained (Fig. 2.2(b)). Finally, the

fluorescence spectrum thus obtained was in good agreement with that by MOMAP. Therefore,

I concluded that I successfully implemented the calculation of the correlation function at the

Franck–Condon level based on Cartesian coordinate.

Next, I computed the rate constant of fluorescent decay of a silepin molecule (noph) to

validate the treatment of the internal coordinate system. The quantum chemical method em-

ployed was TDA-CAM-B3LYP/cc-pVDZ, which was slightly different from that in chapter

3. Molecular geometry was optimized using Gaussian 16 to obtain the Hessians and nona-

diabatic coupling. The fluorescence spectrum was computed using transition dipole moment

at the Franck–Condon level computed at the geometry optimized at the S1 state. The time

for computing correlation function was set to [0, 1000 fs] with the time step of 0.01 fs for

my code, while the time step for FCClasses was set to 0.1 fs for technical reasons. To avoid

the computation of the correlation function at t=0, the actual time step in my code was

automatically changed to [0.005 fs, 1000.005 fs], while that for FCClasses was [0.05 fs, 1000

fs]. The correlation function was computed based on the internal coordinates by including a

Gaussian dephasing with its HWHM at 0.005 eV. A temperature of 300 K and pressure of

1.0 atm were employed while the scaling factor for vibrational frequency was unused.

In Fig. 2.3(a), the correlation function using the internal coordinates produced by my code

was compared with that by fcclasses 3.0. The correlation function produced by my code

is quite similar to that by FCClasses. Hence, the resulting spectrum Fig. 2.3(b) is also in

good agreement with FCClasses. Then, the rate constant was computed to be 3.72× 108 s−1

by both my code and FCClasses. Because of these good agreements with FCClasses 3.0, I

concluded that I successfully implemented the treatment in internal coordinate thanks to the

modules in PSI4.6

In Fig. 2.3(c), the comparison of the spectrum in the internal coordinate system with

that in the Cartesian coordinates is provided. The spectrums indicate that the choice of the

coordinate system largely affects the lineshape of the simulated spectrum. This difference

in lineshape can be explained by the difference in shift vector and Duschinsky matrix. The

dashed lines in Fig. 2.3(c) are computed without including the Duschinsky mode-mixing.

Hence, the comparison between dashed lines reflects the difference in the shift vector. The

shift of peak top against the onset is larger in the Cartesian coordinate system than in the

internal coordinate one. This peak shift can be explained by the reorganization energy at

the final state PES. Fig. 2.3(d) shows that the reorganization energy of noPh estimated

using Cartesian coordinate is almost twice of that using internal coordinate. I think this

overestimation comes from the difficulty in evaluating the change in internal coordinates

based on Cartesian coordinates. The geometry of this silepin molecule at the excited state

is clearly different from that at the ground state, where the angle between two benzene

rings changes from 150◦ to 120◦ (for details, see Chapter 3). Because the normal modes

for the change in angle or dihedral are expressed by tangental line in Cartesian coordinate,

large distortions cannot be effectively expressed. As a result, the shift vector along the C-H

stretching mode gave a non-negligible contribution to the reorganization energy (Fig. 2.3(d)).
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Fig. 2.3: Comparison of data concerning fluorescence of noPh at the Franck–Condon level.

(a)Real part of the correlation function and (b)resulting fluorescence spectrum computed in

internal coordinate system by my code are superposed on that by FCClasses 3.0. Fluorescence

spectra computed in Cartesian (black) and internal coordinate (red) system are shown in (c),

where solid lines were computed including vibrational mode-mixing, while dashed lines were

without it. The Huang–Rhys factor and reorganization energy computed for the different

coordinate systems are compared in (d). Discretized plots of the absolute value of the element

of the Duschinsky matrix in (e)Cartesian and (f)internal coordinate systems are shown. To

emphasize off-diagonal elements, the range for changing color was set to be [0.0, 0.10].
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For other normal modes, Huang–Rhys factor is obviously different for the two coordinate

systems.

A similar discussion can be applicable to the effect of the Duschinsky matrix. While the

solid red line in Fig. 2.3(c) is somehow similar to the dashed red line, the solid black line

is clearly different from the dashed black line. I think this black solid line is not reasonable

because its lineshape is too broad. This strange lineshape reflects the poor performance of

the Duschinsky matrix composed of normal modes in the questionable description in the

Cartesian coordinate system. Absolute values of the Duschinsky matrices computed in the

Cartesian and internal coordinate system are shown in Fig. 2.3(e) and (f). Obviously, the

Duschinsky matrix based on internal coordinates is sparser than that based on Cartesian

coordinates. Especially, the difference is located on off-diagonal elements related to modes

with numbers larger than 80. Because the vibrational modes with numbers larger than 77 are

assigned to be C-H stretching in this molecule, C-H stretching mode in Cartesian coordinate

can be considered to be contaminated by other types of modes. Probably this is involved in

the contribution of C-H stretching modes in Fig. 2.3(d). From these strange behaviors of

Cartesian coordinate, I concluded that fluorescence spectrum should be computed based on

internal coordinate if possible.

To check the validity of the correlation function for internal conversion, I computed the

internal conversion rate constant of noPh at the same quantum mechanical calculation level.

The nonadiabatic coupling employed was obtained from the fchk file produced by Gaussian

16, which is different from the scheme in MOMAP User guide. Other conditions were the

same as those for the fluorescence spectrum.

In Fig. 2.4(a), the function to be Fourier transformed computed using internal coordinate

by my code was compared with that by FCClasses. The function produced by my code is quite

similar to that by FCClasses. Hence, the resulting kic-adiabatic energy plot (Fig. 2.4(b)) is

also in good agreement with FCClasses. The internal conversion rate constant can be obtained

by picking up the value with E = |Ef − Ei|. Because the adiabatic energy in this calculation

was |-4.133| eV (gray dashed line in Fig. 2.4(b)), the rate constant was estimated to be

1.68× 102 s−1 by both my code and FCClasses 3.0. Because of these good agreements with

FCClasses 3.0, I concluded that I successfully implemented the computation of the internal

conversion rate constant.

In Fig. 2.4(c), the comparison of kic-adiabatic energy plot in internal coordinate with

that in Cartesian coordinate is provoded. As with the fluorescence spectrum, the choice

of the coordinate system and Duschinsky mode-mixing largely affected the lineshape of the

plot. While the computation based on internal coordinate gave a similar plot regardless

of the Duschinsky mode-mixing, the Duschinsky mode-mixing drastically changed the plot

computed in Cartesian coordinate. Even though input data is the same for all computations

in Fig. 2.4(c), the resulting rate constant varies from 3.47×101 s−1 to 5.13×109 s−1. Because

of this numerical instability against the coordinate system, I concluded that the use of internal

coordinates is highly recommended in the calculation of internal conversion rate constants.

In Fig. 2.4(d), nonadiabatic coupling along the normal modes at the final state PES is
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Fig. 2.4: Comparison of data concerning the internal conversion of noPh. (a)Real part of the

function to be Fourier transformed and (b)resulting kic-adiabatic energy plot computed in

internal coordinate system by my code are superposed on that by FCClasses 3.0. kic-adiabatic

energy plot computed in Cartesian (black) and internal coordinate (red) system are shown

in (c), where solid lines are computed including vibrational mode-mixing, while dashed lines

without it. The nonadiabatic coupling along dimensionless normal mode at the initial state

PES is shown (d).

shown. Because the normal modes has dimension of mass-weighted coordinate, nonadiabatic

coulping along dimensionless normal modes8,68 (nacm_lin in MOMAP) is employed; its

mathmatical expression is given as,

NACME(lin)l ≡
√
ωl

2ℏ

∣∣∣∣−ℏ2
〈
Φf

∣∣∣∣ ∂Φi

∂Ql

〉∣∣∣∣ = ℏωl√
2

∣∣∣∣∣
〈
Φf

∣∣∣∣∣ ∂Φi

∂
√

ωl

ℏ Ql

〉∣∣∣∣∣ , (2.233)

where
√

ωl

ℏ Ql is the dimensionless normal mode. The NAC along normal modes is not so

large; the maximum value is 11.6 cm−1 along the 62nd normal mode whose frequency is 1343

cm−1.

To check the validity of the correlation function for the fluorescence spectrum at the FCHT

level, I computed the fluorescence spectrum of free-base porphyrin (H2P). This molecule

was chosen as the test molecule in previous studies.58,60 Quantum chemical calculations
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Fig. 2.5: Comparison of data related to the fluorescence of H2P at the Franck–Condon and

Herzberg–Teller (FCHT) level. (a)Real part of the function to be Fourier transformed and

(b)resulting fluorescence spectrum computed in internal coordinate system by my code are

superposed on that by FCClasses 3.0. The wavelength at the adiabatic energy was repre-

sented by the dashed gray line in (b). The structure of the H2P molecule is depicted in (b).

The Huang–Rhys factor, total reorganization energy, and the norm of the derivative of tran-

sition dipole moment along the normal modes at the final state PES are shown in (c). The

contributions of the representative vibrational modes to the FCHT spectrum were shown in

a range from 580 to 650 nm in (d).

were conducted using Gaussian 16 at the (TD-)B3LYP/6-31G(d) level of theory, which was

determined in accordance with the tutorial of MOMAP program. Fluorescence spectrum was

computed using transition dipole moment at the Franck–Condon and Herzberg-Teller level

computed at the geometry optimized at the S1 state. The derivative of transition dipole

moment was obtained by numerical differentiation; to compute that I wrote a Python code.

The time for computing correlation function was set to [0, 1000 fs] with the time step of 0.01

fs for my code, while the time step for FCClasses was set to 0.1 fs for technical reasons. To

avoid the computation of the correlation function at t=0, the actual time step in my code

was automatically changed to [0.005 fs, 1000.005 fs], while that for FCClasses was [0.05 fs,

1000 fs]. The option for dipole moment in FCClasses was set "HTf", while the derivative
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employed was prepared around the geometry at the initial state. The correlation function

was computed based on internal coordinate by including Gaussian dephasing with its HWHM

of 0.005 eV. A temperature of 300 K and pressure of 1.0 atm were employed while the scaling

factor for vibrational frequency was unused.

In Fig. 2.5(a), the function to be Fourier transformed computed using internal coordinate

by my code was compared with that by FCClasses. Obviously, the function produced by

my code is quite similar to that by FCClasses. Hence, the resulting fluorescence spectrum

(Fig. 2.5(b)) is also in good agreement with FCClasses. The integration of this spectrum

resulted in the radiative decay constant of 2.11×106 s−1 by my code, while 2.12×106 s−1 by

FCClasses. Although the rate constant estimated by my code was slightly different from that

by FCClasses, I concluded that I successfully implemented the computation of fluorescence

spectrum at the FCHT level.

Because the fluorescence of H2P is a weakly dipole-allowed transition, Herzberg–Teller

term shows a large contribution.58,60 Actually, the oscillator strength and norm of transition

dipole moment at my computational condition were estimated to be 0.0012 and 0.148 a.u.,

respectively. The Huang–Rhys factor and total reorganization energy in Fig. 2.5(c) indicate

that this free-base porphyrin is highly rigid in the S1-S0 transition. This means that vibronic

transition enabled by transition dipole moment at the Franck–Condon level is dominated

by 0-0 transition for vibrational modes with high frequency, because the vibrational overlap

⟨Θfu|Θiv⟩ becomes almost 0 for other transitions. This results in a small peak shift against

the onset of the spectrum at the Franck–Condon level. The spectrum at the Franck–Condon

level has a peak at 567 nm, which contributes to the peak at 567 nm at the FCHT level

(Fig. 2.5(b)).

On the other hand, the vibrational overlap of Herzberg–Teller term is ⟨Θfu|Qfk|Θiv⟩. Be-

cause Qfk is an odd function and the wavefunction of the vibrational ground state is even

function, 0-0 transition is prohibited; instead, 0-1 transition is allowed. This means that the

major vibrational state at the final state is the lowest excited state for mode Qfk in con-

tributing Herzberg–Teller term related to Qfk, resulting in the red-shift of spectrum by ℏωfk.

The fluorescence spectrum in Fig. 2.5(b) has two another peaks at 616 and 625 nm. The

shift of these peaks from peak at 567 nm corresponds to 1399 and 1639 cm−1, respectively,

suggesting the contribution of vibrational modes with frequency in this area. Actually, the

derivative of the transition dipole moment along modes with frequency of ca. 1400 cm−1 and

ca. 1600 cm−1 have relatively large magnitude (Fig. 2.5(c)), where the former ones contain

ω75 = 1360, ω76 = 1393, and ω79 = 1424 cm−1, while the latter ones contain ω87 = 1553,

ω92 = 1643, and ω94 = 1656 cm−1. The contrubution of the derivative along these modes to

the FCHT spectrum is shown in Fig. 2.5(d). The 76th and 79th modes turn out to contribute

to the peak at 616 nm, whereas the 92nd and 94th modes contribute to the one at 625 nm.

Similar analysis has already been provided in previous studies.58,60

Through these comparisons with MOMAP and FCClasses, I concluded that I successfully

implemented the computation of correlation functions and the treatment for internal coordi-

nates. The treatment for SOC has not been validated yet. Because the correlation functions
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employed in the intersystem crossing were already checked, I think the rate constant of the

intersystem crossings can be computed using my Python code.

Application to the rISC in an MR-TADF molecule

To check the performance of the intersystem crossing rate constant calculation, I computed

the reverse intersystem crossing rate constant of DABNA,95 which is known as an organic

dye molecule with the multi-resonance type thermally activated delayed fluorescence (MR-

TADF).

Organic dyes with the thermally activated decayed fluorescence were applied to the organic

light-emitting diodes (OLEDs) by Adachi et al.96 to improve the electroluminescence effi-

ciency. There, the rate constant of the transition from the T1 to S1 state, i.e. the reverse

intersystem crossing (rISC), affects the efficiency. To accelerate the rISC, the mechanism of

the rISC have been intensively studied in recent years.70,71,75,80,97–99

Because DABNA is one of the characteristic TADF molecules, Kim et al. computed its rISC

rate constant.71 They applied the second-order formalism (Eqn. 2.122); there, they concluded

that the T1-T3 non-Born–Oppenheimer coupling and T3-S1 SOCMEs mainly contributed to

the rISC at its S-T gap region. On the other hand, the study including the Herzberg–Teller

effect on SOCMEs of DABNA was not reported, to my knowledge. Here, I tried applying the

method including HT effect (Eqn. 2.144) to DABNA.

The geometries and Hessians were computed at the TD-PBE0/6-31G(d) level, in accor-

dance with the work by Penfold et al.81 Note that Penfold et al. employed Q-Chem program,

while I used Gaussian 16 program.38 SOCMEs were computed at the ZORA-TD-PBE0/def2-

TZVP level100–102 with RI-SOMF(1X) Hamiltonian103 using ORCA 5.0.2 program,76 where

resolution-of-identity approximation using SARC/J basis104 to the Coulomb term and the

chain-of-sphere exchange105 to the exchange term were employed. The 1st-order derivatives

of the SOCMEs were computed using numerical differentiation in the Cartesian space. To

reliably estimate the S1-T1 gap, the DLPNO-STEOM-CCSD/def2-TZVP level92–94 calcula-

tions were conducted at the optimized geometries at the TD-PBE0 level using ORCA 5.0.1

program.

I computed the rate constants of the fluorescent decay (kr) and the T1-S1 rISC (krisc),

where the transition dipole moment and SOCMEs were both treated at the FCHT level.

Both of the transition dipole moment and SOCMEs were expanded around the minimum of

the initial state. The time for computing correlation function was set to [0.05, 10000.05 fs]

with the time step of 0.1 fs. The correlation function was computed by using the shift vector

and Duschinsky matrix in the internal coordinate space and including Gaussian dephasing

with its HWHM at 0.005 eV. A temperature of 300 K and pressure of 1.0 atm were employed

while the scaling factor for vibrational frequency was unused. The computed rate constants

were compared with the result by Kim et al. and experimental data by Hatakeyama et al.

The natural transition orbitals(NTOs)59 at the optimized S1 and T1 geometries were de-

picted in Fig. 2.6. Both of the S1 and T1 states were well characterized by the HOMO-LUMO

transition, resulting in the similar highest occupied NTO (HONTO) and lowest unoccupied
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∆E 0.0 -0.51
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Fig. 2.6: The NTOs of DABNA for the S1 and T1 states at each optimized geometry. The

figures at the lower and upper lines represent the HONTOs and LUNTOs, respectively. The

eigenvalue of the transition from the HONTO to LUNTO was shown between them. The

relative energy, i.e. S-T gap, was shown below the HONTOs in eV unit.

NTO (LUNTO) between them. This similarity in the excitation character resulted in the

small SOCMEs in accordance with the El-Sayed rule, where the SOCME between the S1 and

T1 states for spin-sublevel M=0 was predicted to be -0.040i cm−1, while those for the other

sublevels were less than 10−4 cm−1 at the minimum of the T1 state. Hence, the intersystem

crossing at the FC level should be ineffective; instead, higher-level treatment, such as the

inclusion of the intermediate state or HT expansion of the SOCMEs, should be required.

To reliably estimate the relative energies, the STEOM-DLPNO-CCSD calculations were

conducted at the TD-PBE0 level geometries. The S1→S0 and S1→T1 adiabatic energies and

fluorescence and phosphorescence energies were compared in Table 2.1. In Ref. 95, the S-T

gap was estimated to be 0.15 eV using the maxima of the fluorescence and phosphorescence

spectra, although I guess the correct value was 0.14. Using the computed vertical energies

instead of the maxima of the spectrum, the S-T gap was estimated to be 0.46 eV at the

TD-PBE0 level. This overestimation of the S-T gap probably comes from the overestimation

of the fluorescence energy. On the contrary, the DLPNO-STEOM-CCSD calculations at the

same geometries predicted the S-T gap at 0.14 eV, which was in good agreement with the

experimental value. However, the S-T gap employed in the rate constant calculation should

be the adiabatic energy. The adiabatic S-T gap was predicted to be 0.51 eV at the TD-PBE0

level, while it was predicted to be 0.18 eV at the DLPNO-STEOM-CCSD level. The effect of

the difference in the adiabatic S-T gap will be discussed later.

The computed rate constants were compared with the predicted value by Kim et al.71
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Table 2.1: Comparison of the computationally estimated relative energies with experimentally

estimated ones of DABNA in eV unit.

PBE0a STEOMb Exp.c

E(S1-S0) 3.145d 2.923d —

E(S1-T1) 0.507d 0.183d —

E(Flu) 3.024e 2.799e 2.737

E(Pho) 2.568e 2.663e 2.594

E(Flu)-E(Pho) 0.456 0.136 0.143f

a Energies and geometries at the TD-PBE0/6-31G(d) level
b Geometries at the TD-PBE0/6-31G(d) level and energies at the

DLPNO-STEOM-CCSD/cc-pVTZ level
c Taken from Ref. 95
d Adiabatic energy
e Vertical energy
f Estimation of S-T gap in Ref. 95

Table 2.2: Comparison of the computationally estimated rate constants with experimentally

obtained ones of DABNA.

PBE0ab STEOMbc Kim et al.d Exp.e

kr [s−1] 6.9× 107 5.4× 107 — 9.6× 107

krisc [s−1] 6.8× 10−4 5.9× 103 1.05× 104 9.9× 103

EST
f [eV] 0.507 0.183 0.144 —

a Energies and geometries at the TD-PBE0/6-31G(d) level
b SOCMEs at the ZORA-TD-PBE0/def2-TZVP level
c Geometries at the TD-PBE0/6-31G(d) level and energies at the

DLPNO-STEOM-CCSD/cc-pVTZ level
d Taken from Ref. 71, where 2nd-order method was employed.
e Taken from Ref. 95
f Adiabatic energy

and experimentally observed value by Hatakeyama et al.95 in Table 2.2 The predicted kr

were in good agreement with the experimentally obtained one regardless of the correction

at the STEOM-DLPNO-CCSD level. On the contrary, the predicted krisc turned out to be

highly sensitive to the predicted adiabatic S-T gap. With the correction at the DLPNO-

STEOM-CCSD level, the predicted krisc at 5.9 × 103 s−1 was in good agreement with the

experimentally obtained value at 9.9 × 103 s−1. However, that without the correction was

too small at 6.8 × 10−4 s−1, indicating the importance of the reliable estimation of the S-T

gap. Note that FC contribution with the adiabatic S-T gap at 0.183 eV was negligible; the

57



predicted value was 7.6 × 101 s−1, which was less than 1% of the value at the FCHT level.

This negligible contribution of the FC term indicated that inclusion of the higher-level term

was essential, as pointed out by Kim et al. They reasonably predicted the krisc using the 2nd-

order perturbation formalism. On the contrary, my calculations suggested that the expansion

of SOCMEs at the FCHT level also be able to reasonably predict it when the adiabatic S-T

gap was reliably estimated.
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Chapter 3

Theoretical Investigation of the
Nonradiative Decay of Silepins

3.1 Introduction

Photochemical properties of organic π-conjugated molecules have been applied to a va-

riety of uses, such as fluorescent probes,1–3 UV protection,4–7 and organic light-emitting

diodes.8–10 To tune their performance, a deep understanding of their properties associated

with the electronic states can promote elaborate design of photofunctional molecules.10–15

Their electronic-level details can be investigated by physical-chemical methods, including

spectroscopic measurements and theoretical approaches based on quantum chemical calcula-

tions.

Toward the theory-based design of functional organic molecules, the theoretical prediction

of fluorescence quantum yield (ΦF) is one of the attractive capabilities of computational

approaches.16–18 The quantum yield can be calculated as ΦF = kr/(kr + knr), where kr and

knr are the radiative and nonradiative decay rate constants, respectively. The computation of

knr is considered a challenging task and thus has received increasing attention. For molecules

in which nonradiative decay is much slower than the thermal equilibration upon vibrational

relaxation, which is often tens-of-picosecond scale phenomena,19 nonradiative processes after

the thermal equilibration are a central topic of research.

One such process is thermally activated decay via internal conversion at the conical intersec-

tion seam. Some earlier theoretical studies have discussed the rate constant via first-principles

computations of the potential energy curves (PECs) and the activation energy necessary

for reaching the minimal energy conical intersection (MECI) point via the transition state

(TS).16,17,20 In the computational estimation of the activation energy in the excited state,

reliable treatment for characterizing the excited states and their energies is highly important.

Additionally, the structural determination of MECI and TS on such reliable potential energy

surfaces (PESs) is similarly critical.

Quantum chemical calculations based on time-dependent density functional theory (TD-

DFT) have been extensively used to obtain absorption or emission energies and investigate

PESs of the ground and excited states. When the activation barrier point is located near the
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minimum of the fluorescent state, which is often of singly excited character, single-reference

(SR) methods, including TD-DFT and the equation-of-motion coupled-cluster method with

single and double excitations (EOM-CCSD), may produce a reliable description of the

electronic states. However, a reliable description of the complicated electronic state near

MECI geometry tends to require a multireference (MR) method, such as complete active

space self-consistent field (CASSCF)21 and subsequent second-order perturbation correction

(CASPT2)22 methods.23 Moreover, the quasi-degeneracy of those electronic states requires

extended quasi-degenerate perturbation treatment, such as extended multi-configuration

quasi-degenerate perturbation theory at the second-order (XMCQDPT2)24 or extended

multistate complete active space second-order perturbation theory (XMS-CASPT2).25

Some previous studies have employed these MR methods to compute phenomena involving

MECIs.20,26–29

For structural determination, the gradient of energy with respect to nuclear coordinates

plays a central role. Analytical gradient of linear response TD-DFT, spin-flip TD-DFT,30,31

and CASSCF32–34 have been widely used to obtain the characteristic geometries including

MECI points. Then, the energy profiles between key geometries have been computed by using

relaxed scan35–37 or linearly interpolated internal coordinates (LIIC).20,27,32,37,38 In several

studies that used LIIC, the activation energy was estimated without geometry optimization

of the TS. Although geometry optimization at the MR perturbation theory (PT) level may

give a better description of the energy profile, the number of studies that have employed the

gradient of MRPT is still limited.39

The size of π-conjugated molecules with potential use as organic dyes has also prevented

the use of the MR method. Even the size of the stilbene skeleton, which is one of the

basic π-conjugated skeletons containing 14 π electrons in 14 valence π orbitals, is located

near the upper bound of the applicability of the conventional CASSCF method when all

valence π orbitals in the π-conjugated skeleton are included in the active space. Moreover,

quasi-degeneracy in the excited states of the π-conjugated skeleton35,40 requires inclusion of

several electronic states in the state-averaged (SA) CASSCF calculation to treat the electronic

state of interest, which increases the computational cost. This means that MR calculations

of realistic π-conjugated molecules for materials with an active space containing the entire

valence π orbitals in the π skeleton have been rarely conducted.

In the last two decades, several low-scaling quantum chemical calculation methods have

been developed. Among the SR methods, coupled-cluster methods based on pair natural

orbitals, such as back-transformed pair natural orbital based similarity transformed equation-

of-motion coupled-cluster singles and doubles (bt-PNO-STEOM-CCSD)41,42 and domain-

based pair natural orbital (DLPNO-) STEOM-CCSD43–45 both exhibit high accuracy and

applicability to larger molecules. Among the MR methods, introduction of a density matrix

renormalization group (DMRG)46,47 to the CASSCF method resulted in establishment of the

DMRG-CASSCF method,48,49 which enabled application to the system with a larger active

space. Then, second-order perturbation theories based on the DMRG-CASSCF method, such

as DMRG-CASPT250 and DMRG-NEVPT2,51,52 were developed. Recently, a combination
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of DMRG-CASSCF and quasi-degenerate PT of XMS-CASPT2 was established as DMRG-

XMS-CASPT2.53 These recent SR and MR methods have the potential for application

to realistic π-conjugated molecules that are larger than the stilbene skeleton. Moreover,

analytical gradients for MR-QDPT methods have been developed,54–57 some of which are

publically available.54,55,58 The use of these gradients for geometry optimization may provide

a better description of the energy profile.

noPh p-Ph m-Ph
(0.14) (0.38) (0.90)

Scheme 3.1: Chemical structures of noPh, p-Ph, and m-Ph. Their experimentally deter-

mined fluorescence quantum yields59 are shown in parenthesis.

In this study, we applied SR and MRPT methods to thermally activated decay through

the CI of an organic fluorescent molecule to determine the validity of the calculations.

As molecules for computation, organic fluorescent 1,1-dimethyldibenzo[b,f]silepin derivatives

noPh, p-Ph and m-Ph (Scheme Scheme 3.1) were chosen, whose fluorescence quantum

yields were experimentally measured in ref. 59. knr of noPh, p-Ph, and m-Ph were also

determined to be 57.3 ×108 s−1, 4.4 ×108 s−1 and 0.63 ×108 s−1, respectively, which are

directly related to the differences in their ΦF. Because these nonradiative decays are much

slower than thermal vibrational equilibration, their decay rate should be primarily determined

by the energy barrier height in the reaction coordinate. Considering that these silepins have

a cis-stilbene skeleton, which is known to undergo ultrafast decay through conical intersec-

tion triggered by the twisting of the central C-C bond in the excited state,26,60 and that

the SiMe2-bridging may increase the energy to twist the central C-C bond by restricting the

motion of the skeleton, decay through CI triggered by the twisting of the central C-C bond

may act as the main nonradiative decay pathway of the silepins.

We first built a reaction coordinate by taking LIIC between the minimum of Franck-Condon

state and the MECI point optimized by twisting the central C-C bond in the excited state.

Then, single-point calculations on the coordinate of noPh at SR or MR level theories and the

resultant PECs were compared to determine the validity of each method. Next, by comparing

the PECs of noPh, p-Ph, and m-Ph at DMRG-XMS-CASPT2 level calculations with all

valence π-orbitals and π-electrons in the active space, which were shown to be valid in this

study, we confirmed whether there is any relationship between the experimentally determined

fluorescence quantum yield and the computationally determined energy barrier height to reach

MECI geometry of the silepins. Finally, the effect of geometry optimization of the TS at the

MR-QDPT level was determined by comparing the PECs and estimated activation energy

with/without the optimization. From these results, we confirmed that the main nonradiative
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decay pathway of noPh, p-Ph, and m-Ph is thermally activated decay concerning the central

C-C bond twisting, and geometry optimization of the TS using methods beyond TD-DFT,

such as MR-QDPT methods, leads to a reasonable estimation of the activation energy.

3.2 Computational details

Quantum chemical calculation methods were used for investigating the molecular mecha-

nism of the nonradiative decay of the photoexcited silepin derivatives and their electronic-

level details. Below the computational setting and technical details of our quantum chemical

approaches are presented.

3.2.1 Basis sets

Three kinds of basis sets were employed: (1) a mixture of the cc-pVDZ (for C and H)

and cc-pV(D+d)Z (for Si) basis sets, hereafter referred to as CCD,61–63 (2) its diffuse-basis

augmented set consisting of aug-cc-pVDZ (for C and H) and aug-cc-pV(D+d)Z for Si, des-

ignated as ACCD,62–64 and (3) the def2-SVP basis set.65,66 To mitigate the high com-

putational demands of XMS-CASPT2, DMRG-XMS-CASPT2, and bt-PNO-STEOM-CCSD

calculations, we utilized the Resolution-of-Identity (RI) approximation technique to acceler-

ate the two-electron integral evaluation. As the RI auxiliary basis sets, the def2-SVP/JK,67

aug-cc-pVDZ/JK,68 and aug-cc-pVDZ/C69,70 basis were used for the XMS-CASPT2/def2-

SVP, DMRG-XMS-CASPT2/ACCD, and bt-PNO-STEOM-CCSD/ACCD calculations, re-

spectively.

3.2.2 Structural determinations at the DFT/TD-DFT level of the-
ory

Throughout the quantum mechanical calculations, the silepin derivatives were each treated

as an isolated molecule in the gas phase. In our model, with the silepin excited by photoab-

sorption, the excited molecule at the S1 state nonradiatively decays at certain structures on

the excited state PEC; thus, the determination of the PEC, which is calculated to be the

energy of excited state as a function of the reaction coordinate, was an important task in

this study. To deal with this, we first searched for the structures associated with the key

steps of the decay process on the excited state PEC, which are schematically indicated as

FC, Flu, TS, and Con in Fig. 3.1. The structure FC is defined as the minimum of the ground

state (S0) PEC, where the Franck-Condon transition to the excited state takes place. The

minimum of the excited state PEC, denoted as Flu, is formed in the vicinity of FC by the

structural relaxation, which is involved in the vibrational cooling in the excited electronic

state. The fluorescence is emitted from this excited state with the Flu structure; thus, it is

also referred to as the fluorescent state. With the progress of the twisting of the central C-C

bond on the excited state PEC, there is assumed to be a MECI point between the ground and

excited states, which corresponds to Con in Fig. 3.1. We examined the possibility of having
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3.2 Computational details

an energy barrier in PEC between Flu and Con that yields a TS; its structure corresponds to

the TS in Fig. 3.1. The reaction coordinate in our model can thus be built upon the geomet-

ric parameters of Flu, TS, and Con. The geometry optimizations using the DFT/TD-DFT

Reaction coordinate

En
er

gy

hn

S0

S1
FC

Flu
Con

TS

Fig. 3.1: Modeled potential energy curves (PECs) of the S0 and S1 states of silepins along

the reaction coordinate of the radiative and nonradiative process. The area drawn by solid

lines is primarily discussed.

methods were performed on the three silepin derivatives using the GAMESS 2012 program

package.71 The optimized structure of FC (RDFT(FC)) was obtained by ground-state DFT

calculations using the CAM-B3LYP72 functional with the CCD basis, which is abbreviated as

CAM-B3LYP/CCD. The geometries of Flu and Con, denoted as RDFT(Flu) and RDFT(Con),

were determined at the TD-CAM-B3LYP/CCD level of theory with the Tamm-Dancoff ap-

proximation to TD’s linear response treatment. The initial geometric parameters for the

optimization of RDFT(Con) were prepared by twisting the central C-C bond of RDFT(Flu).

The conical intersection search was conducted using the branching plane updating method.73

The LIIC geometries linking RDFT(Flu) and RDFT(Con) were derived, resulting in a reac-

tion coordinate set. The geometry of TS was chosen from PEC connecting RDFT(Flu) and

RDFT(Con) as RDFT(TS) without additional geometry optimization.

3.2.3 Excited state energy calculations along the DFT/TD-DFT
level reaction coordinate

With the molecular geometries on the DFT/TD-DFT level reaction coordinate as written

above, we performed single-point calculations on noPh using various quantum mechanical

methods. A comparison of the resultant PECs allowed us to check the capability of the meth-

ods to properly describe the PECs of the radiative and nonradiative processes. We used TD-

CAM-B3LYP/ACCD with/without the Tamm-Dancoff approximation level (TDA/TD), bt-

PNO-STEOM-CCSD/ACCD level (STEOM), and 10SA-DMRG-XMS-CASPT2/ACCD level

(XMS) methods to obtain the energies of the S0 and S1 states of noPh as a function of the

reaction coordinate. The energy calculations for p-Ph and m-Ph along the reaction coordi-
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nate were carried out only at the 10SA-DMRG-XMS-CASPT2/ACCD level of theory. The

DMRG-XMS-CASPT2 and bt-PNO-STEOM-CCSD calculations were conducted using the

orz program and ORCA 4.0.1.2 program package,74 respectively, and the remaining calcu-

lations were performed using the Gaussian 16 Revision A.03 program package.75 We used

BLOCK 1.576 interfaced to orz for the DMRG calculations, which were performed by set-

ting the number of spin-adapted renormalized basis states to 256. A variant of the CASPT2

treatment, referred to as the single-state single-reference (SS-SR) scheme,55,77 was employed

in conjunction with the extended multistate (XMS) formalism.25,53 It is based on the zeroth-

order Hamiltonian with the generalized Fock matrix constructed using state-specific density

matrices. To circumvent intruder state problems in CASPT2, an IPEA shift of 0.25 a.u. and

an imaginary level shift of 0.10 a.u. were employed. To avoid the high computational cost

of handling a four-electron reduced density matrix (4-RDM), we used the cumulant approx-

imation to it, with which 4-RDM can be decomposed into low-order RDMs of the DMRG

wavefunctions.78 The active spaces for the DMRG-CASSCF are composed of all valence π-

orbitals and π-electrons, which corresponds to (14e, 14o) for noPh and (26e, 26o) for p-Ph

and m-Ph, respectively. The localized molecular orbitals (LMOs) of these π-orbitals were

employed as the DMRG correlation sites; Fig. 3.2 illustrates the LMOs of m-Ph. Among

the S1 state energies calculated on the PEC, the geometry that provides the highest energy

is defined as RDFT(TS), and this energy is used to estimate the activation energy.

Fig. 3.2: Localized molecular orbitals used for the active space of the DMRG-XMS-CASPT2

calculation for m-Ph at RDFT(Flu).

3.2.4 Geometry optimization with XMS-CASPT2 theory

As described above, the optimized geometries on the excited state PEC were obtained us-

ing the TD-DFT method. The adequacy of the TD-DFT treatment should be checked in

particular for the intermediate TS structure, which is considered to often involve the MR

nature of the wavefunction associated with quasi-degenerate orbital characters. Additionally,
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neglecting the optimization of TS described above may lower the reliability of the activation

energy. To assess the structures determined at the TD-DFT level, we again performed geom-

etry optimizations on noPh at the MR level of theory using XMS-CASPT2 and its analytic

nuclear derivative methods implemented in the BAGEL program.58 This test serves as a

way to highlight the effect of the level of theory on the structural determination for the TS

and the related activation energy. The reference states for XMS-CASPT2 were set up with

the SA-CASSCF method considering six states using (10e, 10o) for the active space, which

was derived by excluding the lowest and highest energy π-orbitals from the previously used

CAS(14e, 14o). The SS-SR contraction scheme of the XMS-CASPT2 treatment was used in

conjunction with the real level shift of 0.3 a.u. to handle the intruder state problems and

without the IPEA shift. With BAGEL, the Hessian matrices required for the TS geometry

search were computed using the numerical differentiation method based on the central dif-

ference formula using the analytic XMS-CASPT2 energy gradients. The search for MECI

geometry was performed using analytical derivative coupling of the XMS-CASPT2 method.79

We used the TD-DFT optimized structures as the starting geometric parameters to ob-

tain the XMS-CASPT2 geometries for Flu, TS, and Con (see also Fig. 3.1), denoted as

RXMS(Flu), RXMS(TS), and RXMS(Con), respectively. The LIIC was formed by connecting

RXMS(Flu), RXMS(TS), and RXMS(Con), resulting in an alternative set of reaction coordinate

geometries. On these geometries, the PEC calculations were conducted at the 10SA-DMRG-

XMS-CASPT2/ACCD level of theory. Further, we attempted to re-optimize the geometry

of TS for p-Ph and m-Ph at the XMS-CASPT2 level; however, the cost of obtaining the

numerical Hessian matrix turned out to be exceedingly demanding and thus prevented us

from achieving the optimized TS structure. Instead, the initial geometry was prepared by

adding phenyl rings to the RXMS(TS) of noPh. Then, the structural relaxation was ac-

counted for at the TD-CAM-B3LYP/def2-SVP level of theory by constrained optimization

with the skeleton of noPh fixed at the TS geometry determined at the XMS-CASPT2 level.

The resultant geometry was denoted as RXMS
c (TS). Geometry optimization in the fluorescent

state was also conducted in a similar manner to obtain RXMS
c (Flu). In addition, fully re-

laxed geometry optimization without the constraint was conducted, leading to the geometry

denoted as RXMS
r (Flu). The geometry search for the MECI point of p-Ph and m-Ph was

not conducted at the XMS-CASPT2 level.

3.3 Results and discussion

3.3.1 Geometries obtained by TD-DFT level optimization

The geometries of noPh optimized at the DFT/TD-DFT level are shown in Fig. 3.3. The

angles between two benzene rings in RDFT(FC) and RDFT(Flu) were estimated as 130◦ and

158◦, respectively, which indicated that the stilbene skeleton became more planar in the

geometry relaxation after photo-excitation. In this relaxation, the central C-C bond of the

skeleton kept its planarity as dihedral C4-C3-C1-C2 retained its -180◦. On the other hand,

68



3.3 Results and discussion

RDFT(Flu) RDFT(Con)
(-96.3˚)(-180.0˚)

RDFT(FC)
(-180.0˚)

(a) (b)

C1

C2 C3

C4

H1 H2

Fig. 3.3: (a) Optimized geometries of noPh and (b) atom labeling of the central 7-membered

ring of the silepins. In (a), RDFT(FC), RDFT(Flu), and RDFT(Con) represent the geometries

optimized for the ground state, fluorescent state, and MECI point, respectively. The images

show the top (upper line) and side (lower line) views of each geometry. The dihedral angle

of C4-C3-C1-C2 defined in (b) is shown in parenthesis.

in the change from RDFT(Flu) to RDFT(Con), the stilbene skeleton lost its planarity with

the change in dihedral C4-C3-C1-C2 from -180.0◦ to -96.3◦; this dihedral was used to plot

all PECs in this study. C2 in RDFT(Con) showed a pyramidal structure, which is seen in the

CI point of ethylene or stilbene.26,79,80

3.3.2 Validity of the DMRG-XMS-CASPT2 calculations

To check the validity of the DMRG-XMS-CASPT2 calculation, we computed the absorption

and fluorescence energy of each silepin via the TDA and XMS calculations (Table 3.1). TDA

and XMS gave similar results, and the XMS results were slightly closer to the experimental

data. The maximum error in the estimation of fluorescence energy was 0.3 eV, which was

smaller than that of the absorption energy. However, as shown in Table 3.1, the substituent

dependence of Stokes shift was poorly predicted by DMRG-CASTP2. This may indicate the

inadequacy of perturbative approaches in capturing the substituent effects in the Stokes shift.

Because the main focus of this study was on the region from RDFT(Flu) to RDFT(Con), and

the computed fluorescence energies reproduced the trend of experimentally obtained ones, we

decided to conduct the XMS level calculations to describe the excited state wavefunction.

To analyze the effect of perturbative correction in the DMRG-XMS-CASPT2 calculation

at RDFT(Flu), the XMS-CASPT2 rotation matrix (U) was analyzed, as shown in Table

3.2. Because the contribution of perturbative correction depends on the CASSCF eigenstate

to be corrected, the order of the electronic state in XMS-CASPT2 may differ from that in

CASSCF. Here, term ULM represents the contribution of the SL DMRG-CASSCF eigenstate

to the SM DMRG-XMS-CASPT2 wavefunction. For the fluorescent S1 state at the DMRG-
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Table 3.1: Absorption and fluorescence energies, and Stokes shift of noPh, p-Ph, and m-Ph

in eV units

Eabs [eV] Eflu [eV] Shift [eV]

Name TDAa XMSb exp.c TDAa XMSb exp.c TDAa XMSb exp.c

noPh 4.60 4.49 4.23 3.65 3.54 3.45 0.95 0.95 0.78

p-Ph 4.55 4.49 4.07 3.60 3.52 3.34 0.95 0.97 0.72

m-Ph 4.16 4.14 3.80 3.21 3.21 3.00 0.95 0.93 0.80

a TD-CAM-B3LYP/ACCD level under the Tamm-Dancoff approximation
b 10SA-DMRG-XMS-CASPT2/ACCD level
c peak top of experimentally obtained spectra of CH2Cl2 solution59

XMS-CASPT2 level, the most important DMRG-CASSCF eigenstate was the S5 state for

noPh, whereas it was the S7 state for p-Ph and m-Ph. This indicated that perturbative

correction can drastically change the order of the DMRG-CASSCF eigenstates and that the

inclusion of a proper number of DMRG-CASSCF eigenstates is essential to handle the excited

electronic state of interest.

Table 3.2: Characteristic elements in the second column of the XMS-CASPT2 rotation matrix

obtained by fluorescence energy calculations of noPh, p-Ph, and m-Ph abc

noPh p-Ph m-Ph

U51(-0.810) U71(0.853) U71(-0.954)

U41(-0.525) U61(0.466) U31(-0.260)

U21( 0.247) U21(0.233) U41(-0.125)

a Elements in the second column show the contribution to the S1 state at the

XMS-CASPT2 level.
b Elements with absolute values of more than 0.100 are shown.
c The values of the elements are shown in the parentheses.

3.3.3 PECs of noPh at several quantum chemical calculation meth-
ods

To determine the validity of the quantum mechanical calculation methods, we compared the

PECs computed at the TDA, TD, STEOM, and XMS levels of theory along the LIIC between

RDFT(Flu) and RDFT(Con), as depicted in Fig. 3.4. The computed PECs differed in the

region around the TS in the S1 state and the area close to RDFT(Con). The dihedral C3-C2-

C4-C1 of the TS estimated by TD-DFT calculations was -111◦, which was apparently different

from that by STEOM (-124◦) and XMS (-126◦). This result indicated that the geometry

optimization of the TS via the TD-DFT level calculation is inadequate for estimation of the
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activation energy of noPh by single-point calculations at the STEOM or XMS level.

In the estimation of activation energy (∆E‡), we defined it as the difference between the

highest S1 state energy in PEC and the S1 state energy at RDFT(Flu). The ∆E‡ from

the XMS and STEOM calculations were estimated at 15.8 and 14.8 kcal/mol, respectively,

whereas those from the TDA and TD calculations were estimated at 24.5 and 19.5 kcal/mol,

respectively, which were larger than those determined from the XMS and STEOM calcu-

lations. As well as the dihedral C3-C2-C4-C1 of the TS geometry, the activation energy

estimated from the TD-DFT calculations apparently differed from that via the STEOM or

XMS level calculations.
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Fig. 3.4: Computed potential energy curves of the S0 and S1 state of noPh. Black, blue, red,

and green lines show the curve given by TDA, TD, XMS, and STEOM level calculations,

respectively. The energy values for plotting are given by the difference from that of the S0

state at RDFT(Flu). The gray dashed line represents the geometry denoted as RDFT(D104),

whose DMRG-CASSCF natural orbitals will be discussed later.

To elucidate the origin of the difference in PECs, we checked which DMRG-CASSCF eigen-

state mainly contributed to the S1 state at the DMRG-XMS-CASPT2 level. The weight of

the DMRG-CASSCF eigenstate on the S1 state at the DMRG-XMS-CASPT2 level was shown

as a function along the LIIC in Fig. 3.5(a). At the RDFT(Flu), where the dihedral C4-C3-C1-

C2 is -180◦, the DMRG-CASSCF S4 and S5 states showed large contributions. Contribution

of the DMRG-CASSCF S4 state there was probably due to the degeneracy of the DMRG-

CASSCF eigenstates; the diagonalization of the multi-state Fock matrix to produce the ref-

erence states in the XMS-CASPT2 treatment mixed these DMRG-CASSCF eigenstates. In

the region where the dihedral C4-C3-C1-C2 is smaller than 120◦, the DMRG-CASSCF S5

eigenstate showed the largest contribution to the DMRG-XMS-CASPT2 S1 state. In the re-

gion where the dihedral C4-C3-C1-C2 is larger than that at the RDFT(TS), the contribution

of the DMRG-CASSCF S5 eigenstate drastically decreased; instead, the contribution of the
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Fig. 3.5: (a) Contribution of the DMRG-CASSCF eigenstates to the S1 state in the DMRG-

XMS-CASPT2 calculations and (b) energies of the DMRG-CASSCF eigenstates along the

LIIC linking RDFT(Flu) and RDFT(Con). In (a), contributions of the DMRG-CASSCF

eigenstates which show more than 10 % contribution to the S1 state at least at one geometry

are shown. Contribution to the S1 state was estimated by the square of the elements in the

XMS-CASPT2 rotation matrix at each gometry. In (b), 10 lowest singlet eigenstates are

shown.

DMRG-CASSCF S4 state becomes large. This may come from the change in the ordering of

S4 and S5 states as shown in Figure Fig. 3.5(b). Finally, in the area between RDFT(D104) and

RDFT(CI), the DMRG-CASSCF S1 eigenstate shows the largest contribution to the DMRG-

XMS-CASPT2 S1 state. These weights on the DMRG-XMS-CASPT2 S1 state indicated that

the important DMRG-CASSCF eigenstate gradually changed along the LIIC.

To analyze the character of the important DMRG-CASSCF eigenstates, we compared the

DMRG-CASSCF natural orbitals at RDFT(D104), which was the geometry with dihedral

C3-C2-C4-C1 at -104.1◦ in LIIC between RDFT(Flu) and RDFT(Con), with those at the

RDFT(Flu). CASSCF natural orbitals are molecular orbitals obtained by diagonalizing the

one-particle reduced density matrix of each CASSCF eigenstate, whose eigenvalues are the

occupation number of electrons.

For the DMRG-CASSCF eigenstates with major contribution to the S0 and S1 states in the

XMS-CASPT2 wavefunction at RDFT(Flu) and RDFT(D104), two DMRG-CASSCF natural

orbitals whose occupation number is closest to 1.0 are depicted in Fig. 3.6. The character

of the CASSCF S0 state at RDFT(Flu) is closed-shell because all occupation numbers are

smaller than 0.2 or larger than 1.8. On the other hand, the CASSCF S5 state there has two

eigenvalues close to 1.0 because this state is mainly described by a singly excited configuration,

which was assigned as a HOMO-LUMO excitation.

In contrast to RDFT(Flu), the S0 state at RDFT(D104) has an open-shell (or biradical)

character, whereas the character of S1 state is closed-shell. Actually, the T1 diagnostic81 in

the S0 state DLPNO-CCSD calculations exceeded 0.02 at the geometry near RDFT(D104).
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This indicated that the S0 state has a multi-configurational character. The difference in

the S0 state PECs may originate from the DLPNO-CCSD and DFT methods, which are

categorized as SR methods and cannot reasonably describe multi-configurational S0 states.

The reason why the TD-DFT level S1 state PEC differs from the XMS level one may be that

expansion of the excited state wavefunction by singly excited determinants in the TD-DFT

method cannot describe the closed-shell S1 state. Considering that the S1 state at RDFT(TS)

may be characterized as a mixture of that at RDFT(Flu) and RDFT(Con), the lack of doubly

excited configurations in TD-DFT methods leads to poor estimation of RDFT(TS).

From the results above, we concluded that a reasonable description of the entire PEC in

this study requires MR-QDPT methods, such as DMRG-XMS-CASPT2.

(1.841) (0.190)(1.056) (1.011)

RDFT(Flu), S5 RDFT(D104), S1

(1.317) (0.685)(1.819) (0.189)

RDFT(D104), S0RDFT(Flu), S0

Fig. 3.6: Some of the DMRG-CASSCF natural orbitals of noPh. Two orbitals whose occu-

pation numbers are the closest to 1.0 are shown for each electronic state. The orbitals on the

left two columns were obtained at RDFT(Flu), whereas those on the right two columns were

at RDFT(D104). The orbitals on the upper line correspond to the S1 state at the XMS level,

and those on the bottom line correspond to the S0 state at the XMS level. The occupation

number of each natural orbital is given in parentheses. Note that the DMRG-CASSCF S5

state shows the main contribution to DMRG-XMS-CASPT2 S1 state at RDFT(Flu) (see Ta-

ble Table 3.2).

3.3.4 Comparison of the PECs of noPh, p-Ph, and m-Ph

Because the XMS level computation can effectively describe all the PECs in this study, the

XMS level PECs of noPh, p-Ph, and m-Ph were compared, as shown in Fig. 3.7. These

three PECs had a similar shape with the existence of an activation barrier in the S1 state.

We estimated the ∆E‡ of the three silepins using their PECs to confirm whether there is

any relationship with the experimentally-determined ΦF, as shown in Table 3.3. Generally,
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larger activation energy results in a smaller nonradiative decay rate constant, which results

in a larger fluorescence quantum yield. The trend shown in Table 3.3 implies the possibility

that the nonradiative decay treated here is related to the magnitude of ΦF.

Fig. 3.7: 10SA-DMRG-XMS-CASPT2/ACCD level PECs of the S0 and S1 states of noPh

(red), p-Ph (black), and m-Ph (blue). The energy values for plotting are given by the

difference from that of the S0 state at the RDFT(Flu) for each molecule.

Table 3.3: Computationally estimated activation energies (∆E‡ [kcal/mol]) and experimen-

tally determined fluorescence quantum yields (ΦF) of the silepins59

noPh p-Ph m-Ph

∆E‡ 15.8 20.9 26.1

ΦF 0.14 0.38 0.90

In this paragraph, we attempt to clarify the reason for the large ∆E‡ of m-Ph. In Fig. 3.7,

the main difference among silepins is located near RDFT(Flu). Thus, the reason for the

large ∆E‡ of m-Ph seems to be the stabilization of the fluorescent state. A similar trend

was reported for the difference in ΦF between furan and dibenzofuran31 and that in knr of

distyrylbenzene derivatives.33 Because the fluorescent state of silepins is mainly described as

HOMO-LUMO excitation, we checked the HOMO-LUMO gap via CAM-B3LYP/ACCD level

calculations; the noPh, p-Ph, and m-Ph gaps were computed to be 5.73, 5.69, and 5.15 eV,

respectively. These gaps indicated that, while the name of m-Ph comes from the position

of the phenyl ring from the SiMe2 moiety, introduction of a phenyl ring at the para-position

from the central C-C bond effectively extended the π conjugation,59 which resulted in a high

fluorescence quantum yield.

3.3.5 Geometries obtained by XMS-CASPT2 level optimization

To confirm the effect of geometry optimization of the TS on the activation energy estima-

tion, we first conducted geometry optimization of the fluorescent state, MECI point, and TS
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RXMS(TS)
(-127.2˚)

RDFT(TS)
(-125.9˚)

(a) (b)

(390i cm-1)
RXMS(TS)

Fig. 3.8: (a) Comparison of RDFT(TS) and RXMS(TS) of noPh and (b) vibrational mode

with the imaginary frequency at RXMS(TS). The images show the top (first line) and side

(second line) views for each geometry. In (a), the dihedral angle of C3-C2-C4-C1 from Fig. 3.3

(b) is shown in parenthesis. In (b), displacements of H atoms are omitted for clarity. The

imaginary frequency is shown in parenthesis.

between them at the XMS-CASPT2/def2-SVP level using the BAGEL program; the resultant

geometries are denoted as RXMS(Flu), RXMS(Con), and RXMS(TS), respectively. RDFT(TS)

and RXMS(TS) are shown in Fig. 3.8.RXMS(TS) had a normal mode with an imaginary

frequency of 390i cm−1, whose displacement vector except for H atoms is located on the

central C-C bond (Fig. 3.8 (b)). RXMS(TS) has a similar dihedral C3-C2-C4-C1 as that of

the geometry obtained from LIIC of the TD-DFT level geometries (RDFT(TS)); however, the

orientation of the left side phenyl ring is obviously different. The effect of this difference on

the activation energy estimation will be discussed in the next subsection.

3.3.6 Effect of XMS-CASPT2 level optimization on the activation
energy estimation

Next, we built a new reaction coordinate set by connecting LIIC between RXMS(Flu) and

RXMS(TS) to LIIC between RXMS(TS) and RXMS(Con). Then, DMRG-XMS-CASPT2 cal-

culations were conducted to the coordinate set, and the resultant PECs were compared with

the PECs along the previous coordinate set as shown in Fig. 3.9. Although the two S0 state

PECs were similar, The S1 state PECs differed in the heights of their activation barriers.

The activation energy in this new PEC was estimated to be 7.9 kcal/mol, which was almost

half of that in the PECs along the TD-DFT level LIIC at 15.8 kcal/mol. Additionally, this
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Fig. 3.9: Comparison of PECs of the S0 and S1 states of noPh. Blue lines were plotted

using the same data as those used for XMS in Fig. 3.4. Red lines were computed along the

coordinate defined in this subsection. The energies of the blue and red lines are given by the

difference from that of the S0 state at RDFT(Flu) and at RXMS(Flu), respectively.

activation energy of 7.9 kcal/mol was comparable to the difference between the energy at

RXMS(TS) and that at RXMS(Flu) of 7.7 kcal/mol. These results indicated that geometry

optimization of the TS using the XMS-CASPT2 calculation is critical to estimating the acti-

vation energy and that the approximation of the activation energy as the difference between

the energy at RXMS(TS) and that at RXMS(Flu) was reasonable.

Finally, the activation energies of noPh, p-Ph and m-Ph were again compared. Because

we could not obtain the fully relaxed geometry of the TS of p-Ph or m-Ph, we approxi-

mated the activation energy as the difference between the energy at RXMS
c (Flu) and that at

RXMS
c (TS), which were optimized by fixing the skeleton of noPh. For noPh, 7.7 kcal/mol,

as shown above, was chosen. The activation energies of p-Ph and m-Ph were estimated

as 8.0 and 12.4 kcal/mol, respectively. These values are obviously smaller than those shown

in Table 3.3. By adding the thermal correction using the XMS-CASPT2/def2-SVP level

normal mode frequencies, the activation free energy (∆G‡
cal) of noPh was estimated to be

6.9 kcal/mol.

To compare our results with the experimentally determined nonradiative decay rate con-

stant, we estimated the activation free energy (∆G‡
exp) by employing Eyring’s equation82

(Table 3.4). The computed ∆G‡
cal of noPh of 6.9 kcal/mol was reasonable with the esti-

mated ∆G‡
exp of 4.1 kcal/mol. Of the silepins in this study, the value of ∆E‡ is qualitatively

consistent with ∆G‡
exp. Because ∆E‡ in this study lacks zero-point correction, thermal cor-

rection, and a solvation effect, the comparison of ∆E‡ with ∆G‡
exp may be problematic.

However, in the case of noPh, the value of ∆E‡ was comparable to that of ∆G‡
cal. Thus, we

concluded that the procedure in this section, which included XMS-CASPT2 level geometry

optimization, a computation of the potential energy curve, and estimation of the activation

energy, may be effective to treat the nonradiative decay of silepins.
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3.4 Conclusions

Of note, estimation of the rate constant requires a more accurate estimation than that in

our results. Our procedure may provide a reasonable estimation of the activation energy;

however, the error in estimated Gibbs free energy of 2.8 kcal/mol corresponds to a factor of

8.9 ×10−3 in the estimation of rate constant using Eyring’s equation at 298.15 K. This means

that our estimation of activation energy cannot provide a quantitative evaluation of the rate

constant. The inclusion of a solvation effect or employment of a larger basis set in quantum

chemical calculations are some of the possible improvements to achieve higher accuracy.

From our obtained results, we concluded that the main nonradiative decay pathway of

noPh, p-Ph, and m-Ph involves internal conversion via triggered by the twisting of the

central C-C bond and that the height of the activation barrier to reach the MECI point is

responsible for the differences in their fluorescence quantum yields. However, quantitative

estimation of the rate constant is beyond the scope of this procedure.

Table 3.4: Computed activation energies (∆E‡), computed activation free energy (∆G‡
cal) of

noPh, and estimated activation free energies (∆G‡
exp) in kcal/mol

noPh p-Ph m-Ph

∆E‡ 7.7 8.0 12.4

∆G‡
cal 6.9 — —

∆G‡
exp

a 4.1 5.7 6.8

a Values were estimated by applying Eyring’s equation to the experimentally determined

nonradiative decay rate constant of silepins,59 where a temperature of 298.15 K and a

transmission coefficient, κ, of 1.0 were assumed.

3.4 Conclusions

In this chapter, we presented a theoretical analysis of the nonradiative decay process of three

kinds of organic dyes, silepin derivatives noPh, p-Ph, and m-Ph, using recently introduced

MR wavefunction approaches, XMS-CASPT2 analytic gradients, and DMRG-XMS-CASPT2

methods. The use of the DMRG method allowed us to handle all valence π orbitals in the

active space. Comparisons of the results obtained with different electronic structure methods

showed that the choice of method may have an impact on the description of the nonradiative

decay triggered by the twisting of the central C-C bond.

With the (TD-)DFT calculations under the Tamm-Dancoff approximation, we found a

MECI point, where the central part of the stilbene skeleton lost its planarity. PECs connect-

ing the minimum of fluorescent state and MECI point showed an activation barrier in the S1

state. Although SR and MR methods gave similar PECs in the region near the fluorescent

state minimum, TD-DFT calculations could not reasonably describe the electronic state near

the activation barrier geometry in contrast to bt-PNO-STEOM-CCSD and DMRG-XMS-

CASPT2 calculations. In the region near the MECI point, only the MR method can handle
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the complicated electronic state, where S0 and S1 states have open-shell and closed-shell

characters, respectively. Consequently, we confirmed that geometry optimization of the TS

at the TD-DFT level was inadequate for estimation of the activation energy by single-point

calculations using higher-level methods and that our DMRG-XMS-CASPT2 calculation could

reasonably describe the entire PECs in this study.

We next compared the PECs of three kinds of silepins to confirm whether there was any

relationship between the computationally estimated activation energy and the experimentally

determined fluorescence quantum yield. We found that the silepin with the larger fluorescence

quantum yield gave a larger activation energy. In the case of m-Ph, whose π conjugation was

effectively extended, the stabilization of the fluorescent state resulted in its large activation

energy.

We then checked the effect of XMS-CASPT2 level geometry optimization of the TS on the

estimation of the activation energy. The TS geometry of noPh in the XMS-CASPT2 level

calculation showed an obvious difference from the activation barrier in LIIC based on DFT

level geometries. The activation energy of noPh was estimated to be 7.9 kcal/mol, which

was approximately half of the energy obtained with DFT level geometries. With the XMS-

CASPT2-based TS geometries of p-Ph and m-Ph, their activation energies were predicted

to similarly decrease. The activation free energy of noPh was computationally estimated to

be 6.9 kcal/mol, which was comparable to the activation free energy estimated by applying

Eyring’s equation to the experimentally determined rate constant of 4.1 kcal/mol. Thus,

our final procedure, which was composed of XMS-CASPT2 level geometry optimizations,

computation of PECs, and estimation of the activation energy, may be effective to treat

the nonradiative decay process of silepins. However, our approach cannot reproduce the

experimentally determined nonradiative decay rate constant very accurately in the sense

that even a small error in the predicted activation free energy, 2.8 kcal/mol, can affect the

rate constant by a factor of 8.9× 10−3.

From these results, we concluded that the main nonradiative decay pathway of noPh,

p-Ph and m-Ph is the internal conversion through the conical intersection triggered by

the twisting of the central C-C bond and that the height of the activation barrier to reach

the conical intersection point is responsible for the differences in their fluorescence quantum

yields. To reach this conclusion, energy profiles and geometry optimizations with the proper

level of quantum chemical methods played a critical role.
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Chapter 4

Theoretical insight into the Effect
of Phosphorus Oxygenation on the
Nonradiative Decays: A
Comparative Study on P-Bridged
Stilbene Analogues

4.1 Introduction

Phosphorus is one of the atoms introduced into the organic π-skeleton to develop func-

tionalized organic dye molecules. Yamaguchi et al. have synthesized phosphole-containing

π-conjugated molecules and use them for various applications.1–8 The molecules developed in-

clude the super-photostable dye molecules,3,6, 7 and the molecules with fluorescence at a near-

infrared (NIR) region.4,5, 8 Yasuda et al. systematically symthesized a series of dye molecules

with the thermally activated delayed fluorescence (TADF) containing a six-membered phos-

phacycle.9 Because of these characteristic properties, phosphorus-containing organic dye

molecules have attracted growing attentions.

One of the characteristic properties of the phosphorus atom is the functionalization arising

at the phosphorus atom upon changing its oxidation state.2,10 Phosphole has a lone pair

on each phosphorus atom, which can play a role in coordination to Lewis acids or metallic

atoms. The phosphorus atom of phosphole can be oxidized, such as oxygenation to phosphole-

oxide. The previous studies showed that such coordination or oxygenation lowers the LUMO

level.10 Actually, oxygenation of bis-phosphanyl-bridged stilbene (P-Ben in Fig. 4.1) to

bis-phosphoryl-bridged stilbene (PO-Ben in Fig. 4.1) caused a red-shift in absorption and

fluorescence by lowering the LUMO level.1 At the same time, it turned out to be that this

oxygenation drastically increased the fluorescence quantum yield (ΦF) from 0.07 to 0.98.

Later, Yamaguchi et al. synthesized the thiophene-fused analogues of the P-bridged stil-

benes.2 There, it turned out to be that the substitution of the stilbene skeleton in P-Ben

into the thiophene-fuzed skeleton to produce P-Thio′ in Fig. 4.1 also drastically increased



4.1 Introduction

its ΦF to 0.95. On the contrary, the oxigenation of P-Thio′ to produce PO-Thio′ turned

out to drastically decrease the ΦF from 0.95 to 0.04. Understanding the mechanism of the

changes in ΦF might give an insight into the fine-tuning of the phosphorus-containing π-

conjugated molecules; however, it remained unclear to my best knowledge. To make it clear,

understanding the excited-state dynamics should be essential.

Recently, various perturbative methods to predict the rate constants of electronic transi-

tions have been proposed and developed. Barone and Santoro et al. simulated the absorp-

tion and radiative spectra including the vibronic effect, using time-independent and time-

dependent formalisms.11–17 Shuai et al. developed a time-dependent approach, which is

called the thermal vibration correlation function (TVCF) formalism, to predict the rate con-

stants of the radiative decay, internal conversion, and intersystem crossings.18–21 To properly

handle intersystem crossings in molecules mediated by small spin-orbit coupling matrix el-

ements (SOCMEs), Shuai et al. employed a formalism based on 2nd-order perturbation

theory,21 which was employed in a recent study by Kim et al.22,23 As another route, Marian

et al. developed a method to use the 1st-order derivatives of SOCMEs in the framework

based on the Herzberg–Teller expansion.24–26 Recently, Neese et al. implemented some of

the methods as mentioned above in their ORCA program.27 These methods allow us to

predict the rate constants of the electronic transitions in an effective but black-box manner.

Nonetheless, there is a technological issue associated with the fact that, except FCClasses by

Santoro, the accessibility to the source codes of the programs is limited.

P-Ben 
(0.07)

PO-Ben 
(0.98)

P-Thió
(0.95)

PO-Thió
(0.04)

P-Thio PO-Thio

Fig. 4.1: Chemical structures of the molecules in this study. For experimentally obtained

molecules, their fluorescence quantum yields1,2 are shown in the parentheses. P-Thio and

PO-Thio are the model structures employed in this study.
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4.2 Computational details

In this study, I exploit the rate constant calculations to gain some insight into the effect of

oxygenation of the phosphorus atom in the P-bridged stilbene analogues on their nonradiative

decay. The molecules to be studied can be consulted in Fig. 4.1. To mitigate the computa-

tional cost, we computed the model molecules P-Thio and PO-Thio, which are derived on

the assumption that the TIPS moiety in the original molecules P-Thio′ and PO-Thio′ do

not affect the decay processes. For enabling the rate constant calculations, I wrote a Python

code based on the β version of FCClasses 3.0,28 which was kindly provided by Prof. Santoro.

After optimizing geometries of the S1 and several triplet states for the molecules of interest,

the rate constants for transitions from the S1 state were computed to explain the effect on the

nonradiative decays. The rate constants thus obtained turned out to be reasonable to explain

the increase in ΦF from P-Ben to PO-Ben and P-Thio; however, small ΦF of PO-Thio

cannot be explained reasonably. Then, by assuming energetic accessibility of PO-Thio to a

conical intersection (CI), the minimal energy CI (MECI) geometry was optimized using the

extended multireference quasi-degenerate perturbation theory (MR-QDPT). The computed

MECI geometry seemed to be stable enough to explain a high nonradiative decay rate con-

stant of PO-Thio. By employing both the perturbative method and MECI optimization, I

achieved a comparative study among the P-bridged stilbene analogues.

4.2 Computational details

All calculations were conducted treating each molecule as a single isolated system in the

gas phase. Geometry optimizations and Hessian calculations were performed at the standard

TD-PBE0/cc-pVDZ level of theory29–31 on the S0, S1 and several lowest-lying triplet states,

where T1 state was not computed due to the large energy gap relative to the S1 state. The

transition dipole moments, analytical derivatives of them, and nonadiabatic coupling elements

were computed at the minimum of the S1 state at the same computational level. The spin-

orbit coupling matrix elements (SOCMEs) were computed at the ZORA-TD-PBE0/ZORA-

def2-TZVP level of theory32–34 using the Breit-Pauli type Hamiltonian with the mean-field

approximation to the 2-electron term.35 For this SOC calculations, the SARC/J basis36 was

employed for the density fitting to the Coulomb term, and the chain-of-sphere exchange was

employed for the exchange term to accelerate the calculation (RIJCOSX).37 The derivatives

of the SOCMEs were estimated using the numerical differentiation method at the minimum

of the S1 state under the same computational condition. At the optimized geometries, the

similarity transformed equation-of-motion coupled-cluster model at the singles and doubles

with the approximation with the domain-based local pair natural orbital (DLPNO-STEOM-

CCSD)38–40 calculations were conducted with the cc-pVTZ basis set, where the density fitting

approximation to the RHF calculation at the RIJCOSX level with the universal def2/J basis

sets and that to the DLPNO-STEOM-CCSD calculation with the cc-pVTZ/C basis sets were

applied, to validate the estimations of the relative energies at the TD-PBE0 level. DLPNO-

STEOM-CCSD calculations were conducted using ORCA 5.0.1 program,27 while SOCMEs

were re-computed using ORCA 5.0.2 program to avoid a technical issue in version 5.0.1.
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4.2 Computational details

Other TD-DFT calculations were conducted using Gaussian 16 Rev. B01 program.41

The rate constants of electronic transitions were estimated using a perturbative method like

Fermi’s golden rule, where the time-dependent formalism was applied for numerical calcula-

tion, i.e. the correlation function formalism.15,20,21,24–26 Transition dipole moment for flu-

orescence calculations and SOCMEs for intersystem crossing rate constant calculations were

treated under the Franck–Condon (FC) and Herzberg–Teller (HT) approximation; whereas

the method including intermediate states for intersystem crossing21–23,26 was unused. The

total rate constant of the intersystem crossing from S1 to a triplet state was computed as

a sum of those to each spin-sublevel of the triplet states.26 The vibrational modes at the

initial and final states were employed under the relation of the Duschinsky rotation,42 where

the shift vector and Duschinsky matrix were computed in the redundant internal coordinate

space.13,16,43 The scaling factor to the vibrational frequencies was unused. The vibrational

state at the initial state was given by the Boltzmann distribution, where a temperature of

300 K was employed. The dephasing of the delta function in the Fermi’s golden rule was

expressed by a Gaussian function with its half-with-half-maximum (HWHM) of 50 cm−1.

The time range to compute the correlation function was set to be [0.05 fs, 10000.05 fs] with a

time step of 0.1 fs. The correlation function at the negative time was inserted by the complex

conjugate of the positive time region.

The rate constants of the fluorescent decay (kr), S1→S0 internal conversion (kic) and inter-

system crossing to each triplet state (kisc(T)) were computed for the four molecules, P-Ben,

PO-Ben, P-Thio, and PO-Thio. When the triplet state obtained is more unstable than

the S1 state by over 10.0 kcal/mol, it was not considered as the final state in the intersystem

crossing. The adiabatic energy was first estimated at the TD-PBE0 level; then, a correction

to it using the DLPNO-STEOM-CCSD theory was also considered when the predicted %

active character resulted in an acceptable ratio.

The rate constants were computed using my Python code, where the module for building

internal coordinates was imported from Psi4,44 and the matrix operations related to internal

coordinate space were coded in accordance with the code of FCClasses, which was kindly

provided by Prof. Santoro.28 The details of the methods to compute rate constants and their

implementations are presented in Chapter 2.

The geometries of the minimum of the S1 state and the minimal energy conical intersection

(MECI) of PO-Thio were determined by the optimization procedure. To handle complicated

electronic structures in the vicinity of the MECI geometry, we used the extended multistate

complete-active-space second-order perturbation theory (XMS-CASPT2),45 where all of the

valence π-orbitals in the thiophene-fused skeleton were included in the active space, corre-

sponding to the 14 electrons in the 12 orbitals, i.e. (14e,12o). The active space of PO-Thio

was depicted in Fig. 4.2. In the geometry optimizations, three electronic states were com-

puted by the state-averaged (SA-) CASSCF scheme in these active spaces. For these electronic

states, the perturbative correction was considered in the so-called SS-SR contraction scheme,

where an imaginary level-shift46,47 at 0.3 Eh was employed whereas the IPEA shift48 was

unused. According to the original method,45 the zeroth-order Hamiltonian for the pertur-
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bative correction was constructed using the state-averaged density. In the MECI geometry

optimization, the analytical interstate coupling47,49 was employed. To avoid numerical in-

stability in geometry optimization, the threshold for the overlap of the internally contracted

basis was set to be 1.0 × 10−7.50 These geometry optimizations at the XMS-CASPT2 level

were conducted using the QSimulate-QM program.51

After obtaining the minimum of the S1 state and MECI geometries, a set of the linearly in-

terpolated internal coordinates (LIIC) between them was prepared to compute the potential

energy curves (PECs) from single-point calculations on them. For the LIIC geometries, the

XMS-CASPT2/cc-pVDZ level calculations were conducted using orz program. The active

space employed was the same as the geometry optimization using QSimulate-QM. I conducted

3SA- and 5SA-XMS-CASPT2 calculations at each geometry, where the 1st-order wavefunc-

tions were expanded in the MS-MR contraction scheme. The activation energy to reach the

MECI geometry was estimated using the computed PECs. The geometry optimization of the

transition state was not conducted because the highest energy at the S1 state was obtained

at the MECI geometry.

Fig. 4.2: The active orbitals in the XMS-CASPT2 calculations for PO-Thio at the optimized

S1 state geometry at the XMS-CASPT2 level. 14 electrons occupy these 12 orbitals (14e,12o).

4.3 Results and discussion

To discuss the effect of oxygenation of the phosphorus atom in the P-bridged stilbene

analogues on their nonradiative decay, first, the absorption and fluorescence energies were

compared with the experimental data to validate the level of the TD-DFT calculations in this

study. Then, my prediction of the rate constants of the transition in P-Ben, PO-Ben, P-
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Thio, and PO-Thio were presented to check whether or not it reproduced the experimental

observation related to ΦF in them. Using these computational results, the effect of the

oxygenation of the phosphorus atom was analyzed using the energy levels of the Kohn-Sham

orbitals. Finally, a discussion about the decay via CI in PO-Thio was presented.

4.3.1 Absorption and Fluorescence Energies

To check the validity of the computational methods employed, I compared the computed

vertical absorption and fluorescence energies and resulting Stokes-shifts with experimentally

obtained ones in Table 4.1. I estimated the energies at the TD-PBE0 and DLPNO-STEOM-

CCSD level using the geometries optimized at the TD-PBE0 level. The TD-PBE0 calculations

well reproduced both the absorption and fluorescence energies with a maximum absolute

error of 0.16 eV. The single-point calculations at the DLPNO-STEOM-CCSD levels slightly

overestimated the energies compared to the TD-PBE0 level predictions. Although both of

the two computed results overestimated the Stokes-shift, it seems that the predicted PES at

the S1 state around the minimum was well described at these computational levels.

Table 4.1: Comparison of the computationally estimated energies of absorption, fluorescence

and Stokes-shift with experimentally obtained ones in eV unit

Dye PBE0a STEOMb Exp.c

Abs. Ems. Shift Abs. Ems. Shift Abs. Ems. Shift

P-Ben 3.59 2.92 -0.67 3.76 3.07 -0.70 3.53 2.99 -0.54

PO-Ben 3.20 2.42 -0.78 3.39 2.58 -0.80 3.14 2.58 -0.56

P-Thio 3.12 2.45 -0.66 3.27 2.57 -0.70 2.95 2.40 -0.55

PO-Thio 2.66 1.89 -0.77 2.85 2.03 -0.82 2.52 2.03 -0.49

a Energies and geometries at the TD-PBE0/cc-pVDZ level
b Geometries at the TD-PBE0/cc-pVDZ level and energies at the

DLPNO-STEOM-CCSD/cc-pVTZ level
c Taken from Ref. 1 and 2

4.3.2 P-Ben

The optimized geometries were obtained at the S1 state and two triplet states. The natural

transition orbitals (NTOs)52 mainly contributing to the states of interest for the optimized

geometries were depicted in Fig. 4.3. The S1 state was well characterized as the π-π∗ transi-

tion in the stilbene skeleton, which was assigned to be the HOMO-LUMO transition relative

to the S0 state. I obtained two triplet state geometries close in energy to the S1 state; the

one is expressed by the n(P)-π∗ transition, denoted as T(n-π∗), and the other is expressed

by the π-π∗ transition in the side phenyl ring, denoted as T(Ph-Ph). The relative energies

of the T(n-π∗) and T(Ph-Ph) states against the S1 state were estimated to be -7.1 and -2.1
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∆E 0.0 -7.1 -2.1

0.96 e-0.99 e- 0.98 e-

S1 T(n-π*) T(Ph-Ph)

Fig. 4.3: The natural transition orbitals (NTOs) of P-Ben at each optimized geometry. The

pictures in the higher line are the lowest unoccupied ones (LUNTO), while those in the

lower line are the highest occupied ones (HONTO). The numbers between each HONTO and

LUNTO represent their eigenvalues. The relative energies against the minimum of the S1

state at the TD-PBE0 level are given below each HONTO.

kcal/mol, respectively at the TD-PBE0 level, while they were estimated to be -7.0 and -5.3

kcal/mol, respectively, at the STEOM level. Because the rate constant of the nonradiative

transition tends to be large when the energy gap is small, I found it necessary to compute

the rate constant of the intersystem crossing to these triplet states.

I computed the rate constants of the fluorescent decay (kr), S1→S0 internal conversion (kic)

and intersystem crossing to the T(n-π∗) state (kisc(nπ)) and to the T(Ph-Ph) state (kisc(PP)).

Then, the nonradiative decay rate constant was estimated by knr = kic + kisc(nπ)+ kisc(PP).

The estimated rate constants were compared with the experimentally estimated values1 in

Table 4.2. By assuming the lifetime of the S1 state is 1.4 ns and the fluorescence quantum

yield is 0.07, respectively, kr and knr were estimated to be 5.0 × 107 and 6.6 × 108 s−1,

respectively. Note that this estimation was not given in Ref. 1, probably to avoid the

treatment of the additional lifetime of 9.8 ns given there.

The computed rate constants and resulting fluorescence quantum yields were collected in

Table 4.2. With the TD-PBE0 level calculations, the radiative decay rate was estimated to

be 7.4 × 107 s−1, which is in good agreement with that assumed using experimental data.

Here, the major component is attributed to the FC term; the radiative decay rate constant

at the FC level was estimated to be 6.7 × 107 s−1 according to the fact that this transition

is dipole-allowed. The internal conversion rate constant was estimated to be 6.1 × 103 s−1;

it is much lower than the radiative one due to the large adiabatic energy, 3.26 eV.

The intersestem crossing rate constants kisc(nπ) and kisc(PP) were predicted to be 8.9×107
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Table 4.2: Comparison of the computationally estimated rate constants and fluorescence

quantum yield with experimentally estimated ones of P-Ben in s−1 unit.

Cal.(PBE0)a Cal.(STEOM)b Exp.c

kr 7.4× 107 9.3× 107 5.0× 107

kic 6.1× 103 9.0× 102 —

kisc(nπ) 8.9× 107 8.7× 107 —

kisc(PP) 1.6× 108 4.8× 108 —

knr 2.5× 108 5.6× 108 6.6× 108

ΦF 0.23 0.14 0.07

a Energies, geometries and Hessians at the TD-PBE0/cc-pVDZ level were employed.
b Geometries and Hessians at the TD-PBE0/cc-pVDZ level and energies at the

DLPNO-STEOM-CCSD/cc-pVTZ level were employed.
c Estimated by assuming the lifetime of the S1 state is 1.4 ns and the fluorescence quantum

yield is 0.07, which were taken from Ref. 1. The additional lifetime of 9.8 ns given there

was neglected.

and 1.6 × 108 s−1, respectively. The major components of these intersystem crossing rate

constants both arise from the FC term, in which their FC contributions were estimated to

be 8.2 × 107 and 8.6 × 107 s−1, respectively. The averaged SOC, which was computed by

||SOCMEs||/
√
3, between the T(n-π∗) and S1 states and between the T(Ph-Ph) and S1 states

were computed to be 1.77 and 1.11 cm−1, respectively, at the minimum of the S1 state. These

large SOCs indicate that these intersystem crossings are dominantly driven by the FC term.

Based on these rate constants, the fluorescence quantum yield was estimated to be 0.23.

Although the estimated value was larger than the experimentally obtained one, the present

computations qualitatively reproduced the low ΦF of P-Ben.

The correction of the relative energies at the DLPNO-STEOM-CCSD level slightly changed

the rate constants. The S1-S0 adiabatic energy was estimated to be 3.48 eV, which was slightly

larger than 3.26 eV at the TD-PBE0 level. Because the prefactor of the fluorescence spectrum

contains ω3 in its numerator, the integration of the enhanced fluorescence spectrum resulted

in the slightly larger radiative decay rate constant. On the contrary, this increase of the

adiabatic energy decreased the internal conversion rate constant. Because the S1-T(n-π∗)

adiabatic energy at the STEOM level was comparable to that at the TD-PBE0 level, the

intersystem crossing rate constant was also comparable. The S1-T(Ph-Ph) adiabatic energy

at the STEOM was larger than that at the TD-PBE0 level, resulting in the larger rate

constant. It is because the reorganization energy was large with its value at 0.67 eV; note

that the energy gap low is true for the transitions with small displacement. Based on these

rate constants, the fluorescence quantum yield was estimated to be 0.14. These results reflect

that the rate constants are sensitive to the estimation of the adiabatic energies.

To sum up, my computations qualitatively reproduced the experimental observation that
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the fluorescence quantum yield is much lower than unity. That should result from the efficient

intersystem crossings from the S1 state because the two triplet states are energetically close

to the S1 state and the SOCMEs between the triplet and S1 states are large enough.

4.3.3 PO-Ben

∆E 0.0 +6.3

0.40 e-1.00 e- 0.55 e-

S1 T(π-π*)

+10.4

T(n-π*)

+12.0

T(n-π*)

0.75 e- 0.97 e-

T(Ph-Ph)

+9.3

0.95 e-

Fig. 4.4: The natural transition orbitals (NTOs) at each optimized geometry. The pictures

in the higher line are the unoccupied ones while those in the lower line are the occupied ones.

The numbers between each occupied and unoccupied NTOs represent their eigenvalues. The

relative energies against the minimum of the S1 state are given below occupied NTOs.

The geometries at the S1 state and four triplet states were optimized. The NTOs which

mainly contribute to the states of interest at each geometry were depicted in Fig. 4.4. The

S1 state was well characterized as the π-π∗ transition in the stilbene skeleton, which was

assigned to be the HOMO-LUMO transition from the S0 state. On the contrary to the P-

Ben, all of the triplet states obtained were more unstable than the S1 state. A triplet state

was 6.3 kcal/mol more unstable than the S1 state. Because this triplet state was expressed

by two π-π∗ transitions, this state was denoted as T(π-π∗). As is found in P-Ben, a triplet

state with the excitation in the phenyl ring was obtained, which was denoted as T(Ph-Ph).

However, this state was turned out to be 9.3 kcal/mol more unstable than the S1 state.

The other triplet states were expressed by the n(O)-π∗ transitions. Because these n-π∗ type

triplet states were more unstable than the S1 state by over 10.0 kcal/mol, only the T(π-π∗)

and T(Ph-Ph) states were included for intersystem crossing rate constant calculation; the

resulting rate constant were denoted as kisc(ππ) and kisc(PP), respectively.

I computed the rate constants of the fluorescent decay (kr), S1 →S0 internal conversion

(kic) and intersystem crossings (kisc(ππ) and kisc(PP)). Then, the nonradiative decay rate

constant was estimated by knr = kic+kisc(ππ)+kisc(PP). The estimated rate constants were

compared with the experimentally estimated values1 in Table 4.3.

The radiative decay rate constant was estimated to be 3.9 × 107 s−1, which was in good
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Table 4.3: Comparison of the computationally estimated rate constants with experimentally

estimated ones of PO-Ben in s−1 unit.

Cal.(PBE0)a Cal.(STEOM)b Exp.c

kr 3.9× 107 5.2× 107 6.2× 107

kic 1.5× 106 2.3× 105 —

kisc(ππ) 1.4× 105 3.7× 106 —

kisc(PP) 1.0× 106 —d —

knr 2.7× 106 — 1.3× 106

ΦF 0.94 — 0.98

a Energies, geometries and Hessians at the TD-PBE0/cc-pVDZ level were employed.
b Geometries and Hessians at the TD-PBE0/cc-pVDZ level and energies at the

DLPNO-STEOM-CCSD/cc-pVTZ level were employed.
c Taken from Ref. 1 d Failed to compute DLPNO-STEOM-CCSD result with reasonable %

active character

agreement with the experimentally obtained value at 6.2 × 107 s−1. Again, the major com-

ponent was the FC term; radiative decay rate constant at the FC level was estimated to be

3.4× 107 s−1 because this transition is dipole-allowed. The internal conversion rate constant

was estimated to be 1.5×106 s−1; this value was sensitive to the Duschinsky rotation because

it was estimated to be 2.4× 104 s−1 without including the Duschinsky rotation. Anyway, the

large S1-S0 adiabatic energy at 2.81 eV partially made this decay slow.

The intersystem crossing rate constants kisc(ππ) and kisc(PP) were estimated to be 1.4×105

s−1 and 1.0× 106 s−1, respectively. The major component of the predicted kisc(ππ) was the

HT and FC/HT terms, where the FC term was estimated to be 4.9×10−3 s−1. This was due

to the negligible SOC values; the averaged SOC was estimated to be 2.46×10−5 cm−1 at the

minimum of the S1 state. The major component of the predicted kisc(PP) was also the HT

and FC/HT terms, where the FC term was estimated to be 6.7 × 104 s−1 despite the large

SOCMEs; the averaged SOC between the T(Ph-Ph) and S1 states was estimated to be 2.76

cm−1. These results indicated that expansion of SOCMEs at the FCHT level was required

to predict the intersystem crossing rate constants in PO-Ben.

Based on these rate constants, the ΦF of PO-Ben was predicted to be 0.94, which was in

good agreement with the experimentally obtained value at 0.98. This high value comes from

small nonradiative decay rate constants, which is partially from the suppressed intersystem

crossing due to the higher energy level of the triplet states than the S1 state and lack of the

lone pair of phosphorus atoms to produce the n-π∗ type triplet states.

The correction to the adiabatic energy at the STEOM-DLPNO-CCSD level was conducted;

however, I could not obtain the computational results with a reasonable % active character

at the T(Ph-Ph) geometry. For the other rate states, the energy corrections slightly affected

the rate constants.
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4.3.4 P-Thio

∆E 0.0 +5.9

0.43 e-1.00 e- 0.56 e-

S1 T(π-π*)

+0.66 +8.1

1.00 e-

T(n-π*)

0.96 e-

T(Ph-Ph)

Fig. 4.5: The natural transition orbitals (NTOs) of P-Thio at the optimized geometries.

The pictures in the higher line are the unoccupied ones while those in the lower line are

the occupied ones. The numbers between each occupied and unoccupied NTOs represent

their eigenvalues. The relative energies against the minimum of the S1 state are given below

occupied NTOs.

The geometries at the S1 state and three triplet states were optimized. The NTOs which

mainly contribute to the states of interest at each geometry were depicted in Fig. 4.5. Again,

the S1 state was well characterized as the π-π∗ transition, which was assigned to be the

HOMO-LUMO transition from the S0 state. The triplet states obtained were characterized by

the n-π∗ transition, π-π∗ transitions at the main skeleton, and π-π∗ transitions at the phenyl

ring, respectively; hence, they were denoted as T(n-π∗), T(π-π∗), and T(Ph-Ph), respectively.

On the contrary to P-Ben, all of the triplet states optimized were more unstable than the S1

state. Because the destabilization energy against the S1 state was less than 10 kcal/mol, all

of the three triplet states were included in the intersystem crossing rate constant calculations.

I computed the rate constants of the fluorescent decay (kr), S1→S0 internal conversion (kic)

and intersystem crossing to the T(n-π∗) state (kisc(nπ)), that to the T(π-π∗) state (kisc(ππ)),

and that to the T(Ph-Ph) state (kisc(PP)). Then, the nonradiative decay rate constant was

estimated by knr = kic + kisc(nπ) + kisc(ππ) + kisc(PP). The estimated rate constants were

compared with the experimentally estimated values of the original molecule2 in Table 4.4.

The radiative decay rate constant was estimated to be 5.3 × 107 s−1, which was in good

agreement with the experimentally obtained value at 1.3 × 108 s−1. Again, the major com-

ponent was the FC term; radiative decay rate constant at the FC level was estimated to be

4.3× 107 s−1 because this transition is dipole-allowed. The internal conversion rate constant

was estimated to be 1.4× 105 s−1, which was much lower than that of the radiative decay.

The intersestem crossing rate constants kisc(nπ), kisc(ππ), and kisc(PP) were predicted to

be 2.8 × 105, 1.1 × 106, and 7.2 × 105 s−1, respectively. The major component of kisc(nπ)
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Table 4.4: Comparison of the computationally estimated rate constants with experimentally

estimated ones of P-Thio in s−1 unit.

Cal.(PBE0)a Cal.(STEOM)b Exp.c

kr 5.3× 107 6.9× 107 1.3× 108

kic 1.4× 105 2.1× 105 —

kisc(nπ) 2.8× 105 4.3× 106 —

kisc(ππ) 1.1× 106 —d —

kisc(PP) 7.2× 105 1.9× 107 —

knr 2.2× 106 — 6.7× 106

ΦF 0.96 — 0.95

a Energies, geometries and Hessians at the TD-PBE0/cc-pVDZ level were employed.
b Geometries and Hessians at the TD-PBE0/cc-pVDZ level and energies at the

DLPNO-STEOM-CCSD/cc-pVTZ level were employed.
c Taken from Ref. 2
d Failed to compute DLPNO-STEOM-CCSD result with reasonable % active character

and kisc(PP) were the FC term, whereas FC contribution of kisc(ππ) was negligible; FC

contributions of kisc(nπ), kisc(ππ), and kisc(PP) were predicted to be 2.0 × 105, 1.9 × 10−3

and 4.8×105 s−1, respectively. The averaged SOC between the T(n-π∗) and S1 states and that

between the T(Ph-Ph) and S1 states were estimated to be 3.57 and 5.54 cm−1 respectively, at

the minimum of the S1 state. Because of the large SOCMEs, the FC term became dominant

in these intersystem crossings. Although the norm of these SOCMEs was larger than those

of P-Ben, the intersystem crossing rate constants were smaller than those of P-Ben. This

may come from the fact that the triplet states were more unstable than the S1 state in the

case of P-Thio. On the other hand, the averaged SOC between the T(ππ∗) and S1 states

was predicted to be 3.36× 10−5 cm−1, resulting in the negligible FC contribution.

Based on these rate constants, the ΦF of P-Thio was predicted to be 0.96, which was quite

in good agreement with the experimentally obtained value at 0.95. This high value comes

from the slower intersystem crossings to the more unstable triplet states despite the larger

SOCMEs than those of P-Ben.

I tried to conduct the single-point calculations at the DLPNO-STEOM-CCSD level; how-

ever, I failed to obtain the energy of the T(π-π∗) state with a reasonable % active character.

Although the correction increased the rate constant of the radiative decay and other inter-

system crossings, the main decay was still predicted to be the radiative decay.

4.3.5 PO-Thio

The geometries at the S1 state and three triplet states were optimized; however, all of the

three triplet states were located at more than 10 kcal/mol higher energy levels. Hence, I
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∆E 0.0 +12.4
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S1 T(π-π*)

+11.6

1.00 e-

T(n-π*)

+21.0

0.95 e-

T(Ph-Ph)

Fig. 4.6: The natural transition orbitals (NTOs) of PO-Thio at the optimized geometries.

The pictures in the higher line are the unoccupied ones while those in the lower line are

the occupied ones. The numbers between each occupied and unoccupied NTOs represent

their eigenvalues. The relative energies against the minimum of the S1 state are given below

occupied NTOs.

concluded that transition from S1 to triplet states do not occur efficiently.

Table 4.5: Comparison of the computationally estimated rate constants with experimentally

estimated ones of PO-Thio in s−1 unit.

Cal.(PBE0)a Cal.(STEOM)b Exp.c

kr 2.1× 107 3.0× 107 4.0× 107

kic 1.2× 108 1.6× 107 —

knr 1.2× 108 1.6× 107 9.6× 108

ΦF 0.14 0.65 0.04

a Energies, geometries and Hessians at the TD-PBE0/cc-pVDZ level were employed.
b Geometries and Hessians at the TD-PBE0/cc-pVDZ level and energies at the

DLPNO-STEOM-CCSD/cc-pVTZ level were employed.
c Taken from Ref. 2

I computed the rate constants of the fluorescent decay (kr), and S1→S0 internal conversion

(kic). Then, the nonradiative decay rate constant was assumed to be the same as kic. The

estimated rate constants were compared with the experimentally estimated values of the

original molecule2 in Table 4.5, assuming that the TIPS moiety do not affect the rate

constants.

The radiative decay rate constant was estimated to be 2.1 × 107 s−1, which was in good

agreement with the experimentally obtained value at 4.0 × 107 s−1. Again, the major com-

ponent was the FC term; radiative decay rate constant at the FC level was estimated to be
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2.0× 107 s−1 because this transition is dipole-allowed. The internal conversion rate constant

was estimated to be 1.2 × 108 s−1, which was higher than the predicted kr. Based on these

rate constants, the ΦF was predicted to be 0.14. This estimation may qualitatively repro-

duce the experimental observation that the ΦF of PO-Thio was much smaller than unity.

However, this estimation was sensitive to the Duschinsky rotation; kic was predicted to be

9.7× 106 s−1 without the Duschinsky rotation.

The correction to the S1-S0 adiabatic energy was considered at the DLPNO-STEOM-CCSD

level. The adiabatic energy was predicted to be 2.54 eV at this level, which was larger than

2.28 eV at the TD-PBE0 level. This increase in the adiabatic energy slightly increased the

predicted kr, while it decreased the kic by a factor of 0.13. As a result, the ΦF was predicted

to be 0.65, which was considerably different from the experimental observation. These results

may indicate that the small ΦF of PO-Thio may be explained by the high kic; however, the

kic was so sensitive to the model that this computation might be insufficient.

4.3.6 Comparison among the molecules
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Fig. 4.7: The energy levels of the specific Kohn–Sham orbitals of the molecules in this study.

The relative energy levels against the π∗ orbital in the phenyl ring at the side of the main

skeleton were depicted in eV unit for each molecule. Values were taken from the PBE0/cc-

pVDZ level calculation at the optimized S1 state geometry. The level of the lone pair of

phosphorus atoms was not shown for PO-Ben nor PO-Thio because they do not have any

lone pair on the phosphorus atoms.

The computed rate constants indicated that the oxygenation of the phosphorus atoms and

the substitution by thiophene rings both increased the ΦF by decreasing the rate of the

intersystem crossing. This decrease was seemingly produced by the loss of the lone pair by

oxygenation and destabilized triplet states against the S1 state.

To analyze the origin of the relative destabilization of the triplet states, the energy levels

of the Kohn–Sham orbitals related to the triplet states discussed at the minimum of the S1

state were collected in Fig. 4.7, where the relative energies against the π∗ orbital in the side
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phenyl rings were shown by assuming that this MO level was similar among the P-bridged

stilbene analogues. The oxygenation of the P-Ben to PO-Ben effectively stabilized the

LUMO energy, as discussed in previous studies.1,10 This stabilization of the LUMO reduced

the HOMO-LUMO gap from 3.53 to 3.16 eV, resulting in the stabilization of the S1 state.

On the other hand, the energy level of the π and π∗ orbitals of the phenyl ring in PO-Ben

were similar to those in P-Ben, resulting in a similar energy level of the T(Ph-Ph) state.

Therefore, the T(Ph-Ph) state of PO-Ben became more unstable against the S1 state than

that of P-Ben did.

The effect of the substitution by thiophene rings can be discussed in a similar manner.

P-Thio as well as P-Ben has a lone pair on the phosphorus atoms, and the energy level of

the lone pair was comparable. Moreover, the levels of the π and π∗ orbitals of the phenyl

ring, and LUMO were comparable. On the contrary, the level of HOMO in P-Thio was

more unstable than P-Ben, Hence, the HOMO-LUMO gap decreased from 3.53 to 3.0 eV,

resulting in the relative stabilization of the S1 state in P-Thio, Due to the stabilization of

the S1 state, the triplet states of P-Thio became more unstable against the S1 state than

that of P-Ben did.

Because both of the oxygenation of the phosphorus atom and substitution by the thiophene-

fused skeleton stabilized the S1 state against the triplet states, the triplet states of PO-Thio

became more unstabler against the S1 state than PO-Ben or P-Thio was. From the energy

levels of the molecular orbitals, the relative energies of the triplet states against the S1 state

were explained among the four P-bridged stilbene analogues.

4.3.7 Decay of PO-Thio through CI

Because the conducted rate constant calculations did not include the thermally activated

decay through the CI, I searched the MECI geometry of the PO-Thio at the 3SA-XMS-

CASPT2 level. The optimized geometries of the minimum of the S1 state (S1min) and S0-S1

MECI were compared in Fig. 4.8, and some of the characteristic changes in the internal

coordinates were collected in Table 4.6. It turned out to be that PO-Thio had an S1-S0

MECI which was 3.5 kcal/mol more unstable than the S1min at the XMS-CASPT2 level

employed. While the thiophene-fused skeleton was almost planar at the S1min, where the

dihedral angle of C1-C13-C14-C10 was -180.0◦, that at the MECI geometry was far from

planar, where the dihedral was -117.3◦. Moreover, the bond length of the C13-C14 became

longer from 1.413 to 1.565 Å, i.e. elongation of 0.15 Å. Due to these large changes in internal

coordinates, this MECI geometry seemed to be characterized as the twisting of the polyene

chain assuming that a thiophene ring can be seen as a bridged diene.

To discuss the rate constant of the decay through this MECI using the Eyring’s equation,53

the activation energy to reach it should be estimated. To obtain an upper limit of the

activation energy, the PECs along the LIIC between the S1min and MECI geometry were

computed at the 3SA-XMS-CASPT2 and 5SA-XMS-CASPT2 levels. The PECs plotted as a

function of the dihedral C1-C13-C14-C10 were shown in Fig. 4.9. The PECs at the 3SA-XMS-
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Fig. 4.8: (a)The XMS-CASPT2-level optimized S1 and S1-S0 MECI geometries and (b)atom

labeling of PO-Thio. The pictures on the upper and lower lines are the top and side views

of the geometries. The side view was depicted so that atom 13 overlaps 14. The relative

energies at the S1 state were shown below the pictures. Atom labelings were shown only for

the thiophene-fused skeleton, where the labels for hydrogen atoms were omitted.

Table 4.6: Some of the characteristic changes in internal coordinates from the minimum of

the S1 state (S1min) to the MECI geometry.

Bond Dihedral angle

S1min MECI ∆ / Å S1min MECI ∆ / deg

B(1-39) 1.702 1.748 +0.045 D(1,13,14,10) -180.0 -117.3 +62.7

B(2-15) 1.813 1.857 +0.044 D(7,10,14,13) -0.8 -24.3 -23.5

B(3-4) 1.367 1.398 +0.031 D(14,13,7,6) 177.9 132.9 -44.9

B(7-10) 1.433 1.472 +0.039 D(13,14,2,15) -177.9 172.9 -9.3

B(10-40) 1.702 1.754 +0.051

B(13-14) 1.413 1.565 +0.153

CASPT2 level were similar to those at the 5SA-XMS-CASPT2 level. While the contraction

scheme was changed from the SS-SR to MS-MR, the energy gaps at the MECI geometry

were similarly small. These results indicated that the existence of the MECI geometry in this

region was not unique to the method employed in the geometry optimization.

The PECs gave the highest energy at the S1 state in LIIC at the MECI geometry, suggesting

that there was no rate-determining transition state in higher energy level than the MECI.

The S1 state at the MECI geometry were predicted to be 4.5 and 5.6 kcal/mol more unstable

than the S1min at the 3SA and 5SA-XMS-CASPT2 levels, respectively; these values were

comparable to the one obtained in the geometry optimization at 3.6 kcal/mol. These relative
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Fig. 4.9: The PECs of the S0 and S1 states along the LIIC connecting the S1min and MECI

geometries. The energies were computed at the 3SA- (red) and 5SA-(blue) XMS-CASPT2/cc-

pVDZ level. The left figure showed the whole PECs while the right one focused on the S1

PECs.

energies can be regarded as the activation energy to reach MECI geometry. Suppose that

PO-Thio must move to the S0 state when it reaches the MECI geometry, the knr at 9.6×108

s−1 implies the activation free energy at 5.2 kcal/mol. Although the activation free energy

cannot be estimated from PECs due to the difficulty in obtaining the free energy at the MECI

geometry, my prediction of the activation energy seemingly suggested that the decay through

this MECI be energetically possible.

Note that both of the S1 PECs in Fig. 4.9 showed small barrieres. These barriers possibly

come from the use of the LIIC. The relaxed scan along this dihedral angle may remove these

small barriers.

Then, the electronic states at the S1min and the CI region were analyzed to gain insight

into the character of the CI. To clearly distinguish the ground and excited states at CI region,

a geometry near the MECI in the LIIC (n-MECI), where the dihedral 1-13-14-10 was -120.3◦,

was used for the analysis of the electronic state instead of the MECI geometry itself.

The XMS-CASPT2 rotation matrix indicated that the XMS-CASPT2 S0 and S1 states at

the S1min were mainly composed of the CASSCF S0 and S2 states, respectively, while those at

the n-MECI geometry were mainly composed of the CASSCF S0 and S1 states, respectively.

The S0 and S2 CASSCF natural orbitals at the S1min were shown in Fig. 4.10 and 4.11,

respectively, while the S0 and S1 CASSCF natural orbitals at the n-MECI were shown in

Fig. 4.12 and 4.13, respectively. The occupation numbers of the natural orbitals at the

S1min indicated that the S0 state was well described by the closed-shell single determinant,

where the occupation numbers are in a range from 0 to 0.25 or that from 1.75 to 2.0, and the

S2 state was well characterized as the HOMO-LUMO transition from the S0 state. On the

contrary, at the n-MECI geometry, the S0 state was the open-shell singlet state while the S1

state was almost the closed-shell. The singly occupied S0 natural orbitals are the bonding

and anti-bonding orbitals of the central C-C bond, suggesting the decreased bond order of
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1.899 1.925 1.766 1.940

1.944 1.993 1.993 0.066

0.080 0.102 0.058 0.234

Fig. 4.10: The S0 CASSCF natural orbitals and their occupation numbers at the S1min. The

orbitals were obtained by the 3SA-CASSCF calculation.

1.849 1.910 1.039 1.933

1.953 1.990 1.985 0.085

0.122 0.070 0.057 1.008

Fig. 4.11: The S2 CASSCF natural orbitals and their occupation numbers at the S1min. The

orbitals were obtained by the 3SA-CASSCF calculation.
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1.867 1.929 1.004 1.901

1.938 1.995 1.994 0.075

0.130 0.102 0.066 0.997

Fig. 4.12: The S0 CASSCF natural orbitals and their occupation numbers at the n-MECI

geometry. The orbitals were obtained by the 3SA-CASSCF calculation.

1.867 1.932 1.787 1.918

1.944 1.991 1.989 0.075

0.083 0.141 0.054 0.218

Fig. 4.13: The S1 CASSCF natural orbitals and their occupation numbers at the n-MECI

geometry. The orbitals were obtained by the 3SA-CASSCF calculation.
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this bond. The occupation numbers of these orbitals were clearly different in the CASSCF S1

state; there a closed-shell electronic state was predicted. Note that the excitation of the lone

pairs of the sulfur atoms slightly contributed to the electronic states at both of the S1min

and n-MECI geometries.

S1min n-MECI

S0
(73%)

S2
(60%)

S0
(72%)

S1
(65%)

(a) (b)

SOMO

Fig. 4.14: (a)The major determinants in the CASSCF states at the S1min and n-MECI

geometries and (b) SOMO and chemical structure of pentadienyl radical. (a)The weight of

the determinant was shown in the parenthesis. The corresponding quasi-canonical orbitals

obtained by the 3SA-CASSCF calculations were depicted. (b) SOMO of the pentadienyl

radical was computed at the UPBE0/cc-pVDZ level using the optimized geometry.

To qualitatively understand the character of the CI, the major determinant in the CASSCF

states and corresponding quasi-canonical orbitals were depicted in Fig. 4.14(a). While the

quasi-canonical HOMO and LUMO at the S1min were delocalized around the thiophene-fused

skeleton, those at the n-MECI geometry were localized at the right or left side of the skeleton.

In addition, the HOMO and LUMO at the n-MECI geometry were quite similar to the SOMO

of the pentadienyl radical in Fig. 4.14(b). This implied that at the n-MECI geometry the

S0 state was composed of two pentadienyl radicals while the S1 state was separated into

the pentadienyl cation and its anion, forming a zwitter-ionic state. This separation of the

quasi-canonical HOMO and LUMO on the thiophene-fuzed skeleton was considered to be one

of the elements to give a CI, as discussed by Nakai et al.54

Moreover, the pentadienyl anion at the right side of the skeleton was seemingly stabilized by

the electron-withdrawing phosphole-oxide group. Actually, 3SA-XMS-CASPT2 calculation

suggested that the removal of the two O atoms at the n-MECI geometry increased the S0-

S1 gap from 0.19 to 0.93 eV, implying the stabilization of the zwitter-ionic S1 state by the

phosphole-oxide groups. This stabilization of the S1 state might be one of the reasons to give

a relatively small energy to reach the MECI point.

101



4.4 Conclusions

4.4 Conclusions

In this chapter, a comparative study of the decays from the S1 state in the P-bridged

stilbene analogues was presented. I computed the rate constants for the transitions from

the S1 state in the P-bridged stilbene analogues using the perturbative approach to gain

some insight into the effect of the oxygenation of the phosphorus atom on the photophysical

properties. The TD-PBE0 calculations reasonably estimated the absorption and fluorescence

energies of the P-Ben, PO-Ben, P-Thio, and PO-Thio molecules. The fluorescence of

these molecules was characterized as the dipole-allowed LUMO-HOMO transition. My calcu-

lations reasonably reproduced the radiative decay rate constants, where the Franck–Condon

terms were dominant.

My calculations qualitatively reproduced the low fluorescence quantum yield of P-Ben;

there the intersystem crossings to the two triplet states, which were characterized by the

n(P)-π∗ and π(Ph)-π∗(Ph) transitions, respectively, were predicted to be effective. These

triplet states were predicted to be stabler than the S1 state in the case of P-Ben.

By oxidizing the phosphorus atom to produce PO-Ben, the lone pair to reach the n-π∗

type triplet states vanished, resulting in the suppression of the intersystem crossing to that

state. At the same time, another triplet state with an effective intersystem crossing in P-Ben

became more unstable than the S1 state, resulting in the suppressed intersystem crossing.

Hence, the experimentally obtained high fluorescence quantum yield of PO-Ben can be

explained by the suppression of the intersystem crossings which were effective in P-Ben.

The previous experimental study showed that the substitution of the stilbene skeleton in

P-Ben into the thiophene-fuzed skeleton to produce P-Thio raised the fluorescence quantum

yield to 0.95. My calculations suggested that the destabilization of the triplet states lowered

the rate constant of the intersystem crossings which were effective in P-Ben, although the

SOCMEs to enable that were larger than it.

On the contrary to the oxygenation of P-Ben into PO-Ben, that of P-Thio into PO-

Thio was experimentally shown to reduce the fluorescence quantum yield. My calculations

predicted that the intersystem crossings were ineffective due to the higher energy level of the

triplet states against the S1 state; instead, S1→S0 internal conversion might be effective.

The relative energies of the triplet states against the S1 state were discussed using the

energy levels of the Kohn–Sham molecular orbitals. By checking which orbital was stabi-

lized/destabilized by the substitution, the relative destabilization of the triplet states against

the S1 state was explained.

Because the computed internal conversion rate constant was sensitive to the model of PESs,

I tried to optimize the minimal energy conical intersection geometry. Optimization at the

3SA-XMS-CASPT2 level suggested that PO-Thio had a MECI geometry which was 3.6

kcal/mol more unstable than the minimum of the S1 state. The optimized MECI geometry

had a largely elongated central C-C bond and largely distorted dihedral, implying the break

of the π-conjugated system by the twist at the central C-C bond.
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The PECs along the LIIC connecting the S1min and MECI geometries were computed

at the XMS-CASPT2 level using the MS-MR contraction scheme to discuss the activation

energy to reach the MECI geometry. It turned out to be that there was no rate-determining

transition state in the S1 state PEC, suggesting that the activation energy was given as

the relative energy of the MECI against the S1min. The predicted relative energies were

reasonable to the experimentally predicted activation free energy at 5.2 kcal/mol, although

the correction from energy to the Gibbs free energy was not considered.

In the CI region, the S0 and S1 states were characterized as the open-shell and closed-

shell electronic structures, respectively. The closed-shell S1 state contained the zwitter-ionic

character, where the anion on the right was seemingly stabilized by the electron-withdrawing

phosphole-oxide group.

Through these computations, I comparatively studied the difference in the fluorescence

quantum yield of the P-bridged stilbene analogues. While the major nonradiative decay

pathway in P-Ben was predicted to be the intersystem crossing, that in PO-Thio was

predicted to be the internal conversion via conical intersection. This finding might give a

clue to control the nonradiative decays in phosphorus-containing π-conjugated molecules.
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Chapter 5

Concluding Remarks

Herein, my investigations into the decay processes in the photo-excited organic dye

molecules were summarized. As a technological aspect, I employed two methods; the

one is derived by the perturbation to the time-dependent Schrödinger equation, and the

other is Eyring’s equation using the activation energy to reach a conical intersection

(CI) point at the excited state PES. To employ the perturbative method, I developed a

computer implementation related to FCClasses 3.0, which was kindly provided by Santoro,

as a reference code. Calculations using high-level wavefunction theory or multireference

quasi-degenerate perturbation theory (MR-QDPT) play important roles in adequately

describing the complicated electronic state around the CI. This is particularly pronounced

when optimizing the geometries as well as evaluating the energies at the given geometry. The

geometric search of the CI requires a distinguishing projection method. These theories were

summarized in Chapter 2, where illustrative comparisons of the computational results with

the references and application to the characteristic thermally activated delayed fluorescence

(TADF) molecules are shown. The application to the TADF molecule demonstrated that a

reliable estimation of the adiabatic energy as well as the treatment of the spin-orbit coupling

matrix elements (SOCMEs) at the higher level than the Franck–Condon level is essential for

reliably estimating the rate constant of the reverse intersystem crossing (rISC).

In Chapter 3, an investigation of the thermally activated decay through the CI in silepin

molecules was presented. The use of the MR-QDPT calculations enabled to handle the

gradual change in the complicated electronic structure from the minimum of the S1 state

(S1min) to the minimal energy CI (MECI) geometry. This reasonable description of the

electronic states predicted the existence of the activation barrier in the reaction path. The

XMS-CASPT2 level optimization of the transition state as well as the S1min and MECI

geometries for the small silepin resulted in the reasonable estimation of the activation free

energy. This study indicated that the geometry optimizations and energy evaluations at the

MR-QDPT level may give a reasonable description of the energetics in the thermally activated

decay through the CI for organic dye molecules.

In Chapter 4, a comparative study of the decays from the S1 state in the P-bridged stilbene

analogues was presented. By computing the rate constants of the transitions from the S1 state

using the Python code I wrote, the fluorescence quantum yields ΦF of these molecules were



qualitatively reproduced. The low ΦF of the bis-phosphanyl-bridged stilbene (P-Ben) was

explained by the effective intersystem crossings to the two triplet states; there, one of them

was characterized by the n(P)-π∗ transition and the other was by the π-π∗ transition in the

phenyl rings at the side of the stilbene skeleton. The oxygenation of P-Ben to form PO-

Ben decreased the rate constant of the intersystem crossing by removing the lone pair on

the phosphorus atom and stabilizing the S1 state. The substitution of the stilbene skeleton

in P-Ben into thiophene-fused skeleton to form P-Thio also decreased the rate constant of

the intersystem crossing by stabilizing the S1 state. Conducting both of the oxygenation and

introduction of the thiophene-fuzed skeleton to P-Ben to form PO-Thio similarly decreased

the rate constant of the intersystem crossing; however, internal conversion was accelerated

instead. While the suppression of the intersystem crossings was explained by the energy levels

of the Kohn-Sham orbitals, the S1→S0 internal conversion in PO-Thio was explained by the

decay through CI. The XMS-CASPT2 level geometry optimizations suggested that PO-Thio

had a MECI geometry at 3.6 kcal/mol higher energy level than the minimum of the S1 state.

This CI was described as the separation of the π-conjugation in the thiophene-fused skeleton

by the twisting of the central C-C bond, where the electron-withdrawing phosphole-oxide

group seemingly stabilized the zwitter-ionic S1 state. A comparative study was achieved

using the perturbative method and MECI optimization at the MR-QDPT level.

Through the studies in Yanai group, I got a part of the skill to investigate the decay pro-

cesses of the organic dye molecules. The understanding and my Python code are potentially

useful for studying those processes in the future in Yanai group. For example, the geometry,

Hessian, and coupling terms at the higher-level quantum mechanical methods can be applied

by using my Python code. Because the computation of the derivatives of the SOCMEs was

computationally demanding, the development of their analytical gradient should effectively

accelerate the use of this method. The extension of my code is also possible. Implementation

of the reduced-dimension scheme by Barone et al. should be useful to analyze the effect of

the specific vibrational mode. The SOCMEs at the FCHT level might be applied to the

intersystem crossing rate constant calculations derived from the 2nd-order perturbation the-

ory. Furthermore, application to other characteristic molecules should be also an interesting

topic. When some fast nonradiative decays disturb the application of the molecule, detection

of the pathways using these methods may give a clue to suppress the decays. Theoretical

prediction of molecules with efficient TADF may be possible by theoretically determining the

factors to accelerate the rISC, as is already tackled by other groups. I hope we can gain

further insight into the molecular design of the functional organic dye molecules through the

theoretical investigations of their decay processes in the future.
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