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A B S T R A C T   

The accuracy of brain age estimates from magnetic resonance (MR) images has improved with the advent of deep 
learning artificial intelligence (AI) models. However, most previous studies on predicting age emphasized aging 
from childhood to adulthood and old age, and few studies have focused on early brain development in children 
younger than 2 years of age. Here, we performed brain age estimates based on MR images in children younger 
than 2 years of age using deep learning. Our AI model, developed with one slice each of raw T1- and T2-weighted 
images from each subject, estimated brain age with a mean absolute error of 8.2 weeks (1.9 months). The es-
timates of our AI model were close to those of human specialists. The AI model also estimated the brain age of 
subjects with a myelination delay as significantly younger than the chronological age. These results indicate that 
the prediction accuracy of our AI model approached that of human specialists and that our simple method 
requiring less data and preprocessing facilitates a radiological assessment of brain development, such as moni-
toring maturational changes in myelination.   

1. Introduction 

Age estimates based on neuroimages are of clinical importance to 
understand normal and pathological brain development as well as aging 
[1]. Prediction accuracy has improved with the application of machine 
learning algorithms. For example, Franke et al. estimated brain age from 
adult brain magnetic resonance (MR) images using a machine learning 
algorithm based on relevance vector regression and reported that the 
overall mean absolute error (MAE) was 4.98 years [2]. Deep learning 
models based on convolutional neural networks (CNNs) further 
contribute to the progress of medical image analysis [3]. The innovation 
in deep learning for predicting brain age provides potential biomarkers 
for some neurodevelopmental and neurodegenerative disorders. How-
ever, most studies on predicting age have emphasized aging from 
childhood to adulthood and old age, and few studies have focused on 
early brain development in children younger than 2 years of age. 

Infancy is an important period of brain development. Dynamic 

structural and functional developments during myelination from birth to 
2 years of age have been revealed through brain MR images [4]. Gray 
matter (GM) displays a higher intensity on T1-weighted (T1w) images 
compared to white matter (WM) during the neonatal period, unlike in 
adulthood. The T1w intensity associated with the GM and WM becomes 
an adult pattern at approximately 11 months of age. By contrast, GM 
exhibits a lower T2-weighted (T2w) image intensity than does WM 
during the neonatal period. The T2w intensity contrast reverses as 
myelination progresses and becomes an adult pattern at approximately 
18 months of age. Therefore, pediatric radiologists and pediatric neu-
rologists can evaluate the progress of myelination and diagnose delayed 
myelination or congenital hypomyelination disorders based on a com-
bination of T1w and T2w images. This is an important clinical indication 
for using deep learning to objectively estimate brain age in this age 
group. 

Feasibility is an important consideration in medical artificial intel-
ligence (AI). Various MR imaging data, including three-dimensional 
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(3D) T1w MR images, diffusion tensor images, and resting-state func-
tional MR data have been used to predict brain age. However, these 
images are not always available in the clinical setting. In addition, to 
extract features from those images, preprocessing with specific software 
is often required, and many tasks cannot be automated. Although 
advanced image acquisition and sophisticated preprocessing will likely 
lead to more accurate brain age predictions, a simple algorithm using 
raw MR image data with less preprocessing would allow clinicians to 
benefit from machine learning. 

Here, we estimated brain age in children younger than 2 years of age 
with deep learning based on raw T1w and T2w MR image slices. Then, 
the accuracy was compared with that of human specialists. Furthermore, 
we estimated brain age with the deep learning model using MR images 
showing a significant myelination delay, thus validating the model 
output. 

2. Materials and methods 

2.1. Data acquisition 

2.1.1. Dataset 1 
In the present study, we used hospital-based MR imaging data, as 

there are few public brain MR image databases available for this pop-
ulation. We collected brain MR images of infants aged 0–24 months 
acquired in our Department of Pediatrics between April 2016 and March 
2019. A total of 558 scans from 441 subjects were eligible for the study. 
These MR images were acquired for clinical purposes in infants who 
were suspected to have some brain abnormalities or who needed 
screening for central nervous system complications. In some patients, 
serial MR images were acquired at different ages and were treated as 
separate scans. One slice each of two-dimensional (2D) axial T1w and 
T2w images from each patient at the level of the corpus callosum sple-
nium was used (Fig. 1A1 and A2). This is because the splenium and genu 
of the corpus callosum are indices of myelination, and because the axial 
slices contain extensive GM and WM areas. In our hospital, all axial 
images are acquired based on a reference straight line connecting the 

anterior commissure with the posterior commissure. The following scans 
were excluded: 1) scans lacking the required T1w and T2w sequences, 2) 
scans of infants born preterm (gestational age < 37 weeks), or born at an 
unknown gestational age, and 3) scans with abnormal findings or strong 
artifacts in the required slice. Abnormal findings included congenital 
and acquired brain abnormalities, such as destructive lesions due to 
hemorrhage, stroke, infectious and hypoxic ischemia, or a definite 
myelination delay. We also excluded abnormal findings outside the 
brain, such as a cephalic hematoma. By contrast, we did not exclude 
findings considered normal variations, such as transparent septal cysts. 
Additionally, scans with no abnormal findings in the required slices 
were not excluded even if there were abnormal findings in the remaining 
slices or if subjects had underlying neurological and neuro-
developmental disorders. The detailed information is provided in 
Table S1. A strong artifact was defined as one for which an image could 
not be clinically assessed. One investigator (MK), a pediatric neurologist 
who has radiological training, assessed all eligible 558 scans from the 
441 subjects. The presence or absence of abnormal findings or a mye-
lination delay in the required slice was assessed based on clinical reports 
by a pediatric radiologist. Finally, 187 MR scans from 161 subjects 
(dataset 1) were used as the training and test set for the deep learning 
model (Fig. 2). 

2.1.2. Dataset 2 
Additionally, we collected brain MR images exhibiting a myelination 

delay in children aged 0–24 months acquired in our department. The 
following scans were included: 1) scans exhibiting a myelination delay, 
2) scans that included the required axial slices of the T1w and T2w 
images, 3) scans of subjects who were not born preterm (gestational age 
< 37 weeks), and 4) scans without gross abnormal findings or strong 
artifacts. In dataset 2, we did not exclude MR images with subtle 
abnormal findings in addition to a myelination delay, because MR im-
ages with a myelination delay alone were rare. Finally, seven scans from 
six subjects were collected as dataset 2. One of the six patients was 
performed MR image scans twice at different age. The selection criteria 
for the imaging sequence and the required slices were the same as those 
described for dataset 1. The same investigator assessed the images in the 
same way. Representative T1w and T2w images from dataset 2 are 
shown in Fig. 1B1 and B2, respectively. 

All MR images were acquired with one of the seven different 1.5 T or 
3 T MR imaging scanners located in our hospital. The imaging param-
eters were roughly determined for each machine, and the imaging 
protocol was modified by the radiology technician according to the 
clinical needs. The scanner model, general imaging parameters, and the 
number of scans taken with each scanner are listed in Table S2. 

Fig. 1. Representative images from the datasets. 
T1-(A1) and T2-(A2) weighted images of a 12-month-old subject included in 
dataset 1 and a 12-month-old subject included in dataset 2 (B1 and B2). Fig. 2. Image inclusion and exclusion process flow for dataset 1.  
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2.2. Data processing 

The original 2D axial images in both datasets were preprocessed. 
Initially, the acquired images were converted from DICOM to JPG 
format. Subsequently, the margins of the images were cropped at the 
outer surface of the brain to fit a square. Finally, the image was scaled to 
128 × 128 pixels. Hence, the preprocessed imaging data contained not 
only cerebral parenchyma but also extracerebral structures, such as 
bone, subcutaneous tissue, and extra-axial cerebrospinal fluid (Fig. 1). 

2.3. Training and testing the deep learning model 

Deep learning models were developed using the commercially 
available software Neural Network Console® (Sony Network Commu-
nications Inc., Tokyo, Japan). Fig. 3 shows the network architecture of 
our CNN with four convolution layers. This in-house model processed 
T1w and T2w images in parallel, concatenated them in a further pro-
cessing step, and then estimated brain age using linear regression. The 

scans in dataset 1 were divided randomly into the training (60%), 
validation (20%), and testing (20%) datasets (Fig. S1). These subsets 
were stratified by age group (0, 1–6, 7–12, 13–18, and 19–24 months). 
Each dataset contained 37 or 38 scans (the testing dataset included 37 
scans). Age at the time of imaging was measured in weeks and used as a 
label. The learning parameters were a max epoch of 200 and a batch size 
of 19; the optimizer selected was Adam (α: 0.001, β: 0.9) [5]. 

2.4. Age estimates and statistical analysis 

We performed four-fold cross-validation (Fig. S1). The final result of 
the AI model is the average of the estimates of the four models created 
during cross-validation. The MAE, root mean square error (RMSE), and 
Pearson’s correlation coefficient (PCC) were calculated for the final 
result. When we compared the results of the AI model with those of 
human assessors, MAE and RMSE were converted from weeks to months. 
In addition, three human assessors (TS, HY, and HK) independently 
estimated brain ages in months from all images in test subset and were 

Fig. 3. The architecture of the convolutional neural network used in this study.  
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blinded to any of the clinical data. The assessors were Japanese pediatric 
neurologists who each had 10–23 years of radiological training in terms 
of assessing infant MR images. The mean of their estimates was used to 
represent the human specialist-derived age. The Wilcoxon signed-rank 
test was used to compare the estimates between the AI model and the 
human assessors. An F-test was used to compare the variance of the error 
between the AI model and human assessors. Additionally, a Bland- 
Altman analysis [6] was used to assess the agreement between the AI 
model and the assessors. In this analysis, the 95% limit of agreement 
(LOA) was defined as the mean ± two standard deviations (SDs), using 
the mean and SD of the difference between the estimates of the AI model 
and assessors. We defined an acceptable LOA range as one that is shorter 
than 3 months. 

2.5. Age estimates using dataset 2 

We performed brain age estimates of dataset 2 with the AI model. 
The three assessors also estimated brain ages from the images in dataset 
2. The Wilcoxon signed-rank test was used to evaluate the consistency 
between estimated brain age and chronological age in the AI model. 

Statistical analyses were performed with SPSS version 26 software 
(IBM Corp., Armonk, NY, USA). A p-value <0.05 was considered to 
denote significance. 

2.6. Ethical review 

This study was approved by the Ethics Review Committee of Nagoya 
University Graduate School of Medicine. 

3. Results 

3.1. Subjects 

Of the 187 scans in dataset 1, 109 (58%) were obtained from male 
subjects and 78 (42%) from female subjects. Fig. 4 shows the distribu-
tion of chronological age at the time of the MR image scan. The largest 
group comprised newborn infants admitted to our neonatal intensive 
care unit (n = 55). Of the 187 scans, 162 (87%) were acquired by one of 
the 3-T MR imaging machines, and 25 (13%) were acquired by one of the 
1.5-T machines (Table S2). 

3.2. Training the deep learning model 

Training was conducted without any problems. A representative 

learning curve for the cross-validations is shown in Fig. S2. 

3.3. Age estimates 

The results of the age estimates from the AI model and three human 
assessors are summarized in Table 1. The MAE and RMSE of the AI 
model were 8.2 weeks (1.9 months) and 12.6 weeks (2.9 months), 
respectively. The PCC for the AI model was 0.94, showing a high cor-
relation between chronological and estimated ages. All human assessors 
were also associated with high PCCs. No significant differences were 
observed between the estimates from the AI model and the mean esti-
mates of the human assessors with the Wilcoxon signed-rank test (p =
0.23). Fig. 5 shows a scatter plot of the results from the AI model and the 
mean estimates of the human assessors. The 95% LOAs were larger than 
the pre-defined range for any of the assessors or the mean estimates of 
the assessors (Table 1). Thus, we did not observe a strong agreement 
between the AI model and the assessors. 

Fig. 6 shows the distribution of the error between chronological age 
and the estimated age from the AI model or the mean of human asses-
sors. The variance of the error was significantly larger for the AI model 
than the human assessors (p < 0.001). In the AI model, there were two 
outliers based on the threshold of the mean ± 2 SD. These two outliers, 
of 17.7 and 13.8 months, corresponded to chronological ages of 11 and 
24 months, respectively. There is no specific cause of the large errors in 
images (Fig. S3), MR scanners used and acquisition parameters. 

3.4. Age estimates of subjects with myelination delay 

Clinical information about dataset 2, the age estimates from the AI 
model, and the mean estimates of the human assessors are shown in 
Table 2. The AI model estimated brain age to be younger than chrono-
logical age in all but one of the seven scans. A significant difference was 
observed between brain age estimated by the AI model and chronolog-
ical age (p = 0.028). 

4. Discussion 

We performed brain age estimates based on MR images from children 
younger than 2 years of age using deep learning. Our AI model estimated 
brain age with a MAE of 8.2 weeks (1.9 months). The estimates of the AI 
model and human assessors did not satisfy the definition of agreement 
for Bland–Altman analysis, but the Wilcoxon signed-rank test showed no 
significant difference between their mean results. The AI model also 
estimated the brain ages of subjects with a myelination delay to be 
significantly younger than their chronological ages. These results indi-
cate that the prediction accuracy of our AI model approached that of the 
human specialists and that our simple method with minimal pre-
processing of clinical data can facilitate radiological assessment of brain 

Fig. 4. Age distribution of the subjects in dataset 1.  

Table 1 
The validity of the age estimates from the artificial intelligence (AI) models and 
human assessors.  

Measurements AI model Human 

assessor 
1 

assessor 2 assessor 3 mean of 
assessors 

MAE (months) 1.9 (8.2 
weeks) 

1.2 1.5 1.2 1.1 

RMSE 
(months) 

2.9 (12.9 
weeks) 

1.7 2.3 2.0 1.5 

PCC 0.94 0.98 0.98 0.98 0.98 
95% LOAa NA 0.63 ±

5.9 
− 0.06 ±
3.3 

− 1.09 ±
3.8 

0.55 ±
4.7 

MAE: mean absolute error, RMSE: root mean square error, PCC: Pearson’s 
product-moment correlation coefficient, LOA: limit of agreement, NA: not 
applicable. 

a Bland-Altman analysis. 
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development and maturational changes in myelination. 
Studies on age estimates based on brain MR images have increased 

exponentially, but the majority have evaluated adult subjects. Several 
investigations have been conducted on children and adolescent groups 
[7–13], but there are only a few reports on children younger than 2 years 

of age. Hu et al. performed age estimates of early infants aged 14–797 
days [14]. They analyzed eight morphological features, such as cortical 
thickness and surface area, in 251 longitudinal scans to train their 
model, which combined a two-step prediction method with a comple-
mentary one-step prediction method, and the MAE was 32.1 days. They 
improved their accuracy by using multiple features and special models, 
but the data processing was complex. By contrast, we focused on the 
differences in MR images between infants and older age groups using 
myelination as observed in infant MR images as an indicator for age. 
Human specialists estimate brain ages from infant MR images according 
to myelination, and their work is clinically important for assessing brain 
maturation and diagnosing neurological diseases. Our AI model was 
created using a simple method, based on the way human specialists 
estimate brain age. Indeed, the model estimated brain age with a MAE of 
1.9 months, which was close to that of the human specialists. A margin 
of error of 1.9 months was considered clinically acceptable. 

Various imaging features have been used to estimate age. Most in-
vestigators pre-processed 3D T1w images and extracted specific fea-
tures, then inputted them into machine learning. For example, Lewis 
et al. used 3D T1w intensity contrast between the GM and WM and 
cortical thickness [12]. Bermudez et al. combined two sets of features 
from 3D T1w MR images, such as intensity-derived features and volu-
metric features, using multi-atlas segmentation [15]. However, 3D T1w 
imaging is not yet routine clinical practice. On the other hand, con-
ventional 2D T1w imaging is used in clinical practice because it provides 
a clear picture of brain structures, whereas T2w imaging is used to assess 
the presence of edema and inflammation. In the present study, we used a 
combination of T1w and T2w imaging because myelination as reflected 
by both T1w and T2w image contrasts can be observed in infant MR 
images. Also, we used only one axial slice of each of the raw T1w and 

Fig. 5. Scatter plot of the estimates from the artificial intelligence (AI) model 
and mean estimates of the human assessors based on the test subset. 
The line in the graph represents the ideal estimates. Red circles represent the 
results from AI model, and blue triangles represent those in the mean of the 
human assessors. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 6. Distribution of the error between chronological age and estimated age from the AI model (A) and the mean of human assessors (B). 
Orange bars indicate the errors from the subjects aged 12–24 months, and blue bars indicate those from the subjects aged 0–12 months. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Clinical characteristics and the age estimates of dataset 2.  

Subjects Sex Diagnosis Other MRI findings Chronological age (month) Estimated age (month) 

AI model Mean of assessors 

1 F Unknown Hypoplasia of genu of corpus callosum 7.7 3.6 5.3 
2 F Gyrus dysplasia Thinning of corpus callosum 7.9 7.9 3.7 

18.4 13.1 4.3 
3 F BPAN None 12.4 6.3 7.0 
4 M Neonatal HIE None 17.6 7.4 12.0 
5 F Congenital cerebral hypomyelination None 20.9 5.9 5.0 
6 F BPAN None 21.7 13.8 11.7 

AI: artificial intelligence, HIE: hypoxic-ischemic encephalopathy, BPAN: β-propeller protein-associated neurodegeneration, F: female, M: male. 

M. Kawaguchi et al.                                                                                                                                                                                                                            



Magnetic Resonance Imaging 79 (2021) 38–44

43

T2w images because we wanted to obtain an accurate estimate using the 
minimum amount of data for each subject, so that the method can also 
be applied in cases with scant data. This approach may be less infor-
mative than using whole-brain images. Nevertheless, our method has 
the advantage of immediate implementation in various clinical 
practices. 

In this study, after excluding the two outliers, the MAE, RMSE, and 
PCC improved greatly to 1.4 months, 2.0 months, and 0.97, respectively. 
This indicates that the outliers had a large impact on the results. Un-
derstanding the reasons for large errors is important for improving the 
accuracy of AI models and achieving agreement with results of human 
specialists. Although we could not identify any specific cause of the large 
errors in images and acquisition parameters (Fig. S3), one possible 
reason is that the ages of the subjects in dataset 1 were skewed towards 
0 months. The number of older subjects in the training dataset might 
have been insufficient. Another reason is that myelination was closer to 
completion in the scans of subjects older than 12 months, and the 
changes became smaller. Therefore, older subjects might be difficult to 
distinguish between ages. To overcome these issues, the number of 
subjects and distribution of ages in the dataset should be improved. 

The deep learning model used in this study provided clinical utility 
for assessing myelination delay. The model estimated brain age to be 
younger than chronological age in all but one subject with delayed 
myelination. It is a major challenge to clarify the decision process of a 
deep learning model. Age estimates of adult brains using an AI model 
can be based on age-related brain atrophy [1], although evidence re-
mains scarce. Bermudez et al. evaluated their AI model for brain age 
estimates using gradient-weighted class activation mapping (grad- 
CAM), which visualizes the region activated when an AI model is used 
[15,16]. They reported that head size, cerebral cortex, and size of the 
ventricles are activated with grad-CAM. In the current study, head size 
would not have been a factor because we cropped the margins and fit 
each image to a particular size before training. Our model estimated age 
from most of the scans with delayed myelination as younger than the 
chronological age. Therefore, it seems that our AI model predicted brain 
age based on contrast intensity of the GM and WM (i.e., myelination), 
although we cannot exclude the effect of other findings, such as gyr-
ification, brain shape, and/or extra-cerebral structures. 

The large gap between estimated brain age and chronological age 
offers a clue for recognizing deterioration in health. Cole et al. reported 
that older adults with a higher estimated brain age than their chrono-
logical age have a greater risk of death and poor physical and cognitive 
fitness [17]. It has also been reported that some disorders, such as Alz-
heimer’s disease, schizophrenia, depression, mild cognitive impairment, 
epilepsy, Down syndrome, and traumatic brain injury, are associated 
with increased estimated brain age [18]. In this study, we revealed that 
infants with a lower estimated age compared to their chronological age 
had a risk of delayed myelination. Further studies are needed to eluci-
date the relationship between MR image findings other than myelination 
delay and the estimated age of infants. 

This study had some limitations. First, we included images of sub-
jects with underlying diseases and no abnormal findings in deep learning 
in this study. These images may include some subtle findings that we 
could not detect visually, which might have affected the analysis. Sec-
ond, performing MR imaging on infants is often difficult without seda-
tion. Therefore, there are few opportunities to perform MR scans on 
healthy infants who do not need it clinically. A public MR image data-
base of healthy children is required. Third, we used only single-center 
data for training and testing the deep learning model. Data from mul-
tiple facilities should be used to assess the accuracy of the deep learning 
model [19]. However, we collected images acquired by seven different 
MR imaging scanners in our hospital. The field of strength and imaging 
parameters differed among them. Therefore, we created a situation 
similar to that of a multicenter study. 

5. Conclusion 

We performed brain age estimates using brain MR images of children 
younger than 2 years of age with deep learning. Although our AI model, 
characterized by a simple methodology and minimal requirement for 
raw MR image data, did not satisfy the definition of the agreement with 
human specialists, the accuracy of the brain age estimations was similar 
to that of human specialists. The brain age of subjects with a myelination 
delay was estimated to be younger than their chronological age. This is 
an important clinical indication for deep learning to estimate brain age 
objectively in this age group, particularly by non-specialists. Further 
studies are needed to improve accuracy, reduce outliers, and adapt the 
model to various medical conditions, including myelination delay. 
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