Doctoral Thesis

Design and Analysis of Diffusion in

Feistel-Type Symmetric-Key
Cryptosystems

&)

January 2022
Graduate School of Engineering, Nagoya University

Kyoji Shibutani






Acknowledgement

I would like to express my gratitude to all those who supported me during the course
of my Ph.D study. First and foremost, I would like to express my sincere gratitude to
my supervisor Associate Professor Tetsu Iwata for giving me the opportunity to study
at Nagoya University. Without his patience, encouragement and expert guidance, this
thesis could not have been completed. I would also like to thank the jury members of
this thesis, Professor Nobuo Kawaguchi, Professor Shao-Liang Zhang, Professor Shoichi
Hirose (University of Fukui) and Professor Noboru Kunihiro (University of Tsukuba) for
reviewing the drafts and giving me valuable feedbacks.

I would like to thank Taizo Shirai who guided me as a mentor when I started my
career as a researcher in the company. He taught me many things from the basic things
on cryptography to the fun of the research. I would also like to thank Takanori Isobe
for invaluable discussions on cryptography. His great inspirations always stimulated me
a lot. I would like to thank all (ex)-colleagues in the same division, especially to Toru
Akishita, Asami Mizuno and Yasuaki Honda for their continuous support.

I would like to thank Professor Bart Preneel for giving me the opportunity to study
at COSIC in Katholieke Universiteit Leuven. With many great cryptographers, I spent
great time as a researcher there. I could have several results related to this thesis during
and after studying at COSIC. I would like to thank many COSICs, especially to Vesselin
Velichkov, Nicky Mouha, Christian Rechberger, Sebastiaan Indesteege, Ozgiil Kiiciik,
Kerem Varici, Denis Toz and Elmar Tischhauser, who studied in the same room and
the room next door at that time. I greatly appreciate my coauthor Andrey Bogdanov
for insightful discussions. Without his expert advice and comments, I could not further
improve my results.

My last appreciation is for my family. I express my thankfulness to my parents, my
son and my daughter for their intentional or unintentional encouragement. Finally, I
deeply appreciate my wife, Ayumi, for her understanding, kind support, quiet patience
and continuous encouragement during my Ph.D study, without which this thesis would
never have been possible.

Kyoji Shibutani
January 2022



Abstract

Information security is a crucial technology for people all over the world to live safely
and securely. It consists of several technologies including network security and applica-
tion security to mainly ensure confidentiality, integrity and availability. Among them,
cryptography is a fundamental technology to design information security applications.
Cryptography provides several important functionalities including authenticity, confiden-
tiality, integrity and randomness. It also has several categories and two fundamental
technologies are known as public-key and symmetric-key cryptography. We focus on the
latter one including block ciphers, cryptographic hash functions and stream ciphers. The
main advantage of symmetric-key cryptography compared to public-key cryptography is
its high computational performance. Thus, symmetric-key cryptography is necessary for
most information security applications even when public-key cryptography is used in the
applications.

A block cipher, one of symmetric-key primitives, is a keyed permutation used for en-
crypting and decrypting digital data by a given secret key. It has much wider applications
than just data encryption. In fact, it has been well known as modes of operation that it
provides several functionalities including authenticity and data integrity by using a block
cipher as a component. Namely, if we have a good block cipher, we can easily derive sev-
eral cryptographic applications such as a cryptographic hash function, a stream cipher
and a message authentication code by using the block cipher as a component. Therefore,
a block cipher is considered to play a central role in symmetric-key primitives.

A modern block cipher typically has iterative structure which iteratively utilizes a
round function consisting of nonlinear functions and linear functions. The confusion and
diffusion, which are known as two important properties for designing a secure block cipher,
are considered to be provided by nonlinear functions and linear functions, respectively.
The research related to the confusion including a method to design a good small nonlinear
permutation called S-box has been well studied. On the other hand, there still exist some
rooms to improve the diffusion. In general, a cipher with slow diffusion requires a lot of
iterations to be secure, and then takes a long encryption / decryption time. Therefore,
improving the diffusion is crucial for designing an efficient and secure block cipher.

While various structures have been proposed to design a block cipher, Substitution
Permutation Networks (SPNs) and Feistel-type structures have been known as two main
structures among them. SPNs consist of a substitution layer (several small nonlinear
maps referred to as S-boxes applied in parallel) and a permutation layer (also known as
a linear diffusion layer) in a round. One of the advantages of SPNs compared to Feistel-
type structures is its fast diffusion, since all input data are converted by a substitution
layer and a permutation layer in a round. On the other hand, SPNs require an inverse
function for a decryption. This implies that an encryption function and a decryption



function are required to be separately implemented for SPNs. Feistel-type structures
divide input data into more than two sub-blocks, then almost half of them are converted
by nonlinear functions called F-functions in a round. In other words, almost half of the
input data are unchanged in a round. In contrast to SPNs, the main advantage of Feistel-
type structures is the involution property which does not require an inverse function for
a decryption. That is, for Feistel-type structures, only an encryption function is required
to be implemented for both encryption and decryption. Moreover, the size of F-functions,
nonlinear functions used in Feistel-type structures, in a round is almost half compared to
that of SPNs. These properties lead to a compact implementation. On the other hand,
its main drawback is slow diffusion compared to SPNs, since almost half of the input
data are unchanged in a round.

This thesis is dedicated to design and analysis of diffusion in Feistel-type symmetric-
key cryptosystems including balanced Feistel networks (BFNs) and generalized Feistel
networks (GFNs). BFNs and d-line GFNs divide input data into two and d sub-blocks,
respectively, where d > 2 is a positive integer. Thanks to the involution property which
does not require an inverse function for a decryption, Feistel-type constructions are known
to be implemented more compact than SPNs. However, it has been well known that the
diffusion of Feistel-type constructions is slower than that of SPN-type constructions.
Despite the wide use and long research history of Feistel-type structures, its diffusion
properties have not been thoroughly analyzed. We tackle this problem in this thesis to
unveil the theoretical limitation of the diffusion layers for Feistel-type structures. More
specifically, we address mainly three topics in this thesis to improve the diffusion of Feistel-
type structures: accurate evaluations for the security of Feistel-type structures regarding
the diffusion, efficient design strategies for F-functions of Feistel-type structures, and
efficient design strategies for round permutations which are linear permutations between
each round.

First, we study the way to precisely evaluate the security of wide variety of BFNs
and GFNs against differential and linear cryptanalysis. We propose a new approach to
efficiently and accurately evaluate the security of BFNs and GFNs regarding the diffusion
with large parameters. Second, we focus on 3-line GFNs. Then, it is proven that 3-line
GFNs with double substitution permutation (SP)-functions as F-functions are superior
to 4-line GFNs with respect to an efficiency metric for the diffusion. Third, we classify
all possible connections of 4-line GFNs, then show that there are only 2 non-contracting
constructions in the class of 4-line GFNs up to equivalence, namely, the type-I and type-I1
GFNs, where 4-line type-I and type-II GFNs have one and two F-functions in a round,
respectively. Moreover, we propose to instantiate the GFNs with SPS-functions (two
substitution layers separated by a permutation layer) or double SP-functions instead of
single SP-functions (one substitution-permutation layer) as F-functions, and show that
those constructions are more efficient regarding the diffusion than single SP-functions.
Forth, we explore the optimality of BFNs with the wide class of (SP)* and (SP)“S F-
functions, where u is an arbitrary positive integer. We provide the tight lower bounds on
the minimum number of active S-boxes, which is an important metric for the diffusion, for
those constructions, then show that SPS and SPSP F-functions are optimal among (SP)*
and (SP)“S constructions in terms of the efficiency metric for the diffusion. Finally, we
present how to further improve the diffusion of type-II GFNs by modifying their round
permutations (linear permutation between each round). We propose to alternately use



two different round permutations instead of a single round permutation, then show the
first optimal constructions for 12-line GFNs which achieve the theoretical lower bound
on the maximum diffusion round, another metric for the diffusion.

Our results are useful for a deeper understanding the security and theoretical limita-
tions of Feistel-type symmetric-key cryptosystems. One of the direct applications of our
results is designing more efficient and secure symmetric-key primitives.
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Chapter 1

Introduction

1.1 Background

1.1.1 Information Security and Cryptography

Information security, a set of practices intended to keep data secure from unauthorized
access or alterations, is an essential technology for human society. It mainly ensures con-
fidentiality, integrity and availability of data (also known as the CIA triad), and consists
of many technologies including access control, risk management, network security, digital
rights management (DRM), anti-malware and certificate authority. Among them, cryp-
tography is a fundamental technology to design a lot of information security applications.

Cryptography provides several important functionalities including authenticity, con-
fidentiality, integrity and randomness. While cryptography has several categories, two
fundamental technologies are known as public-key cryptography and symmetric-key cryp-
tography. Public-key cryptography, also referred to as asymmetric-key cryptosystems,
was originally developed to remotely and securely share a secret key for a symmetric-key
cryptosystem. It basically uses a pair of keys: one is called a public-key, which can be
public, and the other is called a secret-key, which must be kept secret. By utilizing its
asymmetricity, many interesting and important applications have been developed includ-
ing a key-sharing and a digital signature. However, in general, a public-key cryptosystem
requires a large amount of computations, since it essentially utilizes complicated mathe-
matical problems, namely a trapdoor one-way function. Thus, public-key cryptosystems
generally operate far slower than symmetric-key cryptosystems, and this is the main
drawback of public-key cryptosystems.

1.1.2 Symmetric-Key Cryptosystems and Block Ciphers

Symmetric-key cryptography including block ciphers, cryptographic hash functions and
stream ciphers mainly provides confidentiality and integrity to data. The main advantage
of symmetric-key cryptosystems, consisting of iterating weak nonlinear functions, com-
pared to public-key cryptosystems is its computational efficiency. The symmetric-key
cryptosystems are necessary for most security applications even when public-key cryp-
tography is used, since they are able to directly treat the large digital data. In fact,
symmetric-key cryptosystems are widely used in real-world applications. For instance,



one of the most well-known cryptographic applications TLS (Transport Layer Security) is
used everywhere on the web [Res18]. While several options on cryptographic algorithms
used in TLS are given, symmetric-key cryptography for data encryption and data hashing
is necessary for any options.

It is well-known that the modern cryptography, which is a cryptography not only for
military use but also for normal citizen life, started from a development of symmetric-key
cryptography DES (Data Encryption Standard) [Nat77]. Since DES was developed, the
research on symmetric-key cryptography has been rapidly growing. Findings of a differ-
ential attack and a linear attack were two epoch-making discoveries on symmetric-key
cryptography [BS91, Mat93]. In fact, a lot of block ciphers were broken by the differ-
ential attack or the linear attack. However, those results also opened the new design
strategy that ensures the security of block ciphers against those attacks based on theo-
retical approaches. Thus, the findings of the differential attack and the linear attack are
significantly important not only for attackers but also for designers of block ciphers. At
the same time, many provable approaches to design a secure block cipher were published.
Luby and Rackoff proved that a secure block cipher which is also known as a pseudo ran-
dom permutation (PRP) is derived from a combination of theoretically secure components
which are known as pseudo random functions (PRFs) [LR88]. Their results were improved
and extended to the other models [ZMI89a, Pie90, ZMI89b, Mau92]. Nyberg and Knud-
sen proposed an approach to design a provably secure block cipher against differential
attacks, and showed KCN-cipher as an instantiation of their approach [NK92]. Then they
proved that JCN-cipher is provably secure against linear attacks as well [NK95], while it
was broken by a higher-order differential attack [JK97, SMK97]. Matsui extended their
results to the other structures [Mat96], then proposed a family of block ciphers MISTY
as an instantiation [Mat97].

A block cipher, one of symmetric-key primitives, is an n-bit keyed permutation that
encrypts and decrypts n-bit digital data by a given k-bit secret key, where n indicates
the pre-determined block size (e.g. n = 64 or 128) and k denotes the key size. Its
direct application is data encryption, and data encryption by a block cipher is used in
many security applications. However, a block cipher provides much more functionalities
including authenticity and data integrity by using a block cipher as a component known as
modes of operation. In fact, it has been well known that NIST standardized several modes
of operations including five encryption modes: ECB, CBC, CFB, OFB and CTR, one
message authentication mode: CMAC, two authenticated encryption modes: CCM and
GCM, and one storage encryption mode: XTS [NatO1lb, Nat16, Nat07b, Nat07a, Nat10].
Therefore, if we have a secure and efficient block cipher, we can provide many applications
like the above by utilizing those modes of operations.

Moreover, the results on components of block ciphers are directly applied to the other
symmetric-key primitives including stream ciphers and cryptographic hash functions,
since high-level properties including computational efficiency required for them are simi-
lar. In fact, synchronous stream ciphers are constructed from a block cipher using OFB
and CTR modes as well as an asynchronous stream cipher from CFB mode. It has also
been known that secure cryptographic hash functions are constructed from a secure block
cipher referred to as block cipher-based hash functions [PGV93, BRS02]. Thus, it can be
considered that a block cipher plays a central role in symmetric-key primitives.

Since Lucifer and the former U.S. standard DES were developed in 1970’s, more



than a hundred of modern block ciphers have been proposed including GOST [Nat94],
FEAL [SM87, Miy90], Blowfish [Sch93], RC6 [RRY00], MISTY [Mat97], Camellia [ATK*00],
AES(Rijndael) [NatOla] and CLEFIA [SSAT07]. At the same time, a lot of research on
designing and analyzing block ciphers have also been published.

A block cipher is typically considered as a class of product ciphers presented by
Shannon [Sha49], which combine two or more transformations such as substitution, per-
mutation and modular arithmetic. The concept of the product cipher is that a good
combination of simple transformations makes a cipher secure even if those simple trans-
formations themselves are not perfectly secure. Modern block ciphers iteratively utilize
such combination, which are known as iterative ciphers. Iterative ciphers iteratively use
a round function consisting of nonlinear functions and linear functions. The structures
of block ciphers are generally categorized into two structures: Substitution Permutation
Networks (SPNs) and Feistel-type structures. SPNs are known as the basic structure
of the current U.S. encryption standard AES [NatOla]. Due to its simplicity and high
efficiency, SPNs have been adopted in many block ciphers including SHARK [RDP*96],
SQUARE [DKR97], AES [NatOla], PRESENT [BKL*07] and Midori [BBI*15]. On the
other hand, Feistel-type structures including balanced Feistel networks (BFNs) and gen-
eralized Feistel networks (GFNs) are the other most widely used structure. Due to its de-
sirable implementation property, it has been also adopted in a lot of block ciphers includ-
ing DES [Nat77], GOST [Nat94|, CAST [Ada97b, Ada97a, AG99], Camellia [ATK*00],
CLEFIA [SSA107] and Piccolo [STH*11].

1.1.3 Requirements on Block Ciphers

Block ciphers are at least designed to provide sufficient confusion and diffusion which
are two important properties identified by Shannon [Sha49]. Confusion means that the
ciphertext statistics complicatedly depends on the plaintext statistics so that a cryptana-
lyst is not able to exploit those statistical properties. Diffusion means that each bit of the
plaintext and each bit of the secret key affect a large number of bits of the ciphertext. For
modern block ciphers, substitutions typically referred to as substitution-boxes (S-boxes)
and permutations including a bit/byte permutation and linear matrix multiplication pro-
vide confusion and diffusion, respectively. A good combination of confusion and diffusion
is a necessary requirement for designing a secure block cipher.

The security of a block cipher is usually evaluated as computational security. Roughly
speaking, a block cipher is considered as computationally secure if there does not exists
any distinguisher who distinguishes the block cipher from a random permutation with
less computational resources (i.e. time, memory and data) than those required by general
attacks including an exhaustive key search. Moreover, since a block cipher generally treats
a large number of data, its performance is important as well as its security. However, it
has been well known that there is a tradeoff between the security and the performance.
Thus, the challenge of designing a good block cipher is building a highly efficient cipher
without loosing the security.

As explained, a typical block cipher has an iterative structure, and each iteration called
a round function consists of nonlinear functions and linear functions. The confusion of
the iterative cipher is provided by nonlinear functions typically known as S-boxes or F-
functions. Since, in general, the size of those nonlinear components is not large (e.g. 4-bit



or 8-bit nonlinear permutations), it is feasible to evaluate those security properties by a
computer. Moreover, the research on designing a good S-box has been well studied. One
of the most well known results is that a good n-bit S-box is derived from an inversion of
GF(2™) with an appropriate affine transformation [Nyb93, NK95].

We consider that the cipher provides sufficient diffusion when any input bits including
the plaintext and the key affect all bits of the ciphertext. In general, the more rounds the
iterative cipher has, the better diffusion is provided. Thus, the diffusion property of the
cipher is evaluated as the minimum number of rounds achieving the sufficient diffusion.
Similarly, if the certain number of nonlinear components is guaranteed to be affected by
any input changes, we consider that the cipher provides sufficient diffusion. Therefore, the
diffusion property is approximately evaluated as the minimum number of active nonlinear
functions (e.g. S-boxes and F-functions), which are nonlinear components affected from
any input changes, in each round. Since the faster diffusion leads to smaller number of
iterations to be secure and then smaller number of iterations leads to better performance,
the diffusion property is crucial for not only security but also the performance of the
cipher.

1.2 Motivation

Feistel-type structures including BFNs and GFNs have several desirable implementation
properties. One of the most remarkable properties among them is an involution property
that does not require an inverse nonlinear function for decryption. Moreover, since only
half of the data are updated per one round, each nonlinear function used in Feistel-
type structures called an F-function is smaller than that used in SPNs in general. Those
properties lead to compact implementation, and thus Feistel-type structures are desirable
especially for lightweight cryptography. However, the main drawback of BFNs and GFNs
has been known to be slow diffusion compared to SPNs. Thus, the Feistel-type structure
generally requires a large number of iterations than an SPN based construction due to
its slow diffusion, and it significantly reduces the throughput of the cipher. Despite
the wide use of BFNs and GFNs, it is still unclear how to design better diffusion for
BFNs and GFNs. We focus on this problem and explore design possibilities of a Feistel-
type structure based block cipher. In other words, in this thesis, we try to unveil the
theoretical limitation for designing a diffusion of BFNs and GFNs by thoroughly analyzing
those diffusions. Our purpose of this thesis is designing a more efficient and secure block
cipher. To do so, we deeply analyze the diffusion of Feistel-type structures.

1.3 Related Work and Contributions

In this thesis, in order to improve the diffusion of Feistel-type structures, we consider
three main problems: (1) how to more accurately evaluate the lower bounds on the
number of active S-boxes for BFNs and GFNs, (2) how to design nonlinear functions
called F-function for BFNs and GFNs to improve the diffusion, and (3) how to design
more efficient round permutations for GFNs. Note that we investigate the problem (2)
separately in three specific Feistel-type structures, namely, 3-line GFNs, 4-line GFNs and
BFNs.



First, we treat the problem (1) which focuses on how to more accurately evaluate the
diffusion of BFNs and GFNs. It has been known to be complicated to evaluate the lower
bounds on the number of active S-boxes for BFNs and GFNs compared to SPNs [DRO1].
For BFNs, the work [Kan00] proved the minimum number of active S-boxes in BFNs
with SP-functions when the diffusion matrix is the same in all rounds. The papers [SS04,
SS06] dealt with the difference cancellation effect for such BFNs and introduced the
diffusion switching mechanism which relies on using several distinct diffusion matrices
over multiple rounds. The lower bounds on the number of active S-boxes for BEFN with
SP-functions and multiple-round diffusion were proven in [SP04]. Those for BFNs with
SPS-functions and single-round diffusion were analyzed in [Bogl0O]. For GFNs, lower
bounds on the number of active S-boxes were obtained for type-I and type-II GFNs
with SP-functions in [WZLO06]. Rough lower bounds for type-I and type-II with single
SP-functions and multiple-round diffusion were proven by [SA08]. The work [SA08]
also provided some numeric analysis for two specific cases of type-I and type-II GFNs
with single SP-functions and multiple-round diffusion. While these results significantly
improved the security evaluation for BEFNs and GFNs with SP-functions, the results only
work for small parameter sets of BFNs and GFNs and some of the presented bounds
are not tight. We tackle this problem and propose a novel algorithm to more accurately
evaluate the minimum number of active S-boxes for BFNs and GFNs with large parameter
sets (see Chapter 4).

Second, we deal with the problem (2) which concentrates on how to design more
efficient nonlinear functions called F-functions used in BFNs and GFNs regarding the
proportion of active S-boxes. The design of an F-function significantly affects both the
security and the efficiency of BFNs and GFNs. There are several design strategy for
F-functions, and those are basically given in the proposed Feistel-type ciphers including
DES, Blowfish, MISTY, RC6 and CLEFIA [Nat77, Sch93, Mat97, RRY00, SSA*07].
However, the optimal design strategy with respect to both the security and the efficiency
for F-functions in BFNs and GFNs has not been well studied. There were several results
on BFNs and GFNs with SP-functions [Kan00, SS04, SS06, WZL06, SA08|, and BFNs
with SPS-functions were analyzed in [Bogl0]. We investigate how to design more efficient
BFNs and GFNs by considering several types of SP-type F-functions including not only
single SP layer, but also SPS, double SP and more SP layers. We separately analyze three
specific types of Feistel-type structures, namely, 3-line GFNs, 4-line GFNs and BFNs for
this topic (see Chapters 5 to 7).

Finally, we address the problem (3) which focuses on how to design more efficient
round permutations which are the other important components in GFNs in terms of dif-
fusion. Since GFNs were proposed in 1980’s [ZMI89a|, several ciphers using GFNs with
cyclic shift as a round permutation have been proposed. However, Suzaki and Minematsu
showed that the diffusion property can be improved by modifying a round permutation
instead of cyclic shift for type-II GFNs [SM10]. They proposed the best round permu-
tations with respect to the maximum diffusion round, which is one of the metrics for
evaluation of diffusion property, for 6- to 16-line type-II GFNs with single round permu-
tations. While it requires huge computations to find good round permutations for large
parameters, the search algorithm was improved by [CGT19, DFLM19]. They showed the
best single round permutations for 18- to 32- and 36-line type-II GFNs. However, it is
still unclear if it is possible to further improve the diffusion by modifying round permuta-
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Figure 1.1: Organization of this thesis

tions. We propose to use multiple round permutations alternately instead of single round
permutations to further improve the diffusion property (see Chapter 8).

We focus on improving the diffusion to design a secure and efficient block cipher
in this thesis. However, the opposite design strategy which intentionally utilizes weak
and simple components only providing slow diffusion has also been known and studied.
While such block ciphers generally require a large number of iterations to be secure, those
do not require large computations in each round, e.g., ARX (Addition-Rotation-XOR)
design [NW97, BSST13]. We concentrate on the former design strategy which intends to
provide a fast diffusion and do not treat the latter design strategy in this thesis. More
detailed explanations on related work are described in each chapter.

1.4 Organization of This Thesis

This thesis consists of nine chapters. The detailed analyses are presented in Chapters 4
to 8, and those research areas are illustrated in Fig. 1.1. We focus on three types of
Feistel-type structures which are balanced Feistel networks (BFNs), type-I generalized
Feistel networks (type-I GFNs) and type-II generalized Feistel networks (type-1I GFNs)
depicted in the left, center and right of Fig. 1.1, respectively. The outline of all chapters
is summarized as follows:

Chapter 1. Introduction of this thesis. This chapter.

Chapter 2. As preliminaries of this thesis, we explain a structure of block cipher and its
security requirements as well as its adversary models and several important attacks.

Chapter 3. We show target structures that we focus on, and evaluation metrics used
throughout this thesis.

Chapter 4. We present a new approach to more accurately evaluate the security of wide
variety of BFNs and GFNs with respect to the lower bounds on the number of ac-



tive S-boxes. While GFN leads to compact implementations, the security is not
well understood, in particular for larger values of the partitioning number which in-
dicates the number of sub-blocks. For both differential and linear cryptanalysis, we
first prove tighter lower bounds on the minimum number of active S-boxes for four
and six rounds of the GFN utilizing word-based rotation as a round permutation.
These bounds are almost twice as large as the previous results in literature [SA0S].
Then we present a new approach to derive the first tight lower bounds for the
minimum number of active S-boxes in several types of GFN with large parame-
ters. The proposed algorithm utilizes word-based truncated differential search and
three-round relations of Feistel connections. By applying our results, the number of
rounds required to be secure against differential and linear attacks can be reduced
significantly. Moreover, we show that the improved GFN proposed by Suzaki and
Minematsu at FSE 2010 have more active S-boxes than the standard GFN (See
Ch. 4 in Fig. 1.1).

Chapter 5. We analyze the security of 3-line type-I GFNs. We prove tight lower bounds
on the number of differentially and linearly active S-boxes for 3-line GFNs with
double SP-functions where two SP-structures are applied one after another and each
SP-structure consists of a nonlinear substitution followed by a linear diffusion. We
also show 8-round impossible differentials for 3-line GFNs with bijective functions.
Moreover, we demonstrate that the proportion of active S-boxes in all S-boxes
for such GFNs is by up to 14% higher than that for 4-line GFNs with double
SP-functions, when instantiated with MDS matrices. This indicates that the 3-
line GFNs can be more efficient in practice than those with 4 lines (See Ch. 5 in
Fig. 1.1).

Chapter 6. This chapter deals with the classification, security and efficiency of general-
ized Feistel networks (GFNs) with 4 lines. We propose a definition of a GFN, essen-
tially limiting consideration to Feistel-type constructions with domain-preserving
F-functions and rotation by one line between rounds. Under this definition, we
demonstrate that there are only 2 non-contracting representatives in the class of
4-line GFNs up to equivalence, namely, the type-1 and type-II GFNs that avoid ob-
vious differential effects. We propose to instantiate the GFNs with SPS-functions
(two substitution layers separated by a permutation layer) or double SP-functions
(two subsequent substitution-permutation layers) instead of single SP-functions
(one substitution-permutation layer only). We prove tight lower bounds on the
number of differentially and linearly active functions and S-boxes in such ciphers.
Based on these bounds, we show that the instantiation with SPS-functions or dou-
ble SP-functions using MDS diffusion has a proportion of differentially and linearly
active S-boxes by up to 33% and 50% higher than that with single SP-functions
for type-I and type-II GFNs, respectively. Moreover, we present the upper bounds
on the differential and the linear hull probability for the type-II GFNs with SPS-
functions or double SP-functions (See Ch. 6 in Fig. 1.1).

Chapter 7. We explore the optimality of BENs with SP-type F-functions with respect

to their resistance against differential and linear cryptanalysis. Instantiations of
BFNs with the wide class of (SP)* and (SP)"S F-functions are considered: One



F-function can contain an arbitrary number of S-box layers interleaved with linear
diffusion. For the matrices with maximum diffusion, it is proven that SPS and SPSP
F-functions are optimal in terms of the proportion of active S-boxes in all S-boxes —
a common efficiency metric for substitution-permutation ciphers. Interestingly, one
SP-layer in the F-function is not enough to attain optimality whereas taking more
than two S-box layers does not increase the efficiency either (See Ch. 7 in Fig. 1.1).

Chapter 8. We investigate the (im)possibility of further improving the round diffusion
of type-II GFNs by modifying the underlying round permutations. First, we gen-
eralize a technique called sub-block dividing, which further divides each sub-block
into smaller blocks. We prove that the maximum diffusion round of a round per-
mutation with sub-block dividing is four, regardless of the number of sub-blocks.
Moreover, we show that the round diffusion of type-II GFNs can be improved by
alternately using two different round permutations instead of a single permutation.
We present the first results that, by using two round permutations, 10- and 12-line
GFNs partially and fully reach the lower bounds on the maximum diffusion round,
respectively (See Ch. 8 in Fig. 1.1).

Chapter 9. We conclude this thesis with showing some open problems and ideas for
future research.

The main results presented in this thesis have been published in [Shil0, BS11b, BS11a,
BS13, SB14, S122|, and they correspond to Chapters 4, 5, 6, 6, 7 and 8, respectively.



Chapter 2

Preliminaries

2.1 Block Ciphers

A block cipher is a keyed permutation consisting of an encryption function E : {0, 1}" x
{0,1}* — {0,1}" and decryption function D : {0,1}" x {0,1}* — {0,1}". An n-bit
ciphertext C' is derived from an R-round encryption function E with an n-bit plaintext
PT and a k-bit secret key K as follows:

CT = Ex(PT).

Similarly, an n-bit plaintext PT is calculated from a decryption function D (i.e., the
inverse of E) with C'T and K as follows:

PT = Dy (CT),

where D = E~! (See Fig. 2.1).

For modern block ciphers with large n (e.g. n = 64 or 128), in general, E has
iterative structure. In other words, E consists of a smaller n-bit permutation called a
round function G@ : {0,1}" — {0,1}", and an output of E is derived from R times G
computations with round keys k() generated from K by key scheduling part as follows
(See Fig. 2.2):

OT =GR (GPGEV(P @ rkY) @ rk®)..) @ rk®).

A block cipher is mainly evaluated by two aspects: security and computational per-
formance. It has been well known that there exists a trade-off between the security and
the performance. Designing an extremely high performance but insecure block cipher is
meaningless but possible (e.g. F consists of only key XOR as CT = PT @ K). Similarly
to this, it is not hard to design a secure block cipher without having reasonable perfor-
mance (e.g. F consists of a very complicated nonlinear round function and R is several
millions). Therefore, the challenge of designing a good block cipher is building a secure
block cipher that is as efficient as possible.

2.2 Security Requirements

The security of cryptography is evaluated in two aspects: information theoretical secu-
rity and computational security. The information theoretical security was advocated by
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Figure 2.1: Encryption function E and decryption function D

Shannon. For the information theoretically secure block cipher, an adversary is infeasible
to distinguish the cipher from a random permutation with a non-negligible probability
even if an adversary can use unlimited computational resources. However, the amount
of secret key values must be more than that of plaintexts to achieve the information the-
oretical security. Since such cryptosystem having large secret key values is not realistic,
the security of modern block ciphers is usually evaluated by computational security.
The computational security of a block cipher is evaluated by the required resources
including computational costs, amount of data and amount of memory to distinguish the
cipher from a random permutation under the given adversary model. Roughly speak-
ing, a block cipher is considered to be computationally secure if there does not exist
computationally better attacks than general attacks including brute-force attacks.

2.2.1 Adversary Model

We follow the widely accepted concept known as Kerckhoffs’s principle: “a cryptosystem
should be secure even if everything about the system, except the key, is public knowl-
edge” [Ker83]. This principle was reformulated by Shannon as “the enemy knows the
system” [Sha49]. In other words, a block cipher should be designed to be secure even if
an adversary knows everything on the components as long as the secret key is kept secret.

Depending on adversary’s capabilities of obtaining and controlling inputs and out-
puts of an encryption/decryption function, attack settings are mainly classified into the
following four scenarios:

Ciphertext-only attack. An adversary is able to obtain randomly chosen ciphertexts.

Known-plaintext attack. An adversary is able to obtain pairs of randomly chosen
plaintexts and the corresponding ciphertexts.

Chosen-plaintext attack. An adversary is able to arbitrarily choose plaintexts and
obtain the corresponding ciphertexts.

Chosen-ciphertext attack. An adversary is able to arbitrarily choose ciphertexts and
obtain the corresponding plaintexts.

Note that chosen data attacks are further classified into non-adaptive model that an
adversary chooses data without using the knowledge of the obtained data and adaptive
model that an adversary adaptively chooses data depending on the obtained data.

10
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Under those settings, a block cipher is considered to be computationally secure if an
adversary, exploiting computation resources less than those required by general attacks,
is infeasible to distinguish £ from an n-bit random permutation with non-negligible
probability. This attack is called distinguishing attack.

While numerous attacks have been proposed for block ciphers, in this thesis, we
mainly focus on differential, linear, impossible differential, and saturation attacks which
are known as powerful attacks especially for Feistel-type block ciphers.

2.2.2 Brute-Force Attack (General Attack)

The brute-force attack (a.k.a exhaustive key search) on block ciphers is a fundamental
attack and is applied to any block ciphers. An attacker requires one known plaintext-
ciphertext pair (PT,CT), then encrypts the plaintext PT with possible keys K’ as
CT" = Ex/(PT) until finding K’ satisfying CT" = CT. This attack requires about
2% of encryptions, where k is the size of K.

This attack has several variants. In the dictionary attack for a block cipher, an
attacker chooses one plaintext PT', then computes and saves the corresponding cipher-
texts by all possible keys in advance. Then, the attacker requires one chosen plaintext-
ciphertext pair (PT,CT), and find C'T from the saved ciphertexts. This attack requires
O(2%) memory, but requires a few computations in the attack phase. Similarly, time-
memory trade-off (TMTO) attack has been known to require O(2*~*) memory and 2!
encryptions.

Those generic attacks are applied to any ciphers including the theoretically ideal
cipher. The required resource is approximately estimated as the product of time (i.e.,
computations) and memory which is about 2¥. Thus, a block cipher is considered to
be computationally secure if there does not exist any attacker requiring less than 2%
resources.

11



2.2.3 Differential Cryptanalysis

A differential cryptanalysis was published in 1990 by Biham and Shamir with applications
to DES [BS91]. However, it has been known to the designers of DES at IBM in early
1970s [Cop94]. As the name suggests, the main idea of differential cryptanalysis is to
exploit correlations between differences in the inputs and outputs of a block cipher to
recover the key. It is a chosen-plaintext attack, in which an attacker is allowed to choose
arbitrary plaintexts and obtain the corresponding ciphertexts. The details are given in
Section 2.2.8.

2.2.4 Linear Cryptanalysis

A linear cryptanalysis as applied to DES was proposed by Matsui in 1993 [Mat93]. How-
ever, similar ideas were published by Shamir [Sha85] in 1985 as well as Tardy-Corfdir and
Gilbert [TG91] in 1991. Linear cryptanalysis uses linear approximations of block ciphers
to perform key recovery. It is a known-plaintext attack, in which an attacker knows some
plaintexts and the corresponding ciphertexts. The details are given in Section 2.2.8.

2.2.5 Impossible Differential Attack

An impossible differential attack [BBS99] exploits an impossible differential which is a
differential trail with probability zero, i.e., a differential trail never occurs. It is known as
a powerful attack for a block cipher with slow diffusion such as Feistel-type block ciphers.
In fact, it has been well known that there exists a trivial impossible differentials on any
5-round BFNs consisting of bijective F-functions.

2.2.6 Saturation Attack

A saturation attack was first proposed by Daemen et al. as a dedicated attack to the
block cipher SQUARE [DKROI7|, then it was generalized by Lucks [LucO1]. Tt exploits
multiset of chosen plaintexts and observes if the sum of a certain part of outputs will be
a specific state including a constant and zero. It is also known as a powerful attack for a
block cipher with slow diffusion.

2.2.7 Other Attacks

In addition to the above explained powerful attacks especially to a block cipher with
slow diffusion, there have been a lot of attacks including differential-linear attack [LH94],
boomerang-type attacks (boomerang, amplified boomerang and rectangle attacks [Wag99,
KKS00, BDKO01]), truncated differential attack [Knu94], truncated linear attack [ATK™*00],
higher order differential attack [Knu94], interpolation attack [JK97], and meet-in-the-
middle attack [BR10].

Evaluating the security of the specific cipher against those attacks is important when
we propose a new cipher. However, in this thesis, we focus on higher level of structures
of block ciphers to unveil the general strategy for designing a good cipher, and thus we
do not treat those dedicated attacks.
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2.2.8 Definitions for Differential and Linear Cryptanalysis

For an n-bit function f : {0,1}" — {0,1}", a differential probability D Py used in differ-
ential cryptanalysis and a linear probability LFP; used in linear cryptanalysis are defined
as follows, respectively.

Definition 1 (Differential probability). Given an input difference Ax and an output
difference Ay, a differential probability of f is defined as follows:

DPy(Az,Ay) = Pr (f(z) @ f(z® Az) = Ay),

ze{0,1}"
where x, Az, Ay € {0, 1}".

Definition 2 (Linear probability). Given an input linear mask value 'z and an output
linear mask value 'y, a linear probability of f is defined as follows:

LP;(Tz,Ty) = (2- Pr (zelz=f(z)ely)— 1)2,

ze{0,1}"
where o denotes dot products and x, I'z, I'y € {0, 1}".

The maximum differential probability M D P; and the maximum differential probabil-
ity M LPy are defined as follows:

Definition 3 (Maximum differential probability). The mazimum differential prob-
ability of f is defined as follows:

MDP; = Agrcr;%?zy DPr(Ax, Ay).
Definition 4 (Maximum linear probability). The mazimum linear probability of f

1s defined as follows:
MLP; = [nax LP;(I'z,I'y).

A block cipher is considered to be provably secure against differential and linear at-
tacks with parameter ¢, if M D Py and M LP; are 277 or less, respectively. This approach
considering provable security against a differential attack was first shown by Nyberg and
Knudsen [NK92, NK95]. Then, it was improved by Aoki and Ohta [AO97|. Matsui
presented a new structure considering provable security against differential and linear
cryptanalysis [Mat96], then a new block cipher MISTY based on those results was pro-
posed [Mat97].

From the definitions, it requires O(2%") and O(2°") times f computations to derive
MDP; and M LPs. In general, it is computationally feasible to derive M D Py and M LPy
for small n (e.g. n = 8). However, for large n that is usually used in modern block cipher
(e.g. n = 128), it is almost infeasible to derive those probabilities. Therefore, in order
to evaluate the security of modern block ciphers, the maximum differential characteristic
probability M DC Py and the maximum linear characteristic probability M LC Py are used
as approximate values of M DP; and M L Py, respectively.

Let a composition of f; : {0,1}" — {0,1}",i =1,2,..., R be f(z) as

f(@) = fro fr-10---0 fao fi(z).
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Definition 5 (Maximum differential characteristic probability). The mazimum
differential characteristic probability of f is defined as follows:

R
MDCP; & max []DPy(Aziy, Axy).
Accl,z.(.).,A;R =1

Definition 6 (Maximum linear characteristic probability). The mazimum linear
characteristic probability of f is defined as follows:

R
MLCP; = max  [[LP(Tziy,Twy).

S e
It is widely accepted concept that a block cipher E is considered to be practically
secure against differential and linear attacks if M DC P and M LC Pg are sufficiently low
(e.g. less than 27") assuming that each differential and linear characteristic is indepen-
dently and uniformly distributed, respectively.
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Chapter 3

Target Structures and Evaluation
Metrics

3.1 Target Structures

In this thesis, we focus on a block cipher, one of the symmetric-key primitives. Note that,
in general, the results on components of block ciphers are directly applied to the other
symmetric-key primitives including stream ciphers and cryptographic hash functions.

While several design strategies have been proposed, Feistel networks and substitution-
permutation networks have been central to the design of block ciphers. Balanced Feistel
network (BFN), one of the Feistel networks, was adopted in several block ciphers including
the former U.S. encryption standard DES [Nat77], GOST [Nat94], Camellia [ATK00] and
KASUMI [Thi99]. Substitution-permutation network (SPN) was also used in a lot of block
ciphers including the current U.S. encryption standard AES [NatOla], PRESENT [BKL*07]
and Midori [BBIT15]. At the same time, generalized Feistel network (GFN) was adopted
in the U.S. hash function standard SHA-2 and several block ciphers including RC6 [RRY00],
CLEFIA [SSA*07] and Piccolo [STH*11].

3.1.1 Substitution-Permutation Networks (SPNs)

Substitution-permutation networks consist of a substitution layer and a permutation
layer in a round (see Fig. 3.1). A substitution layer provides nonlinearity in the cipher
consisting of m n-bit nonlinear permutation called S-boxes, which are used in parallel.
A permutation layer linearly diffuses the input consisting of an mn-bit linear function.
For SPNs, mn-bit plaintext PT is divided into m n-bit inputs x(()l), e xi,ll)_ 1, where xy) €
{0,1}". Then the i-th round output is calculated as follows:
1)) (i+1 it1 i i i i i i
(a5 Pl V) = P(S(ay) @ koIS (@Y @ k)] S (@)l @ i),

where k](i) € {0,1}™ is the j-th round key in the i-th round, P(-) denotes an mn-bit linear
function and s(-) denotes an n-bit S-box. Finally, an mn-bit ciphertext C'T" is derived

from R-round outputs x(()RH), s xﬁf_ﬁl) as CT = (a:(()RH)|:E§R+1)|...|x£f_+11)).
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Figure 3.1: Substitution-permutation networks (SPNs)

3.1.2 Balanced Feistel Networks (BFNs)

Balanced Feistel networks was originally used in Lucifer block cipher proposed by Feistel
et al. [Fei73]. Then it was adopted in the former U.S. encryption standard DES [Nat77].
After that, BFNs are adopted in a large number of symmetric key primitives, e.g. GOST
and KASUMI which is the core of A5/3 cryptosystem in mobile networks [Thi99]. For
BFNs, a 2mn-bit plaintext PT is divided into mn-bit inputs xél) and xgl), where xg-i) €
{0,1}™". Then, the i-th round output is calculated as follows:

1+1 1+1 7 7 3 7
(@ VY o (@ @ Fa) @ kD)),

where k) € {0,1}™" is the i-th round key and F®) : {0, 1}™" — {0,1}™" is the i-th round
function. Finally, a 2mn-bit ciphertext C'T" is derived from R-round outputs x(()RH) and

2T as O = (2T ]af™Y) (see Fig. 3.2).

3.1.3 Generalized Feistel Networks (GFNs)

The formal definition of GFN was given by Zheng et al. [ZMI89b]. For GFNs, a dmn-
bit plaintext PT is divided into d sub-blocks (also called as lines), namely, the size of
each sub-block is mn-bit. A GFN having d sub-blocks is denoted as GFN,;. GFNs are
natural extension of BFNs, i.e., BFNs are considered as GFNs with d = 2, however, we
specifically refer the constructions with d = 2 as BFNs, and them with d > 2 as GFNs
in this thesis. GFNs have several variations depending on its connection of each block
and the number of F-functions in each round. Among them, two typical GFNs are called
type-I and type-II as shown in Figs. 3.3 and 3.4.
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Figure 3.2: Balanced Feistel networks (BFNs)

For ty eI GFNS a dmn bit plaintext PT' is divided into d sub-blocks as PT =
(xél)|x1 l.. |xd 1), where x € {0,1}™". Then, the i-th round output is calculated as

follows:
1+1 7 1 1+1 7 4 7 i 7 7 7
(252028 @0 @ FO @ @ kD)2l |20 |2,

where k@ € {0,1}™" is the i-th round key and F® : {0,1}™ — {0,1}™" is the i-
th round function. Finally, a dmn-bit mphertext CT is derived from R-round outputs
xéRH), o a:girl) as CT = (x (R+1)| (R+1)| Jx IEH)) (see Fig. 3.3). Note that Type-I GFNs
have one F-function in each round.

For type-II GFNs, a dmn bit plaintext PT' is divided into d sub-blocks as PT =
(xél)]x§1)|...|x((jl_)1) where :c € {0,1}™*. Then, the i-th round output is calculated as
follows:

1+1 z+1 i+1 7 1 7 7 7 7 7 7 7
@52 @ @ B @ k)28 02D, @ F_ (28, @ kS, )i,

where k:](-i) € {0,1}™ is the j-th round key in the i-th round and Fj(i) - {0,1}™ —
{0,1}™" is the j-th round function in the i-th round. Finally, a dmn-bit ciphertext CT
is derived from R-round outputs z{™" ...,xfff{l) as CT = (zﬁff“\ 2 |de§1)) (see
Fig. 3.4). Note that Type-II GFNs have d/2 mn-bit F-functions in each round.

It is well known that Type-IT generalized Feistel networks (GFN) [ZMI89b] have sev-
eral desirable implementation properties, notably compactness. For instance, the GFN
has smaller F-functions compared to the balanced Feistel network (BFN) for the same
block size. Also GFNs do not need inverse F-functions for decryption, in contrast to Sub-
stitution Permutation Networks (SPNs). Recently, lightweight cryptography has become
a hot topic. Thus the GFN is an attractive structure for a lightweight symmetric key
primitive such as a block cipher or a hash function. This might be one of the reasons why
recent block ciphers such as CLEFIA [SSAT07] and HIGHT [HSHT06] utilize the GFN.
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Figure 3.3: Type-I generalized Feistel networks (GFNs)

3.1.4 BFNs and GFNs with SP-Type F-Function

In this thesis, we focus on BFNs and GFNs with SP-type bijective F-functions, that is,
with underlying functions whose internal structure is a substitution-permutation network
(SPN). An SPN consists of several sequential applications of an S-box layer (S) - several
small nonlinear maps applied in parallel - and a diffusion layer (P) - multiplication by a
matrix over a binary finite field. The instantiation of a Feistel-type structure with an SP-
type F-function is deployed in many cryptographic algorithms including E2 [KMAT00],
Twofish [SKWT99], Camellia [AIKT00], CLEFIA [SSA*07], SHAvite-3 [DB09] and Pic-
colo [STHT11].

We assume that each round function is the SP-type F-function which consists of m
n-bit nonlinear bijective functions called S-boxes and a non-singular m x m matrix over
a chosen field GF(2") (see Fig. 3.5). The number of S-boxes in an S-box layer m is also
referred to as bundle size throughout this thesis.

3.1.5 GFNs with Even-Odd Round Permutation

The standard type-I and type-II GFNs adopt sub-block wise cyclic shift as a round permu-
tation. However, for type-II GFNs; it was proposed by Suzaki and Minematsu [SM10] that
the diffusion will be improved by modifying a round permutation instead of cyclic shift.
In this thesis, we consider such broader class of round permutation, namely even-odd per-
mutation, where every even-numbered sub-block input is permuted to an odd-numbered
output and vice versa by the pre-determined manner. We refer to those constructions as
type-II GFNs with even-odd permutations or even-odd shuffles.

For type-II GFNs with even-odd round permutations 7, a dmn bit plaintext PT is
divided into d sub-blocks as PT = (x, S )| 1)| \x(l) ), where :17 ) e {0,1}™". Then, the
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Figure 3.4: Type-II generalized Feistel networks (GFNs)

i-th round output is calculated as follows:
1) (i+1 i+1 i (i i), (i i i i i i i i
(26 Vel L e ) @ al 0B @ ok)al |2 ool O F ) (e 20k, 1)),

where k‘j(-i) € {0, 1} is the j-th round key in the i-th round, Fj(i) {0, 1} — {0, 1}™"
is the j-th round function in the i-th round, and = : ({0,1}™)4 — ({0,1}™")? is a
deterministic permutation. Since the round permutation 7 is not applied in the final

round, a dmn-bit ciphertext C'T" is derived from R-round outputs x(()RH), ...,xfff{l) as

CT = a1 (x| (see Fig. 3.6).

3.2 Evaluation Metrics

In this section, we present evaluation metrics used throughout this thesis.

3.2.1 Active S-Boxes and Active F-Functions

When a key is fixed, only nonlinear functions provide probabilistic behavior in differential
and linear cryptanalysis. In other words, the differential probability and linear probabil-
ity are only reduced by nonlinear functions. We mainly discuss differential cryptanalysis
hereafter in this section, however, a similar discussion is also applied to linear cryptanal-
ysis because of its duality [Bih94, Mat94, Kan00].

In order to calculate M DC Pg (the maximum differential characteristic probability of
a block cipher F), we need to consider all possible bit differential trails (a.k.a charac-
teristic path). While efficient algorithms to compute such bit characteristics were pro-

19



% %: M

Figure 3.5: SP-type F-function

posed [Mat94], it still requires huge computations. In order to more efficiently evaluate
the security against differential cryptanalysis, we search word-wise (a.k.a sub-block wise)
truncated differential trails [Knu94| instead of bit differential trails.

Definition 7 (Truncated differential). An n-bit truncated differential ox € {0,1} for
Ax € {0,1}" is defined as follows:

0 _{ 1 (Ax #0).

Each characteristic probability is bounded by the product of the maximum differen-
tial (characteristic) probability of all nonlinear functions on the corresponding truncated
trails. The maximum differential (characteristic) probabilities of nonlinear components
such as S-boxes and F-functions are generally computable or pre-assumed. Therefore,
if we exhaustively search all possible truncated differential trails on the cipher, we can
compute the upper bound of the maximum differential characteristic probability of E.

When computing the maximum differential characteristic probability by truncated
differential search, the number of nonlinear functions on the differential trails is important.
Such a nonlinear function having non-zero input difference (or non-zero input linear mask)
is referred to as a differentially (or linearly) active function.

Definition 8 (Active S-boxes and active F-functions). A differentially (or linearly)
active S-box and active F-function are defined as an S-boxr and F-function with non-zero
input difference (or non-zero input linear mask), respectively.

Since each active S-box (or F-function) reduces the differential and linear character-
istic probabilities, the maximum differential and linear characteristic probabilities are
bounded by the minimum number of differentially and linearly active S-boxes (or F-
functions), respectively. For example, AES has 16 8-bit S-boxes in a round, and the
maximum differential probability of each S-box is known as 276 At the same time,
the minimum number of active S-boxes for 4-round AES is known as 25 due to wide
trail strategy [DRO1]. Therefore, the maximum differential characteristic probability of
4-round AES is bounded by 271%%(= (279)?%). Since the minimum number of active S-
boxes is determined by linear functions, it is important metric for evaluations of not
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Figure 3.6: Type-II generalized Feistel networks (GFNs) with even-odd round permuta-
tion

only the security against differential cryptanalysis and linear cryptanalysis but also the
efficiency of diffusion property.

We give the standard definitions of bundle weight and branch number followed by
more specific notations [DR02].

Definition 9 (Bundle Weight). Let © € {0,1}"™" be represented as x = (z1,x2, ...,
Tm), where x; € {0,1}", then the n-bit bundle weight wy(x) is defined as

wy(z) = t{i]1 <i <m,x; # 0}.

Definition 10 (Branch Number). Let M : {0,1}"" — {0,1}"".
of M is defined as

(3.1)
The branch number
BIM) = min{un(@) + wa(M(a)}

We give the definitions of B and B* in r-round GFN to show the minimum number
of differential and linear active S-boxes, respectively.

(3.2)

Definition 11 (Differential Branch Number).

P = ' ()
57 = 1§i§r,{)21jn§d/2_18(Mj )- (3.3)

Definition 12 (Linear Branch Number).
B = . min  BCMY) (3.4)

where 'M s the transpose matrixz of M.
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3.2.2 Proportion of Active S-Boxes

A metric has to be defined to enable an efficiency comparison between different de-
signs. The proportion of active S-boxes in all S-boxes is a reasonable efficiency metric
with respect to differential and linear cryptanalysis for ciphers based on substitution-
permutation. It was introduced in [SP04] by Shirai and Preneel for BFNs and used
in [Bogl0, Bogll, BS11b, BS11a] for estimating and comparing the efficiency of diverse
Feistel constructions, including BFNs.

Both the number of active S-boxes and the number of all S-boxes over several rounds
of a BFN depend on the number r of rounds considered and the number m of S-boxes in
one F-function.

Definition 13 (Proportion of active S-boxes &, and &). The efficiency metric

En(ES) is defined as &,(ES) = lim, %, where N A, .(ES) is the number of

active S-bozes over r rounds and N'S,,.(ES) is the total number of S-box computations
over r rounds for a block cipher structure ES when each S-layer consists of m S-boxes in
parallel. The number of active S-bozes N' Ay, is measured when the underlying diffusion
matriz is MDS, i.e., B(M) = m+1. The efficiency metric £ is defined as € = lim,;, 00 Em.-

Note that this efficiency metric &,, cannot capture all implementation possibilities
and constraints in the field, though it is believed to provide an indication of the efficiency
of a block cipher towards the two fundamental types of cryptanalysis, see [SP04, Bog10,
Bogll, BS11b, BS11a] for some extensions and discussions with respect to efficiency
metrics.

The reason for &, being asymptotic in the number of rounds is technical: One can
operate with security results without having to extend them to an arbitrary number of
rounds. Sometimes, for clarity, it is desirable to compare just two efficiency numbers,
which is possible for large blocks (e.g. for hash functions or wide-block encryption) and
justifies the usage of £ as an efficiency metric in such cases. The metrics make most sense
for tight bounds and iterative trails.

The efficiently metrics £ and &, enable us to compare the efficiency of linear diffusion
of block cipher structures independent from the block size. For example, by using &
and &,,, it is possible to compare the 3-line GFNs with 4-line GFNs that both consist
of the same F-function. It is also possible to compare SPNs with GFNs regarding linear
diffusion. For instance, it has been known that an mn-bit SHARK-type SPN construction
consisting of a large m x m MDS matrix as linear function and m n-bit S-boxes has at
least (m + 1) active S-boxes every two rounds [RDP796]. For SHARK-type structure,
NS (Esaark-type) = mr and N Ay, - (Esgark-type) = (m + 1)r/2 when r = 2,4, ..., 2u,
where u is a positive integer. Thus, &, (Espark-type) = (m+1)/2m, then £(Esgark-type) =
0.5. This implies that almost half of S-boxes are active for SHARK-type structures.
Similarly to this, an m?n-bit SPN block cipher utilizing wide trail design strategy [DRO1]
with m x m MDS matrices and m? n-bit S-boxes has been known to have at least (m +
1)? active S-boxes every four rounds. Therefore, &, (Eyide-tran) = (m + 1)?/4m?, then
E(Ewide-trail) = 0.25.

Note that the efficiency metrics &, and £ are simplified metrics that explicitly ignore
some implementation costs. They ignore the implementation costs of inverse nonlinear
functions which are required for SPNs but not required for Feistel-type structures. More-
over, the cost of linear diffusion is also ignored. However, since we aim to compare block
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cipher structures including BFNs and GFNs with equal bundle sizes and the same diffu-
sion matrix type, it appears enough to use £ and &,,. We refer to [Bog10] for an extended
efficiency metric taking into account the cost of matrix-vector multiplications.

3.2.3 Diffusion Round and Maximum Diffusion Round

As one of the diffusion properties, the maximum diffusion round (DRmax) was defined
in [SM10]. This is defined as the minimal number of rounds such that every sub-block
of the ciphertext depends on every sub-block of the plaintext. The definitions of the
diffusion round (DR) and the maximum diffusion round (DRmax) are given as follows:

Definition 14 (Diffusion round (DR) [SM10]). For d-line GFN with round permu-
tation m, diffusion round of the i-th sub-block input DR;(m) is defined as the minimum
number of rounds such that the i-th sub-block input is diffused to all output sub-blocks.

Definition 15 (Maximum diffusion round (DRmazx) [SM10]). For d-line GFN with
round permutation m, the maximum diffusion round DRmax(m) is defined as follows:

DRmax(m) = max (DR;(n)).

0<i<d

While DRmax(7) is a simple property efficiently calculated from the given round per-
mutation 7, it has a strong relevance to immunity against impossible differential [BBS99]
and saturation attacks [DKR97], which are powerful attacks especially for GFN.

23



Chapter 4

Accurate Evaluation on the
Diffusion of Balanced and
Generalized Feistel Networks

4.1 Introduction

The GFN divides a plaintext into d sub-blocks, where d > 2, instead of d = 2 as used in
the balanced Feistel networks. The size of the F-functions used in the GFN depends on
the partitioning number d and the block size. If the partitioning number d of the GFN
is larger, then smaller F-functions will be used. However, a large value of d generally
requires a large number of rounds due to its slow diffusion. Hence there is a trade-off
between the partitioning number and the required number of rounds. However, this
relation has not been clear so far.

Suzaki and Minematsu introduced a GFN with the optimal round permutation with
respect to full diffusion property, which is a property that all outputs are affected by all
inputs [SM10]. Their paper showed that the improved GFN can be more secure against
impossible differential and saturation attacks than the standard GFN. However, they
expect that the minimum number of active S-boxes remains about the same. Thus their
structures still require at least same number of rounds as the standard GFN to be secure
against differential and linear attacks [BS93, Mat93].

It is well understood how to practically evaluate the security against differential and
linear attacks by determining the maximum differential and linear characteristic prob-
abilities [DR0O1, Kan00]. For instance, counting the number of active S-boxes is a well
used technique to evaluate the immunity against those attacks [SSAT07]. This approach
was used to design many block ciphers and hash functions, including AES [DR02] and
Whirlpool [BR11]. In SPN structures, it is relatively easy to evaluate the minimum num-
ber of active S-boxes by evaluating the permutation layers as discussed in [DRO1]. How-
ever, in Feistel structures, this is more complicated due to differential cancellations caused
by the XOR operation after the F-function. Kanda showed that the minimum number of
active S-boxes of certain consecutive rounds of Feistel structures with SP-type F-function
can be represented as the branch number of the matrices used in the structure [Kan00].
Shirai and Araki extended his result to three types of generalized Feistel networks [SA0§],
which are known as Type-I, Type-IT and Nyberg’s constructions [Nyb96, ZMI89b]. They
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Table 4.1: Summary of our results on the minimum numbers of active S-boxes for each
structure, where B is the differential or the linear branch number of the matrices used in

GFN.
| BEN TGENGT[ GENP GENg? | GENI™ | GENZ™
[Kan00, SS06] [SA08] (this chapter) | (this chapter) | (this chapter) | (this chapter)
4 B - B+1 B+1 B+1 B+1
o B+1 - B+ 3 B+ 3 B+ 3 B+ 3
6 B+2 B+2 2B+ 2 2B+ 2 2B+ 2 2B+ 2
7 - - 2B+ 2 26+4 2B+4 2B+4
8 2B+1 - 2B+ 3 3+ 3 4B + 2 4B + 3
9 2B +2 - 2B+ 4 3+ 6 4B + 4 4B+ 6
10 - - 3B+ 3 4B+ 5 4B + 6 5B + 4
11 - - 3B+5 4B+ 8 4B+ 8 5B+ 7
12 3B+1 2B +4 4B + 4 68+ 6 68 + 2 B+ 4
18 4B +4 3B+6 68+ 6 8B+ 8 8B+ 10 108+ 6

showed that any six consecutive rounds of Type-II GFN with any partitioning number
have at least the same number of active S-boxes as the BFN. They also introduced an ef-
ficient weight-based active S-box search algorithm. However, their algorithm only works
for small parameter sets of the GFN and the bound shown in the paper is not tight.
Therefore, to design a secure symmetric key primitive, a large number of rounds is still
required.

In this chapter, we show the first tight bounds on the minimum number of differential
and linear active S-boxes of GFN with large parameter sets. We first prove tight lower
bounds for four and six rounds of the standard GFN manually. The obtained bound of
six rounds of the standard GFN is almost twice as large as the previous bound. This
enables the required number of rounds to be almost halved. Then we show a novel
approach to efficiently derive tight lower bounds on the minimum number of active S-
boxes of several types of GFN with large parameters including recently proposed GFN
utilizing optimal round permutations [SM10]. The proposed algorithm exploits word-
based truncated differential search and three-round relations of Feistel connections. By
using our results, the required number of rounds to be secure against differential and
linear attacks can be reduced significantly. Therefore, our results are useful not only for
a deeper understanding the security of GFN, but also for designing an efficient symmetric
primitive. Our results in this chapter are summarized in Table 4.1. More detailed results
are presented in Tables 4.2 and 4.3.

This chapter is organized as follows. In Section 4.2, definitions and some properties
are introduced. In Section 4.3, related work on GFN is explained. Sections 4.4 and 4.5
describe the lower bounds on the number of differential and linear active S-boxes in GFN,
respectively. In Section 4.6, we discuss the result obtained in this chapter. Finally, we
conclude in Section 4.7.
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Figure 4.1: GFN, with SP-type F-function and even-odd shuffle

4.2 Preliminaries

4.2.1 Target Structures

In this chapter, we focus on GFN with SP-type F-functions [Kan00] and an even-odd
shuffle [SM10] as defined in Section 3.1. As a reminder, we show our target structures
in Fig. 4.1, where dotted lines show possible connections, each set of outputs and inputs
is connected by exactly one line. The sub-diagram on the right in Fig. 4.1 is a zoom in

on an F-function. In the figure, S(-) denotes an n-bit bijective S-box and M ]@ denotes

a non-singular m X m matrix over a chosen field GF(2"). zé? and yé? denote an output

of the S-boxes and the linear function M ;i) in F j(i), respectively. We also restrict 7 to
be a word-based permutation. For instance, m of GFN with the partitioning number
eight and the word-based rotation shown in Fig. 4.2 is represented as 7(zo, x1, ..., Z7)
= (21,29, ..., 77, 79). We treat several types of 7 in this chapter. Hereafter GFN5¢ de-
notes the GFN, with the word-based rotation, i.e., standard Type-II GFN, and GFN"
denotes the GFN, with the optimal round permutation proposed by Suzaki and Mine-
matsu [SM10]'.

Since each active S-box reduces the differential and linear characteristic probabili-
ties, the maximum differential and linear characteristic probabilities are bounded by the
minimum number of differential and linear active S-boxes, respectively. On the other
hand, the minimum number of active S-boxes is relevant to the branch number of the
linear function. Thus the motivation of this chapter is to clarify the minimum number of
differential and linear active S-boxes for GFN by using B? and B”, respectively.

It is well known that the upper bounds on the security against linear attacks are
derived from the upper bounds on the security against differential attacks because of its
duality [Bih94, Mat94, Kan00]. Thus, in this chapter, we mainly discuss the security
against differential attacks. We discuss the security against linear attacks in Section 4.5.

"'We treat GFN, with the round permutations No.1 given in Appendix A of [SM10] as GFNiimp.
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Figure 4.2: GFNgtd Figure 4.3: GFNJ™ [SM10]

4.2.2 Properties of Generalized Feistel Networks

In this section, we present several properties of GFN. As defined in Section 3.2.1, we refer
to an F-function which has non-zero input difference or non-zero output mask value as a
differential or a linear active F-function, respectively. From the bijectivity of F-functions,
the following property holds:

Property 1. Any two consecutive rounds of GFN have at least one differential active
F-function if a non-zero input difference is given.

We consider the five-round structure of GFNztd shown in Fig. 4.4, and focus on the value
xé‘j in the center of the structure, where xgj) and zé? denote an input of Fj(z)
output of S-boxes in F j(i)

and an
, respectively. Let DJ(-i) denote the number of differential active

S-boxes in Fj(i). Since all S-boxes are bijective, we have the following relations.

Property 2. } ' .
DY = w,(Azl)) = w,(A2). (4.1)

J

Then the following property is derived [SA0S].

Property 3 (Three-round relation of Feistel connection). If Dj@ # 0, then Dj(-i) +

(i-1) (i+1)
Dy’ + Dy’ = BP.

Proof.
f M(i)(A (i)> — A (i-1) ® A (i+1) (4 2)
j \B2g) = By La(j+1)- :

From the definition of BY, wn(Azé?) +wn(M;i)(Az§?)) > BP if Azé? # 0. Also, wy,(a) +
wy(b) > wy,(a @ b) holds, then we have

wn(Azé?) #0= wn(Azé?) + wn(A:Eg(;}r)l)) + wn(A:Bg(ﬁ)l)) > BP. (4.3)

[]

In this chapter, we refer to this relation of three values Axgj), Axéi(;lr)l) and Ax%rﬂ) as the

three-round relation of the Feistel connection. The following properties are also obtained.
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Property 4. If D\ # 0, then D"V + DV > 1, D"V + DV > 1, and D'V +

J Jj+1
DY > 1.

Proof.
MDA @ AP = Aaf) £, (4.4)

i—1 i—1 i—2
M( DAzl # A 4.5)

—~

Then M i~ (AZ2 G 1)) and A:c2j cannot be 0 simultaneously. Thus, D( )+D](»i_2) > 1.

The other propertles can be proved in a similar way. O

We give some definitions of round permutations to use three-round relation of the
Feistel connections in GFN. Let wg, mo be index mappings. mg is the index mapping of 7
from even numbered blocks to odd-number blocks and all indexes are divided by two. For
example, 7 of GFN5' shown in Fig. 4.2 is represented as 75[0] = 3, mg[1] = 0, 7x[2] =1
and 7g[3] = 2. Similarly, 7o is the index mapping of 7 from odd numbered blocks to
even-number blocks and all indexes are divided by two. For example, 7o of GFNg is the
identity mapping, and mo of GENg"™ is represented as mo[0] = 0, mo[1] = 2, mp[2] = 1 and
mo[3] = 3. By using these mappings mg and 7o, the three-round relations of the Feistel
connections in GFN can easﬂgl be represented. For instance, the three F-functions input

differences sz 1) Aa:(”rl and sz:z[]/m in Figs. 4.2 and 4.3 satisfy the three-round
o)

relation shown in Property 3 independently, where j = {0,2,4,6} and 7@1 is an inverse
mapping of 7. A A A
Let Azl = (Ax(()l), A:rg), s AZL‘EQQ). Then the following property is derived.

Property 5. Any three consecutive rounds of (i — 1) to (i + 1)-round of GFN4 have at
least W (Ax®) - BP differential active S-bowes, specifically,

d/2—1 i+1
> Y DY > wy, (Ax) - B (4.6)
s=0 t=i1—1

Proof. From the definition of the even-odd shuffle, each i-th round output after the XOR
operation is mapped to the corresponding F-function of (i — 1)-th round and (i + 1)-th
round respectively. In other words, there exist d independent three-round relations shown
in Property 3. Thus the number of active S-boxes in three consecutive rounds is bounded
by the bundle weight of the differentials in the center. O]
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The mappings 7, 7o, and the Property 5 are useful to evaluate the minimum number
of active S-boxes of GFN.

4.3 Related Work

In this section, we discuss previous results related to GFN. The formal definition of GFN
was given by Zheng et al. [ZMI89b]. Several cryptographic properties of these structures
were analyzed in [KHST03, MV00]. Provable security of GFN5 against differential and
linear attacks was discussed by Lee et al. [LKST06]. In their results, more than five rounds
of GFN$? have the maximum differential probability p* + 2p® and the maximum linear
probability ¢* + 2¢°, where p and ¢ are the maximum average differential probability
and the maximum average linear probability of the F-functions used in the structure,
respectively.

The practical security of GENS against differential and linear attacks was discussed
by Shirai and Araki [SA08]. They showed the lower bounds on the number of active
S-boxes in three types of generalized Feistel networks, Type-I, Type-II and Nyberg’s
constructions [Nyb96, ZMI89b]. In their results, any six consecutive rounds of GFNs
have at least B” + 2 active S-boxes?. Moreover, they introduced efficient weight-based
active S-box search algorithms that can derive the minimum number of active S-boxes of
GFN. Though their algorithm is efficient, still a large computation is required to evaluate
large parameter sets of GFN, namely, it requires to search at most (m + 1)40r+1D/2 values
to evaluate r-round GFNS. Thus the algorithm does not work for GFN54 with large
parameters. We use this algorithm to verify the tightness of our results in Section 4.4.4.

Suzaki and Minematsu discussed round permutations of GFN [SM10]. They mainly
focused on full diffusion property, which is a property that all outputs are affected by all
inputs. They showed that the diffusion property of the GFNy (d > 4) could be better
than GFN54 by replacing its round permutation from the word-based rotation used in
GFNs . In their chapter, although the improved GFN has better properties with respect
to full diffusion, they have about the same number of active S-boxes® as GFN5'.

4.4 Differential Active S-boxes in GFN

In this section, we present the minimum number of differential active S-boxes in several
types of GFN. First, we show better lower bounds for four and six rounds of GFNS.
Then, we introduce an exhaustive search algorithm that determines the minimum number
of differential active S-boxes for all types of GFN efficiently. By using this algorithm,
we present several lower bounds on GFN. Finally, we compare the results obtained from
the new algorithm with the results obtained from weight-based exhaustive active S-box
search to verify the tightness of the new bounds.

2Their results were given by BY, and BY which is a branch number of two consecutive matrices.
If matrices used in each F-function are different, BY can be more than two. However, in our model,
BY =2.

3Note that, they evaluated the number of active S-boxes by counting the number of active F-functions
as active S-boxes.
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Figure 4.5: Four rounds of GFN5 (untwisted form)

4.4.1 The Lower Bounds for Four and Six Rounds of GFNZtd

Theorem 1. Let d > 4. Any four consecutive rounds of GFN' have at least BP + 1
differential active S-bozes.

Proof. We consider four consecutive rounds that start from the i-th round as described in
Fig. 4.5. From Property 1, there is at least one active F-function in any two consecutive
rounds, i.e., there is at least one active F-function in the (i + 1)-th round or the (i +2)-th
round. As shown on the left side of Flg 4.5, suppose that the j-th F-function in the

(i 4+ 1)-th round is active, namely, D -ZH # 0. In that case, Dj(z_:rll) + D](J)FQ + Dj(z:; > BP

from Property 3, and D (+2) 4 D(H?’ > 1 from Property 4. Thus these four rounds have
at least BY + 1 dlfferentlal actlve S boxes. Similarly, in the case of an active F-function
in the (¢ + 2)-th round, we have the same bound as shown in the right side of Fig. 4.5.

Therefore, we obtain Ed/2 lZfrf’D(t) > BP +1. O

Theorem 2. Let d > 4. Any siz consecutive rounds of GFN have at least 2BP + 2
differential active S-bozxes.

Proof. We consider six consecutive rounds that start from the i-th round. From Prop-
erty 1, there is at least one active F-function in any two consecutive rounds, i.e., there is
at least one active F-function in the (i 4+ 2)-th round or the (i + 3)-th round. Suppose
that the j-th F-function in the (i + 2)-th round is active, i.e., D§i+2)

Fig. 4.6. Then we consider the following cases.

# 0 as shown in

Case 1. If D Z+3 = 0, then D(Hrl # 0 from Property 4 , also Di + D(Hl) > 1 and

DY+ D(”‘” > 1. Then D““) + DY, + DY > BP from the fact DY # 0

and Property 3. We then cor181der the following two cases.
Case 1-1. If D](.i+4) # 0, then Dj(.iH) + Dj(.ff’) > BP from Property 3. Thus we have
d/2—1 g t
RI2 5 i > 9P 4 2,
Case 1-2. If D(HS # 0, then D(-HS) D(HQ) D(i+4) > BP from Property 3 and
D(ZJF4 + D Z+5 > 1 from Property 4. Thus we obtain X% 12’+5D >2BP +2.

Case 2. Dj(flg) # 0, then D](.i:;) + D](-f;) > 1. Then we consider the following cases.

Case 2-1. If Djf; # 0, then Djf;) + Dj(»ff) > 1. We consider the following two cases.
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Figure 4.6: Six rounds of GFN5 (untwisted form)

i+1 i+1 i 142 i+3 i+2
Case 2-1-1. If DI}V # 0, then DV 4+ DY), + DY > BP. Also, DY 4+ DU +

D](.ij;) > BP, D](.fll) + Dg(‘i+)2 > 1, and D§i+4) + D](.ff’) > 1. Therefore, we have
25 i > 9BP 4 2.

Case 2-1-2. If DY 7 0, then DIYS + DI > 1. Also, DI 4 DD 4 DI >
BP. D](-:’;) + DJ(»Z:;) - D§:’§’> > BP, and D§Z+4) + Dj(-lff) > 1. Thus, we obtain
R2 i pi > 98P 4 2,

Case 2—2. If D](-’f;) #+ .0, then DJ(-T;‘) + DJ(-T;’) + D](-’ff) 2 BP. Also, DJ(-HQ) + Dj(-irll) +
D](.Z:lg) > BP, D](-Zjll) + D](-Z) > 1, and D](-ZH) + D](-Z:f) > 1. Therefore, we have
2 tyitspit) > 9P 4 2,

Considering all cases, we conclude that any six consecutive rounds in GFN54 have at
least 2B + 2 differential active S-boxes when there is at least one active F-function in
the (i 4 2)-th round. Similarly, in the case that there exists at least one active F-function
in the (i + 3)-th round, we have the same bound. Finally, we conclude that any six
consecutive rounds in GFN54 have at least 2B” + 2 differential active S-boxes. O

All cases used for this proof of the minimum number of active S-boxes in six rounds
of GFN§ are shown in Figs. 4.7-4.11. In these figures, the F-function indicated by the
bold line is determined to be active and the F-function indicated by the dotted line is
determined to be non-active. Also, there is at least one active S-box in the area encircled
by dotted line, and there are at least B” active S-boxes in the area encircled by chain
line.

The bound given by this theorem is almost twice as large as the previous result. Thus,
the required number of rounds of GFN3' to be secure against differential attacks can be
almost halved by using this bound.

While it might be possible to prove the minimum number of active S-boxes of a large
number of rounds of GFN54 in a similar way, such proofs would be quite complex when
the number of rounds is large. In other words, the number of cases to be considered
would be increased drastically. Also, using the approaches so far, the relation between
the partitioning number d and the minimum number of active S-boxes is still unclear. If
all possible cases are checked efficiently, the minimum number of active S-boxes of the
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structures can be derived easily. Therefore, we propose another approach to efficiently
derive the minimum number of active S-boxes of GFN with large parameter sets in the
following section.

4.4.2 The Search for the Minimum Number of Differential Ac-
tive S-Boxes

In this section, we introduce the search algorithm of the minimum number of differential
active S-boxes for GEN. This algorithm consists of the following two steps: (a) searching
active F-function paths of GFN exhaustively by word-based truncated differential search,
(b) determining the minimum number of differential active S-boxes from a given path.

Let X@ € {0, 1}%2 be the input differences of the mn-bit truncated differentials of the
i-th F-function, i.c., X® = (W (Az(), won(AzS), ., wmn(AJJ&QQ)), where X(©) is the
first input differences to XOR operation side, namely, X(©) = (wmn(Aazgl)), wmn(Axgl)),
o wmn(Aa:g_)l)). Let BD(R) be the minimum number of differential active S-boxes in
R-round GFN, then BD(R) is calculated as follows:

Step 1. Initialize BD(R) to a sufficiently large value, such as the total number of S-boxes.

Step 2. Choose a possible active F-function path by searching mn-bit truncated differ-
ential paths of GFN. First, X(® and X are chosen exhaustively. Then, i-th round
truncated differential path X® (i > 3) can be determined by X2 and X(~Y as

follows:
‘ (i—1) (i—2) e o (im1) (i—2) B
5O _ ] X @ Xy X AX ) =0,
! 0,1 , otherwise,
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Figure 4.11: Case 2-2

where X J(-i) is a j-th bit of X® and Xéi) is the most significant bit of X ®. In the case
of i =2, X(i,_f),l is replaced by X i_Q),}. Thus R-round path of X (0 <i < R)
R

(
75" 1] o'l
is calculated by using the previous algorithm repeatedly.

Step 3. Determine the minimum number of active S-boxes from a given truncated dif-
ferential path. This step is described in Fig. 4.12. If the bound obtained from
the algorithm Fig. 4.12 is less than BD(R), then BD(R) is updated. The detailed

explanation of this step is presented in the following section.

Step 4. If all possible truncated differential paths have been checked, terminate the
program. Otherwise, go to Step 2.

We give an improvement of Step 2. From Property 5, it is easy to derive a rough
bound on the number of B” in the structure by checking some Hamming weights of X ®.
Then if the obtained rough bound is more than the current bound BD(R), we can simply
skip this path. For example, in the case of R = 6, we check max(Hw(X®)+ Hw(X®),
Hw(X®)), Hw(X®)), where Hw(X) denotes a Hamming weight of X . This improvement
results in a speed-up in practice.

4.4.3 Detailed Explanation of the Algorithm

We explain the algorithm presented in the previous section in detail. The most important
part of this algorithm is Step 3. In this step, we focus on three-round relations in GFN. As
discussed in Section 4.2.2, we find three-round relations in any three consecutive rounds
by using 7' and mo. Then we count the number of B? in GFN greedily from top to
bottom. Finally, we count the remaining constants in the structure. We exploit fact
that there exist d/2 independent three-round relations in any three consecutive rounds of
GFN, and these relations can be obtained by using the mappings wgl and mo. Once d/2
independent three-round relations are obtained, the number of B” in three consecutive
rounds is easily derived from Property 3 and 5. However, in this algorithm, there should
be some overlapping values. To avoid this problem, we use a flag for each bit of truncated
differentials. Once a value is used for counting the number of B in the certain three
consecutive rounds, then the flag is set. Then this value cannot be used twice, and the
algorithm works correctly.

Note that the comparison phase in Step 3 depends on the value of BP. Suppose that
the current BD(R) = 2BP, and a new value of B” + 3 is obtained. In that case, the
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Algorithm CountBD(r, X", ... X)) :
Clear flags of XJ@, (1<i<r,0<j<d/2-1)
S=0
for i« 2to (r—1) do
for j <= 0 to (d/2 —1) do
if (XJ@ =1) A (flags of X', ,1 and X are not set) then
S+ S+1
Set flags of X X(Z,l1 (if X(Z,l1

7 U]

(i+1)
1), andX oli]

(i+1)
G X =1)
T=0
for i <1 to r do

for j < 0 to (d/2—1) do
if XJ@ =1 A (flag of X]@ is not set) then
T'+T+1
return S - BP + T

Figure 4.12: Algorithm CountBD(r, X© ... X™).

BD(R) is updated when BP > 2, because 2B” < BP + 3. However, when B = 2, it
should not be updated. This chapter contains results for B” > 2.

We now show that this algorithm does not always give the best bound in the structure
from a given path. The path in the left of Fig. 4.13 is the case, where an F-function
indicated by bold line is determined to be active and an F-function indicated by dotted
line is determined to be non-active. In this case, the algorithm (Fig. 4.12) outputs B” +4
instead of 2B” + 2 as the path in the center of Fig. 4.13, where there is at least B”
active S-boxes in the area encircled by chain line. However, because the purpose of this
algorithm is to find a lower bound on the number of differential active S-boxes, the best
bound in this step is not necessary. We can avoid this problem by adding search patterns
to the algorithm. For example, if we compute the bound both way, i.e., from top to
bottom and from bottom to top, the algorithm outputs the best bound from the path
at the right of Fig. 4.13. However, from our calculations, it seems that this change does
not provide an improvement in practice. In other words, the obtained lower bound is the
same even if we add some search patterns to the algorithm, e.g., the path in Fig. 4.13 is
not the minimum path for GFN5™.

4.4.4 Comparison of Results

We verified the tightness of the obtained lower bounds by comparing with the results
obtained by the weight-based exhaustive active S-box search [SA08] for as many param-
eters as possible. Consequently, the actual number of active S-boxes from the obtained
bounds completely corresponded to the results from the exhaustive search with the fol-
lowing parameters: GFN5'4 with m = 2,3,....8,* GFN{ with m = 2,3,4, GFN§'d with
m = 2, GENI™ with m = 2,3,4, and GENJ™ with m = 2 and r = 1 up to 20, where
BP = m+1. While we have not confirmed the tightness of the other bounds due to com-

4The case of GFN5*d with m = 4 is in Table 4 of [SA08].
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Figure 4.13: An example path of GFN5d

putational restrictions of the weight-based exhaustive search, it seems that the obtained
bounds are tight as well.

4.5 Linear Active S-Boxes in GFN

It was shown by Kanda [Kan00] that the lower bounds on the minimum number of
linear active S-boxes of Feistel structure with SP-type F-functions can be obtained by
simply replacing differential branch number B? by linear branch number B. In his work,
Feistel structures with SP-type F-functions can be represented as Feistel structures with
PS-type F-functions by using an equivalent transformation. Then the minimum number
of active S-boxes is derived by evaluating the transformed cipher using the concatenation
rules [Bih94, Mat94].

GFN with SP-type F-functions can be represented as GFN with PS-type F-functions
in a similar way. Note that, in contrast to Feistel structures, depending on the original
round permutation used in GFN, the transformed round permutation can be different.
However, we can use the same algorithm to determine the lower bounds on the minimum
number of linear active S-boxes by replacing the original round permutation by the trans-
formed round permutation. This is not the case for the structures in the tables shown
in this chapter: the transformed round permutation is the same as the original round
permutation. Thus, the minimum number of linear active S-boxes is obtained by simply
replacing differential branch numbers B by linear branch numbers B%.

4.6 Discussion

In this section, we discuss the obtained results. We first give an example of the parameter
m =4 and n = 8 of GFN$4  i.e., 256-bit block cipher, to show applicability of our results.
We assume that this example cipher consists of the MDS matrices and the inversion S-
boxes over GF(28) | specifically, B” = BY = 5 and the maximum differential and linear
probability of the S-box is 27¢. In this case, at least 22 active S-boxes are required to be
secure against differential and linear attacks, as (279)%2 = 27132 < 27128 when the key size
is 128-bit. Though the previous result shows that 24 rounds are required to have more
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than 22 active S-boxes, our results show that only 10 rounds are required to be secure
against differential and linear attacks. Thus, our results are useful to design an efficient
symmetric primitive, since the required number of rounds with respect to differential
and linear cryptanalysis is reduced. While many types of attacks must be considered
when constructing a secure symmetric primitive, actually, differential, linear, impossible
differential and saturation attacks tend to be the bottleneck in GFN. Therefore, it can
be said that at least two of them can be improved by using the new bounds. If the
parameters (the dimension of the matrices m and the partitioning number d) are larger,
the effects of our results become even more noticeable.

Moreover, according to our results, most of the bounds on a sufficiently large number
of rounds can be derived from bounds on a smaller number of rounds. For example, most
of rounds of the minimum number of active S-boxes for more than seven rounds of GFN5™
can be derived from the bounds on one to the bounds on six consecutive rounds, e.g. the
minimum number of active S-boxes in ten rounds of GFN§ can be represented as active
S-boxes in four rounds and six rounds of GFN5. Thus it seems that determining tight
bounds for a small number of rounds is important. Therefore, our algorithm works well
even if the number of rounds is large, whereas it needs a lot of computation to derive
bounds of GFN with large number of rounds, e.g., more than 30 rounds.

Furthermore, the results show that the number of active S-boxes increases about 1.5
times when the partitioning number is doubled, assuming the number of S-boxes used in
each F-function remains the same and the number of rounds is sufficiently large.

4.7 Conclusions

In this chapter, we have shown the first tight bounds on the minimum number of active
S-boxes of GFN with large parameter sets. We first proved tight lower bounds for four
and six rounds of the standard GFN manually. Then, we introduced a novel approach
to evaluate the minimum number of active S-boxes of GFN by using the branch number
of the matrices used in the structure. The proposed algorithm uses three-round relations
of the Feistel connection and well known truncated differential search. By using our
algorithm, all types of the GFN can be evaluated precisely, including recently proposed
GFN that utilize optimal round permutations instead of the word-based rotation used
in the standard GFN. Moreover, we confirmed the tightness of the obtained bounds by
comparing with the results obtained by the weight-based exhaustive active S-box search
algorithm.

By applying our results, the required number of rounds to be secure against differential
and linear attacks can be reduced significantly. Moreover, all bounds obtained in this
chapter depend only on the branch number of the matrices used in GFN. The results can
therefore be widely used to design an efficient symmetric primitive. In other words, our
results are useful not only for more thoroughly understanding the security of the GFN,
but also for designing an efficient symmetric key primitive, because the GFN can be
implemented compactly and evaluating its security against differential attacks is essential
to both block cipher and hash function design.
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Table 4.2: The minimum number of active S-boxes in GFN3, assuming B > 2, where

B denotes either the differential or the linear branch number of the matrices used in the

GFN

r | BEN | GFNS [ GFNS [ GENJT [ GFNSW [ GFNSY | GFNSi@ | GFNSW
1] 0 0 0 0 0 0 0 0
2 [ 1 1 1 1 1 1 1 1
3 2 2 2 2 2 2 2 2
1] B | B+1 | B+1 | B+1 | B+1 | B+1 B+1 | B+1
5 B+1 B+ 3 B+ 3 B+ 3 B+ 3 B+ 3 B+ 3 B+ 3
6 | B+2 |2B+2|2B+2 | 2B+2 | 2B+2 | 2B+2 | 2B+2 | 2B+2
7| B+3 | 2B+2 | 2B+4 | 2B+4 | 2B+4 | 2B+4 | 2B+4 | 2B+4
8 |[2B+1|2B+3 | 3B+3 |3B+3 | 3B+3 | 3B+3 | 3B+3 | 3B+3
9 [2B+2| 2B+4 | 3B+6 | 3B+6 | 3B+6 | 3B+6 | 3B+6 | 3B+6
10 | 2B+3| 3B+3 | 4B+5 | 4B+5 | 4B+5 | 4B+5 | 4B+5 | 4B+5
11|2B+4|3B+5 | 4B+7 | AB+8 | 4B+8 | 4B+8 | 4B+8 | 4B+38
123B+2 | 4B+4 | 5B+5 | 6B+6 | 6B+6 | 6B+6 | 6B+6 | 6B+6
13|3B+3 | 4B+4 | 5B+6 | 6B+6 | 6B+9 | 6B+9 | 6B+9 | 6B+9
14 |3B+4 | 4B+5 | 6B+5 | 6B+7 | 1B+8 | 7B+8 | 7B+8 | TB+3
15 |3B+5 | 4B+6 | 6B+7 | 6B+8 |TB+12 | TB+12 | 7B+ 12 | 7B+ 12
16 |4B+3 | 5B+5 | 7B+6 | TB+7 | 9B+9 | 9B+9 | 9B+9 | 9B+9
17 |4B+4 | 5B+7 | TB+8 | TB+9 |9B+13 | 9B+ 13 | 9B+ 13 | 9B+ 13
18 |4B+5 | 6B+6 | 8B+7 | 8B+8 | 10B+8 | 10B+ 12 | 10B+ 12 | 10B + 12
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Table 4.3: The minimum number of active S-boxes in GFN"™  assuming B > 2, where
B denotes either the differential or the linear branch number of the matrices used in the

GFN

rounds | GEN™™ [ GEN™™ [ GFN'™P | GFN'2" | GFN'” [ GFN"2P
1 0 0 0 0 0 0

2 1 1 1 1 1 1

3 2 2 2 2 2 2

4 B+1 B+1 B+1 B+1 B+1 B+1
5 | B+3 | B+3 | B+3 | B+3 | B+3 | B+3
6 2B+2 | 2B+2 | 2B+2 2B+ 2 2B+ 2 2B + 2
7 2B+4 | 2B+4 | 2B+ 4 2B +4 2B+4 2B + 4
§ | 4B+2 | 4B+3 | 4B+3 | 3B+3 | 4B+3 | 4B+3
0 | 4B+4 | 4B+6 | 5B+4 | 3B+6 | 5B+4 | 5B+6
10 | 4B+6 | 5B+4 | 6B+4 | 6B+4 | iB+2 | 1B+5
11 AB+8 | BB+7 | 6B+ 6 5B+ 7 TB+5 8B+ 8
12 | 6B+2 | iB+4 |[TB+10| 1B+4 | 9B+4 | 10B+4
13 6B+3 | TB+5 | 88+4 8B+5 |10B+4| 11B+5
14 6B+8 | 8B+4 | 9B+ 3 9B+8 | 11B+5| 12B+3
15 6B+10 | 88+6 | 9B+5 | 9B+ 12 | 11B+8 | 12B+ 10
16 8B+6 | 9B+5 | 10B+4 | 10B+10 | 13B+6 | 15B+1
17 S8B+8 | 9B+7 |10B+6 | 10B+14 | 14B+6 | 15B+ 3
I8 |[8B+10|10B+6|12B+5| 12B+8 | 16B+3 | 17B+2
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Chapter 5

Efficient Design of 3-Line
Generalized Feistel Networks

5.1 Introduction

5.1.1 GFN with 3 Lines and Double SP-Functions

The problem of differential and linear cryptanalysis has not been addressed so far for
3-line GFNs (GFN3) with double SP-functions and single-round diffusion. At the same
time, it is exactly the combination of 3 lines and double SP-functions that appears most
promising for GFNs with more than 2 lines: there is evidence that both going from 4
lines to 3 lines in Feistel networks [Bogll] and from single SP-functions to double SP-
functions [BS13] as indicated above tend to increase efficiency with respect to differential
and linear cryptanalysis. For comparing efficiency, the works [Bogll1] and [BS13] as well
as this chapter use the proportion of active S-boxes in all S-boxes — a valid efficiency
metric introduced in [SP04] for ciphers based on substitution-diffusion transforms.

Figure 5.1 depicts GFN3 we will be studying in this chapter. This GFN structure is
the only (up to equivalence) non-contracting 3-line GFN, when the definition of a GFN
implies that the lines are only updated by XOR with the output of a round function,
the lines are rotated by one position between rounds, and a line cannot be both source
and destination within one round. All other GFNs with 3 lines under this definition will
be contracting and, thus, manifest a strong differential effect similar to that discussed
in [Bogll].

The double SP-function is also demonstrated in Fig. 5.1: it consists of two SP-maps,
each comprising a key addition layer (subkeys kZ(")), an S-box layer (with m S-boxes s;),
and a diffusion matrix M. The second linear layer limits the differential effect that might
be present for SPS-functions.

5.1.2 Contributions

In this chapter, we prove that every 7 rounds of such GFN3 with double invertible SP-
functions add at least 48 active S-boxes, both differentially and linearly, where B is the
branch number of the diffusion matrix M (or its transpose) used in the round functions
(Section 5.2). Conforming to the intuition outlined above, this indeed guarantees a
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Figure 5.1: GFN3 and double SP-function

proportion of active S-boxes by up to 14% higher than that for GFNy-I and GFNy-II
with double SP-functions (Section 5.3), when instantiated with MDS matrices.

5.2 Minimum Number of Active S-Boxes for GFNj

In this section, we prove a lower bound on the number of differentially and linearly
active functions for GFNj3 with invertible functions, transform it to a lower bound on
the number of differentially and linearly active S-boxes, and demonstrate the tightness
of these bounds. We perform our proof for differential cryptanalysis and show how it
literally translates to linear cryptanalysis. In the proof, we start with the local constraints
on the truncated trails of GFNj3, introduced in Fig. 5.2, and then show how those lead
to properties over 7 rounds. In Fig. 5.2, 0;4;,viy; € {0,1}, where 0;4; = 1 or 7,45 = 1
indicate that the line is differentially or linearly active, respectively.

5.2.1 Constraints on Truncated Differential Trails

Consider the XOR update of line i: it connects the truncated differences of lines i, ¢ + 2
and 74 3. As the function is invertible, its output difference cannot be zero for a non-zero
input difference. Then due to the properties of the XOR, one has:

Rule 1 (Differential zero rule for GFN3). For any i, if two of 6;, §;42, 0;13 are zero,
then all of them are zero. This is called an all-zero XOR.

Rule 2 (Differential non-zero rule for GFN3). For any i, if d;, d;12, d;13 are not all
zero, at least two of them are non-zero. This is called an non-zero XOR.

Rule 2 is restrictive enough to yield

Proposition 1 (Relation between active lines and non-zero XORs). For GFN;
with invertible functions, the number of active lines over t consecutive functions is greater
or equal to the number of non-zero XORs over t consecutive functions plus one, given a
non-trivial input difference.

Proof. Since any two sets of lines connecting to two non-zero XORs have at most one

overlapping line from Rule 2, the number of active lines is bounded by the number of
non-zero XORs. O

In the sequel, we will use the constraints discussed above to derive limitations for trun-
cated trails over 7 rounds of GFN3.
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5.2.2 Differentially Active Functions

Lemma 1. For GFN3 with invertible functions, every non-trivial differential trail over 7
rounds with at most one all-zero XOR has at least 4 active functions.

Proof. Since at least 7 — 1 = 6 XORs over 7 rounds are non-zero, there exist at least
7 active lines from Proposition 1. Up to 3 of active lines are not counted, since the
corresponding differences do not enter any functions within the 7 rounds. This gives at
least 7 — 3 = 4 non-zero active lines and at least 4 active functions. O]

Lemma 2. For GFN3 with invertible functions, every non-trivial differential trail over 7
rounds without consecutive all-zero XORs has at most one all-zero XOR.

Proof. From Rules 1 and 2, the following truncated differential trail is derived with no
consecutive all-zero XORs: if the XOR of function ¢ of GFNj is all-zero and there are no
consecutive all-zero XORs, the forward and backward difference propagations will follow
the truncated differential trail:

52‘—351'—251'—16i5z‘+15i+25i+35i+45i+55i+6 = 1110100111. (51)

From this trail, the first possible all-zero XOR appears in function ¢ + 7 in the forward
difference propagation. Similarly, in the backward direction, the first possible all-zero
XOR appears in function ¢ — 7. Thus, there exists at most one all-zero XOR over 7
rounds, since there are at least six consecutive non-zero XORs after and before an all-

zero XOR. [

Lemma 3. For GFN; with invertible functions, no non-trivial differential trail can have
any consecutive all-zero XORs.

Proof. Suppose that the XORs of both functions ¢ and 7 + 1 are all-zero. In that case,
0;,0i12 and 0;,3 are all zero due to Rule 1. Also, d;,1 and 9,4 are both zero. For any 1,
0i, 0;11 and §; 4o cannot be zero simultaneously due to invertibility. Thus, the XORs of
functions 7 and 7 + 1 cannot be all-zero simultaneously, then we obtain that there does
not exist consecutive all-zero XOR in GFNj. O

Directly combining Lemmata 1 to 3, one obtains

Proposition 2 (Differentially active functions for GFN3). GFN; with invertible
functions provides at least 4 differentially active functions over 7 consecutive rounds for
each non-trivial input difference.
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Figure 5.3: Truncated differential trail of GFN3 with double SP-functions (7 rounds)
attaining the lower bounds of Theorem 3 for MDS matrices

5.2.3 Linearly Active Functions

For GFNj3, the constraints of Rules 1 and 2 as well as the statements Proposition 1
and Lemmata 1 to 3 with respect to truncated differential trails literally translate to
those with respect to truncated linear trails: truncated differential trail ¢;...0;141 of
length t corresponds to truncated linear trail ~;...~;.;_1 under the change of variables
divj = Virt—1—j, J € {0,...,t—1}. Thus, one does not have to repeat the reasonings and
can directly obtain the linear version of the differential Proposition 2:

Proposition 3 (Linearly active functions for GFN3). GFN; with invertible functions
provides at least 4 linearly active functions over 7 consecutive rounds for any non-trivial
input/output linear mask values.

5.2.4 Active S-Boxes and Tightness of Bounds

Due to the presence of the second S-box layer, whenever a double SP-function is active
either differentially or linearly, it provides at least B active S-boxes, where B is the
branch number [DR02] of the underlying diffusion matrix M or its transpose. Thus, from
Propositions 2 and 3, one can straightforwardly derive

Theorem 3 (Active S-boxes for GFN;). Every TR, R > 1, rounds of the 3-line GFN
with invertible double SP-functions provide at least ABR active S-boxes (differentially or
linearly), where B is the branch number of the diffusion matriz in the SP-functions or its
transpose.

The lower bounds of Theorem 3 on the number of active S-boxes are actually tight,
since there exist S-box truncated trails attaining those minimal numbers. In Fig. 5.3, we
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Figure 5.4: 8-round impossible differential for GFN3 with bijective functions for non-zero

A, A, and V

demonstrate a 7-round differential trail for GFN3 with double SP-functions and MDS dif-
fusion having 4(m+1) active S-boxes, where A and V denote S-box truncated differences
with only one S-box active out of m (A) and all m S-boxes active (V), respectively. In
Fig. 5.3, the trail is iterative and corresponds to (5.1) from §; to d;16, XORs with differ-
ence cancellation are marked with dashed circles, and differentially active functions are
denoted by grey shading. MDS matrices are diffusion-optimal with their branch numbers
being maximum possible and equal to B(M) = m + 1 [DR02, LN97].

Note that the input and output differences for each of the functions active in the trails
contain exactly one active component. At the same time the internal difference in each
of them involves all S-boxes. This 7-round trail for GFNj; is iterative and illustrates the
tightness of Theorem 3 for any R.

5.2.5 Resistance to Other Attacks

There are several analysis approaches to be considered other than differential and linear
cryptanalysis in order to design a secure block cipher.

Most Feistel structures with invertible functions have relatively long impossible dif-
ferentials due to their comparatively slow diffusion. For instance, 5-round, 19-round,
and 9-round impossible differentials exist for balanced Feistel, GFNy-I, and GFNy-II, re-
spectively [CY09, TTST08]. We notice that impossible differential cryptanalysis [BBS99,
BKR97| can also be applicable to GFN3. The longest impossible differential we found
for GFNj is over 8 rounds of the form (0,0,A) - (V,0,0) for any non-zero A and V as
illustrated in Fig. 5.4.

Cancellation cryptanalysis [BDLF10] is an attack technique for GFN-type hash func-
tions also applicable to the block cipher underlying the Lesamnta hash function [HKY00]
which is based on type-I GEN structure. However, the attack complexity heavily depends
on the underlying key schedule and the amount of key input into each function. Thus the
cancellation cryptanalysis becomes less efficient for GFN3 with double SP-functions, since
several subkeys are inserted in each function. Three-subset meet-in-the-middle cryptanal-
ysis [BR10] is a recent attack on block ciphers having a simple key schedule and slow
diffusion. However, for GFN3, the attack is likely to be thwarted by a reasonable key
schedule over a non-negligible number of rounds.
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5.3 Differential and Linear Efficiency

In this section, we compare the efficiency of GFNj3 based on the results of this chapter
to that of GFNy-I and GFN-IT with double SP-functions of [BS13]. Note that for GFNy4
double SP-functions provide an efficiency advantage of up to 50% over single SP-functions.
The comparison in this section is performed for MDS matrices.

We use the efficiency metrics &, and £ defined in Section 3.2. Note that the
asymptotic treatment of efficiency is purely technical and does not impose any constraints
in practice, if the bounds on N'A,, . are tight and the corresponding trails are iterative,
which is the case for both GFN3; and GFN, under consideration.

As discussed in Section 3.2.2, the metrics &, and £ do not take into account the costs
of the linear diffusion, whose matrix will be slightly larger for 3-line GFNs. However, with
respect to the time performance of software implementations on modern 32- and 64-bit
processors — a major application platform — the cost of the matrix-vector multiplications
can be ignored, since most implementations combine the latter with S-box invocations in
the same table lookup, the overhead being negligible for most practical block sizes.

Using Theorem 3 for GFN3 and the corresponding results for GFN, from [BS13],
stating that every 14 rounds of GFNy-I and every 6 rounds of GFNy-II add 7B and 65
active S-boxes, respectively, one obtains:

£ = 220 = 22 for GEN, and £, = (520 = S50 _ 22 for GEN, -1/

£ =2~ 0.286 for GFN3 and £ = ; = 0.25 for GFNy-I/II

with double SP and MDS diffusion.

Figure 5.5 provides a comparison between these two efficiencies for a relevant range
of m’s. When instantiated with double SP-functions, GFNj3 tends to be consistently
more efficient (with respect to differential and linear cryptanalysis) than GFENy-1/11, the
advantage growing with the block size and attaining its maximum of about 14% for long
blocks (like in wide-block encryption or hash functions).

These results as well as a relatively low number of rounds covered by the longest
known impossible differential suggest that 3-line GFNs with double SP-functions are
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likely to yield more efficient ciphers in practice than 4-line GFNs with single and double
SP-functions.

5.4 Conclusions

In this chapter, we investigated the design of F-functions utilized in 3-line GFNs. We
proposed to instantiate the GFNs with double SP-functions instead of single SP-functions.
Then we proved tight lower bounds on the number of active S-boxes for the proposed
constructions. Moreover, it was shown that the proportion of active S-boxes in all S-
boxes for 3-line GFNs with double SP-functions is by up to 14% higher than that for
type-I and type-II 4-line GFNs with double SP-functions, when instantiated with MDS
matrices. While the block size of a cipher consisting of 3-line GFNs cannot be well used
one such as 64-bit or 128-bit, our results imply the possibility of designing more efficient
block cipher with 3m-block size, e.g., 48-bit or 96-bit, which are known as suitable for
RFID tags, where m is a positive integer.
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Chapter 6

Classification and Efficient Design of
4-Line Generalized Feistel Networks

6.1 Introduction

In this chapter, we classify 4-line GFNs and propose to instantiate type-I and type-II
GFNs with SPS-functions (two substitution layers separated by a permutation layer) or
double SP-functions (two subsequent substitution-permutation layers) and single-round
diffusion (i.e. using the same diffusion matrix in all diffusion layers of the cipher). We
obtain tight lower bounds on the number of active S-boxes in such constructions and
demonstrate that this instantiation is more efficient with respect to differential and linear
cryptanalysis than using single SP-functions for this purpose in terms of the proportion
of active S-boxes.

6.1.1 Related Work

For BFNs, the work [Kan00] proves the minimum number of active S-boxes in BFNs with
SP-functions when the diffusion matrix is the same in all rounds (single-round diffusion).
The papers [SS04, SS06] deal with the difference cancellation effect for such BFNs and
introduces the diffusion switching mechanism which relies on using several distinct dif-
fusion matrices over multiple rounds (multiple-round diffusion). The lower bounds on
the number of active S-boxes for BFN with SP-functions and multiple-round diffusion
are proven in [SP04]. Those for BFNs with SPS-functions and single-round diffusion are
analyzed in [Bogl0]. Note that using distinct diffusion matrices in different rounds (as
required by the multiple-round diffusion) reduces the efficiency of an implementation.

For GFNs, lower bounds on the number of active S-boxes are obtained for type-I
and type-II GFNs with SP-functions and single-round diffusion in [WZL06] and [Shil0],
respectively. Bounds for unbalanced Feistel networks with contracting multiple-round
diffusion are derived in [Bogll]. Rough lower bounds for type-I and type-II with single
SP-functions and multiple-round diffusion were proven by [SA08]|. The work [SA08] also
provides some numeric analysis for two specific cases of type-I and type-II GFNs with
single SP-functions and multiple-round diffusion.
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Figure 6.1: Round transforms of type-I and type-II GFNs with 4 lines

6.1.2 Contributions and Outline
Definition and classification of GFNs with 4 lines.

Despite the wide use of GFNs, it is not clear what the exact definition of a GFN is.
In the broad sense, any type of invertibly combining several keyed nonlinear functions
using XOR operations and permutations can be called a GFN. In a slightly narrower
sense, such a combination of functions can be considered a GFN only when the rounds
are connected by a rotation by one line instead of a generic line permutation. Further
restrictions can be imposed by a definition such as the usage of not necessarily invertible
round functions (which excludes Skipjack-like constructions).

In this chapter, we propose a definition of a GFN which is based on three main
restrictions. First, a line can be only updated by XORing the output of a function (and
not e.g. by applying the function itself to the line). Second, in a single round, a line
cannot be source and destination at the same time. Third, rounds are connected by the
rotation of lines by one position. See Section 6.2.

Under this definition, we exhaustively enumerate all 4-line GFNs up to cyclic equiva-
lence. It turns out that there are 21 constructions up to the equivalence. As we are mostly
interested in differential and linear properties of GFNs, we notice that most of these con-
structions lose significant parts of their differential security, since multiple differential
trails contribute to the same differential. We call GFNs with this property contracting
(that is, when the same line is updated more than once before it is used as an input to a
function). We find that there are exactly 4 non-contracting GFNs with 4 lines under our
definition. Namely, type-I and type-II GFNs in the terminology of [ZMI89b] which are
illustrated in Fig. 6.1 and their inverses up to permutational equivalence. All the other
4-line GFNs exhibit a differential effect, since at least one line is XOR-updated more
than once before being used as an input to a function there [Bogll]. This effectively
reduces the proportion of active S-boxes for contracting GFNs, which is not the case for
type-I and type-II GFNs. Moreover, we exhaustively search the minimum numbers of
active functions for contracting GFNs up to 50 rounds. The numeric search results show
that only 2 contracting GFNs have slightly more active functions compared to type-I and
type-II GFNs, and the other contracting GFNs have less active functions. This implies
that the contracting GFNs do not have advantages with respect to differential security
due to a strong differential effect and almost same number of active functions compared
to non-contracting GFNs.

GFNs with SPS-functions or double SP-functions.

We propose to instantiate the type-I and type-II GFNs with invertible SPS-functions (two
substitution layers separated by a permutation layer) or double SP-functions (substitution-
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Figure 6.2: Single SP-function, SPS-function and double SP-functions

permutation layer followed by another substitution-permutation layer) instead of single
SP-functions (one substitution-permutation layer), see Fig. 6.2. The intuition behind this
specific choice of functions is as follows:

Due to the second S-box layer, SPS-functions or double SP-functions allow, on the
one hand, to limit the analysis to the differential and linear activity patterns of
functions and, on the other hand, to have effectively a higher number of active
S-boxes.

Compared with an instantiation with double SP-functions (substitution-permutation
layer followed by another substitution-permutation layer), that with SPS-functions
has the same number of active S-boxes. However, the double SP construction has
two times larger number of permutation layers than the SPS construction, which
may reduce the efficiency.

The second diffusion layer of a double SP-function constrains the differential ef-
fect (many differential trails contributing to the same differential) which might be
present for SPS-functions.

Having an odd number of SP-layers does not enable to prove tight bounds on the
number of active S-boxes by working with functions. An even number of SP-layers
is similar to the case of double SP-functions. We also conjecture that functions
with more than 2 SP-layers do not add on the efficiency of the construction, thus,
double SP-functions providing a better efficiency.

The invertibility prevents a function from absorbing differences: If a nonzero dif-
ference enters a bijective function the output difference will also be nonzero.

Truncated trails and proven lower bounds on active functions.

We use a string-based technique to prove tight lower bounds on the number of differen-
tially and linearly active functions for the GFNs. We demonstrate an equivalence between
truncated differential and linear trails as well as imposed structural constraints which al-
lows to work with both differential and linear cryptanalysis simultaneously (Section 6.3).
We prove that, for 4-line type-I and type-II GFNs with invertible functions, at least
a half of their functions over 14 and 6 rounds, respectively, are active (Section 6.4). Note
that this is not necessarily the case for GFNs with more than 4 lines: type-II GFNs with
8 lines do not seem to provide a proportion of more than 0.35 active functions [SM10].
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Apart from our constructions with SPS-functions, this result also directly applies to
the block cipher £°12 underlying the compression function C®'? of the second-round SHA-
3 candidate SHAvite-3512 [DB09] and improves the upper bound on the differential trail
probability over 9 rounds from 2757 down to 2794,

Improved efficiency of GFNs.

For SPS-functions or double SP-functions, the lower bound on the number of active
functions for type-I and type-II GFNs directly translates to the lower bound on the
number of active S-boxes. Based on the proven bounds, we show that the instantiation
with SPS-functions or double SP-functions provides a proportion of differentially and
linearly active S-boxes by up to 33% and 50% higher than that with single SP-functions
using MDS diffusion for type-I and type-II GFNs, respectively, if the same diffusion matrix
is used in all rounds. In other words, GFNs with SPS-functions or double SP-functions
outperform GFNs with single SP-functions in terms of differential and linear efficiency
by a considerable margin. This opens up the possibility of designing more efficient block
ciphers based on GFN structures (Section 6.5).

Provable security for GFNs against differential and linear attack.

Besides security against differential and linear attacks, further analyses including im-
possible differential cryptanalysis, zero-correlation linear cryptanalysis and cancellation
cryptanalysis for GFNs are discussed. Furthermore, we show the upper bounds on the
differential and the linear hull probability of 4-line type-II GFNs with SPS-functions or
double SP-functions, which are directly obtained from the results on the provable security
for the SPN structure and the type-II GFN (Section 6.6).

6.2 Classification of GFNs with 4 Lines

We give a definition of a GFN with ¢ lines to perform the classification:

Definition 16 (GFN with /¢ lines). Let the state of a block cipher with a b-bit block
size be represented by { equally wide parts, called lines, of b/l bits each, £|b. This block
cipher is called a generalized Feistel network with ¢ lines if its round transformation can
be presented by operations on the £ lines with the following restrictions:

1. The lines are rotated by one position to the left between the rounds.
2. Fach line is used in exactly one of the following three ways:

e [t is source of a keyed domain-preserving nonlinear function acting on b/l bits.

e [t is destination of a keyed domain-preserving nonlinear function acting on b/¢
bits. The line is updated by XORing the output of the function to it.

e [t is neither source nor destination.

3. The structure attains full diffusion after a finite number of rounds.
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Restriction 1 in Definition 16 of rotating the lines between the rounds originates from the
fact that we are mostly interested in 4-line GFNs. The work [SM10] studies the diffusion
properties of type-II GFNs when another type of line permutation between rounds is
allowed to be chosen. The results of [SM10] suggest that line permutations other than
rotations by one position may indeed result in faster diffusion and more security against
impossible differential attacks when the number of lines is 6 and more. However, the
results show that there is no gain at least with respect to diffusion when the number of
lines is 4, since there are only three variations of line permutations which are right and
left rotations, and Nyberg’s GFN [Nyb96]. That is why the consideration of [SM10] is
limited to 6 lines and more. That is, GFNs with just 4 lines are unlikely to benefit from
other types of line permutation.

A specific GFN under Definition 16 will be characterized by connections between the
lines within one round. Some types of connections will result in similar or even equivalent
GFNs. Let GFN; and GFN;y be two GFNs given by their respective line connections under
Definition 16. In the classification, we rely on the following two notions of equivalence
between GFNs:

Definition 17 (Cyclic equivalence). GF'N; and GFNy are cyclically equivalent if the
line connections within one round of GFN; can be obtained from the line connections
within one round of GFNy by a cyclic rotation of lines.

Definition 18 (Permutational equivalence). GFN; and GFNy are permutationally
equivalent if, for some positive integer r and any positive integer t, the line connections
of every t - r consecutive rounds of GFN; can be obtained from the line connections of
some t - r consecutive rounds of GFNy by permuting input and output lines only.

We find that there are 21 GFNs with 4 lines under Definition 16 up to the cyclic
equivalence of Definition 17, shown in Fig. 6.3 grouped according to the number of func-
tions in a round. In Fig. 6.3, for each GFN type, the number of functions required for
full diffusion are provided near the left upper corner of the structure. As we are mostly
interested in differential and linear properties of GFNs, we notice that most of these
constructions lose significant parts of their differential security, since multiple differential
trails contribute to the same differential.

This property occurs iff the same line is updated more than once before it is used as
an input to a function:

Definition 19 (Contracting GFNs). A GFN under Definition 16 is called contracting,
if the same line is updated more than once before it is used as an input to a function.

A contracting GFN is also considered as source-heavy Feistel structure which consists
of round functions with more than one line of input such as RC2 [Riv98] and SHA-
2 [Nat02]. However, in this work, we treat only the contracting round function whose
outputs are contracted by the XOR. For instance, GFN3.4 in Fig. 6.3 is a source-heavy
Feistel structure with a round function having 3 line inputs and 1 line output. The
opposite of the contracting property is the expanding property which occurs whenever a
line is used as an input to a function more than once before it gets updated:

Definition 20 (Expanding GFNs). A GFN under Definition 16 is called expanding,
if a line is used as an input to a function more than once before it gets updated.
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An expanding GFN is also regarded as target-heavy Feistel structure which consists
of round functions with more than one line of output such as MARS [BCD"99] and
FORK-256 [HCS106]. For example, GFN3.1 in Fig. 6.3 is a target-heavy Feistel structure
with a round function consisting of 1 line input and 3 line outputs. It is easy to see
that contracting GFNs are exactly expanding GFNs. This might be not obvious when
considering the round transform of a GFN only, however, becoming clear when the GFN
transform over several rounds are treated.

Proposition 4 (Contracting and expanding GFNs). Each contracting GFN under
Definition 16 is also necessarily expanding and vice versa.

This means that the unpleasant property of differentials consisting of multiple differential
trails also necessarily occurs in expanding GFNs and have to be eliminated to achieve
a good level of resistance against differential cryptanalysis in an efficient way. We re-
fer to the work [Bogll] for a comprehensive study of contracting GFNs with SP-type
functions. It suggests that contracting GFNs are much more efficient with respect to lin-
ear cryptanalysis and can be utilized whenever linear resistance is of primary relevance.
At the same time, they cannot provide the full differential resistance which leads to a
considerable reduction of differential efficiency. This makes contracting GFNs much less
interesting that non-contracting ones. Moreover, we confirm that the minimum number
of active functions of most of the contracting and expanding GFNs are actually lower
than that of non-contracting GFNs by numerical experiments, while we do not have tight
bounds on the number of active functions for those GFNs. This implies that not only the
contracting or expanding constructions have a differential effect but the relative number
of active functions is lower for it, resulting in a lower efficiency (see Section 6.4.4).

Among the 21 GFNs shown in Fig. 6.3, only 4 are non-contracting (i.e. where a
line is updated exactly once before it is used as an input to a function), namely, type-I
(GFN1.2) and type-1I (GFN2.1) GFNs in the terminology of [ZMI89b] (Fig. 6.1) as well
as two their inverses (GFN1.1 also known as type-III [ZMI89b] and GFN2.2) up to the
permutational equivalence of Definition 18. Hence, due to the differential effect present
in the contracting GFNs at the example of GFN3.4, our attention will be drawn to the
latter two types of GFNs with 4 lines in the sequel.

Note that there can exist further equivalence types (beyond cyclic and permutational)
which are, however, out of scope here, since we filter out most GFNs due to the differential
effect [Bogll] and the two equivalence notions appear to be enough for determining
equivalent designs among the remaining GFNs.

6.3 Equivalence of Differential and Linear Truncated
Trails

Here we analyze constraints on the truncated differential and linear trails of type-I and
type-II GFNs. We demonstrate an equivalence between differential and linear truncated
trails for the GFNs with respect to these constraints. This allows to study truncated
differential and linear trails simultaneously by treating them as bit strings.
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Figure 6.3: Round transforms of the 21 GFNs with 4 lines under Definition 16 distinct
up to cyclic equivalence

6.3.1 Truncated Differential Trails and Constraints

A differential trail for an iterative block cipher is a sequence of input and output differ-
ences for the consecutive rounds of the cipher. Let

Ari, Awiy1, Ao, Az s

be the input difference to a type-I or type-II GFN with 4 lines. Then a differential trail
over t functions is the sequence of t 4 4 differences

Az, Azigy ..., AIz’+t+27 Aiypys.

Let the bit value d;4; be defined as:

divj = { 1L if Azsys # 0 for j € {0,...,t+ 3}.
Then the string of ¢ + 4 bits
04y Ot 1y - - Oigiss (6.1)

is called a truncated differential trail over t functions illustrated in Fig. 6.4. In the figure,
di+; € {0,1}, where 6;;; = 1 indicates that the line is differentially active.

Due to the properties of XOR used to update lines and the invertibility of the func-
tions, the propagation of differences through type-I and type-I1 GFNs with 4 lines obeys
the following rules:
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Figure 6.4: Truncated differential trails of type-I (4 rounds) and type-II (2 rounds) GFNs
with 4 lines

Property 6 (Differential zero rule for type-I GFN). If two of 6;, d; 13, d; 14 are zero,
then all of them are zero, where i = 0,1,2,...

Property 7 (Differential nonzero rule for type-I1 GFN). If d;, 0;13, d;44 are not all
zero, at least two of them are nonzero, where i =0,1,2, ...

Property 8 (Differential zero rule for type-II GFN). If two of 6;, 0;13, ;15 are
zero, then all of them are zero. Similarly, if two of 6,11, 0ivo, 0;1a are zero, then all of
them are zero, where 1 = 0,2,4, ...

Property 9 (Differential nonzero rule for type-1I GFN). If §;, d;13, ;15 are not
all zero, at least two of them are nonzero. Similarly, if 6;11, diro, 0;1a are not all zero,
at least two of them are nonzero, where 1 = 0,2,4, . ...

6.3.2 Truncated Linear Trails and Constraints

A linear trail for an iterative block cipher is a sequence of input and output selection
patterns (also known as linear mask values) for the consecutive rounds of the cipher. Let

Ieg, eipr, Twgyo, Twigg

be the input selection pattern for a type-I or type-II GFN with 4 lines. Then a linear
trail over ¢ functions is the sequence of ¢ 4+ 4 selection patterns

Pag, Teggr o, Twigigo, Ty s

Similarly to truncated differential trails, let the bit value «;1; be defined as:

. 0, if in+j =0 .
Vitj = { 1, if Ty £ 0 for j € {0,...,t+ 3}.
Then the string of ¢ + 4 bits
Vis Vit1s - - -5 Vitt+3 (6.2)

is called a truncated linear trail over t functions illustrated in Fig. 6.5. In the figure,
Yitj € {0,1}, where 7;4; = 1 indicates that the line is linearly active.

Like for differential trails, the propagation of differences through type-I and type-II
GFNs with 4 lines with invertible functions is due to the following rules:
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Figure 6.5: Truncated linear trails of type-I (4 rounds) and type-II (2 rounds) GFNs with
4 lines

Property 10 (Linear zero rule for type-1 GFN). If two of i, Vit1, Vita are zero,
then all of them are zero, where i =0,1,2,...

Property 11 (Linear nonzero rule for type-I GFN). If v, Yit1, Yita are not all
zero, at least two of them are nonzero, where i = 0,1,2,. ..

Property 12 (Linear zero rule for type-II GFN). If two of i, Vite, Virs are zero,
then all of them are zero. Similarly, if two of Vivr1, Vits, Vira are zero, then all of them
are zero, where 1 =0,2,4, ...

Property 13 (Linear nonzero rule for type-II GFN). If v;, vii2, Vits are not all
zero, at least two of them are nonzero. Similarly, if Vi1, Vivs, Vira are not all zero, at
least two of them are nonzero, where i = 0,2,4,. ..

6.3.3 Active Functions and Equivalence for Type-I GFNs

With respect to differential cryptanalysis, we look for a tight lower bound on the number
of differentially active functions among t consecutive functions of type-I GFN. In other
words, for some positive number \s, our aim is to prove

t+2

Zéi-i-j > As, (6.3)
=3

where ¢ > 0 and ¢ > 1 (cf. Fig. 6.4). At the same time, a tight lower bound A, on the
number of linearly active functions among ¢ functions means that (cf. Fig. 6.5)

t
Z%‘ﬂ‘ > Ay, (6.4)
j=1

where ¢ > 0 and ¢ > 1. Direct manipulations with the indexes of d,;; and ;1 ; yield

Proposition 5. Under the change of variables 6;+j — “Vitt+3—j, 7 € {0,...,t + 3} the
following holds for a 4-line type-1 GEN with invertible functions:

e truncated differential trail (6.1) translates to truncated linear trail (6.2),
e Property 6 translates to Property 10,

e Property 7 translates to Property 11, and

e if inequality (6.3) holds for \s = A, then inequality (6.4) holds for A, = .
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6.3.4 Active Functions and Equivalence for Type-II GFNs

Similarly to type-I GFNs, we explore tight lower bounds As and A, on the number of
differentially and linearly active functions among ¢ functions of type-II GFN;, i.e.:

t+3

D b =X (6.5)
j=2

and
t+3

Z’Yi+j > Ay (6.6)
j=2

respectively, where ¢ > 0 and ¢ > 2 (see Figs. 6.4 and 6.5). Also here, we obtain the
following

Proposition 6. Under the change of variables 6;+j — Vivt+3—j, 7 € {0,...,t + 3} the
following holds for a 4-line type-1I GFN with invertible functions:

e truncated differential trail (6.1) translates to truncated linear trail (6.2),
e Property 8 translates to Property 12,

e Property 9 translates to Property 13, and

e if inequality (6.5) holds for \s = A, then inequality (6.6) holds for A, = .

Propositions 5 and 6 say that once we have a proof that the minimum number of differ-
entially active functions among ¢ consecutive functions of type-I and type-II GFNs with
4 lines is A, we automatically obtain a proof that the minimum number of linearly active
functions among ¢ functions of the cipher is also .

6.4 Bounds for Active Functions

We focus on differentially active functions in this section, since one automatically obtains
a proof for the minimum number of linearly active functions from a proof for the minimum
number of differentially active functions as shown in the previous section (Propositions 5
and 6).

6.4.1 Some Truncated Differential Trails

Let function ¢ of type-I or type-II GFN indicate the function whose output XOR-~updates
line number 7. We refer to the XOR connecting to the i-th function’s output as the XOR
of function i. Then, if at least two of three lines connecting to the XOR of function i
are non-active, the XOR is called all-zero XOR. Also, if at least one of the three lines
connecting to the XOR of function i is active, the XOR is called nonzero XOR. These
notions are related to Properties 6 to 9. For instance, when the XOR of function ¢ of
type-I GFN is all-zero, d;, d;13 and 0;.4 are all zero due to Property 6. Also, when the
XOR of function ¢ of type-II GFN is nonzero, at least two of d;, 0,13, d;15 are nonzero due
to Property 9. Using these notions, the following truncated differential trails (treated as
bit strings and * denotes 0 or 1 in the strings) are derived:
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GFN-I-1 (consecutive all-zero XORs). If the XORs of functions i and i 4+ 1 of
type-I GFN are both all-zero, the forward and backward difference propagations
will follow the truncated differential trail:

5i—75i—6~~5i5i+1~--5i+85i+9 = 11%10110010001111.

Here 51 = 5i+3 = (51'_;,_4 =0 and 5i+1 = 5i+4 = (51'_;,_5 =0 by assumption. (51'_;,_2 =1 for
invertibility. ;16 = 1 due to Property 7, as d;40 = 1. 0;14 = 1 for t € {7,8,9} is
also due to Property 7, since 6,.4—1 = 1 and d;4;_4 = 0. 9;_3 = 0 due to Property 6,
since 0; = 0,01 = 0. 0,1 = d;_o = 1 due to Property 7, as d;31 = d;x3 = 0 and
0ivo = 1. 0;_4 = 6;_¢ = 1 for Property 7, since §; = §,_3 = 0 and 9; 1 = ;,_o = 1.
0;—7 = 1 due to Property 7, since §,_4 = 1 and d;_3 = 0.

GFN-I-2 (no consecutive all-zero XORs). If the XOR of function i of type-I GFN
is all-zero and there are no consecutive all-zero XORs, the forward and backward
difference propagations will follow the truncated differential trail:

0i-40;-30;—20;—10;0; 410542054 305440545 = 11 % 1011001.

Here 0; = 6,13 = 0;14 = 0 by assumption. The XORs of functions i — 1 and i+ 1 are
both nonzero. d;,1 = d;45 = 1 due to Property 7, since ;.4 = 0. §;_1 = d;10 = 1 is
also due to Property 7, as d;,3 = 0. §;_3 = ;4 = 1 is due to Property 7, as 9; =0
and 0;41 = 0,1 = 1.

GFN-II-1 (consecutive all zero XORs in even numbered functions). If the
XORs of functions ¢ and i 4+ 2 of type-II GFN are both all-zero, the forward and
backward difference propagations will follow the truncated differential trail:

5i—65i—5-'-5i5i+1--~5i+95i+10 =1x%111001001010111.

Here 0; = 0;10 = 0;13 = 0;15 = d;27 = 0 by assumption. The XOR of function i + 1
is not all zero for invertibility. 6,17 = 0,44 = 1 due to Property 9, since d;,o = 0.
0ire = 0j19 = 1 due to Property 9, since d;,4 = 1 and d;4,3 = d;37 = 0. ;18 =
(Property 9), since 0;16 = 1 and ;.5 = 0. ;410 = 1 (Property 9), since d;,5 =
and 5i+7 = 0. 51‘_1 =0 (Property 8) 51'_2 = 5'_4 =1 (PI‘OpGI‘ty 9), as 5i+1 =
and ;1 = 0;33 = 0. 6;_3 = 1 (Property 9), since ¢; = 0 and 0; 2 = 1. d;_g =
(Property 9), as 6,1 = 0 and 9,3 = 1.

— = = =

GFN-II-2 (consecutive all-zero XORs in odd numbered functions). If the
XORs of functions ¢+ 1 and i+ 3 of type-II GFN are both all-zero, the forward and
backward difference propagations will follow the truncated differential trail:

8i 501400051+ 0is 100311 = 111011000010111 * 1.
Here 0;11 = 0;40 = 0;43 = 014 = ;16 = 0 by assumption. d;,5 = 1 for invertibility.
0jr7 = 0,08 = 1 due to Property 9, since 6,19 = d;16 = 0 and d,,5 = 1. d;49 = 1 due

to Property 9, as d;,4 = 0 and ¢,.7 = 1. d;411 = 1 for Property 9, since 9,4 = 0 and

56



divo = 1. 0; = 1 (Property 9), since d;43 = 0 and d;15 = 1. d;_2 = 0 (Property 8),
as ;41 = 0;43 = 0. 9;_1 = §;_3 = 1 (Property 9), since d;10 = J;_o = 0 and ¢; = 1.
0;—4 = 1 due to Property 9, as 9;;.1 = 0 and §,_; = 1. J;_5 = 1 due to Property 9,
since 0;_o = 0 and d;_4 = 1.

GFN-II-3 (no consecutive all-zero XORs in even and odd numbered func-
tions). If the XORs of functions i of type-II GFN is all-zero and there is no
consecutive all-zero XORs in even and odd numbered functions, the forward and
backward difference propagations will follow the differential trail:

0i—30i-20;—1070i110;4+20i430i440i450i 16047 = 1110110 % 0 * 1.

Here 0; = ;13 = ;25 = 0, and the XORs of functions i — 2 and i + 2 are both
nonzero by assumption. The XOR of function ¢ + 1 is nonzero for invertibility.
0jro = 0,47 = 1 for Property 9, since d;,5 = 0. 9;_o = d;41 = 1 due to Property 9,
as ;43 = 0. 0;_1 = 0,3 = 1 due to Property 9, since §; = 0.

GFN-II-4 (no consecutive all-zero XORs in even and odd numbered func-
tions). If the XORs of functions i + 1 of type-II GFN is all-zero and there is no
consecutive all-zero XORs in even and odd numbered functions, the forward and
backward difference propagations will follow the truncated differential trail:

51'—462'—351'—251’—151'52'—1-15i+25i+35i+45i+56i+6 =1x1110010 = 1.

Here 6;11 = ;40 = 0;14 = 0, and the XORs of functions ¢ — 1 and ¢ + 3 are
both nonzero by assumption. The XOR of function ¢ is nonzero for invertibility.
0i+3 = ;16 = 1 due to Property 9, since d;,4 = 0 and the XOR of function i 4 3
is nonzero. ¢; = 9,1 = 1 due to Property 9, since d;;o = 0 and the XOR of
function ¢ — 1 is nonzero. §; o = ;4 = 1 due to Property 9, since d;;; = 0 and
0ip3 = 0i—1 = L.

We also prove a proposition useful for demonstrating the minimum numbers of differen-
tially active functions of type-I and type-II GFNs.

Proposition 7 (Relation between active lines and nonzero XORs). For type-1
and type-1I GFNs with 4 lines and invertible functions, the number of active lines over t
consecutive functions is greater or equal to the number of nonzero XORs overt consecutive
functions plus one, given a nontrivial input difference.

Proof. Since any two sets of lines connecting to two nonzero XORs have at most one
overlapping line from Property 7 or 9, the number of active lines is bounded by the
number of nonzero XORs. [

We employ the above bit strings and Proposition 7 to prove the minimum number of
differentially active functions of type-I and type-II GFNs in the following subsections.
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6.4.2 Differentially Active Functions of Type-I GFNs

Lemma 4. For 4-line type-1 GFNs with invertible functions, every nontrivial differential
trail over 14 rounds with at most 4 all-zero XORs has at least 7 active functions.

Proof. Since at least 14 — 4 = 10 XORs over 14 rounds are nonzero, there exist at least
11 active lines from Proposition 7. Up to 4 of active lines are not counted, since the
corresponding differences do not enter any functions within the 14 rounds. This gives at
least 11 — 4 = 7 nonzero active lines and at least 7 active functions. O]

Lemma 5. For j-line type-I GF'Ns with invertible functions, every nontrivial differential
trail over 14 rounds with consecutive all-zero XORs has at most 4 all-zero XORs.

Proof. From the string GFN-I-1, the XOR of function ¢ — 3 is all-zero assuming that the
XORs of functions ¢ and 7+ 1 are all zero. The other XORs starting from function 7 — 11
to 7 + 9 are nonzero. In the backward difference propagation, the first possible all-zero
XOR appears in function ¢ —12. Thus, there are at most 4 all-zero XORs in the backward
direction. Since the XORs of functions j and j 4+ 2 cannot be all-zero simultaneously for
any j due to the invertibility, there are at most 2 all-zero XORs of function 7 + 10 to
t + 13. Therefore, there are at most 4 all-zero XORs in the forward direction. O

Lemma 6. For 4-line type-I GFNs with invertible functions, every nontrivial differential
trail over 14 rounds without consecutive all-zero XORs has at most 4 all-zero XORs.

Proof. From the string GFN-I-2, the XORs of functions i — 8 to i — 1, as well as functions
1+ 1, i+ 2 and ¢ + 5 are nonzero, assuming that the XOR of function ¢ is all-zero
and there is no consecutive all-zero XORs. If the XOR of function ¢ + 3 is all-zero,
dir6 = 0jx7 = 0 due to Property 6. In that case, the XOR of function ¢ + 4 is also all-zero
due to Property 6, since 6,14 = d;47 = 0, and this contradicts the assumption. Thus, the
XOR of function i + 3 is nonzero. Then ;.6 = ;17 = 0,28 = 1 due to Property 7, since
0;+3 = 0,04 = 0. Therefore the XORs of functions ¢ + 1 to ¢ + 8 are nonzero. Since there
are at most three all-zero XORs in any five consecutive rounds assuming that there is
no consecutive all-zero XORs, there are at most four all-zero XORs in the forward and
backward directions. O

Lemmata 4 to 6 yield

Proposition 8 (Active functions for type-1 GFNs). The j-line type-I GFN with
wnwvertible functions provides at least 7 differentially active functions over 14 consecutive
rounds for each non-trivial input difference.

6.4.3 Differentially Active Functions of Type-II GFNs

Lemma 7. For j-line type-1I GFNs with invertible functions, every differential trail over
6 rounds with at most 3 all zero XORs has at least 6 active functions.

Proof. Since at least 12 — 3 = 9 XORs over 6 rounds are nonzero, there exist at least
10 active lines from Proposition 7. Up to 4 of active lines are not counted, since the
corresponding differences do not enter any functions within the 6 rounds. This gives at
least 10 — 4 = 6 nonzero active lines and at least 6 active functions. O]
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Lemma 8. For 4-line type-1I GFNs with invertible functions, every nontrivial differential
trail over 6 rounds with consecutive all-zero XORs in even numbered functions has at most
3 all-zero XORs.

Proof. From the string GFN-II-1, the XORs starting from function ¢ —9 to ¢ — 2, i + 1,
from ¢ + 3 to ¢ + 10 are nonzero, assuming that the XORs of functions ¢ and ¢ + 2 are
all-zero. Thus, there are at most three all-zero XORs in both directions. O

Lemma 9. For j-line type-1I GFNs with invertible functions, every nontrivial differential
trail over 6 rounds, with consecutive all-zero XORs in odd numbered functions has at most

3 all-zero XORs.

Proof. From the string GFN-II-2, the XORs of functions ¢ — 8 to ¢ — 3, functions ¢ — 1, ¢,
1+ 2, as well as functions i +4 to i + 9, and 7 4+ 11 are nonzero, assuming that the XORs
of functions i + 1 and 7 + 3 are all-zero. Thus, there are at most three all-zero XORs in
both directions. O]

Lemma 10. For j-line type-1I GFNs with invertible functions, every nontrivial differen-
tial trail over 6 rounds, without consecutive all-zero XORs in both even numbered rounds
and odd numbered rounds has at most 3 all-zero XORs.

Proof. Consider the following two cases.

case 1. If the XOR of function 7 is nonzero, then the XORs of functions 1 — 6 to ¢ — 1 as
well as functions ¢+ 1, 1+ 2, i+4, and ¢+ 7 are nonzero from the string GFN-II-3. If
the XOR of function i + 3 is all-zero, then d;,4 = 0,16 = 0 due to Property 8. Since
0ivs = 0;06 = 0, the XOR of function 7 + 5 is also all-zero due to Property 8 and
this contradicts the assumption. Thus, the XOR of function ¢ + 3 is nonzero. Then
0ir4 = ;16 = 1 due to Property 9, and §;,5 = 1 due to Property 9, since 6,15 = 0
and d;,¢4 = 1. Therefore, the XORs of functions i+ 1 to i+ 8 are nonzero. Since the
XORs of functions ¢ — 6 to ¢ — 1 are nonzero, there are at most one all-zero XOR
in any 7 consecutive functions in both directions. Thus, there are at most three
all-zero XORs in any 12 consecutive functions.

case 2. If the XOR of function ¢+ 1 is nonzero, then the XORs of functions ¢ — 7 to ¢ as
well as functions 7 4+ 3, ¢ + 5, and ¢ + 6 are nonzero. If the XOR of function i 4+ 2
is all-zero, ;15 = ;27 = 0 due to Property 8. Since ;14 = d;17 = 0, the XOR of
function ¢+ 4 is also all-zero due to Property 8 and this contradicts the assumption.
Thus, the XOR of function 42 is nonzero. Then d;,5 = ;.7 = 1 due to Property 9,
since d;12 = 0. Also, the XOR of function ¢ + 4 is nonzero, since d;,7 = 1. Since
the XORs of functions ¢ — 7 to ¢ and functions 7 + 2 to ¢ + 7 are nonzero, there is
at most one all-zero XOR in any 7 consecutive functions in both directions. Thus,
there are at most three all-zero XORs in any 12 consecutive functions.

O
Again, Lemmata 7 to 10 yield

Proposition 9 (Active functions for type-II GFNs). The 4-line type-1I GFN with
invertible functions provides at least 6 differentially active functions over 6 rounds for
each non-trivial input difference.
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6.4.4 Active Functions for Contracting GFNs

We do not have tight lower bounds on the number of active functions for the contracting
GFNs due to those complicated structures. However, we have exhaustively searched the
number of active functions up to 50 rounds for all contracting GFNs classified in this
chapter. In these experiments, we observe that only 2 of contracting GFNs (GFN2.3 and
GFN2.4 in Fig. 6.3 have slightly larger number of active functions than non-contracting
GFNs. Both structures exhibit strong differential effects though.

For Nyberg’s GFN with 4 lines [Nyb96] (GFN2.8 in Fig. 6.3), the numerical results
show that about 1/3 of the round functions are active up to 50 rounds. Recall that it is
1/2 for type-1/II GFNs. This implies that not only GFN2.8 exhibits a differential effect
but also the proportion of active functions in all functions is lower for it, resulting in a
lower efficiency.

6.4.5 Application to SHAvite-35),

Proposition 9 also directly applies to the block cipher E°'? underlying the compression
function C°'? of the second-round SHA-3 candidate SHAvite-35;5 and significantly im-
proves the upper bound on the differential trail probability in Lemma 5 of [DB09]. While
[DB09] shows that 9 rounds of E°'? have at least 6 active functions and a maximum differ-
ential trail probability of 2767 for each nontrivial input difference, Proposition 9 implies
that already 6 rounds of 4-line SHAvite-3515 provide at least 6 active functions. Therefore
9 rounds of E°'2 have at least 8 active functions, since the remaining 3 rounds provide at
least two more active functions, and give a maximum differential trail probability of 2794,

6.5 Comparative Efficiency of GFNs

6.5.1 Converting Active Functions to Active S-Boxes

Linear transforms M with the highest branch number can be built from the generator
matrices of maximum distance separable codes and are called MDS. Note that, for GFNs
utilizing SP-functions with the diffusion matrix M, B(M) and B(*M) imply the diffusion
property for differential and linear attacks, respectively [Kan00, Shil0], where ‘M is the
transpose matrix of M.

When a type-I or type-Il GFN is instantiated with SPS-functions or double SP-
functions, the minimum number of differentially and linearly active functions directly
translates to a lower bound on the number of differentially and linearly active S-boxes,
unlike the Feistel constructions with single SP-functions for which quite involving tech-
niques are usually necessary at this point. We formulate this formally as

Proposition 10 (Active functions to active S-boxes). Let B be the branch number of
the diffusion matriz M or its transpose ‘M. Whenever a function is active (differentially
or linearly) in type-1 or type-II GFNs with SPS-functions or double SP-functions, it
provides at least B (differentially or linearly) active S-boxes.

Combining Proposition 10 with Propositions 8 and 9 gives the minimum number of
differentially active S-boxes for type-I and type-II GFNs. Then the equivalence between
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Figure 6.6: Truncated differential trails of 4-line type-I (14 rounds) and type-II (6 rounds)
GFNs with double SP-functions attaining the lower bounds of Theorems 4 and 5

differential and linear cryptanalysis (Propositions 5 and 6) yields the minimum number
of linearly active S-boxes. Thus, one directly obtains:

Theorem 4 (Active S-boxes for type-I GFNs). For each nontrivial differential or
linear trail, every 14R, R > 1, rounds of 4-line type-I GEN with SPS-functions or double
SP-functions provide at least TBR active S-boxes (differentially or linearly), where B is
the branch number of the diffusion matriz or its transpose in the SP-functions.

Theorem 5 (Active S-boxes for type-II GFNs). For each nontrivial differential or
linear trail, every 6R, R > 1, rounds of 4-line type-1I GFN with SPS-functions or double
SP-functions provide at least 6BR active S-boxes (differentially and linearly), where B is
the branch number of the diffusion matrix or its transpose in the SP-functions.

Theorems 4 and 5 can be seen as the main results of this chapter. The lower bounds
on the number of active functions translate to upper bounds on the differential and
linear trail probabilities in a standard way: If p and ¢ are the maximum linear and
differential probabilities of the S-boxes, the probability of a 14 R-round nontrivial linear
and differential trail will be upper-bounded by p™% and ¢"2%, respectively, for type-I
GFNs. For type-II GFNs, the probability of a 6 R-round nontrivial differential and linear
trail will be upper-bounded by p®f and ¢%%%, respectively.

6.5.2 Tightness of Bounds

The lower bounds of Theorems 4 and 5 on the number of active S-boxes are actually tight,
since there exist S-box truncated trails attaining those minimal numbers. In Fig. 6.6, we
demonstrate a 14-round differential trail for type-I and a 6-round differential trail for
type-II GFNs with double SP-functions and MDS diffusion having 7(m+1) and 6(m+ 1)
active S-boxes, respectively. Note that the input and output differences for each of the
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Figure 6.7: Truncated differential trails of 4-line type-I (14 rounds) and type-II (6 rounds)
GFNs with SPS-functions attaining the lower bounds of Theorems 4 and 5

functions active in the trails contain exactly one active component. At the same time the
internal difference in each of them involves all S-boxes. In the figure, A and V denote
S-box truncated difference 100...00 (only the first S-box active out of m) and 111...11 (all
m S-boxes active), respectively. Note that the trail for type-II GFN is iterative. XORs
with difference cancellation are marked with dashed circles.

While the 6-round trail for type-II GFNs is iterative and illustrates the tightness of
Theorem 5 for any R, there are no iterative trails for 14 rounds of type-I GFNs with
exactly 7(m + 1) active S-boxes. However, we successfully verified that for up to 56
rounds of type-I GFNs there are non-iterative trails exactly achieving the lower bound
on the number of active S-boxes of Theorem 4. Similarly, a 14-round differential trail for
type-I and a 6-round differential trail for type-II with SPS-functions and MDS diffusion
having 7(m + 1) and 6(m + 1) active S-boxes are illustrated in Fig. 6.7, respectively.

6.5.3 GFNs: SPS-Functions or Double SP-Functions vs Single
SP-Functions

Now we can compare type-I and type-II GFNs with single and SPS-functions or double
SP-functions with respect to the efficiency metrics £ and &,,. The usefulness of these
metrics is not limited to reflecting the time performance of some software implementa-
tions. We also expect it to indicate efficiency regarding such crucial parameters as energy
and area consumption of a design in hardware.

Recall that bundle size m is the number of components in each of the 4 lines of the
cipher constructions under consideration. We perform comparison for MDS diffusion
matrix M, i.e. for B(M) = m + 1. The results are given in Table 6.2 and Fig. 6.8.
Figure 6.8 shows &, for type-1 and type-II GFNs with 4 lines, where absolute values
of &, (on the left) and normalized advantage of SPS-functions or double SP-functions
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Table 6.1: Efficiency &£ of 4-line GFNs with single and invertible SPS-functions or dou-
ble SP-functions using MDS diffusion matrices with respect to differential and linear
cryptanalysis, see also Figs. 6.1 and 6.2

type-I GFN type-1I GFN
E ] & | & E | & | &
0.188 0.250 0.219 | 0.167 | 0.229 | 0.198
[WZL06] | [WZL06] | [WZL06] || [Shil0] | [Shil0] | [Shi10]
SPS or double SP (this chapter) || 0.250 0.313 0.281 | 0.250 | 0.313 | 0.281

advantage of SPS or double SP | 33.3% | 25.0% | 28.3% | 50.0% | 36.7% | 41.9%

single SP

Table 6.2: Efficiency metrics &, and £ for 4-line type-I and type-II GFNs with MDS
diffusion: single SP-functions vs SPS-functions or double SP-functions, see also Fig. 6.8

r A Smr | Em | €

GFN-I, single SP [WZL06] || 16R || [3(m + 1) + 1]R | 16mR | 222 | 3/16

16m

GFN-II, single SP [Shil0] | 6R || [2(m + 1)+ 2]R | 12mR | 223 | 1/6

12m

GFN-I, SPS or double SP (Th. 4) || 14R | [7(m+1)]R | 28mR | =L | 1/4

GFN-II, SPS or double SP (Th. 5) || 6R [6(m + 1)]R | 24mR | =L | 1/4

over single SP-functions (on the right). As one can see from Fig. 6.8, type-I and type-II
GFNs perform consistently better with SPS-functions or double SP-functions than with
single SP-functions with respect to &, for all block sizes. For short blocks (m = 2), the
advantage is at least 20% for type-I GFN and at least 28% for type-II GEN. For longer
blocks (m = 32), &,, becomes close to £ and the advantage amounts to about 33% and
50%, respectively. These results show that the instantiation with the SPS-functions or
double SP-functions can more than halve the required number of rounds compared to
that with the single SP-function. This implies that the SPS construction or double SP
construction is still more efficient than the single SP construction, even if a single round
computation of the SPS or double SP is twice as slow as that of the single SP. That is to
say, our results are not a tradeoff between the number of S-boxes in a single-round and
the required number of rounds. See also Table 6.1.

Furthermore, we compare with the efficiency for 4-line type-I and type-1I GFNs using
multiple-round diffusion with optimal diffusion matrices [SA08], or diffusion-switching
mechanism [SS04]. We first compare the efficiency obtained from the proven bounds, and
then compare the efficiency derived from experiments with some concrete parameters for
a more accurate consideration. Generally speaking, it is hard to directly compare the
efficiency of 4-line type-1 and type-II GFNs with SPS or double SP to those with SP
using multiple-round diffusion and optimal diffusion matrices (SP-M), since there are no
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Figure 6.8: Efficiency metric &, for type-I and type-II GFNs with 4 lines

tight proven bounds for the latter case.

Em given by Theorems 1 to 4 of [SA08] for type-I and type-II GFNs is (m + 1)/6m
for both differentially and linearly active S-boxes (i.e. & = 0.208, & = 0.188, and
&€ = 0.167). According to these proven bounds, a comparison of these values to Tables 6.1
and 6.2 yields that type-I and type-II GFNs with SPS-functions or double SP-functions
and single-round diffusion are much more efficient than the respective constructions with
single SP-functions and multiple-round diffusion.

Again, we note that the proven bounds of [SA08] do not appear to be tight [WB12].
That is why we do not include this consideration into Table 6.2 and Fig. 6.8. On the
other hand, from our numeric search results, the efficiency of SP-M seems similar to that
of SPS or double SP after a certain number of rounds, being much higher than that of
the constructions with SP-functions and single-round diffusion. We provide Fig. 6.9 that
shows the non-asymptotic efficiency &,,, regarding the number of differentially active
S-boxes up to 24 rounds for the 4-line type-II GFNs with SPS, double SP or SP-M for
m € {4,8}. &, for the SPS or double SP construction is derived from Theorem 5 and
that for the SP-M construction is obtained by the numeric search. While the numeric
results show much higher efficiency compared to the proven bounds for SP-M, the SPS or
double SP constructions are slightly more efficient than the SP-M constructions at least
up to 24 rounds. In addition, the SP-DSM construction has twice more permutation
layers to guarantee a similar number of active S-boxes and needs to maintain at least two
different matrices, which may reduce the efficiency in practice.

6.5.4 GFNs vs SPNs

While the efficiency metric &, for type-I and type-II GFNs with SPS-functions or double
SP-functions is higher than that of the other GFNs, it is likely to be lower than that for
SPN structures. For example, it is well-known [DR02] that 4 rounds of AES have 64 S-
boxes and at least 25 active S-boxes and that this bound is actually tight. Since 1-round
of AES is comparable to 4 SP-functions consisting of 4 S-boxes in each S-box layer and
MDS matrix in terms of computational effort, £, of AES is about 0.391. However, GFNs
have distinctive features such as involution property. Thus, if decryption is needed, GFNs
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Figure 6.9: Experimental efficiency &,,, (regarding the number of differentially active
S-boxes) and bounds for type-II GFNs with 4 lines and m € {4, 8}.

are easier to invert, whereas inverting SPN structures is usually more involving and can
imply some performance penalty.

6.6 Further Analysis of GFNs

6.6.1 Other Attacks

Given the scale of popularity of GFNs among the designers of symmetric primitives, it is
no surprise that also analysis approaches other than differential and linear cryptanalysis
have been applied to evaluate the security of GFN constructions. Interestingly, it was
the publication of the GFN-like construction Skipjack that stipulated the impossible dif-
ferential cryptanalysis [BBS99], [BKRI7] that was successfully applied to round-reduced
AES [Pha04], [LDKKO08] afterwards. For most Feistel structures with invertible functions,
relatively long impossible differentials are known. For instance, BFN has a 5-round impos-
sible differential. Type-I and type-1I GFNs with 4 lines have 19- and 9-round impossible
differentials, respectively [CY09, TTS'08]. Attack approaches based on impossible dif-
ferential cryptanalysis can often break more rounds of GFN-based ciphers than any other
type of cryptanalysis. This motivated [SM10], where approaches have been proposed to
limit the length of impossible differentials for type-II GFNs by choosing alternative types
of line-shuffling between the rounds. However, in the case of GFNs with 4 lines, which
is our major focus in this work, no improved shuffling exists. Zero-correlation linear
cryptanalysis [BR14, BW12], can be seen as the counterpart of impossible differential
cryptanalysis in the domain of linear cryptanalysis. In most cases, the length of the
longest zero-correlation linear hulls for GFNs is comparable to that of the longest known
impossible differentials.

Cancellation cryptanalysis [BDLF10] is a recent attack technique applicable to GFN-
type hash functions. Cancellation cryptanalysis turns into a saturation attack [BDLF10]
when applied to the block cipher underlying the Lesamnta hash function [HKY00]. How-
ever, the attack relies on a subkey-collision effect and its complexity essentially depends
on the fact that there is only limited amount of key material input into each function.
Thus, the cancellation cryptanalysis quickly becomes less efficient, once several subkeys

65



are introduced in each function, as it is the case for the type-I and type-1I GFNs with
SPS-functions or double SP-functions.

6.6.2 Differential and Linear Probability of GFNs with SPS-
Functions or Double SP-Functions

We consider the provable security of the 4-line type-II GFNs with SPS-functions against
differential and linear attacks in this section in terms of maximum average differential
and linear probabilities. Many differential trails can contribute to the same differential.
Similarly, many linear trails will have their non-zero contributions to the same linear hull
probability. As these probabilities of the type-I GFNs have not been studied so far, we
only deal with type-II GFNs here.

The maximum differential and the maximum average linear probabilities for SPNs
were discussed in [HLLT00]. According to these results, the maximum differential and the
maximum linear hull probabilities for one SPS-function (called SDS function in [HLL*00]),
assuming that the underlying diffusion matrix is MDS, are p™ and ¢™, where p and q
are the maximum differential and the maximum linear probability for each S-box, re-
spectively, and m is the number of S-box in a substitution layer. These bounds might
be slightly improved depending on the elements of the diffusion matrix and the S-
box [PSCT02, PSLLO03].

The provable security for the type-II GFNs with 4 lines against differential and linear
attacks was discussed in [KLS'08]. It has been shown that the probability of each differ-
ential and linear hull of type-IT GFNs with 4 lines (called CLEFIA structure in [KLS108])
over 5 rounds are bounded by P* 4 2P° and Q* +20Q°, where P and Q are the maximum
differential and the maximum linear hull probability for each F-function, respectively.
Then, the bound for the security against differential attack was improved to P* + P>
by [MSS11]. Combining those results directly yields the following upper bounds:

Theorem 6. The average differential probability of the 4-line type-II GFN with SPS-
functions or double SP-functions over 5 rounds is upper-bounded by p*™ + p°™, assuming
that the provided round keys are independently and uniformly distributed.

Theorem 7. The average linear probability of the 4-line type-II GFN with SPS-functions
or double SP-functions over 5 rounds is upper-bounded by ¢*™ + 2¢°™, assuming that the
provided round keys are independently and uniformly distributed.

As discussed in Section 6.5.1, for type-II GFNs with SPS-functions or double SP-functions,
the probability of a 6-round nontrivial differential and linear trail are bounded by p8m+1)
and ¢t respectively. Thus, gaps between the proven bounds on the maximum differ-
ential (linear) probability and the maximum differential (linear) characteristic probability
for the 4-line type-1I GFN with SPS-functions or double SP-functions appear to be rel-
atively small. For instance, suppose that the underlying S-box and diffusion matrix are
the AES S-box and matrix, i.e., a 128-bit block cipher with m =4 and p=¢ =279 In
this case, the differential and the linear hull probabilities of the GFN with SPS-functions
or double SP-functions over 5 rounds are upper-bounded by 279 +27120 and 2796 4. 27119
respectively.
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6.7 Conclusions

In this chapter, we have discussed the classification, security and efficiency of 4-line GFNs.
We provide a definition of a GFN and demonstrate that there are only 2 non-contracting
representatives in the class of 4-line GFNs up to equivalence, namely, the type-I and type-
IT GFNs that avoid obvious differential effects. Moreover, we propose to instantiate the
GFNs with SPS-functions or double SP-functions instead of single SP-functions and show
that the instantiation with SPS-functions or double SP-functions using MDS diffusion
provides a proportion of differentially and linearly active S-boxes by up to 33% and 50%
higher than that with single SP-functions for type-I and type-II GFNs, respectively, if
the same matrix is used in all rounds. This opens up the possibility of designing more
efficient block ciphers based on GEFN structure.
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Chapter 7

Optimal Design of Balanced Feistel
Networks with
Substitution-Permutation Functions

7.1 Introduction

Balanced Feistel networks (BFNs) are one of the most widely used structures for a block
cipher. However, the optimal design strategy with respect to both the security and the
efficiency for its F-function is still an open problem. This chapter addresses this problem
in a wide class of typical underlying functions for a BEN (substitution-permutation func-
tions with any finite number of layers). To do that, for each of them, we first prove tight
bounds on the security parameter (number of active S-boxes). Then the security parame-
ter is related to the computational workload of a cipher implementation (modelled as the
number of S-boxes computed in the cipher) to obtain an efficiency parameter. Finally,
the optimal constructions are those with the maximum resulting efficiency parameter.

The class of ciphers. We focus on balanced Feistel networks with SP-type bijective
F-functions defined in Section 3.1. We treat F-functions with (SP)%, (SP)**!, (SP)*~'S
and (SP)%*S-type F-functions for an integer ¢ > 1. For instance, an (SP)*S-type F-
function consists of two consecutive SP-functions followed by an S-box layer, namely an
SPSPS F-function.

Security parameter. Counting the minimum number of active S-bozes is a widely
accepted argument [DR02| to demonstrate the immunity of a cryptographic algorithm
against differential [BS91] and linear [Mat93] cryptanalysis which are two fundamental
attacks on block ciphers. Lower bounds on the number of active S-boxes are closely
related to the probability of differential trails and linear trails [DR02].

For each of the BEN instantiations above, we prove lower bounds on the number of
differentially and linearly active S-boxes. In contrast to the previous works [Kan00]| and
[Bog10], our results with respect to this security parameter:

e generalize the type of the F-function, while [Kan00] and [Bogl0] only contain lower
bounds for BFNs with SP- and SPS- functions,

e hold for any number of rounds (those of [Kan00] and [Bogl0] hold only for a few
rounds), and
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Figure 7.1: r-round BFN with bijective F-functions

e contain proofs of tightness for the bounds when the matrices used in the diffusion
layers of BENs are mazimum distance separable (MDS).

Efficiency metric.

To measure the efficiency of a construction, we are using the ratio between active
S-boxes and all S-boxes in a cipher &, defined in Section 3.2.2.

Optimality. In the wide class of our target ciphers, we prove optimality of several
instances with respect to the efficiency parameter. More specifically, among BFN block
ciphers with bijective SP-type F-functions and MDS diffusion, we prove BFNs with SPS
and SPSP functions to mazximize the efficiency in terms of the proportion of active S-
boxes in all S-boxes. Interestingly, one SP-layer in the function is not enough to attain
optimality, whereas taking more than two S-box layers does not increase the efficiency
either.

Organization of the chapter. The remainder of this chapter is organized as follows.
Section 7.2 describes the target structure and definitions. The duality of differential and
linear trails is explained in Section 7.3. Section 7.4 gives proofs for lower bounds on
the numbers of differentially and linearly active S-boxes for the BFNs and its results are
summarized in Table 7.1. Section 7.5 shows the tightness of those bounds. Section 7.6
discusses the optimality of the BFNs. Finally, we conclude in Section 7.7.

7.2 Preliminaries

7.2.1 Target Structures

In this chapter, we focus on balanced Feistel networks (BFNs) with bijective F-functions
defined in Section 3.1. As a reminder, our target structures in thls chapter are described
in Fig. 7.1. Note that, instead of %) and :L‘l , We use Xé and XU as the notations for the
left half and right half of the i-th round input, respectively, in this chapter. While mn-
bit subkeys are XORed before each S-box layer, we omit these subkey additions in this
chapter for simplicity. An S-box layer consists of m n-bit bijective S-boxes, and a linear
diffusion layer consists of mn-bit linear Boolean function. BFN-(SP)" denotes BEN with
F-functions consisting of u consecutive SP-functions. BFN-(SP)"S denotes BFN with F-
functions consisting of u consecutive SP-functions followed by one additional S-box layer.
See Figs. 7.1 and 7.2.

7.2.2 Notations
We use the following notations throughout this chapter:
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Figure 7.2: The i-th round F-function of BFN-(SP)* and BFN-(SP)“S.

. x§.i), yj(i): input and output of the j-th S-box layer in the ¢-th round.

° Z](-i)i output of the j-th linear diffusion layer in the i-th round.

° Aasgi): a difference of :zrgl)
o dwj(»i): a truncated difference weight of xéi), ie., dwj(-i) = wn(Axg.i)).
e dw®: the number of differentially active S-boxes in the i-th round.

e D(r): the minimum number of active S-boxes in r consecutive rounds.

. Fy](i): a linear mask value of yj(-i).

7.3 Duality of Trails

In this section, we demonstrate an equivalence between differential and linear trails for the
BFNs. This equivalence follows from Biham’s considerations in [Bih94] and is provided
here for completeness. It allows us to work with the minimum numbers of differentially
and linearly active S-boxes simultaneously. We first show an equivalent transform for

BFN-(SP)".

Property 14. Suppose that both S-box layer and linear diffusion layer are bijective. Any
BFN consisting of u consecutive SP-functions, BFN-(SP)", can be equivalently trans-
formed into a BFN consisting of u consecutive PS-functions with an initial and a final
linear function.

This property is seen as a generalization of [KanOO]. Let v(i) P~z (-i)). From
the definition, P(yq(j)) = mgl Voo Z+ ) then yi) = P! (x; -1’ @ x§+ )). Since P is
linear, y' = v%z_l) @ %Hl). Meanwhlle yft) = S(P(S(---P(S ( )) -))), then y?

S(P(S(-- P(S(P(UY)))) -+))). Combining the above equations, v% V= =S(P(S(--- P(S(P(vy)))) e

vlz_l). Now we have BEN-(PS)" from BFN-(SP)* by using equivalent transforms. Note
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BFN-(PS)%

Figure 7.3: Equivalent transform (BFN-(SP)" to BFN-(PS)*), where thin boxes and thick
boxes denote S-box layers and P-layers, respectively.

that BFN-(PS)* takes P = (P1(X\"), P~1(X")) as a plaintext and outputs a ci-
phertext C' = (P(X((f Dy, P(Xgﬂ))). Since these initial and final linear functions do
not affect the minimum numbers of active S-boxes, we can ignore these functions when
studying the minimum numbers of active S-boxes. An illustration of these equivalent
transforms is given in Fig. 7.3.

From the concatenation rules [Bih94, Mat94], FUP Tyl @ Tyd™ = tP(Fxgi)),
where 'P is the bit-based transpose matrix of P. Thus, for BFN-(SP)*, the hnear trails

can be transformed to the correspondlng differential trails by replacing (Aa:l , Axg), e
Aycu ), (Azlz, Az;), .. Azu ) and P with (Fng), Fy() .. Fyl)), (va), N

u—17 u—1r
I‘vl ) and 'P, respectlvely Similarly, for BFN (SP)“S, the hnear traﬂs can be treated as
the differential trails by replacing (Az\”, Az{) .. Agcuﬁ)rl) (AyD, Ay Ay +1) and P
by (Fyuil, I‘y&),...,Fyg)), (Fxfﬂ)rl, Fxg),...,Fxgl)) and 'P, respectively. Therefore, since
the constraints for differential and linear trails for the BFNs are the same, the minimum
numbers of differentially and linearly active S-boxes can be derived simultaneously. The
above discussions yield the following theorem.

Theorem 8. For BFN-(SP)" and BFN-(SP)"S, assuming that both S-box layer and linear
diffusion layer are bijective, the lower bounds on the number of differentially active S-
bozes derived from the property of the linear diffusion layer hold also for the number of
linearly active S-boxes by changing the linear diffusion layer to the transposed one.

In the sequel, we only discuss the minimum numbers of differentially active S-boxes for
simplicity, keeping in mind, however, that the minimum numbers of linearly active S-
boxes can be derived in the same way.

7.4 Bounds for Active Functions

In this section, we give proofs for lower bounds on the minimum number of differen-
tially active S-boxes for BEN-(SP)**! -(SP)%*, -(SP)*~'S and -(SP)*S. These results

are summarized in Table 7.1.
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To prove those bounds, we utilize the following property and lemmata for BFNs
consisting of bijective F-functions.

Property 15. For each nonzero input difference, any two and three consecutive rounds
of BFN consisting of bijective F-functions have at least one and two active functions,
respectively.

Proof. If two consecutive F-functions of the i-th and (i 4+ 1)-th rounds are both non-
active, i.e., AXS) and AXSH) are zero, the input difference AXS) and AX(Ui)(: AXngl),
since the output difference of the i-th round F-function is zero) are zero. Since this
contradicts the assumption, at least one of two F-functions is active. From this, each
of two consecutive rounds starting from the (i — 1)-th round and the i-th round has at
least one active F-function, which is an F-function whose input difference is nonzero.
Obviously, if the i-th round F-function is non-active, three consecutive rounds starting
from the (7—1)-th round have at least two active F-functions. If the i-th round F-function
is active, AXS_U(: AX ((JZ)) and AXSH) cannot be zero simultaneously since the output
difference of the i-th round F-function is nonzero. Therefore, there exist at least two
active F-functions in three consecutive rounds. O

Meanwhile, the numbers of differentially active S-boxes for each differentially active
F-function, which is an F-function whose input difference is nonzero, are lower-bounded
by the following lemmata. Recall that B denotes the branch number of the linear layer.

Lemma 11 (active S-boxes for 1-round BFN-(SP)%). For BEN-(SP)*, if dw® is
not zero, dw® > |u/2|B+ (u mod 2).

Proof. 1f an input difference of two consecutive SP-functions is not zero, there exist at
least B active S-boxes, e.g., dwgi) + dwéi) > B. Since BEN-(SP)" has |u/2] independent
two consecutive SP-functions and (v mod 2) SP-functions, it has at least |u/2|B + (u
mod 2) active S-boxes when the input difference is not zero. ]

Similarly to Lemma 11, one derives the following lemma.

Lemma 12 (active S-boxes for 1-round BFN-(SP)“S). For BFN-(SP)"S, if dw®
is not zero, dw® > [u/2]B+ ((u+ 1) mod 2).

These lemmata show that the number of active S-boxes can be derived from the
number of S-box layers when we treat only one active F-function. However, when we
consider some consecutive rounds, the number of active S-boxes does not depend only on
the number of S-box layers.

Starting from here, we treat four cases of the F-function construction separately:
(SP)?+1 (SP)%, (SP)?~!S, and (SP)*S, as those exhibit essential differences.

7.4.1 Differentially Active S-Boxes in BFN-(SP)% !

For BFN-(SP)#*! which consists of odd number of SP-layers, the proofs for the lower
bounds are the most complicated among other BFNs, since the number of differentially
active S-boxes cannot be directly obtained from the number of differentially active F-
functions. We find tight lower bounds on the minimum number of differentially active
S-boxes by carefully observing two cases separately: t = 0 and other cases.

For BFN-(SP)**! Lemma 11 directly translates to the following corollary.
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Table 7.1: Summary of our results, where B is the branch number of the diffusion matrix
or its transpose, &,, = lim, o0 A /S, and € = lim,,, o0 Ey,.

structure of F (SP)?* ] (SP)%*—18 (SP)?* 1 t=0
proven tight bounds 2tBR / 3R (B+1)R—1) /4R
(min. # of active S-boxes 2tBR / BR+1) (B+1)R/ (4R+1)
/ # of rounds) (2tBR+tB) / (3R +2) (B+1)R+1)/ (4R+2)
(B+1)R+2) / (4R +3)
(Th. 11), (Th. 12) (Th. 9)
# of S-boxes in 1-round 2mt [ 2mt m
Em 2tB/6mt B+ 1)/dm
EB=m+1) 1/3 1/4
structure of F (SPYZFL 1 >0 (SP)?tS
proven tight bounds (2t+1)BR—B+2) /3R 2(tB+1)R / 3R
(min. # of active S-boxes (2t+1)BR / (3BR+1) 2(tB+1)R / (3R+1)
/ # of rounds) (2t+1)BR+tB+1)/(3R+2) | (2tB+1)R+tB+1)/(3R+2)
(Th. 10) (Th. 13)
# of S-boxes in 1-round (2t +1)m (2t+1)m
Em @t + )B/3(2t + )m 20B 1+ 1)/3(2 + Dm
EB=m+1) 2t/3(2t+ 1) 2t/3(2t+ 1)

Corollary 1. For BEN-(SP)* if dw® is not zero, dw® > tB+ 1.

Property 15 and Corollary 1 directly show that any three consecutive rounds of BFN-
(SP)**! have at least 2(tB+1) active S-boxes. However, when the center of the F-function
in the three consecutive rounds is active, there exist more active S-boxes as follows.

Lemma 13. For BEN-(SP)**! if dw™ is not zero, dw =) 4 dw® + dw ™V > (2t +1)B.

Proof. From the definition, Axgi_l) > Aa:(liH) = M(Ayézt)ﬂ) If dw is not zero, then
Ayé&l is not zero due to the invertibility. Since Ayéﬁl is not zero, w,(Az{™") 4
wn(AxgiH)) —|—wn(Ay§?+1) > B, ie., dwl™ +dw§?+1 +dwi™ > B. Also, if Ayé?ﬂ is not
zero, A:rgi*l) and Aa:giﬂ) cannot be zero simultaneously. Thus dw&iil) +... —|—dw§ffl) > tB
or dwl™ + 4+ dwi™ > tB. Therefore Z?Zﬁl(dw]@*l) +dwj(-i) +dw§.i+1)) > 2t+1)B. O

The lower bounds on the minimum number of active S-boxes in any consecutive rounds
of BEN-(SP)?**! are directly derived by the lemmata above. First, we prove the bounds
on D(r), r < 4 by Lemma 14, then show the bounds on D(r), r > 4 by Lemma 15.

Lemma 14. For BFN-(SP)**', D(1) = 0, D(2) = tB+ 1, D(3) = 2(tB + 1), and
D(4) = (2t + 1)B.

Proof. Since any two consecutive rounds have at least one active F-function, D(2) = tB+1
from Corollary 1. We consider dw( ", dw® and dw. If dw® is not zero, then
dw =Y + dw® + dw ™ > (2t + 1)B. If dw" is zero, then both dw Y and dw(+Y
are not zero from Property 15. In that case, dw( " + dw® + dw ™V > 2(tB + 1) from
Corollary 1. Since B > 2 from the invertibility and (2t + 1)B > 2(¢tB + 1), we obtain
D(3) = 2(tB + 1). We consider dw ™, dw®, dw ™ and dw?. If dw® is not zero,
dw Y + dw® + dw ) > (2t + 1)B from Lemma 13. If dw® is zero, then dw+? is
not zero due to the invertibility. Then dw® + dw ™ + dw*? > (2t + 1)B. Thus,
D(4) = (2t + 1)B. O
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The bounds on D(r), r > 4, are given as inductive forms.

Lemma 15. Let r > 4, D(r) = min(D(r — 3) + (2t + 1)B,D(r —4) + (3t + 1)B+ 1) for
BEN-(SP)+1,

Proof. We consider active S-boxes in r consecutive rounds starting from round i + 1,
ie., dw™D . dw™) . If dw ™ is not zero, then dw(™* =2 + duwt—1 4 dwli+r) >
(2t + 1)B. Also, dw'™V + ... + dw'™ =3 > D(r — 3) from the definition. Therefore,
dw )+ +dw ™) > D(r—3)+(2t+1)B when dw Y is not zero. If dw 1 is zero,
then both dw™=% and dw ") are nonzero. dw ™ =% +dw =2 + dw =Y > (2t +1)B
and dw ") > tB+1 from Corollary 1. Also, dw(+Y+4...+dw™"=* > D(r—4). Therefore,
dw ™ + .+ dw) > D(r — 4) + (3t + 1)B + 1 when dw™" =Y is zero. Combining
both results, we obtain D(r) = min(D(r — 3) + (2t + 1)B,D(r —4) + (3t + 1)B+ 1) when
r > 4. [

Now we have the lower bounds in any consecutive rounds of BEN-(SP)#*!. However,
it is hard to compare its efficiency with other constructions, since the bounds are proven
as inductive forms. In order to obtain more accurate bounds, we consider two cases. We
start with the special case of t = 0.

Theorem 9 (active S-boxes for BFN-(SP)?*! ¢ = 0). For any nonzero input differ-
ence (nonzero input mask), every 4R, 4R+1, 4R+2, 4R+ 3 rounds of BFN (R > 1) with
an SP F-function provide at least (B+1)R—1, (B+1)R, (B+1)R+1, (B+1)R+2 dif-
ferentially (linearly) active S-boxes, respectively, assuming B > 2, where B is the branch
number of the diffusion matrixz (of the transposed diffusion matriz).

Proof. It D(r —3) —D(r —4) > 1, D(r) = D(r —4) + B+ 1 from Lemma 15. Otherwise
D(r) = D(r — 3) + B. Clearly, D(r —3) — D(r —4) = 1 when r = 5 and 6, and
D(r—3)—D(r—4) = B—2 when r = 7. Since B > 2 from the assumption, D(r —
3) = D(r —4) > 1 when r = 7. Similarly, D(r — 3) — D(r — 4) = D(5) — D(4) =
(B+1)—(B) =1 when r = 8. Since D(r —3) — D(r —4) > 1 for r = 5,6,7 and 8,
D(r—3)—D(r—4) > 1 when r > 5. Thus D(r) = D(r —4) + B+ 1 when r > 5. Then
Dir)=D(r—4)+B+1=D(r—8)+2(B+1)=--- =D(r —4u) + (B + 1)u. Therefore
D(AR+1) = D(AR-3)+B+1 = DAR—T)+2(B+1) = --- = D(1)+(B+1)R = (B+1)R.
Similarly, DAR+2) = D(2) + (B+ 1)R = (B+ 1)R+1, D(4R+3) = D(3) + (B+1)R =
(B+1)R+2, DAR) =D(4) + (R—1)(B+1) = (B+ )R — 1. O

Note that Theorem 9 was conjectured in [Shi0Ol]. For all other integers t > 0, the
bounds are stated as follows.

Theorem 10 (active S-boxes for BFN-(SP)**! ¢t > 0). For any nonzero input dif-
ference (nonzero input mask), every 3R, 3R+ 1, 3R + 2 rounds of BFN (R > 1) with
(2t+1) consecutive SP-layers in the F-function (t > 0) provide at least (2t+1)BR—B+2,
(2t +1)BR, (2t+1)BR+tB+1 differentially (linearly) active S-bozes, respectively, where
B is the branch number of the diffusion matriz (of the transposed diffusion matriz).

Proof. If D(r —3) — D(r —4) < tB+ 1, D(r) = D(r — 3) + (2t + 1)B from Lemma 15.
Otherwise D(r) = D(r—4)+(3t+1)B+1. From Lemma 14, D(r—3)—D(r—4) = tB+1
when r = 5 and 6, and D(r — 3) — D(r —4) = B — 2 when r = 7. Since t > 0,
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B—-2 < tB+ 1. Thus D(r) = D(r — 3) + (2t + 1)B when » > 5. Then D(r) =

D(ir—3)+2t+1)B=D(r—6)+22t+1)B="---=D(r —3u) + (2t + 1)Bu. Therefore
D(BR+1)=DBR—2)+ (2t +1)B=---=D(1) + (2t + 1)BR = (2t + 1)BR. Similarly,
D(3R+2) = D(2)+ (2t+1)BR = (2t+1)BR+tB+1, D(3R) = D(3)+ (2t +1)(R—1)B =
(2t + 1)BR — B + 2. O

Now we have comparable bounds for every four rounds of BFN-(SP)**!. For the case
of t >0, (D(r—3)+ (2t +1)B) is always less than or equal to (D(r —4)+ (3t +1)B+1).
On the other hands, for the case of t = 0, (D(r —4) + B + 1) is less than or equal to
(D(r — 3) + B) when B > 2 and r = 4s + 3(s > 0) (e.g., r = 7,11,15,...). Thus, the
bounds for the case t = 0 and ¢ > 0 are slightly different and those are separately proven.
The tightness of these bounds is proven in Section 7.5.

7.4.2 Differentially Active S-Boxes in BFN-(SP)%

For BFN-(SP)?, which comprises even number of SP-layers, the minimum number of
differentially active S-boxes is straightforwardly proven by observing the number of dif-
ferentially active F-functions.

Lemma 11 yields the following corollary.

Corollary 2. For BFN-(SP)*, if dw™ is not zero, dw' > tB.
This corollary allows us to prove the following theorem.

Theorem 11 (active S-boxes for BFN-(SP)?*). For any nonzero input difference
(nonzero input mask), every 3R, 3R+1, 3R+2 rounds of BEN (R > 1) with 2t consecutive
SP layers in the F-function provide at least 2tBR, 2tBR, 2tBR+tB differentially (linearly)
active S-boxes, respectively, where B3 is the branch number of the diffusion matriz (of the
transposed diffusion matriz).

Proof. We consider dw® 1, dw® and dw ™. If dw® is zero, then both dw® " and
dw ) are not zero due to the invertibility. Thus there exist at least 2tB active S-
boxes from Corollary 2. If dw®® is not zero, then dw " and dw'™*" cannot be zero
simultaneously. Therefore there exist at least 2t active S-boxes from Corollary 2. Since
two consecutive rounds have at least tB active S-boxes, 3R + 2 consecutive rounds have
at least 2tBR + tB active S-boxes. O

Unlike the case of BEN-(SP)**!, the lower bounds for BEN-(SP)* are easily proven.
In the other words, the minimum number of differentially active S-boxes for BEN-(SP)?
corresponds to the minimum number of differential active F-functions times t5.

7.4.3 Differentially Active S-Boxes in BFN-(SP)%*~1S

Since the number of S-box layers is the same in BEN-(SP)?~!S, similarly to the bounds
for BFN-(SP)?, one derives the following theorem.

Theorem 12 (active S-boxes for BFN-(SP)%*~1S). For any nonzero input difference
(nonzero input mask), every 3R, 3R+ 1, 3R + 2 rounds of BFN (R > 1) with (2t — 1)
consecutive SP-layers followed by an S-boz layer in the F-function provide at least 2tBR,
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Figure 7.4: Truncated differential trails of BEN-(SP)% (left: 3-round iterative trail) and
BFN-(SP)?~!S (right: 6-round iterative trail) attaining the lower bounds of Theorems 11
and 12.

2tBR, 2tBR + tB differentially (linearly) active S-bozes, where B is the branch number
of the diffusion matriz (of the transposed diffusion matriz).

The obtained bounds for BEN-(SP)?S seem almost same as the bounds for BFN-
(SP)?*. However, BFN-(SP)? has one more P-layer than BFN-(SP)*~!S has when the
parameter ¢ is the same. This implies that the last P-layer of BEN-(SP)%* does not
improve the security in terms of the number of differentially active S-boxes.

7.4.4 Differentially Active S-Boxes in BFN-(SP)*S

Similarly to BFN-(SP)?*1 BFN-(SP)*S has odd number of S-layers. However, lack of
the last P-layer allows us to prove the bounds for BFN-(SP)*S easily.
Property 15 and Lemma 12 yield the following theorem.

Theorem 13 (active S-boxes for BFN-(SP)*S). For any nonzero input difference
(nonzero input mask), every 3R, 3R+1, 3R+2 rounds of BFN (R > 1) with 2t consecutive
SP-layers followed by an S-box layer in the F-function provide at least 2(tB+1)R, 2(tB+
DR, 2(tB+1)R+ (tB+1)) differentially (linearly) active S-boxes, where B is the branch
number of the diffusion matriz (of the transposed diffusion matriz).

The proof for BEN-(SP)?S is similar to the proofs for BEN-(SP)* and BFN-(SP)*~!S.
In other words, for BEN-(SP)%*S, the minimum number of active S-boxes can be proven by
studying the number of active F-functions. However, the proven bounds are not same as
the bounds for BEN-(SP)? and BFN-(SP)*~!S, since the number of S-layers is different.
In the following sections, we discuss tightness of the bounds proven in this section and
their optimality.
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Figure 7.5: Truncated differential trails of BEN-(SP)?!S (3-round iterative trail) attaining
the lower bounds of Theorem 13.

7.5 Tightness of Bounds

To demonstrate the tightness of the lower bounds, we provide trails that actually attain
those proven bounds when the matrices used in the BFNs are MDS. These trails are
given in Figs. 7.4 to 7.7 for all the BFN constructions in question. Note that a similar
observation for BFN-SP with m = 8 was given in Appendix A of [SS04].

In the figures, A and V denote S-box truncated difference 100...00 (only the first S-box
active out of m) and 111...11 (all m S-boxes active), respectively. Thin boxes and thick
boxes denote S-box layers (S-layers) and linear layers (P-layers), respectively. XORs with
difference cancellation are marked with dashed circles. Differentially active S-box layers
are denoted by grey. The underlined numbers denote the minimum numbers of active
S-boxes in the area indicated by a dashed line.

From the discussions in Section 7.3, the following observations are directly applicable
to the case of the linear cryptanalysis.

7.5.1 BFN-(SP)*

The left side of Fig. 7.4 shows a 3-round iterative path that maps (0,A) to (0,A) for
BFN-(SP)?!. In other words, the i-th round input difference (AXS), AXl(j)) = (0,A) and
the (i + 3)-th round input difference (AXSJF?’), AX[(;JF?’)) = (0,A). Note that, since we
use an untwisted form in Fig. 7.4, an output difference looks reverse in the case of odd
number of rounds. The numbers of active S-boxes provided by this figure correspond
to the bounds proven in Theorem 11. For instance, the numbers of active S-boxes for
3, 4, 5 and 6 rounds given by the figure are 2tB, 2tB, 3tB and 4tB, respectively, which
correspond to the proven bounds. Since the path is 3-round iterative, it shows that the
proven bounds are tight.

7.5.2 BFN-(SP)*"'S and BFN-(SP)*S

The right side of Fig. 7.4 shows a 6-round iterative path for BEN-(SP)*~!S that maps
(0,A) to (0,A). There does not exist a simple 3-round iterative path, since the output
difference of the F-function will be V(A) when the input difference of F-function is A(V).
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Figure 7.6: Truncated differential trails of BFN-SP attaining the lower bounds of Theo-
rem 9.

However, those become iterative when considered over 6 rounds. The paths shown in the
figure provide 2tB active S-boxes for 3 rounds and prove the tightness of the bounds
proven in Theorem 12. Figure 7.5 shows a 3-round iterative path for BFN-(SP)*S that
attains the lower bounds proven in Theorem 13.

7.5.3 BFN-SP

The paths of Fig. 7.6 for BEN-SP consist of iterative paths and an additional path. In
the case of (4R + 3) rounds, the tightness is easily proven by the right side of Fig. 7.6.
In the other cases (4R, 4R + 1 and 4R + 2 rounds), paths consist of some consecutive
4-round iterative paths on the left and one 4-round additional path in the center of
Fig. 7.6. Each path for 4R rounds consists of (R — 1) consecutive 4-round iterative paths
and one 4-round additional path. Also paths for 4R 4+ 1 and 4R + 2 rounds consist of
R consecutive 4-round iterative paths and one 4-round additional path. For example, a
path for 12 rounds of BFN-SP consists of two consecutive 4-round iterative paths followed
by one 4-round additional path. Similarly, a path for 13 rounds consists of three 4-round
iterative paths (12 rounds) followed by the first one round of the 4-round additional path
(1 round).

7.5.4 BFN-(SP)**!, ¢t >0

Figure 7.7 shows a 6-round iterative path that attains the bounds proven in Theorem 10.
The path starting from the i-th round shows the tightness for 3R + 1 and 3R + 2 rounds.
The path starting from the (i 4 2)-th round shows the tightness for 3R rounds.
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7.6 Optimality

In this section, it is proven that BFN-SPS and BFN-SPSP are the most efficient with
respect to the efficiency metric &, of Definition 13. Recall that &,, shows the ratio between
active S-boxes and all S-boxes when the number of rounds is sufficiently large. Table 7.2
contains the computation of &, for the different BFNs in question. The optimality result
is formulated as follows.

Theorem 14. When instantiated with MDS matrices for m > 2, BFN-(SP)* and BFN-
(SP)?*=1S provide a higher or equal proportion of active S-boxes than BEN-SP, BFN-
(SP)**' and BEN-(SP)*S for any number t of layers. Thus, BEN-SPSP and BFN-SPS

are optimal with respect to &, .

Proof. We compute the values of &,, for all BEN constructions with MDS matrices in
Table 7.2 and compare &, = %=L for BFN-(SP)* and BFN-(SP)?~!S to &, for

e BFN-(SP)**!. From Table 7.2, one immediately observes that 2l is no lower
than &,, for BEN-(SP)**!.

e BFN-SP. For m > 2, the difference ”;:;1 — ’Z;f = Tz;f > () and &, for BFN-SP is

no higher than ”;—;1

e BFN-(SP)?S. In this case, one has to analyze % as a function of t. After
taking the value of 0 for ¢t = —m#ﬂ, it grows monotonously for all ¢ > 0 and attains
its maximum at the infinity. Since

2Attm+1)+2 m+1
im =
t—woo  3(2t 4+ 1)m 3m

Ep for BEN-(SP)?S is no higher than %+

Thus, &, for BFN-(SP)? and BFN-(SP)*~'S is no lower than that for BEN-(SP)**!,
BFN-SP, and BFN-(SP)S, which yields the first claim of the theorem. The second claim
follows from choosing t = 1. O]

7.7 Conclusions

In this chapter, we considered a wide class of balanced Feistel networks with any number
of interleaved S-box layers and linear diffusion layers in their F-function. In this class,
we demonstrated that SPS and SPSP F-functions are arguably optimal with respect to
the relative number of active S-boxes provided. Our results indicate that one SP-layer in
the F-function is not enough to attain optimality, whereas taking more than two S-box
layers does not increase the efficiency either. The optimality is shown with respect to the
security of a cipher towards differential and linear cryptanalysis.

As nearly any SPN-based block cipher, BFNs with SP-type F-functions exhibit the
differential effect — many differential trails contributing to the same differential. Having
SPS or SPSP constructions as F-functions — as in the optimal constructions of this chapter
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Figure 7.7: Truncated differential trails of BFN-(SP)?*! ¢ > (0 (6-round iterative trail)
attaining the lower bounds of Theorem 10.

— simplifies the consideration of upper bounds on the differential probability over several
rounds. The work [AO97] proves that the maximum average differential probability over
3 rounds for a BFN with bijective F-functions is upper-bounded by 72, where 7 is the
maximum differential probability of the F-function. At the same time, the maximum
differential probability of an SPS or SPSP construction with MDS diffusion is known to
be upper-bounded by p™, where p is the maximum differential probability of the under-
lying S-box [KHLT01]. This provides an upper bound of p™ on the average differential
probability over 3 rounds of BFN-SPS and BFN-SPSP. Similar considerations apply to
the linear probability. However, capturing the differential or linear hull effect for an ar-
bitrary number of rounds and incorporating it into the efficiency metric appears to be a
challenging task.

Besides BEFNs, generalized Feistel networks (GFNs) are often used in the design of
block ciphers. Both CLEFIA [SSAT07] and PICCOLO [SIH*11] follow this design ap-
proach with SP-type F-functions. We conjecture that our optimality result also applies
to any GFN under the definition of [BS13]. In other words, our conjecture is that the
instantiation of the F-function with SPS and SPSP will be optimal with respect to the
relative number of active S-boxes. We leave this as an important open problem.
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Table 7.2: &, for BFNs with SP-type functions and MDS matrices

Construction H Arm ‘ Sr.m Em = lim, ST L
BFN-(SP)% Agpm = 26m +1)R m+1
BFN-(SP)2-1S Aspyim =2t(m+1)R 2tmr T

A3R+2,m = (2tR + t) (m + 1) m

ASRm (2t+1) 1)(m+1)+2 m_|_1
BEN-(SP)?*1 || Aspi1m = (2t +1)(m +1)R (2t + 1)mr T

A3R+2,m (<2t+ 1)R—|—t)(m+ 1) +1 m

A4Rm (m + 2 -1

A4R+1m—(m+2) m+2
BFN-SP —

A4R+2 m (m -+ 2)R +1 mr 4m

A4R+3 m = (m + 2)R +2

Aspm =2(t(m+1)+ 1R

’ 2t(m +1) + 2
BFN-(SP)? A =2 1)+1 2t + 1 L
(SP)*S sR+1tm =2(t(m + 1) + 1)R (2t + L)mr 32t + L)m

Asriom = 2R+ 1)(t(m +1) +1)
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Chapter 8

Optimal Round Diffusion of
Generalized Feistel Networks

8.1 Introduction

8.1.1 Motivation and Previous Work

As one of the diffusion properties, the diffusion round (DRmax) was defined in [SM10].
This is defined as the minimal number of rounds such that every sub-block of the ci-
phertext depends on every sub-block of the plaintext. While DRmax(7) is a simple
property that can be efficiently calculated from the given round permutation =, it has
a strong relevance to immunity against impossible differential [BBS99] and saturation
attacks [DKR97], which are powerful attacks especially for GFN.

In [SM10], Suzaki and Minematsu showed that DRmax of type-II GFNs can be
improved by using an appropriate round permutation instead of a cyclic shift for d-
line GFN (denoted as GFNy), where d > 6. Then, optimal, regarding DRmax, single
even-odd round permutations (every even numbered input is permuted to an odd num-
bered output and vice versa by the pre-determined manner) for 6- to 16-line GFNs were
shown by exhaustively searching all possible single even-odd round permutations. Lately,
[CGT19, DFLM19] extend their ideas by thoroughly analyzing equivalent classes and
improving the search algorithm, and show optimal single even-odd round permutations
for 18- to 32- and 36-line GFNs.

The lower bounds on DRmax for GFN with even-odd permutations have been given
by Fibonacci sequence in [SM10]. However, there still exist several gaps between the
theoretical lower bounds and the known optimal results. For instance, the lower bounds
on DRmax for GFNyy and GFNy, are 6 and 7, however, DRmax for them with the optimal
single round permutation are 7 and 8, respectively. This indicates that, for some d, GFNy
with a single round permutation cannot reach the lower bounds on DRmax. However,
it still has not been known whether there exist tight round permutations reaching the
theoretical lower bounds. In this chapter, we tackle this problem.
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Table 8.1: Lower bounds, known optimal results and our results on DRmax for GFNy,
where d = 6,...,12, 7'RP 72R and 7P denote the round permutation with single
permutation, double permutation and sub-block dividing, respectively.

J DRmax DRmax(7'®") | DRmax(728) | DRmax(75P)
(Lower bounds) | (Known optimal) | (Section 8.4) | (Section 8.3)

6 5) 5 ) 4

8 6 6 6 4

10 6 7 7 4

12 7 8 7 4

8.1.2 Improving the Round Diffusion of GFN

In order to improve the diffusion round of GFN, we propose two techniques: one using
a non sub-block wise permutation and the other one using sub-block wise permutations.
We first propose a technique called sub-block dividing, which further divides each sub-
block into (d/2) smaller blocks. The sub-block dividing for GFN, was previously used
in the round permutation of the block cipher Piccolo [STHT11]. We generalize it to any
d > 4 of GFN,. This is an improvement using a non sub-block wise permutation.

In order to find tight sub-block wise round permutations, we expand the search
space from single round permutations to multiple round permutations. The previous
results [SM10, CGT19, DFLM19] focus on the case of single round permutations, and
the use multiple round permutations in GFNs has not been addressed so far. We inves-
tigate the (im)possibilities of further improving diffusion of GFNs with multiple round
permutations, especially we focus on the problem if the proposed construction can achieve
the lower bounds on DRmax, which has not been known so far.

8.1.3 Contributions

We first generalize a round permutation with sub-block dividing to any d > 4 of GFN,.
Then, we prove that four rounds of GFN using round permutations with sub-block di-
viding always achieve nonlinearly full diffusion. Moreover, we show that a 10- and 12-
line GFN alternately using two different round permutations (denoted as GFN2EY and
GFNZ}P) partially and fully achieve the lower bounds on DRmax, respectively. This
class of GFN has not been known so far. Our results imply the possibilities of improving
the round diffusion of GFN by appropriately modifying those round permutations. See
Table 8.1 for the summary of the lower bounds, known results, and our results.

8.2 Diffusion Round

This section provides definitions and a proposition used in this chapter. We focus on
GFNs with even-odd round permutations defined in Section 3.1. In this chapter, we
propose to alternately use two different round permutations my and m;. Those specific

constructions treated in this chapter are depicted in Fig. 8.1. Each sub-block of the (r+1)-
round input xETH) is computed from the r-round output without round permutation ylm
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| T((r+1) mod 2) |
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Figure 8.1: d-line GFN alternately using two different round permutations

and a round permutation my or m; as follows:

(r+1) (r) :
" :ywtrmm)(i),zé{0,...,d—1}.
The round permutations 7y and 7 can be divided into even-odd permutations py and p1,
and odd-even permutations ¢y and ¢; as follows:

(r) o
.T(T+1) _ yQP(T od 2)(i/2)+1 if 7 is even s
if 7 is odd.

Y240 moa 2 ((i—1)/2)

(r+

That is, when 7 is even, z; Y is obtained as yé;)o(i/Q)Jrl fori=0,2,4,...,d — 2, and it is

obtained as yézz)((i—l)ﬂ) fori=1,3,5,...,d—1. Similarly, we use p; and ¢; when r is odd,

ie., xETH) is yé;)l(i/2)+1 fort=0,2,4,...,d—2, and it is yg)((i_l)m fori=1,3,5,...,d—1.
If my # 71, we say that the d-line GFN alternately uses two different round permuta-
tions (denoted as GFN2RP). Otherwise (i.e., o = 7), we say that the d-line GFN uses a

single round permutation (denoted as GFNLRF).

Proposition 11 (Lower bounds on DRmax [SM10, CGT19, DFLM19]). Let F;
be the Fibonacci sequence, i.e. Fo = 0,F, =1, and F; = F;_1 + F;_o for 1 > 2. Then
the lower bounds on DRmax of GFNy using even-odd round permutations are given as
(1 + 1), where i is the smallest number satisfying F; > d/2.

The proofs of Proposition 11 are given in [SM10, CGT19, DFLM19]. A difference in
an odd numbered block is diffused to only one even numbered block in the next round.
Similarly to this, a difference in an even numbered block is diffused to one even numbered
block and one odd numbered block in the next round. Hence, if all odd numbered blocks
in a certain round are affected by any input blocks, all output blocks in the next round
are affected by any input blocks. If a round permutation works ideally, the number of
odd numbered blocks affected is counted by F;. Therefore, the lower bounds on DRmax
are given by Proposition 11.

For a given round permutation 7, if DRmax(m) reaches the lower bound given in
Proposition 11, we say that « is tight. Table 8.1 presents the lower bounds, the previ-
ously optimal results [SM10], and our results on DRmax of GFN,, where 6 < d < 12.
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Since, in [SM10], the authors exhaustively searched over all the possible single round
permutations for 6 < d < 16, there do not exist tight permutations for 10 < d < 16
when using a single round permutation. However, the problem of the existence of tight
permutations for 10 < d < 16 is still open.

8.3 Improving the Diffusion Round by Round Per-
mutation with Sub-Block Dividing

In this section, we propose to use a round permutation with sub-block dividing to improve
the diffusion round of GFN.

8.3.1 Sub-Block Dividing

The round permutation with sub-block dividing for GFN4 was previously used in the
round permutation of the block cipher Piccolo [STHT11]. We generalize their technique

to any d > 4 of GFN,. Let yfg) and a:gfl) be (d/2) partitions of 3\” and 2", where
0<i<(d—1)and 0 <j < (d/2—1). That is, we have yi(r) = (yi(g,...,yfg/z_l) and

r+1 r+1 r+1
w = (xz(',O )7--~7x5,d/2)—1

; ). Then xyﬂ) is calculated by the round permutation with
sub-block dividing 5P as follows:

(r) o
.T(T-Jrl) _ { y%(i)+2j+1) mod d),j if 7 is even,
2J y((d+i_2j—3) mod d),j if 7 1s odd. .

DRmax(75P) of GFNy is given as follows:

Theorem 15 (DRmax of 75P). For any d > 4, the diffusion round of w5 is always
four, assuming that the underlying F-function is a sufficiently good nonlinear function.

Proof. For any non-zero input difference, at least one of F-function inputs in the 2nd
round has a non-zero difference. The output of the F-function having a non-zero input
difference in the 2nd round has a non-zero difference due to the randomness of the F-
function. Such non-zero output difference of the F-function propagates to all the even
numbered sub-blocks of the 3rd round input by 7#5P. This means that all the F-function
inputs in the 3rd round have a non-zero difference.

Similarly to the 2nd round, all the outputs of the F-functions in the 3rd round have
a non-zero difference, and those non-zero output differences propagate to all the even
numbered sub-blocks of the 4th round input. Since all the even-numbered inputs of the
4th round have a non-zero difference, all the odd-numbered outputs of the 4th round
without round permutation also have a non-zero difference. Therefore, all the outputs of
the 4th round have a non-zero difference. O

(r)

Figure 8.2 shows an example of a propagation of the input x5’ to the output y(T+3)

for GFNg using 75P. In the figure, the dotted lines show partial affection of the input xg)
and the bold lines show full affection of the input ycz(,f). It is clear from the figure that all
(r+3

of the 4th-round output y, ) are affected by the input xér) . Similarly to this, all of the
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Figure 8.2: GFNg using 5P

4th-round output are affected by all of the 1st-round input. Theorem 15 holds as long
as each even sub-block is divided into (d/2) blocks and permuted to each odd sub-block
input in the next round, and vice versa. We remark that 75P is not the only example of a
permutation that has this property. However, since 7°° does not destroy the involution
property in which the encryption process is almost identical to the decryption process,
we consider only 7°P in this chapter.

8.3.2 Discussion

While the number of partition for each sub-block of 75P is (d/2) which is optimal regarding
DRmax, the round diffusion is improved compared to sub-block wise round permutation
when dividing and distributing each sub-block into more than two smaller blocks.

Since the round permutation with sub-block dividing is not a sub-block wise permu-
tation, it demolishes the sub-block structure and thus may improve the security against
cryptanalysis exploiting strong sub-block based structure such as saturation attacks.
Moreover, it does not increase the implementation cost for hardware implementation
in general, since it can be implemented by simple wire connection. On the other hand,
in general, the security evaluation including counting the number of active F-functions
and finding impossible differential paths for GFN with 75P is harder than that of GFN
with a sub-block wise round permutation, especially for large d. Also, the software im-
plementation of 75 might be less efficient than that of sub-block wise permutation. We
discuss improving the sub-block wise round permutation in the next section.
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8.4 Improving the Diffusion Round by Multiple Round
Permutation

In this section, we propose to use multiple round permutations instead of a single round
permutation to improve the diffusion round of GFN.

8.4.1 Evaluation for DRmax of GFN2RP

The existence of the corresponding DRmax is efficiently checked by using the algorithm
proposed in [DFLM19]. For accurate analysis, DRmax of GFN needs to be evaluated
in both encryption and decryption directions. Similarly to this, for GFN2R | the GFN
starting from an even-round and odd-round are also required to be evaluated in addition to
encryption and decryption directions. Thus, DRmax of GFN2RF is given as the maximum
of these four values of DRmax (i.e., DRmax of encryption starting from even and odd
round, and decryption starting from even and odd round). For a given combination of
permutations my and 7, if the maximum of those four DRmax reaches the theoretical
bound given in Proposition 11, the combination of the permutations is considered as
tight.

8.4.2 Results on 10-Line GFN with Double Round Permutation
(GFN2RP

We exhaustively search all possible two different round permutations for GFN2}. The
number of such permutations is (5!)* & 2269 As a result, a tight combination of per-
mutations is not found in any two different round permutations. However, combinations
partially reaching the lower bound of DRmax (= 6) are found. One of those optimal
GFN2 (denoted as GFN2RP-I) is given as follows:

mo = {1,4,5,8,7,0,9,2,3,6},p0 = {0,2,3,4,1},q0 = {2,4,0,1, 3},
m =1{1,8,3,4,7,0,9,2,5,6},p1 =1{0,1,3,4,2}, 1 = {4,2,0,1,3}.

For the optimal GFN2RF-T starting from even r (i.e. the first round permutation is
7o), DRmax of the encryption function is 6 which is the lower bound on DRmax for
GFNyy. The DRmax of the inverse of GFN3RF-I starting from even r (i.e. the first
round permutation is 7, ') also achieves DRmax = 6. However, DRmax of GFN2&P-T
starting from odd r is both 7 for encryption and decryption. Therefore, GFN28F-1T is not
considered as a fully tight combination of permutations, but partially tight.

Since DRmax of the previously known optimal results for GFNIY is 7, GFNZRP-I
partially improves the diffusion compared to GFNIE’. The improvement of the security

of GFN3RF-I depends on the number of rounds when considering actual attacks. However,
regarding DRmax, GFN2{P-1 is better than the previously known optimal GFN{XF.

8.4.3 Results on 12-Line GFN with Double Round Permutation
(GFN2RP

Similarly to GFN3{' | we exhaustively search two different round permutations for GF
We show that there does exist a tight combination of round permutations that reaches

2RP
N12 .
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the lower bound on DRmax for d = 12, which is DRmax = 7. One of those tight GFNI5¥
(denoted as GFN3RP-T) is given as follows (see also Fig. 8.3):

Ty = {17 1073767 5787 77 27 117079,4}71)0 = {07 172737 5a4}’q0 = {573747 ]-a 072}7

m ={1,10,5,6,3,8,9,2,11,0,7,4}, p1 = {0,2,1,4,5,3}, ¢ = {5,3,4,1,0,2}.

DRmax of GEN2}P_T starting from any round is 7, which is the lower bound on DRmax
for GFN15. We found 28,800 of such tight permutations in all possible two different round
permutations.

While GFN2R requires two different round permutations, for the optimal GFN25P-T,
the difference of the two permutations is only four sub-block permutations (i.e. eight
sub-block permutations are unchanged). Those differences are illustrated in bold lines
in Fig. 8.3. This reduces the implementation overhead for multiple round permutations.
Moreover, 48-bit and 96-bit block ciphers, which are known as suitable for RFID (e.g.
PRINTcipher [KLPR10]), are directly derived from GFN?XF with 4-bit and 8-bit F-
functions (S-boxes). Those imply the practical usefulness of GFN3H'.

8.4.4 Discussion

Our result on GEN2RY presents the first GEN that achieves the theoretical lower bound
on DRmax. Since GFNZRF uses sub-block wise permutations unlike 75P, we can use the
existing techniques to evaluate its security including counting the numbers of active F-
functions, impossible differential search by U-method [KHST03, KHL10], and saturation
search [BS01, SSA*07]. The implementation of GFN?RP is slightly less efficient than that
of GFN'RF when using round-based implementation for both software and hardware due
to non-identical round permutations. However, the implementation cost of the round
permutation is not usually dominant in a whole symmetric key primitive implementa-
tion. Moreover, when using unrolled implementation in both software and hardware, the
efficiency of GFN2?R" is almost the same as that of GFN!RF,

Since the search space of the round permutations is rapidly increased for GFN2RF it is
hard to find optimal two different round permutations for large d of GFN, by exhaustive
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search. However, our result on GFN?R®Y shows a possibility of further improving the

diffusion of GFN even if there do not exist tight round permutations in GFNRP  Also,
its implementation cost is not much increased compared to GFN'®F_ Thus, we believe
that our result is useful not only in theory but also in practice.

8.5 Conclusions

We proposed two approaches to improve the round diffusion of d-line GFN. The first
approach uses the technique called sub-block dividing which divides each sub-block of
GFN, into (d/2) smaller blocks and appropriately distributes them by the round per-
mutation. We proved that the diffusion round of GFN, using round permutations with
sub-block dividing is always four. The second approach alternately uses two different
round permutations instead of a single round permutation. We found the first even-odd
permutations that achieve the lower bound on DRmax for 12-line GFN.

Our first result holds regardless of the number of sub-blocks, and it can be incorpo-
rated into actual designs of a primitive. Our second result demonstrates the possibility of
improving the round diffusion of GFN by using multiple permutations, and tight permu-
tations are obtained for d = 12. For d = 10, our result shows that only partial tightness
can be achieved, and we leave it open the (non-)existence of tight permutations if we use
more than three permutations.
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Chapter 9

Conclusions and Open Problems

9.1 Conclusions

In this thesis, we have explored the cryptographic properties of Feistel-type symmetric-key
cryptosystem from a design and cryptanalysis point of view to design a secure and efficient
block cipher. We focused on the diffusion properties of several Feistel structures including
balanced Feistel networks (BFNs) and generalized Feistel networks (GFNs). While those
structures have several desirable implementation properties, one of the disadvantages
compared to substitution permutation networks (SPNs) is its slow diffusion. Therefore,
improving the diffusion of Feistel structures allows us to design a more secure and efficient
block cipher.

In order to improve the diffusion of Feistel structures, we considered mainly three
approaches. The first approach is improving the evaluation methods on the security of
Feistel structures related to the diffusion property. Our methods enable us to more ac-
curately evaluate the minimum numbers of active S-boxes for Feistel structures. While
this approach does not require to modify the components, the number of required iter-
ations can be reduced by derived accurate results. Thus, as a result, this approach also
contributes to improve the diffusion of Feistel structure. The second approach is directly
improving the diffusion property by appropriately modifying the underlying F-functions.
In this approach, we have showed more efficient F-functions regarding the diffusion for
3-line GFNs, 4-line type-I GFNs and 4-line type-II GFNs compared to the previously
known F-function designs for them. Moreover, we have found the theoretically optimal
constructions regarding the minimum number of active S-boxes for F-functions of BFNs
among SP-type F-functions. Similarly to the second approach, the third approach is
improving the diffusion by appropriately modifying the underlying round permutations.
It was showed that the diffusion property can be improved by alternately using different
round permutations in each round. Moreover, we have showed the first result achieving
the lower bound on the maximum diffusion round by using our proposed permutations.

In summary, from Chapters 4 to 8, we have dealt with the security properties of
diffusion used in Feistel-type block ciphers as follows:

e Security evaluations regarding the lower bounds on the number of active S-boxes for
BFNs and GFNs are significantly improved by our new evaluation algorithm. Con-
sequently, it allows us to reduce the required number of rounds to provide sufficient
diffusion by accurate lower bounds derived from our algorithm (Chapter 4).

90



e For 3-line GFNs, it was shown that the underlying F-function consisting of double
SP-functions has better diffusion with respect to the proportion of active S-boxes
compared to the F-function consisting of single SP-functions. This implies that
there exists a better design regarding the diffusion for F-function of 3-line GFNs
which is superior to the previously known F-function designs. This opens up the
possibility of designing more efficient ciphers based on 3-line GFNs (Chapter 5).

e For 4-line GFNs, it was shown that type-I and type-II constructions are the best re-
garding the diffusion among all possible connections of 4-line GFNs. Moreover, our
newly proposed constructions which are 4-line type-I and type-II GFNs with the un-
derlying F-functions consisting of SPS-functions or double SP-functions have better
proportion of active S-boxes compared to those consisting of single SP-functions.
This result shows that there exists a better design for F-functions of 4-line type-I
and type-II GFNs compared to the previously known designs (Chapter 6).

e For BFNs, it was proved that the underlying F-function consisting of SPS- or SPSP-
functions has optimal diffusion among the F-function consisting of (SP)* and (SP)“S
with respect to the proportion of active S-boxes, where u is an arbitrary positive
integer. This result showed the optimal design regarding the proportion of active
S-boxes of F-functions for BFNs among all possible SP-type F-functions assuming
that the underlying diffusion matrix is MDS (Chapter 7).

e For some type-II GFNs; it was shown that the diffusion property with respect to the
maximum diffusion round of them is improved by alternately using two different
round permutations which was not addressed before. As a result, it was shown
that there exists a possibility to further improve the diffusion by using two or more
round permutations instead of single round permutations. Moreover, our result on
a 12-line GFNs is the first result that achieves the lower bound on the maximum
diffusion round for GFNs (Chapter 8).

One of the direct applications of these results is designing a secure and efficient Feistel-
type symmetric-key primitives. Moreover, the results are useful for a deeper understand-
ing the security and theoretical limitations of Feistel-type cryptosystems.

The results in this thesis have been presented in [Shil0, BS11b, BS11a, BS13, SB14,
S122], and they correspond to Chapters 4, 5, 6, 6, 7 and 8, respectively.

9.2 Open Problems

There still exist many open problems on design and analysis of Feistel-type symmetric-key
cryptosystems. We list some of them as follows for the future work:

e We investigated two metrics on the diffusion property for Feistel-type structures.
One is the minimum numbers of active S-boxes which was presented in Chapters 4
to 7. The other is the maximum diffusion round DRmax which was presented
in Chapter 8. Both metrics are used for evaluations of the diffusion property.
However, the theoretical relation between the minimum numbers of active S-boxes
and DRmax still remains an open problem.
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e In Chapter 8, we found several round permutations that achieve the theoretical
lower bounds on DRmax for GFNs with even-odd permutations. However, in gen-
eral, the existence of round permutations that achieve the theoretical lower bounds
for several GFNs has not been known. For example, it is still unclear whether there
exists a 10-line GFN with DRmax = 6, while it has been known by exhaustive
search that 10-line GFNs with any single round permutation cannot achieve DR-
max = 6. Moreover, generic construction for optimal round permutations for GFNs
with large blocks (e.g. 32-line) is also unknown.

e Our algorithm described in Fig. 4.12 of Chapter 4 can find much better solutions
for the minimum number of active S-boxes for BFNs and GFNs than the previous
approaches. However, the derived solutions are not usually the best ones. Thus, the
algorithm that finds the best solution for the minimum number of active S-boxes
for BFNs and GFNs is still unknown. Moreover, our algorithm may be further
improved by applying MILP (Mixed integer linear programming).

e Most of the results on the minimum number of active S-boxes presented in Chap-
ters 4 to 7 were only proven to be tight assuming that the underlying diffusion
matrix is MDS. The tight bounds on the number of active S-boxes when the under-
lying diffusion matrix for BFNs and GFNs is non-MDS have not been presented.
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List of Abbreviations and Notations

Abbreviations
e ARX: Addition-Rotation-XOR
e GFN: Generalized Feistel network
e BFN: Balanced Feistel network
e MDS: Maximum distance separable
e PRF': Pseudo random function
e PRP: Pseudo random permutation
e SPN: Substitution Permutation Network
e SP: Substitution-Permutation

e SPS: Substitution-Permutation-Substitution (two substitution layers separated by
a permutation layer)

e TLS: Transport layer security

Notations

° xf), J(i): input and output of the j-th S-box layer in the i-th round.

i)

Z]( : output of the j-th linear diffusion layer in the ¢-th round.

Axg-i): a difference of azgl)

dwj(»i): a truncated difference weight of xéi), ie., dwj(-i) = wn(A:c§.i)).

dw®: the number of differentially active S-boxes in the i-th round.

D(r): the minimum number of active S-boxes in 7 consecutive rounds.

Fy§i): a linear mask value of yj(-i).

° 5x§i): a truncated differential of xy)

93



. Vy](i): a truncated linear mask value of y](,i)'

e GFN,: a d-block (or d-line) generalized Feistel network (see Section 3.1.3 for de-
tails).

e NS, number of all S-boxes in r rounds when each S-layer consists of m S-boxes
in parallel.

e N A, ,: minimum number of active S-boxes in r rounds when each S-layer consists
of m S-boxes in parallel.

o &,.: limrﬁoojj\\/f“;—,“:.
e & lim, o0 &
e 7 around permutation 7 : {{0,1}™"}¢ — {{0, 1}m"}4.

e 7. an even-odd permutation.

e 7, an odd-even permutation.
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