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Abstract

4H-SiC (silicon carbide) is a promising material for next-generation power devices
due to its excellent physical properties. The top-seeded solution growth (TSSG)
method is suitable for obtaining high-quality, large SiC bulk crystals. By applying
the dislocation-conversion phenomenon in the TSSG method, SiC crystal with few
dislocations can be obtained. High and steep macrosteps have been proven to
be critical for converting dislocations. However, over-developed macrosteps also
induce macroscopic defects. Step bunching is an essential process in macrostep
formation. A systematic understanding of the mechanisms of step bunching is
significant for controlling macrosteps structure. However, such an understanding
is difficult to be obtained only through experimental studies due to the complex
factors coupling mass transport and surface kinetics varying over different scales
and the extreme ambiance required for SiC crystal to grow. Therefore, this thesis
intends to utilize a multiscale numerical investigation to discuss factors affecting
step bunching during the solution growth of SiC crystal.

First, a growth experiment was carried out on a 2-inch 4H-SiC crystal was grown
on the C face of a 1◦off-axis seed crystal using the TSSG method. Step-flow growth
towards the [112̄0] direction occurred over the entire growth surface. Inhomogeneity
in the surface morphology was observed. The step height increased monotonically
along the step-flow direction. The non-uniform step height resulted in the spatial
distribution of threading screw dislocation (TSD) conversion. No conversion of TSD
took place in the upstream area of step flow due to small step height. In contrast,
TSD conversion frequently happened in the center of the crystal and the downstream
area, with a conversion ratio as high as 80% in these areas. A macroscale numerical
simulation was carried out over the bulk solution to investigate the reason for the
step-bunching distribution. An outward solution flow occurs under the growth
surface. Therefore, the solution forms an anti-parallel and a parallel flow against
the step flow in the upstream and downstream areas. Thereby the opposite affects
the step bunching behaviors, respectively. This study revealed a step bunching



x

phenomenon that occurs only in large-sized crystals’ growth and pointed out that
the solution flow direction is a critical controlling parameter for uniform growth.

In order to study the development of step bunching in quantity, a numerical
model coupling mass transport and step kinetics in the mesoscale was constructed.
The macroscale numerical study results were utilized as boundary conditions in
the mesoscale model. Surface roughness due to step bunching was studied under
different solution flow velocities. The step bunching development with solution flow
present is consistent with the experimental results. However, there was disagreement
between the simulation and experimental results without solution flow. Since
solute’s incorporation into steps and transport together determines step bunching
progress. Next, numerical investigations around the development of step bunching
induced by solvent physical properties representing mass transport and step kinetics
were carried out. It is found that step bunching occurs due to the depletion of solute
in the region with high step density, caused by a high step kinetic coefficient. On
the other hand, by promoting the transport of the solute in the solution, the step
speed becomes uniform, thereby the step bunching can be prevented. Furthermore,
we proposed a non-dimensional Damköhler number for crystal growth in step-flow
mode. It correlates incorporation rates with bulk diffusion rates and can build a
phase map of growth rates and step bunching stability. Several solvents are located
according to reported experimental results in the phase map, demonstrating the
possible usage of the phase map as a pointer for solvent designing.

In order to evaluate a solvent for its tendency towards step bunching, knowledge
of both diffusion coefficient and step kinetic coefficient is required. The latter,
however, is difficult to be measured through general experiments. The Kinetic Monte
Carlo method was applied to conduct a microscale numerical investigation on step
kinetics at crystal-solution interfaces. Step kinetic coefficients are calculated from
kink density and crystallization rates at step edges of steps on vicinal {0001} facets.
The vicinal interfaces contain periodic arrays of bilayer steps. Kinetic coefficients for
both <11̄00> and <112̄0> oriented steps are determined under different temperatures,
supersaturations, and the presence of impurity species. There are three types of steps
on each polarity {0001} face, and the values of step kinetic coefficients are shown
to be highly anisotropic. The kinetic coefficient of SN steps increases exponentially
with temperature. In contrast, the values of SD and SM steps remain constant until
the temperature rises over 2000 K, under which a thermal roughening occurs on
the {0001} facets. At low temperatures, the kinetic coefficient of the SN step is about
3.8 × 105µm/s, two orders smaller than the steps of SD and SM types, which is
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5.9 × 107 and 4.6 × 107µm/s, respectively. At low supersaturations, the movement
of SN steps is observed through one-dimensional nucleation on the step edges. At
the initial stages of step-flow growth, the SD steps bunch into SN steps due to the
different growth rates, while the poor mobility of SN steps is considered as a factor
that keeps crystal growth away from further step bunching. An aluminum-like
impurity species is introduced in the simulation, and its influence on step kinetic
coefficient and step bunching was investigated. The Al-like impurity behaves on the
two polarity faces differently. On the Si face, incorporation occurs both on terraces
and at step edges. The Langmuir-style adsorption on the terrace is considered as an
origin of an impurity-induced step bunching. On the C face, step incorporation is
realized. The suppression of step mobility due to impurity adsorption on step edges
is considered a reason that suppresses step bunching on the C face.
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Chapter 1

Why this thesis?

1.1 Why SiC?

Today, most semiconductor devices and integrated circuits are made of silicon. The
superior performance and cost advantages give silicon an absolute advantage in
integrated circuits. In the last several decades, Si-based technologies, especially
large-scale integrated circuits (LSIs), have become the critical components in almost
all electrical and electronic systems, leading to innovations and prosperity in modern
society.

Nowadays, the concept of a sustainable society is getting well accepted. Cutting
energy consumption is a significant issue for maintaining a sustainable society. In
the rapid expansion of electricity demand, improving electricity efficiency, in other
words, reducing electricity waste, is becoming more and more significant for the
development of our sustainable society.

According to [1], about 26% energy consumption is due to the loss during power
delivery and conversion. Electric power is regulated and converted to be supplied
to the loads in the best form in power electronics. The devices undertaking such
conversion, e.g., AC-DC conversion, voltage, and frequency conversion, are called
power devices. To improve electricity efficiency, power devices of high performance
are necessary.

Silicon and Si-based power device are now the most mature technologies in
power electronics. However, even with the numerous efforts to improve the Si-based
device, like structure modification, silicon-based devices have gradually reached
their physical limits. Meanwhile, silicon carbide (SiC) is a promising material for
next-generation power devices due to its outstanding properties.



2 Why this thesis?

Table 1.1 Major physical properties of Si and 4H-SiC[2].

Physical property Si 4H-SiC
Bandgap, Eg (eV) 1.12 3.26
Breakdown field, EB (×106 V/cm) 0.3 3
Electron saturated drift velocity, vs (×107 cm/s) 1 2.7
Thermal conductivity (W/cm·K) 1.5 4.9

Table 1.1 shows the major physical properties of Si and 4H-SiC. The latter one
is the most promised polytype of SiC for power devices because it owns higher
mobility, higher breakdown voltage, and smaller anisotropy than other polytypes,
and the largest bandgap.[2]. Compared with Si, the bandgap of 4H-SiC is 3.26 eV,
almost three times Si. The large bandgap indicates lower leakage current due to
thermo-activation under high working temperature, promising the high-temperature
performance of SiC-devices. The breakdown field of 4H-SiC is ten times Si, indicat-
ing a ten times higher breakdown voltage. Thus the thickness of the drift layer in
SiC-MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) can be reduced
to 1/10 of that of Si-MOSFET, leading to reduction of on-resistance and a compact
design. Also, the electron saturated drift velocity of SiC is 2.7 times that of Si. That
also implies an improvement in conversion efficiency during high-frequency switch-
ing. With the high thermal conductivity and the advantage of high-temperature
reliability, the cooling system can be simplified with the application of SiC-base
power devices, which will significantly benefit its application in the transport field.
In summary, by applying SiC, power devices of higher efficiency, lower loss, and
more compact size are promised.

In 2018, The Model3 model electric car of Tesla Corporation adopted an inverter
with 24 SiC-MOSFETs as power modules. It was the first automobile manufacturer to
integrate full SiC power devices in the main inverter[3]. Owing to its demonstration
effect, at present, more than 20 automobile manufacturers worldwide have used
SiC power devices in onboard charging systems. ROHM supplied Full SiC Power
Modules to Formula E racing team Venturi and enhanced performance through a
significant reduction in size by 43% and weight by 6kg[4]. According to Yole, the
global market space for automotive SiC power devices in 2018 was US$ 420 million
and will rise to US$ 1.4 billion by 2023, corresponding to a growth rate of 29%[5].

With the fast growth in demand for SiC, the SiC substrate is in a severe lack
in the supplement. Compared with silicon-based devices, SiC-based devices are
usually several times more expensive due to the high cost of manufacturing SiC



1.2 Growth methods of SiC single crystal 3

wafers. A 6-inch SiC wafer is over US$ 900/piece, much more expensive than the
Si wafer, which is only US$ 50/piece. Another issue for SiC applications is that
their defects limit the performance. Both of the two issues are closely related to the
growth method of SiC crystal.

1.2 Growth methods of SiC single crystal

Under normal pressure, the eutectic liquid phase(stoichiometric ratio, Si:C = 1:1)
does not exist. Therefore, traditional methods like the Czochralski (Cz) method
cannot grow SiC crystals. Until now, several methods have been suggested to obtain
bulk SiC single crystals. According to the material composition in the ambient phase,
one can classify the methods into physical vapor transport (PVT) methods, including
the modified PVT (M-PVT) method, high-temperature chemical vapor deposition
(HTCVD) method, and liquid phase methods. Among these methods, the PVT
method is the only method applied for commercially manufacturing SiC wafers,
while the HTCVD method and the liquid phase methods have been extensively
studied in recent years for industrial application. On the other hand, the chemical
vapor deposition (CVD) method and some liquid phase epitaxy (LPE) techniques
are widely used in the epitaxial growth of SiC thin films.

1.2.1 PVT method

PVT method is a traditional but standard method for producing bulk SiC crystals.
This method is also known as the modified Lely method or the seeded sublimation
recrystallization method. Figure1.1 shows the diagrammatic illustration of the PVT
method. Under an extremely high temperature (> 2500°C), SiC powder settled
at the bottom of the crucible sublimates and decomposites into vapor molecules
such as Si, Si2C and SiC2. The molecules are transported to the seed crystal at a
lower temperature and recrystallized to SiC on the seed crystal. The quality of the
obtained crystal is controlled by the temperature distribution and convection in the
furnace. Meanwhile, the growth of SiC is susceptible to even a minor change in
conditions. Parameters like the C/Si ratio, temperature gradient, growth rate, and
gas pressure/convection drastically influence the grown crystal quality, like surface
morphology, microscopic defects, and polymorphism.
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Figure 1.1 Schematic of growing SiC by PVT method.

The PVT method is the only successful method for commercial SiC wafer pro-
duction. Wafers of 6 inches by PVT method are already available. Nonetheless, it
has several disadvantages.

1. Disadvantage in the growth of the p-type crystal. The main commercial SiC
product is of n-type and semi-insulated type. One can obtain n-type crystals
by introducing nitrogen gas and semi-insulated SiC by removing the nitrogen
elements from raw materials. However, making p-type SiC requires doped
with the III-group elements, which remains difficult.

2. The defect density of PVT-grown SiC wafer is still at a high level.

3. It is not easy to enlarge wafer size with the PVT method. In the PVT method,
the growth of SiC crystal mainly occurs on the {0001} faces, while enlargement
of wafer size requires lateral growth on the plasmatic faces such as the {112̄0}
and {11̄00} faces. Although Cree, Inc. has realized mass production of 6-inch
SiC wafer since 2009, until 2021, the 8-inch wafer is still under development.

1.2.2 HTCVD method

Figure1.2 shows the schematic of growing SiC by HTCVD method. This method is
improved based on the chemical vapor deposition (CVD) method. During growth,
the source gas, (SiH2 + C2H8 or SiH4 + C2H4), are streamed into the growth chamber
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Figure 1.2 Schematic of growing SiC by HTCVD method.

and transported by the carrying gas (usually H2) to the seed crystal. A chemical re-
action happens on the seed crystal, forming SiC crystal, releasing hydrogen gas. The
high temperature (1800°C∼2300°C) realizes a growth rate of up to 1mm/h, higher
than the traditional CVD method, which guarantees its application in bulk crystal
growth. Using gas as C and Si sources makes it easy to control some parameters,
such as the C/Si ratio and the raw material supply, which is usually a significant
factor for suppressing growth instability. On the other hand, the expensive gas
source increases the cost of producing SiC wafers from this method.

1.2.3 TSSG method

Liquid phase methods are promising for high-quality crystals because the growth
condition of liquid phase methods is near the thermal equilibrium. Nakamura et al.
reported that micropipes propagated from SiC substrate are healed during liquid
phase epitaxy[6]. Since then, the liquid phase method started gathering attention.

Among the liquid phase methods, the top-seeded solution growth (TSSG) method
is suitable for long-term growth to obtain large SiC ingots. Figure1.3 shows the
schematic of growing SiC from the TSSG method. The equipment is similar to that
used in the Cz method. By continually pulling up the seed crystal, one can maintain
the crystal/solution interface at a constant state, which is necessary to obtain a
uniform crystal property during long-term growth.
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Figure 1.3 Schematic of growing SiC by TSSG method.

Raw materials, usually silicon and metal elements, are first placed at the bottom
of a graphite crucible as solvent. During growth, induction coils heat the graphite
crucible to a temperature (Tcrucible) over the melting point of the solvent. The solvent
dissolves the crucible wall as a carbon source and transport carbon to the seed
crystal by the solution bulk. The carbon concentration in the bulk solution assumed
uniform, equals to the carbon solubility at the crucible wall (CTcrucible). Since the
crucible wall is heated directly while the seed crystal is far away from the heating
source, and the seed shaft eliminates heat, the temperature at the seed crystal Tseed

is lower than at the crucible wall. The carbon solubility at the seed crystal CTseed ,
proportional to the temperature, is thus lower than that in the bulk solution, forming
a supersaturated solution at the seed crystal surface. The supersaturation

∆C = CTseed − CTcrucible (1.1)

drives carbon to precipitate and deposit on the seed crystal as SiC.
Compared to the PVT method, growing bulk SiC crystals with the TSSG methods

show the following advantages.

1. The TSSG method can grow crystals of high quality. Our group revealed ultra-
high-quality crystals with an average dislocation density of ∼ 1cm2 and BPD
free crystals by the dislocation conversion techniques[7].

2. P-type crystals can be easily realized with aluminum addition. Al is an ideal
dopant for high carrier density p-type crystal. In solution growth, adding
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Al has been proven helpful for obtaining smooth surface morphology. Thus
liquid methods have natural advantages in growing p-type crystals.

3. Enlargement of crystal size can be realized by controlling the seed pulling rate
during growth, an analogy to the Czochralski monocrystalline silicon shoulder
process.

1.2.4 Issues in TSSG method

Despite the mentioned advantages of the TSSG method, some issues remain. For
example, carbon is transported through diffusion and convection, while mass trans-
port is usually much slower than surface kinetics in the liquid phase. Therefore, like
all the other transport-limited methods, instability occurs on the growth surface due
to insufficient supplement of growth unit. Other problems such as deposition of
undesired polytypes, solvent inclusion, and inhomogeneity of dopant distribution
are also remaining. On the other hand, although we have been constructing crafts
for growing large-size crystals and smooth morphologies over the whole surface
have already been realized on 3-inch crystals, technologies for the growth of 6-inch
or even larger crystals, which is indispensable in the commercial competition with
the PVT method, are still underdeveloped. In this section, some issues that remain
to be solved are listed and discussed.

Lowering defects in crystal

Our group has succeeded in lowering the density of threading dislocation, utiliz-
ing a dislocation conversion technology, a crystal with a low dislocation density
(∼100/cm2) can be obtained stably[7]. Further lowering of dislocation density, es-
pecially of the basal plane dislocations (BPDs), and suppressing the generation of
macroscopic defects, like solvent inclusion, remain issues.

Polymorphism instability

SiC crystal forms by stacking Si-C bilayers. SiC has over 200 kinds of polytypes with
different stacking sequences. The physical properties vary over different polytypes,
and the 4H-type is considered the best material for power devices. On the other hand,
once two different polytypes are deposited on the substrate simultaneously, grain
boundaries between polytype islands become the source of dislocations due to the
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mismatch of the lattices. Therefore, obtaining the desired polytype and suppressing
other polytypes’ deposition is significant.

When growth is performed on the {0001} faces, through a two-dimensional (2D)
nucleation mechanism, polymorphism stability is significantly related to the growth
condition, mainly temperature. During growth on substrates of 4H-SiC, besides the
4H-SiC islands, 6H-SiC islands also commonly appear because the interface energy
costs for depositing are very close[8, 9]. Thus in the growth of SiC, polymorphism
instability is closely related to the 2D nucleation phenomenon.

In epitaxy, Kimoto et al. suggested utilizing the step-flow growth mode to
maintain the polytype of the substrates[10]. By manufacturing substrates with an
off-angle, elementary bilayer steps are initially supplied. Due to the lower energy,
new deposition primarily occurs on the step edges rather than on random positions
on the terraces. Therefore the polytypes of the step edges, thus the substrate, are
inherited. In bulk growth, the off-angle provided elementary steps only live the
beginning stage of growth, while spiral growth centers provide new and sustainable
steps during the whole growth period.

However, we found that in the growth with the TSSG method, 2D nucleation
thus polymorphism instability can still occur on the terraces between steps even
with the step supplement[11, 12]. When the terraces become aboard enough due to
step bunching, the accumulated growth units on the terrace cannot diffuse to the
step edges. If there is no end of screw dislocation at the terrace surface, the supersat-
uration of growth units due to accumulation arises over the critical supersaturation,
and 2D nucleation occurs. Although it is reported that such 2D nucleations occur
on those step-bunching-induced aboard terraces helps relieve the step bunching
itself[13, 14], in the case of SiC, an island of another polytype, since it can not merge
into the coming steps, can hinder the step advancing and leads to destructive macro-
scopic defects[15]. In this way, one can conclude that polymorphism instability
during the growth of SiC with the TSSG method is a consequence of the instability
of step morphology.

Optimization of solvent composition

As explained in the last section, carbon supersaturation drives the growth of SiC;
thus, the carbon solubility and its temperature dependence are significant. The
phase diagram indicates that the silicon melt can dissolve up to 18% of carbon at
2800 °C[16]. While at a lower temperature, at which one usually performs solution
growth, the carbon solubility in pure silicon melt is very low (0.17 at% at 1800°C).
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The consequence of low carbon solubility is a low growth rate of < 10 µm/h. Thus
the growth utilizing pure silicon solvent is suitable for SiC thin film epitaxy but far
from growing bulk crystals. Although solutions such as increasing the extremely
high temperature of 2200∼2300◦C to increase the carbon solubility and enhance
carbon supply by enforced convection have been proposed,[17] people preferred the
other approach.

Extra elements are added to the solvent to improve carbon solubility. Usu-
ally, adding transition metals or rare earth metals to the pure silicon can improve
the carbon solubility by several orders of magnitude compared to the pure sili-
con solvent[18–20]. Among the proposed solvent compositions, the composition
Si0.6Cr0.4 is widely accepted as a basic solvent for SiC growth due to its high carbon
solubility [21–27].

An issue of utilizing the additional elements is incorporating these extra elements
into the grown crystal. Since the incorporated atoms probably work as deep energy
levels traping carriers, resulting in damage to the device performance such as the
conductivity. It is reported that the incorporation of Cr is as low as 1017/cm3[21].
For the other elements, there is not enough investigation.

Based on the above viewpoints, a standard solvent-designing approach involves
carbon’s solubility to the liquid phase and the solid solubility of additional elements
to the SiC crystal. In the lack of experimentally acquired phase diagrams, one uses
the method of calculation of phase diagrams (CALPHAD) method to obtain the
phase diagram instead. Many compositions have been proposed according to the
calculated phase diagrams[24, 28].

On the other hand, the growth morphology can be drastically affected by even
tiny changes in solvent composition, making it an essential consideration in solvent
designing. Since the behavior of steps plays a significant role in growth, extensive
works have been carried out on the influence of solvent on step structure to find the
best solvent for solution growth[25, 29–33]. A major advance in solvent design is dis-
covering the addition of aluminum suppressing step bunching and thus maintaining
a smooth surface[30].

Taking the influence on step morphology is gaining more and more significance
in solvent designing. A general and completed understanding of additional elements
affecting step behavior is necessary to satisfy this demand.
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Craft modification for crystals of large diameter

Growing crystal of small size is relatively simple since the growth condition is
uniform overall growth interface. In this case, the most critical parameter might be
the maximum temperature difference in the solution, which determines the growth
driving force.

However, growing crystals of larger diameters must consider more factors. One
of these factors is the temperature distribution over the crystal/solution interface,
which gets difficult to maintain uniformity when the crystal diameter is large enough.
Daikoku et al. showed that the shape of the growth surface could be changed through
controlling the temperature distribution in the growth front[34].

Another factor is the solution flow direction under the growth interface. Zhu
et al. revealed that the flow direction has a major influence on the step bunching
behavior in SiC growth[12]. After this study, K. Ariyawong’s fine work revealed
the solution direction creating different surface patterns by varying effects on step
structures in different surface areas[35]. While Daikoku cleverly utilized the concave
growth surface and the outward solution flow to create an anti-parallel flow growth
mode and obtained crystals of high surface uniformity[34].

As demonstrated in Chapter 2, growth utilizing off-axis substrates is dangerous
to keep a constant flow pattern during the whole growth period because of the
opposite effects on steps in different areas by flow direction. Furthermore, we found
that the flow direction finally became the central issue in large diameter crystal
growth.

1.3 Defects in SiC and macrostep

SiC crystal contains defects in different length scales. The microscopic defects
include dislocations and stacking faults. They involve the disorder of atomistic
lines and faces. Usually, the density of these microscopic defects is an essential
criterion in judging the crystal quality because the performance of devices can be
significantly lowered for containing these defects [36]. SiC crystals can also contain
macroscopic defects of a size that could be directly observed by optical microscopy,
like stretches due to mechanical damage during substrate polishing. There could also
be solvent inclusion for crystal growth with the solution method. Those macroscopic
defects themselves usually cause significant damage to the electrical properties and
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Figure 1.4 Type and propagation direction of defects in SiC crystal.

mechanical properties. Also, the defects initially existing in substrates can become
sources of dislocations, spreading harmful effects to epitaxial layers.

1.3.1 Microscopic defects and dislocation conversion

Figure1.4 shows the primary microscopic defects in SiC crystals and their propa-
gation directions. These microscopic defects are classified according to both the
Burgers vector b directions and the directions in which they propagate. The thread-
ing edge dislocation (TED), threading screw dislocation (TSD), and micropipe (MP)
propagate along the c-axis. MP is a hollow pipe of micrometer size with b > 3c.
While the stacking fault (SF) and basal plane dislocation (BPD) propagate inside the
{0001} planes.

Since the growth of SiC crystals is usually performed along the c-axis, the thread-
ing dislocations propagate together with the growth processing and will never be
eliminated. Fortunately, it has been revealed that microscopic defects of the same b
can convert into each other during growth. That indicates TSDs can convert into SFs
of frank type, while TEDs can convert into BPDs of the same b. Especially, Yamamoto
et al. uncovered that macrosteps swiping the surface help convert threading disloca-
tions into defects on the basal planes[37]. Figure 1.5(a, b) shows the schematics of
the conversion process of threading dislocations during growth. Since the defects on
the basal planes will not propagate into the further grown layer, this phenomenon is
utilized to reduce the dislocation density[38, 39]. Once all threading dislocations are
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Figure 1.5 Processes of obtaining dislocation-free crystal. (a) A substrate with TDs,
(b) TDs are converted with promotion of a macrostep, and (c) the formation of a
TD-free layer. The vertical grey lines inside crystals indicate TDs while the lines
propagating along the step-advancing direction indicate converted dislocations in
basal planes. The array indicates the step-advancing direction.

converted, the further grown layer will be dislocation-free, as shown in figure 1.5(c).
This phenomenon has been utilized to realize ultra-high-quality SiC crystals[7].

Conversion of TSDs occurs more difficult than conversion of TEDs and is closely
related to the step structure. Around TSDs, growth hillocks form due to the spiral
growth mechanism; to conduct the conversion, a step swiping across a TSD must
be higher than the hillock around the TSD. On the other hand, Ha et al. revealed
that the conversion is due to the image force from the step edge; thus, Xiao et al.
revealed that the slope of a macrostep also affects the conversion behavior[40, 41]. In
summary, to eliminate threading dislocations and obtain high-quality SiC crystals,
high and steep macrosteps are necessary, at least in the initial stage.

1.3.2 Macroscopic defects induced by macrosteps

Besides the microscopic defects, macroscopic defects are also introduced during
growth or wafer manufacturing. The mechanical damage during manufacturing
wafers is out of the scope of this thesis. As a transport-limited growth, issues
found in the growth of other crystals with solution methods may also happen in the
solution growth of SiC. For example, we have observed the instability of the surface
and the following issues like growth striation and solvent inclusion.

An essential problem happening during growth is the formation of macrosteps.
Figure 1.6 shows a schematic of (a) equally spaced elementary steps and (b) a
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Figure 1.6 A step train (a) equally spaced and (b) bunched to form a macrostep. The
white arrays show the advancing directions of steps.

macrostep consisting of a bunch of elementary steps. The details of the step bunching
mechanism will be introduced in section 1.4.3. This section intends to introduce the
influence of step bunching on crystal quality. Although we revealed that macrosteps
of a considerable height and a steep slope are necessary for the conversion phe-
nomenon, which helps to lower dislocation density and increase crystal quality, an
over-developed macrostep, on the contrary, is a cause for many macroscopic defects.

Nishinaga and Bauser respectively revealed that growth striation forms with
macrosteps during growth with impurity doping. In a grown crystal, moving traces
of macrosteps usually can be observed in a different color or transparency, in a cross-
section view. That is due to a variation in the impurity-incorporation rate among
steps and terraces, leading to the doping concentration in the macrosteps traces being
different[42–44]. Such growth striations imply inhomogeneity in the distribution of
impurities, which negatively influences the crystal’s electrical properties.

Moreover, macrosteps can also result in formation inclusions. Inclusions are
heterogeneous substances found contained within the grown crystals. The heteroge-
neous substance can be solidified solvent and crystalline or non-crystalline particles.
In a SiC crystal, inclusions can also be SiC particles of a different polytype. Figure
1.7 shows three types of solvent inclusion caused by macrostep. Figure (a) shows
the inclusion involved in a trench-like structure. When a macrostep is present, there
must be wide terraces in front and behind it (as shown in figure 1.6 (b)). As we men-
tioned in section 1.2.4, 2D nucleation takes place on those terraces. Once a growth
island forms on the front terrace due to 2D nucleation, it blocks the macrostep from
advancing, and grain boundaries form between the growth island and macrostep.
In some cases, it generates a trench-like defect between the growth island and the
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Figure 1.7 Schematics of solvent inclusion in (a) a trench-like structure, (b) a over-
hanging structure and (c) a cellular structure.

macrostep[12]. Once the trench gets deep enough, convection becomes too weak to
transport growth units into the trench so that the trench will no longer be filled up
with crystal growth. As shown in figure 1.7, together with the growth, the trench ex-
tends extensively and results in solvent inclusion of a large area, damaging the whole
crystal[45]. Even without growth island blocking, the elementary steps stacked at
the bottom of the macrostep can fall into a dead zone and stop moving, while in
most cases, the top elementary steps keep moving, leading to an overhanging layer.
That leads in another typical type of inclusion formation, as indicated in figure 1.7
(b). [46]. Figure 1.7 (c) shows inclusions involved in a cellular structure formed on a
macrostep. The step edge of an over-developed macrostep may lose its stability and
bend into a cellular structure. In the valleys, for some reason, e.g., an insufficient
supply of growth unit, the growth stops. The fingers between valleys keep growing,
and once two fingers grow to closure, the solvent in the valleys between the two
fingers is trapped to be inclusion[46].

In summary, macrosteps are found necessary in the beginning stage for disloca-
tion conversion, while they must be eliminated during the later bulk growth to avoid
inducing other defects. That indicates crafts to enhance macrosteps and to dissipate
them are both necessary. Understanding the factors influencing step structure and
the dynamics of step bunching is urgent.
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1.4 Step bunching mechanisms

The last section revealed the significance of controlling the height and the slope of
macrosteps. Step bunching is an essential process in the formation of macrosteps,
which is also indicated as a hill-and-valley structure [47] or a nano facet [48]. Knowl-
edge about step bunching is significant for controlling the macrostep structure. This
section intends to make a review of the mechanisms of step bunching.

1.4.1 Step bunching at the beginning stage of SiC growth

Kimoto et al. discovered that during CVD epitaxy of 4H- and 6H-SiC on <11̄00>
oriented off-axis substrates, an unusual behavior that those <11̄00> directed steps
bunch into half-unit-cell height and then into full-unit-cell height[47]. Take the
6H-SiC as an instance. Due to the different energy gains for depositing on different
terraces[49], the deposition rate on each terrace, thus the growth rate of each step,
varies in a three-fold period. That is why step bunching of half-unit-cell height
forms. On the surface, there are two types of half-unit-cell bunches terminating
with different configurations, alternating their sequences. For the two types of
terminating configuration, one wants to refer to the cross-sections in figure 4.1. The
bunches with two unsaturated dangling bonds grow faster than those with only one
dangling bond, finally leading to the full-unit-cell bunching. However, there remain
some puzzles in this explanation. The ratio On grown crystals, Kimoto showed the
ratio of full-unit-cell bunchings is 66% on 4H-SiC while is only 7% on 6H-SiC, while
the reason for this distinction remains unexplained. Later Borovikov reproduced
this phenomenon with a computer simulation[50]. There are as well other studies
that take this mechanism to explain the same step bunching behavior in SiC etching
with H2 and the shape of spiral growth hillock[48, 51].

Although this mechanism involves only steps oriented in the <11̄00> direction,
the steps in the <112̄0> directions break into alternating segments of <11̄00> steps
due to energetic reasons. Therefore, a perfectly <112̄0> oriented step train bunches
into half-unit-cells but is supposed not to have further bunching[52].

This is a special step bunching mechanism shown in crystal with an alternating
stacking order, e.g., hexagonal polytypes of SiC, GaN[53, 54], ice[55]. It is also found
in some layered metal dichalcogenide materials[56]. It is, however, of little concern
in studies of the formation macrosteps in our research. The macrosteps, though
depending on the topic one wants to discuss, are defined as steps bunching of
hundreds or even more steps. Therefore, one can consider the half-and full-unit-cell
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steps as elementary steps then study the further step bunching behaviors. The
following section will introduce the energetic viewpoint on step bunching.

1.4.2 Step interactions

Elementary steps can bunch into macrosteps to lower the total surface energy[48, 57].
For a vicinal surface varies from the facet with a small angle θ, The surface energy
can be written as

fsurf.(p) = α(0) −
β

a
p −
ϕ

a3 p3 + ..., (1.2)

where p = tanθ = a/r the slope of the vicinal surface, a is the step height and r
is the step distance. The first and the second terms on the rightside represent the
surface energy of the facet and the edge energy of steps, respectively. The third term
describes the effect of step interactions. The surface energy, therefore, depends on
step distance.

There are two opposite step interactions, the attractive interaction and the re-
pulsive interaction[58]. The attractive interaction originates from the attractive
interaction among atoms. Thus the attractive potential is proportional 1/r3. In the
case of heteroepitaxial growth, another attractive long-range interaction, whose
potential is proportional to ln(r), exists, while this interaction can be neglected in
the case of homoepitaxial growth. Tersoff first introduced the idea of attractive
step interaction in the analysis of step bunching instability with the linear analysis
method[59].

On the other hand, repulsive interaction originates from 1) elastic deformation
caused by steps or 2) an entropy effect at high temperatures. The repulsive potential
originates from 1) can be written as

U(r) =
2(1 − σ2)
πE

(β̃a)2 1
r2 (1.3)

where σ, E are the Poisson’s ratio and Young’s modulus, respectively. β̃ is the step
stiffness and a the step height[60, 58]. The force works on a steps, F = ∂U/∂r, is
exactly the third term in the equation 1.2. Since the attractive interaction attenuates
quickly with r increasing and thus can be neglected, in most cases, the repulsive
interaction dominates. Strong repulsive interaction resists step bunching, the resis-
tance can be represented by the so-called surface stiffness α̃∥ = 6ϕ/(a2r), where the
subscript ∥means the transformation of surface is parallel to step lines. A numerical
study on the influence of the repulsive force on step bunching can be found in[61].
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Furthermore, some researches indicate that a vicinal surface could lower the
surface energy by forming faceted macrosteps[62, 63]. That is, despite the high
energy barrier for steps to get close to each other due to the repulsive interaction,
once they cross the critical distance, the repulsive force quickly falls to zero[58].

Factor modifying surface energy and surface stiffness thereby can change the
step bunching behavior of a vicinal surface. For example, impurities can adsorb
to the terraces between steps and decrease the density of unsaturated bonds. With
this theory, Ohtani et al. succeeded in explaining the change of step bunching
behavior caused by nitrogen addition in the growth of 6H-SiC[62]. Lately, this
theory is also applied to explain the effect of chromium and other elements and
yield a qualitative consistency to the experimental results[30, 31]. One other reason
is surface reconstruction. It also decreases unsaturated bonds and releases surface
tension.

1.4.3 Step bunching as a surface instability

Nonetheless, this surface energy explanation is far from complete. First, one applies
this theory to explain the observed step bunching phenomenon rarely shows how
the surface energy is influenced, making the explanation unconvincing. Also, the
exact value of surface energy is difficult to measure, especially when the surface is in
contact with the liquid phase. Moreover, it fails in predicting the surface instability
that occurs in transport-limited growth.

Instability occurs on a growing surface to form destructive morphologies such
as dendrites and cellular structures. Usually, the instability occurs during solution
growth or melt growth, known as transport-limited growth. The transport process
of mass (growth units) or energy (latent heat released in crystallization) is several
orders slower than the kinetic process of growth units being incorporated into the
crystal. The classical constitutional supercooling theory and the dynamics model
by Mullins-Sekerka succeeded in modeling this type of instability. The idea of
Mullins and Sekerka is that the perturbation that occurred on a flat surface would
induce a change in the uniform ambient phase. The inhomogeneity in the ambient
phase reversely suppresses/enhances the perturbation, and thus the perturbation is
strangled at birth/grows to instability. Furthermore, as Mullins’s formula indicates,
though the surface energy provides a constraint force that resists the surface from
instability, it only works on a small length scale.

Step bunching is a surface instability if one considers the elementary process of
step bunching, say, the paring of two neighboring steps. With an equally-spaced
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Figure 1.8 A schematic illustration of the step pinning process. The black arrays show
the direction of the step advancing. (a) shows a step not yet influenced by impurity.
(b) shows a step cutting through impurity particles. The step stops at impurity sites
(pinning effect) while the segments between pinning sites bend forward. (c) shows a
step completely stopped due to the pinning effect.

step train moving on the surface, select a step and put a perturbation on its position,
say, by advancing a small displacement, the step velocity would be affected by the
change in its front/behind terrace widths. If the step is decelerated, it will return
to its initial position. Else, however, if the step is accelerated, it would continue to
deviate from the initial position and finally catch the front step and form a step-
pairing. With more and more steps pair with each other, step bunching occurs. The
following subsections will introduce several common factors that cause step-pairing.

Impurity

Since Cabrera and Vermilyea (CV) have established the model for impurity pinning
steps, the influence of impurities on step motion has been extensively investigated
[64]. This model describes impurities adsorb on the surface, and when a flat step
meets a row of impurities, the step stops at the points where the impurities are
located, while the rest portion keeps advancing. Thereby the flat step breaks into
a sequence of curved segments, as indicated in figure 1.8. Due to the well known
Gibbs-Thomson effect, the effective driving force is decreased by the bending; thus,
the step advancing rate decreases in

vst = v0
st(1 − 2Rc/∆)1/2, (1.4)

where v0
st is the step velocity when impurities are absent, ∆ is the typical distance

between impurities, and Rc is the critical radius for the 2D nucleation. An increasing
in impurity concentration in the ambience phase could significantly decrease step
velocities.
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The fundamental consideration of impurity-induced step bunching is that the
longer the exposure to the environment, the greater the impurity concentration on
the surface. Therefore, if a step slows down, causing the front terrace to grow wider
and the back terrace to shrink, the impurity density for this step becomes higher
while for step behind becomes lower. Therefore, a variance among the step speeds
occurs and leads to a step bunching[65].

In recent years, new results have started questioning this classical theory. Rile
I. Ristic et al. realized that this mechanism works only for the fast-moving steps,
while for the steps moving slow enough, no matter how broad the terraces are, the
adsorption of impurities is saturated. Thus the variance among terrace widths will
never change step velocities[66]. J. Lutsko et al. revisited the CV model through a
kinetic Monte Carlo method and pointed out that the CV model only applies in the
case of effectively large impurity clusters with long surface-residency times. At the
same time, minor obstacles require much higher impurity concentrations to induce
step pinning relative to the CV model’s prediction because thermal fluctuations
would drive the steps past the impurity fence[67]. In solution growth, J. J. De Yoreo
et al. indicated that only high-soluble crystals obey this rule. Since the high solubility
implies a minor kink-creation work, the high-soluble crystals allow strong step
fluctuations and bending when meeting obstacles. For crystals of poor solubility, the
steps show minor fluctuations. Thus the curvature required in equation 1.4 is absent.
In this case, it is the kink poison mechanism that hinders the step motion instead
of the CV mechanism[68]. That implies that the impurity-induced step bunching,
based on the step-pinning mechanism, may not be valid for the low-soluble crystals.

Schwoebel effect

Step bunching due to the Schwoebel effect (also known as the ES effect) usually
occurs in a growth system modeled by the BCF theory, The route for the growth
unit is ambient phase→ surface→ steps. This route usually occurs in growth from
an ambiance of the vapor phase. Atoms adsorb on the terrace, diffuse, and finally
desorb or be incorporated into steps. The incorporation process happens on both
the downside and the upside of a step. However, Schwoebel indicated that the
incorporation rates on the two sides are usually different due to the different energy
barriers for the atom must cross over[69]. Consider the case the incorporation from
upside terrace is faster and thus the significant process. When a step moves faster
than the neighbor ones, it finds the terrace width behind itself becomes wider, and
the coming flux of adsorption atoms on the upside terrace increases, thus its motion
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is further accelerated, and finally, it will collide into the neighboring step in the
front[70].

Note that the asymmetric incorporation rate of growth units on the two sides of
a step can also originate in external reasons, e.g., the drift of adsorbed growth units
due to an external electric field. Therefore an electric field that drives growth unit
drifting in an up-step direction results in step bunching during crystal growth, while
an electric field placed in the opposite direction stabilizes the step train[71, 72].

Solution convection

A. A. Chernov first studied the effect on step bunching of solution convection near
the growing surface[73–75]. During growth, a flow direction is the same as the step
motion direction, say, the down-step direction, enhancing the step bunching and
vice versa. Although the mathematical derivations are sometimes complicated, one
can conclude that the solute concentration in the solution above a bunch of steps
decreases due to immediate consumption. A down-step flow drives the depleted
solution towards the front of the step bunch. That results in the head of the step
bunch moving even slower, and thus the bunch gets more and more developed.
Later Zhu et al. revealed the same phenomenon in solution growth of SiC crystal
with the TSSG method. He observed that keeping an anti-parallel flow (the up-step
flow) during growth leads to smooth surface morphology and can even flatten a
rough surface by dissipating step bunching[12].

Flow controlling has become a primary issue for developing crafts for solution
growth of large-sized SiC. However, it is difficult to maintain an anti-parallel flow
over the growth surface. Chernov concluded a criterion that the surface stays stable
under a parallel flow. That is

2πuδc

Dk
<

2π
p̄

2

, (1.5)

where u is the flow velocity at the upper boundary of the stagnant layer, δc the so-
called characteristic length,D the diffusion coefficient, k the wavenumber of surface
fluctuation, and p̄ the average slope of the surface. The left side of the inequality
is a non-dimensional Peclet number. This criterion may help design growth crafts.
The linear analysis treats step bunchings as a superposition of waves on the surface
profile and tells which wave would grow up (indicating instability) and remain
stable or disappear. However, the linear analysis gives no information about how the
instability develops. Nonetheless, the development of surface instability, especially
its time dependence, is of great significance in real crystal growth.
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1.4.4 Supersaturation gradient induced step bunching

A supersaturation gradient on the growing surface in the step motion direction
can cause step bunching, mainly when growing crystals of considerable size. Such
supersaturation gradient could be induced by the surface temperature distribution,
step bunches formed earlier[76] or turbulence[77].

1.5 Multiscale modeling of crystal growth in a solution
ambiance

The processes involved in crystallization can be generally divided into 1) the trans-
port of mass and heat to the crystal surface and 2) the incorporation of growth
units at the surface, called surface kinetics. The transport of mass and heat involves
convection and diffusion in the ambiance, which is usually a fluid (vapor or liquid).
The surface kinetics is greatly influenced by the surface structure and the properties
of the crystal itself. Chernov invented the kinetic coefficient,K , to characterize the
surface kinetic. It is defined by the speed growth units near the surface that can be
incorporated.

Both processes influence the growth morphology, thereby the quality of the
grown crystal. However, only in a few cases, the two processes can be observed
directly. Unfortunately, due to the extreme conditions required for the growth, the
solution growth of SiC does not fall in this scope. This inconvenience significantly
hinders us from effectively controlling the growth processes and obtaining high-
quality crystals. In order to overcome this difficulty, numerical investigations are
widely utilized in researches of crystal growth. Particularly, the step bunching
behavior, which is in great concern of this thesis, as introduced in the last sections, is
affected by many factors coupling mass transport and surface kinetics in different
length scales. Therefore, a multiscale numerical investigation is required of how the
two processes affect the step bunching behavior.

Figure 1.9 shows the schematic of models that describe crystal growth in dif-
ferent scales. The schematic of the macroscale model (figure 1.9 (a)) reflects the
configuration of the TSSG method. One usually utilizes the macroscale model to
obtain the information about mass-and-heat transport in the ambiance phase, e.g.
the temperature distribution and flow velocity inside the fluid. However, when the
macroscale model handles the interface kinetics as mass and heat flux at boundaries,
an approximation is usually applied, assuming the surface kinetics completed in
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an instant and the anisotropy is usually neglected. However, as one will see in
chapter 3, coupling the surface kinetics with mass transport is particularly important
when discussing the step bunching problem. Therefore, a mesoscale model coupling
surface kinetics with mass transport is necessary. Figure 1.9 (b) shows a schematic
of an mesoscale model. The atomistic (microscale) model directly considers the
movement of growth units and intends to gain more detailed information such as
the shape of steps and impurities of impurities. Figure 1.9 (c) shows a schematic of
an atomistic model.

The following sections introduce theories of crystal growth and corresponding
models in each scale.

Figure 1.9 Modeling and the corresponding methods of a crystal growth process in
different scales.

1.5.1 Continuum modeling of mass transport

Crystal growth usually involves mass and heat (energy) transport in the ambient
phase. Mass transport includes convection and diffusion, while heat transport
includes heat convection, conduction, and radiation. In most cases, the ambient
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phase is a fluid, i.e., a melt, solution, or vapor. Therefore, the mass and heat transport
problem can be dealt with by an application of fluid mechanics. Governing equations
obtained from the conservation laws of momentum, mass, energy, and species
describe fluid motion. The governing equations for the four conservations can be
written in a general form,

∂ρϕ

∂t
+ ∇ · (ρuϕ) = ∇ · (Γ∇ϕ) + S, (1.6)

where ϕ is the variable for solving, Γ is the general diffusion coefficient, and S is
the general source item. Table 1.2 listed up the specialized forms of symbols in the
governing equation corresponding to the particular equations, the meaning of each
symbol is listed in table 1.3. By solving and analyzing the governing equations, the
distribution and change of physical quantities corresponding to ϕ can be obtained.

Table 1.2 The specilization of the symbols in the general governing equation.

Equation ϕ Γ S

Continuity equation 1 0 0
Momentum equation ui µ −∂p/∂xi + Si

Energy equation T k/c ST

Species equation cs Dsρ Ss

Table 1.3 Meaning of the symbols in the specilized governing equation.

ui component of fluid velocity vector
µ dynamic viscosity
p pressure
Si body force
T temperature
k heat transfer coefficient
c specific heat capacity

ST heat source
cs concentration of species s
Ds diffusion coefficient
ρ density
Ss source of species s

It is worth noting that the release and absorption of the species due to any in-
solution chemical reaction or phase transition can be included in the source item
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of the species conservation equation. While those that occur at the interfaces are
defined use boundary conditions. Particularly, the solute flux towards crystal surface
due to diffusion, and the incorporation flux should be balanced,

D∇cs = K (n)(cs − ceq), (1.7)

whereK (n) is defined as the growth kinetic coefficient, n in the normal vector of the
surface, and c with the subscipts “s” and “eq” respectively represent the real and
equilibrium solute concentration at the crystal surface. With the flux, the growth
rate of the surface n can be obtained as

R(n) ∝ K (n)(cs − ceq). (1.8)

In application, the mass and heat transport problems are simulated, analyzed,
and solved using computer-based numerical analysis and algorithms known as
computational fluid dynamics (CFD). As the most extensively applied modeling
gathering most engineering concern, plenty of commercial CFD simulation software
is available for modeling all kinds of crystallization processes, including those using
the TSSG method.

1.5.2 Mesoscale modeling of vicinal surface

With the macroscale model, one gains insight into mass and heat transport in the
entire ambient phase. Macroscopic quantities, such as crystal growth and crucible
dissolving rates, can be obtained in length and time scales of centimeters and hours.
By carefully setting growth kinetic coefficientsK (n) for different growth directions,
one can even predict the crystalline phase. However, the model in this scale is not
compatible in acquiring information on scales smaller than the grid size.

On the other hand, crystal growth is governed by mass transport and surface
kinetics. In contrast to the mass transport process, the mass exchange between
the ambient and crystal depends on the surface structure and shows significant
anisotropy.

Four main growth mechanisms can occur on the surface. Figure 1.10 gives a
schematic representation of the four mechanisms. The normal growth occurs only
on rough surfaces, which is usually valid in the cases like metals growing from their
melts because the temperature of solidification is usually higher than the roughening
transition temperature. In the case of SiC solution growth, however, growth occurs
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Figure 1.10 Schematics of (a) the normal growth, (b) the 2D nucleation growth, (c)
the spiral growth, and (d) the step-flow growth. The grey array in (a) indicates the
growth direction of the rough face, while the grey arrays in (b-d) indicate the growth
direction of steps.

on flat surfaces such as the {0001} facets or vicinal faces deviate from the {0001} facets
for small off-angles.

The rest three mechanisms describe the growth on flat surfaces. On facets,
growth occurs through either the 2D nucleation growth mechanism (figure 1.10 (b))
or the spiral growth mechanism (Figure 1.10 (c)). 2D nucleation can form on the
surface when a critical driving force is reached. The edges of nucleations are steps
providing preferential incorporation sites for growth units to bond. The edges of 2D
islands spread over the surface so that the crystal grows layer by layer. If the screw
dislocation intersects the crystal surface, the discontinuity on the surface provides
nonvanishing steps on the crystal surface. In this mechanism, 2D nucleation is not
necessary, and crystals can grow at a low driving force.

On vicinal faces, the step flow mechanism dominates, figure 1.10 (d). Steps
provided by either 2D nucleations or spiral centers are minorly influenced by their
sources when they spread far away enough. In that case, the step flow mechanism
also applies to the growth of these steps. From a mesoscale viewpoint, the steps act
as linear sinks for the growth units in solution growth. The growth rate of a step is

vst = Kst(cst − ceq)vc, (1.9)

whereKst is the step kinetic coefficient and vc is the volume of a growth unit. The
concentration of growth unit near the step, cst, is determined by a balance between
the mass transport and consumption of the step as indicated by equation 1.7. That
implies that one can apply the same methods in the continuum model to obtain the
values of cst to calculate step velocities, thus the evolution of step positions. For
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each elementary step,Kst characterizes the rate of incorporating growth units. With
this Kst, the motion of each step can be separately simulated, which is necessary
for simulating step bunching. However, directly involving these delicate processes
would be very computationally expensive in the macroscale models. Therefore, a
mesoscale model, coupling the step kinetics and the mass transport near the steps, is
necessary to investigate step bunching behaviors. Some mesoscale models for step
motion have been reported in previous studies[76, 78, 79].

1.5.3 Atomistic modeling of surface process

The mesoscale and continuum models are half-empirical. To apply these models,
one has to assign some of the physical properties empirically. While some of the
physical properties, e.g., the step kinetic coefficient, are not easy to be experimentally
determined. Crystal growth by the step flow mechanism involves incorporating
growth units into the steps. While the kink sites play an essential role in the growth.
The step kinetic coefficientKst is a function of the kink density, a/δ0,

Kst = aν
a
δ0

exp(−
∆U
kBT

), (1.10)

where ν is the attempt frequency, a the length of a growth unit, δ0 the average
distance between kink sites, and ∆U the energy barrier for growth unit to crossover
for a growth unit to incorporate into the crystal. In this viewpoint, the step kinetic
coefficient is a function of the atom arrangement at the step edge. Therefore, for
a better understanding of the crystal growth, starting from atomic behavior to
investigate crystal growth, thus the modeling in-depth into an atomic scale is found
necessary.

Figure 1.11 gives a schematic of a {001} Kossel surface with a step on it. Kossel
model is a model using connected blocks to represent molecules or atoms. Due
to either a thermal fluctuation or depositing/removing growth units, the step can
deviate from its “perfect” position, which is supposed to be straight. With that
deviation, kink sites form at the corners where the step line changes direction.
Under some extreme conditions, adatoms/vacancies can also form on the surface.
For a Kossel crystal, the kink density is (1 + 1/2 exp(ω/kT))−1, where ω is the kink
creation work. The step kinetic coefficient can be easily estimated using ω and ∆U
data. However, it is not easy to determine the kink density for more complicated
crystals. While through atomistic simulations of the crystal surface containing steps,
one can obtain the step structure at certain conditions, thereby obtaining the step
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kink site

adatom
step adatom

overhang

step

vacancy

Figure 1.11 A atomistic structure of a Kossel crystal’s {001} surface, indicating differet
configurations.

kinetic coefficient information, or calculate it as a ratio between step velocity and
driving force, as indicated in equation 1.9. Furthermore, an atomistic model also
helps investigate other microscopic mechanisms like how impurities influence step
motion.

For the length scale of steps on the crystal surface, molecular dynamics and the
Monte Carlo method are suitable. For SiC crystal, these methods as well have been
widely utilized in solving problems of step reconstruction and step bunching[80–82].
This thesis applied a kinetic Monte Carlo (KMC) method to investigate step kinetics
on an atomistic scale. The following sections introduce the basic ideas of KMC.

kinetic Monte Carlo method

In the atomic simulation, molecular dynamics (MD) is excellent. It can describe the
evolutionary trajectory of a system very accurately. In general, time steps in MD are
on the order of femtoseconds (10−15s), which is sufficient to track specific changes
in atomic vibrations. However, this advantage also limits the application of MD
to simulations on large time scales. Although nowadays computers can support
MDs of up to tens ns with well-designed algorithms, the dynamic processes in our
interests have periods of more than seconds, far beyond MD’s applicability. The
kinetic Monte Carlo (KMC) methods were proposed to satisfy the needs of studies on
complex systems and complex processes. Until now, KMC has been widely utilized
in investigations on crystal growth such as spiral growth [83], thermal roughening
[84, 85], formation of polytype [82] and step bunching [50, 86]. We constructed a
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KMC model to investigate the step structure and the mechanisms of impurities
affecting step motion. The following part briefly introduces the principle of KMC.

When the system is in a steady-state, we can describe it as being at a local mini-
mum (bottom trap) of the potential energy function surface. At finite temperature,
although the atoms in the system are in constant thermal motion, they spend most
of their time vibrating near the bottom of the potential energy trap. Occasionally
the system crosses the potential barrier between the different potential traps and
completes an “evolution”, and it is this small probability determines the evolution
of the system. Therefore, if we upgrade the focus from "atoms" to "systems" and
coarsen the “atomic trajectories” to “system state leaps” then the time scale of the
simulation will be increased from the scale of atomic vibrations to the scale of system
state leaps.

A leap pathway i→ j describing the system going scaping from state i to state j
can be characterized by rate ki j, which depends only on the current system state i.
By constructing a stochastic process that makes the system evolve according to the
event rates, in which the probability of each evolutionary trajectory is the same as in
the MD simulation, we can study the evolution of a system.

The rate constant and time evoluation Because the time interval between the
leaps (the KMC events) is very long, two subsequent evolutions can be considered
independent, i.e. follow the Poisson distribution. That gives the probabibility for the
system NOT escaping from state i after time t passed by

Pstay(t) = exp(−ktott), (1.11)

where ktot is the sum of the rates ki j of all possible leap paths when the system is in
state i,

ktot =
∑

j

ki j. (1.12)

The escape probability of the system then accumulates with time, so Pescape(t) inte-
grated over time to a certain moment t′ must be equal to 1 − Pstay(t′). That gives the
probability distribution function of the escaption.

p(t) =
∂Pescape(t)
∂t

= ktot exp(−ktott). (1.13)

For each specific leap path ki j, the above discussion holds. Therefore, we can define
the probability distribution function pi j(t) of the system making a jump i → j per



1.5 Multiscale modeling of crystal growth in a solution ambiance 29

unit time as
pi j(t) = ki j exp(−ki jt) (1.14)

The time step δt of KMC, representing the time for escaping from state, i, should
follow the geometric distribution. This can be obtained by drawing a random
number r on the interval (0,1], and forming

δt = −
1

ktot
ln r. (1.15)

Procedure of KMC KMC has several implementations. Here we introduce the
direct method which was used in the study. The direct method is one of the most
commonly used KMC algorithms and is very efficient. Each step only requires the
generation of two random numbers, r1 and r2, equally distributed in (0, 1], where r1 is
used to select the leap paths and r2 determines the forward time of the simulation. Let
the system be in state i, and imagine each leap path j as a line segment whose length
is proportional to the leap rate ki j. Connect these line segments at the beginning and
end to a line whose total length is proportional to ktot = Σ jki j. If r1ktot falls within
a line segment q, the leap path i → q represented by that line segment is selected,
and the system moves to the state q while the system time advances according to
equation 1.15. To summarize its algorithm as follows

1. calculate the total leap rate when the system is in state i according to equation
1.12.

2. generate a random number r1;

3. find the path i→ q that satisfies Σq−1
j=1ki j ⩽ r1ktot ⩽ Σ

q
j=1ki j;

4. move the system to the state q while simulating the time advance according to
equation 1.15;

5. repeat the above process.

The lattice assumption Applications of KMC in solid-state physics often involve
mapping atoms to a specific lattice. Thus, the events are viewed as atomic lattice
point relationships changes. Although this method is not precisely consistent with
the actual situation, it simplifies the modeling effort in many cases and is a rea-
sonable approximation according to previous results. (In many cases, the atoms in
the system all deviate to some extent from the ideal lattice point, but not too much
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(∼0.01a), so this atomic point mapping is valid.) Another advantage of this approach
is that the events can be localized. Each event is only relevant to its immediate
system environment, significantly reducing the number of leap pathways and thus
simplifying the calculation[87]. It is important to note that this mapping is unnec-
essary for KMC simulations. For example, in a molecular chemical reaction or the
growth of biomolecules, the lattice does not exist.

Rate determination With knowledge about the leap pathway, one can calculate the
rate constant with the transition state theory, in which the pathway is characterized
by a saddle point on the potential energy surface, as shown in figure 1.12. Leaving
out the derivation processes, a very simplified form of rate constant can be written
as

k = ν0 exp(−∆E/kBT), (1.16)

where the prefactor is often in the range of 1012 s−1 - 1013 s−1, a common approxima-
tion is to choose a fixed value in this range to save the computational source[87].
The ∆E = Esaddle − Eminimum is the energy difference between the saddle point and
the minimum. With the lattice assumption, a reasonable assumption is that additive
interactions can approximate the barrier height. That is,

E = Σϕ. (1.17)

Here ϕ is the energy of the additive interactions, which can be specified according to
the results of experiments or other simulations. Particularly, for KMC used in crystal
growth, we can specify the barrier height for a growth unit to deposite at and be
removed from the half-crystal position (kink site) as

∆Edep = ∆U,

∆Erem = ∆U + ∆h.
(1.18)

Here ∆h is the enthalpy of the transition (sublimation, dissolution, or fusion) corre-
sponding to the crystallization process. ∆U is the kinetic barrier for the incorporation
of the growth units into the half-crystal position connected with proceeding chem-
ical reactions, desolvation in solution growth, or viscous flow in growth in melt
growth[57]. The enthalpy can be written as summation of “effective bonding en-
ergy”, φ

∆h = zφ, (1.19)
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where z is the number of direct neighbors of each growth unit in the solid-state,
usually the coordination number.

Figure 1.12 Illustration of the transition state theory rate constant. The red array
shows the transition pathway, i→ j, across the saddle point.

For more information about KMC, one might want to refer to the references for
rate determining[87], for quick searching algorithm[88, 89] and for lattice construct-
ing [82].

1.6 Relation to Real-World Data Circulation

The relation of this thesis to Real-World Data Circulation (RWDC) is discussed. First,
the concept of RWDC can be briefly explained as follows.

1. Data acquisition. Data is acquired by an investigation into natural phenomena
or human activities. In some fields, data can also be acquired by experiments.

2. Data analysis. The acquired data is analyzed to extract useful information and
form general principles that help humans understand natural phenomena or
society. In some cases, the understanding of the system is reflected in computer
modeling.

3. Data implementation. The knowledge is utilized to improve the behaviors of
the systems where the data is acquired, completing the data circulation. The
implementation usually involves predicting and controlling natural phenom-
ena, improving industrial products or services, or decision-making in social
affairs.
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This thesis focus on the growth processes of 4H-SiC crystal from a liquid phase
ambiance, which requires a multiscale understanding of the whole system’s behavior,
including mass and energy transport in the macroscale, the surface kinetics in the
mesoscale, and the atomistic interaction in the microscale.

Conventionally, it is not easy to directly relate the obtained crystals to the condi-
tions of the experiments. Although both are macroscopic objects, the latter deter-
mines the former through complicated mechanisms hiding in the more minor scales,
hardly observed with experimental approaches. This difficulty hinders researchers
from improving the growth conditions through the previously obtained crystals.

The research of this thesis provides a systematic understanding of the step
bunching phenomenon, building a bridge linking the input and output during
crystal growth. Moreover, the insights gained by this thesis can be implemented to
create an emulator, which reproduces the crystal growth processes in a computer
model. Utilizing this emulator, researchers can explore the parameter space for the
optimized controlling conditions for crystal growth but significantly save time and
cost.

1.7 Objective and contents of this thesis

As described above, the demand for high-quality SiC bulk crystals is becoming more
urgent and higher with the development of power devices used under high power,
high frequency, and high temperature. The quality of grown crystals has been dra-
matically improved due to the effort for several decades. However, dislocations such
as macropipes or TSDs still hamper the realization of high-quality SiC crystals. Solu-
tion growth is considered a promising method for high-quality SiC crystal growth
not only the growth conducted under the condition close to thermal equilibrium
and the threading dislocation could convert to defects on the basal plane. Macro
steps have been found critical for dislocation conversion, while over-developed
macrosteps induce other defects. Controlling the structure of macrosteps according
to different purposes is critical for high-quality SiC crystals. As an essential process
in macrostep formation, knowledge about step bunching is necessary to control
the formation and dissipation of macrosteps. Thus, investigation on step bunching
remains crucial.

In this thesis, a multiscale numerical investigation is utilized to reveal the mecha-
nism of step bunching in solution growth. The effects of solute transport in fluid
and step kinetics on step bunching were extensively studied.
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Our objective is to realize a smooth grown surface by solution growth.
This thesis is divided into six parts. The specific structure and contents are as

follow:

1. In chapter 1, this thesis’s background and objective are introduced.

2. In chapter 2, the result of the growth of large diameter SiC crystal is described.
The phenomena of step height and TSD conversion ratio distribution are
described and explained with a macroscale CFD simulation.

3. In chapter 3, a mesoscale CFD model coupling step kinetics and mass transport
near crystal surface is constructed. The effect of fluid flow on step bunching
size is quantitatively studied. Then, the effect of solvent properties on step
bunching behavior is investigated.

4. In chapter 4, a KMC simulation model of 4H-SiC surface is constructed. The
step kinetic coefficient is calculated over different temperatures and supersatu-
ration. Then, an aluminum-like impurity is introduced in the simulation. The
impurity’s effects on step kinetics and step bunching behavior are studied.

5. In chapter 5, the relationship of this thesis with the Real-World Data Circulation
was discussed.

6. In chapter 6, the conclusion of this thesis is described.





References

[1] J. Conti, P. Holtberg, J. Diefenderfer, A. LaRose, J. T. Turnure, and L. Westfall,
10.2172/1296780.

[2] T. Kimoto and J. Cooper, Fundamentals of Silicon Carbide Technology: Growth,
Characterization, Devices and Applications (Wiley, 2014).

[3] L. Gear, “Tesla’s Innovative Power Electronics: The Silicon Carbide Inverter,”
Tech. Rep. (2021).

[4] “ROHM supplies Full SiC Power Modules to Formula E racing team Venturi,
Enhancing performance through significant reduction of size and weight,”
https://www.rohm.com/news-detail?news-title=rohm-supplies-full-sic-
power-modules-to-formula-e-racing-team-venturi&defaultGroupId=false
(2018).

[5] H. Lin and A. Villamor, “POWER SIC 2018: MATERIALS, DEVICES AND
APPLICATIONS, Automotive is putting SiC on the road. Is the supply chain
ready?” Market & Technology Report (Yole Developpment, 2018).

[6] D. Nakamura, I. Gunjishima, S. Yamaguchi, T. Ito, A. Okamoto, H. Kondo,
S. Onda, and K. Takatori, Nature 430, 1009 (2004).

[7] K. Murayama, T. Hori, S. Harada, S. Xiao, M. Tagawa, and T. Ujihara, Journal
of Crystal Growth 468, 874 (2017).

[8] R. A. Stein, P. Lanig, and S. Leibenzeder, Materials Science and Engineering: B
11, 69 (1992).

[9] R. A. Stein and P. Lanig, Journal of Crystal Growth 131, 71 (1993).

[10] T. Kimoto, H. Nishino, W. S. Yoo, and H. Matsunami, Journal of Applied
Physics 73, 726 (1993).

http://dx.doi.org/ 10.2172/1296780
http://dx.doi.org/ 10.2172/1296780
http://dx.doi.org/ 10.1038/nature02810
http://dx.doi.org/ 10.1016/j.jcrysgro.2016.11.100
http://dx.doi.org/ 10.1016/j.jcrysgro.2016.11.100
http://dx.doi.org/10.1016/0921-5107(92)90193-d
http://dx.doi.org/10.1016/0921-5107(92)90193-d
http://dx.doi.org/10.1016/0022-0248(93)90397-f
http://dx.doi.org/10.1063/1.353329
http://dx.doi.org/10.1063/1.353329


36 References

[11] S. Harada, Alexander, K. Seki, Y. Yamamoto, C. Zhu, Y. Yamamoto, S. Arai,
J. Yamasaki, N. Tanaka, and T. Ujihara, Crystal Growth & Design 12, 3209
(2012).

[12] C. Zhu, S. Harada, K. Seki, H. Zhang, H. Niinomi, M. Tagawa, and T. Ujihara,
Crystal Growth & Design 13, 3691 (2013).

[13] M. Kasu and N. Kobayashi, Journal of Applied Physics 78, 3026 (1995).

[14] I. Bryan, Z. Bryan, S. Mita, A. Rice, J. Tweedie, R. Collazo, and Z. Sitar, Journal
of Crystal Growth 438, 81 (2016).

[15] C. Liu, X. Chen, T. Peng, B. Wang, W. Wang, and Gang Wang, Journal of Crystal
Growth 394, 126 (2014).

[16] R. I. Scace and G. A. Slack, The Journal of Chemical Physics 30, 1551 (1959).

[17] D. H. Hofmann and M. H. Müller, Materials Science and Engineering: B 61, 29
(1999).

[18] M. Syväjärvi, Journal of The Electrochemical Society 146, 1565 (1999).

[19] K. Kusunoki, S. Munetoh, K. Kamei, M. Hasebe, T. Ujihara, and K. Nakajima,
in Materials Science Forum, Vol. 457 (Trans Tech Publ, 2004) pp. 123–126.

[20] T. Yoshikawa, S. Kawanishi, and T. Tanaka, Japanese Journal of Applied Physics
49, 051302 (2010).

[21] K. Danno, H. Saitoh, A. Seki, H. Daikoku, Y. Fujiwara, T. Ishii, H. Sakamoto,
and Y. Kawai, Materials Science Forum 645-648, 13 (2010).

[22] H. Daikoku, M. Kado, H. Sakamoto, H. Suzuki, T. Bessho, K. Kusunoki,
N. Yashiro, N. Okada, K. Moriguchi, and K. Kamei, Materials Science Forum
717-720, 61 (2012).

[23] M. Kado, H. Daikoku, H. Sakamoto, H. Suzuki, T. Bessho, N. Yashiro,
K. Kusunoki, N. Okada, K. Moriguchi, and K. Kamei, Materials Science Forum
740-742, 73 (2013).

[24] T. Narumi, S. Kawanishi, T. Yoshikawa, K. Kusunoki, K. Kamei, H. Daikoku,
and H. Sakamoto, Journal of Crystal Growth 408, 25 (2014).

http://dx.doi.org/ 10.1021/cg300360h
http://dx.doi.org/ 10.1021/cg300360h
http://dx.doi.org/10.1021/cg400706u
http://dx.doi.org/10.1063/1.360053
http://dx.doi.org/10.1016/j.jcrysgro.2015.12.022
http://dx.doi.org/10.1016/j.jcrysgro.2015.12.022
http://dx.doi.org/10.1016/j.jcrysgro.2014.02.027
http://dx.doi.org/10.1016/j.jcrysgro.2014.02.027
http://dx.doi.org/10.1063/1.1730236
http://dx.doi.org/10.1149/1.1391805
http://dx.doi.org/10.1143/JJAP.49.051302
http://dx.doi.org/10.1143/JJAP.49.051302
http://dx.doi.org/ 10.4028/www.scientific.net/MSF.645-648.13
http://dx.doi.org/ 10.4028/www.scientific.net/MSF.717-720.61
http://dx.doi.org/ 10.4028/www.scientific.net/MSF.717-720.61
http://dx.doi.org/ 10.4028/www.scientific.net/MSF.740-742.73
http://dx.doi.org/ 10.4028/www.scientific.net/MSF.740-742.73
http://dx.doi.org/ 10.1016/j.jcrysgro.2014.08.027


References 37

[25] T. Mitani, N. Komatsu, T. Takahashi, T. Kato, K. Fujii, T. Ujihara, Y. Matsumoto,
K. Kurashige, and H. Okumura, Journal of Crystal Growth 401, 681 (2014).

[26] N. Komatsu, T. Mitani, Y. Hayashi, T. Kato, S. Harada, T. Ujihara, and H. Oku-
mura, Journal of Crystal Growth 458, 37 (2017).

[27] S. Kawanishi, Y. Nagamatsu, T. Yoshikawa, and H. Shibata, Journal of Crystal
Growth 549, 125877 (2020).

[28] K. Kusunoki, K. Kamei, N. Yashiro, K. Moriguchi, and N. Okada, in Materials
Science Forum, Vol. 679 (Trans Tech Publ, 2011) pp. 36–39.

[29] N. Komatsu, T. Mitani, T. Takahashi, M. Okamura, T. Kato, and H. Okumura,
Materials Science Forum 740-742, 23 (2013).

[30] T. Mitani, N. Komatsu, T. Takahashi, T. Kato, S. Harada, T. Ujihara, Y. Mat-
sumoto, K. Kurashige, and H. Okumura, Journal of Crystal Growth 423, 45
(2015).

[31] N. Komatsu, T. Mitani, Y. Hayashi, T. Kato, and H. Okumura, in Materials
Science Forum, Vol. 924 (Trans Tech Publ, 2018) pp. 55–59.

[32] A. Onuma, S. Maruyama, N. Komatsu, T. Mitani, T. Kato, H. Okumura, and
Y. Matsumoto, Crystal Growth & Design 17, 2844 (2017).

[33] S. Xiao, N. Hara, S. Harada, K. Murayama, K. Aoyagi, T. Sakai, and T. Ujihara,
Materials Science Forum 821-823, 39 (2015).

[34] H. Daikoku, M. Kado, A. Seki, K. Sato, T. Bessho, K. Kusunoki, H. Kaidou,
Y. Kishida, K. Moriguchi, and K. Kamei, Crystal Growth & Design 16, 1256
(2016).

[35] K. Ariyawong, Y. J. Shin, J.-M. Dedulle, and D. Chaussende, Crystal Growth &
Design 16, 3231 (2016).

[36] T. Kimoto, Japanese Journal of Applied Physics 54, 040103 (2015).

[37] Y. Yamamoto, S. Harada, K. Seki, A. Horio, T. Mitsuhashi, and T. Ujihara,
Applied Physics Express 5 (2012), 10.1143/apex.5.115501.

[38] H. Tsuchida, R. Takanashi, I. Kamata, N. Hoshino, E. Makino, and J. Kojima,
Journal of Crystal Growth 402, 260 (2014).

http://dx.doi.org/ 10.1016/j.jcrysgro.2013.11.031
http://dx.doi.org/ 10.1016/j.jcrysgro.2016.10.045
http://dx.doi.org/10.1016/j.jcrysgro.2020.125877
http://dx.doi.org/10.1016/j.jcrysgro.2020.125877
http://dx.doi.org/ 10.4028/www.scientific.net/MSF.740-742.23
http://dx.doi.org/ 10.1016/j.jcrysgro.2015.04.032
http://dx.doi.org/ 10.1016/j.jcrysgro.2015.04.032
http://dx.doi.org/10.1021/acs.cgd.7b00325
http://dx.doi.org/ 10.4028/www.scientific.net/MSF.821-823.39
http://dx.doi.org/10.1021/acs.cgd.5b01265
http://dx.doi.org/10.1021/acs.cgd.5b01265
http://dx.doi.org/10.1021/acs.cgd.6b00155
http://dx.doi.org/10.1021/acs.cgd.6b00155
http://dx.doi.org/10.7567/jjap.54.040103
http://dx.doi.org/10.1143/apex.5.115501
http://dx.doi.org/ 10.1016/j.jcrysgro.2014.06.034


38 References

[39] Y. Yamamoto, S. Harada, K. Seki, A. Horio, T. Mitsuhashi, D. Koike, M. Tagawa,
and T. Ujihara, Applied Physics Express 7, 065501 (2014).

[40] S. Ha, P. Mieszkowski, M. Skowronski, and L. Rowland, Journal of Crystal
Growth 244, 257 (2002).

[41] S. Xiao, S. Harada, K. Murayama, M. Tagawa, and T. Ujihara, Crystal Growth
& Design 16, 6436 (2016).

[42] T. Nishinaga, C. Sasaoka, and K. Pak, Japanese Journal of Applied Physics 28,
836 (1989).

[43] T. Nishinaga, Crystal Research and Technology 48, 200 (2013).

[44] E. Bauser and H. Strunk, Journal of Crystal Growth 69, 561 (1984).

[45] C. Zhu, X. Liu, S. Harada, M. Tagawa, and T. Ujihara, unpublished .

[46] A. A. Chernov, Modern Crystallography III, edited by M. Cardona, P. Fulde, and
H.-J. Queisser, Springer Series in Solid-State Sciences, Vol. 36 (Springer Berlin
Heidelberg, Berlin, Heidelberg, 1984).

[47] T. Kimoto, A. Itoh, H. Matsunami, and T. Okano, J. Appl. Phys. 81, 8 (1997).

[48] A. Nakajima, H. Yokoya, Y. Furukawa, and H. Yonezu, Journal of Applied
Physics 97, 104919 (2005).

[49] V. Heine, C. Cheng, and R. J. Needs, Journal of the American Ceramic Society
74, 2630 (1991).

[50] V. Borovikov and A. Zangwill, Physical Review B 79 (2009), 10.1103/Phys-
RevB.79.245413.

[51] W. Wulfhekel, D. Sander, S. Nitsche, F. Dulot, A. Leycuras, and M. Hanbücken,
Surface Science 550, 8 (2004).

[52] Y. Tabuchi, K. Ashida, M. Sonoda, T. Kaneko, N. Ohtani, M. Katsuno, S. Sato,
H. Tsuge, and T. Fujimoto, Journal of Applied Physics 122, 075702 (2017).

[53] X. Shen and H. Okumura, Journal of Crystal Growth 300, 75 (2007).

[54] G. Ju, D. Xu, C. Thompson, M. J. Highland, J. A. Eastman, W. Walkosz, P. Zapol,
and G. B. Stephenson, Physical Review B 103, 125402 (2021).

http://dx.doi.org/10.7567/apex.7.065501
http://dx.doi.org/ 10.1021/acs.cgd.6b01107
http://dx.doi.org/ 10.1021/acs.cgd.6b01107
http://dx.doi.org/10.1143/JJAP.28.836
http://dx.doi.org/10.1143/JJAP.28.836
http://dx.doi.org/10.1002/crat.201200512
http://dx.doi.org/10.1016/0022-0248(84)90368-3
http://dx.doi.org/ 10.1007/978-3-642-81835-6
http://dx.doi.org/10.1063/1.1901838
http://dx.doi.org/10.1063/1.1901838
http://dx.doi.org/10.1111/j.1151-2916.1991.tb06811.x
http://dx.doi.org/10.1111/j.1151-2916.1991.tb06811.x
http://dx.doi.org/10.1103/PhysRevB.79.245413
http://dx.doi.org/10.1103/PhysRevB.79.245413
http://dx.doi.org/ 10.1016/j.susc.2003.12.037
http://dx.doi.org/10.1063/1.4999480
http://dx.doi.org/10.1016/j.jcrysgro.2006.10.206
http://dx.doi.org/10.1103/PhysRevB.103.125402


References 39

[55] S. Nie, N. C. Bartelt, and K. Thürmer, Physical Review B 84, 035420 (2011).

[56] M. J. Shearer, L. Samad, Y. Zhang, Y. Zhao, A. Puretzky, K. W. Eliceiri, J. C.
Wright, R. J. Hamers, and S. Jin, Journal of the American Chemical Society 139,
3496 (2017).

[57] I. V. Markov, Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal
Growth and Epitaxy, 3rd ed. (World Scientific, New Jersey, 2016).

[58] P. Muller, Surface Science Reports 54, 157 (2004).

[59] J. Tersoff, Y. H. Phang, Z. Zhang, and M. G. Lagally, Physical Review Letters
75, 2730 (1995).

[60] V. I. Marchenko and A. Y. Parshin, Sov. Phys. JETP 52, 131 (1980).

[61] M. Inaba and M. Sato, Journal of the Physical Society of Japan 81 (2012),
10.1143/jpsj.81.064601.

[62] N. Ohtani, M. Katsuno, J. Takahashi, H. Yashiro, and M. Kanaya, Physical
Review B 59, 4592 (1999).

[63] T. Mitani, K. Naoyoshi, and K. Tomohisa, Journal of the Japanese Association
for Crystal Growth 45 (2018), 10.19009/jjacg.3-45-2-02.

[64] N. Cabrera and D. A. Vermilea, in Growth and Perfection of Crystals (Cooperstown,
New York, 1958) p. 411.

[65] J. van der Eerden and H. Müller-Krumbhaar, Electrochimica Acta 31, 1007
(1986).

[66] R. I. Ristic, J. J. DeYoreo, and C. M. Chew, Crystal Growth & Design 8, 1119
(2008).

[67] J. F. Lutsko, N. González-Segredo, M. A. Durán-Olivencia, D. Maes, A. E. S.
Van Driessche, and M. Sleutel, Crystal Growth & Design 14, 6129 (2014).

[68] J. J. De Yoreo, L. A. Zepeda-Ruiz, R. W. Friddle, S. R. Qiu, L. E. Wasylenki,
A. A. Chernov, G. H. Gilmer, and P. M. Dove, Crystal Growth & Design 9, 5135
(2009).

[69] R. L. Schwoebel and E. J. Shipsey, Journal of Applied Physics 37, 3682 (1966).

http://dx.doi.org/10.1103/PhysRevB.84.035420
http://dx.doi.org/ 10.1021/jacs.6b12559
http://dx.doi.org/ 10.1021/jacs.6b12559
http://dx.doi.org/10.1016/j.surfrep.2004.05.001
http://dx.doi.org/ 10.1103/PhysRevLett.75.2730
http://dx.doi.org/ 10.1103/PhysRevLett.75.2730
http://dx.doi.org/10.1143/jpsj.81.064601
http://dx.doi.org/10.1143/jpsj.81.064601
http://dx.doi.org/ 10.1103/PhysRevB.59.4592
http://dx.doi.org/ 10.1103/PhysRevB.59.4592
http://dx.doi.org/10.19009/jjacg.3-45-2-02
http://dx.doi.org/10.19009/jjacg.3-45-2-02
http://dx.doi.org/10.1016/0013-4686(86)80016-0
http://dx.doi.org/10.1016/0013-4686(86)80016-0
http://dx.doi.org/10.1021/cg7010474
http://dx.doi.org/10.1021/cg7010474
http://dx.doi.org/10.1021/cg501307y
http://dx.doi.org/ 10.1021/cg900543g
http://dx.doi.org/ 10.1021/cg900543g


40 References

[70] M. Sato and M. Uwaha, Physical Review B 51, 11172 (1995).

[71] M. Sato, M. Uwaha, and Y. Saito, Physical Review B 62, 8452 (2000).

[72] M. Sato, M. Uwaha, and Y. Saito, Journal of Crystal Growth 237-239, 43 (2002).

[73] A. A. Chernov, Journal of Crystal Growth 118, 333 (1992).

[74] A. A. Chernov, S. R. Coriell, and B. T. Murray, Journal of Crystal Growth 132,
405 (1993).

[75] S. R. Coriell, B. T. Murray, A. A. Chernov, and G. B. McFadden, Journal of
Crystal Growth 169, 773 (1996).

[76] P. G. Vekilov, H. Lin, and F. Rosenberger, Physical Review E 55, 3202 (1997).

[77] R. Janssen-van Rosmalen and P. Bennema, Journal of Crystal Growth 42, 224
(1977).

[78] M. Inaba and M. Sato, Journal of the Physical Society of Japan 80 (2011),
10.1143/jpsj.80.074606.

[79] Y.-I. Kwon, B. Dai, and J. J. Derby, Progress in Crystal Growth and Characteri-
zation of Materials 53, 167 (2007).

[80] K. Seino and A. Oshiyama, Applied Physics Express 13, 015506 (2020).

[81] K. Seino and A. Oshiyama, Applied Surface Science , 149927 (2021).

[82] M. Camarda, A. L. Magna, and F. La Via, Journal of Computational Physics
227, 1075 (2007).

[83] G. Gilmer, Journal of Crystal Growth 36, 15 (1976).

[84] W. Van Enckevort and J. Van Der Eerden, Journal of Crystal Growth 47, 501
(1979).

[85] T. Cherepanova, J. Van Der Eerden, and P. Bennema, Journal of Crystal Growth
44, 537 (1978).

[86] Y. Li, X. Chen, and J. Su, Applied Surface Science 371, 242 (2016).

[87] A. F. Voter, in Radiation Effects in Solids, Vol. 235, edited by K. E. Sickafus, E. A.
Kotomin, and B. P. Uberuaga (Springer Netherlands, Dordrecht, 2007) pp. 1–23.

http://dx.doi.org/10.1103/PhysRevB.51.11172
http://dx.doi.org/10.1103/PhysRevB.62.8452
http://dx.doi.org/10.1016/s0022-0248(01)01847-4
http://dx.doi.org/10.1016/0022-0248(92)90080-3
http://dx.doi.org/10.1016/0022-0248(93)90065-5
http://dx.doi.org/10.1016/0022-0248(93)90065-5
http://dx.doi.org/10.1016/s0022-0248(96)00470-8
http://dx.doi.org/10.1016/s0022-0248(96)00470-8
http://dx.doi.org/10.1103/PhysRevE.55.3202
http://dx.doi.org/10.1016/0022-0248(77)90198-1
http://dx.doi.org/10.1016/0022-0248(77)90198-1
http://dx.doi.org/10.1143/jpsj.80.074606
http://dx.doi.org/10.1143/jpsj.80.074606
http://dx.doi.org/10.1016/j.pcrysgrow.2007.09.001
http://dx.doi.org/10.1016/j.pcrysgrow.2007.09.001
http://dx.doi.org/10.7567/1882-0786/ab598a
http://dx.doi.org/10.1016/j.apsusc.2021.149927
http://dx.doi.org/10.1016/j.jcp.2007.08.036
http://dx.doi.org/10.1016/j.jcp.2007.08.036
http://dx.doi.org/10.1016/0022-0248(79)90132-5
http://dx.doi.org/10.1016/0022-0248(79)90132-5
http://dx.doi.org/10.1016/0022-0248(78)90296-8
http://dx.doi.org/10.1016/0022-0248(78)90296-8
http://dx.doi.org/ 10.1016/j.apsusc.2016.02.237
http://dx.doi.org/10.1007/978-1-4020-5295-8_1


References 41

[88] M. A. Gibson and J. Bruck, The Journal of Physical Chemistry A 104, 1876
(2000).

[89] T. P. Schulze, Physical Review E 65, 036704 (2002).

http://dx.doi.org/10.1021/jp993732q
http://dx.doi.org/10.1021/jp993732q
http://dx.doi.org/10.1103/PhysRevE.65.036704




Chapter 2

Experimental and macroscale CFD
investigations on inhomogeneities of
step bunching and TSD conversion
over a large-sized SiC crystal

2.1 Introduction

In the solution growth of 4H-SiC, the dislocation conversion phenomenon was
promising in obtaining dislocation-free single crystals. It has been noted that
the interaction of macrosteps and threading dislocations was responsible for the
conversion[1]. As is well known, the step structure depends on the polarity (Si face
or C face) of the growth surface[2]. On the Si face, TSD conversion frequently occurs
because macrosteps easily form[1, 2]. In contrast, due to the absence of macrosteps,
TSD conversion is rarely observed on the C face[1]. From the viewpoint of obtaining
a smooth surface, the C face is more suitable for long-term growth, and is often used
for growth of bulk 4H-SiC crystals[3]. Xiao et al. have reported the formation of
macrosteps as well as the conversion of TSDs on the C face during solution growth
by the addition of Ti to the solvent[4–6].

The combination of C-face growth and TSD conversion is a possible method
for realizing both dislocation-free layers and a smooth surface. In our previous
studies using small-size crystals, conversion was always observed over the entire
growth surface, which is necessary for obtaining dislocation-free layers. However, it
is not certain whether this is also the case for crystals with larger diameters, which
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Figure 2.1 Experimental growth conditions: (a) structure of furnace and (b) rotation
pattern for seed crystal/crucible. The red line represents the rotation for the seed
while the blue line is that for the crucible.

are necessary for commercial SiC wafers. Seki et al have reported the conversion
of TSDs during C-face growth from Cr-based solution on a 2-inch wafer. But the
occurrence of conversion shows an uncertainty[7]. Therefore, in the present study,
a 2-inch 4H-SiC crystal was grown on an off-axis seed crystal by the top-seeded
solution growth (TSSG) method. The morphology and the TSD conversion ratio for
the grown crystal were experimentally and numerically investigated.

2.2 Experimental and computer simulation

The crystal growth experiment was conducted in an induction-heating furnace
(NEV-SC-330, Nisshin-Giken Co., Ltd.). A schematic illustration of the growth setup
is shown in figure 2.1(a). High purity silicon (11N) with 5 at% titanium (99.95%)
was used as the solvent. A 2-inch C-face 4H-SiC (0001̄) substrate with a 1o off-
cut towards [112̄0] was used, which leads to step-flow growth toward the off-cut
direction. Crystal growth was carried out at 1940 °C for 3 hours. During growth,
accelerated crucible rotation was used to stabilize the carbon supply[8, 9]. The
crucible and the seed crystal were counter-rotated in alternating directions. The
rotation speeds of the seed crystal and the crucible are shown in figure 2.1(b). After
growth, the residual solvent on the crystal was removed using a mixed HF and
HNO3 solution (HF: HNO3 = 1:2).

Grazing incidence reflection X-ray topography measurements were carried out
at BL8S2 in the Aichi Synchrotron Radiation Center, Japan. The monochromatic
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X-ray wavelength was 1.50 Å and the applied g vector was [112̄0]. The incident
synchrotron X-ray beam was diffracted by the crystal and recorded using Ilford
L4 nuclear emulsion plates. The surface morphology of the grown crystal was
observed by differential interference contrast (DIC) microscopy (Olympus, DSX-
HRSU). Step heights were measured using 3CCD real colour confocal microscopy
(Lasertec, OPTELICS H1200).

A fluid flow analysis with coupled heat and mass transportation was conducted
using CGSim (STR Japan Co., Ltd., Version 16.1)[10]. Buoyancy, forced convection,
the Marangoni effect and electromagnetic convection were considered. In the simu-
lation, a two-dimensional model with a shape being identical to the cross section of
the actual reactor was used. The width of the solution block was 9 cm and the height
was 2 cm. A 0.03 × 0.03 cm rectangular mesh was applied to the solution block.
The boundary conditions were chosen to match the experimental situation, with the
temperature of the bottom center of the crucible exterior set to 1900 °C. The steady
state at the maximum rotation speed was computed, with the rotation rate of the
crystal and crucible fixed at 30 and 5 rpm, respectively. The material properties used
in the simulation are shown in Table 2.1[11]. Note that the material properties for
molten silicon rather than the Si-5at%Ti solvent were used, owing to the lack of exact
information on the latter’s physical properties. We compared the simulation results
obtained using molten silicon with those using the “Si-5at%Ti solvent” setting built
into CGSim, but found no significant differences between them. For reproducibility,
the simulation results using molten silicon are reported in this study.

2.3 Results and discussion

2.3.1 Inhomogeneity of surface morphology

A 2-inch 4H-SiC crystal was grown to a thickness of 88.4 µm. A DIC micrograph of
the grown crystal is shown in figure 2.2(a). A train of steps can be observed over the
entire growth surface, with step-flow direction being roughly [112̄0]. The surface can
be roughly divided into two regions about the center of the crystal. The upper region
is upstream of the step-flow direction, while the lower region is downstream. The
surface roughness in the two regions is clearly different. The three areas indicated
in figure 2.2(a) were observed by confocal microscopy in order to identify any
differences in morphology. Magnified images of the surface morphology in the three
areas are shown in figures 2.2(b), 2.2(c) and 2.2(d), together with step profiles. In
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Table 2.1 Physical properties used in simulation.

Physical property Value Unit

Si melt
Density −0.3701T+3149 kg m−3

Dynamic viscosity 0.0008 kg m−1 s−1

Electric conductivity 1.23 Ω−1 m−1

Thermal conductivity 66.5 W m−1 K−1

Marangoni coefficient 0.0001 N m−1 K−1

Emissivity 0.3
Heat capacity 372 J kg−1 K−1

Graphite
Electric conductivity 1.22×105 Ω−1 m−1

Thermal conductivity 40.8 W m−1 K−1

Emissivity 0.8

Graphite felt
Thermal conductivity 0.48 W m−1 K−1

Emissivity 0.8

Insulation
Thermal conductivity 0.448 W m−1 K−1

Emissivity 0.8

SiC crystal
Density 3210 kg m−3
Electric conductivity 5.5991×104 Ω−1 m−1

Thermal conductivity 410 W m−1 K−1

Emissivity 0.8
Heat capacity 690 J kg−1 K−1
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Figure 2.2 (a) DIC image of surface morphology of grown crystal. The black squares
indicate the three areas observed in detail. Magnified images of the morphology
were taken at the (b) upstream, (c) center and (d) downstream areas. Profiles of step
height are shown together with the images.

the upstream area shown in figure 2.2(b), the steps are uniformly distributed and
constantly descending, with small terrace widths, indicating a relatively smooth
surface. In the center area shown in figure 2.2(c), the number of steps is lower and
the terraces are wider. The mean step height is 0.9 µm, indicating the occurrence
of step bunching to produce macrosteps. In the downstream area shown in figure
2.2(d), the surface is rough and the height of the macrosteps is 2.0 µm.

2.3.2 Distribution of TSD conversion ratio

To study the distribution of TSD conversion resulting from the non-uniform step
height, X-ray topography measurements were carried out. Figure 2.3 shows X-ray
topography images of the three areas indicated in figure 2.2. Circular white spots
corresponding to TSDs propagating perpendicular to the crystal surface are observed
in the upstream area of step flow (indicated by red circles). No TSD conversion is
observed in the upstream area. On the other hand, as shown in figures 2.3(b) and
2.3(c), regions of linear contrast are observed in the center and the downstream
area (indicated by triangles). Since no morphological irregularities are found at the
corresponding positions on the growth surface (figure 2.2), this contrast is associated
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Figure 2.3 X-ray topography images taken at (a) upstream area, (b) center and (c)
downstream area of grown crystal. (a) and (c) are 10 mm away from the center. The
edges of the steps advancing on the growth surface appear as bright horizontal lines.
The red circles indicate propagating TSDs and the red arrows indicate converted
dislocations. The white triangle indicates a scratch on the nuclear emulsion plate.
BPDs are indicated by blue triangles.

with defects on basal planes. Two types of contrast are present. The first type is
aligned perpendicular to the step train and extends in the step-flow direction. This
consists of dark lines with a bright side (indicated by red triangles). This type of
contrast corresponds to defects resulting from the conversion of TSDs and their
extension by the steps[6, 12, 13]. The second type represents BPDs (indicated by
blue triangles). Since such BPDs are rarely observed in the upstream area, they
are considered not to propagate from the seed crystal. Some BPDs are extended
towards the step-flow direction, suggesting that they are converted TEDs. Most
BPDs have no particular extension direction, indicating that they were not caused by
step advance. Also, since the BPD density in the downstream area is much higher
than that in the center area, the probable origin of BPDs is surface roughness. In
summary, TSD conversion does not take place in the upstream area, but frequently
occurs in the center and downstream areas. Therefore, TSD conversion exhibits a
spatial distribution on the growth surface.

In order to clarify the change in the conversion behavior along the step-flow
direction, step heights and conversion ratios were measured over the entire growth
surface. Along the step-flow direction (the [112̄0] direction), five different regions
at an interval of 10 mm were selected for measurement. The third region was the
center of the crystal and was assigned a position of 0 mm. The two measurement
regions in the upstream area were at -10 and -20 mm, and the two in the downstream
area were at 10 and 20 mm. In each measurement region, the step height, number of
propagating TSDs and number of converted TSDs were measured at five different
points (1 mm2) at a 5 mm interval. The statistical results are shown in figure 2.4.
Figure 2.4(a) shows the average step height while figure 2.4(b) shows the average
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number of TSDs for each measurement point and the conversion ratio for each
region. The conversion ratio is calculated by the following formula,

Convertion Ratio =
Count of converted TSDs

Count of converted TSDs + Count of propagating TSDs
(2.1)

In the upstream area of step flow (20 mm away from the center), the step height was
too small to be measured by the confocal microscope and no TSD conversion was
evident. The macrostep height and the TSD conversion ratio increase monotonically
towards the downstream area of step flow. In the upstream area (-10 mm), the
step height is less than 0.2 µmand only a few TSDs are converted. In the center
area, the height of the steps increases to 0.9 µmand the conversion ratio increases to
almost 80%. The conversion ratio continues to increase with increasing step height,
finally reaching 100% in the downstream area (20 mm). It is thought that TSDs
are rarely converted in the upstream area due to the absence of macrosteps but are
frequently converted in the center and downstream areas due to the existence of
macrosteps with sufficient height. It is noteworthy that the conversion ratio rapidly
increases between -10 mm and 0 mm, even though the step height increases more
slowly. This is considered to be due to earlier conversion in the 0 mm region (and
downstream) than in the -10 mm region. Since conversion takes place stochastically
during growth,[14] the conversion ratio is proportional to the time from the start
of conversion to the end of growth. This is supported by the fact that the apparent
length (2.5) of the converted TSDs in the center area is much larger than that in
the upstream area. Although this length probably does not correctly reflect the
true length of converted defects due to the limited X-ray penetration depth, the
increase in relative length still indicates an earlier start for conversion. The positive
correlation between the step height and the conversion ratio is again consistent
with TSD conversion being strongly related to the macrostep height[15, 1, 14, 16, 2].
Note that the angle between the step facet and the basal plane is another key factor
affecting conversion of TSDs[6]. The change in step slope and its influence on the
TSD conversion ratio is a subject for future study.

2.3.3 Influence of an outward fluid flow on step bunching inhomo-
geneity

The distribution of step height can be explained by the relationship between the
solution flow and the step-flow direction. Zhu et al. reported the suppression of step
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Figure 2.4 Step height and average TSD count measured in five regions. The conver-
sion ratio was calculated from the count of converted and propagated TSDs.

bunching during solution growth on off-axis crystals under anti-parallel solution
flow, and the enhancement of step bunching under parallel flow[17]. Figure 2.6(a)
shows the calculated temperature and the flow velocity of the solution. Figure 2.6(b)
shows a plot of the solution flow velocity in the horizontal direction 0.5 mm below
the crystal. The temperature decreases monotonically from the crucible wall to the
crystal, guaranteeing growth on the seed crystal. The solution flow appears as an
up-flow beneath the crystal. Near the crystal, the solution undergoes an outward
flow from the center of the crystal towards the edges. However, the off-axis seed
crystal has steps advancing in a single direction. Consequently, in the upstream
area of step flow, the solution flow direction is opposite to the step-flow direction
(anti-parallel flow). On the other hand, in the downstream area, the solution flow
direction is the same as the step-flow direction (parallel flow). As a result, in the
upstream area, step bunching is suppressed by the anti-parallel flow, while in the
downstream areas step bunching is enhanced by the parallel flow.

2.4 Conclusions

In this study, a 2-inch 4H-SiC crystal was grown on the C face of a 1° off-axis seed
crystal by the TSSG method. Step-flow growth in the [112̄0] direction was observed
over the entire growth surface. The step height was found to be non-uniform,
resulting in a non-uniform TSD conversion ratio. In the upstream area of step flow,
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Figure 2.5 Contrast length of converted TSDs. (a) is a contrast at the upstream area
(-10 mm) while (b) is one at the center (0 mm).

the step height was small and only a few TSDs were converted. In the center and
downstream areas, the macrostep height was large and the TSD conversion ratio
was as high as 80%. Both the height and timing of the occurrence of macrosteps
leaded to the the great difference in TSD conversion ratio. The results of a fluid
simulation revealed that the spatial distribution of step height was caused by the
relationship between the solution flow and step-flow directions. Therefore, in order
to achieve TSD conversion over the entire growth surface, the fluid flow direction
should be considered and controlled.
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Figure 2.6 (a) Calculated solution flow distribution. The length and direction of the
arrows indicate the velocity and direction of flow. (b) Solution velocity in horizontal
direction 0.5 mm beneath the crystal.
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Chapter 3

A mesoscale CFD investigation on
solution-property-induced step
bunching and a criterion for designing
solvent aiming at stable growth

3.1 Introduction

A general understanding of the step bunching mechanism is essential for solvent de-
sign. However, it remains challenging because the mechanism includes an interplay
between mass transport and surface kinetics. This study constructed a computa-
tional fluid dynamics (CFD) model coupling the physical phenomena at the growth
interface and focused on the role of solute transport and step kinetics in step growth
rate and bunching behavior. First, the effect of fluid velocity on step bunching size
is quantitatively studied and compared with the experimental results shown in
the last chapter. Then the effect of solvent physical properties representing mass
transport and step kinetics on step bunching is investigated. We come to a similar
conclusion as the Mullins-Sekerka instability but address the kinetic perspective of
step bunching.

3.2 Computer simulations

In this study, a fluid dynamics simulation coupling with surface kinetics is carried
out to investigate how physical properties affect surface stability. This model is
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inspired by the similar works done previous researchers.[1–3] Only we combined
the features of 1) multiple steps in one grid [1] and 2) calculate step velocities post
solute concentration[2, 3] This model allows us to simulate the behavior of plenty of
steps without increasing mesh density. Values of the step kinetic coefficientKst and
diffusion coefficientD are changed, and step velocities and positions are observed
to quantify growth rate and bunching behavior.

The diagrammatic illustration of the model is shown in Figure 3.1. The model
contains a solution part and a surface part. The solution part describes the mass
transport and absorption of growth units in a laminar boundary layer near the
crystal. The upper boundary of the solution part (y = ymax) indicates the interface
between the laminar boundary layer and the imaginary bulk solution. While the
surface part, located at the bottom boundary of the solution part, mimics a vicinal
surface where aligned steps train advancing. As shown in figure. 3.1 (b, c), the
surface part are divided into grids (the Xis). The step motion is independent of the
grids. However, when a step enters one mesh, it will maintain the same velocity as
the other steps in this mesh. (figure. 3.1 (d))

Simulations are carried out on a 0.75◦ tilted vicinal substrate. Thus the surface is
intrinsically stepped. Figure 3.2 shows the diagram of the side view of a stepped
surface. The line graph indicates the surface with step trains perfectly equidistant
arranged, with the n-th step’s “perfect position” being nδ0. The steps advance
towards the x-direction in vst. To introduce an instability, we set steps deviating from
the perfect positions by δx cos(knδ0) in the initial simulation configuration, indicated
by the filled graph. This initial configuration is the same ones in step bunching
analyses utilizing the perturbation theory[4–7]. Since it is difficult to affirm whether
an elementary step is bunched, the “local slope” is measured instead in this study.
On a smooth surface, each step has the same local slope of p0 = tanθ0, where θ0

is usually mentioned as the “off-angle” in experimental studies. On an undulated
surface, the local slope varies. For a step in a step bunching (indicated as 1 in figure.
3.2) it is p1 = tanθ1 while for a step out of a bunching (indicated as 2) it is p2 = tanθ2,
where θ1 > θ2 are the angles between the tangent line of surface profile passing
the step and the horizontal line. We can quantitatively tell how dense the step is
bunched by measuring the elementary step’s local slopes.

Note that we did not explicitly consider the step height in the calculation of
mass transport because the step height is minor compared with the length scale
of the solution. [1] However, since the top of a bunch protrudes to the solution,
a bunch-top step should be less affected than a bunch-bottom step by the solute
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Figure 3.1 The schematic diagram of the model. (a)shows the components of solution
and crystal surface. (b)shows the diagram of grids on the surface. (c)is a schematic
diagram of the actual stepped vicinal surface corresponding to the configuration of
crystal surface in the simulation, and (d)shows the calculated step velocities in each
grid.



58
A mesoscale CFD investigation on solution-property-induced step bunching and a

criterion for designing solvent aiming at stable growth

Figure 3.2 The schematic diagram of the vicinal surface. Evenly spaced step trains are
represented by a line graph, while step trains deviating from evenly spaced positions
by δx cos(knδ0) are represented as a filled graph. The deviation of step position
leads to steps aggregating and separating periodically, forming a periodically step-
bunching morphology. The numbers indicate regions with different step densities.

depression caused by the step bunch. Although this difference may be minor, we
consider it significant at the initial stage of the instability. One will find that some
step bunches are artificially created to introduce instability, and the step bunches
have symmetrical profiles. One will also find the step velocity related to the profile.
That means step movements in the two sides of a bunch, that is, entering and
leaving the bunch, corresponding to bunching and de-bunching, are supposed to
be symmetrical, as well. The above-mentioned minor difference between the top
and bottom steps broke the symmetry and led to instability. Before de-bunching,
a bottom step must move in the mesh containing the bunch at a relatively small
velocity due to the depression caused by the bunch. On the other hand, a step moves
faster before it enters the mesh, and once it crosses the mesh border, it gets bunched.
That leads to faster bunching than de-bunching in the simulation, yet the bunch
profile is symmetrical.

3.2.1 Model formulation

The solute transport in the solution volume is described by the convection-diffusion
equation of the form

∂c
∂t
+ v · ∇c = D∇2c. (3.1)

The boundary condition at top of the fluid domain where y = δc, is set as

c = c∞, (3.2)
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where c∞ is the bulk concentration in solution. The horizontal boundaries are set to
be periodical. According to the mass conservation, the boundary condition at the
solution-solid interface is formulated for each boundary mesh as:

Nvstρ
Sh = D

∂ρL

∂y

∣∣∣∣∣
y=0
∆x, (3.3)

Where N is the number of steps in a mesh, ρS and ρL are the solutal density in the
solid and liquid phase, respectively. ∆x is the mesh size in x-direction, vst is the mean
velocity of the steps in the mesh, and h is the step height. In grids with zero steps in,
the boundary condition eq. 3.3 becomes a simple Neumann boundary condition

dc
dy
≡ 0. (3.4)

A step’s velocity can to be calculated with the concentration near the step, cst, with
[8]

vst = Kstvc(cst − ceq), (3.5)

whereKst is the step kinetic coefficient and vc is the volume of growth unit, which is
considered to be 1/4 of the 4H-SiC primitive cell. Combine the molar concentration
and the volume of growth unit then we get

vst = Kst(c∗st − c∗eq), (3.6)

where c∗ = c× vc. And since ρL/ρS
|y=0 = c∗st, the boundary condition can be written as

NhKst(c∗st − c∗eq) = D
∂c∗st

∂y
∆x. (3.7)

3.2.2 Determination of physical parameters

The diffusion coefficient of carbon in pure silicon melt can be calculated in unit
µm2/s with [9]

D = 7.55 × 108 exp(
−9150

1.9856T
). (3.8)

Since the solubility of carbon in pure silicon melt is small, consider the density of
carbon’s silicon solution being the same as pure silicon melt with

ρ = 2.54 − 1.59 × 10−4(T − Tm) − 1.15 × 10−7(T − Tm)2, (3.9)
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where T is the temperature and Tm is the melting point of silicon. The unit is g/cm3.
The carbon solubility in pure silicon melt can be calculated in mole fraction with [10]

a% = exp(
−2.97 × 104

T
+ 7.95). (3.10)

Converted in weight fraction

w% =
1

1 +
MSi

MC
(

1
a%
− 1)

(3.11)

and converted to molar concentration in mole/µm3

c = ρ
w%
MC

NA × 10−12. (3.12)

where M is the molecular weight, NA is the Avogadro number. While the normalized
concentration c∗ appeared in this study is the number of solutal atoms in every
primitive cell

c∗ = c × vc, (3.13)

where vc = 2.0554 × 10−11 µm3 is the volume of a primitive cell of 4H-SiC.
The parameters used in simulations presented in each section are listed in table

3.1.

3.3 Results and discussion

3.3.1 Effect of fluid flow velocity on step bunching size

Figure 3.3 shows the surface profiles grown for 150 second, with different fluid flow
conditions, as simulation results. The flow velocity is acquired from the numerical
simulation result shown in the last chapter. Under an anti-parallel flow, the step
bunches become smaller in height (figure 3.3 (b)). Figure 3.3 (d) shows that among
the initial bunches, some step bunches become much higher under a parallel flow.
When there is no fluid flow, as indicated in figure 3.3 (c), the step bunching was en-
hanced during growth. However, the step bunching shows no significant difference
compared with the initial surface.

To quantitatively determine how much step bunching is changed by fluid flow,
we use the surface height’s statistic root-mean-square (RMS) to measure the surface
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Table 3.1 Parameters used in simulation shown in each section.

Physical property Symbol 3.3.1 3.3.2 3.3.3 Unit
Boundary condition
Step height h 2.51 2.51 2.51 Å
Off-angle θ 1.0 0.75 - ◦

Equilibrium concentration c∗eq 0.00188 0.00188 1.0
Bulk concentration c∗

∞
0.00476 0.00476 2.0

Geometry
x-direction length Lx 40 50 50 µm
y-direction length Ly 300 300 50 µm

Initial Configuration
Pertubation wave number kx π π - µm−1

Pertubation amptitude δx 0.1 0.1 - µm

Dynamics
Temperature T 2073 2073 2073 K
Diffusion coefficient D 8180 8180 104 & 108 µm2/s
Step kinetic coefficient Kst 104 2 × 100−7 104 & 108 µm/s

roughness. It can be written as

∆hRMS =

√
1
n

(∆h1)2 + (∆h2)2 + ... + (∆hn)2, (3.14)

where ∆hi is the difference between the i-th interpolated value on the surface height
profile and the mean surface height. Figure. 3.6(b) diagramticly shows the mea-
surement of ∆hi and the mean surface height. Figure 3.4 shows the relative RMS
under different flow conditions. Under an anti-parallel flow and a parallel flow,
the surface roughness shows obvious change from the initial state, consistent with
the experimental results. However, when there is no flow, the surface roughness
shows little difference from the initial state. The status of step bunching without flow
influence can be viewed as the “intrinsic” step bunching. The following sections
intend to investigate what is affecting this intrinsic step bunching.
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Figure 3.3 Surface profiles of (a) a crystal before growth and grown crystals with
(b) a 1.5 cm/s anti-parallel fluid flow, (c) no fluid flow and (d) a 1.5 cm/s parallel
fluid flow. When plotting the profiles, surfaces are tilted counterclockwise by the
off-angle. The undulating is bunches of steps.

3.3.2 Effect ofKst

Primarily, the step velocity is directly determined by the step kinetics, which is
characterized by the step kinetic coefficient. It is defined as

Kst = νast(
ak

δk
) exp(−

∆U
kBT

), (3.15)

where ν is the attempt frequency, ast is the unit advancing distance of a step, ak

and δk are the length of a single kink site and the average distance between two
neighbouring kink sites, respectively. ∆U is the solvation barrier, kB is the Boltzmann
constant and T is the temperature. In the pre-exponential factor, δk, the average
distance between kinks, can be written as δk = a[1 + 1/2 exp(ω/kBT)], where ω is the
energy necessary for creation of a kink,[11] which is actually the interface energy of
the crystal-solution interface in our case. Thus we consider the step kinetic coefficient
reflecting an important aspect of the solution properties.

One of the major obstacles to fully linking experimentally observed step bunch-
ing behaviors to additive elements is our lack of knowledge about step kinetics.
Onuma et al. indicated that the transition from step bunching to stable growth by
adding aluminum is due to surface kinetics rather than other solution properties like
diffusivity or carbon solubility. Although the direct evidence for step kinetics being
modified by aluminum is not able to be obtained, they convincingly conducted
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Figure 3.4 Dependence of surface roughness on fluid flow velocity.

the conclusion through two facts, with the addition of 5% aluminum, the thermal
calculation showing that solvent properties change minorly and the step velocities
showing a transition from a step height dependant mode to a step height indepen-
dent mode. [12] However, a direct and quantitative study is still necessary to reveal
the influence of kinetics on step bunching. Experimentally determining the step
kinetic coefficient (as the fraction of step velocity and supersaturation) requires an
in-situ measurement to elementary steps, which is very difficult, if not impossible, in
the case of solution growth of SiC for the high growth temperature. Therefore, in
this study, we carried out a series of simulations with variedKst values to reveal its
influence on step bunching behavior.

The dependence of Kst on the kink-creation work, the solvation energy and
the temperature is shown in figure 3.5, according to equation 3.15, by assuming
ν0 = 1012 s−1 and ast = 3.0370Å. One can find that with these parameters varying, the
value ofKst can vary broadly. At the same time, these parameters can easily vary in
the range. Furthermore, the maximum ofKst can be estimated by assuming that the
kink density on the step is a unit and the solvation barrier is zero. That leads to a
maximum valueKst = 3 × 108µm/s.

Figure 3.6 shows (a) the initial and (b) the as-grown surface morphology. Note
that this is an enlarged portion of the whole surface with a total length of 40 µm.
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Figure 3.5 Dependence ofKst on (a) the kink creation work, (b) the solvation energy
and (c) the temperature.

Compared with the initial morphology, the step bunchings on the as-grown surface
are higher and steeper.

The changes of surface roughnesses over time are measured for two crystals with
step kinetic coefficients varying from 2 µm/s to 2 × 107 µm/s. We chose such a wide
range because theKst can vary broadly when the temperature, kink creation work, or
the solvation barrier are changed. The resultsKst = 2×107 µm/s,Kst = 106µm/s, and
2 × 103 µm/s are shown in Figure 3.7. The rest results show no significant difference
from the results obtained with Kst = 103µm/s. Also, the results of Kst = 106µm/s
can be viewed as a transition state between the other two results. For the clarity
of our discussion, only the two critical results are displayed. The growth time at
maximum is 500 seconds. Because no artificial solid-on-solid (SOS) restriction is
applied in this model and the steps in the case ofKst = 2× 107 µm/s starts to overlap
after growing for over 500s. (Although an SOS restriction is usually preferred for the
advantage of preventing steps from overlapping, we did not include the restriction
due to a consideration of the law of mass conservation.) The surface roughness
remains constant for the crystal with a small value ofKst = 2 × 103 µm/s, indicating
little further step bunching. While for the crystal with a large value ofKst = 2 × 107

µm/s, the surface roughness increases exponentially with a short-period oscillation.
The reason for the exponential growth will be discussed in the next section. The
oscillation and increase of surface roughness imply how steps bunch. Once step
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Figure 3.6 The enlarged height profile of the crystal surface (a)before and (b)after
growth. The growth period is 500 seconds.

bunches are formed, the elementary steps are not constantly fixed in the current
bunches. Instead, the elementary steps keep leaving their current bunches from
the front and entering the next bunches from behind. This results in two kinds of
temporary states, 1) there are more elementary steps leaving than entering, and
the step bunches dissipate, 2) there are more entering than leaving, and the step
bunches grow. The alternating of the two temporary states leads to the oscillation
in surface roughness. If the entering of elementary steps to bunches is faster than
leaving, the probability of temporary state 1) thus is higher than 2). Therefore, the
step bunches are enhanced, and the surface roughness increase. That is the exact
reason why would a large value of kinetic coefficient results in step bunching.

To verify the mechanism ofKst affecting step bunching behavior, the step veloci-
ties vst against the local slopes p are plotted in Figure 3.8. Note that the local slope p
is replaced with step the local density

pi =
Ni

∆x
, (3.16)

where the subscript i refers to the i-th surface grid and N is the number of steps in the
surface grid. According to the mechanism of step bunching, a step bunch increases
its height because the steps in it have different velocities from the other steps. As
shown in figure 3.8(a), despite the variance among local slopes, step velocities are
the same and remain constant over the whole growth duration. Bear in mind that
the step’s local slope indicates how dense the step is bunched. The constant and
slope-independent velocities reveal that the velocity should be the same with small
Kst, no matter whether a step is in a bunch or on the terrace. On the other hand,
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Figure 3.7 Change of surface roughnesses over growth time. Note that the root mean
square of height profile is normalized by its initial value for clear.

as shown in figure 3.8(b), step velocity shows an apparent inverse proportional
relationship with the local slope, indicating that a step in a bunch slows down itself
and will be caught by other steps coming from behind. Thus, the bunch grows
larger. It is also noteworthy that the distribution of scatters changes over time in
figure 3.8(b). At the beginning stage, the variances of the step velocities and the
local slopes are minor. But during growth, both the two variances increase. The
synchronous increases in variances indicate the mechanism of a surface losing its
stability: Since the step velocities reversely depend on the local slopes, elementary
steps collide ahead into bunches, resulting in higher step densities in bunches and
lower on terraces. That results in step movements even slower in bunches and faster
on terraces. Furthermore, again the slower moving bunches catch more steps from
terraces. Step bunches intensify step bunching. That is why the surface roughness
increases exponentially (shown in figure. 3.7).

3.3.3 Effect ofD

An enormous value for step kinetic coefficient,Kst, enhances step bunching behavior.
On the other hand, the diffusion coefficients are revealed to affect step bunching
behavior in a reversed manner, as shown in Figure 3.9. Figure. 3.9 shows the solutal
concentration as a result of simulations using a pair of large and small values of both
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Figure 3.8 Scatter plots of step velocities against the local slopes over the growth
time of crystal whose step kinetic coefficient is (a)2 × 103 µm/s (b)2 × 107 µm/s. The
scatters colors indicate the time passed since the growth started.

diffusion coefficient and step kinetic coefficient. The boundary condition is the same
as the simulations carried out in the last section, but the crystal-solution boundary
now has only one macrostep aggregated at the center of the surface (where the
darkest part is located in the colormap in figure. 3.9) instead of steps distributed
on the whole surface with different densities. We also calculated the relative step
velocities with the solutal concentration on the crystal-solution boundary c∗st with
vst = Kst(c∗st− c∗eq). In the case of figure 3.9(a) smallD but largeKst, as analyzed in the
last section, the solute is consumed by steps rapidly and can not be supplied in time
by diffusion. Therefore, a low-concentration regime appeared around the macrostep,
resulting in steps in the macrostep decelerated to a shallow level compared with
the velocity of independent elementary step v∞st (eq. 3.17). In the two cases (b) large
D and largeKst (c) smallD and smallKst, the solute consumption can be partially
supplied by diffusion. Thus the solute is less depleted around the macrostep. We
also found that the relative velocity is the same in the two cases. In contrast, in the
last case (d) largeD but small Kst, the solute consumption is entirely supplied by
diffusion, and the solutal concentration difference is almost smoothed out, and the
steps in macrosteps are no longer decelerated, which corresponds to the situation in
Figure 3.8 (b).
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Figure 3.9 Solutal concentration and the relative step velocities simulated by CFD
model with a macrostep at the center of the lower boundary. Only the diffusion
coefficient and the step kinetic coefficient varied. The units forD is µm2/s and for
Kst is µm/s.

3.3.4 Nondimensional Analysis of Growth Phase Map

According to Chernov,[13] in solution growth, step velocity of equally spaced steps
on a vicinal surface can be written as

v∞st =
Kstceqvcσ

1 +
aKst

πD
ln(

x0

a
sinh(

πδ
x0

))
, (3.17)

where σ is the supersaturation degree at the maximum of boundary layer, a is the
height of a elementary step, x0 is the distance between two neighboring steps, δ is
the thickness of boundary layer.
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In most cases of solution growth, the boundary layer thickness is much larger
than the step distance,

πδ≫ x0.

Therefore, the step velocity can be approximated as

vst ≈
Kstceqvcσ

1 +
pKstδ

D

, (3.18)

where p = a/x0.
While the reversed influences of step kinetics and diffusion have been elucidated

in the last sections, according to equation 3.18, analysis of the balance between step
kinetics and solute diffusion needs to be developed to provide a holistic picture.
In this regard, we define a non-dimensional Damköhler number (Da) for step-flow
growth from solution as the ratio of reaction rate to diffusion rate and classify the
observed regimes as a function of this number

Da =
pKstδ

D
, (3.19)

where pKst is the “surface kinetic coefficient” reperesenting the incorporation rate of
solute on the growth surface, δ is the characteristic length thus D/δ is the charac-
teristic diffusion velocity. Similar nondimensional numbers are defined and used
as criteria of transition between stable growth and dendritic growth[14] or as an
explanation of the growth rate profile in epitaxy of GaAs by MOCVD method[15].
Da ≫ 1 implies that the incorporation of growth units occurs mush faster than diffu-
sion in solution. This leads to the diffusion limited growth regime since the solute
consumed will not be supplemented in time. The step velocity can be approximated
to

vst ≈
Dceqvcσ

pδ
. (3.20)

It makes sense since the steps will have to slow down to compensate for the decrease
in solute concentration, which is more drastic near step bunching. For Da ≪ 1, the
growth enters a kinetic limited regime, in which any consumption of solute will be
supplemented immediately. Thus all steps will maintain the same velocity no matter
where it is. The step velocity is then

vst ≈ Kstceqvcσ. (3.21)
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Figure 3.10 (a) Relative standard deviation of step velocity phase map and (b) average
step velocity phase map as functions of Damköhler number. High Damköhler
number leads to step bunching.

Figure 3.10(a) shows the two regimes mentioned above of step-flow growth as a
function of the step kinetic coefficient and diffusion coefficient. Different values of
the Damköhler number (Da) are represented by the contour colors. As mentioned
above, the transition from high to low Damköhler number results in the variation
of growth mode from bunching to stable. It implies that a stable crystal growth
process requests a large diffusion coefficient but a small step kinetic coefficient. On
the other hand, figure. 3.10(b) shows the average step velocity as a function of the
step kinetic coefficient and diffusion coefficient. Two regimes are divided by the
contour line on which the step velocity reaches 1.59 µm/s, and the macroscopic
crystal growth rate reaches 100 µm/h. With one of the independent variables, say,
the diffusion coefficient fixed, the increase in step velocity by raising the step kinetic
coefficient will meet a limitation, vice versa. Thus, to increase the growth rate, the
large diffusion coefficient is still necessary, and the step kinetic coefficient must also
be raised.

The above discussion implies that the growth rate and surface morphology are
partially a trade-off when designing solvent for crystal growth. Fortunately, there
is an intersection between the fast growth regime and the stable growth regime, as
shown in Figure 3.11. One can then refer to the intersection as the “ideal regime”,
where both the growth rate and the morphology are acceptable.
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3.3.5 Solvent design based on Damköhler number

By locating solvent on the phase map shown in Figure 3.11, we can find the “best”
solvent for solution growth of SiC. To locate the solvent, one needs both the diffusion
coefficient and the step kinetic coefficient values. The data of diffusion coefficient of
substances is available from databases. While for the mixtures, the data of diffusion
coefficient is obtained using the Stokes-Einstein equation[16]. The viscosity data
is estimated with the unified equation developed by Kaptay et al. [17]. However,
the step kinetic coefficient remains unknown due to a lack of knowledge of the
interface and solvation energy. Therefore, instead of using the step kinetic coefficient,
we first locate the solvent by the reported growth rates as a contour line. The
intersection point between this contour line and a vertical line indicating the value
of diffusion coefficient then is asserted as the location of solvent. Bearing in mind
the arbitrariness of all the estimations, we located several reported solvents on
the phase map, as shown in figure 3.11. Since the reported cases have varied
supersaturations, the step velocities are “normalized” by the supersaturations. The
values of Si, Si0.95Ti0.05, Si0.6Cr0.4 and Si0.56Cr0.4Al0.04 are typical values obtained in our
previous experimental researches. While the values of Si0.67Al0.33 and Si0.65Ni0.31Al0.04

are obtained from the report in which Onuma et al. precisely measured the step
velocities through an in-situ observation to the step movement[12].

The coordinate of the solvents indicates that the solvent composition has a more
negligible effect on the diffusion coefficient than on the step kinetic coefficient,
and the elements reduce the diffusion coefficient without exception. Nickel and
chromium improve the growth rate by increasing the step kinetic coefficients by
almost an order of magnitude. People usually attribute growth rate increasing to
the increase in carbon solubility. However, this study implies that these additive
elements’ modification of surface kinetics also contributes to the growth rate rise. On
the other hand, adding aluminum decreases the step kinetic coefficient, stabilizing
step bunching and decreasing step velocities.

3.4 Conclusion

Solvent design involving reaction rate and transport phenomena rate approaches
rapid and stable crystal growth. In this study, simulations are carried out about
the influence of kinetic coefficient and diffusion rate on the step flow growth of the
crystal.



72
A mesoscale CFD investigation on solution-property-induced step bunching and a

criterion for designing solvent aiming at stable growth

Figure 3.11 Phase map for solvent designing based on Damköhler number, several
reported solvents are located on the phase map.

1. The evolution behavior of surface roughness depends on the value of Kst

because the dependence of step velocity on the local slope will be changed by
Kst, switching surface stability.e

2. The dimensionless Damköhler number Da = pKstδ/D which determines the
growth mode can be used as a criterion of intrinsic stability.

3. An ideal solvent for rapid-and-stable growth requires largeD and moderate
Kst values.

Besides all the discussion above about the effect on step bunching behavior of
the balance between step kinetics and mass transport, this study also reveals why
supersaturation does not influence such step morphologies. As indicated by Mitani
et al. [18]—changing supersaturation can only raise or lower step velocities in an
aggregative manner, which does not affect the step velocity variance, thus no effect
on step bunching behavior.
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Chapter 4

A KMC investigation on 4H-SiC step
kinetic coefficient and
impurity-induced step bunching

4.1 Introduction

In the discussion in the previous contents of this thesis, the details of surface kinetics,
e.g., the values of the step kinetic coefficient and how they are affected by impurities,
remain unknown. To further the discussion, say, to gain insight into the essence
of these surface kinetics and their dependence on growth conditions, study on
an atomistic scale is helpful. In this chapter, a kinetic Monte Carlo (KMC) model
is introduced for solution growth of 4H-SiC to study the shape and behavior of
equilibrated or growing steps, with or without the interference of impurities.

There have been some works on SiC and its growth kinetics with KMC methods
in recent years. Borovikov et al. simulated the evaporation behavior of 6H-SiC.
They succeeded in reproducing the experimentally observed tendency for single
bilayer height steps to bunch into half unit-cell height steps by taking account of the
different rates of surface diffusion on three inequivalent terraces, and in reproducing
the experimentally observed tendency for adjacent pairs of half unit-cell height steps
to bunch into full unit-cell height steps, by taking account of the different mobilities
of steps with different structures[1]. His conclusion is in great consistency with
Kimoto’s work[2].
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Figure 4.1 The initial configuration for simulation. The showing configuration is the
C face. The color scale corresponds to the height in z direction. The four steps are
classified as two types, see the discussion below. For the Si face, simply swap Si and
C atoms. (Simulations visualized using VMD[3])

4.2 Computer simulation

A kinetic Monte Carlo simulation model is implmeneted utilizing the programming
language C++. The model is similar to Borovikov’s model[1]. A three-dimensional
simulation model based on the crystal structure of 4H-SiC is constructed. Schematics
of initial configurations (of the C face) are shown in figure 4.1. The color scale in
the top-view indicates different bilayers. The x direction is the down-step direction,
while the y direction is the direction in which steps extend. The sub-figures (a)
and (b) indicate the initial configurations with steps oriented in <11̄00> and <112̄0>
steps, respectively. The directions in which the steps orient to are also the directions
they advance during growth. This study refers to the steps with their advancing
directions instead of extending directions. The <11̄00> steps have two different types
depending on the termination of the step edges. On the C face, the <11̄00> steps
with the terminating Si atoms having one or two dangling unsaturated bonds are
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labeled as SN and SD steps, while the <112̄0> steps are labeled as SM steps for it being
a mixture of the two types.

A periodical boundary condition (PBC) is applied in the y direction while a
helicoidal boundary condition (HBC) in the x direction, to eliminate the effect of
boundaries on the steps[4]. The top and the top of the simulation box are closed.

The standard KMC method identifies a set of elementary events and catalogs
their relative rates. In this study, we consider the attachment and removal of Si, C
and other atoms. The rates of removal are determined according to the Arrhenius’s
law as

R− = ν0 exp(−E/kBT) (4.1)

where ν0 is the attempt frequency set to be 1012s−1, kB is the boltzmann constant
and T is the temperature. The activation E for the p-atom is specified with the
bond-counting rule

Ep =
∑
NN.

∑
q

ϕpq. (4.2)

The ϕpq representing the interaction strength between p and q species. The subscript
NN. is short for the “nearest neighbors”. Atom attachment is allowed on the empty
sites of each species. i.e., when a Si-site is empty, a Si atom can be added to it, while
the attachment of a C atom is not allowed. The rates of attachment are constant.

R+ = ν0 exp(
−2ϕSiC + ∆µ

kBT
), (4.3)

∆µ is the driving force, corresponding to the supersaturation σ of the species by
exp(∆µ/kBT) = 1 + σ. To mimic the situation in solution growth, we only set the
driving force of C to be positive, while for Si there is always ∆µ = 0.

Specially, there is

R+ = 0 (N = 0, 4),

R− = 0 (N = 4),

R− = ∞ (N = 0),

(4.4)

for an solid-on-soild (SOS) model and to keep the detailed balance, where N is the
number of bonds.

This chapter focuses on step kinetics only and excludes the influence of mass
transport on the steps, which has been discussed in the last chapter. Based on this
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consideration, mass transport, including fluid convection, diffusion in solution and
surface diffusion, is excluded from this model.

4.2.1 Implementation of impurity

The attachment of impurity atoms is limited on the Si-sites. Since impurities is
always added in solvent by replacing a part of the raw material silicon, the rate of
impurity attachment is

R+imp = f R+Si, f=0, (4.5)

where f is the fraction the impurity takes from silicon. The attachment rate of Si
then becomes

R+Si = (1 − f )R+Si, f=0. (4.6)

The attached impurity atom can form at most Nv bonds with the neighboring
C atoms in the binding strength ϕimp, where Nv is the number of valence electrons
the impurity owns. For example, for Aluminum, Nv = 3. The removal rate of an
impurity atom depends on the number of bonds formed, N, by

R−imp = ν0 exp(−Nϕimp/kBT). (4.7)

When the Nv is smaller than four, which is the coordination number of Si in the
SiC crystal, the following rules are implemented together with impurity species.

1. When an impurity atom attaches to an empty Si site, it creates in most Nv

new bonds with the neighboring C atoms. If there is less than Nv C atoms,
the impurity atom remains unsaturated. While if there are more neighboring
C atoms than Nv, the impurity will randomly form Nv bonds among the
neighboring C atoms.

2. When the impurity atom is removed, all the relevant bonds will be bro-
ken(deleted).

3. Attachment of a C atom involves checking the neighboring impurity-occupying
sites. Once the impurity is unsaturated, a new bond will be created between
the newly attached C atom and the unsaturated impurity atom.

4. When a C atom is removed, the neighboring impurity-occupying sites are
checked. The bonds between the removed C atom and the impurity atom, if



4.3 Results and discussion 79

they exist, will be broken. Then the unsaturated impurity atom will look for
and bind with unlinked neighboring C atoms.

4.2.2 Bond energies and temperature

A detailed discussion will show that the choice of schemes when determining the
bond energies can cause a significant difference in the appendix. However, in the
main body of this study, an effective bond strength between Si and C atoms, invented
by Borovikov, of 0.75 eV, is used[1].

The value of 0.75 eV is inherited in some recent studies[5, 6], though their con-
sideration about the “next nearest neighbors” seems to be a misunderstanding to
Borovikov’s report.

In this study, we applied this value of bond strength, although this value has
been mentioned as invalid when the first time it is reported[1]. Also, the system
Borovikov et al. studied was chemical vapor deposition (CVD). The temperature
in his simulation was 1000 K, much lower than the growth temperature in the
solution methods. Firstly the temperature dependence of step kinetic coefficient on
temperature is watched. The result is that the thermal roughening occurred on the
crystal surface at a temperature lower than 2000 K, which is invalid according to
experimental results. However, all the matters are the ϕ/kBT. Setting bond strength
to be 0.75 eV then temperature to be 1000 K has no difference from setting the two
parameters to be 1.5 eV and 2000 K. We still believe the simulation results at least
give the correct tendency.

The bond strength of the Al-C bond is not reported except the dissociation energy
of AlC molecular[7]. However, we can estimate its relative strength to the Si-C bond.
Al is known to substitute for Si sites, and the bond length for the Al-C bond is 0.09
Å longer than the Si-C bond with a length of 1.89 Å is SiC[8]. Therefore We roughly
estimate the Al-C bond being 0.715 eV.

In most results, the temperature is set to be 1000 K.

4.3 Results and discussion

As Borovikov’s report mentioned, simulation results on the Si and C face show no
significant difference in most cases. We lately concluded that it is due to the Si and
C atoms being not distinguished under the bond energy determining scheme, which
will be discussed in the appendix. Here we only present the simulation results
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carried out on the Si face, except when there is a significant difference in the results
on the C face.

Figure 4.2 shows the equilibrated steps oriented in (a) <11̄00> and (b) <112̄0>. The
simulation is carried out with four steps be separated by 54a to avoid any entropy
repulsive interaction due to step meandering, where a is the lattice constant of 4H-
SiC. The triangular insets on each terrace indicate the atom stacking sequence of the
terrace. The steps at the right-side limit are squeezed out at the left-side limit due
to the helicoidal boundary condition (HBC). The SD and SN steps show significant
differences in the step shape. The SN steps are generally straight with a few kinks
on them. While the SD steps are rough by breaking into segments of SN steps, as
indicated by the yellow lines. The yellow arrays indicate the advancing direction the
SN segments take. On the other hand, the SM steps break into SN and SD segments
and show a “zig-zag” shape. Each step has a different zig-zag orientation because it
prefers SN segments rather than the SN segments.

(a) equilibrated <1100> oriented steps

(b) equilibrated <1120> oriented steps

SN

SM

SN SD SD

kink

Si
C

y

x
z

y

x
z

Figure 4.2 Configurations of equilibrated steps oriented in the (a) <11̄00> and (b)
<112̄0> directions. The color scale represents height in the z direction.
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4.3.1 Temperature dependence of kink density

Figure 4.3 shows the temperature dependence of kink density a/δ of (a, c) SN and
SD step and (b, d) SM steps, where a is the lattice constant and δ is the average
distance between kinks. At temperatures above 2000 K, the kink densities show a
rapid increase due to the thermal roughening, which is over the scope of this study.
Therefore the discussion is limited in the low-temperature region.

Figure 4.3 Temperature dependence of kink density on temperature of (a, c) <112̄0>
steps and (b, d) <11̄00> steps.

Among the three types of steps, only the SN step shows a clear exponential
dependence on the temperature, which is indicated by figure 4.3 (c). The slope of
the fitting line indicates the work cost for creating a kink on a SN step being about
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0.404 eV, about a half of the step edge energy of SN step, 0.75 eV/a. The kink density
on the SD steps, in contrast, remains constant until the thermal roughening occurs,
indicating a zero kink creation work on the SD steps. The SM steps have an almost
constant non-zero kink density at low temperatures. The slight increase tendency
can be attributed to the SN segments in the zig-zag step edges.

With the kink density data, the step kinetic coefficient can be calculated according
to equation 3.15. Note that kinks of both Si and C types empty sites are counted,
while when considering step advancing, only filling a pair of Si and C empty sites
counts. Therefore the “effective kink density”, which is half of the plotted kink
density, must be used. In this study, the energy barrier ∆ is not explicitly specified
and actually is was assumed to be zero. With this assumption, and noting that
ast =

√
3a/2 for <11̄00> steps and ast = a for <112̄0> steps, we have step kinetic

coefficient estimated and listed in table 4.1 In a real liquid phase growth system, the
energy barrier is of course not zero, however, the value is difficult, if not impossible,
to measure. By arbitarialy assuming ∆/kBT � 1, the values of step kinetic coefficients
are scaled by 0.37 and are noted in the brackets in table 4.1.

Table 4.1 Estimated step kinetic coefficient,Kst [107µm/s].

1000 K 2000 K

SN 0.038(0.014) 4.7(1.7)
SD 5.9(2.2) 6.6(2.4)
SM 4.6(1.7) 5.9(2.2)

4.3.2 Supersaturation dependence of step kinetic coefficient

Figure 4.4 shows the change in velocities of the three types of steps over super-
saturation, σ. Both SD and SM steps show a linear dependence on the supersat-
uration, indicating a constant step kinetic coefficient that does not change with
supersaturation. The step velocity can be written as vst = Kstσceqvc. In this study,
ceqvc = exp(−2ϕ/kBT) = 2.66× 10−8, therefore, by reading the slope of the fitting lines
theKst can be figured out to be 3.12×107µm/s for the SD step and 2.22×107µm/s for
the SM step. The inset shows the velocity of the SN steps. The SN steps do not move
at low supersaturations, while when the supersaturation increases, in some data,
the velocity can rise up to 0.1 µm/s. Kst is then 4.14×106 µm/s in average, which is
almost one order larger than the value obtained at σ=0. This rapid switching from
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still to a fast-advancing is because the SN steps advance involves nucleation and
spreading of “one-dimensional islands” on the step edges.
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Figure 4.4 Step velocity changes with supersaturation.

4.3.3 Formation of four-bilayers bunching

The formation of four-bilayer step bunches is observed in simulation results. Figure
4.5 shows the processes of the four-bilayers step bunching. The simulation was
carried out with 16 steps oriented to <11̄00> on a 216a × 40a surface (figure 4.5 (a))
under σ = 1. At low supersaturation conditions (σ ⩽ 1), SD steps move much faster
than the SN steps and naturally result in the SD steps catching up the front SN steps.
According to Kimoto’s and Borovikov’s reports, there is a difference in the energy
barrier for depositing an atom on each terrace of 4H-SiC. The different deposition
energy barrier first leads to step pairs of SD steps and SN steps, respectively. Then
the difference in the step velocities leads to the bunching of SD pairs into SN pairs,
forming step bunches of full-unit-cell height (four-bilayers height in 4H-SiC). In
this study, however, this energy scaling effect on different terraces is intentionally
neglected to better focus on the different types of steps. Therefore as indicated by
figure 4.5 the formation of step pairs does not occur. Instead, the processes are (b)
first a SD step collides into the front SN step, then (c) the other SD step collides into
the front SD -SN pair, and (d) the three-bilayer step pair collides into the front SN step.
Since the following sections discuss the behavior after forming the four-bilayer
step bunches, though these processes are not exactly consistent with the processes
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Figure 4.5 (a-d) Processes of formation of four-bilayers step bunches. (e, f) the change
of step velocities during the processes of step bunching.

reported by Kimoto and Borovikov, it makes no significant difference. Also, the
change in step velocities is shown in figure 4.5 (e). Steps are labeled as 1 ∼ four
corresponding to the order in a four-bilayers bunch. After the collision into a front
step, the step velocity immediately drops to the same level as the front step. Figure
4.5 (f) shows an enlargment of the step velocities after formation of four-bilayers step
bunches. The whole bunch now advances in the same velocity of the “rate-limiting
step”, the SN step laying under the bunch.

4.3.4 Influence of Al-like impurity on step velocity

Aluminum (Al) is a typical impurity found in SiC crystals grown with the solution
methods. The addition of Al usually has a significant influence on growth morphol-
ogy. In this section, we included an Al-like impurity species during simulation. The
simulations start from a clean 216a × 64a surface with four steps. Both the Si and
C faces are studied. During simulation, atoms of the Al-like impurity attach to the
surface and gradually reach saturation. The attached impurity atoms can influence
step velocity and step bunching behavior. This section first describes the interaction
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between impurity and steps and then discusses the influence of impurity on step
velocities. In the next chapter, the step bunching behaviors will be briefly discussed.

Figure 4.6 shows surfaces with incorporated impurities. Although the attachment
of impurity is spatially uniform, due to the variance in detachment rate, the resulted
incorporations of impurity show spatial distributions, and the distributions are
different on the Si and C faces. Since an Al-like impurity is only allowed to occupy a
Si empty site, on the Si face, the impurities can incorporate by attaching to C atoms
exposure at step edges or by taking vacancies left by the removal of surface Si atoms
(in figure 4.6 (b) the white circle indicates a vacancy). Removing a surface Si atom
requires breaking three Si-C bonds, making the latter process much unlikely than
the former one. Thus, the adsorption of impurity at the step edges is much larger
than on the terraces, as shown in figure 4.6 (a) and (b), there is a “step-incorporation”
region behind the steps where the adsorption density of impurity atoms is much
higher than the rest “terrace-incorporation” regions. While on the C face, although
the impurities can directly attach to the terraces, between the attachment impurities
and the surface C atoms, there is only one Al-C bond, the attachment is not solid,
and these impurity atoms will be immediately removed. Furthermore, exchanging
with the Si atoms is forbidden because the Si atoms are buried beneath the C atoms.
As a result, all the impurities are incorporated at step edges on the C face. The white
circle in figure 4.6 (d) shows the incorporated impurity leaving a pit on the terrace
due to the fewer bonds and weaker binding caused by the impurity.

Since an Al-like impurity atom can form in most only three bonds, the incorpo-
rated impurity atoms generally hinder the steps from advancing, though the details
may vary when interacting with different steps on different faces. For the straight
SN steps, a “kink blocking” mechanism works[9] While for the rough SM steps, a
Cabrera and Vermilyea (CV) pinning mechanism works[10]. As mentioned in the
previous sections, the SN steps advancing through nucleation and spreading of the
1D islands. When an edge of a 1D island comes to meet an embedded impurity
atom, the spreading will be blocked because the Al-like impurity has already run
out of its three bonds. In both the figure 4.6 (a) and (c) one can find impurity atoms
blocking the spreading of 1D-island edges. Since the edges of the 1D islands are
kinks, this mechanism is named kink-blocking. However, the blocked SN steps
continue advancing by forming new 1D islands. The white arrays in figure 4.6 (a)
indicates the two edges of a newly formed 1D island.

While the SM steps can be pinned by an impurity atom, although the reason for
the SM step cannot advance when meeting an impurity atom is the same as those for
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Figure 4.6 Steps influenced by impurities. SN and SM steps on both Si and C faces are
displayed. The color level represents height in z direction. Impurities are displayed
in a blue color.

the SN steps, when an SM step is pinned at some points, the rest part of the step can
keep moving and leave the pinned sites behind, as shown in figure 4.6 (b) and (d),
the valleys of zig-zag steps are the pinned sites.

The different mechanisms of impurity interacting with steps influence step ve-
locities in different manners. Figure 4.7 shows velocity change over time when the
Al-like impurity is present. When the steps advance in the <11̄00> direction, the
SN steps are focused as the rate-limiting steps. Figure 4.7 (a) and (b) show the results
of the SN and SM steps on the Si face. Both steps show drops in the velocities. Figure
4.7 (a) shows change of SN step velocities. Under small f conditions ( f = 0.02),
or when the growth time is short under large f conditions, the step velocities are
hardly affected due to the low surface impurity density. While with the impurity
fraction is large and after growth for a while (t > 0.75s), the step velocities drop to a
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lower level. If one looks carefully, there are as well three stages of the change of step
velocities in the SM steps shown in figure 4.7 (b). In the beginning, the adsorption
starts attaching to the terraces and the step edges, while those attached to step edges
have no influence, temporarily. With time increasing, the adsorption density on the
terraces increases. Therefore, the step velocities decrease due to a step pinning effect.
The drop stops after a certain period, and a plateau period comes. That is due to
the adsorption reaching its saturation. However, later the velocities start dropping
again to a lower level due to arriving into the “step-incorporation” region.

For the steps on the C face (figure 4.7 (c) and (d)), the situation is different from
on the Si face. The decrease in step velocities only sustains for a much shorter period
than the Si face. That is because impurities are only from the step edges, where
impurity adsorption soon reaches saturation.

The step kinetic coefficients when impurity being present are calculated with step
velocities and shown in figure 4.8 against the impurity fraction, f , and a/∆ = f 1/2,
where a is the lattice constant and ∆ is the average distance between impurities
embeded on the surface. For the SM steps, the dependence is linearly fitted with
equation

Kst = Kst
0(1 − 2Rc/∆), (4.8)

where Rc is the critical radius of 2D nucleation. The results of linearly regression is
listed in table 4.2. The linear dependence of SM steps on the Si face is well consistent
with the observed step-pinning mechanism. On the other hand, impurity influence
the SM steps on the C face more than on the Si face. One can also see the influence of
impurity gradually reaching a saturation with f increasing. On the C face, impurities
only attach at step edges, thus, comparing with the steps on the Si face, the steps on
the C face see a higher impurity density.

Table 4.2 Dependence on a/∆ of SM step’ kinetic coefficient (in unit [107µm/s]).

dependence correlation

Si face 2.18(1 − 2.44x) -0.99
C face 1.90(1 − 3.32x) -0.94

4.3.5 Further impurity-induced step bunching

Since in most cases, the SN steps have a step kinetic coefficient of two orders more
minor than the SM steps, which implies that growth on a substrate with an off-axis
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Figure 4.7 Change in step velocities, vst, over time, t, with Al-like impurity present.
f is the impurity fraction.

oriented to <11̄00> is more stable than growth on a <112̄0> oriented substrate. Also,
the straight step line can eliminate fluctuation on step edges, which is considered to
be the origin of the Bales-Zangwill instability (step meandering)[11]. The latter is
considered to be relevant with the formation of inclusion in the grown crystals[12].
However, another consequence of growing with <11̄00> steps is that the growth will
be much slower. So it is a trade-off problem.

In the solution methods, when one changes the polarity face to grow on, the
addition of Al has opposite effects on growth morphologies. The mechanism is
still unclear, but the above results about the effects of the Al-like impurity on step
velocities may give some hints. There may be two different mechanisms affecting
step bunching: the change in step kinetic coefficient and the impurity-induced step
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Figure 4.8 Step kinetic coefficients calculated from step velocities with impurity
present.

bunching. Comparing the step velocities affected by impurity on the Si and C
faces, shown in figure 4.7, even with the same impurity fraction, the finally resulted
velocity can be different, especially when f = 0.02 and f = 0.04. This difference may
have an influence on step bunching behavior through the mechanism discussed in
chapter 3. However, as this model does not consider mass transport explicitly, step
bunching through this mechanism will never be observed. On the other hand, the
impurity-induced step bunching may become dominant.

The fundamental consideration of impurity-induced step bunching has been
introduced in section 1.4.3 As one can read from figure 4.7, there is a period, τ, for
the impurity to reach the saturation on the Si face during this period much shorter
on the C face. If the key assumptions of the Cabrera-Vermilyea model is validated,
the characteristic adsorption time of the impurity, impurity-induced step bunching
will occur when

w
vstτ
⩽ 1, (4.9)

where w is the terrace width, vst is the step velocity and τ is the so-called characteristic
adsorption time of impurity[13]. The SM steps on the Si face have a larger vst while
a longer τ, compared with the SM steps on the C face, leading to a higher risk of
impurity-induced step bunching on the Si face.

Simulations with a larger surface and longer growth time are carried out to see
the impurity-induced step bunching. Figure 4.9 shows the results. The simulations
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are carried out on a 640a × 64a clean surface with 32 equally aligned steps, under a
low impurity fraction, f = 0.02. The growth face is the Si face. Both the <11̄00> steps
(figure 4.9 (a) and (b)) and <112̄0> steps (figure 4.9 (c) and (d)) are simulated. Except
the cases with the supersaturation σ = 1 and the binding strength ϕimp = 0.715
eV, simulations with σ = 4 (faster steps) and ϕimp = 0.84 eV (longer characteristic
adsorption time) are also carried out. According to Van der Eerden et al., the
characteristic adsorption time can be written as τ = ñ/ν, where ñ is the equilibrated
adsorption density and ν is the adsorption flux[14]. By increasing the ϕimp the
equilibrated adsorption density thereby, the characteristic adsorption time can be
modified.

From the results, no obvious step bunching behavior can be observerd with
the former conditions, neither in the <112̄0> and <11̄00> steps, (figure 4.9(a, c)).
On the other hand, with faster steps and a longer adsorption time, the steps show
gathering and separation with each other (figure 4.9(b, d)). One may consider this
a step bunching on a larger scale. However, by looking carefully into the change
of the distance between the two bunch of steps, one may find that separated steps
can gather again(figure 4.9(b)), which leads to the changes among step distances
more likely some random fluctuation rather than instability. This result violates
the experimental results, in which the addition of Al leads to step bunching when
growing on the Si face.

The primary reason for failing to reproduce the experimental tendency may be
attributed to the incorporation of impurity by prioritizing the steps rather than
terraces on the Si face. Unlike the terrace incorporation, the attachment to step edges
of impurity immediately reaches saturation. This difference makes the adsorption
density in the “step-incorporation” region is all the same and irrelevant with the
terrace width. In other words, it is like the τ is too small for w/vstτ to fall within the
step bunching range, w/vstτ ⩽ 1.

4.4 Conclusion

In this chapter, a kinetic Monte Carlo model is constructed on the 4H-SiC lattice.
The kinetic coefficient of <11̄00> and <112̄0> step are investigated, on both the Si
and C faces, over different temperatures, supersaturation, and condition of impurity
adsorption. The <11̄00> steps consist fast SD steps and slow SN steps. At equilibrium,
in a temperature range being lower than thermal roughening temperature. Step
kinetic coefficients are obtained by counting the kink densities. An SD step is
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Figure 4.9 Step positions change over time. The time and position are normalized.
(a) <11̄00> steps, σ = 1. ϕ = 0.715 eV, (b) <11̄00> steps, σ = 4. ϕ = 0.84 eV, (c) <112̄0>
steps, σ = 1. ϕ = 0.715eV, (d) <112̄0> steps, σ = 4. ϕ = 0.84 eV.

constantly rough and has a sizeable kinetic coefficient. The kinetic coefficient of
an SN step is two orders smaller but increases exponentially with temperature.
An SM step has similar roughness with the SD steps. When the supersaturation
is non-zero, the step kinetic coefficient is calculated as a ratio between the step
velocity and the supersaturation. The calculated kinetic coefficients are generally
consistent with the ones obtained at equilibrium. Due to the difference in step
velocities, step bunching occurs intrinsically among the <11̄00> steps to form four-
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bilayers step bunches, and the SN steps located at the bottom of each bunch act as
the rate-limiting step. Finally, an Al-like impurity was introduced. The step pinning
mechanism works on the SM steps, while a kink-blocking mechanism works instead
for the SN steps. Both mechanisms hinder the steps from advancing. However, the
two mechanisms and the different adsorption behaviors observed on the Si and
C faces lead to different effects on the step velocities. On the Si face, the impurity
adsorbs to both the terrace and the step edges, while the former appears a time
dependence of the adsorption density, which is considered the origin of the impurity
induced step bunching. On the C face, such a time dependence is minor, which
eliminates the probability of the impurity-induced step bunching. Simulations
were carried out to verify the impurity-induced step bunching. However, due to
the overwhelming amount of impurity adsorption at the step edges, the effect of
terrace adsorbed impurity was covered up so that no solid evidence of impurity-
induced step bunching was observed. In order to fully reveal the mechanism in
which aluminum affects the step bunching behaviors, we look forward to furthering
studies, especially experimental studies on the adsorption sites of the aluminum
during crystal growth.
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Chapter 5

Real-world data circulation in
crystallization research

5.1 Data circulation in model-driven studies of crystal
growth

This chapter discusses the contributions of the thesis in the context of real-world
data circulation (RWDC). Contributions to data circulation in computational studies
of materials, particularly model-driven crystal growth studies, are discussed.

The data circulations in the study of crystal growth are illustrated in figure 5.1.
Conventionally, optimization of crystallization craft involves complicated and long-
term experimental research. The processes and data circulation is illustrated in
figure 5.1 by thick lines. Firstly, crystal growth experiments are carried out as a pilot
study. In this stage, experiment conditions will be set according to the researchers’
intuition and experience. The obtained crystals then will be characterized in different
scales. In our research, on the macroscale, usually, the growth rate and surface
morphology will be observed. Step bunching is in concern on the mesoscale, while
the impurity distribution will be measured on the microscale. The characterization
results are acquired through this stage as dependent variables, with the experimental
conditions as the independent variables. The acquired data set then will be analyzed.
Knowledge, theories, and principles of crystal growth and general physics were
inducted through this stage. Finally, the concluded knowledge is used to design
experiment conditions for the subsequent experiments or guide industrial mass
production.
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Figure 5.1 Data circulation in experimental (thick lines) and emulator driven (dashed
lines) studies in crystal growth. Multiscale modeling of the crystal growth process
(shaded in gray), the focus of this thesis, is fundamental to constructing the emulator
and data circulation. Arrays representing the acquisition, the analysis, and the
implementation of data are colored with red, yellow, and blue, respectively.

However, several rate-limiting processes in the conventional data circulation
are also issues hindering the exploration of the optimized experiment condition for
crystallization. In the stage of data acquisition, when multiscale characterization is
needed, this process usually becomes slow and expensive. Moreover, to optimize the
craft for crystallization, usually, tens of parameters must be modified. It means that
to effectively analyze the crystallization processes, numerous raw data is necessary.
That is why in some cases, developing a new material takes decades. The third
difficulty happens in the data analysis stage. Even though with enough raw data set
obtained, the relation between the experimental conditions and the characteristic of
the crystal may not be easily found even by an experienced researcher. Because the
formation of a material is a highly complicated process involving different mecha-
nisms that work in different length scales. Although a knowledgeable researcher is
supposed to use the knowledge to explain the phenomena observed in each scale,
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combining all the information and predicting the behavior of such a complex system
is usually difficult for human beings.

With the development of modeling technologies and increased computational
resources, an innovative approach to optimizing crystallization craft has been pro-
posed. The data circulation in this new approach is illustrated in figure 5.1, by
dashed lines. The new approach is driven by an “emulator”. An emulator is a
computer model of a real system that can reproduce the system’s behaviors. In the
case of crystal growth, an emulator is considered a computer model of the system in
which crystal growth experiments are carried out. It is expected to fully reproduce
the whole crystallization process, including the transport of mass and heat and
the surface kinetics. With such an emulator, researchers can explore all parameters
affecting the crystallization, implying that optimized experimental conditions can
be obtained in a short period with extremly low cost. In this approach, only a few
batches of experiments are necessary to acquire data for the calibration of the emu-
lator. With an emulator, the data acquisition and analysis processes are automated
and hidden in the emulator, which is expected to significantly accelerate the period
for optimization of the crystallization craft.

An emulator requires modeling using human knowledge. Models on different
length scales are necessary for the emulator used in crystallization research, corre-
sponding to the real-world data. As shown on the right side of figure 5.1, several
typical modeling methods are listed. Models on different scales require data and
knowledge towards the corresponding scale. The result of this thesis, which is multi-
scale modeling to step behaviors, satisfies the emulator’s need, and the contribution
will be discussed in the following sections.

Between each scale, there is data circulation as well. Take the research thesis
as an example. The microscale model, KMC, produces values of step kinetic co-
efficient, Kst, to the mesoscale-CFD model as inputs. The surface morphologies
outputted by the mesoscale-CFD simulation can also be inputted to the macroscale-
CFD simulation, as finer boundary conditions. On the other hand, the outputs of
macroscale-CFD simulation providing information about the ambient phase are also
necessary for the models on smaller scales.

It is worth note there is not a certain order when using these models. For example,
with the mesoscale-CFD model, morphology can be obtained. By comparing with
the experimentally acquired data, determining the value ofKst then becomes the so-
called inverse problem. Moreover, theKst obtained by solving the inverse problem
can be compared with that obtained in KMC for model calibration.
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5.2 Contribution of this thesis to model-driven studies
of crystal growth

To fully reproduce the whole process in crystallization, the emulator must know
“what is going to happen” with a group of experiment conditions as input. Although
the knowledge an emulator has will not override humans, the advantage of an
emulator is that it can deductively reproduce the system’s behavior with the knowl-
edge it has. For example, as part of the emulator, the CFD simulation allows us to
calculate the distribution of temperature, pressure, fluid flow velocity, and much
other information, with only a few equations and limited assumptions.

Naturally, an emulator for crystallization shall at least reproduce the mass trans-
port process and growth kinetics during crystallization. However, in the case of
solution growth of SiC crystals, the currently widely used models (macroscale-CFD
models) are far from enough. As indicated in chapter 3, besides the controlling
parameters, e.g., the temperature, the solvent composition also impacts the quality
of crystals. The macroscale-CFD models do not consider the growth kinetics and fail
to predict crystal quality.

Therefore, an emulator requires multiscale modeling to the crystallization process,
including mass transport and surface kinetics. Particularly, for the study of step
bunching, models describing mass transport and step kinetics on multiscale are
necessary. The contribution of this thesis to model-driven studies of crystal growth
and the related data circulation can be concluded as follows

1. Multiscale models describing mass transport and step kinetics in crystallization
are constructed.

2. with the result of chapter 3, step bunching can now be reproduced in a
mesoscale-CFD model. The solvent composition can be included when pre-
dicting the quality of the grown crystal.

3. with the result of chapter 4, an atomistic model was constructed to reveal the
possible microscopic mechanism for impurities affecting step bunching. The
model is promising in enriching the possibilities and improving the accuracy
when considering the effect of solvent composition on the emulator.

The extended contribution of this thesis to other fields will be briefly discussed
in the next section.
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5.3 Contribution of the thesis to related fields

Parameter optimization

In crystal growth, the solvent composition, along with other parameters such as
temperature, determines the quality of the crystals. Conventional hydrodynamic
models are only good at predicting the macroscopic effects caused by the parameters.
By coupling my model with the conventional models, it is possible to predict the
quality of the grown crystals based on the solvent composition and other parameters.
By developing exhaustive simulations in the variable space of solvent composition
and other growth parameters and building a prediction model with solvent compo-
sition and other parameters as input and crystal growth rate and quality as output,
Parameter optimization on the conditions for crystal growth can be conducted.

Application in materials informatics

However, in real industrial production, even if the other conditions are the same,
the crystals obtained can be quite different due to the differences in the delicacy of
the experimental equipment, and the proposed optimal conditions often deviate. In
addition, the model is losing its accuracy as the growth apparatus, and components
deteriorate with time. To solve this problem, a transfer learning approach can be
proposed based on the conclusion of this thesis.

1. Collect the above input and output data as routine growth experiments are
developed in each growth apparatus.

2. Based on the collected data, one can use a transfer learning method to periodi-
cally update the trained model and propose optimal conditions that take into
account the individuality and condition of each growth apparatus before each
experiment.

Application in other related fields

In industrial production, simulation results of the mesoscale model (Chapter 3),
which is the surface morphology, can be applied to predict and visualize the surface
morphology.

The microscale KMC model can be extended for studies of crystallization of
other materials. Also, the ion implantation process is significant in the fabrication
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of semiconductor devices. The distribution of injected ions, which greatly impacts
device performance, can be studied using the KMC model.



Chapter 6

Conclusion

This study aimed to establish a solution method for creating high-quality 4H-SiC
crystals. We focused on the controlling step bunching in this study. Experimental
and multiscale numerical investigations towards the growth processes is utilized to
reveal the mechanism of the mass transport and step kinetics affecting step bunching.
Here, the knowledge obtained in each chapter is summarized below.

Chapter 1 provided the background of this study. From chapter 2 to chapter
5, the study contents are described. In chapter 2, we conducted growth on a SiC
substrate of 2-inch size. In order to obtain dislocation conversion, we utilized Ti
5 at.% composited solvent. We obtained a high-quality crystal with dislocation
conversion. For the first time, we observed the spatial distribution of step height and
thus conversion ratio in the step flow direction. We figured out the origin of the step
height distribution by modeling the fluid flow in the growth system. The central-
symmetrical out-ward flow beneath the growth front resulted in an antiparallel
and parallel flow in step flow’s upstream and downstream areas, which leads to
the opposite step bunching behaviors in the two areas. This discovery provides a
pointer to the designing of growth craft in order to obtain crystals of uniform quality.

In chapter 3, the influence of flow velocitiy on step bunching size was reproduced
in a mesoscale numerical model. Furthermore, to reveal the mechanism for solvent
composition influencing step bunching behavior and provide a pointer to the solvent
design, we constructed a model coupling the mass transport and the step kinetic and
conducted a numerical simulation. We revealed that step bunching originates from
the minor, random fluctuation of step distances while is determined by the ratio
between step kinetics rate and mass transport rate, which are represented by the step
kinetic coefficient and diffusion coefficient. Based on this insight, we constructed
a dimensionless number as a measurement for solvents of the tendency to cause
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step bunching. We also revealed that to obtain a crystal with an acceptable growth
rate and maintain surface smoothness, fast diffusion and moderate step kinetics are
ideal.

In chapter 4, to quantitatively obtain the step kinetic coefficient of 4H-SiC and
study its dependence on growth conditions, a kinetic Monte Carlo model was
constructed. The step kinetic coefficient was calculated over all types of steps on
the {0001} faces. The dependence of the step kinetic coefficient on temperature,
supersaturation, and the existence of impurity species was investigated. The steps
advancing in the <11̄00> direction were divided into the SN type and the SD type.
The SN steps keep straight at even high temperatures and move slowly, while
the SD steps are constantly rough and fast. The SN steps usually have a kinetic
coefficient of (3.8 × 105µm/s, 1000 K) two orders smaller than the SD steps have
(5.9 × 107µm/s, 1000K). The steps advancing in the <112̄0> direction (SM steps)
have a similar roughness, thereby a close kinetic coefficient (4.6 × 107µm/s, 1000
K), as the SD steps. Due to the difference in step velocities, step bunching occurs
intrinsically among the <11̄00> steps to form four-bilayers step bunches, and the
SN steps located at the bottom of each bunch act as the rate-limiting step. With
the existence of an aluminum-like impurity species, SM steps were pinned by the
impurities, while the SN steps show a kink-blocking mechanism instead. Both
the two mechanisms in which impurity interacts with steps hinder the steps from
advancing. The impurities adsorb to both terrace and step edges on the Si face.
The former adsorption’s Langmuir style behavior was considered an origin of the
impurity-induced steps bunching on the Si face. While on the C face, the adsorption
to the step edges is the only way the impurity is incorporated, which does not lead
to an impurity-induced step bunching. The distinct behaviors were considered to
be able to explain the opposite surface morphologies when growing SiC on the Si
and C faces with Al present, and simulations were carried out to verify this theory.
However, due to a high adsorption density at the step edges, on the Si face, the effect
of the Langmuir style adsorption is eliminated, and no solid evidence supporting
the impurity-induced step bunching was observed.

In chapter 5, the relationship between this study with Real-world data circulation
is discussed.



Appendix A

A KMC rate-determining scheme to
reflect polarity of SiC crystal {0001}
faces

In chapter 4, a kinetic Monte Carlo (kMC) simulation model for 4H-SiC is con-
structed, and the temperature dependence of step kink density is studied. The
model is found not to be able to reveal the difference between the Si and C faces,
except when including impurity species, which is the same as being mentioned in
the reference [1]. However, this is invalid. According to extensive experimental
results and calculations, the SiC crystal shows a polarity in the c-axis. That is, the Si
and C faces have different properties. For example, [2] calculated that the surface
energies being 300 erg/cm2 for the C face and 2200 erg/cm2 for the Si face. To fully
reproduce the properties and growth behaviors of SiC crystal, this polarity should
be considered. In this appendix, a different scheme in determining event rates is
utilized in the kMC model constructed in chapter 4 as a try to represent the polarity
in the SiC crystal.

A.1 Rate determination

This model is based on the idea of a binary ion-like crystal growth model by
Cherepanova et al.. A general rate-determining principle for the growth of bi-
nary crystals (AB crystals) is derived and applied in the research of NaCl-like ionic
crystal[3, 4]. Since we are not going to discuss the intrinsic disorder in the crystal, in
this chapter, the scheme is simplified by forbidding atoms from occupying sites that
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do not correspond to the atom types. The attachment rate of an a particle from fluid
phase to crystal is

R+a = ν0 exp(∆µa/kBT), (A.1)

and the detachment rate is given by

R−a = ν0 exp(∆E/kBT). (A.2)

Here ν0 is the attempt frequency, ∆µ is the driving force, and

∆E = (N − 2)φab + (4 −N)φaf −Nφbf (A.3)

is the energy change after the detachment scaled by the change in bonds. The bond
energy between an pair of particles, i and j can be written as

φij = ϕij −
1
2

(ϕii + ϕjj). (A.4)

This is the generalized bond energy, representing the energy of formation of an i − j
bond in reference to half an i − i bond and half a j − j bond. The bond energies ϕ
are supposed to be negative. N is the number of nearest atoms depending on the
geometric environment of the atom.

The subscript “f” in equation A.3 indicates a fluid particle. When the “fluid” is a
vapor phase, or does not exist, the bond between the a particle and a “fluid” particle,
ϕaf, is equal to zero. In this case, the φaf = −ϕaa/2 represents the excess energy of a
dangling a − a bond, with which the energy of a crystal surface composed with a
atoms can be calculated.

With this rate-determining scheme, the A and B particles in an AB crystal, in this
study, the Si and C atoms in the SiC crystal, behave differently because the difference
in surface energies can be correctly reflected. This distinguishability is valid when
considering a crystal in contact with a liquid phase ambiance and a vapor phase
ambiance.

The bond energies ϕij of solids are acquired from reported values and listed
in table A.1, together with the source. However, the fluid-fluid bond energy and
the solid-fluid bond energy remain unknown. Thus, we arbitrarily but reasonably
decide the values of the fluid-fluid and the solid-fluid bond energies to mimic the
effect of solvation. Thereby the effective bond energies are listed in table A.2.

Note that the values of bond energies are mainly divided into two groups, yet the
relative orders are the same. Therefore we use average values in each group. The data
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Table A.1 Bond energies in unit [eV].

Source ϕC−C ϕSi−C ϕSi−Si

[5–7] 3.59 3.30 2.30
[8] 3.68 3.17 2.32
average 3.63 3.23 2.31
[9] 6.41 4.63 3.21
[10] 6.29 4.68 3.39
[11] 6.29 4.51 3.39
average 6.33 4.61 3.33

Table A.2 Effective bond energies in unit [eV].

Source φCf φSiC ϕSif

Cohesive energy 1.850 -0.200 1.180
Dissociation energy 3.205 0.180 1.605

in references [5–8] are actually the cohesive energies per bond of the crystals while
the rest[9–11] are the bond dissociation energy (D0) of a A-B molecular. Moreover, as
shown in the following portions of this study, the bond energy of aluminum (Al-Al)
and Al-C shows a drastic difference in these two criteria. Considering the definition
of the generalized bond energy, however, the data acquired from the cohesive energy
should be used, yet we present the consequence of applying the two different bond
energy choices briefly.

A.2 Results and discussion

A.2.1 Step terminations and shapes

Step edges can have different configurations due to different atoms attached to the
edges, as shown in figure A.1. For example, on the C face, as shown in figure A.1
(a), the SD and SN steps can either terminate with a Si atom or a C atom. When a
step terminates with a C atom, the C atom is overhung. Usually, people believe
step edges are the ones terminating with no overhanging structure because such a
structure generally represents lower energy.

The last section indicates that the Si and C atoms have distinct behaviors. Thus
the steps terminated with different atoms will have different stabilities. Understand-
ing the terminations at equilibrium helps us gain insight into the step behaviors. For



106 A KMC rate-determining scheme to reflect polarity of SiC crystal {0001} faces

Figure A.1 Side view of SN and SD steps with different terminations, on the (a) C
face and (b) Si face.

the C and Si atoms, with N nearest neighbors, their possible existing state, as well as
the stability of steps terminated with them, are listed in table A.3. At equilibrium,
the probability for an atom to be found is P = R+/R− (not normalized). P ⩽ 1 stands
for the atom can not stably exist. Moreover, we can define specific edge energy as
κ = kBT ln (R−/R+) for the energy cost to create a segment of step terminating with
the atom (with a length of the lattice constant). The C (N = 1, 2) and Si (N = 1) are
such kinds of unstable atoms. They are the adatoms on the surface or step adatoms,
as shown in 1.11. This instability initially excludes the configurations of the SN step
on the C face terminating with a C atom (figure A.1), and any step on the Si face
terminating with a Si atom (figure A.1 (b)). The rest configurations are energetically
allowed, yet we examinated this with the kMC simulation and found out the steps
show a significant difference in their configurations on different polarity faces.

Figure A.2 shows equilibrated configurations of SN and SD steps, on the C face
(figure A.2 (a, b)) and the Si face (figure A.2 (c, d)), respectively, at 3203 K, after
NxNy × 105 MC steps (1.89 × 10−7 sec.). The SN steps, both on the C and Si faces,
keep straight and terminate with the non-overhanging structure. That is because the
SN steps on the C face terminate with Si atoms (N = 3), while the SN steps on the Si
face terminate with C atoms (N = 3), both are the most stable configurations listed
in table A.3. In contrast, the SD steps on the C face become significantly rough by
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(a) C face, SN step (b) C face, SD step

(c) Si face, SN step (d) Si face, SD step

step advancing direction

Figure A.2 Equilibrated configurations of the (a) SN step and (b) SD step on the C
face, and (c) SN step and (d) SD step on the Si face. Si and C atoms are represented
with white and black circles, respectively.
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Table A.3 Possible existing states of atoms with different number of nearest neighbors,
and the stability of steps terminating with the atoms.

N κ [eV] existing state step stability
C face Si face C face Si face

C 1 4.57 adatom unstable
Si 1 1.89 adatom unstable
C 2 1.34 adatom unstable
Si 2 -1.34 SD zig-zag protruding SD termination stable stable
C 3 -1.89 surface atom SN termination − stabler
Si 3 -4.57 SN termination surface atom stablest −

breaking into smooth atomic SN segments, terminating with Si (N = 3). On the other
hand, the SD steps on the Si face are almost as straight as the SN steps, yet with a
few corners, known as kinks. The primary step segments terminate with Si (N = 2),
while at the corners segments, the step-terminating atoms become C (N = 3).

The specific edge energy κ of the SN step (-4.57 eV) is smaller than that of the
SD step (-1.34 eV), somewhat explaining the nature of a SD to break into stabler
SN segments. On the other hand, the SD step could also lower its specific edge energy
by forming the SN segments on the Si face. However, the ratio of such SN segments
is much smaller on the Si face compared with the C face. From the viewpoint of
energy change, that can be explained by the close energy between the SD step (-1.34
eV) and the SN step (-1.89 eV), because forming alternating segments requires the
creation of the “corners”, or kinks, and the density of kinks is decided by the work
needed to create a kink, ω, which is determined by the specific edge energy. In
the following section, we count the density of kinks on each step to study the step
structures quantitatively.

A.2.2 Temperature dependence of kink density

The kink density of each step, both of the C face and the Si face are plotted against
temperature in figure A.3. The kink density obtained with this Cherepanova’s
scheme is quite different from the results obtained with Borovikov’s scheme, shown
in figure 4.3. The SN steps show little kink on both faces, even at a very high
temperature like 3028 K. That implies a much larger kink creation work using
Cherepanova’s scheme. Another significant difference is that the SD steps on the
C and Si faces behave differently now. When using Borovikov’s scheme, there is
no difference between the two faces mentioned by the author and examined in
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Figure A.3 Temperature dependence kink density of different steps on (a) the C face
and (b) the Si face.

this work. While using the Cherepanova’s scheme, as shown in figure A.3 (a), the
SD steps on the C face have a constant kink density of about 0.4, but on the Si face,
kinks on the SD steps are thermally activated (figure A.3 (b)).

According to [12], the average distance between two kinks for a step is

δ = a[1 + exp(ω/kBT)/2], (A.5)

where a is the lattice constant and ω is the work cost when creating a kink on the
step. From the inset in figure A.3 (b) one can figure out the kink creation work of
SD steps on the Si face, ωSi

SD
, being about 1.66 eV. The relatively large variance at low

temperatures is because the surface used in the simulation is not large enough to
eliminate the boundary effect. While for SD steps on the C face one can reasonably
conclude that ωC

SD
= 0 eV.

The difference between ωC
SD

and ωSi
SD

implies a different mechanism when creating
a kink on the two steps. Figure A.4 shows schematics of kink creation processes.
For comparison, the initial configurations without kink are also presented on the
left side of each sub-figure. On the right side, configurations with two pairs of
positive/negative kinks are illustrated, according to the results shown in figure
A.2. The broken and newly created bonds to create kinks are colored red and
blue, respectively, so the kink-creation works can be figured out by summing up
the bond changes. When creating a kink on an SD step on the C face, there is no
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change in the system energy. The steps spontaneously start wandering and become
rough due to an entropic effect. While on the Si face, the kink creation energy is
ωSi

SD
= φCf+1/2φSiC−1/2φSif, which is supposed to be 1.16 eV according to the values

list in table A.2.

Figure A.4 Schematics of kink creation processes of an SD step on the (a) C face and
(b) Si face.
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A.3 Conclusion

In this appendix, a rate-determining scheme involving effective bond strength is
applied in the kinetic Monte Carlo model to reproduce the polarity of the SiC crystal.
The step structures at the equilibrium of <11̄00> steps, both on the Si and C faces,
are studied. The stability and the kink creation energy of different steps is discussed.
Although the SN steps on both faces appear smooth at even high temperatures on
both polarity faces, the SD steps on the two faces behaved differently. On the Si face,
the SD steps are relatively smooth with countable kinks on them, while on the C
face, the SD steps are extremely rough at any non-zero temperature due to a zero
kink creation energy. The distinct stability of the steps is considered to lead to very
different growth behaviors on the two polarity faces. When considering a system
in contact with ambient phases like a solvent, the idea of effective bond strength
would also help reflect the growth polarity. Further studies are looked forward to
completely unravel the mystery around the diversity shown in the growth of SiC
crystal.
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