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Abstract

In this thesis, we give some results on certain meromorphic func-
tions related to the Riemann ζ-function. One of those is associated
with the k-th derivative of Hardy’s Z-function and denoted by Zk(s).
Hardy’s Z-function is a real-valued function whose zeros coincide with
those of the Riemann ζ-function on the critical line. Thus Hardy’s
Z-function is an important tool to study the distribution of the ze-
ros of the Riemann ζ-function. To investigate the analytic behaviour
of a function, it is helpful to consider its derivative. Edwards and
Mozer obtained the result that the zeros of the first derivative of
Hardy’s Z-function are interlaced with those of Hardy’s Z-function.
After that, Anderson, Matsumoto, Tanigawa, and Matsuoka progressed
the knowledge on the distribution of the zeros of Hardy’s Z-function
and its higher derivatives. In their proof, the meromorphic function
Zk(s) plays an important role. We present miscellaneous results on the
completed Zk(s) which is a natural generalization of the Riemann ξ-
function. Next, we consider a discrete mean value of higher derivatives
of Hardy’s Z-function. This study is motivated by Matsuoka’s result.

We also give a result on a discrete mean value of the first derivative
of Dirichlet L-functions. The result is a generalization of Fujii’s result
on the Riemann ζ-function. His study is inspired by Shanks’ conjecture
and his result implies that the conjecture is true. The conjecture states
that the first derivative of the Riemann ζ-function at the zeros of the
Riemann ζ-function is positive and real in the mean. Therefore, the
results are also related to the problem on the simplicity of the zeros of
the function, which is an important problem to study some arithmetic
functions.
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Preface

In 1859, B. Riemann published a paper on the distribution of prime
numbers and conjectured that the Riemann ζ-function

ζ(s) =
∞∑
n=1

1

ns

has non-real zeros only on the critical line ℜs = 1/2. This conjecture
is called the Riemann Hypothesis. Since then, the analytic behaviour
of the Riemann ζ-function has been an attractive research theme. In
1914, G. H. Hardy proved that there are infinitely many zeros of ζ(s)
on the critical line. This is one of the most important achievements
towards the Riemann Hypothesis (RH). He studied an integral∫ ∞

0

ξ(1
2
+ it)

t2 + 1
4

t2n cosh
πt

4
dt,

where ξ(s) is called the Riemann ξ-function derived from the Rie-
mann ζ-function. His argument is simplified by considering the real-
valued function Z(t), named Hardy’s Z-function now. Since Hardy’s
Z-function is real and continuous, the sign change indicates the ex-
istence of its zero. Moreover, the zeros of Hardy’s Z-function coin-
cide with those of the Riemann ζ-function on the critical line. From
these properties, comparing

∫
Z(t)dt with

∫
|Z(t)|dt, we can show that

Hardy’s statement is true.
In this thesis, we consider the analytic behaviour of higher deriva-

tives of Hardy’s Z-function. Our motivation is originated from Mat-
suoka’s theorem.

Theorem (K. Matsuoka). If the RH is true, then for any non-
negative integer k there exists a T = T (k) > 0 such that for t > T
the function Z(k+1)(t) has exactly one zero between consecutive zeros of
Z(k)(t).

When we study higher derivatives of Hardy’s Z-function, a mero-
morphic function Zk(s) associated with the k-th derivative of Hardy’s
Z-function plays an important role. In Chapter 1, we give the defini-
tions of Zk(s) and ξk(s) and a concise survey of higher derivatives of

vi
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Hardy’s Z-function. In Chapter 2, we discuss some of basic proper-
ties of Zk(s). Chapter 3 is devoted to the study of an entire function
ξk(s), which can be regarded as a natural generalization of the Riemann
ξ-function. First we prove the functional equation for ξk(s).

Theorem. For all s ∈ C,
ξk(s) = (−1)kξk(1− s).

Next we show that ξk(s) can be represented as a product over its
zeros.

Theorem. For k ≥ 0, there are constants ak and Bk such that

ξk(s) = eAk+Bks
∏
ρk

(
1− s

ρk

)
e
s
ρk

for all s. Here the product is extended over all zeros ρk of ξk(s).

We can determine constants eAk and Bk in the above theorem.

Theorem. In the previous theorem, for k ≥ 0 we have

eAk = ξk(0) =
(−1)k(2k − 1)!!

(4
√
π)k

and

Bk = −2k(k − 1)

2k − 1
log 2− 1

2(2k − 1)
log 4π +

γ

2(2k − 1)
− 1,

where γ is the Euler constant.

In a similar manner, we can obtain special values of ξk(s) at integer
points.

Theorem. Let k ≥ 0. We have

ξk(1) =
(2k − 1)!!

(4
√
π)k

,

and for n ≥ 1,

ξk(2n+ 1)

= (−1)kn+1π− 2n+k
2

(2n+ 1)!2n

4n · n!

(
4n−1(n!)2

(2n)!

)k
(2k − 3)!!ζ(2n+ 1)

and

ξk(2n) = (−1)knπ− 2n+k
2 2n(2n− 1)(n− 1)!

(
(2n)!

4nn!(n− 1)!

)k
Zk(2n).

Finally, we give an alternative proof of Mozer’s formula.
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Proposition. If the RH is true, for any non-negative integer k,
we have

d

dt

Z(k+1)(t)

Z(k)(t)
= −

∑
γk

1

(t− γk)2
+Ok(t

−1),

where γk are zeros of Z(k)(t).

This formula was proved by Matsuoka [28]. He considered a contour
integral to prove this formula. However, we can avoid calculating the
integral by using the factorization of ξk(s).

Chapter 4 is dedicated to a discrete moment of higher derivatives
of Hardy’s Z-function. We prove the following theorem.

Theorem. Let j and k be fixed non-negative integers and L =
log(T/2π). If the RH is true, then as T → ∞,∑

0<γk≤T

∣∣Z(j)(γk)
∣∣2

= δ0,k
T

22j+1(2j + 1)π
L2j+2 − (k + 1){1 + (−1)j}

22j+1(j + 1)2
T

2π
L2j+2

+

j∑
u=1

1

2j + 1− u

j!

(j − u)!
(−1)−u

k∑
g=1

1

θu+1
g

T

22j+1π
L2j+2

+ (−1)j+1

k∑
g=1

(j!)2

θ2j+2
g

T

22j+2π
L2j+2

+ (−1)j(j!)2
k∑
g=1

(
T
2π

)zg−1

θ2j+2
g

(
j∑

µ=0

θµg
µ!

)2

T

22j+2π
L2j+2

+Oj,k

(
TL2j+1

)
,

where δ0,k is Kronecker’s delta, zg (g = 1, 2, · · · , k) are the zeros of
Zk(s, T ) := (L/2 + d/ds)kζ(s) with zg = 1 − 2θg/L + O(L−2), and θg
satisfies

∑k
µ=0 θ

µ
g /µ! = 0. When j = 0 or k = 0, we consider the sums

on the right-hand side as the empty sums.

This study is inspired by Matsuoka’s result, and our motivation is to
research the distribution of the zeros of higher derivatives of Hardy’s
Z-function. From Matsuoka’s result, we can guess the existence of
the deviation of the distribution of the zeros of the k-th derivatives of
Hardy’s Z-function depending on the parity of k.

Another main theme of this thesis is a moment of the first derivative
of Dirichlet L-functions. Dirichlet L-functions are some generalization
of the Riemann ζ-function, thus the functions have some properties
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similar to those of the Riemann ζ-function. In this thesis, we consider
one of such properties. In Chapter 1, we present the definition of
Dirichlet L-functions and related concepts and explain some previous
researches and the motivation of our study. In Chapter 5, we give
the author’s result on a moment of the first derivative of Dirichlet L-
functions. The main theorem in Chapter 5 is

Theorem. Let c1 be a positive constant. Let χ (mod q) be a prim-
itive character. Then, uniformly for q ≤ exp(c1

√
log T ), we have∑

0<γχ≤T

L′(ρχ, χ) =
1

4π
T

(
log

qT

2π

)2

+ a1
T

2π
log

qT

2π
+ a2

T

2π
+ a3

+O
(
T exp

(
−c
√

log T
))

,

where the implicit constant is absolute, c is a positive absolute constant
depends on c1 and

a1 =
∑
p|q

log p

p− 1
+ γ0 − 1,

a2 =
1

2

∑
p|q

log p

p− 1

2

+ (γ0 − 1)
∑
p|q

log p

p− 1

− 3

2

∑
p|q

p

(
log p

p− 1

)2

+ 1− γ0 − γ20 + 3γ1

with the Stieltjes constants γ0, γ1 and

a3 =
ωχ(−1)τ(χ)τ(ωχ)

qφ(q)

L′(β, ω)

β

(
qT

2π

)β
when L(s, ω) with a quadratic character ω (mod q) has an exceptional
zero β, otherwise a3 = 0.

Assuming the GRH, we can replace the error term by (qT )
1
2
+ε uni-

formly for q ≪ T 1−ε.

This implies that the derivative coefficient of each Dirichlet L-
function at its zero is positive real in mean. A. Fujii proved a similar
formula and that the same statement is true in the case of the Riemann
ζ-function. In other words, our result is a generalization of Fujii’s re-
sult. However, the term a3 does not appear in the case of the Riemann
ζ-function and it is not a simple problem to estimate the error term as
good as Fujii’s result under the GRH.



CHAPTER 1

Introduction

1.1. Hardy’s Z-function

Hardy’s Z-function is derived from the Riemann ζ-function. Thus
we give the definition and some properties of the Riemann ζ-function
in the beginning. In the followings, we will always assume that s =
σ + it ∈ C with σ, t ∈ R.

Definition 1.1.1. The Riemann ζ-function is defined by
∞∑
n=1

1

ns
(1.1.1)

for σ > 1.

This function is defined in the half complex plane σ > 1, but the
functional equation implies that the Riemann ζ-function is an analytic
function in C \ {1}.

Proposition 1.1.1 (The functional equation, [30, p.329]). The
Riemann ζ-function can be continued meromorphically to the whole
plane, and has the functional equation

ζ(s) = χ(s)ζ(1− s), (1.1.2)

where
χ(s) = 2sπs−1 sin

πs

2
Γ(1− s). (1.1.3)

The Riemann ζ-function has a simple pole at s = 1, and from
(1.1.2) we can see that the function has simple zeros at negative even
integers (called “trivial zeros”). Here we define an entire function that
has only non-trivial zeros.

Definition 1.1.2.

ξ(s) := s(s− 1)π− s
2Γ
(s
2

)
ζ(s). (1.1.4)

This function is called the Riemann ξ-function. The zeros of this
function coincide precisely with those of the Riemann ζ-function in
the critical strip 0 < σ < 1 and the trivial zeros are cancelled due to
Γ(s/2). Therefore the RH can be stated as follows,

1



2 1. INTRODUCTION

Conjecture 1.1.1. All the zeros of the Riemann ξ-function lie on
the critical line σ = 1/2.

The functional equation (1.1.2) implies that we have

ξ(s) = ξ(1− s). (1.1.5)

To study the distribution of the zeros of the Riemann ζ-function,
Hardy’s Z-function plays an important role.

Definition 1.1.3. Hardy’s Z-function is defined by

Z(t) = χ

(
1

2
+ it

)− 1
2

ζ

(
1

2
+ it

)
. (1.1.6)

By the functional equation (1.1.2), we have

χ(s)χ(1− s) = 1. (1.1.7)

This implies that Z(t), the complex conjugate of Z(t), equals to Z(t)
for real t, namely, Hardy’s Z-function is a real-valued function. When
we put

θ(t) := arg Γ

(
1

4
+
it

2

)
− t

2
log π

we see that χ(1/2+it) = e−2iθ(t). Thus we can rewrite (1.1.6) as follows:

Z(t) = eiθ(t)ζ

(
1

2
+ it

)
. (1.1.8)

From this form, we can immediately see that

|Z(t)| =
∣∣∣∣ζ (1

2
+ it

)∣∣∣∣ ,
and hence the zeros of the Riemann ζ-function on the critical line corre-
spond to those of Hardy’s Z-function. One approach to understanding
the distribution of the zeros of the Riemann zeta function is there-
fore to investigate the change of signs of Hardy’s Z-function. In fact,
some mathematicians computed the locations of the zeros of the Rie-
mann ζ-function on the critical line in such a way. They calculate the
Riemann-Siegel formula

Z(t) = 2
∑

n≤
√
t/2π

n−1/2 cos(θ(t)− t log n) +R(t), (1.1.9)

where R(t) is the error term (e.g. [40], [26]).
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1.2. Higher derivatives of Z(t)

To investigate the analytic behaviour of Hardy’s Z-function, it is
natural to study its derivatives.

In 1985, Conrey and Ghosh [5] introduced a meromorphic function

Z1(s) := ζ ′(s)− 1

2
ω(s)ζ(s),

where

ω(s) =
χ′

χ
(s) = log 2π − Γ′

Γ
(s) +

π

2
tan

πs

2
.

This function is derived from the first derivative of Hardy’s Z-function,
i.e. this function satisfies

Z ′(t) = ieiθ(t)Z1

(
1

2
+ it

)
.

Thus

|Z ′(t)| =
∣∣∣∣Z1

(
1

2
+ it

)∣∣∣∣ .
Moreover, we have the functional equation

Z1(s) = −χ(s)Z1(1− s).

From the above, the meromorphic function Z1(s) can be regarded as a
counterpart of the Riemann ζ-function.

Conrey and Ghosh [5] suggested the existence of a meromorphic
function Zk(s) which satisfies the above properties without construct-
ing it, for k ≥ 0.

By the definition (1.1.6), we obtain for k ≥ 0

Z(k)(t) =
dk

dtk

{
χ

(
1

2
+ it

)− 1
2

ζ

(
1

2
+ it

)}
. (1.2.1)

From this fact, in 1990, Yıldırım [44] defined

Zk(s) := (χ(s))
1
2
dk

dsk

(
(χ(s))−

1
2 ζ(s)

)
. (1.2.2)

This function is a generalization of Z1(s). This function satisfies

|Z(k)(t)| =
∣∣∣∣Zk (1

2
+ t

)∣∣∣∣
and

Zk(s) = (−1)kχ(s)Zk(1− s).

On the other hand, Matsuoka [28] gave another definition of Zk(s):
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Definition 1.2.1. Let Z0(s) = ζ(s), and for k ≥ 1, we define Zk(s)
as

Zk(s) = Z ′
k−1(s)−

1

2
ω(s)Zk−1(s). (1.2.3)

In fact, we can show that Matsuoka’s definition is the same as
Yıldırım’s, but Matsuoka’s definition is more convenient. Therefore, in
this thesis, we define Zk(s) by Matsuoka’s way.

For Zk(s), we can obtain a counterpart of the Riemann ξ-function.
We denote that function by ξk(s) and I define it as follows:

Definition 1.2.2. For k ≥ 0, we define

ξk(s) := π− s
2 s(s− 1)

Zk(s)

Γ( s
2
)k−1Γ(1−s

2
)k
. (1.2.4)

This ξk(s) is introduced by the author [23]. When k = 0, ξk(s)
coincides with the Riemann ξ-function. In Chapter 3, we give various
results on ξk(s). Since those facts on ξk(s) are valid for k = 0, we
may expect that ξk(s) is a natural generalization of the Riemann ξ-
function. For entire functions, the concept of the order is defined and
the function ξk(s) is an entire function of order 1. Thus we can factorize
this function by Hadamard’s factorization theorem. Moreover, we can
represent some constants which appear in the factorized form explicitly.
We show these facts in Section 3.3. It is in Section 3.4 that we give
the special values of ξk(s) at positive integers. As we see in Section
3.1, ξk(s) has a functional equation. It implies that we can obtain the
special values at all integers.

Remark 1.2.1. There is another variant of a meromorphic function
associated with higher derivatives of Hardy’s Z-function. In 1986 (a
year later the paper of Conrey and Ghosh [5] is published), Anderson
[1] introduced the meromorphic function

η(s) = ζ(s)− 2

ω(s)
ζ ′(s),

to study the distribution of zeros of the first derivative of Hardy’s Z-
function. Later, in 1999, Matsumoto and Tanigawa [27] considered
ηk(s), a generalization of η(s). They defined η1(s) = η(s) and for
k ≥ 2,

ηk+1(s) = λ(s)ηk(s) + η′k(s),

where

λ(s) =
ω′

ω
(s)− 1

2
ω(s).
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In fact, we can see that

Zk(s) = −ω(s)
2

ηk(s)

for k ≥ 1. Therefore, ηk(s) is the essentially same as Zk(s). However,
it seems that Yıldırım’s definition and Matsuoka’s are not well-known.
For example, Das and Pujahari [7] gave a result on the distribution of
the zeros of ηk(s). They used ηk(s) and did not refer to Yıldırım’s and
Matsuoka’s definitions.

1.3. The zeros of higher derivatives of Z(t)

One of the main themes of the researches on higher derivatives of
Hardy’s Z-function has been the existence of its zeros in a short inter-
val. Various authors studied that by using an approximate functional
equation (like the Riemann-Siegel formula) for higher derivatives of
Hardy’s Z-function (see Karatsuba [20], Ivić [16], A. A. Lavrik [24]).

In this thesis, we treat another theme, a relation between the ze-
ros of the j-th derivative of Hardy’s Z-function and those of the k-th
derivative of the function.

In 1974, Edwards [8] and Mozer [31] independently proved

Theorem 1.3.1 (H. M. Edwards and J. Mozer, 1974). If the RH is
true, then there exists a t0 > 0 such that for t > t0 the function Z ′(t)
has exactly one zero between consecutive zeros of Z(t).

This theorem implies that under the RH, for t > t0, there is no
positive local minimum and no negative local maximum of the Hardy’s
Z-function (see Fig.1). Thus, if we could find those, the RH would be
disproved.

10 20 30 40 50

-4

-3

-2

-1

0

1

2

3

Fig. 1. The graph of Z(t) for 0 ≤ t ≤ 50

This study is inspired by the Lehmer phenomenon. The Lehmer
phenomenon is a phenomenon that some consecutive zeros of Hardy’s
Z-function are unusually close to each other. Lehmer [26] found this
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phenomenon around t = 7005 (see Fig.2 and Fig.3) by the numerical
calculation. It is an unsolved problem whether the phenomenon does
happen infinitely many times.

7004 7005 7006 7007

-8

-6

-4

-2

2

4

Fig. 2. The graph of Z(t) around t = 7005

7005.06 7005.07 7005.08 7005.09 7005.10 7005.11

-0.006

-0.004

-0.002

0.002

0.004

Fig. 3. Enlarged view of Fig. 2 (7005.05 ≤ t ≤ 7005.11)

Later, Anderson [1] established a milestone.

Theorem 1.3.2 (R. J. Anderson, 1986). If the RH is true, then
there exists a t0 > 0 such that for t > t0 the function Z ′′(t) has exactly
one zero between consecutive zeros of Z ′(t).

To prove this theorem, he showed the following statement:

Theorem 1.3.3 (R. J. Anderson, 1986). Let

R := {s = σ + it ∈ C | 0 < t < T,−7 < σ < 8}
and denote the number of zeros of Z1(s) in R by N(T ;Z1). Then

N(T ;Z1) =
T

2π
log

T

2π
− T

2π
+O(log T ).

Moreover, on the RH, all non-real zeros of Z1(s) are on the critical
line.

His method of proof is ingenious and applied to a general case by
Matsuoka [28], Matsumoto and Tanigawa [27].

Matsumoto and Tanigawa [27] generalized Theorem 1.3.3.
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Theorem 1.3.4 (K. Matsumoto and Y. Tanigawa, 1999). Let k be
any positive integer and

Rk := {s = σ + it ∈ C | 0 < t < T,−2m+ 1 < σ < 2m},
where m = m(k) is sufficiently large positive integer. And denote the
number of zeros of Zk(s) in Rk by N(T ;Zk). Then

N(T ;Zk) =
T

2π
log

T

2π
− T

2π
+Ok(log T ).

Moreover, on the RH, the zeros of Zk(s) in −2m+1 < σ < 2m are on
the critical line except for finitely many exceptions.

Remark 1.3.1. As we mentioned in the previous section, Anderson,
Matsumoto and Tanigawa did not use Zk(s) but ηk(s).

Matsuoka [28] extended Theorem 1.3.2.

Theorem 1.3.5 (K. Matsuoka, 2012). If the RH is true, then for
any non-negative integer k there exists a T = T (k) > 0 such that for
t > T the function Z(k+1)(t) has exactly one zero between consecutive
zeros of Z(k)(t).

We show Matsuoka’s theorem, or more precisely, Mozer’s formula
by a different way from Matsuoka’s proof. The factorization of ξk(s)
leads to this different way. This method is a generalization of the
method by which Edwards [8] and Mozer [31] proved Theorem 1.3.1.

Finally, we note Hall’s result [12] on a relation between the number
of zeros of Z1(s) and those of Z0(s) = ζ(s). Let

H(s) :=
ζ ′

ζ
(s)− 1

2
ω(s)

and put

A(T ) :=
1

π
argH

(
1

2
+ iT

)
,

defined by continuous variation along the line segments [8, 8+ iT ], [8+
iT, 1/2 + iT ] (argH(8) := 0). Then we have the following theorem.

Theorem 1.3.6 (R. R. Hall, 2004). Suppose that T is not the ordi-
nate of a zero of ζ(s) or of H(s). Then we have, for sufficiently large
T ,

N(T ;Z1) = N(T ;Z0) + A(T ) +
3

2
.

Assuming the RH, A(T ) can be replaced by −sgn(Z ′/Z)(T )/2.

This is a more sophisticated theorem than Theorem 1.3.3. For
general k, it is not known whether a similar statement holds or not.
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1.4. The moments of higher derivatives of Z(t)

There are various type of problems on the moments of higher deriva-
tives of Hardy’s Z-function. One of those is the second continuous
moment of the function. Hall [11] obtained the following theorem:

Theorem 1.4.1 (R. R. Hall, 1999). For each k = 0, 1, 2, . . . , and
any sufficiently large T , we have∫ T

0

Z(k)(t)2dt =
1

4k(2k + 1)
TP2k+1

(
log

T

2π

)
+O

(
T

3
4 log2k+

1
2 T
)
,

(1.4.1)
where P2k+1(x) is the monic polynomial of degree 2k + 1 given by

P2k+1(x) = W2k+1(x) + (4k + 2)
2k∑
h=0

(
2k

h

)
(−2)hchW2k−h(x),

in which

Wg(v) =
1

ev

∫ ev

0

logg udu, ζ(s) =
1

s− 1
+

∞∑
h=0

(−1)hch
h!

(s− 1)h.

This is the first result on the moment of higher derivatives of
Hardy’s Z-function. He referred to Ingham’s result [15]:∫ T

0

∣∣∣∣ζ(k)(1

2
+ it

)∣∣∣∣2 dt
=

1

2k + 1
T P̃2k+1

(
log

T

2π

)
+Ok

(
T

1
2 log2k+2 T

)
,

(1.4.2)

where P̃2k+1(x) is a certain polynomial of degree 2k + 1 in x and con-
jectured that an error term in (1.4.1) can be at least as good as that in
(1.4.2). In 2020, Minamide and Tanigawa [29] solved his conjecture:

Theorem 1.4.2 (M. Minamide and Y. Tanigawa, 2020). For each
k = 0, 1, 2, . . . , and any sufficiently large T , we have∫ T

0

Z(k)(t)2dt =
1

4k(2k + 1)
TP2k+1

(
log

T

2π

)
+O(T

1
2 log2k+1 T ),

(1.4.3)
where P2k+1(x) is the monic polynomial of degree 2k + 1.

In this thesis, we consider a discrete second moment of the higher
derivative of Hardy’s Z-function, but, the second continuous moment
(1.4.3) is important for our argument. Moreover, our problem is related
to the distribution of zeros of the function which we referred to in the
previous section.
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In 1984, Gonek [10] published an important paper on a discrete
mean of the higher derivative of the Riemann ζ-function. The most
important case of his result is the case of the first derivative of the
Riemann ζ-function under the RH, and the result can be expressed by
Hardy’s Z-function as follows.

Theorem 1.4.3 (S. M. Gonek, 1984). If the RH is true, then for
any sufficiently large T ,∑

0<γ≤T

|Z ′(γ)|2 = T

24π

(
log

T

2π

)4

+O(T (log T )3), (1.4.4)

where the summation is over the zeros of Hardy’s Z-function counted
with the multiplicity.

His method of the proof has become a basic method to study dis-
crete mean problems nowadays.

A year after Gonek’s result, Conrey and Ghosh [5] showed that

Theorem 1.4.4 (J. B. Conrey and A. Ghosh, 1985). Assume the
RH is true, and let γ ≤ γ+ be successive ordinates of zeros of Hardy’s
Z-function. Then∑

0<γ≤T

max
γ<t≤γ+

|Z(t)|2 = e2 − 5

4π
T

(
log

T

2π

)2

+O(T log T )

as T → ∞.

Theorem 1.3.1 implies that the result of Conrey and Ghosh gives
an asymptotic formula for the mean square of the extremal value of
Hardy’s Z-function.

Later, Yıldırım [44] generalized their result:

Theorem 1.4.5 (C. Y. Yıldırım, 1990). Assume the RH and let
k be a fixed natural number. Let γk run through the zeros of the k-th
derivative of Hardy’s Z-function. Then as T → ∞∑

γk≤T

|Z(γk)|2 ∼

{
TL2

2π
(1 + 1

k
+O( log k

k2
)) (k odd and k > 1)

TL2

2π
(1− 3

k
+O( log k

k2
)) (k even),

where L = log(T/2π).

To prove this, Yıldırım calculated the integral

1

2πi

∫
C

Z ′
k

Zk
(s)ζ(s)ζ(1− s)ds,
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where C is an appropriate integral path. To treat Z ′
k/Zk(s), he intro-

duced the function Zk(s, T ) defined by

Zk(s, T ) :=

(
L

2
+

d

ds

)k
ζ(s). (1.4.5)

In Chapter 4, we give a more general theorem. We consider a
second moment of the j-th derivative of Hardy’s Z-function. However,
our motivation is not just to generalize Yıldırım’s result. Matsuoka’s
result suggests that there is the deviation of the distribution of the zeros
of the k-th derivative of Hardy’s Z-function depending on the parity
of k. Indeed, Yıldırım’s result supports the existence of the deviation.
Our main theorem is the result of an attempt to show the existence of
the deviation for more general cases in the mean.

1.5. Dirichlet L-functions

Dirichlet L-functions are meromorphic functions defined by Dirich-
let series with Dirichlet characters.

We first define Dirichlet character.

Definition 1.5.1. Let q be a positive integer. A Dirichlet character
χ modulo q is an arithmetic function satisfying;

(i) χ(mn) = χ(m)χ(n) for all m,n ∈ Z,

(ii) χ(n+ q) = χ(n) for all n ∈ Z,

(iii) If (n, q) > 1, then χ(n) = 0.

Here (n, q) denotes the greatest common divisor of n and q. When
χ(n) = 1 for all n ∈ Z with (n, q) = 1, then we call that character the
principal character, and it is denoted by χ0(n), otherwise we say that
it is a non-principal character.

Now we can define Dirichlet L-functions.

Definition 1.5.2. The Dirichlet L-function attached to χ is defined
by

L(s, χ) =
∞∑
n=1

χ(n)

ns

for σ > 1.

For χ (mod 1) we can see that L(s, χ) = ζ(s).
Dirichlet L-functions have the Euler product expansions.
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Proposition 1.5.1. For σ > 1, we have

L(s, χ) =
∏
p

(
1− χ(p)

ps

)−1

,

where the product runs through all primes.

This implies that L(s, χ0) = ζ(s)
∏

p|q(1− p−s).
All Dirichlet L-functions can be analytically continued to C except

possibly for a pole at s = 1. When χ = χ0, the Dirichlet L-function
has only one pole at s = 1 and it is simple. When χ is non-principal,
the Dirichlet L-function is an entire function.

Let χ be a Dirichlet character modulo q. It is said that d is
a quasiperiod of χ if χ(m) = χ(n) whenever m ≡ n (mod d) and
(mn, q) = 1. On the quasiperiod, the following fact is known:

Lemma 1.5.1 ([30, p. 282]). The least quasiperiod of χ is a divisor
of q.

The least quasiperiod of χ is called the conductor of χ. Suppose
that d | q and that χ⋆ is a Dirichlet character modulo d satisfying

χ(n) =

{
χ⋆(n) (n, q) = 1,

0 otherwise.

In this situation, we say that χ⋆ induces χ. Now we can define primitive
characters.

Definition 1.5.3. A Dirichlet character χ modulo q is said to be
primitive when q is the conductor of χ.

When χ is not primitive, then we call χ imprimitive character. It is
known that any imprimitive character is induced by a unique primitive
character. We summarize the above as follows.

Theorem 1.5.1 ([30, p. 283]). Let χ be a Dirichlet character mod-
ulo q and let d be the conductor of χ. Then d | q, and there is a unique
primitive character χ⋆ modulo d which induces χ.

Here we introduce the Gauss sum. For a Dirichlet character χ
(mod q) the Gauss sum is defined by

τ(χ) =

q∑
a=1

χ(a) exp

(
2πi

a

q

)
.

When χ (mod q) is a primitive character, we have |τ(χ)| = √
q.
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When χ (mod q) is induced by a primitive character χ⋆ modulo d,
for some d | q, the Euler product leads to

L(s, χ) = L(s, χ⋆)
∏
p|q

(
1− χ⋆(p)

ps

)
.

This implies that it is sufficient to study the Dirichlet L-functions at-
tached to primitive characters.

The Dirichlet L-functions also satisfy the functional equation.

Proposition 1.5.2 ([30, p. 333]). Let χ be a primitive character
modulo q. Setting

κ =
1− χ(−1)

2
and

ε(χ) =
τ(χ)

iκ
√
q
,

we have
L(s, χ) = ∆(s, χ)L(1− s, χ), (1.5.1)

where
∆(s, χ) = ε(χ)2sπs−1q

1
2
−sΓ(1− s) sin

π

2
(s+ κ).

We note that ∆(s, χ) is a meromorphic function with only real zeros
and poles satisfying the functional equation

∆(s, χ)∆(1− s, χ) = 1.

Finally, we note a generalization of the RH.

Conjecture 1.5.1. All zeros of every Dirichlet L-function in the
strip 0 < σ < 1 lie on the critical line σ = 1/2.

This is called the Generalized Riemann Hypothesis (GRH).

1.6. The discrete moments and some conjectures

Let ρ = β + iγ be the non-trivial zeros of the Riemann ζ-function.
Reviewing the tables of numerical computations by Haselgrove and
Miller [13], Shanks [36] found a tendency and gave the following con-
jecture on the non-trivial zeros of the Riemann ζ-function.

Conjecture 1.6.1. ζ ′(1/2 + iγ) is positive real in the mean.

More precisely, he conjectured that

lim
N→∞

1

N

N∑
n=1

π−1 arg ζ ′
(
1

2
+ iγn

)
= 0.

Concerning this, Fujii [9] proved the following asymptotic formula:
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Theorem 1.6.1 (A. Fujii, 1994).∑
0<γ≤T

ζ ′(ρ) =
T

4π

(
log

T

2π

)2

+ (c0 − 1)
T

2π
log

T

2π

+ (1− c0 − γ20 + 3c1)
T

2π
+O(T exp(−C

√
log T )),

where c0 and c1 are the Stieltjes constants. Assuming the RH, we can
replace the error term by T

1
2 (log T )

7
2 .

This implies that Shanks’ conjecture is true.

Remark 1.6.1. Later, Trudgian [39] proved that more sophisti-
cated statement is true. He showed that, for any α > 0,

lim
N→∞

1

Nα

N∑
n=1

π−1 arg ζ ′
(
1

2
+ iγn

)
= 0.

Conjecture 1.5.1 is solved. However, the study of the discrete mo-
ment which Fujii considered has another motivation. We can easily see
that there are infinitely many simple zeros of the Riemann ζ-function
by Fujii’s result. Indeed, there is the following conjecture.

Conjecture 1.6.2. The Riemann ζ-function has only simple ze-
ros.

This is called the Simple Zero Conjecture. In 2020, Pratt, Robles,
Zaharescu and Zeindler [35] unconditionally proved that the propor-
tion of simple zeros of the Riemann ζ-function is at least 40.75%. On
the other hand, it is shown that the proportion is at least 70.37%
under the RH by Bui and Heath-Brown [3]. This conjecture is ex-
tended to Dirichlet L-functions. Wu [41] unconditionally proved that
for any Dirichlet character, more than 40.74% of the zeros of Dirich-
let L-functions are simple. Later, he [42] considered the proportion
of simple zeros on a certain average over the family of all Dirichlet
L-functions and showed that the proportion is at least 60.26% uncon-
ditionally. In the same paper, it is also shown that the proportion can
be improved to more than 66.43% under the GRH. It should also be
noted that some much stronger results have been obtained for the fam-
ily of Dirichlet L-functions. Assuming the GRH, Özlük [32] treated a
certain average of the q-analogue of the pair correlation function and
proved that the proportion of simple zeros on that average is more than
91.66%. Under the GRH, it is shown that more than 93.50% of the
zeros of Dirichlet L-functions with primitive Dirichlet characters are
simple in the above sense by Chirre, Gonçalves and de Laat [4].
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In Chapter 6, we consider a generalization of Fujii’s result to Dirich-
let L-functions with primitive Dirichlet characters. However, the result
does not depend on the characters and we also use some properties on
Dirichlet L-functions with imprimitive characters in the proof.



CHAPTER 2

A meromorphic function Zk(s) and its basic
properties

In this chapter, we introduce a meromorphic function Zk(s) asso-
ciated with the k-th derivative of Hardy’s Z-function and some of its
basic properties.

2.1. A meromorphic function Zk(s)

As we noted, we use Matsuoka’s definition.

Definition 2.1.1. Let Z0(s) = ζ(s), and for k ≥ 1, we define Zk(s)
as

Zk(s) = Z ′
k−1(s)−

1

2
ω(s)Zk−1(s). (2.1.1)

By the relation χ(1/2 + it) = e−2iθ(t), we see that

ω

(
1

2
+ it

)
= −2θ′(t). (2.1.2)

Proposition 2.1.1 (Proposition 2.1 in [28]). For any non-negative
k, we have

Z(k)(t) = ikeiθ(t)Zk

(
1

2
+ it

)
. (2.1.3)

Proof. The case k = 0 is the definition of Z(t). If we assume that
the equation is true for k, then

Z(k+1)(t) = ik+1eiθ(t)
(
Z ′
k

(
1

2
+ it

)
+ θ′(t)Zk

(
1

2
+ it

))
.

By the definition (2.1.1) and (2.1.2), we find that the equation (2.1.3)
is true for k + 1. □

This leads to

|Z(k)(t)| =
∣∣∣∣Zk (1

2
+ it

)∣∣∣∣ .
The function Zk(s) satisfies a functional equation like as the Rie-

mann ζ-function.

15
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Proposition 2.1.2 (The Functional Equation, Lemma 2 in [44] or
Proposition 2.2 in [28]). For any non-negative k, we have

Zk(s) = (−1)kχ(s)Zk(1− s). (2.1.4)

Proof. The case k = 0 is the functional equation for the Riemann
ζ-function. If we assume that the equation is true for k, then by the
definition,

χ(s)Zk+1(1− s) = χ(s)

(
Z ′
k(1− s)− 1

2
ω(1− s)Zk(1− s)

)
= χ′(s)Zk(1− s)− (−1)kZ ′

k(s)−
(−1)k

2
ω(s)Zk(s)

= (−1)k+1Z ′
k(s) + (−1)kω(s)Zk(s)−

(−1)k

2
ω(s)Zk(s)

= (−1)k+1

(
Z ′
k(s)−

1

2
ω(s)Zk(s)

)
= (−1)k+1Zk+1(s).

The proof is completed. □

2.2. The function fk(s)

Let f0(s) = 1, and define fk(s) for k ≥ 1 by

fk+1(s) = f ′
k(s)−

1

2
ω(s)fk(s) (k ≥ 1). (2.2.1)

The following proposition is inspired by Proposition 3 in [27].

Proposition 2.2.1. For any non-negative k, we have

Zk(s) =
k∑
j=0

(
k

j

)
fk−j(s)ζ

(j)(s). (2.2.2)
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Proof. The case k = 0 is clear. We assume that this is valid for
k. By the definition,

Zk+1(s) = Z ′
k(s)−

1

2
ω(s)Zk(s)

=
k∑
j=0

(
k

j

)
f ′
k−j(s)ζ

(j)(s) +
k∑
j=0

(
k

j

)
fk−j(s)ζ

(j+1)(s)

− 1

2
ω(s)

k∑
j=0

(
k

j

)
fk−j(s)ζ

(j)(s)

=
k∑
j=0

(
k

j

)
fk+1−j(s)ζ

(j)(s) +
k∑
j=0

(
k

j

)
fk−j(s)ζ

(j+1)(s)

=
k+1∑
j=0

{(
k

j

)
+

(
k

j − 1

)}
fk+1−j(s)ζ

(j)(s)

=
k+1∑
j=0

(
k + 1

j

)
fk−j(s)ζ

(j)(s).

Here, to obtain the last equality, we use the relation(
k

j

)
+

(
k

j − 1

)
=

(
k + 1

j

)
.

□

The function fk(s) can be expressed explicitly as below but the
expression is complicated.

Proposition 2.2.2. For k ≥ 1, we have

fk(s) = k!
∑

a1+2a2+···+kak=k

(
−1

2

)a1+···+ak k∏
l=1

1

al!

(
ω(l−1)(s)

l!

)al
.

We can guess this expression by (1.2.2) and Faà di Bruno’s formula
(see [33], [18]).

Proof. We will prove this statement by induction on k. When
k = 1, this formula is trivial. We assume that this is true for k = j.



18 2. A MEROMORPHIC FUNCTION Zk(s) AND ITS BASIC PROPERTIES

By the definition, we have

fj+1(s)

= f ′
j(s)−

1

2
ω(s)fj(s)

= j!
∑

a1+2a2+···+jaj=j

(
−1

2

)a1+···+aj j∑
m=1
am≥1

k∏
l=1
l ̸=m

1

al!

(
ω(l−1)(s)

l!

)al

× 1

(am − 1)!

(
1

m!

)am
ω(m−1)(s)am−1ω(m)(s)

− 1

2
ω(s)j!

∑
a1+2a2+···+jaj=j

(
−1

2

)a1+···+aj j∏
l=1

1

al!

(
ω(l−1)(s)

l!

)al
.

On the first term, let bm = am − 1, bm+1 = am+1 + 1 (1 ≤ m ≤ j − 1)
and bl = al (l ̸= m,m+ 1). Then we can see that the first term is

j!
∑

b1+2b2+···+jbj=j+1

(
−1

2

)b1+···+bj

×
j−1∑
m=1

(m+ 1)bm+1

j∏
l=1

1

bl!

(
ω(l−1)(s)

l!

)bl
+ (j + 1)!

∑
b1+2b2+···+(j+1)bj+1=j+1

bj+1=1

(
−1

2

)b1+···+bj+1 j+1∏
l=1

1

bl!

(
ω(l−1)(s)

l!

)bl

= (j + 1)!
∑

b1+2b2+···+(j+1)bj+1=j+1

(
−1

2

)b1+···+bj+1 j+1∏
l=1

1

bl!

(
ω(l−1)(s)

l!

)bl

− j!
∑

b1+2b2+···+(j+1)bj+1=j+1

(
−1

2

)b1+···+bj+1

b1

j+1∏
l=1

1

bl!

(
ω(l−1)(s)

l!

)bl

As for the second term, when we put c1 = a1 + 1 and cl = al (l ≥ 2)
then

j!
∑

c1+2c2+···+jcj=j+1

(
−1

2

)c1+···+cj
c1

j∏
l=1

1

cl!

(
ω(l−1)(s)

l!

)cl
.
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Therefore

fj+1(s)

= (j + 1)!
∑

a1+2a2+···+(j+1)aj+1=j+1

(
−1

2

)a1+···+aj+1 j+1∏
l=1

1

al!

(
ω(l−1)(s)

l!

)al
This completes the proof. □

2.3. The poles and zeros of fk(s) and Zk(s)

We investigate the poles of fk(s) and Zk(s).

Lemma 2.3.1 (Lemma 1 in [27]). The poles of ω(s) are all simple,
and located at positive odd integers with residue −1 and at non-positive
even integers with residue 1.

Proof. Since χ(s) = 2sπs−1 sin(πs/2)Γ(1 − s), the zeros of χ(s)
are non-positive even integers and the poles are positive odd integers.
Therefore we obtain the lemma. □

Lemma 2.3.2 (Lemma 4.2 in [28]). For k ≥ 0, the function fk(s)
has poles of order k which are located only at . . . ,−4,−2, 0, 1, 3, 5, . . . .

Proof. The case k = 1 is the previous lemma. We assume that
the lemma is valid for k ≥ 1. Let a be a pole of fk(s).Then by Laurent
expansion with centre a, we have

fk(s) =
ck

(s− a)k
+ · · · ,

where ck does not vanish. By the definition and the previous lemma,
we have

fk+1(s) =
−kck ± ck

2

(s− a)k+1
+ · · · .

Since −kck± ck/2 ̸= 0, the lemma is true for k+1. This completes the
lemma. □

This lemma and Proposition 2.2.1 immediately lead to the following
lemma.

Lemma 2.3.3 (Lemma 4.4 in [28]). For k ≥ 0, the function Zk(s)
has poles of order k located at 0, 3, 5, 7, . . . , that of order k + 1 located
at 1, and those of order k − 1 located at −2,−4,−6, . . . .

We understand that “poles of order −1” means zeros of order 1.
Finally, we present some results of Matsumoto and Tanigawa on

the zeros of Zk(s).
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Proposition 2.3.1 (see the proof of Theorem 2 in [27]). If the RH
is true, then the number of zeros of Zk(s) in {s | 1−2m ≤ σ ≤ 2m,σ ̸=
1/2} is Ok(1).

They proved that the difference of the number of zeros of Z(k)(t)
and that of Zk(s) is Ok(1). From this fact, they obtained the following
approximate formula:

Proposition 2.3.2 (Theorem 2 in [27]). Let Nk(T ) be the number
of the zero of Z(k)(t) in the interval (0, T ). If the RH is true, then for
any k ≥ 1,

Nk(T ) =
T

2π
log

T

2π
− T

2π
+Ok(log T ).



CHAPTER 3

An entire function ξk(s) associated with the higher
derivative of Z(t)

This chapter is dedicated to the function ξk(s). This function can be
regarded as a natural generalization of the Riemann ξ-function because
ξk(s) has similar properties to the Riemann ξ-function, the functional
equation, the factorization, and the special values at positive integers.
In the final section, we give an alternative proof of Matsuoka’s theorem
and our method of the proof is a generalization of Edwards and Mozer’s.
This chapter is based on the author’s paper [23]

3.1. The functional equation

In the beginning, we note that ξk(s) is entire. By Lemma 2.3.3,
we can determine the poles of Zk(s), and those poles are cancelled by
Γ-functions in the definition of ξk(s) (1.2.4).

The functional equation of Zk(s) leads to the following theorem.

Theorem 3.1.1. For all s, we have

ξk(s) = (−1)kξk(1− s). (3.1.1)

Proof. We can transform χ(s) to

χ(s) =
Γ(1−s

2
)

Γ( s
2
)
πs−

1
2 .

Thus

ξk(s) = π− s
2 s(s− 1)

Zk(s)

Γ( s
2
)k−1Γ(1−s

2
)k

= π− s
2 s(s− 1)

(−1)kχ(s)Zk(1− s)

Γ( s
2
)k−1Γ(1−s

2
)k

= (−1)kπ− 1−s
2 s(s− 1)

Zk(1− s)

Γ(1−s
2
)k−1Γ( s

2
)k

= (−1)kξk(1− s).

This completes the proof. □
21
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3.2. Some estimates on Zk(s)

In this section, we prove some estimates on Zk(s). Proposition
2.2.1 implies that we need the estimates of fk(s) and ζ(k)(s) for any
non-negative integer k.

First we consider fk(s). Stirling’s formula implies that

Lemma 3.2.1. For σ ≥ 1/4, we have

Γ(s) =
√
2πss−

1
2 e−s(1 +O(|s|−1)),

Γ′

Γ
(s) = log s+O(|s|−1),

and
dk

dsk
Γ′

Γ
(s) = Ok(|s|−k) (k ≥ 1).

Define the set D by removing all small circles whose centres are odd
positive integers and even non-positive integers with radii depending
on k from the complex plane.

Lemma 3.2.2 (Lemma 3.1 in [28]). In the region {s ∈ D |σ > 1/4},
we have

tan
πs

2
=

{
i+O(e−2t) (t ≥ 0),

−i+O(e2t) (t ≤ 0),
(3.2.1)

and
dk

dsk
tan

πs

2
= Ok(e

−2|t|) (k ≥ 1). (3.2.2)

By this lemma and Lemma 3.2.1, we have

Lemma 3.2.3 (Lemma 3.2 in [28]). For s ∈ D , we have

ω(s) = − log |s|+O(1), (3.2.3)

and
ω(k)(s) = Ok(1) (k ≥ 1). (3.2.4)

Here we use the fact that ω(s) = ω(1− s).
Therefore we can see that fk(s) ≪k (log(|s| + 2))k for s ∈ D by

Proposition 2.2.2.
By Lemma 2.3.2, (

cos
πs

2

)k
fk(s)

has no pole in the half plane σ ≥ 1/2.
From the above, for σ ≥ 1/2 there is a constant C1 = C1(k) such

that (
cos

πs

2

)k
fk(s) ≪k e

C1|s|. (3.2.5)
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Next we consider ζ(k)(s). Let k = 0. It is known that

ζ(s) =
1

s− 1
− s

∫ ∞

1

x2 − [x]− 1
2

xs+1
dx+

1

2
.

Therefore we can see that when s is not close to 1,

ζ(s) ≪η |s| (σ > η)

for any η > 0. Therefore, by Cauchy’s integral formula applied to a
circle which has centre s and radius 1/ log(|s|+ 2),

ζ(k)(s) ≪η′ |s| logk(|s|+ 2) (σ > η′)

for k ≥ 1 and any η′ = η′(k) > 0 unless s is close to 1. Thus for all
σ > η′, there is a constant C2 = C2(k) such that(

cos
πs

2

)k
(s− 1)ζ(k)(s) ≪k e

C2|s|. (3.2.6)

3.3. The factorization of ξk(s)

By the estimates shown in the previous section, we can prove the
following theorem:

Theorem 3.3.1. For k ≥ 0, there are constants ak and Bk such
that

ξk(s) = eAk+Bks
∏
ρk

(
1− s

ρk

)
e
s
ρk (3.3.1)

for all s. Here the product is extended over all zeros ρk of ξk(s).

We note that it is possible that some of the ρk’s are real. Actually,
Anderson [1] proved the existence of real zeros for k = 1. This fact is
reproduced by Hall [12].

Proof. It is sufficient to prove that the order of ξk(s) is 1, for then
Hadamard’s factorization theorem can be applied.

Let σ ≥ 1/2. By the formulas

Γ(s)Γ(1− s) =
π

sinπs
and Γ(s)Γ

(
s+

1

2

)
=

√
π21−2sΓ(2s),

we see that

Γ
(s
2

)
Γ

(
1− s

2

)
= 2s−1

√
π

Γ( s
2
)2

Γ(s) cos πs
2

.
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Then, by the definition of ξk(s) (1.2.4) and Proposition 2.2.1,

ξk(s) = 2−k(s−1)π− s+k
2 s(s− 1)Γ

(s
2

)( Γ(s)

Γ
(
s
2

)2
)k (

cos
πs

2

)k
×

k∑
j=0

(
k

j

)
fk−j(s)ζ

(j)(s).

Lemma 3.2.1 implies that

ξk(s) = 2−
s+k
2

+1π− s−1
2

−ks
s+k+1

2 e−
s
2

×
k∑
j=0

(
k

j

)(
cos

πs

2

)k
fk−j(s)(s− 1)ζ(j)(s)(1 +Ok(|s|−1)).

(3.3.2)

Finally, by the estimates in the previous section (3.2.6) and (3.2.5), we
have

ξk(s) ≪k exp(C|s| log(|s|+ 2)),

where the constant C depends only on k. The functional equation
of ξk(s) (3.1.1) implies that this estimate is valid for σ ≤ 1/2 too.
Thus the order of ξk(s) is at most 1. By (3.3.2), we have log ξk(σ) ∼
(σ log σ)/2 for σ → ∞. This completes the proof. □

We can determine constants eAk and Bk in (3.3.1).

Theorem 3.3.2. In the previous theorem, for k ≥ 0 we have

eAk = ξk(0) =
(−1)k(2k − 1)!!

(4
√
π)k

and

Bk = −2k(k − 1)

2k − 1
log 2− 1

2(2k − 1)
log 4π +

γ

2(2k − 1)
− 1,

where γ is the Euler constant.

Here, we note that

(2k − 1)!! =
k∏
l=1

(2l − 1) = (2k − 1)(2k − 3) · · · 3 · 2 · 1,

and we define (−1)!! = 1 and (−3)!! = −1.

Proof. The logarithmic derivative leads to

ξ′k
ξk
(0) = Bk,
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by the previous theorem. Thus, by the definition of ξk(s) (1.2.4),

Bk = −1

2
log π − 1 +

k

2

Γ′

Γ

(
1

2

)
+ lim

s→0

(
1

s
− k − 1

2

Γ′

Γ

(s
2

)
+
Z ′
k

Zk
(s)

)
.

Since
1

s
+

Γ′

Γ
(s) =

Γ′

Γ
(s+ 1),

we have

1

s
− k − 1

2

Γ′

Γ

(s
2

)
+
Z ′
k

Zk
(s) =

k

s
+
Z ′
k

Zk
(s)− k − 1

2

(
2

s
+

Γ′

Γ

(s
2

))
=
k

s
+
Z ′
k

Zk
(s)− k − 1

2

Γ′

Γ

(s
2
+ 1
)
.

We consider the logarithmic derivative of Zk(s). We recall Zk(s)
has a pole with order k at s = 0. Then we can express

Zk(s) =
∞∑

l=−k

ak,ls
l.

Then we obtain

k

s
+
Z ′
k

Zk
(s) =

k

s
+

−kak,−ks−k−1 − (k − 1)ak,−k+1s
−k +O(|s|−k+1)

ak,−ks−k + ak,−k+1s−k+1 +O(|s|−k+2)

=
kak,−ks

−k−1 + kak,−k+1s
−k +O(|s|−k+1)

ak,−ks−k + ak,−k+1s−k+1 +O(|s|−k+2)

+
−kak,−ks−k−1 − (k − 1)ak,−k+1s

−k +O(|s|−k+1)

ak,−ks−k + ak,−k+1s−k+1 +O(|s|−k+2)

=
ak,−k+1 +O(|s|)

ak,−k + ak,−k+1s+O(|s|2)
.

Therefore

lim
s→0

(
k

s
+
Z ′
k

Zk
(s)

)
=
ak,−k+1

ak,−k
.

By the definition (2.1.1) and Lemma 2.3.1, we can see that for k ≥ 1

ak,−k = −(k − 1)ak−1,−k+1 −
1

2
ak−1,−k+1 =

(
−k + 1

2

)
ak−1,−k+1,

(see the argument in the proof of Lemma 2.3.2) and

ak,−k
a0,0

=
ak,−k

ak−1,−k+1

· ak−1,−k+1

ak−2,−k+2

· · · a1,−1

a0,0

=

(
−k + 1

2

)(
−k + 3

2

)
· · ·
(
−1

2

)
=

(
−1

2

)k
(2k − 1)!!.
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Since a0,0 = ζ(0) = −1/2, we have

ak,−k =

(
−1

2

)k+1

(2k − 1)!!.

On the other hand, by the definition (2.1.1) and Lemma 2.3.1, we
can obtain

ak,−k+1 = −1

2
(2k − 3)ak−1,−k+2 −

C0

2
ak−1,−k+1,

where C0 is the constant term of the Laurent expansion of ω(s) around
0 and it is log 2π + γ. When we put

a′k =
ak,−k+1

−C0

2
ak−1,−k+1

we have

a′k = a′k−1 + 1 = a′1 + k − 1.

Thus we can see that

ak,−k+1 =

(
γ

log 2π + γ
+ k − 1

)
(log 2π + γ)

(
−1

2

)k+1
(2k − 1)!!

2k − 1

by the fact that a1,0 = (ζ ′(0)− ζ(0) log 2π − ζ(0)γ)/2 = γ/4.
Hence we have

Bk = −1

2
log π − 1 +

k

2

Γ′

Γ

(
1

2

)
− k − 1

2

Γ′

Γ
(1)

+

(
γ

log 2π + γ
+ k − 1

)
log 2π + γ

2k − 1

= −2k(k − 1)

2k − 1
log 2− 1

2(2k − 1)
log 4π +

γ

2(2k − 1)
− 1.

Here, to show the last equality, we use

Γ′

Γ
(1) = −γ and

Γ′

Γ

(
1

2

)
= −γ − 2 log 2.

Lastly, we calculate ξk(0) = eAk . It is known that

Γ(s+ 1) = sΓ(s).
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Hence we obtain

ξk(0) = −Γ

(
1

2

)−k

lim
s→0

sZk(s)

Γ
(
s
2

)k−1

= −Γ

(
1

2

)−k

lim
s→0

(s
2

)k−1 sZk(s)

Γ
(
s
2
+ 1
)k−1

= −2−k+1

Γ(1
2
)k

lim
s→0

skZk(s) = −2−k+1π− k
2 ak,−k =

(−1)k(2k − 1)!!

(4
√
π)k

.

□

3.4. The special values of ξk(s) at integer points

In this section, we give an explicit expression of special values of
ξk(s) at positive integer points.

Theorem 3.4.1. Let k ≥ 0. We have

ξk(1) =
(2k − 1)!!

(4
√
π)k

,

and for n ≥ 1,

ξk(2n+ 1)

= (−1)kn+1π− 2n+k
2

(2n+ 1)!2n

4n · n!

(
4n−1(n!)2

(2n)!

)k
(2k − 3)!!ζ(2n+ 1)

and

ξk(2n) = (−1)knπ− 2n+k
2 2n(2n− 1)(n− 1)!

(
(2n)!

4nn!(n− 1)!

)k
Zk(2n).

Before starting the proof, we note that Proposition 2.2.1 and 2.2.2
imply

Zk(2n) =
k∑
j=0

k!

j!
ζ(j)(2n)

∑
a1+2a2+···+(k−j)ak−j=k−j

(
−1

2

)a1+···+ak−j

×
k−j∏
l=1

1

al!

(
ω(l−1)(2n)

l!

)al
.

On the ω(l−1)(2n), since

dl−1

dsl−1
tan

πs

2

∣∣∣∣
s=2n

=


(−1)m−1B2m(4

m − 1)π2m−1

2m
l = 2m,

0 l = 2m+ 1,
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and for l ≥ 2

dl−1

dsl−1

Γ′

Γ
(s)

∣∣∣∣
s=2n

= (−1)l(l − 1)!

(
ζ(l)−

2n−1∑
j=1

1

jl

)
,

we have

ω(l−1)(2n)

=


(−1)m

B2m(2− 4m)π2m

4m
+ (2m− 1)!

2n−1∑
j=1

1

j2m
l = 2m,

−(2m)!

(
2n−1∑
j=1

1

j2m+1
− ζ(2m+ 1)

)
l = 2m+ 1,

where B2m is the 2m-th Bernoulli number and therefore ω(l−1)(2n) > 0.
When l = 1, we can obtain

ω(2n) = log 2π + γ −
2n−1∑
j=1

1

j

because

Γ′

Γ
(n) = −γ +

n−1∑
j=1

1

j
.

Proof of Theorem 3.4.1. The case of s = 1 is trivial.
Let n ≥ 1. First we consider the case of s = 2n. When s = 2n we

have

ξk(2n) = π−n2n(2n− 1)
Zk(2n)

Γ(n)k−1Γ(1
2
− n)k

= (−1)knπ− 2n+k
2 2n(2n− 1)(n− 1)!

(
(2n)!

4nn!(n− 1)!

)k
Zk(2n).
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Next we treat the case of s = 2n+ 1. In this case, we see that

ξk(2n+ 1) = π− 2n+1
2 (2n+ 1)2n

1

Γ(2n+1
2

)k−1
lim

s→2n+1

Zk(s)

Γ(1−s
2
)k

= π− 2n+1
2 (2n+ 1)2n

(4nn!)k−1

((2n)!)k−1π
k−1
2

× lim
s→2n+1

∏n−1
m=0(2m+ 1− s)k

2kn+kΓ(2n+3−s
2

)k
(2n+ 1− s)kZk(s)

= (−1)kn+kπ− 2n+k
2 (2n+ 1)2n

(n!)k(4nn!)k−1

2k((2n)!)k−1

× lim
s→2n+1

(s− 2n− 1)kZk(s).

We consider the Laurent expansion at s = 2n+ 1 i.e.

Zk(s) =
∞∑

l=−k

bk,l(s− 2n− 1)l.

By the definition (2.1.1) and Lemma 2.3.1, we can see that

bk,−k = −(k − 1)bk−1,−k+1 +
1

2
bk−1,−k+1 = −

(
k − 3

2

)
bk−1,−k+1.

Thus we have

bk,−k
b0,0

=
bk,−k

bk−1,−k+1

· · · · · b1,−1

b0,0

=

(
−k + 3

2

)
· · ·
(
−1

2

)
1

2
= −

(
−1

2

)k
(2k − 3)!!.

Since b0,0 = ζ(2n+ 1), we obtain

bk,−k = −
(
−1

2

)k
(2k − 3)!!ζ(2n+ 1).

This leads to

ξk(2n+ 1)

= (−1)kn+1π− 2n+k
2

(2n+ 1)!2n

4n · n!

(
4n−1(n!)2

(2n)!

)k
(2k − 3)!!ζ(2n+ 1).

□
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3.5. Necessary Additional statements

To show Matsuoka’s theorem (Theorem 3.6.1), we need some addi-
tional statements.

By Proposition 2.2.2 and Lemma 3.2.3,

fk(s) =

(
−ω(s)

2

)k
(1 +Ok((log |s|)−2)) (3.5.1)

for s ∈ D(2m) = {s ∈ D | σ ≥ 2m} with sufficiently large integer
m = m(k). This implies ℜfk(s) > 0 in this region. Thus, by Lemma
2.3.2 the argument principle, we have

Lemma 3.5.1 (Lemma 4.3 in [28]). For s ∈ {s | σ < 1− 2m}∪ {s |
σ > 2m}, the zeros of fk(s) are in small circles centred negative even
integers and positive odd integers, and the number of those is k in each
circles.

By Proposition 2.2.1, (3.5.1) and the facts that

ζ(s) = 1 +O(2−σ), ζ(k) = Ok(2
−σ),

we see that

Zk(s) = fk(s)

{
ζ(s) +

k∑
j=1

(
k

j

)
fk−j(s)

fk(s)
ζ(j)(s)

}
= fk(s){1 +O(2−σ)}

for s ∈ D(2m) = {s ∈ D | σ ≥ 2m} and k ≥ 1.
Hence, by (3.5.1)

Zk(s) =

(
−ω(s)

2

)k
{1 +Ok((log |s|)−2)} (k ≥ 1) (3.5.2)

for s ∈ D(2m). This leads to ℜZk(s) > 0 in this region. Hence, by
Lemma 2.3.3 the same argument as in Lemma 3.5.1, we obtain

Lemma 3.5.2 (Lemma 4.5 in [28]). For s ∈ {s | σ < 1− 2m}∪ {s |
σ > 2m}, the zeros of Zk(s) are all located in small circles centred
negative even integers and positive odd integers, and the number of
those is k in each circles.

3.6. An Alternative Proof of Matsuoka’s result

In this section, we give an alternative proof of Matsuoka’s result:

Theorem 3.6.1 (Theorem 1.1 in [28]). If the RH is true, then for
any non-negative integer k there exists a T = T (k) > 0 such that,
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for t ≥ T , Z(k+1)(t) has exactly one zero between consecutive zeros of
Z(k)(t).

More precisely, we prove Mozer’s formula

d

dt

Z(k+1)

Z(k)
(t) = −

∑
γk

1

(t− γk)2
+Ok(t

−1) (3.6.1)

in a different way from Matsuoka’s proof. Here the sum is taken over
zeros of Z(k)(t). If we can prove this formula, then we see that

d

dt

Z(k+1)

Z(k)
(t) < −

∑
0<γk<t

1

(t− γk)2
+ At−1

< t−1(A−Nk(t)t
−1).

By Proposition 2.3.2, this is negative for large t. Matsuoka’s proof is
inspired by Anderson’s method ([1]), which implies the above theorem
for k = 1. Matsuoka considered the integral∫

C

G′
k

Gk

(w)
s

w(s− w)
dw,

where C is an appropriate rectangle and

Gk(w) = h(w)
Zk(w)

fk(w)

with h(w) = π−s/2Γ(s/2). However, in view of Theorem 3.3.1, we can
prove the formula more easily.

Proof of (3.6.1). By the definition of ξk(s) and (2.1.3), we have

ξk

(
1

2
+ it

)
= −i−kπ− 1

4

(
1

4
+ t2

) ∣∣∣∣Γ(1

4
+
it

2

)∣∣∣∣−2k+1

Z(k)(t).

Hence when we put

gk(t) = i−kπ− 1
4

(
1

4
+ t2

) ∣∣∣∣Γ(1

4
+
it

2

)∣∣∣∣−2k+1

then, by the logarithmic derivative with respect to t, we can obtain

i
ξ′k
ξk

(
1

2
+ it

)
=
g′k
gk
(t) +

Z(k+1)

Z(k)
(t). (3.6.2)

As for the function g′k/gk(t), we can see that

g′k
gk
(t) = −(2k − 1)

d

dt
ℜ log Γ

(
1

4
+
it

2

)
+

2t
1
2
+ t2
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and hence
d

dt

g′k
gk
(t) ≪k t

−1

by Lemma 3.2.1.
On the other hand, Theorem 3.3.1 implies that

ξ′k
ξk

(
1

2
+ it

)
= Bk +

∑
ρk

(
1

1
2
+ it− ρk

+
1

ρk

)
.

Therefore we have

d

dt

ξ′k
ξk

(
1

2
+ it

)
=
∑
ρk

−i
(1
2
+ it− ρk)2

= i
∑
γk

1

(t− γk)2
+
∑
ρk

βk ̸= 1
2

−i
(1
2
+ it− ρk)2

= i
∑
γk

1

(t− γk)2

+
∑
ρk

βk<1−2m, 2m<βk

−i
(1
2
+ it− ρk)2

+O(t−2)

= i
∑
γk

1

(t− γk)2
+O(t−1)

by Proposition 2.3.1 and Lemma 3.5.2. To show the last equality, we
use the same argument as Matsuoka’s (see [28, p.15]):∑

ρk
βk<1−2m, 2m<βk

1

(1
2
+ it− ρk)2

≪k

∞∑
n=m

k

(t+ 2n+ 1)2
≪k

∫ ∞

2m+1

dx

(t+ x)2
.

Thus we have

d

dt

Z(k+1)

Z(k)
(t) = −

∑
γk

1

(t− γk)2
+Ok(t

−1).

□



CHAPTER 4

A discrete moment of the higher derivative of Z(t)

This chapter is based on the author’s paper [22]. In this chapter,
we will prove the following theorem.

Theorem 4.0.1. Let j and k be fixed non-negative integers. If the
RH is true, then as T → ∞,∑

0<γk≤T

∣∣Z(j)(γk)
∣∣2

= δ0,k
T

22j+1(2j + 1)π

(
log

T

2π

)2j+2

− (k + 1){1 + (−1)j}
22j+1(j + 1)2

T

2π

(
log

T

2π

)2j+2

+

j∑
u=1

1

2j + 1− u

j!

(j − u)!
(−1)−u

k∑
g=1

1

θu+1
g

T

22j+1π

(
log

T

2π

)2j+2

+ (−1)j+1

k∑
g=1

(j!)2

θ2j+2
g

T

22j+2π

(
log

T

2π

)2j+2

+ (−1)j(j!)2
k∑
g=1

(
T
2π

)zg−1

θ2j+2
g

(
j∑

µ=0

θµg
µ!

)2

T

22j+2π

(
log

T

2π

)2j+2

+Oj,k

(
T (log T )2j+1

)
,

where δ0,k is Kronecker’s delta, zg (g = 1, 2, · · · , k) are the zeros of

Zk(s, T ) with zg = 1−2θg/L+O(L
−2), and θg satisfies

∑k
µ=0 θ

µ
g /µ! = 0.

When j = 0 or k = 0, we consider the sums on the right-hand side as
the empty sums.

At the last main term, since L = log(T/2π), we see that(
T

2π

)zg−1

= e−2θg+O( 1
L).

Therefore we can write the approximate formula in the form Cj,kTL
2j+2.

33
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Remark 4.0.1. Matsuoka [28] proved that the zeros of Z(k+1)(t)
are interlaced with those of Z(k)(t) for sufficiently large t. Therefore
our sum contains the mean square of the extremal value of |Z(j)(t)|.

Remark 4.0.2. When k = 2, it is not clear whether the coefficient
of Yıldırım’s asymptotic formula is positive or negative, hence his result
does not give precise information, and our main theorem too. This
is because we have no exact information on the location of zeros of
Z2(s, T ) near s = 1. In general, it is difficult to confirm even Cj,k ≥ 0.
However, we can verify Ck,k = 0 because it is known that

k∑
g=1

1

θ2k+2
g

=
(−1)k+1 + 1

k!(k + 1)!

and
k∑
g=1

1

θug
=


−1 (u = 1),

0 (2 ≤ u ≤ k),
1
k!

(u = k + 1)

(see [43]).

4.1. Preliminary lemmas

First we present the following lemma on the distance between the
real part of the zeros of Zk(s) and the critical line.

Lemma 4.1.1 (Lemma 4 in [44]). Assuming the RH, the zeros of
Zk(s) which are not on σ = 1/2 are within a distance 1/9 from the line
σ = 1/2.

From Proposition 2.3.2, we see that there exists a sequence of posi-
tive numbers {Tr}∞r=1(Tr → ∞ as r → ∞) such that if Zk(βk+ iγk) = 0
then |γk − Tr|−1 = Ok(log Tr). Moreover, Proposition 2.3.1 says that
for sufficiently T0 = T0(k), all zeros of Zk(s) for t > T0 is on the critical
line. When we take T , we understand that it is > T0 and in {Tr}∞r=1

hereafter.
Zk(s, T ) has important properties for our purpose.

Lemma 4.1.2 (Lemma 5 in [44]). Assuming the RH, we have

Z ′
k

Zk
(s)− Z ′

k

Zk

(s, T ) ≪ U

T

for σ ≥ 5/8 and T ≤ t ≤ T + U ≤ 2T .

Lemma 4.1.3 (Lemma 6 in [44]). We assume RH and let k ≥ 1. At
s = 1 Zk(s, T ) has a pole of order k+1. There are k zeros of Zk(s, T )
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located at zg = 1− 2θg/L+Ok(1/L
2) (g = 1, . . . , k), where θg’s are the

roots of
∑k

µ=0 θ
µ/µ! = 0. There are no other zeros or poles of Zk(s, T )

with 5/8 ≤ σ ≤ 2. Thus we have

Z ′
k

Zk

(s, T ) =
−(k + 1)

s− 1
+

k∑
g=1

1

s− zg
+W (s, T )

where W (s, T ) is regular for 5/8 ≤ σ ≤ 9/8.

Lemma 4.1.4. For σ ≥ 9/8, there is an absolutely convergent Dirich-
let series such that

Z ′
k

Zk

(s, T ) =
∞∑
m=1

ak(m)

ms
+O(T−1)

where, as T → ∞, ak(m) = ak(m,L) ≪ε T
ε for any ε > 0 and m≪ T .

Proof. This result has been proved in [6] □

Under the RH, we can obtain

ζ ′

ζ
(s) ≪ ((log(|t|+ 2))2−2σ + 1)min

(
1

|σ − 1|
, log log(|t|+ 2)

)

uniformly for 1/2 + 1/ log log(|t| + 2) ≤ σ ≤ 3/2, |t| ≥ 1 (see [30],
p.435). We can see that

ζ(µ+1)

ζ
(s) =

d

ds

ζ(µ)

ζ
(s) +

ζ(µ)

ζ
(s)

ζ ′

ζ
(s).

Hence, inductively applying Cauchy’s integral theorem in a disk of
radius (log(|t|+ 2))−1 around s, we have

ζ(µ+1)

ζ
(s) ≪µ ((log(|t|+ 2))µ+2−2σ + (log(|t|+ 2))µ) log log(|t|+ 2)

uniformly for 5/8 ≤ σ ≤ 9/8, |t| ≥ 2. Therefore
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Z ′
k

Zk

(s, T ) =

(
k∑

µ=0

(
k

µ

)
(
L

2
)k−µζ(µ+1)(s)

)(
k∑

µ=0

(
k

µ

)
(
L

2
)k−µζ(µ)(s)

)−1

=

(
k∑

µ=0

(
k

µ

)
(
L

2
)−µ

ζ(µ+1)

ζ
(s)

)

×

(
1 +

k∑
µ=1

(
k

µ

)
(
L

2
)−µ

ζ(µ)

ζ
(s)

)−1

=
k∑

µ=0

(
k

µ

)(
L

2

)−µ
ζ(µ+1)

ζ
(s)(1 + o(1))

≪k,ε |t|ε

uniformly for 5/8 ≤ σ ≤ 9/8, |t| ≥ 2.
As in the paper of Yıldırım [44], we apply the following lemma by

Gonek [10] :

Lemma 4.1.5 (Lemma 5 in [10]). Let a > 1 be fixed and let m
be a non-negative integer. Let the Dirichlet series

∑∞
n=1 bnn

−a−it be
absolutely convergent with a sequence of complex number {bn}∞n=1. Then
for any sufficiently large T ,

1

2π

∫ T

1

(
∞∑
n=1

bnn
−a−it

)
χ(1− a− it)

(
log

t

2π

)m
dt

=
∑

1≤n≤ T
2π

bn(log n)
m +O

(
T a−

1
2 (log T )m

)
.

Finally, we introduce some fundamental lemmas. Stirling’s formula
implies

Lemma 4.1.6. For −1 < σ < 2 and t ≥ 1, we have

χ(1− s) = e−
πi
4

(
t

2π

)σ− 1
2

exp

(
it log

t

2πe

)(
1 +O

(
1

t

))
, (4.1.1)

χ′

χ
(s) = − log

t

2π
+O

(
1

t

)
, (4.1.2)

and (
χ′

χ

)(k)

(s) = Ok

(
1

t

)
. (4.1.3)
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Then, by the definition of fk(s) (2.2.1), for −1 < σ < 2 and t ≥ 1

fk(s) =

(
1

2
log

t

2π

)k
+Ok

(
t−1(log t)k−1

)
. (4.1.4)

If the RH is true, then the Lindelöf Hypothesis

ζ

(
1

2
+ it

)
≪ε |t|ε (|t| ≥ 1)

is also true. Therefore we can obtain the following estimates.

Lemma 4.1.7. If the RH is true, then for µ = 0, 1, 2, . . . and |t| ≥ 1,

ζ(µ)(s) ≪µ,ε


1 1 < σ,

|t|ε 1
2
≤ σ ≤ 1,

|t| 12−σ+ε −1 < σ < 1
2
.

When µ = 0, these estimates are well-known. For µ ≥ 1, we
can obtain this estimates, using Cauchy’s theorem in a disk of radius
(log(|t|+ 2))−1 around s.

By (2.2.2), this lemma leads to

Zk(s) ≪k,ε

{
|t|ε 1

2
≤ σ < 2,

|t| 12−σ+ε −1 < σ < 1
2

for |t| ≥ 1.
Now we can show that

Z ′
k

Zk
(σ + iT ) = Ok((log T )

2)

uniformly for −1 ≤ σ ≤ 2 by applying the following lemma

Lemma 4.1.8 (Lemma α in [38]). If f(s) is regular, and∣∣∣∣ f(s)f(s0)

∣∣∣∣ < eM (M > 1)

in the circle |s− s0| ≤ r, then∣∣∣∣∣f ′(s)

f(s)
−
∑
ρ

1

s− ρ

∣∣∣∣∣ < AM

r

(
|s− s0| ≤

r

4

)
,

where ρ runs over the zeros of f(s) such that |ρ − s0| ≤ r/2 and A is
an absolute positive constant.
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We use this lemma with f(s) = Zk(s), r = 12 and s0 = 2+ iT . The
estimate of Zk(s) implies that we can take M = log T in this lemma.
Hence we have

Z ′
k

Zk
(σ + iT ) =

∑
ρ

|ρ−(2+iT )|≤6

1

s− ρ
+Ok(log T ).

By the way of taking T and Proposition 2.3.2, we see that∑
ρ

|ρ−(2+iT )|≤6

1

s− ρ
≪k

∑
ρ

|ρ−(2+iT )|≤6

log T

≪k (log T )
2.

4.2. The proof of Theorem

Our proof is inspired by the proof of Yıldırım [44]. As we mentioned
before, we consider sufficiently large T in {Tr}∞r=1. This restriction will
be removed at the end of the proof. Now by Proposition 2.3.1, Zk(s)
has at most Ok(1) zeros off the critical line up to T . At such a zero,
by Lemma 4.1.1,

|Zj(ρk)|2 ≪j,ε |ℑρk|
2
9
+ε,

whence ∑
0<ℑρk≤T
ℜρk ̸= 1

2

|Zj(ρk)|2 ≪j,k,ε T
2
9
+ε,

where ρk is the zeros of Zk(s). Therefore, by (2.1.3) and (2.1.4),∑
0<γk≤T

∣∣Z(j)(γk)
∣∣2 = ∑

0<γk≤T

∣∣∣∣Zj (1

2
+ iγk

)∣∣∣∣2
=

∑
ρk

0<ℑρk≤T

|Zj(ρk)|2 +Oj,k,ε

(
T

2
9
+ε
)

=M(T ) +Oj,k,ε

(
T

2
9
+ε
)
,

say. For convenience, we consider a sum over a shorter range. Let

U = T
3
4

and let R be the positively oriented rectangular path with vertices
c+ iT , c+ i(T + U), 1− c+ i(T + U) and 1− c+ iT , where c = 5/8.
Then we need to consider

M(T + U)−M(T ) =
1

2πi

∫
R

Z ′
k

Zk
(s)Zj(s)Zj(1− s)ds.
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On the horizontal line, since

Z ′
k

Zk
(s) ≪k,ε T

ε and Zk(s)Zk(1− s) ≪k,ε T
c− 1

2
+ε,

we can see that∫ c+iT

1−c+iT

Z ′
k

Zk
(s)Zj(s)Zj(1− s)ds≪k,ε T

c− 1
2
+ε.

Thus

1

2πi

∫
R

Z ′
k

Zk
(s)Zj(s)Zj(1− s)ds

=
1

2πi

∫ c+i(T+U)

c+iT

Z ′
k

Zk
(s)Zj(s)Zj(1− s)ds

+
1

2πi

∫ 1−c+iT

1−c+i(T+U)

Z ′
k

Zk
(s)Zj(s)Zj(1− s)ds+Oj,k,ε

(
T c−

1
2
+ε
)

= I1 + I2 +Oj,k,ε

(
T c−

1
2
+ε
)
,

say. On the integral I2,

I2 = − 1

2πi

∫ 1−c+i(T+U)

1−c+iT

Z ′
k

Zk
(s)Zj(s)Zj(1− s)ds

= − 1

2πi

∫ 1−c+i(T+U)

1−c+iT

(
χ′

χ
(s)− Z ′

k

Zk
(1− s)

)
Zj(s)Zj(1− s)ds

= − 1

2πi

∫ 1−c+i(T+U)

1−c+iT

χ′

χ
(s)Zj(s)Zj(1− s)ds

+
1

2πi

∫ 1−c+i(T+U)

1−c+iT

Z ′
k

Zk
(1− s)Zj(s)Zj(1− s)ds.

When we replace s by 1− s, the second integral is

− 1

2πi

∫ c−i(T+U)

c−iT

Z ′
k

Zk
(s)Zj(s)Zj(1− s)ds = I1.

Now we see that

M(T + U)−M(T )

= − 1

2πi

∫ 1−c+i(T+U)

1−c+iT

χ′

χ
(s)Zj(s)Zj(1− s)ds

+ 2ℜI1 +Oj,k,ε

(
T c−

1
2
+ε
)
.

We divide the following argument into 5 steps;



40 4. A DISCRETE MOMENT OF THE HIGHER DERIVATIVE OF Z(t)

Step 1:
Calculate the integral

− 1

2πi

∫ 1−c+i(T+U)

1−c+iT

χ′

χ
(s)Zj(s)Zj(1− s)ds,

Step 2:
Transform the integral I1 to certain sums of arithmetic func-
tions,

Step 3:
To derive some approximate formula for those sums by Per-
ron’s formula,

Step 4:
Express I1 with that formula and simplify the coefficients,

Step 5:
Concluding.

Step 1. By Cauchy’s integral theorem, the integral is equal to

− 1

2πi

∫ 1
2
+i(T+U)

1
2
+iT

χ′

χ
(s)Zj(s)Zj(1− s)ds+Oj,ε

(
T c−

1
2
+ε
)
.

From (4.1.2) and Lemma 4.1.7 we see that the above integral is

1

2π

∫ T+U

T

log
t

2π
Z(j)(t)2dt+Oj,ε (T

ε) . (4.2.1)

Here we put

Yj(t) =

∫ t

1

Z(j)(x)2dx.
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Using integration by parts and the result of Minamide and Tanigawa
(1.4.3), we can show that the integral in (4.2.1) is equal to

1

2π
log

T + U

2π
Yj(T + U)− 1

2π
log

T

2π
Yj(T )−

1

2π

∫ T+U

T

t−1Yj(t)dt

=
T + U

2 · 4j(2j + 1)π
P2j+1

(
log

T + U

2π

)
log

T + U

2π

− T

2 · 4j(2j + 1)π
P2j+1

(
log

T

2π

)
log

T

2π

− 1

2 · 4j(2j + 1)π

∫ T+U

T

{
P2j+1

(
log

t

2π

)
+O

(
t−

1
2 log2j+1 t

)}
dt

+Oj(T
1
2 log2j+1 T )

=
U

2 · 4j(2j + 1)π

(
log

T

2π

)2j+2

+Oj

(
U(log T )2j+1

)
,

because

log
T + U

2π
= log

T

2π

(
1 +O

(
U

T log T

))
.

Step 2. We calculate I1. By the functional equation (2.1.4) and
Lemma 4.1.2, we have

I1 =
(−1)j

2πi

∫ c+i(T+U)

c+iT

Z ′
k

Zk
(s)Zj(s)

2χ(1− s)ds

=
(−1)j

2πi

∫ c+i(T+U)

c+iT

Z ′
k

Zk

(s, T )Zj(s)
2χ(1− s)ds+Oj,k,ε

(
U2T c−

3
2
+ε
)
.

The representation of (2.2.2) and the approximation of fk(s) (4.1.4)
imply that the above is

=
(−1)j

2πi

∫ c+i(T+U)

c+iT

Z ′
k

Zk

(s, T )

(
j∑

µ=0

(
j

µ

)
fj−µ(s)ζ

(µ)(s)

)2

χ(1− s)ds

+Oj,k,ε

(
U2T c−

3
2
+ε
)

=
(−1)j

2πi

∫ c+i(T+U)

c+iT

Z ′
k

Zk

(s, T )

×

(
j∑

µ=0

(
j

µ

)(
1

2
log

t

2π

)j−µ
ζ(µ)(s)

)2

χ(1− s)ds

+Oj,k,ε

(
U2T c−

3
2
+ε
)
+Oj,k,ε

(
T c−

1
2
+ε
)
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=
(−1)j

2πi

∫ b+i(T+U)

b+iT

Z ′
k

Zk

(s, T )

×

(
j∑

µ=0

(
j

µ

)(
1

2
log

t

2π

)j−µ
ζ(µ)(s)

)2

χ(1− s)ds

+Oj,k,ε

(
U2T c−

3
2
+ε
)
+Oj,k,ε

(
T b−

1
2
+ε
)
,

where b = 9/8. To show the last equality, we use Cauchy’s integral
theorem. We note that(

j∑
µ=0

(
j

µ

)(
1

2
log

t

2π

)j−µ
ζ(µ)(s)

)2

=

j∑
µ=0

j∑
ν=0

(
j

µ

)(
j

ν

)(
1

2
log

t

2π

)2j−µ−ν

ζ(µ)(s)ζ(ν)(s).

(4.2.2)

Therefore, by Lemma 4.1.5, our problem is reduced to consider

1

2πi

∫ b+i(T+U)

b+iT

Z ′
k

Zk

(s, T )ζ(µ)(s)ζ(ν)(s)χ(1− s)

(
log

t

2π

)2j−µ−ν

ds

=
1

2πi

∫ b+i(T+U)

b+iT

∞∑
m=1

ak(m)

ms
ζ(µ)(s)ζ(ν)(s)χ(1− s)

(
log

t

2π

)2j−µ−ν

ds

+Oµ,ν,k,ε

(
T b−

1
2
+ε
)

=
∑

T
2π

≤mn≤T+U
2π

ak(m)Dµν(n)(logmn)
2j−µ−ν +Oµ,ν,k,ε

(
T b−

1
2
+ε
)
,

(4.2.3)

where Dµν(n) satisfies

ζ(µ)(s)ζ(ν)(s) =
∞∑
n=1

Dµν(n)

ns

for σ > 1. If we can calculate the sum∑
mn≤x

ak(m)Dµν(n),

then by partial summation we are able to compute the sum on the
right-hand side in (4.2.3).
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Step 3. By Perron’s formula,∑
mn≤x

ak(m)Dµν(n) =
1

2πi

∫ b+iT

b−iT

∞∑
m=1

ak(m)

ms
ζ(µ)(s)ζ(ν)(s)

xs

s
ds

+O(xε) +R,

where R is the error term appearing in Perron’s formula (see [30,
p.140]) which satisfies that

R ≪
∑

x/2<mn<2x
mn̸=x

|ak(m)Dµν(n)|min

(
1,

x

T |x−mn|

)

+
(4x)b

T

∞∑
mn=1

|ak(m)Dµν(n)|
(mn)b

.

On the first term, we see that∑
x/2<mn<2x

n̸=x

|ak(m)Dµν(n)|min

(
1,

x

T |x−mn|

)

≪ x

T

∑
x/2<mn<x−1

∣∣∣∣ak(m)Dµν(n)

x−mn

∣∣∣∣+ ∑
x−1≤mn≤x+1

|ak(m)Dµν(n)|

+
x

T

∑
x+1<mn<2x

∣∣∣∣ak(m)Dµν(n)

x−mn

∣∣∣∣
=
x

T

∑
x/2<l<x−1

∑
l=mn

∣∣∣∣ak(m)Dµν(n)

x− l

∣∣∣∣+ ∑
x−1≤l≤x+1

∑
l=mn

|ak(m)Dµν(n)|

+
x

T

∑
x+1<l<2x

∑
l=mn

∣∣∣∣ak(m)Dµν(n)

x− l

∣∣∣∣
≪µ,ν

x1+ε

T

∑
x/2<l<x−1

∑
l=mn

1

x− l
+ xε

∑
x−1≤l≤x+1

∑
l=mn

1

+
x1+ε

T

∑
x+1<l<2x

∑
l=mn

1

l − x

=
x1+ε

T

∑
x/2<l<x−1

d(l)

x− l
+ xε

∑
x−1≤l≤x+1

d(l) +
x1+ε

T

∑
x+1<l<2x

d(l)

l − x

≪ε
x1+ε

T

∑
x/2<l<x−1

1

x− l
+ xε +

x1+ε

T

∑
x+1<l<2x

1

l − x
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≪ x1+ε

T

∑
1<l<x

1

l
+ xε ≪ x1+ε

T
+ xε.

Therefore we obtain

R ≪µ,ν,ε
xb

T
+ xε.

By using Lemmas 4.1.3, 4.1.4 and the residue theorem, we have

1

2πi

∫ b+iT

b−iT

∞∑
m=1

ak(m)

ms
ζ(µ)(s)ζ(ν)(s)

xs

s
ds

=
1

2πi

∫ b+iT

b−iT

Z ′
k

Zk

(s, T )ζ(µ)(s)ζ(ν)(s)
xs

s
ds+Oµ,ν,ε(x

bT−1+ε)

= Res
s=1

Z ′
k

Zk

(s, T )ζ(µ)(s)ζ(ν)(s)
xs

s
+

k∑
g=1

Res
s=zg

Z ′
k

Zk

(s, T )ζ(µ)(s)ζ(ν)(s)
xs

s

+
1

2πi

∫ c+iT

c−iT

Z ′
k

Zk

(s, T )ζ(µ)(s)ζ(ν)(s)
xs

s
ds+Oµ,ν,ε(x

bT−1+ε)

= Res
s=1

Z ′
k

Zk

(s, T )ζ(µ)(s)ζ(ν)(s)
xs

s
+

k∑
g=1

Res
s=zg

Z ′
k

Zk

(s, T )ζ(µ)(s)ζ(ν)(s)
xs

s

+Oµ,ν,ε(x
cT ε + xbT−1+ε).

To calculate the residues, we note that

Z ′
k

Zk

(s, T ) =
−(k + 1)

s− 1
+

k∑
g=1

1

s− zg
+W (s, T ),

xs

s
= x

∞∑
l=0

(
l∑

r=0

(−1)r

(l − r)!
(log y)l−r

)
(s− 1)l

and

ζ(µ)(s) =
(−1)µµ!

(s− 1)µ+1
+

∞∑
n=µ

n!

(n− µ)!
cn(s− 1)n−µ,

where cn is the n-th Stieltjes constant.



4.2. THE PROOF OF THEOREM 45

On the residue at s = zg, we have

k∑
g=1

Res
s=zg

Z ′
k

Zk

(s, T )ζ(µ)(s)ζ(ν)(s)
xs

s

=
k∑
g=1

ζ(µ)(zg)ζ
(ν)(zg)

xzg

zg

=
k∑
g=1

xzg

zg

{
(−1)µ+νµ!ν!

(zg − 1)µ+ν+2
+ (−1)µµ!

∞∑
n=µ

n!

(n− µ)!
cn(zg − 1)n−µ−ν−1

+(−1)µµ!
∞∑
m=ν

m!

(m− ν)!
cm(zg − 1)m−µ−ν−1

+
∞∑
n=µ

∞∑
m=ν

n!m!cncm
(n− µ)!(m− ν)!

(zg − 1)m+n−µ−ν

}
,

because

ζ(µ)(s)ζ(ν)(s) =
(−1)µ+νµ!ν!

(s− 1)µ+ν+2
+ (−1)νν!

∞∑
n=µ

n!

(n− µ)!
cn(s− 1)n−µ−ν−1

+ (−1)µµ!
∞∑
m=ν

m!

(m− ν)!
cm(s− 1)m−µ−ν−1

+
∞∑
n=µ

∞∑
m=ν

n!m!cncm
(n− µ)!(m− ν)!

(s− 1)m+n−µ−ν .

Next we consider the residue at s = 1. We see that

Res
s=1

Z ′
k

Zk

(s, T )ζ(µ)(s)ζ(ν)(s)
xs

s

= −Res
s=1

k + 1

s− 1
ζ(µ)(s)ζ(ν)(s)

xs

s
+Res

s=1

k∑
g=1

1

s− zg
ζ(µ)(s)ζ(ν)(s)

xs

s

+Res
s=1

W (s, T )ζ(µ)(s)ζ(ν)(s)
xs

s
= R1 +R2 +R3,
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say. Since

ζ(µ)(s)ζ(ν)(s)
xs

s

= (−1)µ+νµ!ν!x
∞∑
l=0

(
l∑

r=0

(−1)r

(l − r)!
(log x)l−r

)
(s− 1)l−µ−ν−2

+ (−1)νν!x
∞∑
n=µ

∞∑
l=0

n!

(n− µ)!
cn

×

(
l∑

r=0

(−1)r

(l − r)!
(log x)l−r

)
(s− 1)l+n−µ−ν−1

+ (−1)µµ!x
∞∑
m=ν

∞∑
l=0

m!

(m− ν)!
cm

×

(
l∑

r=0

(−1)r

(l − r)!
(log x)l−r

)
(s− 1)l+m−µ−ν−1

+ x
∞∑
n=µ

∞∑
m=ν

∞∑
l=0

n!m!cncm
(n− µ)!(m− ν)!

×

(
l∑

r=0

(−1)r

(l − r)!
(log x)l−r

)
(s− 1)l+m+n−µ−ν ,

we have

R1 = (−1)µ+ν+1(k + 1)µ!ν!x

µ+ν+2∑
r=0

(−1)r

(µ+ ν + 2− r)!
(log x)µ+ν+2−r

+ (−1)ν+1(k + 1)ν!x

×
µ+ν+1∑
n=µ

µ+ν+1−n∑
l=0

n!

(n− µ)!
cn

l∑
r=0

(−1)r

(l − r)!
(log x)l−r

+ (−1)µ+1(k + 1)µ!x

×
µ+ν+1∑
m=ν

µ+ν+1−m∑
l=0

m!

(m− ν)!
cm

l∑
r=0

(−1)r

(l − r)!
(log x)l−r

− (k + 1)µ!ν!cµcνx.

We emphasise that the largest term is

(k + 1)
(−1)µ+ν+1µ!ν!

(µ+ ν + 2)!
x(log x)µ+ν+2.
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As for R2,

1

s− zg
ζ(µ)(s)ζ(ν)(s)

xs

s

= (−1)µ+νµ!ν!x
∞∑
λ=0

∞∑
l=0

(−1)λ

(1− zg)λ+1

×

(
l∑

r=0

(−1)r

(l − r)!
(log x)l−r

)
(s− 1)λ+l−µ−ν−2

+ (−1)µµ!x
∞∑
λ=0

∞∑
n=µ

∞∑
l=0

(−1)λn!

(n− µ)!(1− zg)λ+1
cn

×

(
l∑

r=0

(−1)r

(l − r)!
(log x)l−r

)
(s− 1)λ+l+n−µ−ν−1

+ (−1)νν!x
∞∑
λ=0

∞∑
m=ν

∞∑
l=0

(−1)λm!

(m− ν)!(1− zg)λ+1
cm

×

(
l∑

r=0

(−1)r

(l − r)!
(log x)l−r

)
(s− 1)λ+l+m−µ−ν−1

+ x
∞∑
λ=0

∞∑
n=µ

∞∑
m=ν

∞∑
l=0

(−1)λn!m!cncm
(n− µ)!(m− ν)!(1− zg)λ+1

×

(
l∑

r=0

(−1)r

(l − r)!
(log x)l−r

)
(s− 1)λ+l+m+n−µ−ν ,

because
1

s− zg
=

∞∑
λ=0

(−1)λ

(1− zg)λ+1
(s− 1)λ.

Thus we have

R2 = (−1)µ+νµ!ν!x
k∑
g=1

∑
λ+l=µ+ν+1

0≤λ,l

(−1)λ

(1− zg)λ+1

(
l∑

r=0

(−1)r

(l − r)!
(log x)l−r

)

+ (−1)µµ!x

×
k∑
g=1

∑
λ+l+n=µ+ν

0≤λ,l
µ≤n

(−1)λn!cn
(n− µ)!(1− zg)λ+1

(
l∑

r=0

(−1)r

(l − r)!
(log x)l−r

)

+ (−1)νν!x
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×
k∑
g=1

∑
λ+l+m=µ+ν

0≤λ,l
ν≤m

(−1)λm!cm
(m− ν)!(1− zg)λ+1

(
l∑

r=0

(−1)r

(l − r)!
(log x)l−r

)
.

The main term in our final result will come from the first sum with
r = 0, namely,

(−1)µ+νµ!ν!x
k∑
g=1

∑
λ+l=µ+ν+1

0≤λ,l

(−1)λ

(1− zg)λ+1

(log x)l

l!

= (−1)µ+ν+1µ!ν!x
k∑
g=1

µ+ν+1∑
λ=0

1

(µ+ ν + 1− λ)!

(log x)µ+ν+1−λ

(zg − 1)λ+1
.

Since we can see that

W (s, T ) =
∞∑

λ1=0

W (λ1)(1, T )

λ1!
(s− 1)λ1 ,

in a similar manner,

R3

= (−1)µ+νµ!ν!x
∑

λ1+l=µ+ν+1
0≤λ1,l

W (λ1)(1, T )

λ1!

(
l∑

r=0

(−1)r

(l − r)!
(log x)l−r

)

+ (−1)µµ!x
∑

λ1+l+n=µ+ν
0≤λ1,l
µ≤n

W (λ1)(1, T )n!cn
(n− µ)!λ1!

(
l∑

r=0

(−1)r

(l − r)!
(log x)l−r

)

+ (−1)νν!x
∑

λ1+l+m=µ+ν
0≤λ1,l
ν≤m

W (λ1)(1, T )m!cm
(m− ν)!λ1!

(
l∑

r=0

(−1)r

(l − r)!
(log x)l−r

)
.

We note that the order of R3 is at least x(log x)µ+ν+1.
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From the above computations, we obtain∑
mn≤x

ak(m)Dµν(n)

= (−1)µ+ν+1 µ!ν!

(µ+ ν + 2)!
(k + 1)x(log x)µ+ν+2

+ (−1)µ+ν+1µ!ν!x
k∑
g=1

µ+ν+1∑
λ=0

1

(µ+ ν + 1− λ)!

(log x)µ+ν+1−λ

(zg − 1)λ+1

+
k∑
g=1

ζ(µ)(zg)ζ
(ν)(zg)

xzg

zg
+ x

µ+ν+1∑
λ=1

C ′
µ,ν(λ)(log x)

µ+ν+2−λ

+ x

µ+ν∑
λ1=1

k∑
g=1

µ+ν+1−λ1∑
λ=0

C ′′
µ,ν(λ, λ1)

(log x)µ+ν+1−λ1−λ

(zg − 1)λ+1

+Oµ,ν,k,ε

(
(xc + xbT−1)T ε(log x)µ+ν+1

)
,

where C ′
µ,ν(λ) and C

′′
µ,ν(λ1) are some constants.

This leads to∑
T
2π

≤mn≤T+U
2π

ak(m)Dµν(n)(logmn)
2j−µ−ν

= (−1)µ+ν+1 µ!ν!

(µ+ ν + 2)!
(k + 1)

U

2π

(
log

T

2π

)2j+2

+ (−1)µ+ν+1µ!ν!
U

2π

k∑
g=1

µ+ν+1∑
λ=0

1

(µ+ ν + 1− λ)!

(log T
2π
)2j+1−λ

(zg − 1)λ+1

+ (−1)µ+νµ!ν!
U

2π

(
log

T

2π

)2j−µ−ν k∑
g=1

(
T
2π

)zg−1

(zg − 1)µ+ν+2

+Oµ,ν,k

(
U(log T )2j+1

)
.

To deduce the last main term, we used that

(T + U)zg − T zg = T zg
((

1 +
U

T

)zg
− 1

)
= zgUT

zg−1 +Ok

(
U2|T zg−2|

)
= UT zg−1 +Ok(U(log T )

−1),

1

zg
=

1

1− 2
L
θg +O(L−2)

= 1 +Ok

(
L−1

)
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and
1

(zg − 1)λ
=

1

(−2νgL−1 +Ok(L−2))λ
=
(
−2νgL

−1
)−λ

+Ok

(
Lλ−1

)
for positive integer λ, because

zg = 1− 2

L
θg +Ok

(
L−2

)
,

where L = log(T/2π).

Step 4. From the previous steps, recalling (4.2.2), we obtain

I1 = (−1)j+1(k + 1)
U

2π

(
log

T

2π

)2j+2

×
j∑

µ=0

j∑
ν=0

(
j

µ

)(
j

ν

)
µ!ν!

(µ+ ν + 2)!

(
−1

2

)2j−µ−ν

+ (−1)j+1 U

2π

(
log

T

2π

)2j+1 j∑
µ=0

j∑
ν=0

(
j

µ

)(
j

ν

)
µ!ν!

(
−1

2

)2j−µ−ν

×
k∑
g=1

1

zg − 1

µ+ν+1∑
λ=0

1

(µ+ ν + 1− λ)!

(log T
2π
)−λ

(zg − 1)λ

+ (−1)j
U

2π

j∑
µ=0

j∑
ν=0

(
j

µ

)(
j

ν

)
µ!ν!

(
−1

2

)2j−µ−ν (
log

T

2π

)2j−µ−ν

×
k∑
g=1

(
T
2π

)zg−1

(zg − 1)µ+ν+2
+Oj,k

(
U(log T )2j+1

)
= (−1)j+1(k + 1)

U

2π

(
log

T

2π

)2j+2

×
j∑

µ=0

j∑
ν=0

(
j

µ

)(
j

ν

)
µ!ν!

(µ+ ν + 2)!

(
−1

2

)2j−µ−ν

+ (−1)j+1 U

2π

(
1

2
log

T

2π

)2j+2

×
j∑

µ=0

j∑
ν=0

(
j

µ

)(
j

ν

)
µ!ν!

k∑
g=1

1

θµ+ν+2
g

µ+ν+1∑
λ=0

(−2θg)
λ

λ!

+ (−1)j
U

2π

(
1

2
log

T

2π

)2j+2 j∑
µ=0

j∑
ν=0

(
j

µ

)(
j

ν

)
µ!ν!

k∑
g=1

(
T
2π

)zg−1

θµ+ν+2
g
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+Oj,k

(
U(log T )2j+1

)
.

As for the first term,

j∑
µ=0

j∑
ν=0

(
j

µ

)(
j

ν

)
µ!ν!

(µ+ ν + 2)!

(
−1

2

)2j−µ−ν

= (j!)2
j∑

µ=0

j∑
ν=0

1

(j − µ)!(j − ν)!(µ+ ν + 2)!

(
−1

2

)2j−µ−ν

= (j!)2
j∑

µ=0

j∑
ν=0

1

µ!ν!(2j + 2− µ− ν)!

(
−1

2

)µ+ν

=
(j!)2

(2j + 2)!

j∑
µ=0

(
2j + 2

µ

)(
−1

2

)µ j∑
ν=0

(
2j + 2− µ

ν

)(
−1

2

)ν
.

Here we note that

0 =

(
1− 1

2
− 1

2

)2j+2

=
∑

0≤µ+ν≤2j+2

(2j + 2)!

µ!ν!(2j + 2− µ− ν)!

(
−1

2

)µ+ν

=

2j+2∑
µ=0

(
2j + 2

µ

)(
−1

2

)µ 2j+2−µ∑
ν=0

(
2j + 2− µ

ν

)(
−1

2

)ν
.

Thus we have

j∑
µ=0

(
2j + 2

µ

)(
−1

2

)µ j∑
ν=0

(
2j + 2− µ

ν

)(
−1

2

)ν
=

(
1− 1

2
− 1

2

)2j+2

− 2

2j+2∑
µ=j+1

(
2j + 2

µ

)(
−1

2

)µ 2j+2−µ∑
ν=0

(
2j + 2− µ

ν

)(
−1

2

)ν
+

(
2j + 2

j + 1

)(
−1

2

)2j+2

= −2

2j+2∑
µ=j+1

(
2j + 2

µ

)(
−1

2

)µ(
1

2

)2j+2−µ

+

(
2j + 2

j + 1

)(
−1

2

)2j+2

= − 1

22j+2

(
2

2j+2∑
µ=j+1

(
2j + 2

µ

)
(−1)µ −

(
2j + 2

j + 1

))
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=
1

22j+2

(
2

j∑
µ=0

(
2j + 2

µ

)
(−1)µ +

(
2j + 2

j + 1

))
.

The sum is the coefficient of xj in (1 − x)2j+2(1 − x)−1. Thus we can
see that

j∑
µ=0

j∑
ν=0

(
j

µ

)(
j

ν

)
µ!ν!

(µ+ ν + 2)!

(
−1

2

)2j−µ−ν

=
(j!)2

22j+2(2j + 2)!

(
2

(
2j + 1

j

)
(−1)j +

(
2j + 2

j + 1

))
=

1 + (−1)j

22j+2(j + 1)2
.

On the second term, putting u = µ + ν + 1 − λ and dividing the
sum to four parts according as the conditions u = 0, 1 ≤ u ≤ j with
0 ≤ i ≤ u − 1, 1 ≤ u ≤ j with u ≤ i ≤ j and j + 1 ≤ u ≤ 2j + 1, we
have

j∑
µ=0

j∑
ν=0

(
j

µ

)(
j

ν

)
µ!ν!

k∑
g=1

1

θµ+ν+2
g

µ+ν+1∑
λ=0

(−2θg)
λ

λ!

=
k∑
g=1

j∑
µ=0

j∑
ν=0

µ+ν+1∑
u=0

(
j

µ

)(
j

ν

)
µ!ν!

1

θµ+ν+2
g

(−2θg)
µ+ν+1−u

(µ+ ν + 1− u)!

=
k∑
g=1

1

θg

j∑
µ=0

j∑
ν=0

(
j

µ

)(
j

ν

)
µ!ν!

(−2)µ+ν+1

(µ+ ν + 1)!

+
k∑
g=1

j∑
u=1

1

θu+1
g

u−1∑
µ=0

j∑
ν=u−1−i

(
j

i

)(
j

h

)
µ!ν!

(−2)µ+ν+1−u

(µ+ ν + 1− u)!

+
k∑
g=1

j∑
u=1

1

θu+1
g

j∑
µ=u

j∑
ν=0

(
j

µ

)(
j

ν

)
µ!ν!

(−2)µ+ν+1−u

(µ+ ν + 1− u)!

+
k∑
g=1

2j+1∑
u=j+1

1

θu+1
g

j∑
µ=u−1−j

j∑
ν=u−1−µ

(
j

µ

)(
j

µ

)
µ!ν!

(−2)µ+ν+1−u

(µ+ ν + 1− u)!

= S1 + S2 + S3 + S4,

say.
To calculate these sums, we prepare a lemma on combinatorics.
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Lemma 4.2.1. For non-negative integers j and u (j ≥ u),

j−u∑
µ=0

(
2j + 1− u

µ

) j∑
ν=0

(
2j + 1− u− µ

ν

)
(−2)2j+1−u−µ−ν

= (−1)j+1

(
2j − u

j

)
{1 + (−1)−u}.

Proof. Since

(1 + 1− 2)2j+1−u

=

2j+1−u∑
µ=0

(
2j + 1− u

µ

) 2j+1−u−µ∑
ν=0

(
2j + 1− u− µ

ν

)
(−2)2j+1−u−µ−ν ,

we have

j−u∑
µ=0

(
2j + 1− u

µ

) j∑
ν=0

(
2j + 1− u− µ

ν

)
(−2)2j+1−u−µ−ν

= (1 + 1− 2)2j+1−u

−
2j+1−u∑
µ=j−u+1

(
2j + 1− u

µ

) 2j+1−u−µ∑
ν=0

(
2j + 1− u− µ

ν

)
(−2)2j+1−u−µ−ν

−
2j+1−u∑
ν=j+1

(
2j + 1− u

ν

) 2j+1−u−ν∑
µ=0

(
2j + 1− u− ν

µ

)
(−2)2j+1−u−ν−µ

= −
2j+1−u∑
µ=j−u+1

(
2j + 1− u

µ

)
(−1)2j+1−u−µ

−
2j+1−u∑
ν=j+1

(
2j + 1− u

ν

)
(−1)2j+1−u−ν

= −
j∑

µ=0

(
2j + 1− u

µ

)
(−1)µ −

j−u∑
ν=0

(
2j + 1− u

ν

)
(−1)ν .

These sums are coefficients of xj and xj−u in (1 − x)2j+1−u(1 − x)−1

and are therefore equal to the coefficient of xj and xj−u in (1− x)2j−u.
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Thus we obtain
j−u∑
µ=0

(
2j + 1− u

µ

) j∑
ν=0

(
2j + 1− u− µ

ν

)
(−2)2j+1−u−µ−ν

= (−1)j+1

(
2j − u

j

)
+ (−1)j+1−u

(
2j − u

j − u

)
= (−1)j+1

(
2j − u

j

)
{1 + (−1)−u}.

□
By Lemma 4.2.1 with u = 0, when k ̸= 0,

S1 = (j!)2
k∑
g=1

1

θg

j∑
µ=0

j∑
ν=0

(−2)2j+1−i−h

µ!ν!(2j + 1− µ− ν)!

=
(j!)2

(2j + 1)!

k∑
g=1

1

θg

j∑
µ=0

(
2j + 1

µ

) j∑
ν=0

(
2j + 1− µ

ν

)
(−2)2j+1−µ−ν

= (−1)j+12
(j!)2

(2j + 1)!

(
2j

j

) k∑
g=1

1

θg

= (−1)j+1 2

2j + 1

k∑
g=1

1

θg
= (−1)j

2

2j + 1
.

At the last equality, we use the fact that

k∑
g=1

1

θg
= −1.

This can be obtained by the Newton-Girard formulas. We note that if
k = 0, then S1 = 0.

On S2, recalling the proof of Lemma 4.2.1, we see that

S2

=

j∑
u=1

(j!)2
k∑
g=1

1

θu+1
g

u−1∑
µ=0

1

(j − µ)!

j+µ+1−u∑
ν=0

(−2)ν

ν!(j + µ+ 1− u− ν)!

=

j∑
u=1

(j!)2

(2j + 1− u)!

k∑
g=1

1

θu+1
g

×
u−1∑
µ=0

(
2j + 1− u

µ+ j + 1− u

) µ+j+1−u∑
ν=0

(
µ+ j + 1− u

ν

)
(−2)ν
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=

j∑
u=1

(j!)2

(2j + 1− u)!

k∑
g=1

1

θu+1
g

u−1∑
µ=0

(
2j + 1− u

µ+ j + 1− u

)
(−1)µ+j+1−u

=

j∑
u=1

(j!)2

(2j + 1− u)!

k∑
g=1

1

θu+1
g

j∑
µ=j+1−u

(
2j + 1− u

µ

)
(−1)µ

=

j∑
u=1

(j!)2

(2j + 1− u)!

k∑
g=1

1

θu+1
g

{
(−1)j

(
2j − u

j

)
− (−1)j−u

(
2j − u

j − u

)}

= (−1)j
j∑

u=1

j!

2j + 1− u

1

(j − u)!
{1− (−1)−u}

k∑
g=1

1

θu+1
g

.

By Lemma 4.2.1,

S3 =

j∑
u=1

(j!)2
k∑
g=1

1

θu+1
g

×
j∑

µ=u

j∑
ν=0

1

(j − µ)!(j + 1− u+ µ− ν)!

(−2)j+1−u+µ−ν

ν!

=

j∑
u=1

(j!)2
k∑
g=1

1

θu+1
g

j−u∑
µ=0

1

µ!

j∑
ν=0

(−2)2j+1−u−µ−ν

ν!(2j + 1− u− µ− ν)!

=

j∑
u=1

(j!)2

(2j + 1− u)!

k∑
g=1

1

θu+1
g

×
j−u∑
µ=0

(
2j + 1− u

µ

) j∑
ν=0

(
2j + 1− u− µ

ν

)
(−2)2j+1−u−µ−ν

= (−1)j+1

j∑
u=1

1

2j + 1− u

j!

(j − u)!
{1 + (−1)−u}

k∑
g=1

1

θu+1
g

.

Since
2j+1−u∑
µ=0

(
2j + 1− u

µ

)
(−1)µ =

{
1 u = 2j + 1,

0 otherwise,

S4

=

2j+1∑
u=j+1

(j!)2
k∑
g=1

1

θu+1
g

j∑
µ=u−1−j

1

(j − µ)!

j+µ+1−u∑
ν=0

(−2)ν

ν!(j + µ+ 1− u− ν)!
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=

2j+1∑
u=j+1

(j!)2
k∑
g=1

1

θu+1
g

×
j∑

µ=u−1−j

1

(j − µ)!(j + µ+ 1− u)!

j+µ+1−u∑
ν=0

(
j + µ+ 1− u

ν

)
(−2)ν

=

2j+1∑
u=j+1

(j!)2

(2j + 1− u)!

k∑
g=1

1

θu+1
g

2j+1−u∑
µ=0

(
2j + 1− u

µ

)
(−1)µ =

k∑
g=1

(j!)2

θ2j+2
g

.

Thus we have

S1 + S2 + S3 + S4

= (−1)j
2

2j + 1

+ (−1)j+12

j∑
u=1

1

2j + 1− u

j!

(j − u)!
(−1)−u

k∑
g=1

1

θu+1
g

+
k∑
g=1

(j!)2

θ2j+2
g

.

On the third term, we see that

j∑
µ=0

j∑
ν=0

(
j

µ

)(
j

ν

)
µ!ν!

k∑
g=1

(
T
2π

)zg−1

θµ+ν+2
g

= (j!)2
k∑
g=1

(
T
2π

)zg−1

θ2j+2
g

(
j∑

µ=0

θµg
µ!

)2

.

Therefore, when k ̸= 0,

I1 = −(k + 1){1 + (−1)j}
22j+2(j + 1)2

U

2π

(
log

T

2π

)2j+2

− U

22j+2(2j + 1)π

(
log

T

2π

)2j+2

+

j∑
u=1

1

2j + 1− u

j!

(j − u)!
(−1)−u

k∑
g=1

1

θu+1
g

U

22j+2π

(
log

T

2π

)2j+2

− (−1)j
k∑
g=1

(j!)2

θ2j+2
g

U

22j+3π

(
log

T

2π

)2j+2

+ (−1)j(j!)2
k∑
g=1

(
T
2π

)zg−1

θ2j+2
g

(
j∑

µ=0

θµg
µ!

)2

U

22j+3π

(
log

T

2π

)2j+2

+Oj,k

(
U(log T )2j+1

)
.

If k = 0, then these main terms vanish except for the first.
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Step 5. Finally, we obtain

M(T + U)−M(T )

= δ0,k
U

22j+1(2j + 1)π

(
log

T

2π

)2j+2

− (k + 1){1 + (−1)j}
22j+1(j + 1)2

U

2π

(
log

T

2π

)2j+2

+

j∑
u=1

1

2j + 1− u

j!

(j − u)!
(−1)−u

k∑
g=1

1

θu+1
g

U

22j+1π

(
log

T

2π

)2j+2

+ (−1)j+1

k∑
g=1

(j!)2

θ2j+2
g

U

22j+2π

(
log

T

2π

)2j+2

+ (−1)j(j!)2
k∑
g=1

(
T
2π

)zg−1

θ2j+2
g

(
j∑

µ=0

θµg
µ!

)2

U

22j+2π

(
log

T

2π

)2j+2

+Oj,k

(
U(log T )2j+1

)
.

This completes the proof for the special T which are chosen at the
beginning of the proof.

To complete the proof, we take away the condition on T . When
T increases continuously in bounded interval, the number of relevant
|Z(j)(γk)|2 is at most Ok(log T ) and the order is Oj(T

ε). Thus it is
smaller than the error in our main theorem that the contribution of
these terms. Thus the formula is true for all T > T0.



CHAPTER 5

A discrete moment of L′(s, χ)

This chapter is based on the author’s paper [21]. Let ρχ = βχ+ iγχ
be the non-trivial zeros of a Dirichlet L-function L(s, χ). Our purpose
of this chapter is to prove the following theorem.

Theorem 5.0.1. Let c1 be a positive constant. Let χ (mod q) be a
primitive character. Then, uniformly for q ≤ exp(c1

√
log T ), we have∑

0<γχ≤T

L′(ρχ, χ) =
1

4π
T

(
log

qT

2π

)2

+ a1
T

2π
log

qT

2π
+ a2

T

2π
+ a3

+O
(
T exp

(
−c
√

log T
))

,

where the implicit constant is absolute, c is a positive absolute constant
depends on c1 and

a1 =
∑
p|q

log p

p− 1
+ γ0 − 1,

a2 =
1

2

∑
p|q

log p

p− 1

2

+ (γ0 − 1)
∑
p|q

log p

p− 1

− 3

2

∑
p|q

p

(
log p

p− 1

)2

+ 1− γ0 − γ20 + 3γ1

with the Stieltjes constants γ0, γ1 and

a3 =
ωχ(−1)τ(χ)τ(ωχ)

qφ(q)

L′(β, ω)

β

(
qT

2π

)β
when L(s, ω) with a quadratic character ω (mod q) has an exceptional
zero β, otherwise a3 = 0.

Assuming the GRH, we can replace the error term by (qT )
1
2
+ε uni-

formly for q ≪ T 1−ε.

58
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Remark 5.0.1. Let q be a prime power. If we could obtain the
estimate ∑

γχ≤T

|L′(ρχ, χ)|2 ≪ T (log qT )4, (5.0.1)

where the implicit constant is absolute, we could replace the error term
by

√
qT (log qT )

7
2 under the GRH. We will give the details in the last

section. In view of Gonek’s formula (5.4.1), the above estimate (5.0.1)
may be plausible.

When q = 1, the above theorem implies Fujii’s Theorem 1 in [9].
Our proof is a generalization of his method. However, it is not easy to
obtain his Theorem 2 in [9] and we give a weaker statement. Kaptan,
Karabulut and Yıldırım [19] considered more general cases and gave
the asymptotic formula, that is for µ ≥ 1 and q ≤ (log T )A with any
fixed A > 0∑

0≤γχ≤T

L(µ)(ρχ, χ) =
(−1)µ+1

µ+ 1

T

2π

(
log

qT

2π

)µ+1

+O(T (log T )µ+ε)

for any fixed ε > 0. Our result is the case µ = 1 in their paper and gives
a more sophisticated formula. Jakhlouti and Mazhouda [17] considered
the sum ∑

ρa,χ
0<γa,χ≤T

L′(ρa,χ, χ)X
ρa,χ ,

where ρa,χ = βa,χ + iγa,χ are the zeros of L(s, χ) − a for any fixed
complex number a and X is a fixed positive number. They also fixed χ
throughout their paper. Hence our main theorem treats a special case
of their sum, but our result gives a more precise form because we do
not fix χ.

5.1. Preliminary lemmas

By Stirling’s formula, we can show that

Lemma 5.1.1. For −1 ≤ σ ≤ 2 and t ≥ 1, we have

∆(1− s, χ) =
τ(χ)
√
q
e−

πi
4

(
qt

2π

)σ− 1
2

exp

(
it log

qt

2πe

)(
1 +O

(
1

t

))
(5.1.1)

and

∆′

∆
(s, χ) = − log

qt

2π
+O

(
1

t

)
. (5.1.2)
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A theorem from [14] and an application of the Phragmen-Lindelöf
principle yields the estimates;

L(s, χ) ≪ (q(|t|+ 2))
3
16

+ε for
1

2
≤ σ ≤ 1 +

1

log qT
, (5.1.3)

and

L(s, χ) ≪ (q(|t|+ 2))
1
2 log q(|t|+ 2) for − 1

log qT
≤ σ <

1

2
(5.1.4)

uniformly in |t| ≪ T for any non-principal character χ (mod q). When
we assume the GRH, the bound of (5.1.3) can be replaced by (q(|t| +
2))ε. For the principal character, we need the restriction |s− 1| ≫ 1 in
(5.1.3). For the logarithmic derivative, it is known that for q ≥ 1 and
χ (mod q)

L′

L
(s, χ) =

∑
|t−γχ|≤1

1

s− ρχ
+O(log q(|t|+2)) for −1 ≤ σ ≤ 2, |t| ≥ 1

(5.1.5)
(see [34, p. 225]). For q ≥ 1, χ (mod q) and t ≥ 0 we have (see [34,
p. 220])

N(t+ 1, χ)−N(t, χ) := #{ρχ = βχ + iγχ : t < γχ ≤ t+ 1}
≪ log q(t+ 2).

(5.1.6)

Hence for any T0 ≥ 0, there exists a t = t(χ), t ∈ (T0, T0 + 1], such
that

min
γχ

|t− γχ| ≫
1

log q(t+ 2)
. (5.1.7)

By the expression (5.1.5), it follows that for q ≥ 1, χ (mod q) and
t satisfying (5.1.7)

L′

L
(σ + it, χ) ≪ (log q(|t|+ 2))2 for − 1 ≤ σ ≤ 2 (5.1.8)

uniformly. This estimate is valid for |s − ρχ| ≫ (log(q(|t| + 2)))−1

though t is not satisfying (5.1.7).
We will apply the following approximate functional equation for

L(s, χ).
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Lemma 5.1.2 (A. F. Lavrik [25]). We let 0 ≤ σ ≤ 1, 2πxy = t,
x ≥ 1 and y ≥ 1. Then for t > 0, we get

L(s, χ) =
∑
n≤x

χ(n)

ns
+∆(s, χ)

∑
n≤y

χ(n)

n1−s

+O
(√

q
(
y−σ + xσ−1(qt)

1
2
−σ
)
log 2t

)
.

On the other hand, for t > t0 > 0 and σ > 1, using partial summa-
tion, we get

L(s, χ) =
∑
n≤qt

χ(n)

ns
+O

(
q|s|
σ

(qt)−σ
)
. (5.1.9)

We will use the following modified Gonek’s lemma ([10, Lemma 5]).

Lemma 5.1.3. Let {bn}∞n=1 be a sequence of complex numbers such
that bn ≪ nε for any ε > 0. Let a > 1 and let m be a non-negative
integer. Then for any sufficiently large T ,

1

2π

∫ T

1

(
∞∑
n=1

bn
na+it

)
∆(1− a− it, χ)

(
log

qt

2π

)m
dt

=
τ(χ)

q

∑
1≤n≤qT/2π

bne

(
−n
q

)
(log n)m

+O

(∣∣∣∣∣
∞∑
n=1

bn
na

∣∣∣∣∣ (qT )a−1/2(log qT )m

)
.

This is provided implicitly by Steuding in [37].

5.2. The proof of Theorem in unconditional

In this section, we prove the claim of the unconditional part of
Theorem 5.0.1. Let (log 2q)−1 ≪ b ≤ 1 and T ≥ 2 be such that

min
γχ

|b− γχ| ≫
1

log 2q
and min

γχ
|T − γχ| ≫

1

log qT
.

We prove the theorem under this situation. At the end of the
proof, we remove this restriction. Let a = 1 + (log qT )−1 and define
the contour C as the positively oriented rectangular path with vertices
a + ib, a + iT, 1 − a + iT and 1 − a + ib. By the residue theorem, our
sum can be written as a contour integral∑

0<γχ≤T

L′(ρχ, χ) =
1

2πi

∫
C

L′

L
(s, χ)L′(s, χ)ds+ E,
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where E consists of the terms L′(ρχ, χ) with 0 < γχ < b.
For zeros ρχ = βχ + iγχ with 0 < γχ < b we have

L′(ρχ, χ) ≪ q
1
2 (log 2q)2

by (5.1.3), (5.1.4) and the Cauchy’s integral formula applied to the
circle with centre ρχ and radius (log 2q)−1. Therefore, by (5.1.6), we
have

E =
∑

0<γχ<b

L′(ρχ, χ) ≪ q
1
2 (log 2q)2

∑
0<γχ<b

1 ≪ q
1
2 (log 2q)3.

Next we consider the contour integral

1

2πi

∫
C

L′

L
(s, χ)L′(s, χ)ds

=
1

2πi

{∫ a+iT

a+ib

+

∫ 1−a+ib

1−a+iT
+

∫ 1−a+iT

a+iT

+

∫ a+ib

1−a+ib

}
L′

L
(s, χ)L′(s, χ)ds

= I1 + I2 + I3 + I4,

say.
By the Laurent expansion of the Riemann ζ-function, it is easily

seen that

I1 =
1

2π

∫ T

b

L′

L
(a+ it, χ)L′(a+ it, χ)dt

=
1

2π

∞∑
m=2

∞∑
n=2

χ(m)Λ(m)χ(n) log n

(mn)a

∫ T

b

dt

(mn)it

≪
∣∣∣∣ζ ′ζ (a)

∣∣∣∣ |ζ ′(a)| ≪ (log qT )3,

where Λ(m) is the von-Mangoldt function. To estimate the integral on
the horizontal line, we will show the following lemma.

Lemma 5.2.1. Let χ be a primitive character, then∫ a

1−a
L′(σ + iT, χ)dσ ≪

√
qT log qT.

Proof. Let

δ =
1

log qT
.
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Then L(w, χ) is analytic on the disk |s − w| ≤ δ, for s = σ + iT with
1− a ≤ σ ≤ a. Therefore, by Cauchy’s integral formula,

L′(s, χ) =
1

2πi

∫
|s−w|=δ

L(w, χ)

(s− w)2
dw

≪ log qT

∫ 2π

0

|L(s+ δeiθ, χ)|dθ.

Thus it suffices to prove that∫ a

1−a

∫ 2π

0

|L(s+ δeiθ, χ)|dθdσ =

∫ 2π

0

∫ a

1−a
|L(s+ δeiθ, χ)|dσdθ ≪

√
qT .

From the functional equation and, for 1− a ≤ σ ≤ 1/2, we have

∫ 1
2

1−a
|L(s+ δeiθ, χ)|dσ

=

∫ 1
2

1−a
|∆(s+ δeiθ, χ)L(1− s− δeiθ, χ)|dσ

=

∫ a

1
2

∣∣∆(1− σ + iT + δeiθ, χ)L(σ − iT − δeiθ, χ)
∣∣ dσ.

On the second equality, we change the variable σ to 1− σ. Since

∆(1− (σ − iT − δeiθ), χ)

= ∆(1− (σ + iT − δe−iθ), χ)

=
τ(χ)
√
q
e
πi
4

(
qT

2π

)σ−δ cos θ− 1
2

exp

(
iT log

qT

2πe

)(
1 +O

(
1

T

))
by Lemma 5.1.1, the integral can be bounded by

∫ a

1
2

(qT )σ−δ cos θ−
1
2

∣∣L(σ + iT − δe−iθ, χ)
∣∣ dσ.

Therefore we obtain
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∫ a

1−a
|L(s+ δeiθ, χ)|dσ

≪
∫ a

1
2

|L(σ + iT + δeiθ, χ)|dσ

+

∫ a

1
2

(qT )σ−δ cos θ−
1
2

∣∣L(σ + iT − δe−iθ, χ)
∣∣ dσ

≪
∫ a

1
2

(qT )σ−
1
2

∣∣L(σ + iT ± δe±iθ, χ)
∣∣ dσ.

On the last inequality, we use the facts that

(qT )δ = e

with δ = (log qT )−1. This integral is

=

{∫ 1

1
2

+

∫ a

1

}
(qT )σ−

1
2

∣∣L(σ + iT ± δe±iθ, χ)
∣∣ dσ

= S1 + S2,

say. Using Lemma 5.1.2, we have

S1 ≪ (qT )−
1
2

∑
n≪

√
qT

nδ
∫ 1

1
2

(
qT

n

)σ
dσ +

∑
n≪

√
qT

nδ−1

∫ 1

1
2

nσdσ

+
√
q log 2T

∫ 1

1
2

(qT )
σ+δ−1

2 dσ ≪
√
qT .

On the other hand, by (5.1.9), we get

S2 ≪ (qT )−
1
2

∑
n≤ qT

2

nδ
∫ a

1

(
qT

n

)σ
dσ +

√
qT

∫ a

1

dσ

σ

≪
√
qT .

Hence we complete the proof. □
By (5.1.8) and the above lemma, we get

I3 + I4 ≪ (log qT )2
∫ a

1−a
|L′(σ + iT, χ)|dσ

≪
√
qT (log qT )3.

Now we consider I2. By the functional equation, we have
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L′

L
(1− a+ it, χ)L′(1− a+ it, χ)

=

(
∆′

∆
(1− a+ it, χ)− L′

L
(a− it, χ)

)
× (∆′(1− a+ it, χ)L(a− it, χ)−∆(1− a+ it, χ)L′(a− it, χ))

=
∆′

∆
(1− a+ it, χ)∆′(1− a+ it, χ)L(a− it, χ)

− 2∆′(1− a+ it, χ)L′(a− it, χ)

+ ∆(1− a+ it, χ)
L′

L
(a− it, χ)L′(a− it, χ).

Thus we can divide I2 into the following three integrals:

I2 =
1

2π

∫ b

T

L′

L
(1− a+ it, χ)L′(1− a+ it, χ)dt

=
1

π

∫ T

b

∆′(1− a+ it, χ)L′(a− it, χ)dt

− 1

2π

∫ T

b

∆′

∆
(1− a+ it, χ)∆′(1− a+ it, χ)L(a− it, χ)dt

− 1

2π

∫ T

b

∆(1− a+ it, χ)
L′

L
(a− it, χ)L′(a− it, χ)dt

= J1 + J2 + J3,

say. We take complex conjugates of Ji (i = 1, 2, 3) to apply Lemma
5.1.3. Then we have

J1 =
1

π

∫ T

b

∆′(1− a+ it, χ)L′(a− it, χ)dt

=
1

π

∫ T

b

∆′(1− a− it, χ)L′(a+ it, χ)dt

= − 1

π

∫ T

b

L′(a+ it, χ)∆(1− a− it, χ) log
qt

2π
dt

+O

(
∞∑
n=1

log n

na

∫ T

b

(qt)a−
1
2

t
dt

)

=
1

π

∫ T

b

∞∑
n=1

χ(n) log n

na+it
∆(1− a− it, χ) log

qt

2π
dt
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+O
(
(qT )a−

1
2 (log qT )2

)
= 2

τ(χ)

q

∑
1≤n≤qT/2π

χ(n)e

(
−n
q

)
(log n)2 +O

(
(qT )a−

1
2 (log qT )3

)
.

On the third equality, we use the approximation (5.1.2). For conve-
nience, we put x = qT/2π. By partial summation, the above sum can
be calculated as

∑
1≤n≤x

χ(n)e

(
−n
q

)
(log n)2

= (log x)2
q∑

m=1

χ(m)e

(
−m
q

) ∑
n≤x

n≡m mod q

1

− 2

∫ x

1

 q∑
m=1

χ(m)e

(
−m
q

) ∑
n≤y

n≡m mod q

1

 log y

y
dy

=

(
x

q
χ(−1)τ(χ) +O(

√
q)

)
(log x)2

− 2

∫ x

1

(
y

q
χ(−1)τ(χ) +O(

√
q)

)
log y

y
dy

=
χ(−1)τ(χ)

q

(
x(log x)2 − 2

∫ x

1

log ydy

)
+O

(
√
q(log x)2 +

√
q

∫ x

1

log y

y
dy

)
=
χ(−1)τ(χ)

q

(
x(log x)2 − 2x log x+ 2x

)
+O

(√
q(log x)2

)
,

and we can see that

χ(−1)τ(χ)τ(χ)

q2
=
τ(χ)τ(χ)

q2
=

q

q2
=

1

q
.

Therefore we obtain

J1 = 2

(
T

2π

(
log

qT

2π

)2

− T

π
log

qT

2π
+
T

π

)
+O

(
(qT )a−

1
2 (log qT )3

)
.

Next we consider J2. We have, by (5.1.2) again,
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J2 = − 1

2π

∫ T

b

∆′

∆
(1− a+ it, χ)∆′(1− a+ it, χ)L(a− it, χ)dt

= − 1

2π

∫ T

b

L(a+ it, χ)
∆′

∆
(1− a− it, χ)∆′(1− a− it, χ)dt

= − 1

2π

∫ T

b

∞∑
n=1

χ(n)

na+it
∆(1− a− it, χ)

(
log

qt

2π

)2

dt

+O

(
∞∑
n=1

1

na

∫ T

b

(qt)a−
1
2
log qt

t
dt

)

= −τ(χ)
q

∑
1≤n≤qT/2π

χ(n)e

(
−n
q

)
(log n)2 +O

(
(qT )a−

1
2 (log qT )3

)
.

This sum is the same as the previous one. Hence we get

J2 = −

(
T

2π

(
log

qT

2π

)2

− T

π
log

qT

2π
+
T

π

)
+O

(
(qT )a−

1
2 (log qT )3

)
.

Finally, we calculate J3. We have

J3 = − 1

2π

∫ T

b

∆(1− a+ it, χ)
L′

L
(a− it, χ)L′(a− it, χ)dt

= − 1

2π

∫ T

b

L′

L
(a+ it, χ)L′(a+ it, χ)∆(1− a− it, χ)dt

= − 1

2π

∫ T

b

(
∞∑
n=1

χ(n)Λ(n)

na+it

)(
∞∑
n=1

χ(n) log n

na+it

)
∆(1− a− it, χ)dt

= −τ(χ)
q

∑
1≤mn≤qT/2π

χ(mn)e

(
−mn

q

)
Λ(m) log n

+O
(
(qT )a−

1
2 (log qT )3

)
.

By the orthogonality of Dirichlet characters, we see that
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∑
mn≤x

χ(m)χ(n)e

(
−mn

q

)
Λ(m) log n

=

q∑
a=1

χ(a)

q∑
b=1

χ(b)e

(
−ab
q

) ∑
mn≤x

m≡a mod q
n≡b mod q

Λ(m) log n

=
1

φ(q)2

∑
ψ mod q
ψ′ mod q

q∑
a=1

ψ(a)χ(a)

q∑
b=1

ψ′(b)χ(b)e

(
−ab
q

)

×
∑
mn≤x

ψ(m)ψ′(n)Λ(m) log n.

We will divide the sum into four parts, according to the following
conditions:

(i) ψ = ψ0, ψ
′ = ψ′

0,
(ii) ψ = ψ0, ψ

′ ̸= ψ′
0,

(iii) ψ ̸= ψ0, ψ
′ = ψ′

0,
(iv) ψ ̸= ψ0, ψ

′ ̸= ψ′
0,

where ψ0 = ψ′
0 is the principal character modulo q. Before discussing

further, we will remind some facts on the sum of Dirichlet characters
(see [2, Sec. 8]). We define G(n, χ) as

G(n, χ) :=

q∑
a=1

χ(a)e

(
an

q

)
.

If a Dirichlet character χ (mod q) is primitive, then we have

G(a, χ) = χ(a)τ(χ).

Now we consider the above four parts.
(i) In this case, we have

1

φ(q)2

q∑
a=1

χ(a)

q∑
b=1

χ(b)e

(
−ab
q

) ∑
mn≤x

ψ0(m)ψ0(n)Λ(m) log n

=
1

φ(q)2

q∑
a=1

χ(a)G(−a, χ)
∑
mn≤x

ψ0(m)ψ0(n)Λ(m) log n

=
χ(−1)τ(χ)

φ(q)

∑
mn≤x

ψ0(m)ψ0(n)Λ(m) log n.
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By Perron’s formula we get∑
mn≤x

ψ0(m)Λ(m)ψ0(n) log n

=
1

2πi

∫ a+iU

a−iU

L′

L
(s, ψ0)L

′(s, ψ0)
xs

s
ds+R,

where R is the error term appearing in Perron’s formula (see [30,
p.140]) and satisfies that

R ≪
∑

x
2
<mn<2x
mn ̸=x

|Λ(m) log n|min

(
1,

x

U |x−mn|

)

+
(4x)a

U

∞∑
mn=1

|Λ(m) log n|
(mn)a

.

We will choose an appropriate U later. The first term of the error term
R can be estimated as follows;

x

U

∑
x
2
<mn<x−1

Λ(m) log n

x−mn
+

∑
x−1≤mn≤x+1

Λ(m) log n

+
x

U

∑
x+1<mn<2x

Λ(m) log n

mn− x

≪ x

U
log x

∑
m<x−1

Λ(m)

m

∑
x

2m
<n<x−1

m

1
x
m
− n

+ (log x)2
∑

x−1≤l≤x+1

∑
l=mn

1

+
x

U
log x

∑
m<2x

Λ(m)

m

∑
x+1
m

<n< 2x
m

1

n− x
m

≪ x

U
(log x)2

∑
m<2x

Λ(m)

m
+ (log x)2

∑
x−1≤l≤x+1

d(l)

≪ x

U
(log x)3 + xε,

where d(l) is the divisor function. On the last estimates, we use∑
m≤x

Λ(m)

m
= log x+O(1)

and
d(x) ≪ xε.
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The second is

≪ (4x)a

U

∞∑
mn=1

|Λ(m) log n|
(mn)a

≪ xa

U
(log qT )3.

Therefore
R ≪ x

U
(log x)3 + xε.

Since L(s, ψ0) = ζ(s)
∏

p|q(1 − p−s), there is an absolute constant
C > 0 such that

L(s, ψ0) ≠ 0 for σ ≥ 1− C

log(|t|+ 2)

(see [30, p.172]). With regard to this zero-free region for L(s, ψ0), let
a′ = 1− C/ logU and U = exp

(
4c1

√
log qT

)
. By the residue theorem,

the integral is

1

2πi

∫ a+iU

a−iU

L′

L
(s, ψ0)L

′(s, ψ0)
xs

s
ds

= Res
s=1

L′

L
(s, ψ0)L

′(s, ψ0)
xs

s

+
1

2πi

{∫ a′+iU

a+iU

+

∫ a′−iU

a′+iU

+

∫ a−iU

a′−iU

}
L′

L
(s, ψ0)L

′(s, ψ0)
xs

s
ds.

By an argument similar to the proof of Lemma 5.2.1, we can see that
the integral on the horizontal line can be estimated as

∫ a′±iU

a±iU

L′

L
(s, ψ0)L

′(s, ψ0)
xs

s
ds≪ (log qU)3

U
xa(qU)

3
16

+ε(a− a′)

≪ xU− 1
2 = x exp

(
−2c1

√
log x

)
,

noting the condition q ≤ exp
(
c1
√
log T

)
≤ exp

(
4c1

√
log qT

)
= U and

(5.1.8). Since L′/L(s, ψ0) ≪ |s− 1|−1 and L′(s, ψ0) ≪ |s− 1|−2 in the
neighbourhood around s = 1, the integral on the vertical line can be
bounded by

≪ xa
′
(qU)

3
16

+ε(log qU)3
∫ U

−U

dt

1 + |t|
+ xa

′
(log qU)3

∫ 1

−1

dt

|a′ + it|
≪ xa

′
(qU)

3
16

+ε(logU)4

≪ xa
′
U

1
2 = x exp

((
2c1 −

C

4c1

)√
log x

)
.
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When we put c1 =
√
C/4, we obtain that

1

2πi

∫ a+iU

a−iU

L′

L
(s, ψ0)L

′(s, ψ0)
xs

s
ds

= Res
s=1

L′

L
(s, ψ0)L

′(s, ψ0)
xs

s
+O

(
x exp

(
−
√
C

2

√
log x

))
.

Note that

Res
s=1

L′

L
(s, ψ0)L

′(s, ψ0)
xs

s

=
1

2!
lim
s→1

d2

ds2
(s− 1)3

L′

L
(s, ψ0)L

′(s, ψ0)
xs

s
.

To calculate this residue, we observe that

L′(s, ψ0) = ζ ′(s)
∏
p|q

(1− p−s) + ζ(s)

∏
p|q

(1− p−s)

′

=

(
− 1

(s− 1)2
+

∞∑
k=1

γkk(s− 1)k−1

)∏
p|q

(1− p−s)

+

(
1

s− 1
+

∞∑
k=0

γk(s− 1)k

)∏
p|q

(1− p−s)
∑
p|q

log p

ps − 1


and

L′

L
(s, ψ0) =

ζ ′

ζ
(s) +

∑
p|q

log p

ps − 1

= − 1

s− 1
+

∞∑
k=0

ηk(s− 1)k +
∑
p|q

log p

ps − 1
,

where γk is the k-th Stieltjes constant and can be defined by the limit

γk = lim
n→∞

{(
n∑

m=1

(logm)k

m

)
− (log n)k+1

k + 1

}
,

and ηk can be represented by the sum

ηk = (−1)k

{
k + 1

k!
γk +

k−1∑
n=0

(−1)n−1

(k − n− 1)!
ηnγk−n−1

}
.

Hence we get
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Res
s=1

L′

L
(s, ψ0)L

′(s, ψ0)
xs

s

=
1

2!
lim
s→1

d2

ds2

∏
p|q

(
1− 1

ps

)
xs

s

− 2

2!
lim
s→1

d

ds

∏
p|q

(1− p−s)

∑
p|q

log p

ps − 1
+ η0 +

∑
p|q

log p

ps − 1

 xs

s

− 2

2!
lim
s→1

∏
p|q

(
1− 1

ps

)γ1 + γ0
∑
p|q

log p

ps − 1
+ η1

−
∑
p|q

log p

ps − 1

η0 +∑
p|q

log p

ps − 1

 xs

s

=
φ(q)

q
x

×

1

2
(log x)2 −

∑
p|q

log p

p− 1
+ γ0 + 1

 log x− 1

2

∑
p|q

log p

p− 1

2

+
3

2

∑
p|q

p

(
log p

p− 1

)2

+ (1− γ0)
∑
p|q

log p

p− 1
+ γ20 + γ0 − 3γ1 + 1

 .

Therefore we can see that

χ(−1)τ(χ)

φ(q)

∑
mn≤x

ψ0(m)ψ0(n)Λ(m) log n

=
τ(χ)

q
x

×

1

2
(log x)2 −

∑
p|q

log p

p− 1
+ γ0 + 1

 log x− 1

2

∑
p|q

log p

p− 1

2

+
3

2

∑
p|q

p

(
log p

p− 1

)2

+ (1− γ0)
∑
p|q

log p

p− 1
+ γ20 + γ0 − 3γ1 + 1


+O

(
x exp

(
−
√
C

2

√
log x

))
.
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Here we note that τ(χ)/φ(q) ≪ 1.
(ii) In the same way, we obtain

1

φ(q)2

∑
ψ′ mod q
ψ′ ̸=ψ′

0

q∑
b=1

ψ′(b)χ(b)

q∑
a=1

χ(a)e

(
−ab
q

)

×
∑
mn≤x

ψ0(m)ψ′(n)Λ(m) log n

=
χ(−1)τ(χ)

φ(q)2

∑
ψ′ ̸=ψ′

0

q∑
b=1

ψ′(b)
∑
mn≤x

ψ0(m)ψ′(n)Λ(m) log n.

The sum of ψ′ is 0. Hence we see that the sum in this case vanishes.
(iii) This case is the same as the case (ii).
(iv)

1

φ(q)2

∑
ψ ̸=ψ0

ψ′ ̸=ψ′
0

q∑
a=1

ψ(a)χ(a)

q∑
b=1

ψ′(b)χ(b)e

(
−ab
q

)

×
∑
mn≤x

ψ(m)ψ′(n)Λ(m) log n

=
1

φ(q)2

∑
ψ ̸=ψ0

ψ′ ̸=ψ′
0

q∑
a=1

ψ(a)χ(a)ψ′(−a)χ(−a)τ(ψ′χ)

×
∑
mn≤x

ψ(m)ψ′(n)Λ(m) log n

=
χ(−1)

φ(q)2

∑
ψ ̸=ψ0

ψ′ ̸=ψ′
0

q∑
a=1

ψ(a)ψ′(−a)τ(ψ′χ)
∑
mn≤x

ψ(m)ψ′(n)Λ(m) log n

=
χ(−1)

φ(q)2

∑
ψ ̸=ψ0

ψ′ ̸=ψ′
0

ψ′(−1)τ(ψ′χ)

q∑
a=1

ψ(a)ψ′(a)
∑
mn≤x

ψ(m)ψ′(n)Λ(m) log n

=
χ(−1)

φ(q)

∑
ψ ̸=ψ0

ψ(−1)τ(ψχ)
∑
mn≤x

ψ(m)ψ(n)Λ(m) log n.

To show the last equality, we use the fact that the sum over a does not
equal to 0 if and only if ψ = ψ′.
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In this case, we know the fact that there is an absolute constant
C ′ > 0 such that

L(s, χ) ̸= 0 for σ > 1− C ′

log q(|t|+ 2)

unless χ is a quadratic character, in which case L(s, χ) has at most one,
necessarily real, zero β < 1 (see [30, p. 360]). By the same argument

as in the case (i), when we put c1 =
√
C ′/4 we have∑

mn≤x

ψ(m)Λ(m)ψ(n) log n

= −L′(β, ψ)
xβ

β
+O

(
x exp

(
−
√
C ′

2

√
log x

))
when L(s, ψ) with a quadratic character ω has an exceptional zero β. If
there is no exceptional zero, then the first term vanishes. Hence when
L(s, ω) has an exceptional zero β we have

χ(−1)

φ(q)

∑
ψ≠ψ0

ψ(−1)τ(ψχ)
∑
mn≤x

ψ(m)ψ(n)Λ(m) log n

= −χ(−1)

φ(q)
ω(−1)τ(ωχ)L′(β, ω)

xβ

β
+O

(
√
qx exp

(
−
√
C ′

2

√
log x

))
,

otherwise the main term does not appear.
From the above, when we put c1 = min{

√
C/4,

√
C ′/4} and c =

c1/2, we have

J3

= − T

2π

1

2

(
log

qT

2π

)2

−

∑
p|q

log p

p− 1
+ γ0 + 1

 log
qT

2π

− 1

2

∑
p|q

log p

p− 1

2

+
3

2

∑
p|q

p

(
log p

p− 1

)

+(1− γ0)
∑
p|q

log p

p− 1
+ γ20 + γ0 + γ1 + 1


+
ωχ(−1)τ(χ)τ(ωχ)

qφ(q)

L′(β, ω)

β

(
qT

2π

)β
+O

(
T exp

(
−c
√
log T

))
.

We note that τ(χ)
√
q/q ≪ 1.
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To complete the proof, we take away the condition on T . When
T increases continuously in |T − γχ| ≪ (log qT )−1, the number of rel-
evant L′(ρχ, χ) is at most O(log qT ) and the order of each term is

O((qT )
3
16

+ε). Thus the contribution of these terms is smaller than the
error in our main theorem. Therefore the proof in the unconditional
case is completed.

5.3. The conditional estimate

In this section, we assume the GRH.We choose a′ = 1/2+(log qT )−1

and U = qT . In the case (i), by Cauchy’s theorem,

1

2πi

∫ a+iU

a−iU

L′

L
(s, ψ0)L

′(s, ψ0)
xs

s
ds

= Res
s=1

L′

L
(s, ψ0)L

′(s, ψ0)
xs

s

+
1

2πi

{∫ a′+iU

a+iU

+

∫ a′−iU

a′+iU

+

∫ a−iU

a′−iU

}
L′

L
(s, ψ0)L

′(s, ψ0)
xs

s
ds,

The integral on the horizontal line is∫ a±iU

a′±iU

L′

L
(s, ψ0)L

′(s, ψ0)
xs

s
ds≪ xa

U
(qU)ε(log qU)3 ≪ (qT )ε.

As for the vertical line, we note that

L′

L
(s, ψ0) =

ζ ′

ζ
(s) +

∑
p|q

log p

ps − 1
≪ log 2q

for s = a′ + it and 0 ≤ |t| ≤ 1. Thus we have∫ a′+iU

a′−iU

L′

L
(s, ψ0)L

′(s, ψ0)
xs

s
ds

= i

∫ U

−U

L′

L
(a′ + it, ψ0)L

′(a′ + it, ψ0)
xa

′+it

a′ + it
dt

≪ xa
′
(log qU)3

∫ U

1

(qt)ε

t
dt+ xa

′
(log 2q)2

∫ 1

−1

qε

a′
dt

≪ (qT )
1
2
+ε.

Concerning the case (iv), we can see that∑
nm≤x

ψ(m)Λ(m)ψ(n) log n≪ (qT )
1
2
+ε
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by a similar argument. Therefore we can replace the error term in our
theorem by (qT )

1
2
+ε.

5.4. The Details of Remark 5.0.1

We consider the case when q is a prime power. Let q = pα, a′ =
−(log qT )−1 = 1 − a and U = qT . In the case (i), by the residue
theorem

1

2πi

∫ a+iU

a−iU

L′

L
(s, ψ0)L

′(s, ψ0)
xs

s
ds

= Res
s=1

L′

L
(s, ψ0)L

′(s, ψ0)
xs

s
+Res

s=0

L′

L
(s, ψ0)L

′(s, ψ0)
xs

s

+
∑
ρ ̸=0

|ℑρ|≤U

L′(ρ, ψ0)
xρ

ρ

+
1

2πi

{∫ a′+iU

a+iU

+

∫ a′−iU

a′+iU

+

∫ a−iU

a′−iU

}
L′

L
(s, ψ0)L

′(s, ψ0)
xs

s
ds,

where ρ runs over the zeros of L(s, ψ0). With regard to the residue at
s = 0, we can see that

L′

L
(s, ψ0) =

ζ ′

ζ
(s) +

log p

ps − 1
(q = pα)

and

log p

ps − 1
=

1

s
· s log p

es log p − 1
=

1

s

∞∑
n=0

Bn

n!
(s log p)n,

where Bn is the n-th Bernoulli number, and hence we have

Res
s=0

L′

L
(s, ψ0)L

′(s, ψ0)
xs

s

= lim
s→0

d

ds
s
L′

L
(s, ψ0)L

′(s, ψ0)x
s

= lim
s→0

d

ds
s

(
ζ ′

ζ
(s) +

1

s

∞∑
n=0

Bn

n!
(s log p)n

)
L′(s, ψ0)x

s

= L′′(0, ψ0) +

(
ζ ′

ζ
(0) +B1 log p+ log x

)
L′(0, ψ0)

= 3ζ ′(0) log p− 3

2
ζ(0)(log p)2 + ζ(0) log x≪ (log qT )2.
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The integral on the horizontal line is∫ a±iU

1−a±iU

L′

L
(s, ψ0)L

′(s, ψ0)
xs

s
ds

≪

{∫ a±iU

1
2
±iU

+

∫ 1
2
±iU

1−a±iU

}
L′

L
(s, ψ0)L

′(s, ψ0)
xs

s
ds

≪ xa

U
(qU)ε(log qU)3 +

x
1
2

U
(qU)

1
2 (log qU)4

≪ (qU)ε(log qU)3 +
√
q(log qU)4.

On the integral along the vertical line, since |s − ρψ0| ≫ 1, by
(5.1.5), we can see that

L′

L
(s, ψ0) ≪ log q(|t|+ 2).

Therefore we have∫ 1−a+iU

1−a−iU

L′

L
(s, ψ0)L

′(s, ψ0)
xs

s
ds

= i

∫ U

−U

L′

L
(1− a+ it, ψ0)L

′(1− a+ it, ψ0)
x1−a+it

1− a+ it
dt

≪ (log qU)2
∣∣∣∣∫ U

−U
ζ(1− a+ it)

dt

1− a+ it

∣∣∣∣
≪ (log qU)2

(
logU

∫ U

1

t−
1
2dt+

∫ 1

−1

dt

|1− a+ it|

)
≪

√
U(log qU)3.

Here we use the well-known estimate

ζ(s) ≪ (|t|+ 2)
1
2 log(|t|+ 2) for − 1

log T
≤ σ <

1

2
.

The sum over ρ consists of two sums as∑
ρ̸=0

|ℑρ|≤U

L′(ρ, ψ0)
xρ

ρ
=
∑
|γ|≤U

L′
(
1

2
+ iγ, ψ0

)
x

1
2
+iγ

1
2
+ iγ

+
∑

| 2πk
log p |≤U
k ̸=0

L′
(
2πik

log p
, ψ0

)
x

2πk
log p

i log p

2πik

= S1 + S2,
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say. Since

L′
(
1

2
+ iγ, ψ0

)
= ζ ′

(
1

2
+ iγ

)(
1− p−

1
2
−iγ
)
,

we have

S1 ≪ x
1
2

∑
γ≤U

∣∣L′ (1
2
+ iγ, ψ0

)∣∣
γ

≪ x
1
2

(∑
γ≤U

∣∣ζ ′ (1
2
+ iγ

)∣∣2
γ

) 1
2
(∑
γ≤U

1

γ

) 1
2

≪ x
1
2 (logU)

7
2

by partial summation and the fact that

∑
0<γ≤T

∣∣∣∣ζ ′(1

2
+ iγ

)∣∣∣∣2 ≍ T (log T )4 (5.4.1)

proved by Gonek [10].
On the other hand, since

L′
(
2πik

log p
, ψ0

)
= ζ

(
2πik

log p

)
log p,

we see that

S2 ≪ (log p)2
∑

2πk
log p

≤U

∣∣∣ζ (2πik
log p

)∣∣∣
2πk

≪
√
U logU(log q)2

by the estimate

ζ(s) ≪ (|t|+ 2)
1
2 log(|t|+ 2) for − 1

log T
≤ σ <

1

2
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again. Therefore we can see that

χ(−1)τ(χ)

φ(q)

∑
mn≤x

ψ0(m)ψ0(n)Λ(m) log n

=
τ(χ)

q
x

1

2
(log x)2 −

∑
p|q

log p

p− 1
+ γ0 + 1

 log x

− 1

2

∑
p|q

log p

p− 1

2

+
3

2

∑
p|q

p

(
log p

p− 1

)2

+(1− γ0)
∑
p|q

log p

p− 1
+ γ20 + γ0 − 3γ1 + 1

+O
(
x

1
2 (logU)

7
2

)
.

As for the case (iv), we need to deal with the Dirichlet L-functions
with primitive and also imprimitive characters. However, it is sufficient
to consider these with only primitive characters, for we put q = pα. For
primitive characters, the integral on the vertical line can be estimated
as ∫ 1−a+iU

1−a−iU

L′

L
(s, ψ)L′(s, ψ)

xs

s
ds

=

∫ 1−a+iU

1−a−iU
∆(s, ψ)

{(
∆′

∆
(s, ψ)

)2

L(1− s, ψ)

−2
∆′

∆
(s, ψ)L′(1− s, ψ) +

L′

L
(1− s, ψ)L′(1− s, ψ)

}
xs

s
ds

≪ qa−
1
2

∣∣∣∣∫ U

−U

(
ta−

1
2 exp

(
it log

2πe

qt

)
+O(ta−

3
2 )

)
×
(
(log qU)2L(a− it, ψ) +

L′

L
(a− it, ψ)L′(a− it, ψ)

)
x1−a+it

1− a+ it
dt

∣∣∣∣
≪ x1−aqa−

1
2

×

(
(logU)2

∞∑
n=1

1

na

∣∣∣∣∫ U

1

(
ta−

3
2 exp

(
it log

2πexn

qt

)
+O(ta−

5
2 )

)
dt

∣∣∣∣
+

∞∑
m=2

Λ(m)

ma

∞∑
n=1

log n

na

×
∣∣∣∣∫ U

1

(
ta−

3
2 exp

(
it log

2πexmn

qt

)
+O(ta−

5
2 )

)
dt

∣∣∣∣)
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+O
(
qa−

1
2 (logU)3

)
.

Since
d2

dt2

(
t log

2πexn

qt

)
= −t−1,

by the second derivative test,∫ U

1

ta−
3
2 exp

(
it log

2πexn

qt

)
dt

≪
∑

l≤[logU ]+1

∫ U

2l−1

U

2l

ta−
3
2 exp

(
it log

2πexn

qt

)
dt

≪
∑

l≤[logU ]+1

1 ≪ logU.

Therefore we obtain∫ 1−a+iU

1−a−iU

L′

L
(s, ψ)L′(s, ψ)

xs

s
ds≪ qa−

1
2 (logU)4.

On the sum S1, we assume the estimate (5.0.1). By partial sum-
mation and this assumption, we have

S1 ≪ x
1
2

∑
0<γψ≤U

∣∣L′ (1
2
+ iγψ, ψ

)∣∣
γψ

≪ x
1
2

 ∑
0<γψ≤U

∣∣L′ (1
2
+ iγψ, ψ

)∣∣2
γψ

 1
2
 ∑

0<γψ≤U

1

γψ

 1
2

≪ x
1
2 (logU)

7
2 .

On the other hand, the counterpart of the sum S2 does not appear.
When ψ (mod q) is induced by ψ⋆ (mod d) with d | q, we see that

L(s, ψ) = L(s, ψ⋆)
∏
p|q
p∤d

(
1− ψ⋆(p)

ps

)
.

However we assume that q = pα. Thus the product on the right-hand
side is 1. Hence there are no zeros on the imaginary axis.

Therefore we can replace the estimate of the error term by√
qT (log qT )

7
2 .
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