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Abstruct

The moduli space of spatial polygons is known as a symplectic manifold equipped with both Kähler
and real polarizations. In this paper, associated to the Kähler and real polarizations, morphisms of
operads fK¥ah and fre are constructed by using the quantum state spaces ℋK¥ah and ℋre, respectively.
Moreover, the relationship between the two morphisms of operads fK¥ah and fre is studied and then the
equality dimℋK¥ah = dimℋre is proved in general setting. This operadic framework is regarded as
a development of the recurrence relation method by Kamiyama [7] for proving dimℋK¥ah = dimℋre
in a special case.

2020 Mathematics Subject Classification: Primary 53D50 Secondary 53D20, 18M60



Contents

1 Introduction 1

2 Preliminaries 4
2.1 Rooted ribbon trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Operads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 The Kähler polarization 11
3.1 Quantization via the Kähler polarization . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 The morphism of operads associated to the Kähler polarization . . . . . . . . . . . 13

4 The real polarization 15
4.1 The bending system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 The morphism of operads associated to the real polarization . . . . . . . . . . . . 17

5 The proof of the main theorem 23

1 Introduction

In physics, quantization is known as the method of obtaining a theory of quantum mechanics from that
of classical mechanics and the various techniques of quantization have been developed. On the other
hand, geometric quantization is a mathematical attempt to describe quantization in a coordinate-free
form in terms of symplectic geometry. The naive goal is that for a given symplectic manifold
(𝑀, 𝜔) one constructs a linear mapping 𝑓 ↦→ 𝑓 from the Poisson algebra of smooth functions on
𝑀 defined by the symplectic structure to the set of self-adjoint operators on a certain Hilbert space
called a quantum Hilbert space, which fulfills some conditions. However, it is known as a theorem
by Groenewold and van Hove (see [1, 5.4.9 Theorem] for example) that the correspondence 𝑓 ↦→ 𝑓
does not exist in general, thus the several modifications have been proposed by many people. For
more details, see e.g. Kirillov [9] and Woodhouse [19].

In this paper, we will pay attention to only the first step of geometric quantization: the process to
construct an underlying vector space ℋ of a quantum Hilbert space for a given symplectic manifold
(𝑀, 𝜔). From a general framework of the Souriau-Kostant prequantization (see [9, Subsection 2.2]
for example), the symplectic structure 𝜔 is required to define an integral cohomology class, which
enables us to take a prequantum line bundle 𝐿 → (𝑀, 𝜔), that is, a complex line bundle 𝐿 over 𝑀
such that the first Chern class is given by the cohomology class of 𝜔. Moreover, an additional datum
called a polarization is needed to construct the vector space ℋ and then it is defined as a space of
flat sections of 𝐿 along the polarization. Based on the perspective of physics, whatever polarization
we choose, the resulting vector spaceℋ is believed to be unique up to isomorphism. We refer to this
guiding principle as the principle of “invariance of polarization” after Guillemin and Sternberg [4].

Among polarizations, the following two types are important: a Kähler polarization and a real
polarization. A Kähler polarization is given by a compatible complex structure of (𝑀, 𝜔) and then,
the corresponding vector space is defined to be the space of holomorphic sections of 𝐿

ℋK¥ah = 𝐻0(𝑀, O𝐿).
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On the other hand, a real polarization is given by a (singular) Lagrangian fibration 𝜋 : 𝑀 → 𝐵
over a manifold 𝐵 of the half real dimension of 𝑀 and then, the corresponding vector space is defined
to be

ℋre =
⊕

𝑝∈Im(𝜋)
Γflat(𝐿 |𝜋−1 (𝑝) ),

where Γflat(𝐿 |𝜋−1 (𝑝) ) is the space of global flat sections of the restriction of 𝐿 to 𝜋−1(𝑝). A point
𝑝 ∈ Im(𝜋) is called a Bohr-Sommerfeld point if the space Γflat(𝐿 |𝜋−1 (𝑝) ) is non-trivial. Let 𝐵𝑆
denote the set of Bohr-Sommerfeld points. Now, by the principle of “invariance of polarization”, we
expect the following equalities

dim𝐻0(𝑀, O𝐿) = dimℋK¥ah = dimℋre = # 𝐵𝑆

and in fact, this is observed rigorously in several cases. The typical example is the case when 𝑀
is a toric manifold, where we consider a toric manifold as a symplectic manifold equipped with
both Kähler and real polarizations by its canonical Kähler structure and the momentum map of
the Hamiltonian torus action. The cases when 𝑀 is an “almost” toric manifold such as a complex
flag manifold with the Gelfand-Cetlin system [4] or the moduli space of 𝑆𝑈 (2)-flat bundles on a
compact Riemann surface with the Goldman system [5] are also known. In these examples, a Bohr-
Sommerfeld point can be characterized as a lattice point in (the closure of) the moment polytope.
In this paper, we focus on the case of “almost” toric manifolds called the moduli space of spatial
polygons with the bending system. From now on, we consider dimℋre as the number of lattice points
in (the closure of) the moment polytope.

Let 𝑛 ≥ 3 and 𝒓 = (𝑟0, . . . , 𝑟𝑛−1) ∈ R𝑛>0. The moduli space of spatial 𝑛-gons with edge-lengths
𝒓 or simply the polygon space is defined as the following space

M(𝒓) =
{
𝒖 = (𝑢0, . . . , 𝑢𝑛−1) ∈ 𝑆2(𝑟0) × · · · × 𝑆2(𝑟𝑛−1)

�� 𝑢0 + · · · + 𝑢𝑛−1 = 0
}/

𝑆𝑂 (3),

where 𝑆2(𝑟𝑖) is a sphere of radius 𝑟𝑖 in R3 with the standard 𝑆𝑂 (3)-action and we take the quotient
by the diagonal action. (Unless otherwise noted, we assume that M(𝒓) is not empty.) Here we　
assume

±𝑟0 ± · · · ± 𝑟𝑛−1 ≠ 0, (1.1)

which guarantees that M(𝒓) is a smooth manifold of real dimension 2𝑛 − 6. Then the integral
condition on the edge-length 𝒓 ∈ Z𝑛>0 together with the condition (1.1) endows the polygon space
M(𝒓) with a natural setting of geometric quantization via a Kähler polarization, namely a Kähler
structure and a prequantum line bundle L(𝒓) → M(𝒓) (see Subsection 3.1).

On the other hand, a real polarization on the polygon space was introduced by Kapovich and
Millson [8]. They considered the functions

𝑏𝑖 : M(𝒓) −→ R ; [𝒖] ↦−→ ‖𝑢0 + · · · + 𝑢𝑖 ‖ (1.2)

of the 𝑖-th diagonal length for 𝑖 = 1, . . . , 𝑛 − 3 and constructed a Hamiltonian (𝑛 − 3)-torus action
on an open dense subset M ′(𝒓) of M(𝒓) such that the momentum map is given by the restriction of
the following map to M ′(𝒓)

𝜋𝒓 = (𝑏1, . . . , 𝑏𝑛−3) : M(𝒓) −→ R𝑛−3, (1.3)
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which is called the bending system. In this sense, the moduli space M(𝒓) with the bending system
can be considered as an “almost” toric manifold and then the number of lattice points in the closure
of the moment polytope is given by # Im(𝜋𝒓 ) ∩ Z𝑛−3.

The equation dimℋK¥ah = dimℋre on the moduli spaceM(𝒓) was first obtained by Kamiyama [7],
when 𝑛 ≥ 5 is odd and 𝒓 = (1, . . . , 1). We note that the condition (1.1) on the edge-lengths is
automatically satisfied in this case.

Theorem 1.1 (Kamiyama [7, Theorem A]) Suppose that 𝑛 ≥ 5 is odd and let M𝑛 = M(1, . . . , 1),
L𝑛 = L(1, . . . , 1), and 𝜋𝑛 = 𝜋 (1,...,1) . Then we have

dim𝐻0 (M𝑛,OL𝑛

)
= # Im(𝜋𝑛) ∩ Z𝑛−3 .

He first derived the recurrence relation (4.2) for the right hand side by changing two integer-valued
parameters of the polygon space: the number 𝑛 of edges and the first edge-length 𝑖. Then he showed
that the left hand side also satisfies the same relation and hence obtained Theorem 1.1.

The bending system (1.3) is known to be generalized to a map 𝜋𝒓𝑇 : M(𝒓) → R𝑛−3 associated
to any triangulation 𝑇 of 𝑛-gons (see [8], Subsection 4.1 for details). The aim of this paper is to
generalize Theorem 1.1 for more general 𝒓 ∈ Z𝑛>0 and any triangulation 𝑇 of 𝑛-gons. However,
Kamiyama’s argument above can not be applied to the case of any triangulation 𝑇 of 𝑛-gons literally.
The reason is as follows. The bending system (1.3) coincides with the map 𝜋𝒓𝑇 : M(𝒓) → R𝑛−3

when 𝑇 is a special triangulation of 𝑛-gons given by the (𝑛− 1)-caterpillar in Example 2.6. Then the
set {the 𝑛-caterpillar}𝑛≥4 has a canonical linear order by the number 𝑛 ≥ 4, which can be regarded
as a key point for deriving Kamiyama’s recurrence relation (4.2) on 𝑛 ≥ 4 and 𝑖 ≥ 0. In contrast, the
set of all triangulations does not have such a linear order.

Our idea to generalize Theorem 1.1 is to use the notion of operads after identifying a triangulation
of 𝑛-gons with its dual graph: a trivalent rooted ribbon (𝑛 − 1)-tree (see Section 2 for relevant
terminology). Here an operad is a language introduced by May[14] to describe the algebraic
structure of iterated loop spaces. Since 1990’s, not only in algebraic topology, but in a wide range of
fields operads have been recognized to be useful for interpreting various types of algebraic structures
(see e.g. [12, 13]). The fundamental algebraic structure of operads is the grafting operation. In
this paper, we will consider the operad of trivalent rooted ribbon trees, where its grafting operation
plays the role of the linear order in the caterpillar case. Then we can describe “recursive structures”
arising from the number of lattice points by morphisms of operads, which are main key players in
this paper. Indeed, from our framework of operads Kamiyama’s recurrence relation (4.2) is replaced
by the relations (4.4) and (4.5).

Now we will state the main result. We denote by RibTree3 = {RibTree3(𝑛)}𝑛≥1 the trivalent
rooted ribbon tree operad (Example 2.11) and by Corolla = {Corolla(𝑛)}𝑛≥1 the corolla operad
(Example 2.9). Let W(Z≥0) be a certain operad given in Definition 2.14, which consists of integer-
valued functions on a product space of Z≥0. Then, the main result in this paper is the following.

Theorem 1.2 We can associate non-trivial morphisms of operads fK¥ah : Corolla → W(Z≥0) and
fre : RibTree3 → W(Z≥0) to the Kähler and real polarizations on the polygon spaces respectively.
Furthermore, the morphism fre coincides with the pull-back of the morphism fK¥ah by a natural
morphism cont : RibTree3 → Corolla given in Example 2.16. In other words, we have the following
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commutative diagram:

RibTree3 fre //

cont
��

W(Z≥0)

Corolla
fK¥ah

77ooooooooooo

Theorem 1.2 yields the following corollary.

Corollary 1.3 Let 𝑛 ≥ 4, let 𝑇 be any trivalent rooted ribbon (𝑛 − 1)-tree (or any triangulation of
𝑛-gons), and let 𝒓 be any 𝑛-tuple of positive integers satisfying the condition (1.1). Then we have

dim𝐻0 (M(𝒓),OL(𝒓)
)
= # Im

(
𝜋𝒓𝑇

)
∩ Z𝑛−3 . (1.4)

As we already mentioned, the condition (1.1) on the edge-lengths is necessary for the polygon space
M(𝒓) to be a smooth manifold. In this sense, Corollary 1.3 completely generalizes Theorem 1.1.

This paper is organized as follows. After recalling and introducing basic preliminaries including
the definitions of the three operds Corolla, RibTree3, and W(Z≥0) in Section 2, we construct the
morphisms fK¥ah and fre in Sections 3 and 4 respectively. In Section 5, we complete the proofs of
Theorem 1.2 and Corollary 1.3.

Acknowledgments. I am very grateful to my supervisor, Prof. Hiroshi Ohta for his guidance and
helpful discussions. In particular, his comments led me to consider any trivalent tree in generalizing
Theorem 1.1, which is indispensable for our operadic formulation. I would also like to thank him
for suggesting many corrections in the manuscript. I also wish to thank Prof. Yasuhiko Kamiyama,
Prof. Hiroshi Konno, Prof. Yuichi Nohara, Prof. Tatsuru Takakura, and Prof. Takahiko Yoshida for
helpful comments in my talk about this paper in research seminars.

2 Preliminaries

In Section 2, we recall and fix terminology on trees and operads, and give examples for the later
sections. We refer to [12] and [13] for the materials in this section.

2.1 Rooted ribbon trees

A tree is a contractible CW-complex of dimension 1. All trees in this paper are assumed to be
compact. A vertex (resp. an edge) of a tree is a 0-cell (resp. an open 1-cell). A half-edge is a
connected subspace consisting of one edge and one vertex. A vertex 𝑣 and a half-edge ℎ (resp. an
edge 𝑒) are called adjacent if ℎ contains 𝑣 (resp. 𝑒 ∪ 𝑣 is connected). For any half-edge ℎ, we denote
by −ℎ the unique half-edge such that ℎ ∪ (−ℎ) is the closure of some edge. For a tree 𝑇 , we denote
by 𝑉 (𝑇) the set of vertices, by 𝐸 (𝑇) the set of edges, and by 𝐻 (𝑇) the set of half-edges. In addition,
for any vertex 𝑣, we denote by 𝐻𝑣 (𝑇) the set of half-edges adjacent to 𝑣 and by 𝑣𝑎𝑙 (𝑣) the number
#𝐻𝑣 (𝑇), which is called the valence of 𝑣. From now on, we assume that all trees have no vertex of
valence 2. First, we define a ribbon tree.

Definition 2.1 A ribbon tree is a tree 𝑇 where every vertex 𝑣 ∈ 𝑉 (𝑇) is equipped with a cyclic order
on 𝐻𝑣 (𝑇), namely a cyclic permutation 𝜎𝑣 ∈ 𝔖𝐻𝑣 (𝑇 ) of length 𝑣𝑎𝑙 (𝑣).
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A vertex 𝑣 is called external if 𝑣𝑎𝑙 (𝑣) = 1 and internal otherwise. A half-edge is called external
if the adjacent vertex is external, and an edge is internal if all the adjacent vertices are internal. We
denote by 𝐻ext(𝑇) the set of external half-edges and by 𝐸int(𝑇) the set of internal edges. Next, we
introduce a rooted ribbon tree.

Definition 2.2 (1) A rooted ribbon tree is a ribbon tree 𝑇 with a distinguished external half-edge,
called the root and denoted by 𝑟𝑇 . The adjacent vertex to the root is called the root vertex, denote by
𝑣𝑇 . The external half-edges except the root are called the leaves. We call a rooted ribbon tree with
𝑛 leaves simply a rooted ribbon 𝑛-tree.
(2) Let 𝑇 and 𝑆 be rooted ribbon trees. Then 𝑇 is isomorphic to 𝑆 if there exists an isomorphism
𝑓 : 𝑇 → 𝑆 of CW-complexes which preserves the roots and the cyclic orders at each vertex.

A rooted ribbon tree has a natural numbering on leaves due to its ribbon structure.

Definition 2.3 (1) Let 𝑇 be a ribbon tree. We define the permutation 𝜄 on 𝐻 (𝑇) as

𝜄(ℎ) = 𝜎𝑣 (−ℎ),

where 𝑣 is the vertex adjacent to the half-edge −ℎ. The set 𝐻ext(𝑇) of external half-edges has a
canonical cyclic order 𝜏 given by

𝜏(ℎ) = 𝜄𝑁ℎ (ℎ),

where 𝑁ℎ is the minimum number 𝑁 ∈ Z>0 such that the half-edge 𝜄𝑁 (ℎ) becomes external.
(2) Let 𝑇 be a rooted ribbon 𝑛-tree. For 0 ≤ 𝑖 ≤ 𝑛, we set

(𝑟𝑇 )𝑖 = 𝜏𝑖 (𝑟𝑇 )

and call it the 𝑖-th external half-edge, or the 𝑖-th leaf if 𝑖 ≠ 0 (the 0-th external half-edge is nothing
but the root). In addition, we denote by (𝑣𝑇 )𝑖 the adjacent vertex to (𝑟𝑇 )𝑖 and call it the 𝑖-th external
vertex, or the 𝑖-th leaf vertex if 𝑖 ≠ 0.

In this paper, we draw a rooted ribbon tree in the manner that a cyclic order at each vertex becomes
compatible to the counterclockwise orientation. Since the numbering on external half-edges is also
counterclockwise, a rooted ribbon tree can be described as in e.g. Figure 1.

0

4 3 2 1

Figure 1: a rooted ribbon 4-tree.

There is an operation which produces a new tree from two rooted ribbon trees, called grafting.
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0

5 4 3 2 1

3

0

3 2 1

====

0

7 6

345

2 1

Figure 2: grafting.

Definition 2.4 Let 𝑇 and 𝑆 be rooted ribbon trees, let 𝑛 (resp. 𝑚) the number of leaves of 𝑇 (resp.
𝑆), and let 1 ≤ 𝑖 ≤ 𝑛. We consider the gluing space

𝑇 ◦𝑖 𝑆 = 𝑇 t 𝑆
/
(𝑣𝑇 )𝑖 ∼ 𝑣𝑆 ,

which inherits ribbon tree structure from 𝑇 and 𝑆 in the obvious way. We will regard 𝑇 ◦𝑖 𝑆 as a
rooted ribbon tree by adopting 𝑟𝑇 ∈ 𝐻ext(𝑇 ◦𝑖 𝑆) as the root and call it the grafted tree of 𝑇 and 𝑆
along the 𝑖-th leaf (see Figure 2). We often identify 𝑇 and 𝑆 with the subcomplexes

𝑇 t (−𝑟𝑆) and 𝑆 t (−(𝑟𝑇 )𝑖)

of 𝑇 ◦𝑖 𝑆 respectively.

Here are examples of a rooted ribbon tree.

Example 2.5 A rooted ribbon 𝑛-tree which has no internal edge is called the 𝑛-corolla (see Figure 3).
In particular, the 1-corolla is called the exceptional tree, which is the rooted ribbon tree having just
one edge. Note that the 𝑛-corolla is unique up to isomorphisms.

0

𝑛 𝑛 − 1 2 1

Figure 3: the 𝑛-corolla.

0

𝑛 𝑛 − 1 2 1

Figure 4: the 𝑛-caterpillar.

Example 2.6 Suppose 𝑛 ≥ 2. We refer the rooted ribbon 𝑛-tree in Figure 4 as the 𝑛-caterpillar.
Precisely, we define the 𝑛-caterpillar recursively:
(i) when 𝑛 = 2, the 2-caterpillar is the 2-corolla,
(ii) when 𝑛 ≥ 3, the 𝑛-caterpillar is the grafted tree of the 2-caterpillar and the (𝑛 − 1)-caterpillar
along the second leaf.
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Note that the 𝑛-caterpillar is unique up to isomorphisms. We denote by 𝐶𝑛 the isomorphism class
of 𝑛-caterpillars.

When it has an internal edge, a rooted ribbon tree can be decomposed into smaller trees as in
Figure 5. At the end of this subsection, we state this fact as the next proposition in terms of grafting.

0

4 3 2 1

0

4
3 2

1

Figure 5: decomposing a rooted ribbon tree.

Proposition 2.7 Let 𝑇 be a rooted ribbon 𝑛-tree and suppose that 𝑇 has an internal edge 𝑒. Then,
there exist rooted ribbon trees 𝑆𝑒 and 𝑆′𝑒 with more than two leaves such that 𝑇 is isomorphic to the
grafted tree 𝑆𝑒 and 𝑆′𝑒 along some leaf of 𝑆𝑒.

Proof. Fix a point 𝑎 ∈ 𝑒. Then we denote by 𝑆𝑒 (resp. 𝑆′𝑒) the closure of the connected component
of 𝑇 \ {𝑎} which contains the root 𝑟𝑇 (resp. the closure of the other connected component). The
subspaces 𝑆𝑒 and 𝑆′𝑒 become the desired rooted ribbon trees in the obvious way. □

2.2 Operads

Here is the definition of an operad we will use in this paper.

Definition 2.8 A (non-symmetric) operad (in the category of sets) is a sequence O = {O(𝑛)}𝑛≥1 of
sets, together with maps called the operadic compositions

◦𝑖 : O(𝑛) × O(𝑚) −→ O(𝑛 + 𝑚 − 1)

for 1 ≤ 𝑖 ≤ 𝑛 and 𝑚 ≥ 1. These data fulfill the following axioms.
Associativity. For each 1 ≤ 𝑗 ≤ 𝑛, 𝑚, 𝑙 ≥ 1, 𝑋 ∈ O(𝑛), 𝑌 ∈ O(𝑚) and 𝑍 ∈ O(𝑙),

(𝑋 ◦ 𝑗 𝑌 ) ◦𝑖 𝑍 =


(𝑋 ◦𝑖 𝑍) ◦ 𝑗+𝑙−1 𝑌 if 1 ≤ 𝑖 < 𝑗 ,
𝑋 ◦ 𝑗 (𝑌 ◦𝑖− 𝑗+1 𝑍) if 𝑗 ≤ 𝑖 < 𝑚 + 𝑗 ,
(𝑋 ◦𝑖−𝑚+1 𝑍) ◦ 𝑗 𝑌 if 𝑗 + 𝑚 ≤ 𝑖 ≤ 𝑛 + 𝑚 − 1.

Unitality. There exists an element 1l ∈ O(1) called the unit such that

𝑋 ◦𝑖 1l = 𝑋 and 1l ◦1 𝑌 = 𝑌

for each 1 ≤ 𝑖 ≤ 𝑛, 𝑚 ≥ 1, 𝑋 ∈ O(𝑛) and 𝑌 ∈ O(𝑚).
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Here are the examples including operds Corolla, RibTree3, and W(Z≥0) in Theorem 1.2.

Example 2.9 Here, we identify the isomorphism class of the 𝑛-corollas with the set {𝑛}. The corolla
operad is the sequence Corolla = {Corolla(𝑛)}𝑛≥1 given by

Corolla(𝑛) = {𝑛}

with the obvious maps ◦𝑖 : Corolla(𝑛) × Corolla(𝑚) → Corolla(𝑛 + 𝑚 − 1). (The composition ◦𝑖
means contracting one internal edge after grafting two corollas along the 𝑖-th leaf.)

Example 2.10 The rooted ribbon tree operad is the sequence RibTree = {RibTree(𝑛)}𝑛≥1 given by

RibTree(𝑛) = { isomorphism classes of rooted ribbon 𝑛-trees }

with the maps ◦𝑖 : RibTree(𝑛) × RibTree(𝑚) → RibTree(𝑛 + 𝑚 − 1) defined by

[𝑇] ◦𝑖 [𝑆] = [𝑇 ◦𝑖 𝑆],

where 𝑇 ◦𝑖 𝑆 is the grafted tree in Definition 2.4. Note that the unit 1l is given by the exceptional tree
in Example 2.5.

Example 2.11 A trivalent tree is a tree where the valence of any vertex is equal to 1 or 3. The
trivalent rooted ribbon tree operad is the sequence RibTree3 = {RibTree3(𝑛)}𝑛≥1 given by

RibTree3(𝑛) =
{
[𝑇] ∈ RibTree(𝑛)

��𝑇 is trivalent.
}

with the maps ◦𝑖 : RibTree3(𝑛) × RibTree3(𝑚) → RibTree3(𝑛 + 𝑚 − 1) defined as in Example 2.10.

Definition 2.12 Let C be a set. Then we define a sequence W(C) = {W(C)(𝑛)}𝑛≥1 of sets by

W(C)(𝑛) =
{
𝑓 : C ×C𝑛 → Z

�� 𝑁 ( 𝑓 , 𝒄) < ∞ for any 𝒄 ∈ C𝑛
}
,

where 𝑁 ( 𝑓 , 𝒄) is the number of elements 𝑑 ∈ C satisfying 𝑓 (𝑑; 𝒄) ≠ 0. In addition, we define the
maps ◦𝑖 : W(C)(𝑛) × W(C)(𝑚) −→ W(C)(𝑛 + 𝑚 − 1) by

( 𝑓 ◦𝑖 𝑔)(𝑑; 𝒄) =
∑
𝑘∈C

𝑓 (𝑑; 𝒄𝑖,𝑚;𝑘) · 𝑔(𝑘; 𝒄𝑖,𝑚) (2.1)

for any 𝑑 ∈ C and 𝒄 = (𝑐1, . . . , 𝑐𝑛+𝑚−1) ∈ C𝑛+𝑚−1, where we use the following notations:

𝒄𝑖,𝑚;𝑘 =


(𝑘, 𝑐1+𝑚, . . . , 𝑐𝑛+𝑚−1) if 𝑖 = 1,
(𝑐1, . . . , 𝑐𝑖−1, 𝑘, 𝑐𝑖+𝑚, . . . , 𝑐𝑛+𝑚−1) if 2 ≤ 𝑖 ≤ 𝑛 − 1,
(𝑐1, . . . , 𝑐𝑛−1, 𝑘) if 𝑖 = 𝑛,

(2.2)

and
𝒄𝑖,𝑚 = (𝑐𝑖 , . . . , 𝑐𝑖+𝑚−1). (2.3)

Note that the right hand side of the equation (2.1) is a finite sum since 𝑁 (𝑔, 𝒄𝑖,𝑚) < ∞.
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Proposition 2.13 The sequence W(C) = {W(C)(𝑛)}𝑛≥1 with the maps ◦𝑖 defined in Definition 2.12
has the structure of an operad, whose unit 1l is given by

1l(𝑑; 𝑐) =
{

1 if 𝑑 = 𝑐
0 otherwise for any (𝑑; 𝑐) ∈ C × C .

Proof. It suffices to show that the associativity and unitality axioms in Definition 2.8 hold.
Associativity. Let 1 ≤ 𝑗 ≤ 𝑛, 𝑚, 𝑙 ≥ 1, 𝑓 ∈ W(C)(𝑛), 𝑔 ∈ W(C)(𝑚), and ℎ ∈ W(C)(𝑙). Then, for
any (𝑑; 𝒄) ∈ C × C𝑛+𝑚+𝑙−2 we have(

( 𝑓 ◦ 𝑗 𝑔) ◦𝑖 ℎ
)
(𝑑; 𝒄) =

∑
𝑘∈C

( 𝑓 ◦ 𝑗 𝑔) (𝑑; 𝒄𝑖,𝑙;𝑘) · ℎ(𝑘; 𝒄𝑖,𝑙)

=
∑

𝑘,𝑘′∈C
𝑓
(
𝑑; (𝒄𝑖,𝑙;𝑘) 𝑗 ,𝑚;𝑘′ ) · 𝑔 (𝑘 ′; (𝒄𝑖,𝑙;𝑘) 𝑗 ,𝑚) · ℎ(𝑘; 𝒄𝑖,𝑙). (2.4)

Note that

(𝒄𝑖,𝑙;𝑘) 𝑗 ,𝑚;𝑘′ =


(𝒄 𝑗+𝑙−1,𝑚;𝑘′)𝑖,𝑙;𝑘 if 1 ≤ 𝑖 < 𝑗 ,

𝒄 𝑗 ,𝑚+𝑙−1;𝑘′ if 𝑗 ≤ 𝑖 < 𝑚 + 𝑗 ,

(𝒄 𝑗 ,𝑚;𝑘′)𝑖−𝑚+1,𝑙;𝑘 if 𝑗 + 𝑚 ≤ 𝑖 ≤ 𝑛 + 𝑚 − 1,

(𝒄𝑖,𝑙;𝑘) 𝑗 ,𝑚 =


𝒄 𝑗+𝑙−1,𝑚 if 1 ≤ 𝑖 < 𝑗 ,
(𝒄 𝑗 ,𝑚+𝑙−1)𝑖− 𝑗+1,𝑙;𝑘 if 𝑗 ≤ 𝑖 < 𝑚 + 𝑗 ,
𝒄 𝑗 ,𝑚 if 𝑗 + 𝑚 ≤ 𝑖 ≤ 𝑛 + 𝑚 − 1,

and

𝒄𝑖,𝑙 =


(𝒄 𝑗+𝑙−1,𝑚;𝑘′)𝑖,𝑙 if 1 ≤ 𝑖 < 𝑗 ,
(𝒄 𝑗 ,𝑚+𝑙−1)𝑖− 𝑗+1,𝑙 if 𝑗 ≤ 𝑖 < 𝑚 + 𝑗 ,

(𝒄 𝑗 ,𝑚;𝑘′)𝑖−𝑚+1,𝑙 if 𝑗 + 𝑚 ≤ 𝑖 ≤ 𝑛 + 𝑚 − 1,

for any 𝑘, 𝑘 ′ ∈ C.
(I) The case 1 ≤ 𝑖 < 𝑗 : Then the right hand side of the equation (2.4) is rewritten as∑

𝑘,𝑘′∈C
𝑓
(
𝑑; (𝒄 𝑗+𝑙−1,𝑚;𝑘′)𝑖,𝑙;𝑘

)
· 𝑔

(
𝑘 ′; 𝒄 𝑗+𝑙−1,𝑚

)
· ℎ

(
𝑘; (𝒄 𝑗+𝑙−1,𝑚;𝑘′)𝑖,𝑙

)
=

∑
𝑘′∈C

( 𝑓 ◦𝑖 ℎ) (𝑑; 𝒄 𝑗+𝑙−1,𝑚;𝑘′) · 𝑔
(
𝑘 ′; 𝒄 𝑗+𝑙−1,𝑚

)
=

(
( 𝑓 ◦𝑖 ℎ) ◦ 𝑗+𝑙−1 𝑔

)
(𝑑; 𝒄).

This implies ( 𝑓 ◦ 𝑗 𝑔) ◦𝑖 ℎ = ( 𝑓 ◦𝑖 ℎ) ◦ 𝑗+𝑙−1 𝑔.
(II) The case 𝑗 ≤ 𝑖 < 𝑚 + 𝑗 : Then the right hand side of the equation (2.4) is rewritten as∑

𝑘,𝑘′∈C
𝑓
(
𝑑; 𝒄 𝑗 ,𝑚+𝑙−1;𝑘′ ) · 𝑔 (𝑘 ′; (𝒄 𝑗 ,𝑚+𝑙−1)𝑖− 𝑗+1,𝑙;𝑘 ) · ℎ (𝑘; (𝒄 𝑗 ,𝑚+𝑙−1)𝑖− 𝑗+1,𝑙

)
=

∑
𝑘′∈C

𝑓
(
𝑑; 𝒄 𝑗 ,𝑚+𝑙−1;𝑘′ ) · (𝑔 ◦𝑖− 𝑗+1 ℎ)

(
𝑘 ′; 𝒄 𝑗 ,𝑚+𝑙−1

)
=

(
𝑓 ◦ 𝑗 (𝑔 ◦𝑖− 𝑗+1 ℎ)

)
(𝑑; 𝒄).

This implies ( 𝑓 ◦ 𝑗 𝑔) ◦𝑖 ℎ = 𝑓 ◦ 𝑗 (𝑔 ◦𝑖− 𝑗+1 ℎ).
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(III) The case 𝑗 + 𝑚 ≤ 𝑖 ≤ 𝑛 + 𝑚 − 1: Then the right hand side of the equation (2.4) is rewritten as∑
𝑘,𝑘′∈C

𝑓
(
𝑑; (𝒄 𝑗 ,𝑚;𝑘′)𝑖−𝑚+1,𝑙;𝑘 ) · 𝑔 (𝑘 ′; 𝒄 𝑗 ,𝑚

)
· ℎ

(
𝑘; (𝒄 𝑗 ,𝑚;𝑘′)𝑖−𝑚+1,𝑙

)
=

∑
𝑘′∈C

( 𝑓 ◦𝑖−𝑚+1 ℎ) (𝑑; 𝒄 𝑗 ,𝑚;𝑘′) · 𝑔
(
𝑘 ′; 𝒄 𝑗 ,𝑚

)
=

(
( 𝑓 ◦𝑖−𝑚+1 ℎ) ◦ 𝑗 𝑔

)
(𝑑; 𝒄).

This implies ( 𝑓 ◦ 𝑗 𝑔) ◦𝑖 ℎ = ( 𝑓 ◦𝑖−𝑚+1 ℎ) ◦ 𝑗 𝑔. Therefore, the associativity axiom holds.
Unitality. Let 1 ≤ 𝑖 ≤ 𝑛, 𝑚 ≥ 1, 𝑓 ∈ W(C)(𝑛), and 𝑔 ∈ W(C)(𝑚). Then, for any (𝑑; 𝒄) ∈ C × C𝑛

and (𝑏; 𝒂) ∈ C × C𝑚 we have

( 𝑓 ◦𝑖 1l)(𝑑; 𝒄) =
∑
𝑘∈C

𝑓 (𝑑; 𝒄𝑖,1;𝑘) · 1l(𝑘; 𝑐𝑖) = 𝑓 (𝑑; 𝒄),

(1l ◦1 𝑔) (𝑏; 𝒂) =
∑
𝑘∈C

1l(𝑏; 𝑘) · 𝑔(𝑘; 𝒂) = 𝑔(𝑏; 𝒂).

This implies 𝑓 ◦𝑖 1l = 𝑓 and 1l ◦1 𝑔 = 𝑔. Therefore, the unitality axiom holds. □

We will introduce a morphism of operads below.

Definition 2.14 Let O = {O(𝑛)}𝑛≥1 and P = {P(𝑛)}𝑛≥1 be (non-symmetric) operads (in the cat-
egory of sets). A morphism from O to P is a sequence f = {f𝑛 : O(𝑛) → P(𝑛)}𝑛≥1 of maps
which commute with the operadic compositions and preserve the units, that is, satisfy the following
conditions:
(i) f𝑛+𝑚−1(𝑋 ◦𝑖 𝑌 ) = f𝑛 (𝑋) ◦𝑖 f𝑚(𝑌 ) for each 1 ≤ 𝑖 ≤ 𝑛, 𝑚 ≥ 1, 𝑋 ∈ O(𝑛), and 𝑌 ∈ O(𝑚),
(ii) f1(1l) = 1l.
We write f : O → P to indicate that f is a morphism from O to P.

Here are the examples.

Example 2.15 For sets C and C′, we consider operads W(C) and W(C′) as in Definition 2.12. Let
Φ : C → C′ be a map. We define the sequence Φ∗ = {(Φ∗)𝑛 : W(C ′) (𝑛) → W(C)(𝑛)}𝑛≥1 of maps
by

(Φ∗)𝑛 ( 𝑓 ) =
(
(𝑑; 𝑐1, . . . , 𝑐𝑛) ↦−→ 𝑓

(
Φ(𝑑); Φ(𝑐1), . . . ,Φ(𝑐𝑛)

) )
.

Then Φ∗ is a morphism from W(C′) to W(C).

Example 2.16 We define the sequence cont = {cont𝑛 : RibTree3(𝑛) → Corolla(𝑛)}𝑛≥1 of maps by

cont𝑛 [𝑇] = 𝑛.

Then cont is a morphism from RibTree3 to Corolla. (The map cont𝑛 means contracting all internal
edges of trivalent rooted ribbon 𝑛-trees.)

The next lemma gives a criterion for uniqueness of morphisms of operads.
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Lemma 2.17 Let O,P be operads and let f, g : O → P be two morphisms of operads. We have f = g
if the following conditions hold.
(i) f1 = g1,
(ii) f2 = g2,
(iii) For 𝑛 > 2 and 𝑋 ∈ O(𝑛), there exist 2 ≤ 𝑚 < 𝑛, 2 ≤ 𝑙 < 𝑛, 𝑌 ∈ O(𝑚), and 𝑍 ∈ O(𝑙) such that

𝑛 = 𝑚 + 𝑙 − 1 and 𝑋 = 𝑌 ◦𝑖 𝑍 for some 1 ≤ 𝑖 ≤ 𝑚.

Proof. We show that f𝑛 = g𝑛 for any 𝑛 ≥ 1 by induction. The cases 𝑛 = 1, 2 are just the conditions
(i) and (ii) respectively. The other cases follow from the condition (iii), Definition 2.14, and the
induction hypothesis. □

Corollary 2.18 Let P be an operad and let f, g : RibTree3 → P be two morphisms of operads. Then
we have f = g if f2 = g2.

Proof. We check that the conditions (i) and (iii) in Lemma 2.17 hold. The condition (i) holds
because RibTree3(1) is the singleton of the unit 1l and both f and g are morphisms of operads.

On the other hand, since a trivalent rooted ribbon tree with more than 3 leaves has always an
internal edge, then the condition (iii) follows from Proposition 2.7. □

3 The Kähler polarization

In Subsection 3.1, we see that the vector space ℋK¥ah via the Kähler polarization can be described
as an invariant space of an 𝑆𝑂 (3)-representation, which was referred to in [16]. Based on this
description, we construct the morphism fK¥ah : Corolla → W(Z≥0) in Subsection 3.2. The keys
for this construction are the facts that any 𝑆𝑂 (3)-representation is completely reducible and all
irreducible 𝑆𝑂 (3)-representations can be classified with odd numbers.

3.1 Quantization via the Kähler polarization

Let 𝑛 ≥ 3 and let 𝒓 = (𝑟0, . . . , 𝑟𝑛−1) ∈ R𝑛>0. First, we specify the Kähler structure on the polygon
space M(𝒓) as follows. For 𝑖 = 0, . . . , 𝑛 − 1, we consider the sphere 𝑆2(𝑟𝑖) as the Kähler manifold
with the Kähler form 𝜔𝑆2 (𝑟𝑖) normalized by

∫
𝑆2 (𝑟𝑖) 𝜔𝑆2 (𝑟𝑖) = 2𝑟𝑖 . Since the standard 𝑆𝑂 (3)-action

on 𝑆2(𝑟𝑖) is Hamiltonian and the momentum map is the inclusion 𝑆2(𝑟𝑖) ↩→ R3, then the diagonal
𝑆𝑂 (3)-action on 𝑆2(𝑟0) × · · · × 𝑆2(𝑟𝑛−1) is also Hamiltonian and the momentum map 𝜇 is given by
𝜇(𝒖) = 𝑢0 + · · · + 𝑢𝑛−1. Now our polygon space M(𝒓) is described as the quotient space

M(𝒓) = 𝜇−1(0)/𝑆𝑂 (3).

Note that the condition that 0 is a regular value of 𝜇 and 𝑆𝑂 (3) acts on 𝜇−1(0) freely is characterized
as the following condition on the edge-lengths 𝒓:

±𝑟0 ± · · · ± 𝑟𝑛−1 ≠ 0. (3.1)

Thus we always assume the condition (3.1) on 𝒓 so that the polygon space
(
M(𝒓), 𝜔M(𝒓)

)
can be

regard as a smooth Kähler quotient of
(
𝑆2(𝑟0) × · · · × 𝑆2(𝑟𝑛−1), 𝜔𝑆2 (𝑟0) ⊕ · · · ⊕ 𝜔𝑆2 (𝑟𝑛−1)

)
.
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Now we assume 𝒓 ∈ Z𝑛>0 in addition to the condition (3.1). This integral condition enables us to
construct a prequantum line bundle L(𝒓) → M(𝒓) as follows. For 𝑖 = 0, . . . , 𝑛 − 1, we denote by
𝐿 (𝑟𝑖) the 𝑟𝑖-th tensor power of the holomorphic tangent bundle of 𝑆2(𝑟𝑖), which is a prequantum
line bundle over 𝑆2(𝑟𝑖). Then a prequantum line bundle 𝐿 (𝒓) over 𝑆2(𝑟0) × · · · × 𝑆2(𝑟𝑛−1) is given
by

𝐿 (𝒓) = pr0
∗ 𝐿 (𝑟0) ⊗ · · · ⊗ pr𝑛−1

∗ 𝐿 (𝑟𝑛−1),
where pr𝑖 is the projection 𝑆2(𝑟0) × · · · × 𝑆2(𝑟𝑛−1) → 𝑆2(𝑟𝑖). Since it is 𝑆𝑂 (3)-equivariant, the
bundle 𝐿 (𝒓) over 𝑆2(𝑟0) × · · · × 𝑆2(𝑟𝑛−1) descents to a bundle

L(𝒓) =
(
𝐿 (𝒓)

��
𝜇−1 (0)

) /
𝑆𝑂 (3)

overM(𝒓). We find that 𝑐1(L(𝒓)) = [𝜔M(𝒓) ], namely, the bundle L(𝒓) is a prequantum line bundle
over M(𝒓). Now we have completed the setting of quantization via the Kähler polarization.

Recall that the vector spaceℋK¥ah is defined to be the space of holomorphic sections ofL(𝒓). Next,
we rewrite this space as an 𝑆𝑂 (3)-invariant space by using the so-called “quantization commutes
with reduction” theorem, which was conjectured by Guillemin and Sternberg [3] and has been proved
and improved by several people e.g. [2], [11], [17]. In this paper, we follow a result of Braverman [2].

Let (𝑀, 𝜔) be a Kähler manifold with a holomorphic and Hamiltonian action of a compact Lie
group 𝐺 and let 𝐿 be a 𝐺-equivariant prequantum line bundle over (𝑀, 𝜔). We assume that 0 is a
regular value of the moment map 𝜇 and 𝐺 acts on 𝜇−1(0) freely. Then, we have the Kähler quotient
𝑀𝐺 = 𝜇−1(0)/𝐺 and the holomorphic line bundle 𝐿𝐺 over 𝑀𝐺 such that 𝜋∗𝐿𝐺 = 𝐿 |𝜇−1 (0) , where
𝜋 : 𝜇−1(0) → 𝑀𝐺 is the natural projection. The “quantization commutes with reduction” theorem
is the following.

Theorem 3.1 ([2, Theorem 1.4]) Under the assumption as above, we have

𝐻 𝑗 (𝑀𝐺 , 𝐿𝐺) = 𝐻 𝑗 (𝑀, 𝐿)𝐺 for any 𝑗 ≥ 0.

Now we apply Theorem 3.1 to the case when

𝐺 = 𝑆𝑂 (3), (𝑀, 𝐿) =
(
𝑆2(𝑟0) × · · · × 𝑆2(𝑟𝑛−1), 𝐿 (𝒓)

)
, and (𝑀𝐺 , 𝐿𝐺) =

(
M(𝒓),L(𝒓)

)
.

Proposition 3.2 For 𝒓 ∈ Z𝑛>0 satisfying the condition (3.1), we have

𝐻 𝑗 (M(𝒓),OL(𝒓)
)
=


(
𝐻0 (𝑆2(𝑟0),O𝐿 (𝑟0)

)
⊗ · · · ⊗ 𝐻0 (𝑆2(𝑟𝑛−1),O𝐿 (𝑟𝑛−1)

) )𝑆𝑂 (3)
if 𝑗 = 0,

0 if 𝑗 > 0.

Proof. By Theorem 3.1, we have

𝐻 𝑗 (M(𝒓),OL(𝒓)
)
=
(
𝐻 𝑗

(
𝑆2(𝑟0) × · · · × 𝑆2(𝑟𝑛−1),O𝐿 (𝒓)

))𝑆𝑂 (3)

=
(
𝐻 𝑗 (𝑆2(𝑟0),O𝐿 (𝑟0)

)
⊗ · · · ⊗ 𝐻 𝑗 (𝑆2(𝑟𝑛−1),O𝐿 (𝑟𝑛−1)

) )𝑆𝑂 (3)

for any 𝑗 ≥ 0. By taking the definition of 𝐿 (𝑟𝑖) and positivity of 𝑟𝑖 for 𝑖 = 0, . . . , 𝑛 − 1 into account,
we obtain the proposition. □
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Remark 3.3 When 𝑛 is odd and 𝒓 = (1, . . . , 1), the polygon space is a Fano variety [10, Corol-
lary 2.3.3]. In this case, the vanishing of the higher cohomologies is also obtained from the
Kodaira-Nakano vanishing theorem without the “quantization commutes with reduction” theorem.

3.2 The morphism of operads associated to the Kähler polarization

First, in the case of compact Lie groups, we see that multiplicities of an irreducible component in
tensor representations give a morphism of operads.

Proposition 3.4 Let 𝐺 be a compact Lie group and denote by 𝐺 the set of all equivalent classes
of an irreducible finite-dimensional complex representation of 𝐺. We define the sequence mG ={
(mG)𝑛 : Corolla(𝑛) → W(𝐺)(𝑛)

}
𝑛≥1 of maps by

(mG)𝑛 (𝑛) =
(
(𝑊 ;𝑉1, . . . , 𝑉𝑛) ↦−→ [𝑉1 ⊗ · · · ⊗ 𝑉𝑛 : 𝑊 ]

)
,

where [𝑉1 ⊗ · · · ⊗ 𝑉𝑛 : 𝑊 ] is the multiplicity of an irreducible representation 𝑊 in 𝑉1 ⊗ · · · ⊗ 𝑉𝑛.
Then the sequence mG is a morphism of operads from Corolla to W(𝐺).

Proof. Let 𝑛, 𝑚 ≥ 1, 1 ≤ 𝑖 ≤ 𝑛, 𝑊 ∈ 𝐺, and 𝑽 = (𝑉1, . . . , 𝑉𝑛+𝑚−1) ∈ 𝐺 𝑛+𝑚−1. Then we have the
following equalities:(

(mG)𝑛+𝑚−1(𝑛 ◦𝑖 𝑚)
)
(𝑊 ;𝑽)

= [𝑉1 ⊗ · · · ⊗ 𝑉𝑛+𝑚−1 : 𝑊 ]
=

∑
𝑈 ∈𝐺

[𝑉1 ⊗ · · ·𝑉𝑖−1 ⊗ 𝑈 ⊗ 𝑉𝑖+𝑚 ⊗ 𝑉𝑛+𝑚−1 : 𝑊 ] · [𝑉𝑖 ⊗ · · · ⊗ 𝑉𝑖+𝑚−1 : 𝑈 ]

=
∑
𝑈 ∈𝐺

(
(mG)𝑛 (𝑛)

)
(𝑊 ;𝑽𝑖,𝑚;𝑈 ) ·

(
(mG)𝑚(𝑚)

)
(𝑈;𝑽𝑖,𝑚)

=
(
(mG)𝑛 (𝑛) ◦𝑖 (mG)𝑚(𝑚)

)
(𝑊 ;𝑽),

where the second equality follows from the irreducible decomposition

𝑉𝑖 ⊗ · · · ⊗ 𝑉𝑖+𝑚−1 =
⊕
𝑈 ∈𝐺

𝑉triv
⊕[𝑉𝑖⊗···⊗𝑉𝑖+𝑚−1:𝑈 ] ⊗ 𝑈.

(Here 𝑉triv is the equivalent class of the trivial irreducible representations.) At the third equality, we
use the notations (2.2) and (2.3) for 𝑽 = (𝑉1, . . . , 𝑉𝑛+𝑚−1) and 𝑈.

On the other hand, it is clear that (mG)1(1l) = 1l by definition. (Recall that the unit of W(𝐺) is
given in Proposition 2.13.) Now the proposition is proved. □

Now, we focus on 𝑆𝑂 (3)-representations. We define the map Dim : �𝑆𝑂 (3) → Z>0 by assigning
each equivalent class to its dimension. It is well-known that this map is bijective onto the set of odd
numbers.
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Definition 3.5 We define a sequence fK¥ah = {(fK¥ah)𝑛 : Corolla(𝑛) → W(Z≥0)(𝑛)}𝑛≥1 of maps by

(fK¥ah)𝑛 (𝑛) =
(
(𝑑; 𝒄) ↦−→ [ 𝑅(𝑐1) ⊗ · · · ⊗ 𝑅(𝑐𝑛) : 𝑅(𝑑) ]

)
,

where 𝑅 is the map Z≥0 → �𝑆𝑂 (3) given by 𝑅(𝑚) = Dim−1(2𝑚 + 1).

Proposition 3.6 The sequence fK¥ah is a morphism of operads from Corolla to W(Z≥0).

Proof. The sequence fK¥ah is given by the composition of morphisms of operads

fK¥ah : Corolla
mSO(3)−−−−−→ W(�𝑆𝑂 (3)) 𝑅∗

−−−−→ W(Z≥0),

where mSO(3) is the morphism given in Proposition 3.4 for 𝐺 = 𝑆𝑂 (3) and 𝑅∗ is the morphism
induced by the map 𝑅 (see Example 2.15). This proves the proposition. □

Lemma 3.7 If 𝑛 = 2, we have for (𝑑; 𝑐1, 𝑐2) ∈ Z≥0 ×Z2
≥0(

(fK¥ah)2(2)
)
(𝑑; 𝑐1, 𝑐2) =

{
1 if |𝑐1 − 𝑐2 | ≤ 𝑑 ≤ 𝑐1 + 𝑐2,
0 otherwise.

Proof. By definition, we have(
(fK¥ah)2(2)

)
(𝑑; 𝑐1, 𝑐2) = [ 𝑅(𝑐1) ⊗ 𝑅(𝑐2) : 𝑅(𝑑) ] .

This multiplicity is computed from the Clebsch-Gordan rule for 𝑆𝑂 (3) (see e.g. [18]), which proves
the assertion. □

Finally, we see that the morphism fK¥ah : Corolla → W(Z≥0) controls the dimension of the space of
holomorphic sections.

Proposition 3.8 Suppose 𝑛 ≥ 3. Then we have the following for any 𝑛-tuple 𝒓 = (𝑟0, 𝑟1, . . . , 𝑟𝑛−1)
of positive integers satisfying the condition (3.1):(

(fK¥ah)𝑛−1(𝑛 − 1)
)
(𝑟0; 𝑟1, . . . , 𝑟𝑛−1) = dim𝐻0 (M(𝒓), OL(𝒓)

)
.

Proof. The Borel-Weil theorem (e.g. [15, Theorem 7.58]) tells us that each 𝐻0 (𝑆2(𝑟𝑖),O𝐿 (𝑟𝑖)
)

in
Proposition 3.2 is an irreducible 𝑆𝑂 (3)-representation of dimension 2𝑟𝑖 + 1. Therefore, we have

dim𝐻0 (M(𝒓),OL(𝒓)
)
= dim

(
𝑅(𝑟0) ⊗ 𝑅(𝑟1) ⊗ · · · ⊗ 𝑅(𝑟𝑛−1)

)𝑆𝑂 (3)

= dim
(
𝑅(𝑟0)∗ ⊗ 𝑅(𝑟1) ⊗ · · · ⊗ 𝑅(𝑟𝑛−1)

)𝑆𝑂 (3)

= [ 𝑅(𝑟1) ⊗ · · · ⊗ 𝑅(𝑟𝑛−1) : 𝑅(𝑟0) ] .

This proves the assertion. □
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4 The real polarization

In Subsection 4.1, we define the bending system associated to any triangulation of polygons by
using its dual graph, a trivalent rooted ribbon tree. In addition, we rewrite the number of the
associated lattice points to fit our operadic formulation. With this description, we construct the
morphism fre : RibTree3 → W(Z≥0) to the real polarization in Subsection 4.2. We also comment on
Kamiyama’s recurrence relation in our framework.

4.1 The bending system

Let 𝑛 ≥ 3 and 𝒓 = (𝑟0, . . . , 𝑟𝑛−1) ∈ R𝑛>0. As in Figure 6, a decomposition of a trivalent rooted ribbon
(𝑛−1)-tree induces that of an 𝑛-gon. Then, the length of the new side-edges of two polygons defines
a function on the polygon space M(𝒓), called the bending Hamiltonian. The precise definition is
the following.

Definition 4.1 (Kapovich and Millson [8]) Let 𝑇 be a trivalent rooted ribbon (𝑛 − 1)-tree. As in
the proof of Proposition 2.7, an edge 𝑒 ∈ 𝐸 (𝑇) determines the grafting decomposition of 𝑇 into
rooted ribbon trees 𝑆𝑒 and 𝑆′𝑒. This also induces the decomposition

{0, . . . , 𝑛 − 1} = 𝐼𝑒 t 𝐼 ′𝑒,

where 𝐼𝑒 (resp. 𝐼 ′𝑒) is the set of numbers 𝑖 = 0, . . . , 𝑛 − 1 such that the 𝑖-th external vertex (𝑣𝑇 )𝑖 is
contained in 𝑆𝑒 (resp. 𝑆′𝑒). Then we define the function 𝑏𝑒 : M(𝒓) → R by

𝑏𝑒 [𝒖] =

∑
𝑖 ∈ 𝐼𝑒

𝑢𝑖

 =

∑
𝑖 ∈ 𝐼 ′𝑒

𝑢𝑖

,
which is called the bending Hamiltonian.

𝑢2

𝑢1

𝑢0

𝑢4

𝑢3

0

1

4

3

2

𝑢1

𝑢0

𝑢4

𝑢3

𝑢2

0

1

4

3

2

Figure 6: decomposing a polygon.

Here are the elemental properties of the bending Hamiltonians.

Lemma 4.2 We have the followings on the bending Hamiltonian 𝑏𝑒’s.
(1) |𝑏𝑒′ − 𝑏𝑒′′ | ≤ 𝑏𝑒 ≤ 𝑏𝑒′ + 𝑏𝑒′′ if 𝑒, 𝑒′ and 𝑒′′ are adjacent to a common vertex.
(2) 𝑏𝑒 is the constant function with value 𝑟𝑖 if 𝑒 is adjacent to the 𝑖-th external vertex.
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Proof. (1) Let [𝒖] ∈ M(𝒓). Since 𝐼𝑒 t 𝐼 ′𝑒′ t 𝐼 ′𝑒′′ = {0, . . . , 𝑛 − 1}, we have∑
𝑖 ∈ 𝐼𝑒

𝑢𝑖 +
∑
𝑖 ∈ 𝐼 ′

𝑒′

𝑢𝑖 +
∑
𝑖 ∈ 𝐼 ′

𝑒′′

𝑢𝑖 = 𝑢0 + · · · + 𝑢𝑛−1 = 0

and hence ��𝑏𝑒′ [𝒖] − 𝑏𝑒′′ [𝒖]
�� ≤ 𝑏𝑒 [𝒖] ≤ 𝑏𝑒′ [𝒖] + 𝑏𝑒′′ [𝒖],

which proves the assertion.
(2) Let [𝒖] ∈ M(𝒓). If 𝑒 is adjacent to the 𝑖-th external vertex, we have 𝐼𝑒 = {𝑖} or 𝐼 ′𝑒 = {𝑖} and
hence

𝑏𝑒 [𝒖] = ‖𝑢𝑖 ‖ = 𝑟𝑖 ,

which proves the assertion. □

We are ready to define the bending system associated to a trivalent rooted ribbon tree. Note that the
number of internal edges of a trivalent rooted ribbon (𝑛 − 1)-tree is equal to 𝑛 − 3.

Definition 4.3 (Kapovich and Millson [8]) Suppose 𝑛 ≥ 4 and fix a numbering 𝜆 : {1, . . . , 𝑛 −
3} → 𝐸int(𝑇). Then the bending system on M(𝒓) associated to 𝑇 is the collection of the 𝑛 − 3
bending Hamiltonians

𝜋𝒓𝑇 = (𝑏𝜆(1) , . . . , 𝑏𝜆(𝑛−3) ) : M(𝒓) −→ R𝑛−3 .

Remark 4.4 When 𝑇 is the (𝑛−1)-caterpillar (see Example 2.6) and 𝜆 is given in order of closeness
to the root, then the bending system 𝜋𝒓𝑇 coincides with the original bending system (1.3).

The next theorem is a fundamental result on the bending system.

Theorem 4.5 (Kapovich and Millson [8]) Suppose that 𝒓 ∈ R𝑛>0 satisfies the condition (3.1). Then
the bending system 𝜋𝒓𝑇 : M(𝒓) → R𝑛−3 is a completely integrable system on an open dense subset
M ′(𝒓) of M(𝒓) where it is smooth. Moreover, the Hamiltonian flows generated by the bending
Hamiltonians induce a (𝑛 − 3)-dimensional torus action on M ′(𝒓) and then, the moment map is
given by the restriction of 𝜋𝒓𝑇 to M ′(𝒓).

In the sense of Theorem 4.5, the polygon space with the bending system can be considered as an
“almost” toric manifold.

Recall that we consider the dimension of the vector space ℋre via the real polarization as the
number of lattice points in the closure of the moment polytope: # Im(𝜋𝒓𝑇 ) ∩ Z𝑛−3. In the rest of
this subsection, we will rewrite the number # Im(𝜋𝒓𝑇 ) ∩ Z𝑛−3 as #D(𝑇, 𝒓), the number of integral
edge-labelings of 𝑇 given in Definition 4.6 below. Here, we consider any 𝑛-tuple 𝒓 = (𝑟0, . . . , 𝑟𝑛−1)
of non-negative integers for the following reason: when we prove that fre given in Definition 4.10
becomes a morphism of operads in Proposition 4.11, we need to consider grafting of trees with
non-negative integral labelings (see Lemma 4.13). In terms of triangulations, this corresponds to
consider “gluing” of triangulated polygons with non-negative edge-lengths. Thanks to including the
case of zero-labeling, we can include triangulated polygons after contracting some diagonals in the
argument as well.

Here is the definition of integral edge-labelings of trees mentioned above.
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Definition 4.6 Let 𝑛 ≥ 2, 𝒓 = (𝑟0, . . . , 𝑟𝑛−1) ∈ Z𝑛≥0, and let 𝑇 be a trivalent rooted ribbon (𝑛 − 1)-
tree. An admissible integral labeling of 𝑇 relative to 𝒓 is a function 𝜑 : 𝐸 (𝑇) → Z≥0 with the
following property:
(1)

��𝜑(𝑒′) − 𝜑(𝑒′′)
�� ≤ 𝜑(𝑒) ≤ 𝜑(𝑒′) + 𝜑(𝑒′′) if 𝑒, 𝑒′ and 𝑒′′ are adjacent to a common vertex.

(2) 𝜑(𝑒) = 𝑟𝑖 if 𝑒 is adjacent to the 𝑖-th external vertex.
We denote by D(𝑇, 𝒓) the set of admissible integral labelings.

Remark 4.7 Our integer labelings of a trivalent rooted ribbon tree are some modifications of
those of a pants decomposition of a compact Riemann surface with boundary given by Jeffrey and
Weitsman [6, Definition 4.8, 4.9]. The next proposition is an analog of Theorem 4.10(b) in [6].

Proposition 4.8 Suppose that 𝑛 ≥ 4 and 𝒓 ∈ Z𝑛>0 satisfies M(𝒓) ≠ ∅. Then we have #D(𝑇, 𝒓) =
# Im(𝜋𝒓𝑇 ) ∩ Z𝑛−3.

We will prove this proposition in the next section.

4.2 The morphism of operads associated to the real polarization

Before we prove Proposition 4.8, we first define the morphism fre in Definition 4.10 by using the set
of admissible integral labelings introduced in Definition 4.6, and prove that it is indeed a morphism
of operads. After that, we prove Proposition 4.8 so that the morphism fre describes the number of
lattice points.

First of all, we note the following proposition which will be proved later.

Proposition 4.9 Let 𝑇 be a trivalent rooted ribbon 𝑛-tree and let (𝑑; 𝒄) ∈ Z≥0 ×Z𝑛≥0 = Z𝑛+1
≥0 . Then

the followings hold.
(1) D(𝑇, 𝑑; 𝒄) = ∅ if 𝑑 > |𝒄 | = 𝑐1 + · · · + 𝑐𝑛.
(2) #D(𝑇, 𝑑; 𝒄) < ∞.

Proposition 4.9 allows us to make the next definition.

Definition 4.10 We define a sequence fre = {(fre)𝑛 : RibTree3(𝑛) → W(Z≥0)(𝑛)}𝑛≥1 of maps by

(fre)𝑛 [𝑇] =
(
(𝑑; 𝒄) ↦−→ #D(𝑇, 𝑑; 𝒄)

)
.

Then we show the following proposition.

Proposition 4.11 The sequence fre is a morphism of operads from RibTree3 to W(Z≥0).

To prove Propositions 4.9 and 4.11, we prepare a couple of lemmas.

Lemma 4.12 Let 𝑇 be a trivalent rooted ribbon 𝑛-tree.
(1) If 𝑛 = 1, we have for (𝑑; 𝑐) ∈ Z≥0 ×Z≥0

#D(𝑇, 𝑑; 𝑐) =

{
1 if 𝑑 = 𝑐,
0 otherwise.
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(2) If 𝑛 = 2, we have for (𝑑; 𝑐1, 𝑐2) ∈ Z≥0 ×Z2
≥0

#D(𝑇, 𝑑; 𝑐1, 𝑐2) =

{
1 if |𝑐1 − 𝑐2 | ≤ 𝑑 ≤ 𝑐1 + 𝑐2,
0 otherwise.

Proof. If 𝑛 = 1 (resp. 𝑛 = 2), then 𝑇 is nothing but the exceptional tree (resp. the 2-corolla) in
Example 2.5. Therefore, the assertions follow from Definition 4.6. □

Lemma 4.13 Let 𝑇 and 𝑆 be trivalent rooted ribbon trees, let 𝑛 (resp. 𝑚) be the number of leaves
of 𝑇 (resp. 𝑆), and let 1 ≤ 𝑖 ≤ 𝑛. Then, the set D

(
𝑇 ◦𝑖 𝑆, 𝑑; 𝒄

)
is in bijective correspondence with⊔

𝑘∈Z≥0

D
(
𝑇, 𝑑; 𝒄𝑖,𝑚;𝑘 ) × D

(
𝑆, 𝑘; 𝒄𝑖,𝑚

)
for each (𝑑; 𝒄) ∈ Z≥0 ×Z𝑛+𝑚−1

≥0 . Recall that 𝒄𝑖,𝑚;𝑘 (resp. 𝒄𝑖,𝑚) is the 𝑛-tuple (resp. the 𝑚-tuple) of
non-negative integers from the notations (2.2) and (2.3).

Proof. The bijective correspondence is given by

𝜑 ↦−→ (𝜑 |𝐸 (𝑇 ) , 𝜑 |𝐸 (𝑆) ),

where we identify 𝑇 and 𝑆 with subcomplexes of 𝑇 ◦𝑖 𝑆 as in Definition 2.4. Indeed, by setting a
number 𝑘 as the value of 𝜑 at the internal edge (−(𝑟𝑇 )𝑖) t (−𝑟𝑆) ∈ 𝐸int(𝑇 ◦𝑖 𝑆), we have

𝜑 |𝐸 (𝑇 ) ∈ D
(
𝑇, 𝑑; 𝒄𝑖,𝑚;𝑘 ) and 𝜑 |𝐸 (𝑆) ∈ D

(
𝑆, 𝑘; 𝒄𝑖,𝑚

)
.

□

Now, using the two lemmas above, we prove Propositions 4.9 and 4.11.

Proof of Proposition 4.9 We prove both (1-2) by induction on 𝑛 respectively. The cases 𝑛 = 1, 2
of (1-2) follow from Lemma 4.12. We assume that 𝑛 ≥ 3. Then, since 𝑇 always has an internal
edge, there exist 𝑚, 𝑚′ ≥ 2, a ribbon 𝑚-tree 𝑆, a ribbon 𝑚′-tree 𝑆′, and 1 ≤ 𝑖 ≤ 𝑚 such that 𝑇 is
isomorphic to 𝑆 ◦𝑖 𝑆′ by Proposition 2.7.
(1) We assume that there exists an admissible integral labeling 𝜑 of 𝑇 = 𝑆 ◦𝑖 𝑆′ relative to (𝑑; 𝒄). As
in the proof of Lemma 4.13, we find that

𝜑 |𝐸 (𝑆) ∈ D
(
𝑆, 𝑑; 𝒄𝑖,𝑚;𝑘 ) and 𝜑 |𝐸 (𝑆′) ∈ D

(
𝑆′, 𝑘; 𝒄𝑖,𝑚

)
for some 𝑘 ∈ Z≥0 and hence, we have

𝑑 ≤ |𝒄𝑖,𝑚,𝑘 | and 𝑘 ≤ |𝒄𝑖,𝑚 |

by the induction hypothesis. Therefore we obtain

𝑑 ≤ |𝒄𝑖,𝑚,𝑘 | = 𝑐1 + · · · + 𝑐𝑖−1 + 𝑘 + 𝑐𝑖+𝑚 + · · · + 𝑐𝑛+𝑚−1 ≤ |𝒄 |

as desired.
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(2) By Lemma 4.13 and Proposition 4.9(1), we have

#D
(
𝑆 ◦𝑖 𝑆′, 𝑑; 𝒄

)
=

|𝒄𝑖,𝑚 |∑
𝑘=0

#D
(
𝑆, 𝑑; 𝒄𝑖,𝑚,𝑘 ) · #D

(
𝑆′, 𝑘; 𝒄𝑖,𝑚

)
.

Hence, we obtain #D
(
𝑆 ◦𝑖 𝑆′, 𝑑; 𝒄

)
< ∞ by the induction hypothesis. □

Proof of Proposition 4.11 Let 𝑇 and 𝑆 be rooted ribbon trees, let 𝑛 (resp. 𝑚) be the number of
leaves of 𝑇 (resp. 𝑆), let 1 ≤ 𝑖 ≤ 𝑛, and let (𝑑; 𝒄) ∈ Z≥0 ×Z𝑛+𝑚−1

≥0 . Then we have(
(fre)𝑛+𝑚−1 [𝑇] ◦𝑖 [𝑆]

)
(𝑑; 𝒄) = #D

(
𝑇 ◦𝑖 𝑆, 𝑑; 𝒄

)
=

∑
𝑘∈Z≥0

#D
(
𝑇, 𝑑; 𝒄𝑖,𝑚;𝑘 ) · #D

(
𝑆, 𝑘; 𝒄𝑖,𝑚

)
=

∑
𝑘∈Z≥0

(
(fre)𝑛 [𝑇]

)
(𝑑; 𝒄𝑖,𝑚;𝑘) ·

(
(fre)𝑚 [𝑆]

)
(𝑘; 𝒄𝑖,𝑚)

=
(
(fre)𝑛 [𝑇] ◦𝑖 (fre)𝑚 [𝑆]

)
(𝑑; 𝒄),

where the second equality is due to Lemma 4.13.
On the other hand, we obtain (fre)11l = 1l from Lemma 4.12.(1). (Recall that the unit of RibTree3

is given by the tree with one leaf and the unit of W(Z≥0) is given in Proposition 2.13.) Now the
proposition is proved. □

We show that the morphism fre : RibTree3 → W(Z≥0) controls the number of the lattice points
associated to the bending system.

Proposition 4.14 Suppose 𝑛 ≥ 4. We have the following for any trivalent rooted ribbon (𝑛−1)-tree
𝑇 and any 𝑛-tuple 𝒓 = (𝑟0, 𝑟1, . . . , 𝑟𝑛−1) of positive integers satisfying M(𝒓) ≠ ∅:(

(fre)𝑛−1 [𝑇]
)
(𝑟0; 𝑟1, . . . , 𝑟𝑛−1) = # Im(𝜋𝒓𝑇 ) ∩ Z𝑛−3 .

Proof. The proposition is proved as follows:(
(fre)𝑛−1 [𝑇]

)
(𝑟0; 𝑟1, . . . , 𝑟𝑛−1) = #D(𝑇, 𝒓) = # Im(𝜋𝒓𝑇 ) ∩ Z𝑛−3,

where the second equality is due to Proposition 4.8. □

Now we start to prove Proposition 4.8. Hereafter, we will generalize the underlying set of
the polygon space to take polygons with contracted side-edges into account. Let 𝑛 ≥ 2 and
(𝑑; 𝒄) ∈ Z≥0 ×Z𝑛≥0 = Z𝑛+1

≥0 . Then, we consider the following set:

M(𝑑; 𝒄) =
{
𝒖 = (𝑢0, 𝑢1, . . . , 𝑢𝑛) ∈ 𝑆2(𝑑) × 𝑆2(𝑐1) × · · · × 𝑆2(𝑐𝑛)

�� 𝑢0 + · · · + 𝑢𝑛 = 0
}
/𝑆𝑂 (3),

where 𝑆2(0) is the point {0} ⊂ R3 with the trivial 𝑆𝑂 (3)-action and the quotient is taken by the
diagonal action. Note that M(𝑑; 𝒄) ≠ ∅ if and only if

𝑑 ≤ 𝑐1 + · · · + 𝑐𝑛 and 𝑐𝑖 ≤ 𝑑 +
∑
𝑗≠𝑖

𝑐 𝑗 for each 𝑖 = 1, . . . , 𝑛. (4.1)

First, we note the following lemma. Let 𝑇 be a trivalent rooted ribbon 𝑛-tree.
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Lemma 4.15 We have M(𝑑; 𝒄) ≠ ∅ if D(𝑇, 𝑑; 𝒄) ≠ ∅.

Proof. We assume that D(𝑇, 𝑑; 𝒄) ≠ ∅. Note that

D(𝑇, 𝑑; 𝒄) = D(𝑇1, 𝑐1; 𝑐2, . . . , 𝑐𝑛, 𝑑)
= · · · = D(𝑇𝑛, 𝑐𝑛; 𝑑, 𝑐1, . . . , 𝑐𝑛−1),

where 𝑇𝑖 is the rooted ribbon 𝑛-tree where the underlying ribbon tree structure is the same as 𝑇 but
the 𝑖-th leaf (𝑟𝑇 )𝑖 of 𝑇 is regarded as the root. Thus, applying Proposition 4.9(1) for each side of the
equations above, we obtain the inequalities (4.1). This proves the lemma. □

To prove Propositions 4.8, we prepare some definitions and lemmas below.

Definition 4.16 Suppose M(𝑑; 𝒄) ≠ ∅.
(1) We define the functions 𝑏𝑒 : M(𝑑; 𝒄) → R for any edge 𝑒 ∈ 𝐸 (𝑇) in the same way as
Definition 4.1.
(2) We define the following set:

𝐵(𝑇, 𝑑; 𝒄) = {𝜑 : 𝐸 (𝑇) → Z≥0
�� 𝜑 = 𝑏• [𝒖] for some polygon [𝒖] ∈ M(𝑑; 𝒄) },

where 𝑏• [𝒖] means the function (𝑒 ↦→ 𝑏𝑒 [𝒖] ).
(3) If 𝑛 ≥ 3, we also define the map 𝜋𝑑;𝒄

𝑇 : M(𝑑; 𝒄) → R𝑛−2 in the same way as Definition 4.3.
(Note that the number #𝐸int(𝑇) is equal to 𝑛 − 2 since 𝑇 has 𝑛 leaves.)

Lemma 4.17 Suppose M(𝑑; 𝒄) ≠ ∅. The functions 𝑏𝑒’s given in Definition 4.16(1) also have the
same properties (1-2) in Lemma 4.2, that is, we have the followings:
(1) |𝑏𝑒′ − 𝑏𝑒′′ | ≤ 𝑏𝑒 ≤ 𝑏𝑒′ + 𝑏𝑒′′ if 𝑒, 𝑒′ and 𝑒′′ are adjacent to a common vertex.
(2) 𝑏𝑒 is the constant function with value 𝑑 (resp. 𝑐𝑖) if 𝑒 is adjacent to the root vertex (resp. the
𝑖-th leaf vertex).

Proof. The argument in the proof of Lemma 4.2 is valid even if 𝑢𝑖 = 0 for some 𝑖. □

Lemma 4.18 If M(𝑑; 𝒄) ≠ ∅ and 𝑛 ≥ 3, then we have # 𝐵(𝑇, 𝑑; 𝒄) = # Im(𝜋𝑑;𝒄
𝑇 ) ∩ Z𝑛−2.

Proof. Let 𝜆 : {1, . . . , 𝑛 − 2} → 𝐸int(𝑇) be a fixed numbering. We find that the bijective
correspondence is given by the following map:

𝐵(𝑇, 𝑑; 𝒄) −→ Im(𝜋𝑑;𝒄
𝑇 ) ∩ Z𝑛−2 ; 𝜑 ↦−→

(
(𝜑 ◦ 𝜆) (1), . . . , (𝜑 ◦ 𝜆)(𝑛 − 2)

)
.

Indeed, the values 𝜑(𝑒) for any 𝑒 ∈ 𝐸 (𝑇) \ 𝐸int(𝑇) are determined by 𝑑 or 𝒄 = (𝑐1, . . . , 𝑐𝑛) from
the property (2) in Lemma 4.17, which shows that the map above is bijective. □

Lemma 4.19 Suppose M(𝑑; 𝒄) ≠ ∅. Then we have D(𝑇, 𝑑; 𝒄) = 𝐵(𝑇, 𝑑; 𝒄).
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Proof. By the properties (1-2) in Lemma 4.17, we have D(𝑇, 𝑑; 𝒄) ⊃ 𝐵(𝑇, 𝑑; 𝒄). Hereafter, we
prove D(𝑇, 𝑑; 𝒄) ⊂ 𝐵(𝑇, 𝑑; 𝒄) by induction on 𝑛 ≥ 2.

First, we prove the case 𝑛 = 2. Let 𝜑 be an admissible integral labeling of 𝑇 relative to (𝑑; 𝑐1, 𝑐2).
Then it follows from Lemma 4.12(2) that |𝑐1 − 𝑐2 | ≤ 𝑑 ≤ 𝑐1 + 𝑐2, which guarantees existence of the
triangle [𝒖] ∈ M(𝑑; 𝑐1, 𝑐2). It is clear that 𝜑 = 𝑏• [𝒖].

From now on, we assume that the proposition holds for any 2 ≤ 𝑛′ < 𝑛. Then there exist
𝑚, 𝑚′ ≥ 2, a ribbon 𝑚-tree 𝑆, a ribbon 𝑚′-tree 𝑆′, and 1 ≤ 𝑖 ≤ 𝑚 such that 𝑇 is isomorphic to 𝑆 ◦𝑖 𝑆′
by Proposition 2.7. Let 𝜑 be an admissible integral labeling of 𝑇 = 𝑆 ◦𝑖 𝑆′ relative to (𝑑; 𝒄). As in
the proof of Lemma 4.13, we find that

𝜑 |𝐸 (𝑆) ∈ D
(
𝑆, 𝑑; 𝒄𝑖,𝑚;𝑘 ) and 𝜑 |𝐸 (𝑆′) ∈ D

(
𝑆′, 𝑘; 𝒄𝑖,𝑚

)
for some 𝑘 ∈ Z≥0 (may be 𝑘 = 0) and hence, we have

M(𝑑; 𝒄𝑖,𝑚
′;𝑘) ≠ ∅ and M(𝑘; 𝒄𝑖,𝑚′) ≠ ∅

by Lemma 4.15. Applying the induction hypothesis for 𝑆 and (𝑑; 𝒄𝑖,𝑚′;𝑘), and for 𝑆′ and (𝑘; 𝒄𝑖,𝑚′)
respectively, we have two polygons

[𝒗 = (𝑣0, . . . , 𝑣𝑚)] ∈ M(𝑑; 𝒄𝑖,𝑚
′;𝑘) and [𝒘 = (𝑤0, . . . , 𝑤𝑚′)] ∈ M(𝑘; 𝒄𝑖,𝑚′)

satisfying
𝜑 |𝐸 (𝑆) = 𝑏• [𝒗] and 𝜑 |𝐸 (𝑆′) = 𝑏• [𝒘] .

Recall the notations (2.2) and (2.3) for 𝒄 = (𝑐1, . . . , 𝑐𝑛) and 𝑘 again. Since ‖𝑣𝑖 ‖ = 𝑘 = ‖𝑤0‖, we can
take an element 𝑔 ∈ 𝑆𝑂 (3) satisfying 𝑣𝑖 = − 𝑔 · 𝑤0 (in the case 𝑘 = 0, we can take any 𝑔 ∈ 𝑆𝑂 (3))
and define the following (𝑛 + 1)-gon:

𝒖 = (𝑣0, . . . , 𝑣𝑖−1, 𝑔 · 𝑤1, . . . , 𝑔 · 𝑤𝑚′, 𝑣𝑖+1, . . . , 𝑣𝑚).

It is easy to see that 𝒖 is indeed a (𝑛 + 1)-gon with edge-lengths (𝑑; 𝒄) and 𝜑 = 𝑏• [𝒖] (see Figure 7).
Now we have shown D

(
𝑆 ◦𝑖 𝑆′, 𝑑; 𝒄

)
⊂ 𝐵

(
𝑆 ◦𝑖 𝑆′, 𝑑; 𝒄

)
. Thus we obtain D(𝑇, 𝑑; 𝒄) ⊂ 𝐵(𝑇, 𝑑; 𝒄).

□

𝑣1

𝑣0

𝑣𝑚

𝑣𝑖 = −𝑔 · 𝑤0

𝑔 · 𝑤𝑚′

𝑔 · 𝑤1

Figure 7: the polygon 𝒖.

Now we are ready to prove Proposition 4.8.
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Proof of Proposition 4.8 Replacing 𝑛 in Lemmas 4.18 and 4.19 by 𝑛−1, and (𝑑; 𝒄) by (𝑟0; 𝑟1, . . . , 𝑟𝑛−1) =
𝒓, then we obtain

#D(𝑇, 𝒓) = #𝐵(𝑇, 𝒓) = # Im(𝜋𝒓𝑇 ) ∩ Z𝑛−3 .

□

At the end of this subsection, we derive Kamiyama’s recurrence relation mentioned in Section 1
from our morphism fre : RibTree3 → W(Z≥0).

Remark 4.20 In the proof of Theorem 1.1, Kamiyama considered the bending system 𝜋 (𝑖,1,...,1) :
M(𝑖, 1, . . . , 1) → R𝑛−3 for 𝑛 ≥ 4 and 1 ≤ 𝑖 ≤ 𝑛 − 1, and derived the recurrence relation for the
number 𝛽𝑛,𝑖 of the lattice points in its image. Here is the recurrence relation:

𝛽𝑛,𝑖 =


𝛽𝑛−1,1 if 𝑖 = 0,
𝛽𝑛−1,𝑖−1 + 𝛽𝑛−1,𝑖 + 𝛽𝑛−1,𝑖+1 if 1 ≤ 𝑖 ≤ 𝑛 − 1,
0 if 𝑛 ≤ 𝑖,

(4.2)

for any 𝑛 ≥ 4 and 𝑖 ≥ 0.
In our operadic formulation, Kamiyama’s recurrence relation (4.2) arises from the fact that cater-

pillars have the canonical grafting decomposition:

𝐶𝑛−1 = 𝐶2 ◦2 𝐶𝑛−2 for each 𝑛 ≥ 4, (4.3)

where 𝐶𝑛 is the isomorphism class of the 𝑛-caterpillars in Example 2.6.
First, by Remark 4.4 and Proposition 4.14, we have

𝛽𝑛,𝑖 =
(
(fre)𝑛−1 𝐶𝑛−1

)
(𝑖; 1, . . . , 1)

for any 𝑛 ≥ 4 and 𝑖 ≥ 0. Therefore, we have 𝛽𝑛,𝑖 = 0 if 𝑛 ≤ 𝑖 by Proposition 4.9(1).
On the other hand, we have(

(fre)𝑛−1 𝐶𝑛−1
)
(𝑖; 1, . . . , 1)

=
(
(fre)𝑛−1 𝐶2 ◦2 𝐶𝑛−2

)
(𝑖; 1, . . . , 1)

=
( (
(fre)2 𝐶2

)
◦2

(
(fre)𝑛−2 𝐶𝑛−2

) )
(𝑖; 1, . . . , 1)

=
∑
𝑘∈Z≥0

(
(fre)2 𝐶2

)
(𝑖; 1, 𝑘) ·

(
(fre)𝑛−2 𝐶𝑛−2

)
(𝑘; 1, . . . , 1) (4.4)

and (
(fre)2 𝐶2

)
(𝑖; 1, 𝑘) =

{
1 if |𝑖 − 1| ≤ 𝑘 ≤ 𝑖 + 1,
0 otherwise (4.5)

by Proposition 4.12(2). Therefore, we have the relation (4.2) for the other cases where 0 ≤ 𝑖 ≤ 𝑛− 1.
Thus, we have reproduced Kamiyama’s recurrence relation (4.2) using our operadic formulation.
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5 The proof of the main theorem

Now we complete the proofs of Theorem 1.2 and Corollary 1.3. Recall that cont is the morphism of
operads given in Example 2.16.

Proof of Theorem 1.2 For the Käler polarization on the polygon spaces, we have constructed the
morphism of operads fK¥ah : Corolla → W(Z≥0) in Definition 3.5 and Proposition 3.6.

On the other hand, for the real polarization on the polygon spaces, we have also constructed the
morphism of operads fre : RibTree3 → W(Z≥0) in Definition 4.10 and Proposition 4.11.

Furthermore, we have (cont∗ fK¥ah)2 = (fre)2 by Lemmas 3.7 and 4.12(2) and hence we obtain
cont∗ fK¥ah = fre by Corollary 2.18. Now the proof of Theorem 1.2 is completed. □

Proof of Corollary 1.3 Let 𝑇 and 𝒓 = (𝑟0, . . . , 𝑟𝑛−1) as in Corollary 1.3. By Propositions 3.8 and
4.14, the both sides have been described as

dim𝐻0 (M(𝒓),OL(𝒓)
)
=
(
(fK¥ah)𝑛−1(𝑛 − 1)

)
(𝑟0; 𝑟1, . . . , 𝑟𝑛−1),

# Im(𝜋𝒓𝑇 ) ∩ Z𝑛−3 =
(
(fre)𝑛−1 [𝑇]

)
(𝑟0; 𝑟1, . . . , 𝑟𝑛−1).

On the other hand, it follows from Theorem 1.2 that

(fK¥ah)𝑛−1(𝑛 − 1) = (cont∗ fK¥ah)𝑛−1 [𝑇] = (fre)𝑛−1 [𝑇] .

Therefore, we obtain the corollary. □
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