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1 Introduction

We consider the Cauchy problem for the semilinear damped wave equation{
∂2t u(t, x) + ∂tu(t, x)−∇ · (b(x)∇u(t, x)) = |u(t, x)|p, t > 0, x ∈ Rn,

u(0, x) = εu0(x), ∂tu(0, x) = εu1(x), x ∈ Rn,

(1)

where u is a real-valued unknown function of (t, x), p > 1, (u0, u1) ∈
H1(Rn) × L2(Rn), ε > 0 is a small parameter and b ∈ B1(Rn) = {f ∈
C1(Rn); f, ∂if ∈ L∞(Rn) (i = 1, . . . n)} is a given function specified later. If
b(x) = 1 (x ∈ Rn), equation (1) is the damped wave equation{

∂2tw + ∂tw −∆w = |w|p, x ∈ Rn, t > 0

w(0, x) = w0(x), ∂tw(0, x) = w1(x), x ∈ Rn.
(2)

Todorova and Yordanov [16] shows that if ρF (n) < p, the equation (2)
has global solutions for sufficiently small initial data by using the weighted
energy method. Here, ρF (n) = 1+ 2/n is the n-dimensional Fujita’s critical
exponent. In [16], the compactness was assumed for the initial data, but the
existence of a global solution can be proved without the compactness of the
initial data (see [4–6, 10, 11]). Also, [16] shows that if 1 < p < ρF (n), the
solutions of equation (2) blow up in a finite time for any nontrivial initial
data. In the critical case p = ρF (n), Zhang [17] shows that the solutions
of equation (2) blow up in a finite time for any nontrivial initial data. By
this observation, Fujita’s critical exponent ρF can be regarded as the critical
exponent of equation (2), which separates the existence and nonexistence of
global solutions.

The damped wave equation ∂2t u(t, x) + ∂tu(t, x)−∆u(t, x) = 0 is a mix-
ture of the heat equaiton ∂tv − ∆v = 0 and the wave equation ∂2tw −
∆w = 0. So we are interested in the relationship between the solutions
of these equaitons. Using Fourier analysis, Narazaki [10] shows that the
high-frequency part of the solution of damped wave equation corresponds to
the solution of wave equation with exponential decay, and the low-frequency
part corresponds to the solution of heat equation for the suitable initial data.
For the heat equaiton with power type nonlinearity{

∂tv(t, x)−∆v(t, x) = v(t, x)p, t > 0, x ∈ Rn,

v(0, x) = φ(x),
(3)

it is known that if ρF (n) < p, the equation (3) has global solutions for
sufficiently small initial data, and if 1 < p ≤ ρF (n), solutions of equation
(3) blow up in a finite time for any initial data (see [2, 3, 8, 14]). From
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the above, the solution of damped wave equation (2) has properties similar
to the that of heat equation (3). The above facts suggest that ∂tu has a
stronger influence than ∂2t u in the damped wave equation (2). For damped
wave equation with a spatially decaying dissipative term{

∂2t u(t, x) + (1 + |x|)−α∂tu(t, x)−∆u(t, x) = |u|p, t > 0, x ∈ Rn,

u(0, x) = f0(x), ∂tu(0, x) = f1(x),
(4)

where α ∈ [0, 1) is given constant, Ikehata, Todorova, and Yordanov [7]
shows that the critical exponent of (4) is 1 + 2/(n− α).

For the damped wave equation having variable coefficients{
∂2t u+ a(x)∂tu−∇ · (b(x)∇u) = 0, t > 0, x ∈ Rn,

u(0, x) = f0(x), ∂tu(0, x) = f1(x),
(5)

Radu, Todorova, and Yordanov [13] derive weighted energy estimate of so-
lutions for (5). Based on [13], Lei and Yang [9] shows that if 1 + 2/n < p,
(5) with power type nonlinearity has global solutions for sufficiently small
initial data by assuming a(x) ∼ a2, b(x) ∼ b2 for large x. In [9, 13], they
assume that there exists a solution A(x) of the differential inequality

∇ · (b(x)∇A(x)) ≥ a(x).

They also assume that A(x) satisfies some conditions, and use A(x) as a
weight function. Let us return to our problem (1). We assume b ∈ B1(Rn)
satisfying

0 < m ≤ b(x) ≤M < +∞, x ∈ Rn (6)

for n ≥ 1 and b(x) = c(|x|) for n ≥ 2. If 1 + 2/n < p < 1 + 4/n, we also
assume

M −m

m
<

2(p− 1− 2/n)

1 + 4/n− p
. (7)

We note that this extra assumption (7) is always satisfied when b is a con-
stant function. Our purpose is to show that if 1+ 2/n < p, the equation (1)
has global solutions for sufficiently small initial data by using the weighted
energy method. To state our main result (Theorem 2.1) precisely, we intro-
duce a weight function

ψ(t, x) = ψλ(t, x) =

{
1

2(2+λ)(t+1)

∫ |x|
0

r
c(r)

dr, n ≥ 2,
1

2(2+λ)(t+1)

∫ x
0

y
b(y)

dy, n = 1
(8)
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which satisfies

∇ · (b(x)∇ψ(t, x)) = n

2(2 + λ)(t+ 1)
. (9)

The weight function (8) is a variable coefficient version of that introduced
by [12], where they consider the case b(x) = 1 and established the global
existence for the system of semilinear damped wave equation

∂2t ul + ∂tul −∆ul = |ul−1|pl , (l = 1, . . . , k), (10)

for supercritical case. Sharp estimate of the lifespan of the solution was also
given from above and below for subcritical case.

We note that this thesis is a generalized version of [15] which discusses
the cases when n = 1. This thesis has the following organization. In Section
2, we define notations and state the main theorem. In Section 3, we show
some properties of the weight function (8), and prove the main theorem by
using them.

2 Main theorem

We give a function space and definition of a weak solutions of equation
(1). For 0 < T ≤ +∞ we set

X(T ) = C([0, T );H1(Rn)) ∩ C1([0, T );L2(Rn)).

Given p > 1, (u0, u1) ∈ H1(Rn) × L2(Rn), ε > 0, a function u ∈ X(T ) is
called a weak solution of the Cauchy problem (1) on the interval [0, T ) if u
satisfies∫

[0,T )×Rn
u(t, x)

(
∂2t φ(t, x)− ∂tφ(t, x)−∇ · (b(x)∇φ(t, x)

)
dxdt

= ε

∫
Rn
{(u0(x) + u1(x))φ(0, x)− u0(x)∂tφ(0, x)} dx

+

∫
[0,T )×Rn

|u(t, x)|pφ(t, x) dxdt

for any φ ∈ C∞
0 ([0, T )× R).

Our main theorem reads as follows.

Theorem 2.1. There exist constants λ > 0 and 0 < δ < n/2 such that the
following is true: We assume that (u0, u1) ∈ H1(Rn)× L2(Rn) satisfies

Iλ = Iλ(u0, u1) =

∫
Rn
e2ψλ(0,x)(|u0|2 + |∇u0|2 + |u1|2) dx < +∞
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and 1 + 2/n < p < +∞ (n = 1, 2), 1 + 2/n < p < n/(n − 2) (n ≥ 3). If
1+ 2/n < p < 1+ 4/n, we further assume (7). Then there exists a constant
ε0 > 0 such that for any ε ∈ (0, ε0], the equation (1) admits a unique global
solution u ∈ X(+∞) along with∫

Rn
e2ψλ(|∂tu|2 + |∇u|2) dx ≤Cε2Iλ(t+ 1)−n/2−1+δ, (11)∫

Rn
e2ψλ |u|2 dx ≤Cε2Iλ(t+ 1)−n/2+δ (12)

for t > 0, where C > 0 is a constant.

We use the following local existence result to prove the existence of a
global solution of equation (1).

Proposition 2.2. Let 1 < p < +∞ (n = 1, 2), 1 < p < n/(n − 2) (n ≥ 3)
and ε > 0 and let λ > 0. If the initial data (εu0, εu1) satisfies Iλ(u0, u1) <
+∞, then there exists a maximal existence time Tε ∈ (0,+∞] such that the
equation (1) has a unique solution u ∈ X(Tε) satisfying

sup
[0,T ]

(
∥eψλ(t)∂tu(t)∥L2(Rn) + ∥eψλ(t)∇u(t)∥L2(Rn) + ∥eψλ(t)u(t)∥L2(Rn)

)
< +∞

for any T < Tε. Moreover, if Tε < +∞, we have

lim sup
t↗Tε

(
∥eψλ(t)∂tu(t)∥L2(Rn) + ∥eψλ(t)∇u(t)∥L2(Rn) + ∥eψλ(t)u(t)∥L2(Rn)

)
= +∞.

Proposition 2.2 can be proved by standard argument (see [6], for exam-
ple, where b(x) is a constant function).

3 Proof of Theorem 2.1

In this section, we prove Theorem 2.1 by using Proposition 2.2 and an
a priori estimate of the solution of equation (1) (Proposition 3.3). We in-
troduce the definitions of some constants and the properties of the weight
functions. For k ∈ (2, 3), we set

δ =δ(p, k) =

{
(p−1−2/n)n

p−1
(3− k), (1 + 2/n < p < 1 + 4/n),

n
2
(3− k), (1 + 4/n ≤ p),

(13)

λ =
8δ

nk − 4δ
, (14)
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and

λ1 =
n

4
− n

2(2 + λ)
. (15)

Here, we note that 0 < δ < n/2, δ = kλ1. From (8), we obtain that

−∂tψ(t, x) ≥
{
2 +m

(
2 + λ

M
− 2

m

)}
b(x)|∇ψ(t, x)|2

=(2 + α)b(x)|∇ψ(t, x)|2, (16)

−∂tψ(t, x) =
1

2(2 + λ)(t+ 1)2

∫ |x|

0

r

c(r)
dr

≤ 1

2(2 + λ)(t+ 1)2
x2

2m

≤ β|∇ψ(t, x)|2 (17)

for t ≥ 0, x ∈ R, where

α =m

(
2 + λ

M
− 2

m

)
, (18)

β =
(2 + λ)

m
M2.

We use the following lemma to prove Theorem 2.1.

Lemma 3.1. Let p > 1 + 2/n. If 1 + 2/n < p < 1 + 4/n, we also assume
(7). Then, there exists a constant k = k(p) ∈ (2, 3) such that the following

4δ

nk − 4δ
>
M −m

m
(19)

holds.

Proof. Case 1: 1 + 2/n < p < 1 + 4/n. Since (13), we have

4δ

nk − 4δ
=

γ(3− k)

nk − γ(3− k)
=: g1(k),

where γ = 4n(p−1−2/n)
p−1

> 0. Since g1 is a continuous on the interval (2, 3)
and

g′1(k) =
−3γ

(k − γ(3− k))2
< 0,

M −m

m
<

2(p− 1− 2/n)

1 + 4/n− p
,

the following

M −m

m
< g1(k) < g1(2) =

2(p− 1− 2/n)

1 + 4/n− p
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holds for a sufficiently small k ∈ (2, 3).
Case 2: 1 + 4/n ≤ p. By (13), we have

4δ

nk − 4δ
=

2(3− k)

3(k − 2)
.

Therefore, by taking k ∈ (2, 3) which satisfies

M −m

m
<

2(3− k)

3(k − 2)
, (20)

we have (19). From the above, the proof is complete.

Remark 3.2. We note that the relation (19) implies α > 0, where α is given
by (18).

Let us define the weighted energy by

W (t) =(t+ 1)n/2+1−δ
∫
Rn
e2ψ(|∂tu(t, x)|2 + |∇u(t, x)|2) dx

+ (t+ 1)n/2−δ
∫
Rn
e2ψ|u(t, x)|2 dx.

Furthermore, we set M(t) = sup
0≤s≤t

W (s). In the following proposition, we

show the a priori estimate of the solution of (1).

Proposition 3.3. There exists constants ε0 > 0 and λ > 0 such that for
any ε ∈ (0, ε0] the solution of equation (1) satisfies

M(t) ≤ Cε2Iλ (21)

for t ≥ 0. Here C > 0 is independent of t and ε.

Proof. We take a constant k ∈ (2, 3) which satisfies Lemma 3.1. By multi-
plying equation (1) by e2ψ∂tu, we have

e2ψ∂tu|u|p =e2ψ∂tu∂2t u+ e2ψ|∂tu|2 − e2ψ∂tu∇ · (b(x)∇u)

=
1

2
∂t
[
e2ψ
(
|∂tu|2 + b(x)|∇u|2

)]
−∇ ·

(
e2ψb(x)∂tu∇u

)
+ e2ψ

(
1− ∂tψ − b(x)|∇ψ|2

−∂tψ

)
|∂tu|2

+
e2ψ

−∂tψ
b(x)|∂tψ∇u−∇ψ∂tu|2. (22)
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We set

T1 =+ e2ψ
(
1− ∂tψ − b(x)|∇ψ|2

−∂tψ

)
|∂tu|2,

T2 =
e2ψ

−∂tψ
b(x)|∂tψ∇u−∇ψ∂tu|2.

From (16) and α > 0, we obtain

T1 = e2ψ
(
1− ∂tψ − b(x)|∇ψ|2

−∂tψ

)
|∂tu|2 =e2ψ

(
1− ∂tψ − 1

2 + α

)
|∂tu|2

≥e2ψ
(
1

2
− ∂tψ

)
|∂tu|2. (23)

Moreover, the Schwarz inequality implies

|∂tψ∇u−∇ψ∂tu|2

≥|∂tψ∂xu|2 + |∇ψ∂tu|2 − 2|∂tψ∇u||∇ψ∂tu|

=|∂tψ∇u|2 + |∇ψ∂tu|2 − 2

(
2√
5
|∂tψ∇u|

)(√
5

2
|∇ψ∂tu|

)
≥1

5
|∂tψ∇u|2 −

1

4
|∇ψ∂tu|2. (24)

Together with (6), (16), (24) and α > 0 leads us to

T2 ≥
e2ψ

5
m(−∂tψ)|∇u|2 −

e2ψ

4

1

2 + α
|∂tu|2

≥e
2ψ

5
m(−∂tψ)|∇u|2 −

1

8
e2ψ|∂tu|2. (25)

On the other hand, the left hand side of (22) is estimated as

e2ψ∂tu|u|p =
(
1

2
eψ|∂tu|

)
(2eψ|u|p) ≤ 1

8
e2ψ|∂tu|2 + 2e2ψ|u|2p. (26)

Collecting (22)–(26) yields

1

2
∂t
[
e2ψ
(
|∂tu|2 + b(x)|∇u|2

)]
−∇ ·

(
e2ψb(x)∂tu∇u

)
+ e2ψ

(
1

4
− ∂tψ

)
|∂tu|2 +

m

5
e2ψ(−∂tψ)|∇u|2

≤2e2ψ|u|2p. (27)
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By multiplying (1) by e2ψu, we have

e2ψu|u|p =∂t
[
e2ψ
(
u∂tu+

1

2
|u|2
)]

−∇ ·
(
e2ψb(x)(u∇u+∇ψ|u|2)

)
+ e2ψ

{
−∂tψ − 2a(x)|∇ψ|2 +∇ · (b(x)∇ψ)

}
|u|2

+ e2ψb(x)|∇u+ 2∇ψu|2

+ e2ψ{2(−∂tψ)u∂tu− |∂tu|2}. (28)

We set

S1 =e
2ψ
{
−∂tψ − 2a(x)|∇ψ|2 +∇ · (b(x)∇ψ)

}
|u|2,

S2 =e
2ψb(x)|∇u+ 2∇ψu|2,

S3 =e
2ψ{2(−∂tψ)u∂tu− |∂tu|2}.

On account of (9) and (16) we have

S1 ≥e2ψ
{
mα|∇ψ|2 + n

2(2 + λ)(t+ 1)

}
|u|2. (29)

Let

0 < λ2 < min

{
m

5
,
mα

5 + β

}
and put

η =

√
1

2

(
1− λ2

m

)
.

We note that

mα− λ2(5 + β) > 0 (30)

and

2

5
< η2 <

1

2
. (31)

Then the Schwarz inequality together with (17), (30) and (31) implies that

S2 ≥e2ψm(|∇u|2 + 4∇u · ∇ψu+ 4|∇ψ|2|u|2)

≥e2ψm
{
(1− 2η2)|∇u|2 + (1− 2η2)

(
−2

η2

)
|∇ψ|2|u|2

}
>e2ψ

(
λ2|∇u|2 − 5λ2|∇ψ|2|u|2

)
, (32)
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and

|S3| ≤e2ψ
(
λ2(−∂tψ)|u|2 +

1

λ2
(−∂tψ)|∂tu|2 + |∂tu|2

)
≤e2ψ

(
λ2β|∇ψ|2|u|2 +

(
−∂tψ
λ2

+ 1

)
|∂tu|2

)
.

(33)

We thus conclude

∂t

[
e2ψ
(
u∂tu+

1

2
|u|2
)]

−∇ ·
(
e2ψb(x)(u∇u+∇ψ|u|2)

)
+ e2ψ

{
λ3|∇ψ|2 +

n

2(2 + λ)(t+ 1)

}
|u|2

+ λ2e
2ψ|∇u|2 − e2ψ

(
−∂tψ
λ2

+ 1

)
|∂tu|2

≤e2ψ|u|p+1 (34)

due to (28)–(30), (32) and (33), where λ3 = mα− (5 + β)λ2 > 0.
Let ν be a positive constant satisfying 1/4 − ν > 0 and 1 − ν/λ2 > 0.

By calculating (27) + ν × (34), we have inequality

2e2ψ|u|2p + νe2ψ|u|p+1 ≥∂t
[
e2ψ
{
1

2
(|∂tu|2 + b(x)|∇u|2) + ν

(
u∂tu+

1

2
|u|2
)}]

−∇ ·
[
e2ψb(x){∂tu∇u+ ν(u∇u+∇ψ|u|2)}

]
+ e2ψ

{(
1

4
− ν

)
+

(
1− ν

λ2

)
(−∂tψ)

}
|∂tu|2

+ e2ψ
(
νλ2 +

m

5
(−∂tψ)

)
|∇u|2

+ νe2ψ
(
λ3|∇ψ|2 +

n

2(2 + λ)(t+ 1)

)
|u|2. (35)

By integrating (35) over Rn, the following inequality

2

∫
Rn
e2ψ|u|2p dx+ ν

∫
Rn
e2ψ|u|p+1 dx

≥ d

dt

[∫
Rn
e2ψ
{
1

2
(|∂tu|2 + b(x)|∇u|2) + ν

(
u∂tu+

1

2
|u|2
)}

dx

]
+ c1

∫
Rn
e2ψ{1 + (−∂tψ)}(|∂tu|2 + |∇u|2) dx

+ ν

∫
Rn
e2ψ
(
λ3|∇ψ|2|u|2 +

1

2(2 + λ)(t+ 1)
|u|2
)
dx (36)
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holds with some constant c1 > 0.
Let t0 ≥ 1. We multiply (36) by (t+ t0)

n/2−δ to have

2(t+ t0)
n/2−δ

∫
Rn
e2ψ(|u|2p + |u|p+1) dx

≥ d

dt

[
(t+ t0)

n/2−δ
∫
Rn
e2ψ
{
1

2
(|∂tu|2 + b(x)|∇u|2) + ν

(
u∂tu+

1

2
|u|2
)}

dx

]
−
(n
2
− δ
)
(t+ t0)

n/2−1−δ
∫
Rn
e2ψ
{
1

2
(|∂tu|2 + b(x)|∇u|2) + ν

(
u∂tu+

1

2
|u|2
)}

dx

+ c1(t+ t0)
n/2−δ

∫
Rn
e2ψ{1 + (−∂tψ)}(|∂tu|2 + |∇u|2) dx

+ ν(t+ t0)
n/2−δ

∫
Rn
e2ψ
(
λ3|∇ψ|2|u|2 +

n

2(2 + λ)(t+ 1)
|u|2
)
dx. (37)

The second term of the right hand side in (37) is estimated as∣∣∣∣−(n2 − δ
)
(t+ t0)

n/2−1−δ
∫
Rn
e2ψ
(
1

2
(|∂tu|2 + b(x)|∇u|2) + ν

(
u∂tu+

1

2
|u|2
))

dx

∣∣∣∣
≤
(n
2
− δ
)
(t+ t0)

n/2−1−δ
∫
Rn
e2ψ
{(

1

2
+

ν

4λ4

)
|∂tu|2 +

M

2
|∇u|2

}
dx

+ ν
(n
2
− δ
)
(t+ t0)

n/2−1−δ
∫
Rn

(
1

2
+ λ4

)
|u|2 dx, (38)

where λ4 is a constant and satisfies

0 < λ4 <

(
1− 2

k

)
δ

n
. (39)

Since (37) and (38), we obtain inequality

2(t+ t0)
n/2−δ

∫
Rn
e2ψ(|u|2p + |u|p+1) dx

≥ d

dt

[
(t+ t0)

n/2−δ
∫
Rn
e2ψ
{
1

2
(|∂tu|2 + b(x)|∇u|2) + ν

(
u∂tu+

1

2
|u|2
)}

dx

]
− ν

(n
2
− δ
)
(t+ t0)

n/2−1−δ
∫
Rn

(
1

2
+ λ4

)
|u|2 dx

+ ν(t+ t0)
n/2−δ

∫
Rn
e2ψ
{
λ3|∇ψ|2|u|2 +

n

2(2 + λ)(t+ 1)
|u|2
}
dx

−
(n
2
− δ
)
(t+ t0)

n/2−1−δ
∫
Rn
e2ψ
((

1

2
+

ν

4λ4

)
|∂tu|2 +

M

2
|∇u|2

)
dx

+ c1(t+ t0)
1/2−δ

∫
R
e2ψ(1 + (−∂tψ))(|∂tu|2 + |∂xu|2) dx =: Λ1 + Λ2 + Λ3 + Λ4 + Λ5.

(40)
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By (39), the following inequality

n

2(2 + λ)
−
(n
2
− δ
)(1

2
+ λ4

)
≥
(
1

2
− 1

k

)
δ − nλ4

2
> 0

holds. Thus, the second and third terms on the right hand side of (40) is
calculated as

Λ2 + Λ3 ≥ν(t+ t0)
n/2−1−δ

∫
Rn
e2ψ
(

1

2(2 + λ)
−
(n
2
− δ
)(1

2
+ λ4

))
|u|2 dx

+ ν(t+ t0)
n/2−δ

∫
Rn
e2ψλ3|∇ψ|2|u|2 dx

≥c2(t+ t0)
n/2−1−δ

∫
Rn
e2ψ|u|2 dx

+ c2(t+ t0)
n/2−δ

∫
Rn
e2ψ|∇ψ|2|u|2 dx, (41)

where

c2 = min

{
ν

{
n

2(2 + λ)
−
(n
2
− δ
)(1

2
+ λ4

)}
, νλ3

}
.

Also, the fourth and fifth terms on the right hand side of (40) is calculated
as

Λ4 + Λ5 ≥(t+ t0)
n/2−δ

∫
Rn
e2ψ
(
c1 −

n/2− δ

t0

(
1

2
+

ν

λ4

))
|∂tu|2 dx

+ (t+ t0)
n/2−δ

∫
Rn
e2ψ
(
c1 −

n/2− δ

t0

M

2

)
|∇u|2 dx

+ c1(t+ t0)
n/2−δ

∫
Rn
e2ψ(−∂tψ)(|∂tu|2 + |∇u|2) dx. (42)

In what follows, we take t0 ≥ 1 sufficiently large so that the coefficient of
the integral on the right hand side in (42) are positive. From (40)–(42), we
obtain

d

dt

[
(t+ t0)

n/2−δ
∫
Rn
e2ψ
{
1

2
(|∂tu|2 + b(x)|∇u|2) + ν

(
u∂tu+

1

2
|u|2
)}

dx

]
+ c3(t+ t0)

n/2−δ
∫
Rn
e2ψ{1 + (−∂tψ)}(|∂tu|2 + |∇u|2) dx

+ c3(t+ t0)
n/2−δ

∫
Rn
e2ψ
(
|∇ψ|2 + 1

t+ t0

)
|u|2 dx

≤ 2(t+ t0)
n/2−δ

∫
Rn
e2ψ(|u|2p + |u|p+1) dx (43)

with some constant c3.
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By integrating (27) over Rn and by multiplying (t+ t0)
n/2+1−δ, we have

1

2

d

dt

[
(t+ t0)

n/2+1−δ
∫
Rn
e2ψ(|∂tu|2 + b(x)|∇u|2) dx

]
− 1

2

(n
2
+ 1− δ

)
(t+ t0)

n/2−δ
∫
Rn
e2ψ(|∂tu|2 + b(x)|∇u|2) dx

+ (t+ t0)
n/2+1−δ

∫
Rn
e2ψ
((

1

4
− ∂tψ

)
|∂tu|2 +

m

5
(−∂tψ)|∇u|2

)
dx

≤ 2(t+ t0)
n/2+1−δ

∫
Rn
e2ψ|u|2p dx. (44)

Let µ be a positive constant satisfying 2c3 − µ(1 +M)(n/2+ 1− δ) > 0.
Calculating (43) + µ× (44) yields

µ

2

d

dt

[
(t+ t0)

n/2+1−δ
∫
Rn
e2ψ(|∂tu|2 + b(x)|∇u|2) dx

]
+
d

dt

[
(t+ t0)

n/2−δ
∫
Rn
e2ψ
(
1

2
(|∂tu|2 + b(x)|∇u|2) + ν

(
u∂tu+

1

2
|u|2
))

dx

]
+

(
c3 −

µ(1 +M)

2

(n
2
+ 1− δ

))
(t+ t0)

1/2−δ
∫
Rn
e2ψ(1 + (−∂tψ))(|∂tu|2 + |∇u|2) dx

+ µ(t+ t0)
3/2−δ

∫
Rn
e2ψ
((

1

4
− ∂tψ

)
|∂tu|2 +

m

5
(−∂tψ)|∇u|2

)
dx

+ c3(t+ t0)
1/2−δ

∫
Rn
e2ψ
(
|∇ψ|2 + 1

t+ t0

)
|u|2 dx

≤2(µ+ 1)(t+ t0)
3/2−δ

∫
Rn
e2ψ|u|2p dx+ 2(µ+ 1)(t+ t0)

1/2−δ
∫
Rn
e2ψ|u|p+1 dx.

(45)
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It follows by integrating (45) over [0, t] that

µ

2
(t+ t0)

n/2+1−δ
∫
Rn
e2ψ(|∂tu|2 + b(x)|∇u|2) dx

+ (t+ t0)
n/2−δ

∫
Rn
e2ψ
(
1

2
(|∂tu|2 + b(x)|∇u|2) + ν

(
u∂tu+

1

2
|u|2
))

dx

+ c4

∫ t

0

(s+ t0)
n/2+1−δ

∫
Rn
e2ψ(|∂tu|2 + (−∂tψ)(|∂tu|2 + |∇u|2|)) dxds

+ c4

∫ t

0

(s+ t0)
n/2−δ

∫
Rn
e2ψ{1 + (−∂tψ)}(|∂tu|2 + |∂xu|2) dxds

+ c4

∫ t

0

(s+ t0)
n/2−δ

∫
Rn
e2ψ
(
|∇ψ|2 + 1

t+ t0

)
|u|2 dxds

≤c5ε2
∫
Rn
e2ψ(0,x)(|u0|2 + |∇u0|2 + |u1|2) dx

+ c5

∫ t

0

(s+ t0)
n/2+1−δ

∫
Rn
e2ψ|u|2p dxds+ c5

∫ t

0

(s+ t0)
n/2−δ

∫
Rn
e2ψ|u|p+1 dxds,

(46)

where c4 and c5 are some constants dependent on δ, however, independent
of t. Furthermore we observe that∫

Rn
e2ψ
{
1

2
(|∂tu|2 + b(x)|∇u|2) + ν

(
u∂tu+

1

2
|u|2
)}

dx

≥
∫
Rn
e2ψ
(
1

2
|∂tu|2 +

m

2
|∇u|2 + ν

2
|u|2 − ν

4
|u|2 − ν|∂tu|2

)
dx

≥ c6

∫
Rn
e2ψ(|∂tu|2 + |∇u|2 + |u|2) dx (47)

due to the Schwarz inequality, where c6 = min{1/2−ν,m/2, ν/4} > 0. This
observation together with

(t+ 1)α ≤ (t+ t0)
α ≤ tα0 (t+ 1)α,

(
t ≥ 0, α =

n

2
− δ,

n

2
+ 1− δ

)
implies

W (t) ≤ Cε2Iλ + CN(t) (48)

for t ≥ 0, where

N(t) =

∫ t

0

(s+ 1)n/2+1−δ
∫
Rn
e2ψ|u|2p dxds+

∫ t

0

(s+ 1)n/2−δ
∫
Rn
e2ψ|u|p+1 dxds,

(49)

and C = C(δ) is a positive constant independent of t.
We use the following Gagliard–Nirenberg inequality to obtain the esti-

mate of the nonlinear term N(t).

15



Lemma 3.4 ( [1]). Let u ∈ H1(Rn). If 1 < p < +∞ (n = 1, 2), 1 < p <
n/(n− 2) (n ≥ 3), then we have

∥u∥L2p(Rn) ≤ C∥∇u∥σ2pL2(Rn)∥u∥
1−σ2p
L2(Rn),

∥u∥Lp+1(Rn) ≤ C∥∇u∥σp+1

L2(Rn)∥u∥
1−σp+1

L2(Rn)

where σ2p =
n(p−1)

2p
, σp+1 =

n(p−1)
2(p+1)

.

By applying Lemma3.4 with q = 2p and (8), we have∫
Rn
e2ψ|u|2p dx ≤C∥∇(e

ψ
p u)∥2pσ2pL2(Rn)∥e

ψ
p u∥2p(1−σ2p)L2(Rn)

≤C
∥∥∥∥1p(∇ψ)eψ/pu+ eψ/p∇u

∥∥∥∥2pσ2p
L2(Rn)

∥eψu∥2p(1−σ2p)L2(Rn)

≤C
(
(t+ 1)−1∥eψu∥2L2(Rn) + ∥eψ∇u∥2L2(Rn)

)pσ2p
∥eψu∥2p(1−σ2p)L2(Rn)

≤C(t+ 1)−pσ2p(n/2+1−δ)−p(1−σ2p)(n/2−δ)

×
(
(t+ 1)n/2−δ

∫
Rn
e2ψ|u|2 dx+ (t+ 1)n/2+1−δ

∫
Rn
e2ψ(|∂tu|2 + |∇u|2) dx

)pσ2p
×
(
(t+ 1)n/2−δ

∫
Rn
e2ψ|u|2 dx

)p(1−σ2p)
≤C(t+ 1)−p(σ2p+n/2−δ)W (t)p. (50)

In the same way, we have∫
Rn
e2ψ|u|p+1 dx ≤ C(t+ 1)−

p+1
2

(σp+1+n/2−δ)W (t)
p+1
2 . (51)

We note that −(p− 1)n+ 1+ (p− 1)δ, (−(p− 1)n+ (p− 1)δ)/2 < −1 and
collect (48), (50) and (51) to see

sup
0≤t1≤t

W (t1) =M(t) ≤ sup
0≤t1≤t

[
Cε2Iλ + C

∫ t1

0

(1 + s)−(p−1)+1+(p−1)δW (s)p ds

+C

∫ t1

0

(1 + s)(−(p−1)+(p−1)δ)/2W (s)
p+1
2 ds

]
≤Cε2Iλ + CM(t)p

∫ +∞

0

(1 + s)−(p−1)+1+(p−1)δ ds

+ CM(t)(p+1)/2

∫ +∞

0

(1 + s)(−(p−1)+(p−1)δ)/2 ds

≤Cε2Iλ + CM(t)p + CM(t)(p+1)/2 (52)

for all t ≥ 0. From (52) and 1 < p, (p+1)/2, we obtain the a priori estimate

M(t) ≤ Cε2Iλ

for a sufficiently small ε > 0.
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