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1 Introduction

　 In this paper, we consider the Cauchy problem:{
ut −∆u = eu, (x, t) ∈ RN × (0,∞),

u(x, 0) = u0(x), x ∈ RN ,
(1)

where N ≥ 1 and u0 is a continuous initial function. We will study the blow-up
problem for (1). We say that the solution u to (1) blows up in finite time if
there exists T (u0) < ∞ such that u ∈ C2,1(RN × (0, T )) ∩ C(RN × [0, T )) is a
unique classical solution to (1) which is bounded in RN × [0, T (u0)) and satisfies

lim sup
t↗T (u0)

sup
x∈RN

u(x, t) = +∞.

We say that u is a global solution if u ∈ C2,1(RN × (0,∞)) ∩ C(RN × [0,∞)) is
a unique classical solution to (1) which is finite in RN × [0,∞). It is known that
the initial function u0 has to decay to −∞ as |x| → ∞ for the global solution to
exist. Throughout this paper, we assume that there exist ε ∈ (0, 2) and C > 0
such that

−Ce|x|
2−ε

≤ u0(x) ≤ C, x ∈ RN . (2)

In this paper, we are interested in the existence of solution to (1) lying on the
borderline between global existence and blow-up in finite time.
　We introduce some known results for a semi-linear heat equation with power
type nonlinearity. We consider the Cauchy problem:{

ut −∆u = up, (x, t) ∈ RN × (0,∞)

u(x, 0) = u0(x) x ∈ RN
(3)

where ut = ∂
∂tu, ∆u =

∑i=N
i=1

∂2

∂xi
2u, p > 1 and u0 is a non-negative and

bounded continuous initial function. It is well known that the exponent pF :=
(N + 2)/N which is called the Fujita exponent, plays an important role in the
existence of global solution of (3). In fact, If 1 < p ≤ pF then non-trivial non-
negative solutions must blow-up in finite time. On the other hand, if p > pF ,
there exist global solutions for suitable small initial data. The existence of global
solution to problem (3) strongly depends on the decay rate of initial function
u0 at x = ∞. In fact, Fujita [3] showed that (3) has a global solution if u0 has
the form of a small multiple of Gaussian, which decays exponentially at x = ∞.
Weissler [15] showed that (3) has global solutions if u0 has polynomial decay
at x = ∞. Lee and Ni [6] showed that the borderline decay rate of u0 is to be
|x|−2/(p−1) at x = ∞. In order to study the borderline decay rate, we consider
the stationary problem of (3) ,that is, positive solutions u to the equation

∆u+ up = 0 in RN , (4)

where N ≥ 3. When p > N/(N − 2), equation (4) has a singular solution of the
form:

u∗(x) := l∗|x|−
2

p−1 , l∗ :=

(
2

p− 1

(
N − 2− 2

p− 1

))1/(p−1)

.
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When p ≥ (N + 2)/(N − 2), equation (4) has one parameter family of radially
symmetric regular solutions {uα}α with initial condition uα(0) = α > 0, where

every uα satisfy lim|x|→∞ |x|
2

p−1uα(|x|) = L and their stability was studied in
[4]. Define the exponent pJL by

pJL =

∞, 3 ≤ N ≤ 10,

1 +
4

N − 4− 2
√
N − 1

, N ≥ 11.

This exponent pJL which is called the Joseph-Lundgren exponent plays an im-
portant role in the stability of radially symmetric stationary solutions of (3).

The equation in (3) is invariant under the similarity transform

uλ(x, t) = λ2/(p−1)u(λx, λ2t), for all λ > 0.

In particular, a solution u is said to be self-similar if

u(x, t) = λ2/(p−1)u(λx, λ2t), for all λ > 0. (5)

We call the solution u to (3) the forward self-similar solution if u is of the form:

u(x, t) = t−1/(p−1)φ(x/
√
t) (6)

where φ satisfies the elliptic equation

∆φ+
1

2
x · ∇φ+

1

p− 1
φ+ φp = 0 in RN . (7)

Such forward self-similar solutions are useful tools to describe the large time
behavior of the solution to (3). In particular, if φ = φ(r), r = |x|, then φ
satisfies φ′(0) = 0 and

φ′′ +

(
N − 1

r
+
r

2

)
φ′ +

1

p− 1
φ+ φp = 0 for r > 0. (8)

Then we can use ODE theory in investigating forward self-similar solutions. We
are interested in positive solutions φ to (8) satisfying φ′(0) = 0 and

lim
r→∞

r2/(p−1)φ(r) = l (9)

with some l > 0. For each l > 0, we introduce the solution set

Sl = {φ ∈ C2[0,∞) : φ > 0 is a solution to (8) satisfying φ′(0) = 0 and (9)}.
(10)

We call φ
l
a minimal solution of Sl if φl

≤ φ for all φ ∈ Sl. Naito [8] showed
the existence of a minimal solution of Sl by the comparison principle.

Theorem A (Naito [8]). Let Sl be defined by (10). If Sl ̸= ∅, then Sl has a
minimal solution.
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Naito [9] also showed the following results.

Theorem B (Naito [9]). Let pF < p < pJL. Assume that there exists a non
minimal solution φl of Sl. Define a self-similar solution ul by

ul(x, t) = t−
1

(p−1)φl

(
|x|√
t

)
. (11)

(i) If u0(x) ≥ ul(x, t0) and u0(x) ̸≡ ul(x, t0) for x ∈ RN with some t0 > 0,
then the solution u to (3) blows up in finite time.

(ii) If u0(x) ≤ ul(x, t0) and u0(x) ̸≡ ul(x, t0) for x ∈ RN with some t0 > 0,
then the solution u to (3) exists globally in time.

The purpose of this paper is to prove the same conclusions of Theorem A
and B to problem (1). We consider stationary solutions, that is, solutions to
elliptic equation;

−∆u = eu. (12)

For N ≥ 3, the function u∗ defined by

u∗(x) := −2 log |x|+ log (2N − 4),

is a singular solution to problem (12). Fujishima [2] showed that the decay
rate −2 log |x| at space infinity gives the critical decay rate for the existence
of global solutions to (1). In this paper we are concerned with the case where
initial function u0 decays to −2 log |x| at space infinity, that is,

lim
|x|→∞

(2 log |x|+ u0(x)) = L

with L ∈ R. the equation in (1) is invariant under

uλ(x, t) = log λ2 + u(λx, λ2t) for λ > 0.

as in mentioned in the manuscript. The function u = u(x, t) is called a self-
similar solution to the equation in (1) if u is of the form

u(x, t) = − log t+ φ

(
x√
t

)
, (13)

where φ(y) := u(y, 1) satisfies the elliptic equation

∆φ+
1

2
y · ∇φ+ eφ + 1 = 0 in RN . (14)

In particular, if φ = φ(r), r = |y|, then φ satisfiesφ′′ +

(
N − 1

r
+
r

2

)
φ′ + eφ + 1 = 0, r > 0,

φ′(0) = 0
(15)
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We are interested in solutions φ to (15) satisfying

lim
r→∞

(2 log r + φ(r)) = L (16)

with L ∈ R. For any L ∈ R, we introduce the solution set

SL :=
{
φ ∈ C2([0,∞)) : φ is a solution to (15) satisfying (16)

}
. (17)

Then we are in position to state our main theorems:

Theorem 1. If SL ̸= ∅, then there exists a minimal solution of SL.

Theorem 2. Let 3 ≤ N ≤ 9. Assume that there exists a non-minimal solution
φL of SL. Define a self-similar solution uL by

uL(x, t) = − log t+ φL

(
|x|√
t

)
. (18)

(i) If u0(x) ≥ uL(x, t0) and u0(x) ̸≡ uL(x, t0) for x ∈ RN with some t0 > 0,
then the solution u to (1) blows up in finite time.

(ii) If u0(x) ≤ uL(x, t0) and u0(x) ̸≡ uL(x, t0) for x ∈ RN with some t0 > 0,
then the solution u to (1) exists globally in time.

We remark that the assumption pJL = ∞ when 3 ≤ N ≤ 10, here assump-
tion pF < p < pJL in Theorem B allows exponential nonlinearity in this case.
In the case N = 10, it is known by [2] that there is no non-minimal solution of
SL for any L ∈ R. [2] also says that there exists an L ∈ R such that SL ̸= ∅
when 3 ≤ N ≤ 9.

We explain the main strategy to prove Theorem 1 and 2. We first approxi-
mate the solution to equation (1) by that of equation (3) by using the formula

eu = lim
n→∞

(
1 +

u

n

)n

;

that is, we consider the following approximate equation

u
(n)
t −∆u(n) =

(
1 +

u(n)

n

)n

in RN × (0,∞). (19)

Then we can use directly the knowledge for power type nonlinear equation (3)
to induce desired property for exponential type nonlinear equation (1).
The paper is organized as follows: In Section 2 we present some preliminary
results. In Section 3 we prove the existence of approximate self-similar solution.
In Section 4 we investigate properties of solution set SL, in particular we estab-
lish the existence of a minimal solution of SL by using approximate solutions.
In section 5, we prove Theorem 2.
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2 The existence of approximate solutions.

In this section we consider the non-linear heat equation:

u
(n)
t −∆u(n) =

(
1 +

u(n)

n

)n

in RN × (0,∞). (20)

The equation in (20) is invariant under the transformation:

u
(n)
λ (x, t) = n(λ2/(n−1) − 1) + λ2/(n−1)u(n)(λx, λ2t) for all λ > 0.

In particular, we call u(n) a self-similar solution when u(n) = u
(n)
λ for all λ > 0.

Forward self-similar solutions are of the form:

u(n)(x, t) = n(t−1/(n−1) − 1) + t−1/(n−1)φ(n)(
x√
t
), (21)

where φ(n) satisfies elliptic equation

∆φ(n) +
1

2
x · ∇φ(n) +

1

n− 1
(φ(n) + n) +

(
1 +

φ(n)

n

)n

= 0 in RN .

Note here that φ(n)(r) of (21) converges to φ(r) of (13) as n→ ∞. In particular,
if φ(n) = φ(n)(r), r = |x|, then φ(n) satisfiesφ(n)′′ +

(
N − 1

r
+
r

2

)
φ(n)′ +

1

n− 1
(φ(n) + n) +

(
1 +

φ(n)

n

)n

= 0, r > 0,

φ(n)′(0) = 0.

(22)
We establish that the forward self-similar solution of semi-linear heat equations
with exponential nonlinearity is approximated by that of semi-linear heat equa-
tions with power type nonlinearity.

Theorem 3. Let φα be the solution to (15) with φα(0) = α ∈ R. Then there

exists a sequence {φ(n)
α }n≥1 of (22) such that φ

(n)
α > −n and

lim
n→∞

sup
0≤r≤r0

|φ(n)
α (r)− φα(r)| = 0 for r0 > 0. (23)

Proof of Theorem 3. Let n0 ∈ N be chosen such that n0 + α > 0. Let ψ
(n)
α (r)

be the positive solution to the following differential equation:ψ
(n)
α

′′
+

(
N − 1

r
+
r

2

)
ψ(n)
α

′
+

1

n− 1
ψ(n)
α +

(
ψ
(n)
α

n

)n

= 0, n ≥ n0,

ψ
(n)
α (0) = α+ n > 0, ψ

(n)
α

′
(0) = 0, n ≥ n0.

(24)
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By (24), ψ
(n)
α satisfies the following integral equations:

ψ(n)
α (r) = α+ n−

∫ r

0

1

ρN (s)

∫ s

0

ρN (t)

[
1

n− 1
ψ(n)
α (t) +

(
ψ
(n)
α (t)

n

)n]
dt ds,

(25)

ψ(n)
α

′
(r) = − 1

ρN (r)

∫ r

0

ρN (s)

[
1

n− 1
ψ(n)
α (s) +

(
ψ
(n)
α (s)

n

)n]
dt ds, (26)

where ρN (r) = rN−1e
r2

4 . Since ψ
(n)
α

′
(r) < 0, we have

0 < ψ(n)
α (r) ≤ α+ n. (27)

Put φ
(n)
α = ψ

(n)
α (r)− n. Since (25), we have

φ(n)
α (r) = α−

∫ r

0

1

ρN (s)

∫ s

0

ρN (t)

[
1

n− 1
ψ(n)
α (t) +

(
ψ
(n)
α (t)

n

)n]
dt ds. (28)

We remark that (1 + a/n)n ≤ ea (a > 0). (27) and (28) imply that

|φ(n)
α (r)| ≤ |α|+

∫ r

0

1

ρN (s)

∫ s

0

ρN (t)

[
1

n− 1
(|α|+ n) +

(
1 +

|α|
n

)n]
dt ds,

≤ |α|+ (e|α| + |α|+ 2)

∫ r

0

1

ρN (s)

∫ s

0

ρN (t) dt ds,

≤ |α|+ (e|α| + |α|+ 2)

∫ r

0

∫ s

0

dt ds,

≤ |α|+ 1

2
(e|α| + |α|+ 2)r20, (29)

for all r ∈ [0, r0]. Thus we obtain that {φ(n)
α }n≥n0

is uniformly bounded on
[0, r0]. From (26) and (29) , we see that

|φ(n)
α

′
(r)| = |ψ(n)

α

′
(r)|

≤ 1

ρN (r)

∫ r

0

ρN (s)

[
1

n− 1
(|α|+ n) +

(
1 +

|α|
n

)n]
ds,

≤ (e|α| + |α|+ 2)r0,

for all r ∈ [0, r0]. Thus we have deduced that {φ(n)
α }n≥n0

is equi-continuous on

[0, r0]. By the Ascoli-Arzela theorem, there exists a subsequence of {φ(n)
α }n≥n0

which converges to φ̃α ∈ C[0, r0] uniformly on [0, r0]. Letting n → ∞ in (28)
we have

φ̃α(r) = α−
∫ r

0

1

ρN (s)

∫ s

0

ρN (t)(1 + eφ̃α(t)) dt ds.

Thus φ̃α ∈ C2 is the solution to (15) with φ̃α(0) = α and φ̃′
α(0) = 0. By

the uniqueness of solution to ordinary differential equations, we conclude φ̃α ≡
φα. ■
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The following theorem shows that φ ∈ SL is approximated by the solution

φ
(n)
α with the aid of Theorem 3 .

Theorem 4. Let φα ∈ SL with φα(0) = α. Assume that {φ(n)
α }n≥1 is given by

Theorem 3. Then there exists L(n)(α) ∈ R (n ≥ 1) such that

lim
r→∞

[
r

2
n−1 (φ(n)

α (r) + n)
]
− n = L(n)(α), lim

n→∞
L(n)(α) = L. (30)

Remark 1. Let ψ(n) be the solution to the equation:ψ(n)′′ +

(
N − 1

r
+
r

2

)
ψ(n)′ +

1

n− 1
ψ(n) +

(
ψ(n)

n

)n

= 0

ψ(n)′(0) = 0.

(31)

For L > 0, we are concerned with the solution set

S
(n)
L := {ψ(n) ∈ C2[0,∞) : ψ(n) > 0 is a solution to (31) satisfying lim

r→∞
r

2
n−1ψ(n)(r) = L }.

(32)

Let φα ∈ SL with φα(0) = α. Assume that {φ(n)
α }n≥1 is given by Theorem

3. Put ψ
(n)
α (r) = φ

(n)
α + n. Then ψ

(n)
α satisfies ψ

(n)
α > 0, (31),

lim
r→∞

[
r

2
n−1ψ(n)

α (r)
]
= L(n)(α) + n, and lim

n→∞
L(n)(α) = L,

that is, ψ
(n)
α ∈ S

(n)

L(n)(α)+n
.

In order to prove Theorem 4, we need the following proposition.

Proposition 1. Let ψ(n) = ψ
(n)
α ∈ C2[0,∞) (n ≥ 1) be the solution to (31)

with ψ
(n)
α (0) = α. Then there exists C = C(α) > 0 such that(

|ψ(n)(r)|
n

)n

≤ C(1 + r)−2n/(n−1) for r > 0, (33)

|ψ(n)′(r)| ≤ C(1 + r)−2/(n−1)−1 for r > 0. (34)

We remark that Constant C do not depend on n. To prove Proposition 1, we
introduce Energy function

E(n)(r) =
ψ(n)′2(r)

2
+

1

2(n− 1)
ψ(n)2(r) +

1

nn(n+ 1)
ψ(n)n+1

(r), r > 0, n > 1.

(35)

Then, we prepare the following lemmas

Lemma 1. Let ψ(n) = ψ
(n)
α ∈ C2[0,∞) (n ≥ 1) be the solution to (31) with

ψ
(n)
α (0) = α. Assume that E(n)(r) is given by (35). Then E(n)(r) is non increas-

ing function in r. In particular, E(n)(r) ≤ E(n)(0) (r > 0).
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Proof.

d

dr
E(n)(r) =

(
ψ(n)′′(r) +

1

n− 1
ψ(n)(r) +

(
ψ(n)(r)

n

)n)
ψ(n)′(r)

= −
(
N − 1

r
+
r

2

)
ψ(n)′2 ≤ 0,

Thus E(n)(r) is non increasing in r > 0. In particular, E(n)(r) ≤ E(n)(0) (r >
0). ■

Lemma 2 ([5] Proposition 3.1). Let ψ(n) = ψ
(n)
α ∈ C2[0,∞) (n ≥ 1) be the

solution to (31) with ψ
(n)
α (0) = α. Then there exists C = C(α, n) > 0 such that

|ψ(n)(r)| ≤ C(α, n)(1 + r)−2/(n−1) for r > 0, (36)

|ψ(n)′(r)| ≤ C(α, n)(1 + r)−2/(n−1)−1 for r > 0. (37)

where C(α, n) =
√

2(n− 1)E(n)(0).

Proof of Proposition 1. By Lemma 2, we get the esitimates

|ψ(n)(r)| ≤ C(α, n)(1 + r)−2/(n−1) for r > 0, (38)

|ψ(n)′(r)| ≤ C(α, n)(1 + r)−2/(n−1)−1 for r > 0. (39)

where C(α, n) =
√

2(n− 1)E(n)(0). Since

(
1 +

a

n

)n

≤ ea (a > 0), we have

1

n
C(α, n) =

1

n

√
(n− 1)E(n)(0)

=

√
(n− 1)

n2

(
1

(n− 1)
(α+ n)2 +

2

nn(n+ 1)
(α+ n)n+1

)

≤

√(
1 +

|α|
n

)2

+
2

n

(
1 +

|α|
n

)n+1

≤
(
1 +

|α|
n

)√
1 +

2

n

(
1 +

|α|
n

)n−1

≤
(
1 +

|α|
n

)√
1 +

2

n
e|α|.

we obtain (
1

n
C(α, n)

)n

≤ e|α|+e|α|
(40)

By (38) and (40), we have(
|ψ(n)(r)|

n

)n

≤ C(α)(1 + r)−
2n

n−1 (41)
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Since (41) and lim
n→∞

(
(n+ |α|)2

(n− 1)2
+ 2

(
1 +

|α|
n

)n+1)
= 1 + 2e|α|, we get

1

n− 1
C(α, n) ≤ 1

n− 1

√
2(n− 1)E(n)(0)

=

√
1

n− 1

(
1

(n− 1)
(n+ |α|)2 + 2

n+ 1

(
(n+ |α|)n+1

nn

)

≤

√
(n+ |α|)2
(n− 1)2

+ 2

(
1 +

|α|
n

)n+1

≤ C(α) (42)

Since (38), (42), we have

|ψ(n)(r)|
n− 1

≤ C(α)(1 + r)−
2

n−1 (43)

By (26), (41) and (44) we have

|ψ(n)′(r)| ≤ r1−Ne−
r2

4

∫ r

0

sN−1e
s2

4

[
1

n− 1
|ψ(n)(s)|+

(
|ψ(n)(s)|

n

)n]
ds

≤ C(α)e−
r2

4

∫ r

0

e
s2

4

[
(1 + s)−

2
n−1 + (1 + s)−

2n
n−1

]
ds

≤ C(α)e−
r2

4

∫ r

0

e
s2

4 (1 + s)−
2

n−1 ds

≤ C(α)e−
r2

4

(∫ r
2

0

e
s2

4 ds+

∫ r

r
2

e
s2

4 (1 + s)−
2

n−1 ds

)
≤ C(α)

[
e−

3r2

16 + (1 +
r

2
)−

2
n−1−1e−

r2

4

∫ r

r
2

(1 + s)e
s2

4 ds

]
(44)

If r < 2, Right hand side of (44) is bounded. If r ≥ 2, Since∫ r

r
2

2se
s2

4 ds = 4e
r2

4 − 4e
r2

16 ≤ 4e
r2

4 ,

Right hand side of (44) is bounded. Therefore we obtain

|ψ(n)′(r)| ≤ C(α)(1 + r)−
2

n−1−1.

■

Lemma 3. Let φ ∈ C2[0,∞) be the solution to (15) with φ(0) = α. Then there
exists a constant C = C(α) > 0 such that

|φ′(r)| ≤ C(1 + r)−1 for r > 0.
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Proof of Theorem 4. The following argument can be found in the proof of [[5]

proposition 3.4]. From Theorem 3, there exists a sequence {φ(n)
α }n≥1 of (22)

such that φ
(n)
α = φ(n) > −n and (23). Put ψ(n) = φ(n) + n. Then ψ(n) satisfies

(24). The identity

(r2/(n−1)ψ(n))′ = r2/(n−1)−1(rψ(n)′ +
2

n− 1
ψ(n))

and (24) implies that

d

dr

[
r2/(n−1)ψ(n)(r) + 2r2/(n−1)−1ψ(n)′(r)

]
= 2(

2

n− 1
−N)r2/(n−1)−2ψ(n)′(r)− 2r2/(n−1)−1

(
ψ(n)(r)

n

)n

.

(45)

Integrating (45) from 1 to r, we have

r2/(n−1)ψ(n)(r) + 2r2/(n−1)−1ψ(n)′(r)− ψ(n)(1)− 2ψ(n)′(1)

= 2(
2

n− 1
−N)

∫ r

1

t2/(n−1)−2ψ(n)′(t) dt− 2

∫ r

1

t2/(n−1)−1

(
ψ(n)(t)

n

)n

dt.

(46)

Note that we have∫ ∞

1

t2/(n−1)−2ψ(n)′(t) dt <∞ and

∫ ∞

1

t2/(n−1)−1

(
ψ(n)(t)

n

)n

dt <∞,

by Proposition 1. Letting r → ∞ in (46), we get

lim
r→∞

(r2/(n−1)ψ(n)(r))− ψ(n)(1)− 2ψ(n)′(1)

= 2(
2

n− 1
−N)

∫ ∞

1

t2/(n−1)−2ψ(n)′(t) dt− 2

∫ ∞

1

t2/(n−1)−1

(
ψ(n)(t)

n

)n

dt.

(47)

Since ψ(n) = φ(n) + n, we obtain

L(n)(α)− φ(n)(1)− 2φ(n)′(1)

= 2(
2

n− 1
−N)

∫ ∞

1

t2/(n−1)−2ψ(n)′(t) dt− 2

∫ ∞

1

t2/(n−1)−1

(
ψ(n)(t)

n

)n

dt.

(48)

By Proposition 1, there exists a constant C > 0 such that∣∣t2/(n−1)−2ψ(n)′(t)
∣∣ ≤ C(1 + t)−3, (49)∣∣∣∣t2/(n−1)−1

(
ψ(n)(t)

n

)n∣∣∣∣ ≤ C(1 + t)−3 (50)
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and we have

lim
n→∞

t2/(n−1)−2ψ(n)′(t) = lim
n→∞

t2/(n−1)−2 d

dt
[φ(n)(t) + n]

= lim
n→∞

t2/(n−1)−2φ(n)′(t)

= t−2φ′(t), t ∈ R,

lim
n→∞

t2/(n−1)−1

(
ψ(n)(t)

n

)n

= lim
n→∞

t2/(n−1)−1

(
1 +

φ(n)(t)

n

)n

= t−1eφ(t), t ∈ R.

Letting n→ ∞ in (48), we have

lim
n→∞

L(n)(α)− φ(1)− 2φ′(1)

= −2N

∫ ∞

1

t−2φ′(t) dt− 2

∫ ∞

1

t−1eφ dt,
(51)

by the Lebesgue convergence theorem and (23). Thus limn→∞ L(n)(α) exists.
On the other hand, since

(2 log r + φ(r))′ = r−1(rφ′(r) + 2),

we have

d

dr
(2 log r + φ(r) + 2r−1φ′(r)) = −2Nr−2φ′(r)− 2r−1eφ(r). (52)

We remark that φ′(r)/r → 0 as r → ∞ by Lemma 3. Integrating (52) from 1
to ∞, we have

L− φ(1)− 2φ′(1) = −2N

∫ ∞

1

t−2φ′(t) dt− 2

∫ ∞

1

t−1eφ(t) dt. (53)

From (51) and (53), we conclude that

lim
n→∞

L(n)(α) = L.

■

3 Properties of solution set SL.

In this section, we will demonstrate the existence of a minimal solution of solu-
tion set SL. To prove Theorem 1, we prepare the following lemma.

Lemma 4 ([8] Lemma 3.1). Let S
(n)
l be defined by (32). If S

(n)
l ̸= ∅, then S(n)

l

has a minimal solution.

13



Proof of Theorem 1. Let φ ∈ SL with φ(0) = α. Assume that φ(n) = φ
(n)
α and

let L(n) = L(n)(α) be defined by Theorem 4. ψ(n) = φ(n) + n. Take n ∈ N so
large that L(n) + n > 0. Then we have

lim
r→∞

r2/(n−1)ψ(n)(r) > 0,

that is, ψ(n) ∈ S
(n)

L(n)+n
. Hence there exists a minimal solution ψ(n) ∈ S

(n)

L(n)+n

by Lemma 4. We remark that ψ(n) does not depend on φ(0) = α. Since ψ(n)

satisfies (24), we have the following integral equations:

ψ(n)(r) = ψ(n)(0)−
∫ r

0

1

ρN (s)

∫ s

0

ρN (t)

[
1

n− 1
ψ(n)(t) +

(
ψ(n)(t)

n

)n]
dt ds,

ψ(n)′(r) = − 1

ρN (r)

∫ r

0

ρN (s)

[
1

n− 1
ψ(n)(s) +

(
ψ(n)(s)

n

)n]
ds,

where ρN (r) = rN−1er
2/4. Put φ(n) = ψ(n)−n. Since ψ(n)(r) ≤ ψ(n)(r) (r > 0),

we have φ(n)(0) ≤ α. We now claim that {φ(n)(0)} is bounded below. We

integrate equation (45) with ψ(n) replaced by ψ(n) from 1 to r. Then

r2/(n−1)ψ(n)(r) + 2r2/(n−1)−1ψ(n)′(r)− ψ(n)(1)− 2ψ(n)′(1)

= 2(
2

n− 1
−N)

∫ r

1

t2/(n−1)−2ψ(n)′(t) dt− 2

∫ r

1

t2/(n−1)−1

(
ψ(n)(t)

n

)n

dt,

(54)

since lim
r→0

r2/(n−1)φ(n)(r) = 0, 2 lim
r→0

r2/(n−1)−1φ(n)′(r) = 0. Letting r → ∞ in

(54), we have

L(n) + n− ψ(n)(1)− 2ψ(n)′(1)

= 2(
2

n− 1
−N)

∫ ∞

1

t2/(n−1)−2ψ(n)′(t) dt− 2

∫ ∞

1

t2/(n−1)−1

(
ψ(n)(t)

n

)n

dt.

(55)

By limn→∞ L(n) = L, there exists C > 0 such that

|L(n)| ≤ C for n ∈ N. (56)

Since Proposition 1 and (56), we have

|ψ(n)(1)− n| ≤ |L(n)|+ |ψ(n)′(1)|

+2(
2

n− 1
−N)

∫ ∞

1

t2/(n−1)−2|ψ(n)′(t)| dt+ 2

∫ ∞

1

t2/(n−1)−1

( |ψ(n)(t)|
n

)n

dt

≤ 2C + 2C

∫ ∞

1

t−3 dt

≤ C

14



Thus {ψ(n)(1)−n}n∈N is bounded. Then there exists C > 0 such that |ψ(n)(1)−
n| ≤ C. Since ψ(n)(r) is non increasing in r > 0, we obtain

−C ≤ ψ(n)(1)− n ≤ ψ(n)(0)− n

Therefore {ψ(n)(0) − n}n∈N is bounded. By the Bolzano-Weierstrass theorem,

there exists a convergent subsequence φ(nk)(0) of φ(n)(0). Then φ(nk) satisfies
the following:

φ(nk)(r) = φ(nk)(0)−
∫ r

0

1

ρN (s)

∫ s

0

ρN (t)

[
1

n− 1
(φ(nk)(t) + n) +

(
1 +

φ(nk)(t)

n

)n]
dt ds,

φ(nk)
′
(r) = − 1

ρN (r)

∫ r

0

ρN (s)

[
1

n− 1
(φ(nk)(s) + n) +

(
1 +

φ(nk)(s)

n

)n]
ds,

where ρN (r) = rN−1e
r2

4 . By the same argument as that in Theorem 3, φ(nk)

converges to some φ uniformly in [0, r0]. In particular, φ(nk) converges point-
wisely to φ. We show that lim

r→∞
(φ(r) + 2 log r) = L. Since (54), we have

r2/(n−1)φ(n)(r) + nr2/(n−1) − n+ 2r2/(n−1)−1φ(n)′(r)− φ(n)(1)− 2φ(n)′(1)

= 2(
2

n− 1
−N)

∫ r

1

t2/(n−1)−2φ(n)′(t) dt− 2

∫ r

1

t2/(n−1)−1

(
1 +

φ(n)(t)

n

)n

dt

(57)

Letting n→ ∞ in (57), we have

φ(r) + 2 log r + 2r−1φ′(r)−φ(1)− 2φ′(1)

= −2N

∫ r

1

t−2φ′(t) dt− 2

∫ r

1

t−1eφ(t) dt,
(58)

for r > 0. Letting r → ∞ in (58), we obtain

lim
r→∞

(
φ(r) + 2 log r

)
−φ(1)− 2φ′(1)

= −2N

∫ ∞

1

t−2φ′(t) dt− 2

∫ ∞

1

t−1eφ(t) dt,
(59)

by lim
r→∞

r−1φ′(r) = 0. On the other hand, Letting n→ ∞ in (53) with φ replaced

by φ, we obtain

L− φ(1)− 2φ′(1) = −2N

∫ ∞

1

t−2φ′(t) dt− 2

∫ ∞

1

t−1eφ(t) dt. (60)

From (59) and (60), we obtain lim
r→∞

(φ(r)+2 log r) = L. Therefore φ ∈ SL. From

φ(nk) ≤ φ(nk), letting nk → ∞, we conclude that φ ≤ φ. Note that φ does not
depend on φ. Therefore φ is a minimal solution of SL ,i.e., φ ≤ φ for all φ ∈
SL. ■
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Corollary 1. Assume that there exist at least two solutions φ and φ of SL,
where φ is a minimal solution of SL. Then there exist at least two solutions

ψ(n) and ψ(n) of S
(n)

L(n)+n
, where ψ(n) is a minimal solution of S

(n)

L(n)+n
.

Proof. In the proof of Theorem 1, there exist ψ(n) and ψ(n) of S
(n)

L(n)+n
such that

φ(n) := ψ(n) − n and φ(n) := ψ(n) − n converge to φ and φ, respectively, where

ψ(n) is a minimal solution of S
(n)

L(n)+n
. ■

We will show the following properties of SL.

Proposition 2. Let SL be given by (17). Assume that there exist at least two
solutions φ

L
and φL of SL, where φL

is a minimal solution of SL.

(i) If φ ∈ SL satisfies φ(r) ≤ φL(r) for r > 0 then φ(r) ≡ φ
L
(r) or φ(r) ≡

φL(r) for r > 0.

(ii) Assume that φ is a solution to (15) satisfying φ′(0) = 0 and φ(r) ≥
φL(r) for r ≥ 0. Then φ(r) ≡ φL(r) for r ≥ 0.

(iii) Let φ ∈ SL0 with some L0 ∈ (0, L]. Assume that φ(r) ≤ φ
L
(r) for r ≥ 0.

Then φ ∈ SL0 is a minimal solution.

(iv) There exists no positive solution φ ∈ C2(0,∞) to (15) satisfying φ(r) >
φL(r) for r ∈ (0,∞) and φ(r) → ∞ as r → 0.

In order to prove Proposition 2, we prepare the following lemma.

Lemma 5 (Naito [9] Proposition 4.1.). Let S
(n)

L(n)+n
be given by (32). Assume

that there exist at least two solutions ψ(n)

L
and ψ

(n)
L of S

(n)

L(n)+n
, where ψ(n)

L
is a

minimal solution of S
(n)

L(n)+n
.

(i) If ψ(n) ∈ S
(n)

L(n)+n
satisfies ψ(n)(r) ≤ ψ

(n)
L (r) for r > 0 then ψ(n)(r) ≡

ψ(n)

L
(r) or ψ(n)(r) ≡ ψ

(n)
L (r) for r > 0.

(ii) Assume that ψ(n) is a solution to (31) satisfying ψ(n)(r) ≥ ψ
(n)
L (r) for r ≥

0. Then ψ(n)(r) ≡ ψ
(n)
L (r) for r ≥ 0.

(iii) Let ψ(n) ∈ S
(n)

L
(n)
0 +n

with some L
(n)
0 ∈ (0, L(n)]. Assume that ψ(n)(r) ≤

ψ(n)

L
(r) for r ≥ 0. Then ψ(n) ∈ S

(n)

L
(n)
0 +n

is a minimal solution.

(iv) There exists no positive solution ψ(n) ∈ C2(0,∞) to (31) satisfying ψ(n)(r) >

ψ
(n)
L (r) for r ∈ (0,∞) and ψ(n)(r) → ∞ as r → 0.

Proof of Proposition 2. Let ψ(n)

L
and ψ

(n)
L be given by Corollary 1.

(i) Since φ ∈ SL, there exists ψ(n) and L(n) by Theorem 4. Since φ
L
∈ SL is a

minimal solution of SL, we have φL
(r) ≤ φ(r) for r ≥ 0. Assume to the contrary
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that φ
L
̸= φ and φ ̸= φL. Then by the uniqueness of the initial value problems

to (15), we get φ
L
(r) < φ(r) < φL(r) for r ≥ 0, hence there exists N ∈ N such

that ψ(n)

L
(r) < ψ(n)(r) < ψ

(n)
L (r) for r ≥ 0, n ≥ N, and ψ(n) ∈ S

(n)

L(n)+n
. By

Lemma 5 (i), we have ψ(n)(r) ≡ ψ(n)

L
(r) or ψ(n)(r) ≡ ψ

(n)
L (r) for r > 0. This is

contradiction. Therefore φ(r) ≡ φ
L
(r) or φ(r) ≡ φL(r) for r > 0.

(ii) The proof is given by contradiction argument. Assume to the contrary that
φ ̸= φL. Then, by the uniqueness of the initial value problems to equation (15),
we have φ

L
(r) < φ(r) < φL(r) for all r > 0. Then there exist N ∈ N such

that ψ(n)

L
(r) < ψ

(n)
L (r) < ψ(n)(r) for r ≥ 0, n ≥ N. By Lemma 5 (ii) we have

ψ(n)(r) ≡ ψ
(n)
L (r) for r ≥ 0. Letting n→ ∞, we obtain φ(r) ≡ φL(r) for r ≥ 0.

This is contradiction. Therefore φ(r) ≡ φL(r) for r ≥ 0.
(iii) If L0 = L, we see that φ ∈ SL0

is a minimal solution. Let L0 < L. Assume
to the contrary that φ ∈ SL0

is a non-minimal solution. Then this contradicts
this Proposition 2 (ii). Therefore, φ ∈ SL0 is a minimal solution.
(iv) Assume to the contrary that there exists a positive solution φ ∈ C2(0,∞)
to (15) satisfying the following condition:

φ(r) > φL(r), r ∈ (0,∞), lim
r→0

φ(r) = ∞.

For δ > 0, let ψ(n) ∈ C2[δ,∞) be the positive solution to initial value problem:ψ(n)′′ +

(
N − 1

r
+
r

2

)
ψ(n)′ +

1

n− 1
ψ(n) +

(
ψ(n)

n

)n

= 0

ψ(n)(δ) = φ(δ) + n, ψ(n)′(δ) = φ′(δ).

Since limr→0 ψ
(n)(r) = limr→0 φ(r) + n ≥ limr→0 φ(r) = ∞, there exists a

positive solution ψ(n) ∈ C2(0,∞) to (31) satisfying ψ(n)(r) > ψ
(n)
L (r) for r ∈

(0,∞) and ψ(n)(r) → ∞ as r → 0. From Lemma 5 there exists no positive

solution ψ(n) ∈ C2(0,∞) to (31) satisfying ψ(n)(r) > ψ
(n)
L (r) for r ∈ (0,∞)

and ψ(n)(r) → ∞ as r → 0. This is contradiction. Therefore, there exists no
positive solution φ ∈ C2(0,∞) to (15) satisfying φ(r) > φL(r) for r ∈ (0,∞)
and φ(r) → ∞ as r → 0. ■

4 Proof of Theorem 2

We begin this section by introducing the definition of weak supersolution and
subsolution. We say that a function u is a continuous weak supersolution to (1)
in RN × [0, T ] if u is a continuous on RN × [0, T ], u(x, 0) ≥ u0(x) x ∈ RN and
satisfies∫

RN

u(x, t)ξ(x, t) dx

∣∣∣∣t=T ′

t=0

≥
∫ T ′

0

∫
RN

[u(x, t)(ξt +∆ξ)(x, t) + eu(x,t)ξ(x, t)] dx dt,

(61)
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for all T ′ ∈ [0, T ] and for all ξ ∈ C2,1(RN × [0, T ]) with ξ ≥ 0 such that
supp ξ(·, t) is compact in RN for all t ∈ [0, T ]. A continuous weak subsolution
to (1) in RN × [0, T ] is defined in the same way by reversing the inequalities
above.
We say that a function φ is a continuous weak supersolution to (14) in RN if
φ ∈ C(RN ) satisfies∫

RN

[
φ

(
∆η − 1

2
y · ∇η − N

2
η

)
+ (eφ + 1)η

]
dy ≤ 0

for any η ∈ C2(RN ) with η ≥ 0 such that supp η(·) is compact in RN . A con-
tinuous weak subsolution to (14) in RN is defined in the same way by reversing
the inequalities above.

Next we introduce comparison principle for problem (1).

Lemma 6 ([2] Lemma 2.3 (i)). Let u and u be continuous weak supersolution
and subsolution to (1) in RN × [0, T ], respectively. Assume that u and u are

bounded above and satisfy u(x, t)− u(x, t) ≥ −AeB|x|2 in RN × [0, T ] for some
constants A,B > 0. Then u ≤ u in RN × [0, T ] and there exists a classical
solution to (1) satisfying u ≤ u ≤ u in RN × [0, T ].

We show the following proposition.

Proposition 3. Suppose that SL have at least two elements φ
L
and φL, where

φ
L
is a minimal solution of SL.

(i) Assume that w0 ∈ C(RN ) satisfies w0(x) < φL(|x|) for x ∈ RN . Then
there exists a continuous weak supersolution w0 to (14) such that w0 =
w0(r), r = |x| and satisfies w0 ̸≡ φL and

w0(x) < w0(|x|) ≤ φL(|x|), x ∈ RN . (62)

(ii) Assume that w0 ∈ C(RN ) satisfies w0(x) > φL(|x|) for x ∈ RN . Then
there exists a continuous weak subsolution w0 to (14) such that w0 =
w0(r), r = |x| is nonincreasing in r > 0 and satisfies w0 ̸≡ φL and

φL(|x|) ≤ w0(|x|) < w0(x), x ∈ RN . (63)

In order to prove Proposition 3, we prepare the following Lemma.

Lemma 7. Let α1 < α2. Assume that φ(r;αi) (i = 1, 2) is the solution to (15)
satisfying φ′(0) = 0 with initial data φ(0;αi) = αi (i = 1, 2). Suppose that
there exists r0 > 0 such that

φ(r;α1) < φ(r;α2) (0 ≤ r < r0), φ(r0;α1) = φ(r0;α2).

If α3 > α2, then φ(r;α3)− φ(r;α2) has at least one zero in (0, r0).
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Proof. This proof is carried out by the similar argument used in the proof of
[[9] Lemma 5.1]. Assume to the contrary that φ(r;α3) − φ(r;α2) > 0, for 0 ≤
r < r0. We set ϕ1(r) = φ(r;α2) − φ(r;α1), ϕ2(r) = φ(r;α3) − φ(r;α2). Since
φ(r;αi) (i = 1, 2, 3) is the solution to (15) we have

(ρNϕ
′
j)

′ + ρNmjϕj = 0 for r > 0, j = 1, 2, (64)

where ρN (r) = rN−1er
2/4 and mj satisfies:

eφ(r;αi) < mj(r) < eφ(r;αj+1) 0 ≤ r ≤ r0, j = 1, 2.

Then, we obtain m1(r) < m2(r) for 0 ≤ r < r0 and

ϕ′1(r0) ≤ 0, ϕ2(r0) ≥ 0. (65)

By (64) we have

(ρNϕ
′
1)

′ϕ2 + ρNm1ϕ1ϕ2 = 0 (r > 0), (66)

(ρNϕ
′
2)

′ϕ1 + ρNm2ϕ1ϕ2 = 0 (r > 0). (67)

Since (66) and (67), we have

(ρN (ϕ′1ϕ2 − ϕ1ϕ
′
2))

′ = −ρN (m1 −m2)ϕ1ϕ2. (68)

We integrate (68) from 0 to r0, we obtain

ρN (ϕ′1ϕ2 − ϕ1ϕ
′
2) |

r=r0
r=0 = −

∫ r0

0

ρN (m1 −m2)ϕ1ϕ2 > 0.

On the other hand, since (65) and ϕi(0)
′ = 0 we have

ρN (ϕ′1ϕ2 − ϕ1ϕ
′
2) |

r=r0
r=0 = ρN (r0)ϕ

′
1(r0)ϕ2(r0) ≤ 0.

This is contradiction. Therefore φ(r;α3) − φ(r;α2) has at least one zero in
(0, r0). ■

Lemma 8. Assume that SL has at least two elements φ
L
and φL. Suppose that

α∗ = φ
L
(0), α∗ = φL(0) and α0 ∈ (α∗, α

∗). Then there exists r0 > 0 such that

φ
L
(r) < φ(r;α0) < φL(r) for 0 ≤ r < r0, φ(r0;α0) = φL(r0). (69)

In addition, we have

(i) If α ∈ (α0, α
∗) then there exists r1 ∈ (0, r0) such that

φ(r;α) < φL(r) (0 ≤ r < r1), φ(r1;α) = φL(r1); (70)

(ii) If α > α∗ then there exists r2 ∈ (0, r0) such that

φ(r;α) > φL(r) (0 ≤ r < r2), φ(r2;α) = φL(r2). (71)
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Proof. Since we see that φ
L
(0) < φ(0;α0) < φL(0), one of the following condi-

tion (a)-(c) holds:
(a) φ

L
(r) < φ(r;α) < φL(r) r > 0;

(b) There exists r0 > 0 such that

φ
L
(r) < φ(r;α0) < φL(r) 0 ≤ r < r0 φ

L
(r) = φ(r0;α0);

(c) There exists r0 > 0 satisfying (69).
The condition (a) does not hold by Proposition 2 (i). Assume that condition
(b) holds. By Lemma 7, φL(r) − φ(r;α0) has at least one zero in (0, r0). This
is contradiction. Therefore the condition (c) holds, and we have (69).

(i) Let α ∈ (α0, α
∗). Assume that φ(r;α) < φL(r) for 0 ≤ r < r1. By (69),

there exists r1 ∈ (0, r0] such that

φ(r;α0) < φ(r;α) (0 ≤ r < r1), φ(r1;α0) = φ(r1;α).

By Lemma 7, φL(r) − φ(r;α) has at least one zero in (0, r0). This is
contradiction. We have (70).

(ii) Let α1 = α0, α2 = α∗ and α3 = α. By Lemma 7, φ(r;α) − φL(r) has at
least one zero in (0, r0). Therefore (71) holds.

■

Lemma 9 ([2] Lemma 2.5). (i) Let φ1 = φ1(|y|) and φ2 = φ2(|y|) be radi-
ally symmetric subsolutions to (14). Assume that there exists R > 0 such
that φ1(R) = φ2(R) and φ

′
1(R) ≤ φ′

2(R). Then, φ defined by

ϕ(r) :=

{
φ1(r), r ∈ [0, R],

φ2(r) r ∈ [R,∞)

is a continuous weak subsolution to (14).

(ii) Let φ1 = φ1(|y|) and φ2 = φ2(|y|) be radially symmetric supersolutions
to (14). Assume that there exists R > 0 such that φ1(R) = φ2(R) and
φ′
1(R) ≥ φ′

2(R). Then ϕ defined by

ϕ(r) :=

{
φ1(r), r ∈ [0, R],

φ2(r) r ∈ [R,∞)

is a continuous weak supersolution to (14).

Proof of Proposition 3. Let α∗ = φL(0), α
∗ = φL(0) and α0 ∈ (α∗, α

∗). By
Lemma 8, there exists r0 > 0 satisfying (69).

(i) Put wM (r) = max|x|=r w0(x) for r > 0. Then we have φL(r) > wM (r) for r >
0. Setting ε = min0≤r≤r0 |φL(r)− wM (r)|. By continuous dependence of
initial data, there exists δ > 0 such that if |α− α∗| < δ then

|φL(r)− φ(r;α)| < ε for 0 ≤ r ≤ r0. (72)
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Let α ∈ (α∗ − δ, α∗) ∩ (α0, α
∗). By Lemma 8 (i), there exists r0 ∈ (0, r1)

such that (71). Then we have

wM (r) ≤ φL(r)− ε < φ(r;α) < φL(r) for 0 ≤ r ≤ r1

and φ(r1;α) = φL(r1). Therefore we obtain φ′(r1;α) ≥ v′L(r1). Putting

w0(r) =

{
φ(r;α), 0 ≤ r < r1,

φL(r), r ≥ r1.

Then w0 satisfies (62) and we have w0 is a continuous weak supersolution
to (15) by Lemma 9 (ii).

(ii) Put wm(r) = min|x|=r w0(x) for r > 0. Then we have φL(r) < wm(r) for r >
0. Setting ε = min0≤r≤r0 |φL(r)−wm(r)|. By the continuous dependence
of initial data, there exists δ > 0 such that if |α− α∗| < δ then

|φL(r)− φ(r;α)| < ε for 0 ≤ r ≤ r0. (73)

Put α ∈ (α∗, α∗ + δ). By Lemma 8 (ii), there exists r2 ∈ (0, r0) satisfying
(71). Then we have

φL(r) < φ(r;α) < φL(r) + ε ≤ wm(r) for 0 ≤ r < r2

and φ(r2;α) = φL(r2). Therefore we have φ′(r2;α) ≤ φ′
L(r2). Put

w0(r) =

{
φ(r;α), 0 ≤ r < r2,

φL(r), r ≥ r2.

Then w0 satisfies (63) and w′
0(r) ≤ 0 for r ≥ 0. We obtain that w0 is a

continuous weak subsolution to (15).

■

In order to prove Theorem 2, we use the self-similar variables. Let u be the
solution to (1). Then we define w by the following:

w(y, s) := log (1 + t) + u(x, t), y =
x√
1 + t

, s = log (1 + t). (74)

Then, w satisfyws = ∆w +
1

2
y · ∇w + ew + 1 in RN × (0,∞),

w(y, 0) = w0(y) on RN
(75)

where w0 = u0.
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We say that w is a continuous weak supersolution to (75) in 0 ≤ s ≤ S if w
is a continuous on RN × [0, S], w(y, 0) ≥ w0(y) y ∈ RN and satisfies∫

RN

w(y, s)ξ(y, s) dy

∣∣∣∣s=σ

s=0

≥
∫ σ

0

∫
RN

[w(y, s)(ξs +∆ξ)(y, s) + ew(y,s)ξ(y, s)] dy ds

(76)
for all ξ ∈ C2,1(RN × [0, S]) with ξ ≥ 0 such that supp ξ(·, s) is compact in RN

for all s ∈ [0, σ]. A continuous weak subsolution is defined in the same way by
reversing the inequalities.

Next we introduce comparison results of sub- and supersolutions..

Lemma 10 ([2] Lemma 2.3 (ii)). Let w and w be weak supersolution and sub-
solution to (75) in RN × [0, S], respectively. Assume that w and w are bounded

above and satisfy w(x, s)−w(x, s) ≥ −AeB|x|2 in RN × [0, S] for some constants
A,B > 0. Then w ≤ w in RN × [0, S] and there exists the solution w to (75)
such that w ≤ w ≤ w in RN × [0, S].

We will prove the following proposition.

Proposition 4. Let 3 ≤ N ≤ 9. Assume that there exist at least two elements
φ
L
and φL of SL, where φL

is a minimal solution of SL. Suppose that w0 holds
the assumption (2).

(i) If w0(y) > φL(|y|) for y ∈ RN then the solution w to (75) with initial data
w0 blows up in finite time.

(ii) If w0(y) < φL(|y|) for y ∈ RN then the solution w to (75) with initial data
w0 exists globally in time.

To prove Proposition 4 we prepare the following Lemmas.

Lemma 11 ([2] Lemma 2.4.). (i) Let w0 be continuous weak subsolution to
(14). Assume that the solution w to (75) with initial data w0 exists glob-
ally in time. Then w is nondecreasing in s.

(ii) Let w0 be continuous weak supersolution to (14). Assume that the so-
lution w to (75) with initial data w0 exists globally in time. Then w is
nonincreasing in s.

Lemma 12 ([2] Lemma 2.7). Let the solution w = w(|y|, s) to (75) be a global
solution and radially symmetric in y . Assume that w(|y|, s) is nondecreasing
function in s for each fixed r ≥ 0 and nonincreasing function in r = |y| for each
fixed s ≥ 0. Put φ(r) := lims→∞ w(r, s).

(i) If φ is bounded above, then φ ∈ C2([0,∞)) is the solution to (15) satisfying
φ′(0) = 0.

(ii) If φ is not bounded above. Then φ ∈ C2((0,∞)) is the solution to (15)
satisfying limr→0 φ(r) = ∞.

22



Proof of Proposition 4. (i) The proof is carried out contradiction argument.
Assume to contrary that w exists globally in time. By Proposition 3 (ii) there
exists a continuous weak subsolution w0 such that w0 = w0(r), r = |x|, non-
increasing in r, w0 ̸= φL and (63). Let w be the solution to (75) with initial
data w0 = w0. From Lemma 10, w = w(r, s), r = |y| is a radially symmet-
ric and nonincreasing function in r ≥ 0. We remark that w0 = u0 satisfies
assumption (2). By the comparison principle, we have φL < w < w and w
exists globally in time. From Lemma 11, w(r, s) is nonincreasing in s. Let
φ(r) = lims→∞ w(r, s) for r ≥ 0. Since w(r, s) is nonincreasing in r, φ(r) is a
nonincreasing function and satisfies

φL(r) < w0(r) ≤ w(r, s) ≤ φ(r), r > 0, s ≥ 0. (77)

Assume that φ is bounded above. By Lemma 12 (i), we get φ ∈ C2[0,∞) to
(15) satisfying φ′(0) = 0. From (77), we have φL(r) < φ(r) for r ≥ 0. This is a
contradiction by Proposition 2 (ii). Therefore we conclude that φ ̸∈ L∞[0,∞).

By Lemma 12 (ii), we have φ ∈ C2(0,∞) satisfying limr→0 φ(r) = ∞. From
(77), we obtain φL(r) < φ(r) for 0 < r < ∞. This is a contradiction by
Proposition 2 (iv). Therefore the solution w to (75) with initial data w0 blows
up in finite time.
(ii) Since φL is the stationary solution to (14) and w0 satisfies assumption (2),
we obtain

w(y, s) ≤ φL(|y|), y ∈ RN , s > 0

by the comparison principle. Therefore the solution w to (75) exists globally in
time. ■

Proof of Theorem 2. (i) The proof is carried out by contradiction argument.
Assume to contrary that u exists globally in time. By the comparison prin-
ciple, u(x, t) > uL(x, t0 + t) x ∈ RN , t > 0. Hence assume that u0(x) >
uL(x, t0) for x ∈ RN . Then we have

log t0 + u0(
√
t0x) > φL(|x|), x ∈ RN . (78)

Let w(x, t) = log t0 + u(
√
t0x, t0t). Then w satisfies the following:

wt = ∆w + ew in RN × (0,∞), w(x, 0) = log t0 + u0(
√
t0x) in RN . (79)

Put
ŵ(y, s) = log (t+ 1) + w(x, t), y =

x√
1 + t

, s = log (1 + t).

Then ŵ is a global solution to (75) satisfying ŵ0(y) = w(y, 0) for y ∈ RN . From
(78) and (79), we have ŵ0(y) > φL(|y|) for y ∈ RN . By proposition 4 (i), The
solution ŵ to (75) blows up in finite time. This is contradiction. Therefore u
blows up in finite time.
(ii) Assume that u0(x) < uL(x, t0) for y ∈ RN by the comparison principle.
Then we have

log t0 + u0(
√
t0x) < φL(|x|) for x ∈ RN . (80)
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Put w(x, t) = log t0 + u(
√
t0x, t0t). Then w satisfies (79). Let

ŵ(y, s) = log (t+ 1) + w(x, t), y =
x√
1 + t

, s = log (1 + t).

Then ŵ is the solution to (75) satisfying ŵ0(y) = w(y, 0) for y ∈ RN . From (80),
we obtain w0(y) < φL(|y|) for y ∈ RN . By proposition 4 (ii), ŵ exists globally.
Therefore w exists globally. ■
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