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Introduction

Quantum walks and weak limit theorems

A quantum walk is classified into two types, of discrete-time and continuous-time. In
this thesis we shall focus on the former one. Although several models of discrete-time
quantum walks have been proposed, we will deal only with position-dependent quantum
walks as in [28]. For a while, such a class of quantum walk is simply called a quantum
walk. General references for quantum walks are [19, 20, 21, 28, 37]. Konno [22], Suzuki
[36] are also excellent concise review articles, in particular on the weak limit theorem.

A quantum walk can be considered as a quantization of a random walk. To understand
this, let us consider a random walk on the one-dimensional lattice Z. Suppose that a
random walker moves to the right and the left with probability q and p, respectively, where
p, q are nonnegative real numbers with p+ q = 1. Let Xt denote a random variable which
describes the position of the random walker at time t ∈ N ∪ {0}. Then the probability
P(Xt = n) that the random walker exists at a point n ∈ Z at time t satisfies the following
relation:

P(Xt+1 = n) = pP(Xt = n + 1) + qP(Xt = n− 1). (0.1)

On the other hand, the probability that a quantum walker exists at a position n ∈ Z
at time t is described in terms of a state. In order to consider a quantum walk on Z, we
first choose the Hilbert space H = `2(Z;C2). Then a state of a quantum walker is given
by a normalized vector of H. Let Ψ0 ∈ H be an initial state (‖Ψ0‖ = 1) and Ψt ∈ H
denote the state of the quantum walker at time t, then the time evolution of Ψt is defined
by

Ψt+1(n) = PΨt(n + 1) + QΨt(n− 1), n ∈ Z, (0.2)

where P,Q are 2×2-matrices such that P +Q is a unitary matrix. Besides, the probability
that the quantum walker exists at n ∈ Z at time t is defined by

P(Xt = n) = ‖Ψt(n)‖2C2 .

Thus, the time evolution of a quantum walker (0.2) is interpreted as noncommutative
version of (0.1).

Quantum walks defined in this way have several distinct properties compared to ran-
dom walks. One of them is the distribution of Xt. In the case of the best-known random
walk with p = q = 1/2 starting at the origin, the probability distribution has the high-
est peak at the start point n = 0 (Fig. 0.1). Whereas, for example, in the case of the
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Hadamard walk with

P =
1√
2

(
1 1
0 0

)
, Q =

1√
2

(
0 0
1 −1

)
,

Ψ0(n) =

{
t(1/

√
2, i/

√
2) if n = 0

t(0, 0) otherwise
,

the probability distribution of the quantum walker is low around the origin and increases
as it moves left or right (Fig. 0.1).

P(
X

1
0
0

=
n

)

n
Figure 0.1: The distribution of X100. Adapted from [22, p. 74].

Hadamard walk
Random walk

Another distinct property of quantum walks is the order of t in the weak limit theorem.
In the case of the random walk above, due to the central limit theorem, the distribution
of the random variable Xt/

√
t weakly converges to the Gaussian distribution. This fact is

well-known as the de Moivre-Laplace theorem. On the other hand, as was discovered by
Konno [17] in 2002 for the first time, the weak limit theorem for quantum walks behaves in
a different way, namely, the distribution of the random variable Xt/t, not Xt/

√
t, weakly

converges. We shall describe the theorem in detail now. Let

(
a b
c d

)
be a unitary matrix.

Set

P :=

(
a b
0 0

)
and Q :=

(
0 0
c d

)
,

and consider the time evolution (0.2). Then the result is stated as follows.

Theorem. (Konno [17, 18])
Suppose that the initial state starts at the origin with probability 1 (i.e. ‖Ψ0(0)‖2C2 = 1).
If abcd 6= 0, then the distribution of the random variable Xt/t weakly converges to the
distribution whose density function is given by√

1 − |a|2(1 − γx)

π(1 − x2)
√

|a|2 − x2
χ(−|a|,|a|)(x), (0.3)

where γ = γ(a, b,Ψ0) is a constant.
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Konno proved this theorem by a combinational method. Afterwards, Grimmet, Jan-
son, and Scudo [14] provided another proof of this theorem using the Fourier transform,
and succeeded in removing the assumption of initial states. It is called the GJS method
and turns out to be quite useful to determine the weak limit of the distributions.

In the case of quantum walks, since the distribution of not Xt/
√
t but Xt/t is weakly

convergent, the weak limit measure can be interpreted as the “asymptotic velocity” dis-
tribution of a quantum walker. Also, the function (0.3) has asymptotes x = ±|a|, so the
shape is quite different from the Gaussian function. For these reasons, quantum walks
and their weak limit theorems have been attracting the attention of many researchers.

Let us give a more general definition of quantum walks. These quantum walks are
described by time evolution operators on the state space H = `2(Z;C2). We first define
two unitary operators S and C on H as follows. Write an element of H as Ψ = t(Ψ1,Ψ2).
Then S is defined by the following formula:

(SΨ)(n) =

(
Ψ1(n + 1)
Ψ2(n− 1)

)
, n ∈ Z, (0.4)

which is called the shift operator. We define the second operator by assigning a 2 × 2
unitary matrix to each n ∈ Z. That is, we choose a unitary-matrix-valued function
C• : Z → U(2);n 7→ Cn, which is called the coin map in this thesis. Then C is defined by

(CΨ)(n) = CnΨ(n), n ∈ Z,

and is called the coin operator. Also the time evolution operator is defined by U = SC.
Given an initial state Ψ0 ∈ H, the state of the quantum walker at time t ∈ N ∪ {0} is
defined by U tΨ0. The probability of quantum walker at n ∈ Z and at time t is defined by

P(Xt = n) = ‖U tΨ0(n)‖2C2 .

Let us consider the case where a given coin map C• is constant. That is, C• ≡
(
a b
c d

)
.

If we divide this matrix as follows(
a b
c d

)
=

(
a b
0 0

)
+

(
0 0
c d

)
=: P + Q,

then
Ψt = U tΨ0

holds by the relation (0.2). Therefore, the model of quantum walks which are described
by a time evolution operator associated with a coin map is a generalization of quantum
walks treated by Konno. (Actually, the model above is a generalization of quantum walks
described by (0.2), see [27].) Of course, since the value of a given coin map depends on
n ∈ Z, the quantum walk above is called a position-dependent coined quantum walk. As
mentioned at the beginning of this introduction, we will deal only with such quantum
walks (on lattices) in this thesis.
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It is difficult to study the weak limit theorem in general when the coin map is not
constant. Therefore various models have been studied individually. For example, Konno,
 Luczak, and Segawa proved the weak limit theorem for quantum walks with one-defect,
where the coin map is constant on Z except for the origin in [23].

A quantum walk is called of two-phase if the coin map takes two different values on
Z≥0 and Z<0. Two weak limit theorem are proved in [10] and [11] for two-phase quantum
walks with and without one-defect as well.

Suzuki [35] proved the following theorem:

Theorem. (Suzuki [35])
Let C• : Z → U(2) be a coin map and Ψ0 ∈ H an initial state. If there exists C∞ ∈ U(2)
and ε > 0 such that

Cn = C∞ + O(|n|−1−ε) as |n| → ∞, (0.5)

then the distribution of Xt/t weakly converges to a probability measure

µ = ‖Πpp(U)Ψ0‖2δ0 + ‖EV (·)Ω∗
+Ψ0‖2.

Here Πpp(U) denotes the projection onto the pure point subspace of U and δ0 the Dirac
measure at the origin. In addition, V denotes the asymptotic velocity operator, EV (·) the
spectral measure of V and Ω∗

+ the adjoint of the wave operator Ω+.

The condition (0.5) means that Cn converges to C∞ in an order faster than |n|−1. Of
course, it includes one-defect models as special cases. Since this condition corresponds to
the short-range condition of the potential of the Schrödinger operators, the same term is
used in quantum walks. Suzuki used the GJS method and the spectral scattering theory
in the proof of this theorem.

In contrast, Wada [38] gave an example that there are no wave operators when the
order is slower than |n|−1 (which is said to be long-range type), and elucidated that the
borderline between existence and non-existence of wave operators is −1. However, even
in the long-range type case, he also showed that the modified wave operators can be
constructed for a specific coin map, and succeeded in proving a weak limit theorem in
[39].

Richard, Suzuki, and Tiedra de Aldecoa [29, 30] extended Suzuki’s result from a
different view point: Given a coin map C•, if

Cn =

{
C∞ + O(|n|−1−ε) as n → ∞,

C−∞ + O(|n|−1−ε) as n → −∞,

for some C±∞ ∈ U(2) and ε > 0, then a weak limit theorem also holds. Note that all
of one-defect models, two-phase models, and two-phase models with one defect satisfy
this condition. Also, Richard et al. called such a coin map which converges to different
matrices as n goes to ∞ and −∞ respectively, anisotropic. Therefore, to summarize the
results of Suzuki, Wada, and Richard et al. above, if a given coin map is isotropic short-
range, isotropic long-range (a special case), and anisotropic short-range, then a weak limit
theorem holds, respectively.
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In general, a quantum walk can be defined on every connected graph. The weak
limit theorem has been studied for quantum walks on several other types of graphs, for
example, higher-dimensional lattices [13, 14, 26, 34, 40], crystal lattices [15], the half-line
[25], jointed half lines [7], and trees [6].

Motivation and main results

One of the aims in this thesis is to provide a two-dimensional generalization of the weak
limit theorem proved by Suzuki [35]. We shall focus on not only the square lattice but
also the hexagonal and triangular lattices. One of the reasons why we work on those is
that squares, equilateral triangles and regular hexagons are the polygons that can fill the
plane.

Let us consider the coin map in Suzuki [35] and Richard et al. [29, 30] again. Let
Z ∪ {∞} denote the one-point compactification of Z. Then a coin map C• : Z → U(2) is
isotropic if and only if it can be continuously extended to Z∪{∞}, namely, it is continuous
on Z ∪ {∞}. Similarly, we denote by Z ∪ {±∞} the usual two-point compactification of
Z, then Richard et al.’s anisotropicness of a coin map is equivalent to its continuity
on Z ∪ {±∞}. In this way, an anisotropic coin map can be rephrased in terms of a
compactification of its domain. From this point of view, we may say that other examples
of anisotropic coin maps on hexagonal, square, and triangular lattices are provided in this
thesis.

Our first study is on the weak limit theorem for quantum walks associated with
anisotropic short-range coin maps on the lattices.

• •
• • •

• • •
• • • •

• • • •
• • •

• • •
• •

The hexagonal lattice

Figure 0.2: The hexagonal lattice graph and its deformation

•

• • • • •

• • • •

• • • • •

• • • • •

O

The deformed hexagonal lattice
with vertex set Z2

∼=

Ando studied the discrete Schrödinger operator with finite support potentials on the
hexagonal lattice in [2]. A discrete Schrödinger operator can be defined on any connected
graph. By a graph theoretic deforming, Ando regarded the hexagonal lattice as a subgraph
of the square lattice Z2 (Fig. 0.2), and thereby represented the Schrödinger operator as an
operator on `2(Z2). However, it was necessary to divide the expression of the Laplacian
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into two cases. It is due to the fact that the hexagonal lattice has vertices with two
distinct properties.

Let Z2
e (resp. Z2

o) denote the set of points of Z2 such that the sum of the two coordinates
is even (resp. odd). Ando avoided the complexity of the Laplacian by dividing the vertex
set of the deformed hexagonal lattice into Z2 = Z2

e ∪ Z2
o and making the Hilbert space

larger as `2(Z2) = `2(Z2
e) ⊕ `2(Z2

o)
∼= `2(Z2) ⊕ `2(Z2).

We apply Ando’s method above to the time evolution operators derived from hexag-
onal, square, and triangular lattices. Let Γ be a graph which is one of the hexagonal,
square, and triangular lattices, d the degree of Γ. The vertex set of Γ can be regarded as
Z2 by deforming the graph. Thus when we consider a quantum walk on Γ, the domain
of each coin map is Z2 (i.e. C• : Z2 → U(d); (n,m) 7→ C(n,m)) and the shift operator
can be explicitly written down just like (0.4). However, as with the Laplacian above, it
is necessary to divide the expression of the shift operator into two cases only if Γ is the
hexagonal lattice. We now use Ando’s method, then the complexity of the shift operator
is removed. The method not only avoids the complexity but also makes it possible to
deal with certain anisotropic coin maps in the weak limit theorem. Hence, although the
complexity of the shift operator does not occur in the square and triangular lattices cases,
we apply Ando’s method to even those cases.

Let Z2 ∪ {∞e,∞o} denote the disjoint union of the one-point compactifications of Z2
e

and Z2
o, where ∞e and ∞o are points at infinity of Z2

e and Z2
o, respectively. A coin map

C• : Z2 → U(d) is said to be anisotropic (in this thesis) if it can be continuously extended
to Z2 ∪ {∞e,∞o}.

The following theorem is one of the main results in the thesis.

Theorem. (Theorem 3.4.3)
Let C• : Z2 → U(d) be a coin map and Ψ0 ∈ HΓ = `2(Z2;Cd) an initial state. Let
Xt denote a random variable which describes the position of a quantum walker at time
t ∈ N ∪ {0}. Suppose that there exist Ce, Co ∈ U(d) and ε > 0 such that

C(n,m) =

{
Ce + O(‖(n,m)‖−2−ε

1 ) as Z2
e3(n,m)→∞e,

Co + O(‖(n,m)‖−2−ε
1 ) as Z2

o3(n,m)→∞o.
(0.6)

In addition, we suppose that the matrix Ce ⊕ Co ∈ U(2d) satisfies Assumption 3.2.3.
Then, the distribution of Xt/t weakly converges to a probability measure

µ = ‖Πpp(U)Ψ0‖2HΓ
δ(0,0) + ‖(EV Γ

1
⊗ EV Γ

2
)(·)(ΩΓ

+)∗JΓΨ0‖2HΓ⊕HΓ
,

where δ(0,0) is the Dirac measure at the origin, V Γ
1 , V

Γ
2 and ΩΓ

+ are the asymptotic velocity
operators and the wave operator on HΓ ⊕ HΓ, respectively. Additionally, JΓ denotes a
unitary operator from HΓ to HΓ ⊕ HΓ. Also, for each α > 1, the distribution of Xt/t

α

weakly converges to δ(0,0).

The condition (0.6) corresponds to the property that the coin map is anisotropic and
short range, and Assumption 3.2.3 is an assumption about the eigenvalues and eigenvec-
tors of a certain unitary matrix with respect to Ce and Co.
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The second study is on the essential spectrum of the time evolution operator which
describes a quantum walker. Since the essential spectrum is invariant under a compact
perturbation, it is an inherent numerical of an operator on an infinite-dimensional space.
In [29], the authors investigated the essential spectrum of the time evolution operator
associated with an anisotropic coin map on Z. The following theorem is a lattice version
of it. A coin map dealt with here is assumed to be anisotropic, but is not necessarily of
short range.

Theorem. (Theorem 4.2.2)
Suppose that a given coin map C• : Z2 → U(d) is anisotropic, that is, there exist Ce, Co ∈
U(d) such that

‖C(n,m) − Ce‖Md(C) → 0 as Z2
e3(n,m)→∞e,

‖C(n,m) − Co‖Md(C) → 0 as Z2
o3(n,m)→∞o,

where ‖ · ‖Md(C) denotes the C∗-norm on the matrix algebra Md(C). Then the essential
spectrum of the time evolution operator associated with C• is given by the following
formula:

σess(U) =
⋃

(θ,φ)∈[0,2π)2
σ(Û∞(θ, ϕ)),

where Û∞(θ, ϕ) is a 2d× 2d unitary matrix derived from Ce and Co.

Organization

This thesis is organized as follows: In Chapter 1, we recall some facts of operator theory
and discrete crossed products for later chapters. In Section 1.3, we provide the two-point
compactification of Z2.

The purpose of Chapter 2 is to determine the shift, coin, and time evolution operators
which describe quantum walks on hexagonal, square, and triangular lattices. In Section
2.1, for understanding of the model, we first consider the hexagonal lattice case, which
is the most important one. In Section 2.2, we define the three operators derived from
a regular graph. In Section 2.3, in particular, we determine the three operators derived
from hexagonal, square, and triangular lattices. In Section 2.4, by using Ando’s method,
we modify the unitary operators of Section 2.3. The definition of anisotropic is given in
this section.

The weak limit theorem is proved in Chapter 3. The proof is based on an argument
using the GJS method and spectral scattering theory inspired from [35]. In Section
3.1, we represent the characteristic function of Xt/t’s distribution using the 2-variable
functional calculus. In Section 3.2, we construct the asymptotic velocity operators by
the GJS method. Assumption 3.2.3 is introduced in this section. In Section 3.3, we
define the short-range condition and construct the wave operators. In Section 3.4, we
prove a weak limit theorem for quantum walks with an anisotropic short-range coin map
(Theorem 3.4.3). As a special case, we provide a weak limit theorem with respect to
“quasi-uniform” coin maps (Corollary 3.4.4). An application of the weak limit theorem
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is the concept of localization. We also give a necessary condition that localization occurs
(Corollary 3.4.5).

In Chapter 4, we investigate the essential spectrum of the time evolution operator as-
sociated with an anisotropic coin map by using the crossed product C∗-algebras (Theorem
4.2.2). This proof is affected by the one of [29, Theorem 2.2].

In Chapter 5, we consider only quantum walks on square and triangular lattices. Since
there is the complexity of the shift operator only in the hexagonal lattice case, we can
discuss without using Ando’s method in square and triangle lattices cases. However,
then, anisotropic coin maps cannot be treated. Therefore, we provide isotropic versions
of Theorems 3.4.3 and 4.2.2 (Theorems 5.1.3 and 5.2.1).
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Chapter 1

Preliminaries

In this chapter, we briefly recall some notations and facts from functional analysis for
later chapters.

Let H be a complex Hilbert space with inner product 〈·, ·〉 which is linear in the
second argument. For every Ψ ∈ H, let 〈Ψ| and |Ψ〉 denote the bra and ket vectors,
respectively. The set of all bounded linear operators on H is denoted by B(H). If H = Cn,
then the matrix algebra Mn(C) can be identified with B(Cn) as C∗-algebras. Under this
identification, the following equality holds:

|u〉〈v| =

u1v1 · · · u1vn
...

...
unv1 · · · unvn


for any u = t(u1, · · · , un), v = t(v1, · · · , vn) ∈ Cn. Also we denote by En the identity
matrix in Mn(C).

Let X be a set and H a Hilbert space. The Hilbert space of all square summable
H-valued functions on X is denoted by `2(X;H) with norm

‖Ψ‖ :=

(∑
x∈X

‖Ψ(x)‖2H

)1/2

, Ψ ∈ `2(X;H).

When H = C, we simply denote `2(X) instead of `2(X;C). The following isomorphisms
are often used in this thesis:

`2(X;H) ∼= `2(X) ⊗H ∼=
⊕
x∈X

H,

`2(X;H⊕K) ∼= `2(X;H) ⊕ `2(X;K).

Let X be a locally compact space and A a C∗-algebra. We denote by C0(X;A) the
set of A-valued continuous functions on X vanishing at infinity and equipped with the
supremum norm. When X is compact, one denotes C(X;A) instead of C0(X;A) and
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coincides with the set of all continuous functions from X to A. As easily seen, if A is
unital, then for all f ∈ C(X;A), its spectrum is given by

σ(f) =
⋃
x∈X

σ(f(x)).

Let µ and µ1, µ2, . . . be probability measures on the Borel measurable space (Rn,B(Rn)).
A sequence {µt}t∈N is said to be weakly convergent to µ if∫

Rn

fdµt →
∫
Rn

fdµ as t → ∞

for any f ∈ C0(Rn). Let M(Rn) be the measure algebra on (Rn,B(Rn)), the set of all
regular Borel complex measures. Since it holds that M(Rn) ∼= C0(Rn)∗ Banach spaces,
the weak convergence above means the weak one in the Banach space M(Rn). Given a
probability measure µ on Rn, the characteristic function of µ is defined by

µ̂(ξ) :=

∫
Rn

ei⟨ξ,x⟩ndµ(x), ξ ∈ Rn,

where 〈ξ, x〉n := ξ1x1 + · · · + ξnxn, the standard inner product on Rn. For probability
measures µ, µ1, µ2, . . ., it is well known that {µt}t∈N is weakly convergent to µ if and only
if µ̂t(ξ) → µ̂(ξ) for each ξ ∈ Rn.

1.1 Operator theory

We will provide some topics from operator theory.

1.1.1 Multi-variable functional calculus

The facts of this subsection is based on [3].
Let H be a Hilbert space. The domain of a linear operator A on H is denoted by

D(A) and the graph of A is defined by

G(A) := {t(Ψ, AΨ) ∈ H ⊕H(a column vector) | Ψ ∈ D(A)}.

When A is a self-adjoint operator, there exists a unique spectral measure EA(·) on
R such that A =

∫
R λdEA(λ). Let A1, . . . , An be n self-adjoint operators on H and

EA1(·), . . . , EAn(·) be their spectral measure, respectively. Then A1, . . . , An are said to be
strongly commuting if the projections EA1(B1), . . . , EAn(Bn) are mutually commuting for
any B1, . . . , Bn ∈ B(R). If A1, . . . , An are strongly commuting then there exists a unique
spectral measure (EA1 ⊗ · · · ⊗ EAn)(·) on Rn such that

(EA1 ⊗ · · · ⊗ EAn)(B1 × · · · ×Bn) = EA1(B1) · · ·EAn(Bn)
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for each Borel sets B1, . . . , Bn ∈ B(R). For each bounded Borel function f on Rn,

f(A1, . . . , An) :=

∫
Rn

f(λ)d(EA1 ⊗ · · · ⊗ EAn)(λ)

defines a bounded linear operator on H. The operation f 7→ f(A1, . . . , An) is called the
n-variable functional calculus. Note that the equality

〈Ψ, f(A1, . . . , An)Φ〉 =

∫
Rn

f(λ) 〈Ψ, d(EA1 ⊗ · · · ⊗ EAn)(λ)Φ〉

holds for any Ψ,Φ ∈ H.

Proposition 1.1.1. Let A and B be strongly commuting self-adjoint operators on a Hilbert
space. For all ζ, η ∈ R, then the following formula holds:

exp i(ζA + ηB) = exp(iζA) exp(iηB) = exp(iηB) exp(iζA),

where exp i(ζA + ηB) means the 2-variable functional calculus.

Proof. By applying [3, Theorem 1.16 (viii)] to f(s, t) = eiζs and g(s, t) = eiηt. 2

1.1.2 Spectral theory for unitary operators

For a unitary operator U on a Hirbert space H, there exists a unique spectral measure
EU(·) on R such that U =

∫ 2π

0
eiθdEU(θ). Note that for each Ψ ∈ H, 〈Ψ, EU(·)Ψ〉 =

‖EU(·)Ψ‖2 defines a finite regular measure on R. Let us define the following subspaces of
H:

Hpp(U) := {Ψ ∈ H | ‖EU(·)Ψ‖2 is a pure point measure},
Hac(U) := {Ψ ∈ H | ‖EU(·)Ψ‖2 is an absolutely continuous measure},
Hsc(U) := {Ψ ∈ H | ‖EU(·)Ψ‖2 is a singular continuous measure}.

They are closed subspaces, and by Lebesgue decomposition, we have

H = Hpp(U) ⊕Hac(U) ⊕Hsc(U).

Also,
Hpp(U) = Span{Ψ ∈ H | Ψ is an eigenvector of U}

holds, where Span{· · · } means the norm-closed linear span of {· · · }. We respectively
denote Πpp(U),Πac(U) and Πsc(U) the orthogonal projections on Hpp(U),Hac(U) and
Hsc(U). Then U commutes with Π♮(U), namely,

[U,Π♮(U)] = UΠ♮(U) − Π♮(U)U = 0

for \ = pp, ac, sc. Note that if one sets a self-adjoint operator A :=
∫ 2π

0
λdEU(λ), then

the usual closed subspace H♮(A) coincides with H♮(U) for \ =pp, ac, sc. Thus the facts
above can be proved in the framework of self-adjoint operators (see e.g. [31]).
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1.1.3 Essential spectrum

Let A be a bounded linear operator on a Hilbert space H. The essential spectrum of A is
defined by

σess(A) := σ(A) \ {λ ∈ C | λ is an isolated point of σ(A) with dim Ker(A− λ) < ∞}.

Let K(H) denote the set of all compact operators on H, which is called the compact algebra.
Set Q(H) := B(H)/K(H), called the Calkin algebra, and denote π the natural projection
from B(H) to Q(H). The essential spectrum is invariant under compact perturbations,
that is, for any A ∈ B(H) and K ∈ K(H), one has

σess(A + K) = σess(A).

Also, thanks to Atkinson’s theorem,

σess(A) = σ(π(A))

holds for all normal operator A. As for the proofs, see e.g. [8].

1.2 Discrete crossed product C∗-algebras

This subsection is based on [12], but a general reference that includes the subject of this
subsection is, for example, [5].

Let A be a C∗-algebra and G a discrete group. We denote by Aut(A) the set of all
∗-automorphisms of A. A map α : G → Aut(A) is called an action of G on A if it is a
group homomorphism. We will denote by αg instead of α(g) for g ∈ G. An action α is said
to be trivial if αg = idA for all g ∈ G. A C∗-subalgebra B of A is said to be α-invariant
if αg(B) ⊂ B for every g ∈ G, and then one can consider a map α : G → Aut(B), which
is called the restriction of α to B.

Let α be an action of G on A. One defines A oalg
α G the set of all finitely supported

A-valued functions on G, and every element of this set can be expressed as follows:∑
g∈G

agδg,

where ag ∈ A and ag = 0 except for finitely many g ∈ G. This becomes a linear space.
Let X =

∑
g∈G agδg, Y =

∑
h∈G bhδh be two elements in A oalg

α G, one then defines a
multiplication and an involution as follows:

XY :=
∑
g,h∈G

agαg(bh)δgh, X∗ :=
∑
g∈G

αg−1(a∗g)δg−1 .

Equipped with a multiplication and an involution, A oalg
α G becomes a ∗-algebra and is

called the algebraic crossed product. For an element X of Aoalg
α G, we set

‖X‖max := sup{p(X) | p is a C∗-seminorm on Aoalg
α G},
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where C∗-seminorm p on a ∗-algebra C is a seminorm on C satisfying p(XY ) ≤ p(X)p(Y )
and p(X∗) = p(X) for all X,Y ∈ C. Then ‖ · ‖max becomes a norm on A oalg

α G. The
(C∗-algebraic full) crossed product AoαG is defined by the completion of Aoalg

α G relative
to the norm ‖ · ‖max. We use Ao0 G instead of Aoα G when α is trivial.

Theorem 1.2.1. ([12, Lemma 17.8, Proposition 17.13, and Theorem 20.7])
Let α be an action of an amenable group G on a C∗-algebra A. Then for each g ∈ G,
there exists a contractive linear map Eg : Aoα G → A such that

Eg

(∑
h∈G

ahδh

)
= ag

for any
∑

h∈G ahδh ∈ A oalg
α G. Moreover, for an element X in A oα G, X = 0 if and

only if Eg(X) = 0 for all g ∈ G.

1.3 A two-point compactification of Z2

In this last section, we construct a two-point compactification of Z2, which is necessary
to describe anisotropic quantum walks of this thesis.

For a locally compact space X, we denote by X̂ the one-point compactification of X.

Let ∞e and ∞o be two symbols which are not elements of Z2, and let Z̃2 := Z2∪{∞e,∞o}.
Also we set

Z2
e := {(n,m) ∈ Z2 | n + m ∈ 2Z},

Z2
o := {(n,m) ∈ Z2 | n + m + 1 ∈ 2Z}.

Note that Z2 = Z2
e ∪ Z2

o, and Z2
e ∩ Z2

o = ∅. One defines a fundamental system of

neighborhoods of ∞⋆ (? = e, o) in Z̃2 by all sets of the form

{(n,m) ∈ Z2
⋆ | ‖(n,m)‖1 ≥ N} ∪ {∞⋆},

for N ∈ N, where ‖(n,m)‖1 := |n|+|m|, the `1-norm on Z2. Then Z̃2 is a compactification

of Z2. We note that Ẑ2
e and Ẑ2

o are homeomorphic to Z2
e∪{∞e} and Z2

o∪{∞o}, respectively.
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Chapter 2

Quantum walks on lattices

In this chapter, we describe the shift, coin, and time evolution operators on hexagonal,
square, and triangular lattices. The vertex sets of those graphs can be regarded as Z2,
so the expression of the shift operator is explicit. We will be able to understand that in
Section 2.1-2.3. However, only in the hexagonal lattice case, it is necessary to divide its
expression into two cases. Section 2.4 gives a way to modify it. This idea was used to
study the discrete Schrödinger operators on a hexagonal lattice in [2]. The workaround
not only avoids the complexity of the shift operator but also makes it possible to treat
certain anisotropic quantum walks in later chapters. Therefore, in Section 2.4, we apply
the method even to the cases of square and triangular lattices that do not require the
modification of shift operators.

2.1 Quantum walks on a hexagonal lattice graph

In this section, we first give straightforward definitions of the shift, coin, and time evolu-
tion operators on the hexagonal lattice, which are compatible with more general defini-
tions in Section 2.2. For this purpose, by using Fig. 0.2 in Introduction, we rewrite the
hexagonal lattice graph so that the vertex set of deformed lattice coincides with Z2.

Definition 2.1.1. The hexagonal lattice graph ΓH = (V (ΓH), E(ΓH)) with the vertex
set V (ΓH) and the undirected edge set E(ΓH) is defined as follows (Fig. 1):

1) (Vertex set) V (ΓH) := Z2.

2) (Edge set)

E(ΓH) :=
{
{(n,m), (n + 1,m)} | n,m ∈ Z

}
∪
{
{(n,m), (n,m + 1)} | n + m ∈ 2Z

}
.

In addition, we define the directed edge set.

3) (Directed edge set) Recall that Z2
e = {(n,m) ∈ Z2 | n+m ∈ 2Z} and Z2

o = {(n,m) ∈
Z2 | n + m + 1 ∈ 2Z}). For v = (n,m) ∈ V (ΓH), one defines the directed edges
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whose initial vertex are v by

e1(v) := [(n,m)→(n + 1,m)],

e2(v) := [(n,m)→(n− 1,m)],

e3(v) :=

{
[(n,m)→(n,m + 1)] if v ∈ Z2

e,

[(n,m)→(n,m− 1)] if v ∈ Z2
o.

(2.1.1)

(See Fig. 2.) The directed edge set D(ΓH) is defined by

D(ΓH) := {e1(v) | v ∈ V (ΓH)} ∪ {e2(v) | v ∈ V (ΓH)} ∪ {e3(v) | v ∈ V (ΓH)}.

•

• • • • •

• • • •

• • • • •

• • • • •

O

Figure 1: The hexagonal lattice
graph ΓH = (V (ΓH), E(ΓH))

•

•

OO

oo //

oo //

��

e3(v)

e2(v) e1(v)

e2(u) e1(u)

e3(u)

v

u

Figure 2: The directed edges
(v ∈ Z2

e, u ∈ Z2
o)

Next, we shall define the state space, and the shift, coin, and time evolution operators
on the state space.

Definition 2.1.2. 1) (State space) HΓH
:= `2(V (ΓH);C3) = `2(Z2;C3).

2) (Shift operator) Define S : HΓH
→ HΓH

by

(SΨ)(n,m) :=



Ψ1(n + 1,m)

Ψ2(n− 1,m)

Ψ3(n,m + 1)

 if (n,m) ∈ Z2
e,

Ψ1(n + 1,m)

Ψ2(n− 1,m)

Ψ3(n,m− 1)

 if (n,m) ∈ Z2
o

for Ψ =

Ψ1

Ψ2

Ψ3

 ∈ HΓH
.

(2.1.2)

3) (Coin operator) Given a map C• : Z2 → U(3), called a coin map, we define C :
HΓH

→ HΓH
by

(CΨ)(n,m) := C(n,m)Ψ(n,m) for Ψ ∈ HΓH
, (n,m) ∈ Z2.
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Since `2(Z2;C3) ∼=
⊕

Z2 C3 and M3(C) ∼= B(C3), the coin operator C can also be
expressed as follows:

C =
⊕

(n,m)∈Z2

C(n,m).

4) (Time evolution operator) U := SC.

2.2 Definition of quantum walks on regular graphs

In this section, we will define the shift, coin, and time evolution operators derived from
any regular graph. It will be able to see that Definition 2.1.2 is a special case of its
definition at the beginning of the next section. A quantum walk described by the time
evolution operator in this section is called a position-dependent or coined model quantum
walk, we referred to [1, 24, 28] for its definition.

Let Γ = (V (Γ), E(Γ)) be a d-regular undirected graph with the vertex set V (Γ) and
the undirected edge set E(Γ). Every element in E(Γ) is represented as {v, u} for some
v, u ∈ V (Γ). Note that {v, u} = {u, v} in E(Γ). We set D(Γ) = {[v→u] | {v, u} ∈ E(Γ)}
as the set of all directed edges of Γ. Given a directed edge e = [v→u], the initial vertex
v is denoted by o(e). For each e = [v→ u] ∈ D(Γ), a directed edge [u→ v] is called the
inverse edge of e, and denoted by ē. We also note that ¯̄e = e and e 6= ē in D(Γ).

For any vertex v ∈ V (Γ), the number of elements in the set {e ∈ D(Γ) | o(e) = v}
is d. We assume that the d elements in this set are ordered as e1(v), . . . , ed(v). That is,
there exist d maps e1(·), . . . , ed(·) : V (Γ) → D(Γ) such that

{e ∈ D(Γ) | o(e) = v} = {e1(v), . . . , ed(v)} for all v ∈ V (Γ).

Then the operator T : `2(D(Γ)) → `2(V (Γ);Cd) defined by

(TΦ)(v) :=

Φ(e1(v))
...

Φ(ed(v))

 (Φ ∈ `2(D(Γ)), v ∈ V (Γ))

is isomorphism. It is called the natural isomorphism with respect to ei(·). The inverse of
T is given by

(T−1Ψ)(ei(v)) = Ψi(v) (Ψ = t(Ψ1, . . . ,Ψd) ∈ `2(V (Γ);Cd), v ∈ V (Γ), 1 ≤ i ≤ d).

Let us define unitary operators which describe a quantum walk on Γ.

Definition 2.2.1. 1) (State space) HΓ := `2(V (Γ);Cd).

2) (Shift operator) Define S : `2(D(Γ)) → `2(D(Γ)) by

(SΦ)(e) := Φ(ē) for Φ ∈ `2(D(Γ)), e ∈ D(Γ).
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3) (Coin operator) Given a map C• : V (Γ) → U(d), called a coin map, we define
C : HΓ → HΓ by

(CΨ)(v) := CvΨ(v) for Ψ ∈ HΓ, v ∈ V (Γ).

The coin operator C can also be expressed as follows:

C =
⊕

v∈V (Γ)

Cv.

4) (Time evolution operator) U := (TST−1)C.

Remark 2.2.2. Let us see that the ordering of edges is not essential. For this, we define
abstract quantum walks, and the unitary equivalence of them which is introduced in [32].

Let V be a countable set, let {Hv}v∈V be a family of separable Hilbert spaces, and let
U be a unitary operator on H =

⊕
v∈V Hv. Then the pair (U , {Hv}v∈V ) is called a abstract

quantum walk. For two abstract quantum walks (U1, {H(1)
v1 }v1∈V1) and (U2, {H(2)

v2 }v2∈V2),

they are unitary equivalent if there exist a unitary operator W from H1 =
⊕

v1∈V1
H(1)

v1

to H2 =
⊕

v2∈V2
H(2)

v2 and a bijective map φ : V1 → V2 such that WU1W
−1 = U2 and

WH(1)
v1 = H(2)

ϕ(v1)
for every v1 ∈ V1.

Let Γ = (V (Γ), E(Γ)) be a d-regular undirected graph with the directed edge set
D(Γ) and the ordered edges {e1(v), . . . , ed(v)} for each v ∈ V (Γ). We fix a coin map
C• : V (Γ) → U(d); v 7→ Cv = (cvij)1≤i,j≤d arbitrarily. Let {ẽ1(v), . . . , ẽd(v)} be another

ordered edges for v ∈ V (Γ), and T, T̃ : `2(D(Γ)) → HΓ be the natural isomorphisms with
respect to ei(·) and ẽi(·), respectively.

For any v ∈ V (Γ), there exists a permutation σv ∈ Sd such that ẽi(v) = eσv(i)(v) for

all i = 1, . . . , d, so the natural isomorphism T̃ is given by

(T̃Φ)(v) =

Φ(ẽ1(v))
...

Φ(ẽd(v))

 =

Φ(eσv(1)(v))
...

Φ(eσv(d)(v))

 (Φ ∈ `2(D(Γ)), v ∈ V (Γ)).

We now define a unitary operator W : HΓ → HΓ by

(WΨ)(v) :=

Ψσv(1)(v)
...

Ψσv(d)(v)

 (Ψ = t(Ψ1, . . . ,Ψd) ∈ HΓ, v ∈ V (Γ)),

then the following diagram commutes.

`2(D(Γ))

T

zz

T̃

$$
HΓ W

// HΓ
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Also we define a new coin map C̃• : V (Γ) → U(d) by

C̃v = (c̃vij)1≤i,j≤d := (cvσv(i)σv(j))1≤i,j≤d

for v ∈ V (Γ), and one denotes C̃ and Ũ the coin and time evolution operators associated

with C̃•, respectively. For any Ψ = t(Ψ1, . . . ,Ψd) ∈ HΓ and v ∈ V (Γ), we have

(WCΨ)(v) =

(CΨ)σv(1)(v)
...

(CΨ)σv(d)(v)

 =

(CvΨ(v))σv(1)
...

(CvΨ(v))σv(d)

 ,

(C̃WΨ)(v) = C̃v((WΨ)(v)) = C̃v

Ψσv(1)(v)
...

Ψσv(d)(v)

 .

The i-components (1 ≤ i ≤ d) of (WCΨ)(v) and (C̃WΨ)(v) are given by

d∑
j=1

cvσv(i)jΨj(v) and
d∑

j=1

c̃vijΨσv(j)(v) =
d∑

j=1

cvσv(i)σv(j)Ψσv(j)(v),

respectively, so WC and C̃W must be identical. Also W (TST−1) = T̃S(W−1T̃ )−1 =

(T̃ST̃−1)W holds. Therefore WU = ŨW , which means that two abstract quantum walks

(U , {Cd}v∈V (Γ)) and (Ũ , {Cd}v∈V (Γ)) are unitary equivalent.

2.3 Quantum walks on hexagonal, square, and trian-

gular lattices

In this section, we provide the time evolution operator which describes quantum walks
on square and triangular lattices. We first consider the hexagonal lattice graph ΓH =
(V (ΓH), E(ΓH)) = (Z2, E(ΓH)) (see Definition 2.1.1) which is a 3-regular graph. Let T be
the natural isomorphism from `2(D(ΓH)) to HΓH

= `2(Z2;C3) with respect to the ordered
edges (2.1.1). In order to compute U = (TST−1)C, we fix a coin map C• : Z2 → U(3)
arbitrarily. For any v = (n,m) ∈ Z2, the inverse edge of ei(v) (i = 1, 2, 3) is given by

e1(v) = [(n + 1,m)→(n,m)] = e2
(
(n + 1,m)

)
,

e2(v) = [(n− 1,m)→(n,m)] = e1
(
(n− 1,m)

)
,

e3(v) =

{
[(n,m + 1)→(n,m)] = e3

(
(n,m + 1)

)
if v = (n,m) ∈ Z2

e,

[(n,m− 1)→(n,m)] = e3
(
(n,m− 1)

)
if v = (n,m) ∈ Z2

o.

Thus for any Ψ = t(Ψ1,Ψ2,Ψ3) ∈ HΓH
, if v = (n,m) ∈ Z2

e, then we have

(TST−1Ψ)(n,m) =

(ST−1Ψ)(e1(v))
(ST−1Ψ)(e2(v))
(ST−1Ψ)(e3(v))

 =


(T−1Ψ)

(
e1(v)

)
(T−1Ψ)

(
e2(v)

)
(T−1Ψ)

(
e3(v)

)

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=

(T−1Ψ)
(
e2
(
(n + 1,m)

))
(T−1Ψ)

(
e1
(
(n− 1,m)

))
(T−1Ψ)

(
e3
(
(n,m + 1)

))
 =

Ψ2(n + 1,m)
Ψ1(n− 1,m)
Ψ3(n,m + 1)

 .

Similarly, if (n,m) ∈ Z2
o, one gets

(TST−1Ψ)(n,m) =

Ψ2(n + 1,m)
Ψ1(n− 1,m)
Ψ3(n,m− 1)

 .

Now we set σ :=

0 1 0
1 0 0
0 0 1

. Then the following equality holds as operators on HΓH
:

TST−1 = S

(⊕
Z2

σ

)

Hence the time evolution operator U is expressed as follows:

U = (TST−1)C = SC = U,

where C is the coin operator associated with the coin map σC• : Z2 → U(3); (n,m) 7→
σC(n,m). Since C• ↔ σC• is one-to-one correspondence between the sets of all coin maps,
one can see that the shift operator derived from ΓH can be defined as (2.1.2).

Similarly, we can define the shift, coin, and time evolution operators derived from
square and triangular lattices. For this purpose, one needs the definitions of the square
and triangular lattice graphs.

Definition 2.3.1. Square lattice

The vertex and undirected edge sets of the square lattice graph ΓS are respectively defined
as follows (Fig. 3):

1) (Vertex set) V (ΓS) := Z2.

2) (Edge set)

E(ΓS) :=
{
{(n,m), (n + 1,m)} | n,m ∈ Z

}
∪
{
{(n,m), (n,m + 1)} | n,m ∈ Z

}
.

Additionally, we define the directed edge set.

3) (Directed edge set) For v = (n,m) ∈ V (ΓS), we define the directed edges whose
initial vertex is v by

e1(v) := [(n,m)→(n + 1,m)],
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e2(v) := [(n,m)→(n− 1,m)],

e3(v) := [(n,m)→(n,m + 1)],

e4(v) := [(n,m)→(n,m− 1)].

(See Fig. 4.) The directed edge set D(ΓS) is defined by

D(ΓS) := {ei(v) | v ∈ V (ΓS), i = 1, 2, 3, 4}.

•

• • • • •

• • • •

• • • • •

• • • • •

Figure 3

•oo //

OO

��

e3(v)

e2(v) e1(v)

e4(v)

v

Figure 4

Triangular lattice

Similarly, the vertex, undirected edge, directed edge sets of the triangular lattice graph
ΓT are respectively defined as follows (Fig. 5):

4) (Vertex set) V (ΓT ) := Z2.

5) (Edge set)

E(ΓT ) := E(ΓS) ∪
{
{(n,m), (n + 1,m + 1)} | n,m ∈ Z

}
.

6) (Directed edge set) For v = (n,m) ∈ V (ΓT ), one defines the directed edges whose
initial vertex is v by

e1(v) := [(n,m)→(n + 1,m)],

e2(v) := [(n,m)→(n− 1,m)],

e3(v) := [(n,m)→(n,m + 1)],

e4(v) := [(n,m)→(n,m− 1)],

e5(v) := [(n,m)→(n + 1,m + 1)],

e6(v) := [(n,m)→(n− 1,m− 1)].

(See Fig. 6.) The edge set D(ΓT ) is defined by

D(ΓT ) := {ei(v) | v ∈ V (ΓT ), i = 1, 2, 3, 4, 5, 6} = D(ΓS)∪{ei(v) | v ∈ V (ΓT ), i = 5, 6}.
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•

• • • • •

• • • •

• • • • •

• • • • •

Figure 5

•oo //

OO

��

??

��

e3(v)

e2(v) e1(v)

e4(v)

e5(v)

e6(v)

v

Figure 6

In the same way as the case of the hexagonal lattice, one can define the shift operator
etc. The following shift operators are also treated in [16].

Definition 2.3.2. Square lattice

1) (State space) HΓS
:= `2(Z2;C4).

2) (Shift operator)

(SΨ)(n,m) :=


Ψ1(n + 1,m)
Ψ2(n− 1,m)
Ψ3(n,m + 1)
Ψ4(n,m− 1)

 for Ψ = t(Ψ1,Ψ2,Ψ3,Ψ4) ∈ HΓS
, (n,m) ∈ Z2.

3) (Coin operator) For a coin map C• : Z2 → U(4), we set C :=
⊕

(n,m)∈Z2 C(n,m).

4) (Time evolution operator) U := SC.

Triangular lattice

5) (State space) HΓT
:= `2(Z2;C6).

6) (Shift operator)

(SΨ)(n,m) :=


Ψ1(n + 1,m)
Ψ2(n− 1,m)
Ψ3(n,m + 1)
Ψ4(n,m− 1)

Ψ5(n + 1,m + 1)
Ψ6(n− 1,m− 1)


for Ψ = t(Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6) ∈ HΓT

, (n,m) ∈ Z2.

7) The coin and time evolution operators are defined in exactly the same manner as
above.

At the end of this section, we define the term anisotropic.
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Definition 2.3.3. Let Γ be one of ΓH ,ΓS and ΓT , and let d be its degree.

1) A coin map C• : Z2 → U(d) is said to be anisotropic if it can be continuously

extended to Z̃2 (see Section 1.3), that is, there exist Ce, Co ∈ U(d) such that

‖C(n,m) − Ce‖Md(C) → 0 as Z2
e3(n,m)→∞e,

‖C(n,m) − Co‖Md(C) → 0 as Z2
o3(n,m)→∞o.

(2.3.1)

It is also equivalent to C• ∈ C(Z̃2;Md(C)). In particular, a coin map C• : Z2 → U(d)
is said to be quasi-uniform if

C(n,m) =

{
Ce if (n,m) ∈ Z2

e,

Co if (n,m) ∈ Z2
o

(2.3.2)

for some Ce, Co ∈ U(d).

2) Let C• : Z2 → U(d) be an anisotropic coin map satisfying (2.3.1). Then the unitary
matrix C∞ = Ce ⊕ Co ∈ U(2d) is called the limit matrix of C•.

2.4 Modification of the unitary operators

Let us define two maps φe : Z2 → Z2
e, φo : Z2 → Z2

o by

φe(n,m) := (n−m,n + m), φo(n,m) := (n−m,n + m + 1), (n,m) ∈ Z2.

Since they are bijective (with the inverses

φ−1
e (n,m) =

1

2
(n + m,−n + m), (n,m) ∈ Z2

e,

φ−1
o (n,m) =

1

2
(n + m− 1,−n + m− 1), (n,m) ∈ Z2

o),

the mappings φe and φo naturally induce the following unitary operators Je : `2(Z2
e;Cd) →

HΓ and Jo : `2(Z2
o;Cd) → HΓ:

(JeΦ)(n,m) = Φ(φe(n,m)) = Φ(n−m,n + m), Φ ∈ `2(Z2
e;Cd), (n,m) ∈ Z2,

(JoΨ)(n,m) = Ψ(φo(n,m)) = Ψ(n−m,n + m + 1), Ψ ∈ `2(Z2
o;Cd), (n,m) ∈ Z2,

respectively. Also we set a Hilbert space KΓ := HΓ ⊕ HΓ (whose any element has the
form t(Φ,Ψ), (Φ,Ψ ∈ HΓ)), and define a unitary operator JΓ : HΓ → KΓ by composing
the natural decomposition HΓ

∼= `2(Z2
e;Cd) ⊕ `2(Z2

o;Cd) and the direct sum operator
Je ⊕ Jo : `2(Z2

e;Cd) ⊕ `2(Z2
o;Cd) → KΓ. Specifically, JΓ is given by the following formula:

JΓ(Φ) = t
(
Je(Φ|Z2

e
), Jo(Φ|Z2

o
)
)
, (2.4.1)
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for Φ ∈ HΓ. Let us transform the shift, coin, and time evolution operators by JΓ. In
terms of the coin operator, for any Φ ∈ HΓ, (n,m) ∈ Z2, we have

(JeCJ−1
e Φ)(n,m) = (CJ−1

e Φ)(φe(n,m)) = Cϕe(n,m)((J
−1
e Φ)(φe(n,m))) = Cϕe(n,m)Φ(n,m).

Similarly, (JoCJ−1
o Φ)(n,m) = Cϕo(n,m)Φ(n,m) holds. Therefore, for all t(Φ,Ψ) ∈ KΓ and

(n,m) ∈ Z2, one has

((JΓCJ−1
Γ )(t(Φ,Ψ)))(n,m) =

(
Cϕe(n,m)Φ(n,m)
Cϕo(n,m)Ψ(n,m)

)
,

namely,

JΓCJ−1
Γ =

⊕
(n,m)∈Z2

(Cϕe(n,m) ⊕ Cϕo(n,m)). (2.4.2)

In terms of the shift operator, we need to compute in each individually. First, let us
consider the hexagonal lattice case. Being careful about S(`2(Z2

e;C3)) ⊂ `2(Z2
o;C3), we

obtain

(JoSJ
−1
e Φ)(n,m) = (SJ−1

e Φ)(n−m,n + m + 1)

=

(J−1
e Φ)1(n−m + 1, n + m + 1)

(J−1
e Φ)2(n−m− 1, n + m + 1)

(J−1
e Φ)3(n−m,n + m)


=

Φ1(φ
−1
e (n−m + 1, n + m + 1))

Φ2(φ
−1
e (n−m− 1, n + m + 1))

Φ3(φ
−1
e (n−m,n + m))


=

Φ1(n + 1,m)
Φ2(n,m + 1)

Φ3(n,m)


for each Φ = t(Φ1,Φ2,Φ3) ∈ HΓH

and (n,m) ∈ Z2. Similarly, for any Ψ = t(Ψ1,Ψ2,Ψ3) ∈
HΓH

, (n,m) ∈ Z2, one gets

(JeS0J
−1
o Ψ)(n,m) =

Ψ1(n,m− 1)
Ψ2(n− 1,m)

Ψ3(n,m)

 .

Hence, one can deduce from the observations above that for each t(Φ,Ψ) ∈ KΓH
and

(n,m) ∈ Z2 (be careful with the inclusions S(`2(Z2
e;C3)) ⊂ `2(Z2

o;C3) and S(`2(Z2
o;C3)) ⊂

`2(Z2
e;C3) again), we have

((JΓH
SJ−1

ΓH
)(t(Φ,Ψ)))(n,m) =

tΨ1(n,m− 1)
Ψ2(n− 1,m)

Ψ3(n,m)

 ,

Φ1(n + 1,m)
Φ2(n,m + 1)

Φ3(n,m)

 . (2.4.3)
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Even in the case where Γ = ΓS, one can get the following formula by similar to the
computations above:

((JΓS
SJ−1

ΓS
)(t(Φ,Ψ)))(n,m) =

t


Ψ1(n,m− 1)
Ψ2(n− 1,m)

Ψ3(n,m)
Ψ4(n− 1,m− 1)

 ,


Φ1(n + 1,m)
Φ2(n,m + 1)

Φ3(n + 1,m + 1)
Φ4(n,m)


 (2.4.4)

for all t(Φ,Ψ) ∈ KΓS
, (n,m) ∈ Z2.

Next, we consider the triangular lattice case. One should be careful about the following
inclusion relations:

S(`2(Z2
e;C6)) ⊂ `2(Z2

e; 04 ⊕ C2) ⊕ `2(Z2
o;C4 ⊕ 02),

S(`2(Z2
o;C6)) ⊂ `2(Z2

e;C4 ⊕ 02) ⊕ `2(Z2
o; 04 ⊕ C2).

Then for any t(Φ,Ψ) ∈ KΓS
, we have

((JΓT
SJ−1

ΓT
)(t(Φ,Ψ)))(n,m)

=

t


(SJ−1

o Ψ)1(n−m,n + m)
(SJ−1

o Ψ)2(n−m,n + m)
(SJ−1

o Ψ)3(n−m,n + m)
(SJ−1

o Ψ)4(n−m,n + m)
(SJ−1

e Φ)5(n−m,n + m)
(SJ−1

e Φ)6(n−m,n + m)

 ,


(SJ−1

e Φ)1(n−m,n + m + 1)
(SJ−1

e Φ)2(n−m,n + m + 1)
(SJ−1

e Φ)3(n−m,n + m + 1)
(SJ−1

e Φ)4(n−m,n + m + 1)
(SJ−1

o Ψ)5(n−m,n + m + 1)
(SJ−1

o Ψ)6(n−m,n + m + 1)





=

t


(J−1

o Ψ)1(n−m + 1, n + m)
(J−1

o Ψ)2(n−m− 1, n + m)
(J−1

o Ψ)3(n−m,n + m + 1)
(J−1

o Ψ)4(n−m,n + m− 1)
(J−1

e Φ)5(n−m + 1, n + m + 1)
(J−1

e Φ)6(n−m− 1, n + m− 1)

 ,


(J−1

e Φ)1(n−m + 1, n + m + 1)
(J−1

e Φ)2(n−m− 1, n + m + 1)
(J−1

e Φ)3(n−m,n + m + 2)
(J−1

e Φ)4(n−m,n + m)
(J−1

o Ψ)6(n−m + 1, n + m + 2)
(J−1

o Ψ)6(n−m− 1, n + m)





=

t


Ψ1(n,m− 1)
Ψ2(n− 1,m)

Ψ3(n,m)
Ψ4(n− 1,m− 1)

Φ5(n + 1,m)
Φ6(n− 1,m)

 ,


Φ1(n + 1,m)
Φ2(n,m + 1)

Φ3(n + 1,m + 1)
Φ4(n,m)

Ψ5(n + 1,m)
Ψ6(n− 1,m)



 . (2.4.5)

Let us summarize the above as a definition.

Definition 2.4.1. Let Γ be one of ΓH ,ΓS and ΓT , let JΓ : HΓ → KΓ be as (2.4.1) above.
The unitary operators JΓSJ

−1
Γ and JΓCJ−1

Γ in (2.4.2)−(2.4.5) are denoted by S0 and C0

respectively, and are also called the shift operator and the coin operator, respectively.
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Also, the time evolution operator is defined by U0 = S0C0(= JΓUJ−1
Γ ).

HΓ

JΓ
��

S, C, U // HΓ

JΓ
��

KΓ S0, C0, U0

// KΓ

Definition 2.4.2. 1) Let C• : Z2 → U(d) be a quasi-uniform coin map satisfying
(2.3.2). In this case, the coin and time evolution operators associated with C• are
denoted by C∞ and U∞ instead of C0 and U0, respectively. Of course,

C∞ =
⊕
Z2

(Ce ⊕ Co).

If there would be no danger of confusion, then we will also denote the unitary matrix
Ce ⊕ Co of size 2d by C∞.

2) Let C• : Z2 → U(d) be an anisotropic coin map satisfying (2.3.1). Then one
can consider a unitary operator U∞ = S0C∞ which is a time evolution operator

associated with the quasi-uniform coin map

(
=

{
Ce on Z2

e

Co on Z2
o

)
other than U0 =

S0C0. The operator U∞ is called the auxiliary time evolution operator. Of course,
when a coin map is quasi-uniform, the time evolution operator coincides with the
auxiliary time evolution one.
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Chapter 3

Weak Limit Theorem

The aim of this chapter is to prove a weak limit theorem, which is a main theorem of
this thesis. This theorem is proved for certain quantum walks, specifically, when the time
evolution operator is associated with a short-range coin map. The short-range condition
is stronger than anisotropy. The proof is based on an argument using the GJS method
and spectral scattering theory inspired from [35].

Throughout this chapter, we suppose that Γ is one of hexagonal, square, and triangular
lattices, unless otherwise stated, and d is its degree.

We fix a norm one vector Ψ0 ∈ HΓ, which is said to be an initial state. The state of
the quantum walker after time t ∈ N0(:= N∪ {0}) is expressed by U tΨ0. If we denote by
Xt a random variable which describes the position of a quantum walker at time t, then
for (n,m) ∈ Z2 and t ∈ N0, the probability that the quantum walker exists at position
(n,m) at time t is defined by

P(Xt =(n,m)) = ‖(U tΨ0)(n,m)‖2Cd .

One remarks that only the probability measure on Z2 is defined but not the stochastic
process {Xt}. For each α > 0, we can consider the probability distribution of Xt/t

α which
is defined by

P(Xt/t
α ∈ B) := P(Xt ∈ tαB)(= P(Xt ∈ (tαB) ∩ Z2)) (3.0.1)

for B ∈ B(R2). Our aim in this chapter is to find a probability measure µ on R2 such
that the probability distribution of Xt/t is weakly convergent to µ as t → ∞.

By regarding Xt/t
α as a “random variable”, the characteristic function of the proba-

bility distribution of Xt/t
α is written as follows:∫

R2

exp

(
i

〈(
ξ1
ξ2

)
,

(
x
y

)〉
2

)
dP (Xt/t

α =(x, y)) = E
[
exp

(
i

〈(
ξ1
ξ2

)
,
Xt

tα

〉
2

)]
(3.0.2)

for each t
(
ξ1, ξ2

)
∈ R2.
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3.1 Characteristic functions

Here we will express the characteristic function of the distribution (3.0.2) using the posi-
tion operators on KΓ and their 2-variable functional calculus. We start on recalling the
position operators on HΓ = `2(Z2;Cd).

The domains of the position operators P1 and P2 on HΓ are respectively defined by

D(P1) =

 Φ ∈ HΓ

∣∣∣∣∣∣
∑

(n,m)∈Z2

|n|2‖Φ(n,m)‖2Cd < ∞

 ,

D(P2) =

 Φ ∈ HΓ

∣∣∣∣∣∣
∑

(n,m)∈Z2

|m|2‖Φ(n,m)‖2Cd < ∞

 ,

and define P1, P2 by

P1Φ(n,m) := nΦ(n,m), P2Φ(n,m) := mΦ(n,m),

respectively. The transformations of P1, P2 by JΓ are as follows:

Lemma 3.1.1. We have

JΓ(D(P1))

=

Φ= t(Φ1,Φ2) ∈ KΓ

∣∣∣∣∣∣
∑

(n,m)∈Z2

{|n−m|2‖Φ1(n,m)‖2Cd + |n−m|2‖Φ2(n,m)‖2Cd} < ∞

,

(3.1.1)

JΓ(D(P2))

=

Φ= t(Φ1,Φ2) ∈ KΓ

∣∣∣∣∣∣
∑

(n,m)∈Z2

{|n + m|2‖Φ1(n,m)‖2Cd + |n + m + 1|2‖Φ2(n,m)‖2Cd} < ∞

,

and the following formulas hold:

(JΓP1J
−1
Γ Φ)(n,m) = t((n−m)Φ1(n,m), (n−m)Φ2(n,m)),

(JΓP2J
−1
Γ Φ)(n,m) = t((n + m)Φ1(n,m), (n + m + 1)Φ2(n,m))

on JΓ(D(P1)) and JΓ(D(P2)), respectively.

Proof. Since it is similar, we will prove only the equation (3.1.1). Let D1 denote the right
hand side of (3.1.1). For any Ψ ∈ D(P1), using the equation

(JΓΨ)(n,m) = t(Ψ(φe(n,m)),Ψ(φo(n,m))), (n,m) ∈ Z2,
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one gets ∑
(n,m)∈Z2

|n−m|2{‖Ψ(φe(n,m))‖2Cd + ‖Ψ(φo(n,m))‖2Cd}

=
∑

(n,m)∈Z2
e

|n|2‖Ψ(n,m)‖2Cd +
∑

(n,m)∈Z2
o

|n|2‖Ψ(n,m)‖2Cd

=
∑

(n,m)∈Z2

|n|2‖Ψ(n,m)‖2Cd < ∞.

Thus we have JΓ(D(P1)) ⊂ D1.
On the other hand, for any Φ = t(Φ1,Φ2) ∈ D1, one has∑

(n,m)∈Z2

|n|2‖(J−1
Γ Φ)(n,m)‖2Cd

=
∑

(n,m)∈Z2
e

|n|2‖(J−1
e Φ1)(n,m)‖2Cd +

∑
(n,m)∈Z2

o

|n|2‖(J−1
o Φ2)(n,m)‖2Cd

=
∑

(n,m)∈Z2
e

|n|2‖Φ1(φ
−1
e (n,m))‖2Cd +

∑
(n,m)∈Z2

o

|n|2‖Φ2(φ
−1
o (n,m))‖2Cd

=
∑

(n,m)∈Z2

|n−m|2‖Φ1((n,m))‖2Cd +
∑

(n,m)∈Z2

|n−m|2‖Φ2((n,m))‖2Cd < ∞.

Hence D1 ⊂ JΓ(D(P1)), so JΓ(D(P1)) and D1 must coincide. The last assertion follows
from direct computation. 2

The self-adjoint operators JΓP1J
−1
Γ and JΓP2J

−1
Γ are denoted by Q1 and Q2, respec-

tively.

HΓ

JΓ
��

P1, P2 // HΓ

JΓ
��

KΓ Q1, Q2

// KΓ

For a subset L of Z2, we let P (L) denote the projection from the Hilbert space KΓ onto
its closed subspace `2(L;Cd). For simplicity, we write P (n,m) instead of P ({(n,m)}). If
we define

E1(n) = P ({n} × Z), E2(m) = P (Z× {m}),

then the spectral decompositions of P1 and P2 are respectively given by

P1 =
∑
n∈Z

nE1(n) and P2 =
∑
m∈Z

mE2(m).

Since P1 and P2 are strongly commuting (because E1(n)E2(m) = E2(m)E1(n) = P (n,m)
for any n,m ∈ Z), so are Q1 and Q2.
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The next lemma is a purpose of this section. We note that the lemma holds for the
time evolution operator associated with any coin map.

For t ∈ N0, we set Qj(t) := U−t
0 QjU

t
0 (j = 1, 2).

Lemma 3.1.2. Let Ψ0 ∈ HΓ be an initial state and α be a positive number. If we write
Φ0 = JΓΨ0, then the characteristic function of the random variable Xt/t

α is given by

E
[
exp

(
i

〈(
ξ1
ξ2

)
,
Xt

tα

〉
2

)]
=

〈
Φ0, exp

{
i

(
ξ1
Q1(t)

tα
+ ξ2

Q2(t)

tα

)}
Φ0

〉
for t(ξ1, ξ2) ∈ R2, where exp

{
i
(
ξ1

Q1(t)
tα

+ ξ2
Q2(t)
tα

)}
means the two-variable functional

calculus.

Proof. For each (n,m) ∈ Z2, by the definition of P (n, ,m), the probability distribution is
represented as P(Xt =(n,m)) = ‖P (n,m)U tΨ0‖2KΓ

. Hence, one has

E
[
exp

(
i

〈(
ξ1
ξ2

)
,
Xt

tα

〉
2

)]
=

∫
R2

exp

(
i

〈(
ξ1
ξ2

)
,

(
x
y

)〉
2

)
dP (Xt/t

α =(x, y))

=
∑

(n,m)∈Z2

exp
{
i
(
ξ1

n

tα
+ ξ2

m

tα

)}
P(Xt =(n,m))

=
∑

(n,m)∈Z2

exp
{
i
(
ξ1

n

tα
+ ξ2

m

tα

)}
‖P (n,m)U tΨ0‖2KΓ

=
∑

(n,m)∈Z2

exp
{
i
(
ξ1

n

tα
+ ξ2

m

tα

)} 〈
U tΨ0, E1(n)E2(m)U tΨ0

〉
=

∑
(n,m)∈Z2

exp
{
i
(
ξ1

n

tα
+ ξ2

m

tα

)} 〈
U tΨ0, E1 ⊗ E2({(n,m)})U tΨ0

〉
=

〈
U tΨ0, exp

{
i

(
ξ1
P1

tα
+ ξ2

P2

tα

)}
U tΨ0

〉
=

〈
Ψ0, U−t exp

{
i

(
ξ1
P1

tα
+ ξ2

P2

tα

)}
U tΨ0

〉
=

〈
JΓΨ0, JΓU

−t exp

{
i

(
ξ1
P1

tα
+ ξ2

P2

tα

)}
U tJ−1

Γ JΓΨ0

〉
=

〈
Φ0, U−t

0 JΓ exp

{
i

(
ξ1
P1

tα
+ ξ2

P2

tα

)}
J−1
Γ U t

0Φ
0

〉
=

〈
Φ0, U−t

0 exp

{
i

(
ξ1
Q1

tα
+ ξ2

Q2

tα

)}
U t
0Φ

0

〉
=

〈
Φ0, exp

{
i

(
ξ1
Q1(t)

tα
+ ξ2

Q2(t)

tα

)}
Φ0

〉
.

This finishes the proof. 2
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3.2 Asymptotic velocity operators

In this section, we will construct the asymptotic velocity operators by using the GJS
method. First, we shall see a relation between the position and momentum operators.
Let L2((0, 2π)2; dθdϕ/4π2) be the Hilbert space of all square integrable functions f :
(0, 2π)2 → C with norm

‖f‖ =

(∫
(0,2π)2

|f(θ, ϕ)|2dθdϕ
4π2

)1/2

.

For simplicity, we write L2((0, 2π)2) := L2((0, 2π)2; dθdϕ/4π2). One denotes the functions
fn,m(θ, ϕ) := einθeimφ ∈ L2((0, 2π)2), then {fn,m}(n,m)∈Z2 is a complete orthonormal basis
of L2((0, 2π)2). Let F : `2(Z2) → L2((0, 2π)2) be the Fourier transform which is the
unitary operator defined as the unique extension of F (δn,m) = fn,m, where {δn,m}(n,m)∈Z2

is the canonical orthonormal basis for `2(Z2). The tensor product of F and the identity
operator on C2d is also denoted by F , namely

F : `2(Z2) ⊗ C2d(∼= KΓ) → L2((0, 2π)2) ⊗ C2d; δn,m ⊗

 x1
...

x2d

 7→ fn,m ⊗

 x1
...

x2d

 .

In the same way as the case of “`2”, we will use the following isomorphisms:

L2((0, 2π)2) ⊗ C2d ∼= L2((0, 2π)2;C2d) ∼= L2((0, 2π)2;Cd ⊕ Cd) ∼=
∫ ⊕

(0,2π)2
C2ddθdϕ

4π2
, etc.

Now, we define the following dense subspace of KΓ:

K0 :=
∞⋃
k=0

{Φ ∈ KΓ|Φ(n,m) = 0, ‖(n,m)‖1 ≥ k}.

Since the image of K0 under the Fourier transform is contained in C1((0, 2π)2;C2d) which
is the set of all C1-class functions from (0, 2π)2 to C2d, the momentum operators D1, D2 :
F (H0) → L2((0, 2π)2;Cd ⊕ Cd)

D1 :=
1

i

∂

∂θ
− 1

i

∂

∂ϕ
, D2 :=

1

i

∂

∂θ
+

1

i

∂

∂ϕ
+ P.

are well defined, where P is the projection from L2((0, 2π)2;Cd⊕Cd) onto L2((0, 2π)2; 0d⊕
Cd).

Proposition 3.2.1. The momentum operators D1 and D2 are closable, and those closures
D1, D2 are as follows:

D1 = FQ1F
−1, D2 = FQ2F

−1.
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Proof. We will prove only the latter. First, we show that the subspace K0 is a core for

Q2. For Φ = t(Φ1,Φ2) ∈ D(Q2), we put Φk(n,m) :=

{
Φ(n,m) if ‖(n,m)‖1 < k

0 if ‖(n,m)‖1 ≥ k
. Then

Φk ∈ K0, Φk → Φ and

‖Q2Φ −Q2Φ
k‖2

=
∑

∥(n,m)∥1≥k

{|n + m|2‖Φ1(n,m)‖2Cd + |n + m + 1|2‖Φ2(n,m)‖2Cd} −→ 0 (as k → ∞).

Thus G(Q2) = G(Q2|K0), and so K0 is a core for Q2. That is, the operator Q2|K0 is a
closable operator and its closure is Q2. Also, since every element of F (K0) is represented
as a linear combination of the form

fn,m ⊗

t
x1

...
xd

 ,

y1
...
yd


 = einθeimφ ⊗

t
x1

...
xd

 ,

y1
...
yd


 ∈ F (K0),

and

einθeimφ ⊗

t
x1

...
xd

 ,

y1
...
yd


 F−1

7−→ δn,m ⊗

t
x1

...
xd

 ,

y1
...
yd




=

tδn,m

x1
...
xd

 , δn,m

y1
...
yd


 Q27−→

t(n + m)δn,m

x1
...
xd

 , (n + m + 1)δn,m

y1
...
yd




= n

tδn,m

x1
...
xd

 , δn,m

y1
...
yd


+m

tδn,m

x1
...
xd

 , δn,m

y1
...
yd


+

t
0

...
0

 , δn,m

y1
...
yd




F7−→ n

tfn,m

x1
...
xd

 , fn,m

y1
...
yd


+m

tfn,m

x1
...
xd

 , fn,m

y1
...
yd


+

t
0

...
0

 , fn,m

y1
...
yd




= D2

einθeimφ ⊗

t
x1

...
xd

 ,

y1
...
yd



 ,

the equality FQ2|K0F
−1 = D2 holds on F (K0). These observations lead to the state-

ment. 2

Next, we see that the Fourier transform of the time evolution operator associated with
a quasi-uniform coin map is a multiplication operator.
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Lemma 3.2.2. Let C• be a quasi-uniform coin map satisfying (2.3.2). Then the Fourier

transform Û∞ := FU∞F−1 of U∞ is a decomposable operator whose decomposition is as
follows:

Û∞ =

∫ ⊕

(0,2π)2
Û∞(θ, ϕ)

dθdϕ

4π2
,

where Û∞(θ, ϕ) :=


O3

eiφ 0 0

0 eiθ 0

0 0 1


e−iθ 0 0

0 e−iφ 0

0 0 1

 O3


C∞ if Γ = ΓH ,



O4


eiφ 0 0 0

0 eiθ 0 0

0 0 1 0

0 0 0 ei(θ+φ)



e−iθ 0 0 0

0 e−iφ 0 0

0 0 e−i(θ+φ) 0

0 0 0 1

 O4


C∞ if Γ = ΓS,





0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 e−iθ 0

0 0 0 0 0 eiθ





eiφ 0 0 0 0 0

0 eiθ 0 0 0 0

0 0 1 0 0 0

0 0 0 ei(θ+φ) 0 0

0 0 0 0 0 0

0 0 0 0 0 0




e−iθ 0 0 0 0 0

0 e−iφ 0 0 0 0

0 0 e−i(θ+φ) 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0





0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 e−iθ 0

0 0 0 0 0 eiθ





C∞ if Γ = ΓT .

(3.2.1)

Proof. It can be easily verified that FC∞F−1 =
∫ ⊕
(0,2π)2

C∞
dθdφ
4π2 .
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Because it is similar, we shall consider only the case where Γ = ΓH . Then one has

fn,m ⊗

tx1

x2

x3

 ,

y1
y2
y3

 F−1

7−→ δn,m ⊗

tx1

x2

x3

 ,

y1
y2
y3


=

tδn,m

x1

x2

x3

 , δn,m

y1
y2
y3

 S07−→

ty1δn,m+1

y2δn+1,m

y3δn,m

 ,

x1δn−1,m

x2δn,m−1

x3δn,m


F7−→

ty1fn,m+1

y2fn+1,m

y3fn,m

 ,

x1fn−1,m

x2fn,m−1

x3fn,m

 =

tfn,m

y1f0,1
y2f1,0
y3

 , fn,m

x1f−1,0

x2f0,−1

x3


=

tfn,m

f0,1 0 0
0 f1,0 0
0 0 1

y1
y2
y3

 , fn,m

f−1,0 0 0
0 f0,−1 0
0 0 1

x1

x2

x3



=


O3

f0,1 0 0
0 f1,0 0
0 0 1

f−1,0 0 0
0 f0,−1 0
0 0 1

 O3

×

fn,m ⊗

tx1

x2

x3

 ,

y1
y2
y3

 .

Since for every (θ, ϕ) ∈ (0, 2π)2
O3

f0,1(θ, ϕ) 0 0
0 f1,0(θ, ϕ) 0
0 0 1

f−1,0(θ, ϕ) 0 0
0 f0,−1(θ, ϕ) 0
0 0 1

 O3



=


O3

eiφ 0 0
0 eiθ 0
0 0 1

e−iθ 0 0
0 e−iφ 0
0 0 1

 O3

 ,

we obtain that

FS0F
−1 =

∫ ⊕

(0,2π)2


O3

eiφ 0 0
0 eiθ 0
0 0 1

e−iθ 0 0
0 e−iφ 0
0 0 1

 O3


dθdϕ

4π2
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by the denseness of F (K0). Thus Û∞ = (FS0F−1)(FC∞F−1) =
∫ ⊕
(0,2π)2

Û∞(θ, ϕ)dθdφ
4π2

holds. 2

Since the matrix Û∞(θ, ϕ) is a unitary matrix for each (θ, ϕ) ∈ (0, 2π)2, there exists

an orthonormal basis {uj(θ, ϕ)}j=1,...,2d of C2d such that Û∞(θ, ϕ) is represented as

Û∞(θ, ϕ) =
2d∑
j=1

λj(θ, ϕ)|uj(θ, ϕ)〉〈uj(θ, ϕ)|, (3.2.2)

where λj(θ, ϕ) is an eigenvalue of Û∞(θ, ϕ). If λj(θ, ϕ) is partial differentiable at (θ, ϕ) ∈
(0, 2π)2, then we set

λθ
j(θ, ϕ) :=

1

i

∂λj(θ, ϕ)

∂θ

1

λj(θ, ϕ)
and λφ

j (θ, ϕ) :=
1

i

∂λj(θ, ϕ)

∂ϕ

1

λj(θ, ϕ)
.

We introduce the following assumption on λj(θ, ϕ) and uj(θ, ϕ).

Assumption 3.2.3. For each j = 1, . . . , 2d,

1) the function λj : (0, 2π)2 → T is C2-class and its all partial derivatives up to order
2 are bounded on (0, 2π)2,

2) the function uj : (0, 2π)2 → C2d is C1-class and
∂uj

∂θ
,

∂uj

∂φ
are bounded on (0, 2π)2.

In addition,

3) there exists a permutation τ ∈ S2d such that

lim
φ→+0

λ♯
j(θ, ϕ) = lim

φ→2π−0
λ♯
τ(j)(θ, ϕ), lim

θ→+0
λ♯
j(θ, ϕ) = lim

θ→2π−0
λ♯
τ(j)(θ, ϕ),

lim
φ→+0

uj(θ, ϕ) = lim
φ→2π−0

uτ(j)(θ, ϕ), lim
θ→+0

uj(θ, ϕ) = lim
θ→2π−0

uτ(j)(θ, ϕ)

for all j = 1, . . . , 2d, 0 < θ, ϕ < 2π and each symbol ] = θ, ϕ.

Definition 3.2.4. Let us consider the situation in Lemma 3.2.2. Additionally, we suppose
that the spectral decomposition of Û∞(θ, ϕ) is given by (3.2.2). Then, we say that the
unitary matrix C∞ ∈ U(2d) satisfies Assumption 3.2.3 if λj(θ, ϕ) and uj(θ, ϕ) satisfy it.

Remark 3.2.5. By the differentiability of λj, for any (θ0, ϕ0) ∈ (0, 2π)2, there exists

an R-valued differentiable function r0j such that λj(θ, ϕ) = eir
0
j (θ,φ) on a neighborhood of

(θ0, ϕ0). Then, for each symbol ] = θ, ϕ, we have λ♯
j(θ0, ϕ0) =

∂r0j
∂♯

(θ0, ϕ0), so λ♯
j is an

R-valued function.
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Remark 3.2.6. Consider the case where Γ = ΓH . If we write A(θ, ϕ) =

eiθ 0 0
0 eiφ 0
0 0 1

,

then Û∞(θ, ϕ) =

(
O3 A(ϕ, θ)Co

A(−θ,−ϕ)Ce O3

)
. By [33, Theorem 3], one gets

det

(
λE3 −A(ϕ, θ)Co

−A(−θ,−ϕ)Ce λE3

)
= det

(
λ2E3 − A(ϕ, θ)CoA(−θ,−ϕ)Ce

)
and thus the eigenvalues of Û∞(θ, ϕ) can always be obtained algebraically.

Example 3.2.7. Suppose that Γ = ΓH . Let us consider a trivial case: C• ≡ E3 on Z2 .
Then the matrix Û∞(θ, ϕ) becomes

O3

eiφ 0 0
0 eiθ 0
0 0 1

e−iθ 0 0
0 e−iφ 0
0 0 1

 O3


and its eigenvalues and eigenvectors can be given as follows:

λ1(θ, ϕ) = e
i
2
(−θ+φ), λ2(θ, ϕ) = −e

i
2
(−θ+φ), λ3(θ, ϕ) = e

i
2
(θ−φ),

λ4(θ, ϕ) = −e
i
2
(θ−φ), λ5(θ, ϕ) = 1, λ6(θ, ϕ) = −1,

u1(θ, ϕ) =
1√
2


e

i
2
(θ+φ)

0
0
1
0
0

 , u2(θ, ϕ) =
1√
2


−e

i
2
(θ+φ)

0
0
1
0
0

 , u3(θ, ϕ) =
1√
2



0

e
i
2
(θ+φ)

0
0
1
0

 ,

u4(θ, ϕ) =
1√
2



0

−e
i
2
(θ+φ)

0
0
1
0

 , u5(θ, ϕ) =
1√
2


0
0
1
0
0
1

 , u6(θ, ϕ) =
1√
2


0
0
−1
0
0
1

 .

Although uj(θ, ϕ) is not “2π-periodic” for j = 1, 2, 3, 4, if we put

τ =

(
1 2 3 4 5 6
2 1 4 3 5 6

)
∈ S6,

then Assumption 3.2.3 is fulfilled. Hence E6 = E3 ⊕ E3 satisfies Assumption 3.2.3.
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Example 3.2.8. Suppose that Γ = ΓH again. As a non-trivial case, one considers the

case where C• =

{
Ce on Z2

e

Co on Z2
o

, here we set

Ce :=

0 1 0
1 0 0
0 0 1

 and Co :=

1 0 0
0 0 1
0 1 0

 .

Then the unitary matrix Û∞(θ, ϕ) is given by

Û∞(θ, ϕ) =


O3

eiφ 0 0
0 0 eiθ

0 1 0

 0 e−iθ 0
e−iφ 0 0

0 0 1

 O3

 ,

and one can choose λj(θ, ϕ) and uj(θ, ϕ) as follows:

λj(θ, ϕ) ≡ ei
(j−1)π

3 , uj(θ, ϕ) =
1√
6



ei(φ+(j−1)π)

ei(θ+
5(j−1)π

3 )

ei
(j−1)π

3

ei
4(j−1)π

3

ei
2(j−1)π

3

1


, j = 1, . . . , 6.

It follows that Ce ⊕ Co satisfies Assumption 3.2.3 as τ is the identity permutation.

Since λθ
j(θ, ϕ) and λφ

j (θ, ϕ) are R-valued bounded functions on (0, 2π)2 by Assumption
3.2.3, we can define the following two operators:

Definition 3.2.9. If the unitary matrix C∞ satisfies Assumption 3.2.3, one can define
two bounded self-adjoint operators V Γ

1 , V
Γ
2 on KΓ by

V Γ
1 := F−1

(∫ ⊕

(0,2π)2

2d∑
j=1

(
λθ
j(θ, ϕ) − λφ

j (θ, ϕ)
)
|uj(θ, ϕ) 〉〈uj(θ, ϕ)| dθdϕ

4π2

)
F ,

V Γ
2 := F−1

(∫ ⊕

(0,2π)2

2d∑
j=1

(
λθ
j(θ, ϕ) + λφ

j (θ, ϕ)
)
|uj(θ, ϕ) 〉〈uj(θ, ϕ)| dθdϕ

4π2

)
F ,

which are called the asymptotic velocity operators. If there would be no danger of confu-
sions, then we may write simply Vj.
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Since {uj(θ, ϕ)}j=1,...,2d is an orthonormal basis of C2d for each (θ, ϕ) ∈ (0, 2π)2, the
asymptotic velocity operators V1, V2 are commuting.

We denote D as the set of vectors Φ ∈ KΓ satisfying the following two properties:

• Φ̂ := FΦ : (0, 2π)2 → C2d is a C1-class bounded function and its partial derivatives
are also bounded,

• limφ→+0 Φ̂(θ, ϕ) = limφ→2π−0 Φ̂(θ, ϕ) holds for any θ ∈ (0, 2π), and limθ→+0 Φ̂(θ, ϕ) =

limθ→2π−0 Φ̂(θ, ϕ) holds for all ϕ ∈ (0, 2π).

Note that D is a dense subspace of KΓ because K0 ⊂ D. To study properties of the
asymptotic velocity operators, we prepare two lemmas for D.

Lemma 3.2.10. Let D be as above. Then the following properties hold:

1) F (D) ⊂ D(Dj) (j = 1, 2), and

D1 =
1

i

∂

∂θ
− 1

i

∂

∂ϕ
, D2 =

1

i

∂

∂θ
+

1

i

∂

∂ϕ
+ P,

on F (D).

2) D is U∞-invariant (The matrix C∞ does not necessary satisfy Assumption 3.2.3).

Proof. Let {ej}1≤j≤2d be the canonical basis of C2d and let f j
n,m := fn,m ⊗ ej. Then

{f j
n,m}1≤j≤2d,(n,m)∈Z2 is a complete orthonormal basis of L2((0, 2π)2;C2d). To prove the

assertion 1), take an element Φ of D arbitrarily. Since Φ̂ and its partial derivatives of
order 1 are elements of L2((0, 2π)2;C2d), they can be expressed as

Φ̂ = lim
k→∞

∑
1≤j≤2d,(n,m)∈Bk

〈f j
n,m, Φ̂〉f j

n,m,

∂Φ̂

∂θ
= lim

k→∞

∑
1≤j≤2d,(n,m)∈Bk

〈
f j
n,m,

∂Φ̂

∂θ

〉
f j
n,m,

∂Φ̂

∂ϕ
= lim

k→∞

∑
1≤j≤2d,(n,m)∈Bk

〈
f j
n,m,

∂Φ̂

∂ϕ

〉
f j
n,m,

where Bk is the closed ball in Z2 of center the origin and radius k with respect to `1-norm.
By the definition of D and integration by parts, one gets〈

f j
n,m,

∂Φ̂

∂θ

〉
= in

〈
f j
n,m, Φ̂

〉
and

〈
f j
n,m,

∂Φ̂

∂ϕ

〉
= im

〈
f j
n,m, Φ̂

〉
.
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(Thus the Fourier series of Φ̂ is termwise differentiable.) Therefore, for example,

D2(Φ̂k) →
(

1

i

∂

∂θ
+

1

i

∂

∂ϕ
+ P

)
Φ̂ (as k→∞) in L2((0, 2π)2;C2d),

where Φ̂k :=
∑

1≤j≤2d,(n,m)∈Bk
〈f j

n,m, Φ̂〉f j
n,m ∈ F (K0) ⊂ D(D2). By closedness of D2,

Φ̂ ∈ D(D2) and D2Φ̂ =
(

1
i

∂
∂θ

+ 1
i

∂
∂φ

+ P
)

Φ̂, as stated in 1).

For the inclusion 2), take any Φ ∈ D. Since it is similar, we will prove only the

case where Γ = ΓH . Lemma 3.2.2 gives the equation Û∞Φ(θ, ϕ) = Û∞(θ, ϕ)Φ̂(θ, ϕ) for

(θ, ϕ) ∈ (0, 2π)2, this means that Û∞Φ is C1-class bounded function on (0, 2π)2 and
satisfies the second condition of the definition of D. Moreover, by the following estimate∥∥∥∥∥∂Û∞Φ

∂θ
(θ, ϕ)

∥∥∥∥∥
C6

≤

∥∥∥∥∥∂Û∞(θ, ϕ)

∂θ
Φ̂(θ, ϕ)

∥∥∥∥∥
C6

+

∥∥∥∥∥Û∞(θ, ϕ)
∂Φ̂

∂θ
(θ, ϕ)

∥∥∥∥∥
C6

=

∥∥∥∥∥∂Û∞(θ, ϕ)

∂θ
Φ̂(θ, ϕ)

∥∥∥∥∥
C6

+

∥∥∥∥∥∂Φ̂

∂θ
(θ, ϕ)

∥∥∥∥∥
C6

=

∥∥∥∥∥∥∥∥∥∥∥∥


O3

0 0 0
0 ieiθ 0
0 0 0

−ie−iθ 0 0
0 0 0
0 0 0

 O3

C∞Φ̂(θ, ϕ)

∥∥∥∥∥∥∥∥∥∥∥∥
C6

+

∥∥∥∥∥∂Φ̂

∂θ
(θ, ϕ)

∥∥∥∥∥
C6

≤ 2
∥∥∥Φ̂(θ, ϕ)

∥∥∥
C6

+

∥∥∥∥∥∂Φ̂

∂θ
(θ, ϕ)

∥∥∥∥∥
C6

,

one gets

sup
(θ,φ)∈(0,2π)2

∥∥∥∥∥∂Û∞Φ

∂θ
(θ, ϕ)

∥∥∥∥∥
C6

< ∞.

Similarly, the function ∂Û∞Φ
∂φ

is bounded, and hence U∞Φ ∈ D. 2

Lemma 3.2.11. Suppose that C∞ satisfies Assumption 3.2.3. Then for every z ∈ C \R,
we have

(V1 − z)−1K0 ⊂ D and (V2 − z)−1K0 ⊂ D.

Proof. We will check only the second inclusion of the statement. Since the equality

idC2d =
2d∑
j=1

|uj(θ, ϕ) 〉〈uj(θ, ϕ)|

holds, it follows that

(V2 − z)−1
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=

[
F−1

(∫ ⊕

(0,2π)2

2d∑
j=1

{
λθ
j(θ, ϕ) + λφ

j (θ, ϕ) − z
}
|uj(θ, ϕ)〉 〈uj(θ, ϕ)| dθdϕ

4π2

)
F

]−1

= F−1

(∫ ⊕

(0,2π)2

2d∑
j=1

{
λθ
j(θ, ϕ) + λφ

j (θ, ϕ) − z
}−1 |uj(θ, ϕ)〉 〈uj(θ, ϕ)| dθdϕ

4π2

)
F .

Therefore one obtains that

(F (V2 − z)−1 Φ)(θ, ϕ)

=
2d∑
j=1

{
λθ
j(θ, ϕ) + λφ

j (θ, ϕ) − z
}−1

〈
uj(θ, ϕ), Φ̂(θ, ϕ)

〉
|uj(θ, ϕ)〉

for every Φ ∈ K0 and (θ, ϕ) ∈ (0, 2π)2. From this and Assumption 3.2.3, it follows
(V2 − z)−1 Φ ∈ D. 2

In particular, when the time evolution operator is associated with a quasi-uniform coin
map, we write Q∞

j (t) := U−t
∞ QjU

t
∞ (j = 1, 2) for t ∈ N0. Since Q∞

j (t)/t can be interpreted
as a “velocity”, the following lemma tells us why the operator Vj is called the asymptotic
velocity operator.

Lemma 3.2.12. Let U∞ be a time evolution operator associated with a quasi-uniform coin
map satisfying (2.3.2). Suppose that the unitary matrix C∞ = Ce⊕Co satisfies Assumption

3.2.3. Then for each ξ1, ξ2 ∈ R, the unitary operators exp
(
iξ1

Q∞
1 (t)

t

)
and exp

(
iξ2

Q∞
2 (t)

t

)
are strongly convergent to exp (iξ1V1) and exp (iξ2V2) as t goes to ∞, respectively. Also,

for any α > 1, both exp
(
iξ1

Q∞
1 (t)

tα

)
and exp

(
iξ2

Q∞
2 (t)

tα

)
are strongly convergent to the

identity operator I.

Proof. We will show only the case where j = 2, since the case of j = 1 is also proven by
the similar manner. We note that the convergence of the statement is equivalent to(

Q∞
j (t)

t
− z

)−1
t→∞−→ (Vj − z)−1 (SOT)

for any z ∈ C\R (see e.g., [9, Proposition 10.1.8]). To prove it, take any z ∈ C\R, Φ ∈ KΓ

and ε > 0. Then there exists a vector Φε ∈ K0 such that ‖Φ − Φε‖ < ε. Since by Lemma
3.2.10 one has D ⊂ F−1(D(D2)) = D(Q2), it follows that U t

∞(D) ⊂ D ⊂ D(Q2). Thus
D ⊂ U−t

∞ (D(Q2)) = D(Q∞
2 (t)). Also, by Lemma 3.2.11, (V2 − z)−1K0 ⊂ D. Therefore, we

have∥∥∥∥∥
(
Q∞

2 (t)

t
− z

)−1

Φ − (V2 − z)−1Φ

∥∥∥∥∥
≤

∥∥∥∥∥
(
Q∞

2 (t)

t
−z

)−1

(Φ−Φε)

∥∥∥∥∥+

∥∥∥∥∥
(
Q∞

2 (t)

t
−z

)−1

Φε−(V2−z)−1Φε

∥∥∥∥∥+
∥∥(V2−z)−1(Φε−Φ)

∥∥
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≤ ε

|=(z)|
+

∥∥∥∥∥
(
Q∞

2 (t)

t
− z

)−1

Φε − (V2 − z)−1Φε

∥∥∥∥∥+
ε

|=(z)|

=
2ε

|=(z)|
+

∥∥∥∥∥
(
Q∞

2 (t)

t
− z

)−1(
Q∞

2 (t)

t
− V2

)
(V2 − z)−1Φε

∥∥∥∥∥
≤ 2ε

|=(z)|
+

ε

|=(z)|

∥∥∥∥(Q∞
2 (t)

t
− V2

)
(V2 − z)−1 Φε

∥∥∥∥ ,
where the equality is implied by the second resolvent equation, and =(z) is the imaginary
part of z. Thus, since (V2 − z)−1K0 ⊂ D again, it suffices to show that∥∥∥∥(Q∞

2 (t)

t
− V2

)
Φ

∥∥∥∥→ 0,

for all Φ ∈ D.
For this proof, take Φ ∈ D and (θ, ϕ) ∈ (0, 2π)2 arbitrarily. Note that

FQ∞
2 (t) = FU−t

∞ Q2U
t
∞ = Û−t

∞ FQ2U
t
∞ = Û−t

∞ FQ2F
−1FU t

∞ = Û−t
∞ D2Û

t
∞F

hold on D(Q∞
2 (t)) by Lemma 3.2.1. Also D ⊂ D(Q∞

2 (t)) holds. Hence, by Lemma 3.2.10,
one has

(FQ∞
2 (t)Φ)(θ, ϕ) =

(
Û−t
∞

(
1

i

∂

∂θ
+

1

i

∂

∂ϕ
+ P

)
Û t
∞Φ̂

)
(θ, ϕ)

= Û∞(θ, ϕ)−t

(
1

i

∂

∂θ
+

1

i

∂

∂ϕ
+ P

)
U∞(θ, ϕ)tΦ̂(θ, ϕ)

=

(
2d∑
j=1

λj(θ, ϕ)−t |uj(θ, ϕ) 〉〈uj(θ, ϕ)|

)

×
(

1

i

∂

∂θ
+

1

i

∂

∂ϕ
+ P

)( 2d∑
j=1

λj(θ, ϕ)t
〈
uj(θ, ϕ), Φ̂(θ, ϕ)

〉
|uj(θ, ϕ)〉

)

=

(
2d∑
j=1

λj(θ, ϕ)−t |uj(θ, ϕ) 〉〈uj(θ, ϕ)|

)

×

{
2d∑
j=1

t

i
λj(θ, ϕ)t−1

(
∂λj

∂θ
(θ, ϕ) +

∂λj

∂ϕ
(θ, ϕ)

)〈
uj(θ, ϕ), Φ̂(θ, ϕ)

〉
|uj(θ, ϕ)〉 + o(t)

}

=

(
2d∑
j=1

t
(
λθ
j(θ, ϕ) + λφ

j (θ, ϕ)
) 〈

uj(θ, ϕ), Φ̂(θ, ϕ)
〉
|uj(θ, ϕ)〉 + o(t)

)
= t(FV2Φ)(θ, ϕ) + o(t).

Here we remark that by Assumption 3.2.3, the Landau symbol o(t) ∈ C2d above divided
by t is uniformly convergent to 0 as t → ∞ with respect to (θ, ϕ) ∈ (0, 2π)2. From this,
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it follows that∥∥∥∥(Q∞
2 (t)

t
− V2

)
Φ

∥∥∥∥ =

∥∥∥∥F (
Q∞

2 (t)

t
− V2

)
Φ

∥∥∥∥ −→ 0 as t → ∞.

By similar arguments, one can prove that for each α > 1, we have(
Q∞

2 (t)

tα
− z

)−1
t→∞−→ (0 − z)−1 (SOT),

where 0 is the zero operator. Hence, exp
(
iξ2

Q∞
2 (t)

tα

)
is strongly convergent to exp (iξ20) =

I. This finishes the proof. 2

By Lemma 3.2.12 and Proposition 1.1.1, we obtain the following result.

Corollary 3.2.13. Under the same assumption as in Lemma 3.2.12, we have for any t(ξ1
ξ2) ∈ R2,

exp

{
i

(
ξ1
Q∞

1 (t)

tα
+ ξ2

Q∞
2 (t)

tα

)}
t→∞−→

{
exp i (ξ1V1 + ξ2V2) if α = 1,

I if α > 1,

in the sense of the strongly operator topology.

3.3 Scattering theory

In this section, we consider the time evolution operator U0 which is associated to an
anisotropic coin map. According to Lemma 3.1.2, the characteristic function of the ran-

dom variable Xt/t is expressed by using the unitary operator exp
{
i
(
ξ1

Q1(t)
t

+ ξ2
Q2(t)

t

)}
.

This operator has distinct properties on Kpp(U0), Kac(U0), and Ksc(U0), respectively.

In particular, we investigate the asymptotic behavior of exp
{
i
(
ξ1

Q1(t)
t

+ ξ2
Q2(t)

t

)}
on

Kac(U0) in this section. Scattering theory is useful for this, as in the case of the study of
Schrödinger operators.

In order to construct the wave operators with respect to U0 and U∞ which is the
auxiliary time evolution operator, we introduce the following condition.

Definition 3.3.1. A coin map C• : Z2 → U(d) is said to be of short range if there exist
Ce, Co ∈ U(d), κ > 0, and ε > 0 such that

‖C(n,m) − Ce‖Md(C) ≤ κ(1 + ‖(n,m)‖1)−2−ε for all (n,m) ∈ Z2
e,

‖C(n,m) − Co‖Md(C) ≤ κ(1 + ‖(n,m)‖1)−2−ε for all (n,m) ∈ Z2
o.

(3.3.1)

Of course, the short-range condition is stronger than the anisotropic one.
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Remark 3.3.2. We suppose that C• is a short range coin map satisfying (3.3.1) and put
C∞ = Ce ⊕ Co. Since

1

2
‖(n,m)‖1 ≤ ‖φ⋆(n,m)‖1 (3.3.2)

for ? = e, o, (n,m) ∈ Z2, for all (n,m) ∈ Z2, we have

‖Cϕe(n,m) ⊕ Cϕo(n,m) − C∞‖Md(C) = max{‖Cϕe(n,m) − Ce‖Md(C), ‖Cϕo(n,m) − Co‖Md(C)}
≤ κ′(1 + ‖(n,m)‖1)−2−ε,

for some positive number κ′.

Lemma 3.3.3. If U0 is a time evolution operator associated with a short-range coin map,
then the difference U0 − U∞ is trace class.

Proof. Assume that a coin map C• satisfies the condition (3.3.1) and set C∞ := Ce ⊕Co.
Let T (n,m) := Cϕe(n,m) ⊕ Cϕo(n,m) − C∞ ∈ M2d(C) for any (n,m) ∈ Z2, then we have

(U0 − U∞)∗(U0 − U∞) = (C0 − C∞)∗(C0 − C∞)

=

 ⊕
(n,m)∈Z2

T (n,m)

∗ ⊕
(n,m)∈Z2

T (n,m)


=

⊕
(n,m)∈Z2

T (n,m)∗T (n,m).

Also, since {T (n,m)∗T (n,m)} 1
2 is a positive Hermitian matrix, there exist non-negative

real numbers r1(n,m), ..., r2d(n,m) and an orthonormal basis {w1(n,m), ..., w2d(n,m)} of
C2d such that

{T (n,m)∗T (n,m)}
1
2 =

2d∑
j=1

rj(n,m) |wj(n,m) 〉〈wj(n,m)| .

We define a function ejn,m : Z2 → C2d by ejn,m(k, l) :=

{
wj(n,m) if (k, l) = (n,m)

0 otherwise
, then

{ejn,m}1≤j≤2d,(n,m)∈Z2 is an orthonormal basis of KΓ = `2(Z2;C2d) and

⊕
(n,m)∈Z2

{T (n,m)∗T (n,m)}
1
2 =

∑
(n,m)∈Z2

2d∑
j=1

rj(n,m)
∣∣ejn,m 〉〈 ejn,m

∣∣
holds. Because C• is of short range, we obtain that

Tr|U0 − U∞| = Tr
(
{(U0 − U∞)∗(U0 − U∞)}

1
2

)
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= Tr


 ⊕

(n,m)∈Z2

T (n,m)∗T (n,m)


1
2


= Tr

 ⊕
(n,m)∈Z2

{T (n,m)∗T (n,m)}
1
2


= Tr

 ∑
(n,m)∈Z2

2d∑
j=1

rj(n,m)
∣∣ejn,m 〉〈 ejn,m

∣∣
=

∑
(n,m)∈Z2

2d∑
j=1

rj(n,m)

≤ 2d
∑

(n,m)∈Z2

max
1≤j≤2d

rj(n,m)

= 2d
∑

(n,m)∈Z2

∥∥∥{T (n,m)∗T (n,m)}
1
2

∥∥∥
= 2d

∑
(n,m)∈Z2

‖T (n,m)‖

= 2d
∑

(n,m)∈Z2

∥∥Cϕe(n,m) ⊕ Cϕo(n,m) − C∞
∥∥

≤ 2dκ′
∑

(n,m)∈Z2

(1 + ‖(n,m)‖1)−2−ε

= 2dκ′
∑

(n,m)∈Z2

(1 + |n| + |m|)−2−ε < ∞,

which proves the lemma. 2

From the next remark we can conclude that the order −2 is the borderline between
whether U0 − U∞ is trace class or not.

Remark 3.3.4. Let C• be a coin map with C(n,m) = ei(1+∥(n,m)∥1)−2
Ed. The matrix similar

to it is treated in [38]. In this case, we have

1

2
(1 + ‖(n,m)‖1)−2 ≤ ‖C(n,m) − Ed‖Md(C) ≤ (1 + ‖(n,m)‖1)−2,

for any (n,m) ∈ Z2, so C• does not satisfy (3.3.1). If we use the notations in the proof of
Lemma 3.3.3, then

{T (n,m)∗T (n,m)}
1
2 =
√

2 − 2 cos(1 + ‖φe(n,m)‖1)−2Ed⊕
√

2 − 2 cos(1 + ‖φo(n,m)‖1)−2Ed
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hold. Thus, by using Z2 = Z2
e tZ2

o and the inequality 1− cosx ≥ x2

π
(0 ≤ x ≤ π

2
), one has

Tr|U0 − U∞| =
∑

(n,m)∈Z2

2d∑
j=1

rj(n,m)

= d
∑

(n,m)∈Z2

{√
2 − 2 cos(1 + ‖φe(n,m)‖1)−2 +

√
2 − 2 cos(1 + ‖φo(n,m)‖1)−2

}
= d

∑
(n,m)∈Z2

√
2 − 2 cos(1 + ‖(n,m)‖1)−2

≥
√

2d
∑

(n,m)∈Z2

√
1

π
(1 + ‖(n,m)‖1)−4

=

√
2d√
π

∑
(n,m)∈Z2

1

(1 + |n| + |m|)2
= ∞,

which means that U0 − U∞ is not trace class.

Lemma 3.3.5. Let U0 be a time evolution operator associated with a short-range coin
map. Then the following wave operators

Ω± := ΩΓ
± := s- lim

t→±∞
U−t
0 U t

∞Πac(U∞)

exist and are complete (hence, in particular, Ω∗
+ = s- limt→∞ U−t

∞ U t
0Πac(U0)).

Proof. It follows from Lemma 3.3.3 and [35, Proposition 3.1]. 2

Lemma 3.3.6. Let U∞ be a time evolution operator associated with a quasi-uniform
coin map (2.3.2). If the matrix C∞ = Ce ⊕ Co satisfies Assumption 3.2.3, then U∞ and
exp(iξVj) are commuting for each ξ ∈ R and j = 1, 2.

Proof. By Lemma 3.2.12, we have for each ξ ∈ R and j = 1, 2

[U∞, exp(iξVj)] = s- lim
t→∞

[
U∞, exp

(
iξ
Q∞

j (t)

t

)]
= s- lim

t→∞

{
U∞ exp

(
iξ
Q∞

j (t)

t

)
− U∞U−1

∞ exp

(
iξ
Q∞

j (t)

t

)
U∞

}
= s- lim

t→∞
U∞

{
exp

(
iξ
Q∞

j (t)

t

)
−
(

exp

(
iξ
Q∞

j (t + 1)

t + 1

)) t+1
t

}
= U∞ (exp(iξVj) − exp(iξVj))

= 0.

This completes the proof. 2
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The next corollary follows from Lemma 3.3.6 and Proposition 1.1.1.

Corollary 3.3.7. Suppose that the same assumption as in Lemma 3.3.6 holds. Then
[Πac(U∞), exp(iξVj)] = 0 for each ξ ∈ R, j = 1, 2, and [Πac(U∞), exp i(ξ1V1 + ξ2V2)] = 0
also holds for all t(ξ1, ξ2) ∈ R2.

Since the wave and asymptotic velocity operators exist when U0 is a time evolution
operator associated with a short-range coin map whose limit matrix satisfies Assumption
3.2.3, one can set the following operator

V +
j := Ω+VjΩ

∗
+ (j = 1, 2).

Remark 3.3.8. Corollary 3.3.7 also implies that [Πac(U∞), Vj] = 0 for each j = 1, 2. This
means that Kac(U∞) is Vj-invariant for j = 1, 2, and hence one has for any ξ ∈ R, j = 1, 2

exp(iξV +
j )Πac(U0) = Ω+ exp(iξVj)Ω

∗
+Πac(U0). (3.3.3)

Lemma 3.3.9. If U0 is a time evolution operator associated with a short-range coin map
whose limit matrix satisfies Assumption 3.2.3, then the operators V +

1 , V +
2 are commuting

and the following identity holds:

s- lim
t→∞

exp

{
i

(
ξ1
Q1(t)

tα
+ ξ2

Q2(t)

tα

)}
Πac(U0) =

{
exp i(ξ1V

+
1 + ξ2V

+
2 )Πac(U0) if α = 1,

Πac(U0) if α > 1.

for each t(ξ1, ξ2) ∈ R2.

Proof. We first consider the case where α = 1. By Remark 3.3.8 and the commutativity
of the asymptotic velocity operators, we obtain that

V +
1 V +

2 = Ω+V1Ω
∗
+Ω+V2Ω

∗
+ = Ω+V1Πac(U∞)V2Ω

∗
+ = Ω+V2Πac(U∞)V1Ω

∗
+ = V +

2 V +
1 ,

and so half of the assertion is proved.

To prove the identity in the statement, take any

(
ξ1
ξ2

)
∈ R2, t ∈ N and we let Ωt :=

U−t
0 U t

∞. By using (3.3.3) and Proposition 1.1.1, we have

exp i(ξ1V
+
1 + ξ2V

+
2 )Πac(U0)

= exp
(
iξ1V

+
1

)
exp

(
iξ2V

+
2

)
Πac(U0)

= Ω+ exp (iξ1V1) Ω∗
+Ω+ exp (iξ2V2) Ω∗

+Πac(U0)

= Ω+ exp i (ξ1V1 + ξ2V2) Ω∗
+Πac(U0).

It follows from this and Corollary 3.3.7 that

exp

{
i

(
ξ1
Q1(t)

t
+ ξ2

Q2(t)

t

)}
Πac(U0) − exp i(ξ1V

+
1 + ξ2V

+
2 )Πac(U0)
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= Ωt exp

{
i

(
ξ1
Q∞

1 (t)

t
+ ξ2

Q∞
2 (t)

t

)}
Ω∗

tΠac(U0)

− Ωt exp

{
i

(
ξ1
Q∞

1 (t)

t
+ ξ2

Q∞
2 (t)

t

)}
Ω∗

+Πac(U0)

+ Ωt exp

{
i

(
ξ1
Q∞

1 (t)

t
+ ξ2

Q∞
2 (t)

t

)}
Ω∗

+Πac(U0) − Ωt exp i (ξ1V1 + ξ2V2) Ω∗
+Πac(U0)

+ Ωt exp i (ξ1V1 + ξ2V2) Ω∗
+Πac(U0) − Ω+ exp i (ξ1V1 + ξ2V2) Ω∗

+Πac(U0)

= Ωt exp

{
i

(
ξ1
Q∞

1 (t)

t
+ ξ2

Q∞
2 (t)

t

)}
(Ω∗

t − Ω∗
+)Πac(U0)

+ Ωt

[
exp

{
i

(
ξ1
Q∞

1 (t)

t
+ ξ2

Q∞
2 (t)

t

)}
− exp i (ξ1V1 + ξ2V2)

]
Ω∗

+Πac(U0)

+ (Ωt − Ω+) exp i (ξ1V1 + ξ2V2) Ω∗
+Πac(U0)

=: I1(t) + I2(t) + I3(t).

Because Ωt and exp
{
i
(
ξ1

Q∞
1 (t)

t
+ ξ2

Q∞
2 (t)

t

)}
are uniformly bounded, one has from Corol-

lary 3.2.13 that I1(t) and I2(t) strongly converge to 0. Also, by Corollary 3.3.7 again and
the definition of Ω+,

I3(t) = (Ωt − Ω+) exp i (ξ1V1 + ξ2V2) Πac(U∞)Ω∗
+Πac(U0)

= (Ωt − Ω+)Πac(U∞) exp i (ξ1V1 + ξ2V2) Ω∗
+Πac(U0)

SOT−→ 0.

Finally we consider the case α > 1. Then one has

exp

{
i

(
ξ1
Q1(t)

tα
+ ξ2

Q2(t)

tα

)}
Πac(U0)

=

[
Ωt exp

{
i

(
ξ1
Q∞

1 (t)

tα
+ ξ2

Q∞
2 (t)

tα

)}
Ω∗

tΠac(U0) − ΩtΩ
∗
+

]
+ ΩtΠac(U∞)Ω∗

+

SOT−→ 0 + Ω+Ω∗
+ = Πac(U0).

Therefore, we have the desired result. 2

3.4 Weak limit theorem

In order to prove a weak limit theorem, we also prepare two lemmas. As one can see

below, the unitary operator exp
{
i
(
ξ1

Q1(t)
t

+ ξ2
Q2(t)

t

)}
is asymptotically identity on the

pure point subspace Kpp(U0), and the singular continuous space Ksc(U0) is the zero space.

Lemma 3.4.1. Let W be a unitary operator and T1, T2 be strongly commuting self-adjoint
operators on a Hilbert space, and let α ≥ 1. Let Tj(t) := W−tTjW

t for j = 1, 2, then one
has

s- lim
t→∞

exp

{
i

(
ξ1
T1(t)

tα
+ ξ2

T2(t)

tα

)}
Πpp(W ) = Πpp(W )
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for each

(
ξ1
ξ2

)
in R2.

Proof. It follows from [35, Theorem 4.2] (even in α > 1 case, it can be proved in the same
way as in the case where α = 1) and Proposition 1.1.1. 2

Lemma 3.4.2. If U0 is a time evolution operator associated with a short-range coin map,
then U0 has no singular continuous spectrum.

Proof. Let C• be a short-range coin map satisfying (3.3.1). Since∫ ∞

1

sup
∥(n,m)∥1≥r

‖C−1
e Cϕe(n,m) ⊕ C−1

o Cϕo(n,m) − E2d‖dr

=

∫ ∞

1

sup
∥(n,m)∥1≥r

‖Cϕe(n,m) ⊕ Cϕo(n,m) − C∞‖dr

≤
∫ ∞

1

κ′(1 + r)−2−εdr < ∞ (Remark 3.3.2),

the assertion can be proved by applying [4, Theorem 3.4] to the unitary operator U0 =

U∞

(⊕
(n,m)∈Z2(C−1

e Cϕe(n,m) ⊕ C−1
o Cϕo(n,m))

)
. 2

Theorem 3.4.3. Let C• : Z2 → U(d) be a coin map and Ψ0 ∈ HΓ an initial state.
Suppose that C• is of short range and that its limit matrix satisfies Assumption 3.2.3.
Then, the distribution of Xt/t weakly converges to a probability measure

µ =‖Πpp(U0)JΓΨ0‖2KΓ
δ(0,0) + ‖(EV Γ

1
⊗ EV Γ

2
)(·)(ΩΓ

+)∗JΓΨ0‖2KΓ

=‖Πpp(U)Ψ0‖2HΓ
δ(0,0) + ‖(EV Γ

1
⊗ EV Γ

2
)(·)(ΩΓ

+)∗JΓΨ0‖2KΓ
.

where δ(0,0) is the Dirac measure at (0, 0) ∈ R2. Also, for each α > 1, the distribution of
Xt/t

α weakly converges to δ(0,0).

Proof. In this proof, we simply write Φ0 := JΓΨ0. We remark that

‖Πpp(U0)Φ
0‖2δ(0,0) + ‖(EV +

1
⊗ EV +

2
)(·)Πac(U0)Φ

0‖2

= ‖Πpp(U0)Φ
0‖2δ(0,0) + ‖Ω+((EV1 ⊗ EV2)(·))Ω∗

+Φ0‖2

= ‖Πpp(U0)Φ
0‖2δ(0,0) + ‖(EV1 ⊗ EV2)(·)Ω∗

+Φ0‖2

and

exp i
(
ξ1V

+
1 + ξ2V

+
2

)
Πac(U0) = Πac(U0) exp i

(
ξ1V

+
1 + ξ2V

+
2

)
Πac(U0).

From these equations and the lemmas above, we have that

lim
t→∞

E
[
exp i

〈(
ξ1
ξ2

)
,
Xt

t

〉
2

]
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= lim
t→∞

〈
Φ0, exp

{
i

(
ξ1
Q1(t)

t
+ ξ2

Q2(t)

t

)}
Φ0

〉
(Lemma 3.1.2)

=
〈
Φ0,Πpp(U0)Φ

0
〉

+
〈
Φ0, exp i

(
ξ1V

+
1 + ξ2V

+
2

)
Πac(U0)Φ

0
〉

(Lemma 3.3.9 − 3.4.2)

= ‖Πpp(U0)Φ
0‖2 +

〈
Πac(U0)Φ

0, exp i
(
ξ1V

+
1 + ξ2V

+
2

)
Πac(U0)Φ

0
〉

= ‖Πpp(U0)Φ
0‖2 +

∫
R2

exp i (ξ1x + ξ2y) d
〈

Πac(U0)Φ
0, (EV +

1
⊗ EV +

2
)(x, y)Πac(U0)Φ

0
〉

=

∫
R2

exp

(
i

〈(
ξ1
ξ2

)
,

(
x
y

)〉
2

)
d
(
‖Πpp(U0)Φ

0‖2δ(0,0)(x, y)+‖(EV +
1
⊗ EV +

2
)(x, y)Πac(U0)Φ

0‖2
)

=

∫
R2

exp

(
i

〈(
ξ1
ξ2

)
,

(
x
y

)〉
2

)
dµ.

Similarly, for each α > 1, one obtains that

lim
t→∞

E
[
exp i

〈(
ξ1
ξ2

)
,
Xt

tα

〉
2

]
= lim

t→∞

〈
Φ0, exp

{
i

(
ξ1
Q1(t)

tα
+ ξ2

Q2(t)

tα

)}
Φ0

〉
(Lemma 3.1.2)

=
〈
Φ0,Πpp(U0)Φ

0
〉

+
〈
Φ0,Πac(U0)Φ

0
〉

(Lemma 3.3.9 − 3.4.2)

= 1

=

∫
R2

exp

(
i

〈(
ξ1
ξ2

)
,

(
x
y

)〉
2

)
dδ(0,0).

This completes the proof. 2

When C• is quasi-uniform, the wave operator Ω+ coincides with the projection Πac(U∞).
From this it follows:

Corollary 3.4.4. Under the same assumption as in Theorem 3.4.3, if a coin map C• is
quasi-uniform (thus automatically it is of short range and U0 = U∞), then the distribution
of Xt/t weakly converges to a probability measure

µ = ‖Πpp(U∞)JΓΨ0‖2KΓ
δ(0,0) + ‖(EV Γ

1
⊗ EV Γ

2
)(·)Πac(U∞)JΓΨ0‖2KΓ

.

An application of the weak limit theorem is the concept of localization. Let Ψ0 ∈ HΓ

be an initial state. Then we say that localization occurs if

lim sup
t→∞

P(Xt =(n,m)) = lim sup
t→∞

‖(U tΨ0)(n,m)‖2Cd > 0

for some (n,m) ∈ Z2. “Localization occurs” means that a quantum walker remains for a
long time at a certain point. It is an inherent property of quantum walks. Localization
occurs if and only if the initial state Ψ0 overlaps with Hpp(U), namely, Πpp(U)Ψ0 6= 0
([32, Proposition 2.4]). Thus, Theorem 3.4.3 gives a following necessary condition for
“localization occurs”:
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Corollary 3.4.5. Suppose that the same assumption as in Theorem 3.4.3 holds. Then
“localization occurs” implies that µ({(0, 0)}) > 0.

Example 3.4.6. (Example 3.2.7 continued) For j = 1, ..., 6, we set

K∓
j (θ, ϕ) :=

(
λθ
j(θ, ϕ) ∓ λφ

j (θ, ϕ)
)
|uj(θ, ϕ) 〉〈uj(θ, ϕ)| .

Since λθ
j(θ, ϕ) + λφ

j (θ, ϕ) = 0, one has K+
j (θ, ϕ) = 0 for j = 1, ..., 6. It follows that the

asymptotic velocity operator V2 is the zero operator, and hence its spectral measure is
given by EV2({0}) = I. Also we can compute that

K−
1 (θ, ϕ) = −1

2


1 0 0 e

i
2
(θ+φ) 0 0

0 0 0 0 0 0
0 0 0 0 0 0

e−
i
2
(θ+φ) 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

K−
2 (θ, ϕ) = −1

2


1 0 0 −e

i
2
(θ+φ) 0 0

0 0 0 0 0 0
0 0 0 0 0 0

−e−
i
2
(θ+φ) 0 0 1 0 0

0 0 0 0 0 0
0 0 0 0 0 0

 ,

K−
3 (θ, ϕ) =

1

2



0 0 0 0 0 0

0 1 0 0 e
i
2
(θ+φ) 0

0 0 0 0 0 0
0 0 0 0 0 0

0 e−
i
2
(θ+φ) 0 0 1 0

0 0 0 0 0 0

 ,

K−
4 (θ, ϕ) =

1

2



0 0 0 0 0 0

0 1 0 0 −e
i
2
(θ+φ) 0

0 0 0 0 0 0
0 0 0 0 0 0

0 −e−
i
2
(θ+φ) 0 0 1 0

0 0 0 0 0 0

 ,

K−
5 (θ, ϕ) = K−

6 (θ, ϕ) = O6.

Thus, one has

V1 = F−1

(∫ ⊕

(0,2π)2

6∑
j=1

K−
j (θ, ϕ)

dθdϕ

4π2

)
F
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=
⊕
Z2



−1 0 0
0 1 0
0 0 0

 O3

O3

−1 0 0
0 1 0
0 0 0



 (a multiplication operator),

and its spectral measure is given by

EV1({−1}) =
⊕
Z2



1 0 0
0 0 0
0 0 0

 O3

O3

1 0 0
0 0 0
0 0 0



, EV1({1}) =
⊕
Z2



0 0 0
0 1 0
0 0 0

 O3

O3

0 0 0
0 1 0
0 0 0



,

EV1({0}) =
⊕
Z2



0 0 0
0 0 0
0 0 1

 O3

O3

0 0 0
0 0 0
0 0 1



 .

It follows from the form of the matrix Û∞(θ, ϕ) that the pure point subspace of Û∞
coincides with

L2((0, 2π)2; 0 ⊕ 0 ⊕ C⊕ 0 ⊕ 0 ⊕ C).

By taking the orthogonal complement, the absolutely continuous subspace of Û∞ is equal
to

L2((0, 2π)2;C⊕ C⊕ 0 ⊕ C⊕ C⊕ 0).

So one gets,

Kpp(U∞) = `2(Z2; 0 ⊕ 0 ⊕ C⊕ 0 ⊕ 0 ⊕ C),

Kac(U∞) = `2(Z2;C⊕ C⊕ 0 ⊕ C⊕ C⊕ 0).

Therefore, if we write Φ0 := t(Φ0
1,Φ

0
2,Φ

0
3,Φ

0
4,Φ

0
5,Φ

0
6) := JΓH

Ψ0 ∈ KΓH
, then the weak limit

measure µ is expressed by

µ = ‖Πpp(U∞)Φ0‖2δ(0,0) + ‖(EV1 ⊗ EV2)(·)Πac(U∞)Φ0‖2

= ‖EV1({0})Φ0‖2δ(0,0) + ‖EV1({−1})Φ0‖2δ(−1,0) + ‖EV1({1})Φ0‖2δ(1,0)
= ‖Φ0

(3,6)‖2ℓ2(Z2;C2)δ(0,0) + ‖Φ0
(1,4)‖2ℓ2(Z2;C2)δ(−1,0) + ‖Φ0

(2,5)‖2ℓ2(Z2;C2)δ(1,0),

where Φ0
(j,k) := t(Φ0

j ,Φ
0
k) ∈ `2(Z2;C2).
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Finally, let us consider a simple initial state. Let Ψ0 ∈ HΓH
be the initial state as

follows:

Ψ0(n,m) =



1√
2

1

0

1

 if (n,m) = (0, 0),

0

0

0

 otherwise.

Since Φ0 = JΓH
Ψ0 is given by

Φ0(n,m) =



1√
2

t
1

0

1

 ,

0

0

0


 if (n,m) = (0, 0),

t
0

0

0

 ,

0

0

0


 otherwise,

we have µ = 1
2
δ(0,0) + 1

2
δ(−1,0), so µ({(0, 0)}) = µ({(−1, 0)}) = 1

2
. Now, the weak limit

measure µ means the probability measure of the asymptotic velocity of quantum walkers.
Thus, in this case, the probability that the asymptotic velocity of the quantum walker is
(0, 0) and (−1, 0) are both 1

2
. In fact, by (2.1.2), the following equality hods:

(U tΨ0)(n,m) = (StΨ0)(n,m) =




1√
2

t
(1 0 0) if (n,m) = (−t, 0)

1√
2

t
(0 0 1) if (n,m) = (0, 0)

t(0 0 0) otherwise

if t : even,


1√
2

t
(1 0 0) if (n,m) = (−t, 0)

1√
2

t
(0 0 1) if (n,m) = (0, 1)

t(0 0 0) otherwise

if t : odd.

Also lim supt→∞ P(Xt = (0, 0)) = lim supt→∞ P(Xt = (0, 1)) = 1
2
> 0 holds, so localiza-

tion occurs at (0, 0) and (0, 1).
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Chapter 4

Essential spectrum of time evolution
operators

In this section, we deal with the time evolution operator U = SC associated with an
anisotropic coin map. The purpose of this section is to express the essential spectrum of
U . The argument here is similar to a method employed in the proof of [29, Theorem 2.2]
which is used the discrete crossed product C∗-algebras. After constructing a suitable C∗-
subalgebra of the Calkin algebra in the first section, we determine the essential spectrum
of U by using the fact that the element π(U∞) of the Calkin algebra is contained in the
subalgebra.

4.1 A subalgebra of the Calkin algebra

Throughout this section, we fix r, s ∈ N arbitrarily. In order to construct a crossed product
C∗-algebra, we shall define an action of the (amenable) group Zr on C(Ẑr;Ms(C)). Define

a map α : Zr → Aut(C(Ẑr;Ms(C))) by

(αnf)(x) := f(x + n)

for n ∈ Zr, f ∈ C(Ẑr;Ms(C)), x ∈ Ẑr, where ∞ + n := ∞. Then α is an action of Zr on

C(Ẑr;Ms(C)). The matrix algebra Ms(C) can be naturally regarded as a C∗-subalgebra of

C(Ẑr;Ms(C)). Besides, Ms(C) is α-invariant, and the restriction of α to Ms(C) becomes
a trivial action. By the universality of crossed product (see [12, Proposition 11.14]), one

can construct a ∗-homomorphism ∂∞ from C(Ẑr;Ms(C))oα Zr to Ms(C)o0 Zr such that

∂∞(fδn) = f(∞)δn

for f ∈ C(Ẑr;Ms(C)) and n ∈ Zr. Since C0(Zr;Ms(C)) is a closed ideal of C(Ẑr;Ms(C))

and α-invariant, C0(Zr;Ms(C))oαZr is also a closed ideal of C(Ẑr;Ms(C))oαZr(see [12,
Proposition 21.12]).
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Proposition 4.1.1. The ∗-homomorphism ∂∞ : C(Ẑr;Ms(C)) oα Zr → Ms(C) o0 Zr is
surjective and its kernel coincides with C0(Zr;Ms(C)) oα Zr.

Proof. Let us consider the following short exact sequence:

0 // C0(Zr;Ms(C)) �
� // C(Ẑr;Ms(C)) // Ms(C) // 0

∈

f � //

∈

f(∞)

Then its corresponding sequence

0 // C0(Zr;Ms(C)) oα Zr � � // C(Ẑr;Ms(C)) oα Zr ∂∞ // Ms(C) o0 Zr // 0

is also exact (see [12, Theorem 22.9]). 2

Let we write Kr,s := `2(Zr;Cs). We shall construct a faithful ∗-representation of

C(Ẑr;Ms(C)) oα Zr on Kr,s. For each f ∈ C(Ẑr;Ms(C)), since f(n) ∈ Ms(C) ∼= B(Cs)
for n ∈ Zr, the direct sum

⊕
n∈Zr f(n) is a bounded operator on

⊕
n∈Zr Cs ∼= Kr,s with

norm ∥∥∥∥∥⊕
n∈Zr

f(n)

∥∥∥∥∥
B(Kr,s)

= sup
n∈Zr

‖f(n)‖B(Cs) = ‖f‖C(Ẑr,Ms(C)).

Hence C(Ẑr;Ms(C)) can be regarded as a C∗-subalgebra of B(Kr,s). The operator
⊕

n∈Zr f(n)
is written by f if there is no danger of confusion. We next define r unitary operators
T1, . . . , Tr on Kr,s. For each j = 1, . . . , r, Tj : Kr,s → Kr,s is defined by

(TjΦ)(n) := Φ(n1, . . . , nj−1,

j→

nj+1, nj+1, . . . , nr)

for Φ ∈ Kr,s, n = (n1, . . . , nr) ∈ Zr. Then T1, . . . , Tr are commuting and their adjoint
operators are given by

(T ∗
j Φ)(n) = (T−1

j Φ)(n) = Φ(n1, . . . , nj−1,

j→

nj−1, nj+1, . . . , nr)

for all j = 1, . . . , r. For convenience, we write T n := T n1
1 T n2

2 · · ·T nr
r ∈ B(Kr,s) for any

n = (n1, n2, . . . , nr) ∈ Zr, and we define a linear map ρ : C(Ẑr;Ms(C)) oalg
α Zr → B(Kr,s)

by ρ(fδn) = fT n for f ∈ C(Ẑr;Ms(C)), n ∈ Zr.

Lemma 4.1.2. The linear map ρ : C(Ẑr;Ms(C))oalg
α Zr → B(Kr,s) is a ∗-homomorphism.

Proof. First of all, we note that the following formula holds in B(Kr,s):

αn(f) = T nf(T n)∗
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for all f ∈ C(Ẑr;Ms(C)) and n ∈ Zr. Indeed, for every Φ ∈ Kr,s, x ∈ Zr, we have

Cs 3(αn(f)T nΦ)(x) = f(x + n)(T nΦ(x)) = f(x + n)(Φ(x + n))

= (fΦ)(x + n) = (T nfΦ)(x).

By using the equality above and the commutativity of T1, . . . , Tr, one obtains that

ρ((fδn)∗) = ρ(α−n(f ∗)δ−n) = α−n(f ∗)T−n = T−nf ∗ = (fT n)∗ = ρ(fδn)∗,

ρ((fδn)(gδm)) = ρ(fαn(g)δn+m) = fαn(g)T n+m = fT ngTm = ρ(fδn)ρ(gδm).

Thus the desired result follows. 2

With this Lemma 4.1.2 and the universality of crossed product, the morphism ρ can
be extended to a ∗-homomorphism from C(Ẑr;Ms(C)) oα Zr to B(Kr,s), and we use the
same symbol for this extension.

Lemma 4.1.3. The ∗-homomorphism ρ : C(Ẑr;Ms(C))oα Zr → B(Kr,s) is injective and
its image of C0(Zr;Ms(C)) oα Zr is the compact algebra K(Kr,s).

Proof. In order to see the injectivity of ρ, we take X ∈ Kerρ arbitrarily, and a sequence
{XN}∞N=1 of C(Ẑr;Ms(C)) oalg

α Zr such that XN → X in C(Ẑr;Ms(C)) oα Zr. For each
N ∈ N, the element XN can be expressed as XN =

∑
n∈Zr fN

n δn, where fN
n = 0 except for

finitely many n ∈ Zr. Note that

lim
N→∞

∥∥∥∥∥∑
n∈Zr

fN
n T n

∥∥∥∥∥ = lim
N→∞

‖ρ(XN)‖ = ‖ρ(X)‖ = 0.

For n ∈ Zr and k = 1, . . . , s, we define a norm one element δkn in Kr,s as follows:

δkn(m) :=

{
ek if m = n

0 if m 6= n
, where {ek}sk=1 is the natural basis of Cs. Then {δkn}n∈Zr,1≤k≤s

is a complete orthonormal basis for Kr,s. Let m ∈ Zr be fixed arbitrarily. For any x ∈ Zr

and l = 1, . . . , s, one has∥∥∥∥∥∑
n∈Zr

fN
n T n

∥∥∥∥∥
2

B(Kr,s)

≥

∥∥∥∥∥
(∑

n∈Zr

fN
n T n

)(
δlx+m

)∥∥∥∥∥
2

Kr,s

≥

∥∥∥∥∥
(∑

n∈Zr

fN
n T nδlx+m

)
(x)

∥∥∥∥∥
2

Cs

=

∥∥∥∥∥∑
n∈Zr

fN
n (x)(δlx+m(x + n))

∥∥∥∥∥
2

Cs

=
∥∥fN

m (x)(δlx+m(x + m))
∥∥2
Cs

=
∥∥fN

m (x)(el)
∥∥2
Cs
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=
∥∥the l-th column of fN

m (x)
∥∥2
Cs

≥ max
1≤k≤s

∣∣(fN
m (x)

)
kl

∣∣2 ,
which implies that ∥∥fN

m

∥∥
C(Ẑr;Ms(C))

= sup
x∈Zr

∥∥fN
m (x)

∥∥
Ms(C)

≤ sup
x∈Zr

∑
1≤k,l≤s

(∣∣(fN
m (x)

)
kl

∣∣2) 1
2

≤ sup
x∈Zr

∑
1≤l≤s

s

(
max
1≤k≤s

∣∣(fN
m (x)

)
kl

∣∣2) 1
2

≤ s sup
x∈Zr

∑
1≤l≤s

∥∥∥∥∥∑
n∈Zr

fN
n T n

∥∥∥∥∥
B(Kr,s)

= s2

∥∥∥∥∥∑
n∈Zr

fN
n T n

∥∥∥∥∥
B(Kr,s)

−→ 0 (as N → ∞).

Let us now consider the contractive linear map Em : C(Ẑr;Ms(C))oαZr → C(Ẑr;Ms(C))
(m ∈ Zr) in Theorem 1.2.1. For every m ∈ Zr, we have

Em(X) = lim
N→∞

Em(XN) = lim
N→∞

Em

(∑
n∈Zr

fN
n δn

)
= lim

N→∞
fN
m = 0.

Thus X = 0, from this it follows that ρ is injective.
Next, let us show that ρ(C0(Zr;Ms(C))oαZr) = K(Kr,s). Every element of the image

of C0(Zr;Ms(C)) under the embedding C(Ẑr;Ms(C)) ↪→ B(Kr,s) above is approximated
by finite-rank operators. Hence ρ(C0(Zr;Ms(C)) oα Zr) ⊂ K(Kr,s). Conversely, for any
n,m ∈ Zr and k, l = 1, . . . , s, one defines f ∈ C0(Zr;Ms(C)) by

f(x) :=

{
Ek,l if x = n

Os otherwise,

where Ek,l ∈ Mn(C) is the matrix having 1 at (k, l)-component, and 0 everywhere else.
Then the following equality holds:

|δkn〉〈δlm| = fTm−n = ρ(fδm−n).

Since the compact algebra K(Kr,s) is the closed linear span of |δkn〉〈δlm|’s, it follows that
K(Kr,s) ⊂ ρ(C0(Zr;Ms(C)) oα Zr). 2

Lemma 4.1.1 and Lemma 4.1.3 can be summarized as follows:
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Lemma 4.1.4. We have

Q(Kr,s) ⊃
ρ(C(Ẑr;Ms(C)) oα Zr)

ρ(C0(Zr;Ms(C)) oα Zr)

C(Ẑr;Ms(C)) oα Zr

C0(Zr;Ms(C)) oα Zr
? _

ρoooo � � ∂∞ // // Ms(C) o0 Zr ,

(4.1.1)
where the maps ρ and ∂∞ are naturally induced ∗-isometric isomorphisms from ρ and ∂∞,
respectively.

4.2 Essential spectrum of U

Throughout this section, Γ is one of hexagonal, square, and triangular lattices, unless
otherwise stated. In this section, we shall deal with anisotropic coin maps. Let C• : Z2 →
U(d) be an anisotropic coin map, that is, there exist Ce, Co ∈ U(d) such that

C(n,m) → Ce as Z2
e3(n,m)→∞e and C(n,m) → Co as Z2

o3(n,m)→∞o.

For convenience, we define a map C ′
• : Z2 → U(2d) by C ′

(n,m) := Cϕe(n,m) ⊕Cϕo(n,m). Note

that U0 = S0

(⊕
(n,m)∈Z2 C ′

(n,m)

)
. By using the inequality (3.3.2), one gets

‖C ′
(n,m) − C∞‖M2d(C) → 0 as Z2 3 (n,m) → ∞,

where C∞ = Ce ⊕ Co is the limit matrix of C•. Hence C ′
• : Z2 → U(2d) is a member of

C(Ẑ2;M2d(C)). We will use the notations in the previous section as r = 2, s = 2d. Note
that KΓ = H2,2d.

The following lemma is obtained by direct computations:

Lemma 4.2.1. The shift operator (2.4.3)−(2.4.5) is expressed as follows:

S0 =



T1

(
O3 O3

E1,1 O3

)
+ T ∗

1

(
O3 E2,2

O3 O3

)
+ T2

(
O3 O3

E2,2 O3

)
+ T ∗

2

(
O3 E1,1

O3 O3

)

+

(
O3 E3,3

E3,3 O3

)
if Γ=ΓH ,

T1

(
O4 O4

E1,1 O4

)
+ T ∗

1

(
O4 E2,2

O4 O4

)
+ T2

(
O4 O4

E2,2 O4

)
+ T ∗

2

(
O4 E1,1

O4 O4

)

+T1T2

(
O4 O4

E3,3 O4

)
+ T ∗

1 T
∗
2

(
O4 E4,4

O4 O4

)
+

(
O4 E3,3

E4,4 O4

)
if Γ=ΓS,

T1

(
E5,5 O6

E1,1 E5,5

)
+ T ∗

1

(
E6,6 E2,2

O6 E6,6

)
+ T2

(
O6 O6

E2,2 O6

)
+ T ∗

2

(
O6 E1,1

O6 O6

)

+T1T2

(
O6 O6

E3,3 O6

)
+ T ∗

1 T
∗
2

(
O6 E4,4

O6 O6

)
+

(
O6 E3,3

E4,4 O6

)
if Γ=ΓT .
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In particular, one has S0 ∈ ρ(C(Ẑ2;M2d(C)) oα Z2) (Actually, S0 ∈ ρ(M2d(C) o0 Z2)).

Theorem 4.2.2. Let C• : Z2 → U(d) be an anisotropic coin map with a limit matrix
C∞ = Ce ⊕ Co ∈ U(2d). Then, the essential spectrum of the time evolution operator
U ∈ B(HΓ) associated with C• is given by

σess(U) = σess(U0) = σ(U∞) =
⋃

(θ,φ)∈[0,2π)2
σ(Û∞(θ, ϕ)),

where U∞ = S0C∞ is the auxiliary time evolution operator, and Û∞(θ, ϕ) is the unitary
matrix (3.2.1) in Lemma 3.2.2. In particular, σess(U∞) = σ(U∞) also holds.

Proof. In the same way as C(Ẑr;Ms(C)) ↪→ B(Hr,s), we can see that C([0, 2π]2;M2d(C))

is a C∗-subalgebra of B(L2((0, 2π)2;C2d)) byf 7→
∫ ⊕
(0,2π)2

f(θ, ϕ)dθdφ
4π2 . By this embedding

and Lemma 3.2.2, Û∞(θ, ϕ) maps to Û∞. Since any injective ∗-homomorphism between
C∗-algebras preserves the spectrum, one gets

σ(U∞) = σ(Û∞) =
⋃

(θ,φ)∈[0,2π]2
σ(Û∞(θ, ϕ)) =

⋃
(θ,φ)∈[0,2π)2

σ(Û∞(θ, ϕ)).

Since the map C ′
• − C∞ : Z2 → M2d(C) is in C0(Z2;M2d(C)), it follows form Lemma

4.1.3 that U0−U∞ = S0(C0−C∞) ∈ K(KΓ). Hence, one obtains that σess(U) = σess(U0) =
σess(U∞) = σ(π(U∞)), here π is the natural projection from B(KΓ) to the Calkin algebra
Q(KΓ). So let us compute σ(π(U∞)). Since it is similar, we will consider only the case of
Γ = ΓH . By the embedding (4.1.1) and Lemma 4.2.1, π(U∞) ∈ Q(KΓH

) is equal to(
O3 O3

E1,1 O3

)
C∞δ(1,0) +

(
O3 E2,2

O3 O3

)
C∞δ(−1,0) +

(
O3 O3

E2,2 O3

)
C∞δ(0,1)

+

(
O3 E1,1

O3 O3

)
C∞δ(0,−1) +

(
O3 E3,3

E3,3 O3

)
C∞δ(0,0) ∈ M6(C) o0 Z2.

(4.2.1)

It is well known that there is a unique ∗-isometric isomorphism between M2d(C) o0 Z2

and C(T2;M2d(C)) such that Aδn,m ↔ Azn1 z
m
2 , where A ∈ M2d(C) and T2 → T; (z1, z2) 7→

zn1 z
m
2 . Under this ∗-isometric isomorphism, (4.2.1) is equal to(

O3 O3

E1,1 O3

)
C∞z1 +

(
O3 E2,2

O3 O3

)
C∞z−1

1 +

(
O3 O3

E2,2 O3

)
C∞z2

+

(
O3 E1,1

O3 O3

)
C∞z−1

2 +

(
O3 E3,3

E3,3 O3

)
C∞

=


O3

z−1
2 0 0
0 z−1

1 0
0 0 1

z1 0 0
0 z2 0
0 0 1

 O3

C∞ ∈ C(T2;M6(C)),
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whose spectrum is as follows:

⋃
(z1,z2)∈T2

σ




O3

z−1
2 0 0
0 z−1

1 0
0 0 1

z1 0 0
0 z2 0
0 0 1

 O3

C∞

 =
⋃

(θ,φ)∈[0,2π)

σ(Û∞((θ, ϕ))).

From the above, it follows that σ(π(U∞)) =
⋃

(θ,φ)∈[0,2π) σ(Û∞((θ, ϕ))), hence the state-
ment is proved. 2
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Chapter 5

The isotropic case

In this last chapter, we shall consider only the case where Γ = ΓS,ΓT . In this case, one
can discuss without using JΓ,KΓ and the modification of unitary operators S0, C0, and U0

because there is no the complexity of the representation of the shift operator S. Therefore,
in this chapter, when we use terminologies, ”shift, coin, and time evolution operators” in
the sense of Definition 2.3.2. Also we will deal with only “isotropic” coin maps. Then we
can obtain a weak limit theorem and an expression of the essential spectrum of U in a
similar way to the proof for the anisotropic case.

Suppose that Γ is either ΓS or ΓT , and d is its degree.

Definition 5.0.1. 1) A coin map C• : Z2 → U(d) is said to be isotropic if it can be

continuously extended to Ẑ2, that is, there exists C∞ ∈ U(d) such that

‖C(n,m) − C∞‖Md(C) → 0 as Z2 3 (n,m) → ∞.

In this case, the unitary matrix C∞ ∈ U(d) is called the limit matrix of C•.

As a special case, if

C(n,m) = C∞ for all (n,m) ∈ Z2 (5.0.1)

for some C∞ ∈ U(d), then a coin map C• is said to be uniform.

2) In the same way as the previous chapters, the coin and time evolution operators
on HΓ associated with a uniform coin map are respectively denoted by C∞ and U∞
instead of C and U .

3) Suppose that C• : Z2 → U(d) is an isotropic coin map with a limit matrix C∞ ∈
U(d). Then we can consider the auxiliary time evolution operator U∞ = SC∞ which
is a time evolution operator associated with the uniform coin map (≡ C∞ on Z2)
other than U = SC.
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It follows from the definition of Z̃2 that the following inclusion relations:

{uniform coin maps} ⊂ {quasi-uniform coin maps}
∩ ∩

{isotropic short-range coin maps} ⊂ {anisotropic short-range coin maps}
∩ ∩

{isotropic coin maps} ⊂ {anisotropic coin maps},

where isotropic short-range coin maps will be defined in Definition 5.1.2.

5.1 Weak limit theorem

The facts of Chapter 3 can be proved in the above model as well, so one can get a weak
limit theorem of the isotropic version. However, since there are a few changes, we shall
list them below.

The momentum operators D1, D2 : F (H0) → L2((0, 2π)2, dθdϕ/4;Cd) are defined by

D1 :=
1

i

∂

∂θ
, D2 :=

1

i

∂

∂ϕ
,

where H0 is the set of all functions of HΓ with finite support. When a coin map C• is
uniform satisfying (5.0.1), the Fourier transform Û∞ = FU∞F−1 of U∞ is decomposable

as Û∞ =
∫ ⊕
(0,2π)2

Û∞(θ, ϕ)dθdφ
4π2 , and the unitary matrix Û∞(θ, ϕ) ∈ U(d) is given by

Û∞(θ, ϕ) =




e−iθ 0 0 0

0 eiθ 0 0

0 0 e−iφ 0

0 0 0 eiφ

C∞ if Γ = ΓS,



e−iθ 0 0 0 0 0

0 eiθ 0 0 0 0

0 0 e−iφ 0 0 0

0 0 0 eiφ 0 0

0 0 0 0 e−i(θ+φ) 0

0 0 0 0 0 ei(θ+φ)


C∞ if Γ = ΓT .

(5.1.1)

Definition 5.1.1. If the unitary matrix C∞ ∈ U(d) satisfies Assumption 3.2.3 (change
2d to d), one defines two bounded self-adjoint operators V Γ

1 , V
Γ
2 on HΓ by

V Γ
1 = F−1

(∫ ⊕

(0,2π)2

d∑
j=1

λθ
j(θ, ϕ) |uj(θ, ϕ) 〉〈uj(θ, ϕ)| dθdϕ

4π2

)
F ,

V Γ
2 = F−1

(∫ ⊕

(0,2π)2

d∑
j=1

λφ
j (θ, ϕ) |uj(θ, ϕ) 〉〈uj(θ, ϕ)| dθdϕ

4π2

)
F .
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Definition 5.1.2. An isotropic coin map C• : Z2 → U(d) with a limit matrix C∞ ∈ U(d)
is said to be of short range if there exist κ > 0 and ε > 0 such that

‖C(n,m) − C∞‖Md(C) ≤ κ(1 + ‖(n,m)‖1)−2−ε for all (n,m) ∈ Z2.

Theorem 5.1.3. Let C• : Z2 → U(d) be an isotropic coin map and Ψ0 ∈ HΓ an initial
state. Suppose that C• is of short range and its limit matrix satisfies Assumption 3.2.3.
Then, the distribution of Xt/t is weakly convergent to a probability measure

µ = ‖Πpp(U)Ψ0‖2HΓ
δ(0,0) + ‖(EV Γ

1
⊗ EV Γ

2
)(·)(ΩΓ

+)∗Ψ0‖2HΓ
.

Furthermore, if localization occurs, then we have µ({(0, 0)}) > 0.

Corollary 5.1.4. Under the same assumption as in Theorem 5.1.3, if C• is uniform
(thus automatically it is of short range and U = U∞), then the distribution of Xt/t weakly
converges to a probability measure

µ = ‖Πpp(U∞)Ψ0‖2HΓ
δ(0,0) + ‖(EV Γ

1
⊗ EV Γ

2
)(·)Πac(U∞)Ψ0‖2HΓ

.

Watabe, Kobayashi, Katori, and Konno [40] proved a weak limit theorem for general-
ized Grover walks on the square lattice Z2. The model of this quantum walk is realized
by taking

C• ≡ G(p) :=


−p q

√
pq

√
pq

q −p
√
pq

√
pq√

pq
√
pq −q p√

pq
√
pq p −q

 (0 < p < 1, q = 1 − p),

as a uniform coin map on the graph Γ = ΓS, and assuming that the initial state starts
at the origin with probability 1 (i.e. ‖Ψ0(0, 0)‖C4 = 1). The matrix G(p) is called the

Grover matrix when p = 1
2
. In the case where C• ≡ G(p), the unitary matrix Û∞(θ, ϕ)

coincides with

1

2


−pe−iθ qe−iθ √

pqe−iθ √
pqe−iθ

qeiθ −peiθ
√
pqeiθ

√
pqeiθ√

pqe−iφ √
pqe−iφ −qe−iφ pe−iφ

√
pqeiφ

√
pqeiφ peiφ −qeiφ

 ,

and its eigenvalue λj(θ, ϕ) is given by

λ1(θ, ϕ) ≡ 1, λ2(θ, ϕ) ≡ −1, λ3(θ, ϕ) = eiω(θ,φ), λ4(θ, ϕ) = e−iω(θ,φ),

where ω(θ, ϕ) = arccos {−(p cos θ + q cosϕ)}. But, for example, the second order deriva-
tive ∂2λ3/∂θ

2 of λ3(θ, ϕ) is not bounded on (0, 2π)2, so the matrix G(p) does not satisfy
Assumption 3.2.3. Thus Corollary 5.1.4 does not contain the weak limit theorem which
is provided by Watabe et al. [40].
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5.2 Essential spectrum of U

The following theorem can also be obtained by the similar way of the proof of Theorem
4.2.2.

Theorem 5.2.1. Let C• : Z2 → U(d) be an isotropic coin map with a limit matrix
C∞ ∈ U(d). Then, the essential spectrum of the time evolution operator U ∈ B(HΓ)
associated with C• is given by

σess(U) = σ(U∞) =
⋃

(θ,φ)∈[0,2π)2
σ(Û∞(θ, ϕ)),

where U∞ = SC∞ is the auxiliary time evolution operator, and Û∞(θ, ϕ) is the unitary
matrix (5.1.1). In particular, σess(U∞) = σ(U∞).
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tion, 2008.

[21] N. Konno, 量子ウォーク, 森北出版, 2014.

[22] N. Konno, 量子ウォークの数理, 数学, 69(1), 70-90 (2017).

[23] N. Konno, T.  Luczak, E. Segawa, Limit measures of inhomogeneous discrete-time
quantum walks in one dimension, Quantum Inf. Process. 12(1), 33-53 (2013).

[24] N. Konno, R. Portugal, I. Sato, E. Segawa, Partition-based discrete-time quantum
walks, Quantum Inf. Process. 17(4), 100 (2018).

[25] C. Liu, N. Petulante, Weak limits for quantum walks on the half-line, Int. J. Quantum
Inf. 11(6), 1350054 (2013).

[26] T. Machida, C. M. Chandrashekar, Localization and limit laws of a three-state alter-
nate quantum walk on a two-dimensional lattice, Phys. Rev. A 92, 062307 (2015).

[27] H. Ohno, Unitary equivalent classes of one-dimensional quantum walks, Quantum
Inf. Process. 15(9), 3599-3617 (2016).

[28] R. Portugal, Quantum Walks and Search Algorithms, 2nd ed., Quantum Science and
Technology, Springer, 2018.

[29] S. Richard, A. Suzuki, R. Tiedra de Aldecoa, Quantum walks with an anisotropic
coin I: spectral theory, Lett. Math. Phys. 108(2), 331-357 (2018).

65



[30] S. Richard, A. Suzuki, R. Tiedra de Aldecoa, Quantum walks with an anisotropic
coin II: scattering theory, Lett. Math. Phys. 109(1), 61-88 (2019).
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