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Abstract—Path integral policy improvement (PI2) is known to
be an efficient reinforcement learning algorithm, particularly if
the target system is a high-dimensional dynamical system. How-
ever, PI2, and its existing extensions, have adjustable parameters,
on which the efficiency depends significantly. This paper proposes
an extension of PI2 that adjusts all of the critical parameters
automatically. Motion acquisition tasks for three different types
of simulated legged robots were performed, to test the efficacy
of the proposed algorithm. The results show that the proposed
method can not only eliminate the burden on the user to set
the parameters appropriately, but also improve the optimization
performance significantly. For one of the acquired motions, a
real robot experiment was conducted to show the validity of the
motion.

Index Terms—Evolution strategy, Legged robot, Reinforcement
learning

I. INTRODUCTION

REINFORCEMENT learning (RL) algorithms aim to find

optimal decision variables by trial and error [1]. Because

they are applicable to a wide range of problems, they have

attracted the attention of many researchers in many fields.

Some algorithms are successful in learning complicated tasks,

such as the game of Go [2]. However, for some learning

tasks performed by high-dimensional dynamical systems—

such as robots—there are still only a few good algorithms.

In particular, many RL algorithms are not suitable if it is

difficult to take many samples, because of the time or cost

of simulations or experiments.

Although some robotic problems have been handled via

classical RL, such as Q-learning [3], this is not feasible if

the degrees of freedom (DOFs) of the robot become large.

Most RL algorithms handle discrete pairs of states and actions,

and the number of such pairs will grow exponentially with the

number of DOFs, as a result of the discretization of continuous

state and action spaces. Therefore, a parameterized policy (a

rule to decide action in a continuous domain, with a relatively

small number of parameters) is often employed instead [4],

[5]. A concise review of learning algorithms for policy search

in continuous action domains is given in [6]. Note that if the

mathematical model of the robot motion can be obtained, the
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problem may be solved by using model predictive control [7].

However, in many cases, the dynamics of the robot is too

complex to make a reliable model. Some deep reinforcement

learning methods that are capable of handling continuous

action spaces are also used in some studies, but most of them

typically need tens of thousands of samples [8], [9].

One possible means of obtaining an approximate optimal

solution is to use Bayesian optimization (BO) [10]. Most

methods of this type utilize Gaussian process regression [11]

to estimate the objective function, as a function of the policy

parameter, and use the estimation to construct an efficient

experimental design. The high sample efficiency of BO makes

it promising for low-dimensional problems, including some in

robotics [12]–[14]. Some authors have also demonstrated the

usefulness of BO in optimizing the gait of snake robots [15],

[16]. However, the computational cost makes it difficult to

apply BO to high-dimensional problems: as the dimensionality

of a problem grows, the required number of samples increases

and the computational cost grows very quickly. In addition, in

the case where a non-standard Gaussian process, such as a

heteroscedastic one [17], is more appropriate (which is often

the case with robotics), the computational cost can be even

greater [15]. The so-called micro-data policy search methods,

which include BO, are growing field of research [18], but most

of them share similar difficulty in searching high dimensional

policy space. If the dimensionality of the policy parameter

space is high, we need methods that are computationally more

efficient, even at the cost of lower data efficiency.

Path integral policy improvement (PI2) [19], combined with

policy parametrization using the dynamic motion primitives

(DMPs) [20], is one of the candidate RL algorithms for high-

dimensional dynamical systems. It has been shown [19] that

PI2 can outperform other policy improvement algorithms, such

as REINFORCE [21] and Natural Actor-Critic [4]. Therefore,

it has been used in many learning tasks, such as the goal-

directed motion of a snake robot [22] and the liquid pouring

task by a manipulator [23]. However, PI2 also has a drawback:

the user must specify the covariance matrix that is used to

generate samples, and this matrix is fixed over all iterations.

However, the appropriate setting of this matrix varies as the

search proceeds. To solve this problem, Stulp and Sigaud [24]

proposed a technique for adapting the size of the exploration

noise used in the covariance matrix adaptation evolution

strategy (CMA-ES) algorithm [25]. Their proposed method,

named PI2-CMA, has been shown to outperform the original

PI2 without fine tuning of the user-defined parameters.

Nonetheless, in PI2-CMA, there is one critical parameter

that is left to the user: the number of test runs performed to
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make an update. If there are too many test runs, the sample

efficiency of the algorithm will be degraded. If there are too

few test runs, the update will be performed in an inappropriate

direction, which also degrades the sample efficiency and some-

times can even prevent convergence. Because the appropriate

number of test runs varies during the learning procedure, it is

better to adjust it automatically.

In this paper, we propose an extension of PI2, named path

integral policy improvement with population adaptation (PI2-

PA). This algorithm automatically adjusts the number of pop-

ulations (i.e., test runs), as well as performing the covariance

matrix adaptation. The adjustment of the population size is

performed by considering the diversity in the series of stage

costs rather than the state of the systems because the cost itself

has a more direct effect on the learning. In PI2-PA, there are

no critical tuning parameters left to the user: the user can

specify some of the initial parameters, but the efficiency of

the algorithm is not sensitive to them. The efficacy of PI2-

PA was tested against PI2 and PI2-CMA, using three different

tasks to learn appropriate motions for simulated legged robots.

The simulation results show that the algorithm is actually

insensitive to the initial parameters. Moreover, significant

improvements in optimization performance are demonstrated.

One of the acquired motions was also tested in an experiment

with a real robot to check its validity.

This paper is organized as follows: Section II states the

problem to be solved by RL methods. Section III describes

the PI2-CMA algorithm, to facilitate the understanding of PI2-

PA, whose details are explained in Section IV. Numerical

validations using simulated legged robots are discussed in

Section V. Section VI concludes the paper.

II. PROBLEM FORMULATION

The problem that is handled in the present study can be

formulated as an optimization problem, as follows:

minimize
τi=0:N

S[τi=0:N ] =

N
∑

i=0

Eθ[J(τi)], (1)

where J(τi) is the stage cost, τi is the state of the system

at time step i, and τi=0:N = (τ0, ..., τN ) is a trajectory of

the system. The expectation Eθ[·] is taken over all possible

trajectories when using the policy θ. The system can generally

be expressed as

τi+1 ∼ p(τi, θ), (2)

where p is a transition probability, which is unknown in

general, and θ is the vector of the policy parameters. The

stochasticity originates from the dynamics of, for example,

unknown disturbance from the environment and noise in the

inputs. Although the system is continuous in time, we assume

that it is discretized in an appropriate manner. Through these

dynamics, the trajectory τi=1:N can be regarded as being

parameterized by θ, and therefore the cost S becomes a

function of θ. As a result, the problem is reformulated as:

minimize
θ

S(θ) =

N
∑

i=0

Eθ [J(τi(θ))]. (3)

Algorithm 1 Update procedure of PI2-CMA

1: Given: K , θ, Σ
2: for k = 1 to K do

3: θk,i=0:N , τk,i=0:N = create trajectory(k, θ,Σ)
4: Jk,i=0:N = stage costs(τk,i=0:N )
5: end for

6: for i = 0 to N do

7: {Pk,i}Kk=1 = calculatePk,i({Jk,j=i:N}Kk=1)

8: θi =

K
∑

k=1

Pk,iθk,i

9: Σi =

K
∑

k=1

Pk,i(θk,i − θ)(θk,i − θ)T

10: end for

11: θ =

∑N
i=0(N − i)θi

∑N

i=0(N − i)

12: Σ =

∑N
i=0(N − i)Σi

∑N

i=0(N − i)

Algorithm 2 create trajectory(k, θ,Σ)

1: for k = 1 to K do

2: θk ∼ N (θ,Σ)
3: τk,i=0:N = execute policy(θk)
4: end for

Although the dynamics of the system are unknown in gen-

eral, the trajectory τi=0:N can be observed by simulation or

experiment.

After completing one sequence of the experiment (called

an episode),
∑N

i=0 J(τi(θ)) can be evaluated. We use this

cumulative cost as an estimate of S(θ). Although there are

some step-based learning methods, which update the policy

parameter θ in each step [26], we only consider episode-based

learning in the present paper.

Because the simulations and experiments are typically time-

consuming, it is desirable to solve the optimization problem

in a data-efficient manner.

III. PATH INTEGRAL POLICY IMPROVEMENT WITH

COVARIANCE MATRIX ADAPTATION [24]

To understand PI2-PA, it is helpful to first understand the

PI2-CMA algorithm. Both algorithms share the same idea of

employing the covariance matrix adaptation rule in a PI2-

like learning procedure, but PI2-CMA is much simpler and

Algorithm 3 calculatePk,i

1: for l = 1 to K do

2: for i = 0 to N do

3: Sl,i =

N
∑

j=i

Jl,i

4: Pl,i =
e−

1

λ
Sl,i

∑K
l=1 e

−
1

λ
Sl,i

5: end for

6: end for
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easier to understand than PI2-PA. The PI2-CMA algorithm is

shown in Algorithms 1–3. Algorithm 1 is iterated until some

condition is satisfied.

In Algorithm 1, K perturbed policy parameters θ1, ..., θK

are first generated. Using the perturbed policy parameters, K
trajectories are observed (in Line 3). As shown in Algorithm 2,

the perturbations are generated from a Gaussian distribution

with mean 0 and covariance matrix Σ. In Algorithm 2,

execute policy(θk) corresponds to making an observation

using the policy θk, and stage costs(τk,i=0:N ) represents the

cost calculation. The sequence of stage costs {J(τi)}
N
i=0 is

expressed as Ji=0:N . Lines 8 and 9 of Algorithm 1 calculate

a new policy parameter and a new covariance matrix for each

time step, by taking a weighted sum of the perturbed policy

parameters. The weights are calculated so that the parameters

that gave smaller costs are given larger weights. The actual

updates are performed in Lines 11 and 12 of Algorithm 1.

The difference between PI2-CMA and the original PI2

comprises Lines 9 and 12 of Algorithm 1: these are only used

in PI2-CMA. By adapting the covariance matrix Σ, it has been

shown that the performance can be improved significantly.

In the original PI2 [19], the perturbation was determined

independently at each time step. That is, the algorithm gen-

erated θk,i
i.i.d.
∼ N (θ,Σ) (k = 1, ...,K; i = 0, ..., N)

and used θk,i in time step i. However, it was empirically

shown that better performance can be achieved by setting

θk,i = θk,0 (i = 1, ..., N) [24], and PI2-CMA only uses

this type of perturbation. Therefore, in the remainder of this

paper, we also retain this time-invariant type of perturbation.

In [24], the authors also tested a similar algorithm, named

PI2-CMA-ES. For the covariance matrix, this algorithm uses

the update rule of CMA-ES, which is more sophisticated than

that of PI2-CMA. However, it is shown that the performance

of PI2-CMA-ES is slightly worse than that of PI2-CMA, so

we do not consider PI2-CMA-ES in the present paper.

IV. PATH INTEGRAL POLICY IMPROVEMENT WITH

POPULATION ADAPTATION

By adjusting the covariance matrix automatically, PI2-CMA

successfully attenuates the effect of the initial settings and

improves the performance. However, the number of generated

trajectories is fixed, regardless of the covariance matrix Σ.

The number K of generated trajectories is a critical parame-

ter in PI2. If K is larger than necessary, some of the generated

trajectories are wasted, which degrades the efficiency of the al-

gorithm. If K is too small, the update may oscillate. However,

it is difficult to set K appropriately in advance.

Our proposed algorithm, named PI2-PA (Algorithm 4),

modifies the number of trajectories as well as the covariance

matrix Σ. The update of Σ is performed by the same rule as

CMA-ES and the extra update rule that is explained in detail in

Section IV-D. The algorithm can be divided into the following

four steps:

1) Trajectory generation (Lines 6–17).

2) Update of the policy parameters θ (Lines 18–29).

3) Update of the covariance matrix Σ = σC (Line 30).

4) Additional update of the step size parameter σ and the

shape parameter matrix C, if needed.

In the trajectory generation step, the decision about whether

to continue the generation is made by using the difference

between the generated trajectories. The idea is that the tra-

jectories used to make updates must have sufficient diversity.

By this procedure, PI2-PA modifies the number of generated

trajectories.

The update of the policy parameter vector θ is quite similar

to that in PI2-CMA and the original PI2, in the first steps.

However, a selection step similar to that of (1+λ)-ES is also

applied, instead of always employing the policy made by the

weighted sum.

A good initialization of θ depends on the knowledge of a

reasonable motion. If it is possible to design a reasonably good

motion a priori, then determining θ by imitation learning is

a good choice. If there is no such prior knowledge, the θ that

corresponds to doing nothing is a possible choice. At least, for

most learning tasks in robotics, this initialization can set the

initial candidate policy to one that produces a feasible motion.

For the numerical validation in Section V, we adopted the

latter approach.

Note that the number K of the generated trajectories to be

used to make an update can be considered as a hyperparameter

of the algorithm. There are many studies on the hyperpa-

rameter tuning, as it is crucial in many machine learning

techniques. For example, particle swarm optimization was

used to tune the hyperparameter of the least squares support

vector machines [27], response surface methods including

Bayesian optimization were adopted in some machine learning

techniques [28], and genetic algorithms were used to tune

reinforcement learning algorithms [29]. However, these tuning

methods need samplings of the performance of each parameter

choice: in our problem settings, a sample corresponds to a

result of setting K to a certain value. In other words, to apply

such tuning methods to obtain the optimal K , we need to

run the whole algorithm with many different values of K and

calculate how well the algorithm works for each of them. As

it is not feasible in our problem settings, in this paper, we

propose a heuristics that tune K in every iteration.

A. Trajectory Generation

In this step, the key is how to decide whether to continue

generating additional sample trajectories. We propose to make

this judgment by modeling the trajectories of the stage costs

of the last test run by using the other samples, which is

accomplished by kernel regression. The same idea—using

kernel regression to evaluate the difference—was used in [30]

for a temporal-difference learning method. The details of the

procedure are described in Algorithm 5.

Let Jj be the trajectory of the stage cost of the jth sample

run, among l samples:

Jj =
[

Jj,0 · · · Jj,N
]T

, j = 1, ..., l. (4)

To handle the “shape” and the “scale” of these vectors sep-

arately, their norms Jabsj are calculated and the normalized

vector J ′

j (j = 1, ..., l) is obtained. The norms are gathered to

construct a vector Jabs, which is also normalized, to produce
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Algorithm 4 Update procedure of PI2-PA

1: Given: θ, σ, C, p̄succ, pc, Ji=0:N

2: l = 1, D = ∅, δ = inf, dδ = inf, Σ = σ2C
3: τi=1:N = execute policy(θ)
4: Ji=0:N = stage costs(τi=0:N )

5: Jsum =

N
∑

i=0

Ji

6: while (δ > µ or dδ > µd or k < 2) do

7: θl = N (θ,Σ)
8: τl,i=0:N = execute policy(θl)
9: Jl,i=0:N = stage costs(τl,i=0:N )

10: if l > 1 then

11: δ, dδ = calculate feature({Jj,i=0:N}lj=1, D, δ)
12: end if

13: if (δ ≤ µ and dδ > µd) then

14: D = D ∪ {l}
15: end if

16: K = l, l = l+ 1
17: end while

18: for i = 0, ..., N do

19: Pl,i = calculate Pl,i({Jl,j=i:N}Kl=1)

20: θ
(i)
0 =

K
∑

l=1

Pl,iθl

21: end for

22: θ0 =

∑N

i=0(N − i)θ
(i)
0

∑N

i=0(N − i)
23: τ0,i=0:N = execute policy(θ0)
24: J0,i=0:N = stage costs(τ0,i=0:N )

25: if (minl(l=0,...,K)

N
∑

i=0

J(τl,i) < Jsum) then

26: Jold
sum = Jsum, θold = θ

27: l∗ = argmin
l=0,...,K

N
∑

i=0

Jl,i, θ = θl∗ , Jsum =

N
∑

i=0

Jl∗,i

28: Jsum = min
θl(l=0...K)

N
∑

i=0

J(τl,i)

29: end if

30: p̄succ,pc, σ, C
= cov mat adapt

(

{Jl,i=0:N}Kl=1, J
old
sum, p̄succ, θ, θ

old
)

31: Perform step size adaptation, if needed

J ′

abs. The vector that consists of the shape J ′

j and the scale

J ′

absj
of the jth sample run is denoted J̄j .

In the final step of Algorithm 5, we calculate the minimum

of the squared error

∣

∣

∣

∣

∣

∣

l−1
∑

j=1

cjφ(J̄j)− φ(J̄l)

∣

∣

∣

∣

∣

∣

2

= |cTφ− φ(J̄l)|
2, (5)

φ =
[

φ(J̄1) · · · φ(J̄l−1)
]T

,

c =
[

c1 · · · cl−1

]T
,

where φ(·) is some feature function. This squared error is

minimized by approximating the feature φ(J̄l), of the lth
trajectory, by the linear combination of features of other

Algorithm 5 calculate feature

1: δold = δ
2: for j ∈ {1, ..., l}\D do

3: Jabsj =

√

Jj
TJj

4: J ′

j =
Jj

Jabsj
5: end for

6: Jabs = [Jabs1 , ..., Jabsl ]
T

7: J ′

abs =
Jabs

√

Jabs
TJabs

= [J ′

abs1 , ..., J
′

absl ]
T

8: for j ∈ {1, ..., l}\D do

9: J̄j = [J ′

j

T
, J ′

absj ]
T

10: end for

11: δ = kll − kT
l−1K

−1
l−1kl−1, dδ = δ − δold

trajectories. It is well known that, for any positive definite 2-

input-1-output function k(·, ·) (the so-called kernel function),

there is a corresponding feature function φ(·) that satisfies

φ(x)φ(x′) = k(x,x′). Because the solution of the minimiza-

tion of the squared error includes φ(·) only in the form of the

inner product, we can omit φ(·) and use only k(·, ·). Using

this kernel trick, the following holds:

δ = min
c
|cTφ− φ(J̄l)|

2

= min
c

(cTKl−1c− 2cTkl−1 + kll)

= kll − kT
l−1K

−1
l−1kl−1, (6)

where

kll = k(J̄l, J̄l), (7)

k =
[

k(J̄1, J̄l) · · · k(J̄l−1, J̄l)
]T

, (8)

[Kl−1]p,q = k(J̄p, J̄q), p, q ∈ {1, ..., l− 1}. (9)

For the kernel function, we use the following Gaussian kernel:

k(x,x′) = exp

(

−
9

10
(x− x′)T (x− x′)

)

. (10)

The above δ, and the difference dδ between its two succes-

sive steps, are used to decide whether to continue the trajectory

generation. If δ is larger than a predefined threshold µ, then

it is assumed that the lth trajectory contains different features

from other sample trajectories; that is, the diversity of the set

of samples is increased by the addition of the lth sample.

Because δ ≥ µ suggests that the further addition of samples

will contribute to increasing the sample diversity, the decision

is made to continue the trajectory generation.

In the case of δ < µ, it is concluded that the addition of

the lth trajectory does not significantly affect the diversity of

samples. There are two possible reasons for this:

1) A small δ is obtained because almost all perturbed θl

result in a similar outcome.

2) A small δ is obtained accidentally.

In the first case, the trajectory generation needs to be stopped;

however, in the second case, it should be continued. The

difference between two successive δs, dδ, is used to distinguish

these two cases. If dδ < µd, for a predefined threshold µd,
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Algorithm 6 cov mat adapt

1: for l = 1, ...,K do

2: Sl =

N
∑

i=0

Jl,i

3: end for

4: λsucc =
∣

∣

{

l ∈ {1, ...,K}|Sl ≤ Jold
sum

}∣

∣

5: p̄succ = (1− cp)p̄succ + cp
λsucc

λ

6: σ = σ exp

(

1

d

p̄succ − ptargetsucc

1− ptargetsucc

)

7: if Jsum < Jold
sum then

8: if p̄succ < pthresh then

9: pc = (1− cc)pc +
√

cc(2− cc)
θ − θold

σ
10: C = (1− ccov)C + ccovpcp

T
c

11: else

12: pc = (1− cc)pc

13: C = (1− ccov)C + ccov(pp
T
c + cc(2 − cc)C)

14: end if

15: end if

then it is concluded that the addition of further samples will

not increase the diversity. If dδ ≥ µd, then the trajectory

generation is continued. In the latter case, the lth trajectory

(which resulted in a small δ) is marked as one that is not used

in the calculation of δ (it is added to the trajectories in the set

D, in Algorithm 4).

B. Update of the Policy Parameters

The update of the policy parameter vector θ in PI2-PA is

a combination of the weighted average of PI2 and the natural

selection of (1 + λ)-CMA-ES, where (1 + λ)-CMA-ES is a

variant of CMA-ES (proposed in [32]). First, the algorithm

calculates the weighted mean θ0, which, in PI2, is used as the

seed for the next step. In PI2-PA, this θ0 is not necessarily

used in the next step, but is only one of the candidates. In

Lines 25–29 of Algorithm 4, the best policy parameter vector

is selected from K + 2 candidates: θ, θ0, θ1, ..., θK .

By employing the natural selection process, PI2-PA be-

comes very similar to CMA-ES. This is one of the differences

from PI2-CMA and PI2-CMA-ES [24]. We believe that this

will enhance the algorithm, because it has been shown that a

mere evolution strategy can outperform the original PI2 [31].

C. Covariance Matrix Adaptation

In PI2-PA, the same formulas as (1 + λ)-CMA-ES are

adopted for the covariance matrix adaptation, where λ =
K + 1. This procedure is shown in Algorithm 6. Although

there are several parameters to be specified by the user (i.e., d,

ptargetsucc , cp, cc, ccov, and pthresh), the recommended values for

(1 + λ)-CMA-ES [32] work well; these are listed in Table I.

For the initial values of p̄succ and pc, p̄succ = ptargetsucc and

pc = 0 are suggested in [32].

TABLE I
PARAMETERS FOR THE COVARIANCE MATRIX ADAPTATION

Parameter Value

λ K + 1

d 1 +
N

2λ

ptargetsucc

1

5 +
√

λ/2

cp
ptargetsucc λ

2 + ptargetsucc λ

cc
2

N + 2

ccov
2

N2 + 6
pthresh 0.44

D. Step Size Adaptation

In practice, extra step size adaptation will be useful, to

improve the performance. There are two cases in which step

size adaptation should be triggered; these are explained below.

1) Excessively Small Exploration Noise: The CMA-ES

search is similar to that performed by gradient-based meth-

ods: the population gradually approaches a local minimum.

Because of the similarity between PI2-PA and CMA-ES, the

PI2-PA search also has a similar tendency. Although the

population generation, in Lines 6–17 of Algorithm 4, does

not eliminate the possibility of finding an unseen but better

solution, the search trend seems to prefer exploitation to

exploration: as the population approaches a local minimum,

the search often becomes too concentrated on exploitation,

because the population size K typically becomes small.

We explain below the heuristics that we adopted. Let the

threshold to judge whether K is large enough be µK ; in the

numerical simulations presented in Section V, we used µK =
4.

If it is judged that the search is becoming too concentrated

on exploitation, the eigenvalues of Σ should be increased to

facilitate exploration. For this purpose, we make the following

update to σ:

C ← C + E,

σ = σm

[

exp

(

−
2mc

st

)

+ exp

(

−
|Jold

sum − JCMAbest
sum |

|Jold
sum|

)]

,

(11)

where E is the identity matrix of the appropriate size, and σm

is the value of σ that was used in the update with the largest K
in the past. The arrow “←” is used to represent substitution.

Integers mc and st are the numbers of updates and samples,

respectively, made after the last step size adaptation or the

start of the algorithm. JCMAbest
sum is the lowest cumulative cost

of the K trajectories constructed in the trajectory generation

step:

JCMAbest
sum = min

θl(l=1,...,K)

N
∑

i=0

J(τl,i), (12)

and Jold
sum is the cumulative cost associated with the best policy

in the previous step. The first equation is employed to regulate



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

the change in the shape of the distribution. This makes the

distribution closer to isotropic, and facilitates exploration.

In this case, as a result of the long-lasting search, the

number of samples after the last adaptation st is typi-

cally much larger than the number of updates mc, which

leads to exp (−2mc/st) ≃ 1. Because of the trajec-

tory generation algorithm, at least µK trajectories are gen-

erated for every update. In addition, because all candi-

date trajectories have a similar cost, we typically have

exp
(

−|Jold
sum − JCMAbest

sum |/|Jold
sum|

)

≃ 1. Because it is ex-

pected that σm ≥ σ, the number of trajectories K tends to

be larger for a larger σ, and the adaptation rule is expected to

magnify the step size σ.

2) Excessively Large Exploration Noise: Another problem

can be solved by implementing an extra step size adaptation: if

the costs of all trajectories in the population are too large, then

the algorithm fails to capture the features of the trajectories.

A good indicator of this phenomenon is whether the condition

|JCMAbest
sum | ≫ |Jold

sum| is satisfied. Therefore, we use the

following condition as the criterion for step size adaptation:

|JCMAbest
sum − Jold

sum|

|Jold
sum|+ ǫJ

≥ µJ , (13)

where ǫJ is a small positive number used to prevent a division

by zero, and µJ is some positive threshold.

The above condition is satisfied if the eigenvalues of Σ
become too large. Therefore, if this phenomenon is detected,

the eigenvalues of Σ should be decreased. This is achieved

heuristically by the following substitution:

σ ← σ

[

exp

(

−
5mc

st

)

+ exp

(

−
|Jold

sum − JCMAbest
sum |

|Jold
sum|

)]

.

(14)

This case typically occurs at the initial step, because the

initial settings cause the eigenvalues of Σ to be too large, or

just after the step size adaptation, when escaping from the

case of excessively small exploration noise. This means that

mc = 1.

It is expected that K (and therefore st) becomes small

because it is difficult to extract any meaningful features

in the trajectory generation step. Indeed, we have ob-

served in our tests that K < 5 was satisfied. As

a consequence, we have exp(−5mc/st) < e−1 and

exp
(

−|Jold
sum − JCMAbest

sum |/|Jold
sum|

)

≪ e−µJ , which implies

that the adaptation rule decreases the step size σ when µJ

is sufficiently large.

The first update (11) can possibly make σ too large, and

result in this situation of excessively large exploration noise,

as noted above. If such a case is detected, the following

substitution is made to attenuate the effect:

σm ← σm

[

exp

(

−
5mc

st

)

+ exp

(

−
|Jold

sum − JCMAbest
sum |

|Jold
sum|

)]

.

(15)

The case with excessively large exploration noise may also

result in a small K , but this case requires a quicker response

than the other case. Therefore, we check condition (13) before

the condition K < µK : if it is satisfied, the substitution (14)

is performed and (11) is not.

V. VALIDATION OF THE METHOD

To confirm the effectiveness of the proposed method, the

following three robotic tasks were learned, using physical

simulations:

1) Gait of a single-legged robot, KARAKASA [33].

2) Gait of a three-legged robot, ASHIGARU [34].

3) Standing-up behavior of a five-legged robot, which is

composed of two ASHIGARU robots.

For comparison, PI2 and PI2-CMA were also employed, in

addition to the proposed PI2-PA. As the population size K
is fixed in PI2 and PI2-CMA, we tried K = 10, 20, 30, 40
and chose the best one, in terms of the median of the cost

value at the final step, except for the learning of standing-

up behavior. Because the simulation of a five-legged robot

is too time-consuming, we only tried K = 20 in this case.

For the initial covariance matrix, E (σ0 = 1 and C0 = E)

and 100E (σ0 = 10 and C0 = E) were used, where σ0 and

C0 denote the initial values of σ and C. For the thresholds

used in PI2-PA, µ = 0.2, µd = 0.1, µK = 4, and µJ = 1.0
were employed. Learning with each method was performed 20

times. The time step was set as 0.01 s in all simulations. For

the parametrization of the motion, the periodic DMPs were

employed for the first two tasks and the point attractor DMPs

were used in the third task. For the details of the DMPs, please

refer to [20].

As the physical engine, ODE [35] was employed. For the

first task, the learned gait was also tested with the real robot.

None of the three robots have biological counterparts, which

makes it difficult to find a good initial policy. Therefore, in

all simulations, we initialized the policy parameter as θ =
0. In practice, if there are some known good motions, it is

recommended to initialize θ so that the robot mimics such a

motion.

To show the results, the cumulative cost was plotted against

the number of updates, or the number of samples, as presented

in the following subsections. In those figures, the bold lines

represent the median, and the area enveloped by thin lines

show the interquartile range. We chose this presentation—

rather than mean and standard deviation—because, in some

cases, the distribution is skewed; however, even if they are

shown by mean and standard deviation, it does not affect the

following discussion.

A. Gait of KARAKASA

This robot is shown in Fig. 1. It was designed as a modular

robot; by combining several modules, we can construct various

multi-legged robots [36]. In this study, a gait of the most basic

structure of this type (i.e., a single-legged robot) was learned

via RL.

The task was to find an efficient gait for the robot to move

in the +y direction as far as possible within 12 s (1200

time steps), with minimum displacement in the x direction.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

This robot has three DOFs; each DOF was assigned 20 basis

functions of DMPs. The stage cost function was defined as:

J(τ ) = −

[

y − |x| −
m
∑

w=1

10000max{vw − vmax, 0}

]

,

(16)

where
[

x y
]T

is the position of the center of mass of the

robot, and m is the number of motors (m = 3). vw is the

reference angular velocity, and vmax is the maximum angular

velocity, of motor w. The state τ includes all of the variables

necessary to calculate the cost: x, y, and vw (w = 1, ...,m).
The first term is the reward to maximize the distance in the

+y direction, the second term is the penalty to prevent the

robot from moving in the x direction, and the third term is

the penalty for exceeding the speed limits of the motors.

Figs. 2(a), 2(b), 2(d) show the cumulative cost
∑N

i=0 J(τ (i)) plotted against the number of samples.

Because the number of samples in PI2-PA differs between

trials, we linearly interpolated the cost for each trial to

produce this figure. Fig. 2(a) is for the σ0 = 1 case and

Fig. 2(b) is for σ0 = 10. Fig. 2(d) compares the results from

the two initial covariance settings, both using our proposed

method. From Figs. 2(a) and 2(b), it can be observed that

PI2-PA clearly outperforms the other algorithms in both

initial settings: it is clear that, although PI2-PA required

more samples than PI2, the sample efficiency of PI2-PA was

higher than the other algorithms. In particular, in the case

of σ0 = 10, only PI2-PA exhibits a significant improvement.

This shows that PI2-PA succeeds in making the learning

robust to the initial covariance setting. In PI2 and PI2-CMA,

we used 10 and 40 samples respectively; that is 1000 and

4000 samples in total were used for learning. However, in

PI2-PA, the median of the number of samples was 2724.5. In

Fig. 2(c), we plot the cumulative cost against the number of

updates, for the case of σ0 = 1.

As can be seen from Fig. 2(d), σ0 = 1 results in better

solution than σ0 = 10. This is because, with σ0 = 10, it

was difficult to obtain meaningful data at the first several

steps. Although the covariance matrix adaptation rule makes

it possible to make progress after some steps, it will need

more steps to achieve the same level of cost. From the fact

that PI2-CMA, which also tune the covariance matrix, did not

succeed with σ0 = 10 and that our proposed method used

more samples than PI2-CMA, it is expected that the population

adaptation and step-size adaptation work well to make the

procedure efficient.

Fig. 3 shows a simulation of one of the learned gaits. The

robot moved from left to right by rolling its body.

We also conducted an experiment with one of the learned

policy parameters: note that this is different from what was

used in Fig. 3, which was evaluated almost equally good. The

resultant motion is shown in Fig. 4. It can be observed that the

gait was appropriately reproduced by the real robot. Because

of its structure and its sensitivity to physical parameters, it

is difficult to equip the real robot with a sufficient number

of markers for motion tracking without disturbing the motion.

Fig. 1. Simulation model of the single-legged robot KARAKASA.

(a) Cumulative cost vs the num-
ber of samples (σ0 = 1)

(b) Cumulative cost vs the num-
ber of samples (σ0 = 10)

(c) Cumulative cost vs the num-
ber of updates (σ0 = 1)

(d) Comparison between the
two initial settings

Fig. 2. Results of the learning of the single-legged robot gait. (a) and (b) plot
cumulative cost against the number of samples for the cases of σ0 = 1 and
σ0 = 10, respectively. Note that the number of samples used in each update
can vary in PI2-PA. (c) plots cumulative cost against the number of updates
for the case of σ0 = 1. (d) shows a comparison between the two different
initial settings for PI2-PA.

This is why we did not use the real robot to perform any

additional learning.

B. Gait of ASHIGARU

This robot is shown in Fig. 5. Like KARAKASA, it was also

designed as a modular robot; by combining several modules,

we can construct various multi-legged robots.

The task was the same as that of KARAKASA in Sec-

tion V-A, except that the time duration was 4 s (400 time

steps) and that an additional condition was imposed: the robot

was required to avoid falling down. Because the robot had

only three legs, it was difficult for it to move while remaining

stable. This robot has nine DOFs; each DOF was assigned 20
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(a) 0.0 s (b) 1.0 s

(c) 2.0 s (d) 3.0 s

(e) 4.0 s (f) 5.0 s

(g) 6.0 s (h) 7.0 s

Fig. 3. Motion of the single-legged robot KARAKASA.

basis functions of DMPs. The stage cost function was defined

as:

J(τ ) = −

[

y − |x| − 10000hT
1 hg

−
m
∑

w=1

10000max{vw − vmax, 0}

]

,

(17)

where h1 is the face vector of the base of the robot and hg

is the gravitational direction. The number of motors m was 9.

We set the initial orientation for the face vector h1 to satisfy

hT
1 hg = −1 at time t = 0. The state τ includes all of the

variables necessary to calculate the cost: x, y, h1, and vw (w =
1, ...,m). The third term is the penalty term for inclination of

the body, which is intended to prevent the robot from falling.

If the robot falls down and h1 turns downward, h1hg attains

its maximum value (i.e., 1).

Figs. 6(a), 6(b), 6(d) show the cumulative cost plotted

against the number of samples. Fig. 6(a) is for the case in

which the initial covariance matrix is E and Fig. 6(b) is for

100E. Fig. 6(d) compares the results from the two initial

covariance settings, both using our proposed method. Fig. 6(c)

shows the plot of the cumulative cost against the number of

(a) 0.0 s (b) 1.0 s

(c) 2.0 s (d) 3.0 s

(e) 4.0 s (f) 5.0 s

(g) 6.0 s (h) 7.0 s

Fig. 4. Motion of the real single-legged robot KARAKASA.

updates for the case of σ0 = 1. In this test, we used K = 30 for

both PI2 and PI2-CMA. A similar tendency to KARAKASA’s

gait learning can be observed, which implies the superiority of

PI2-PA again. In particular, in the case of σ0 = 10, the learning

could make progress only with PI2-PA. It is clear from this

that PI2-PA can deal with a wider range of problems than the

other two learning methods.

Fig. 7 shows one of the learned gaits. The robot successfully

moved from left to right without falling.

C. Standing-up by a Five-Legged Robot

This robot was composed of two ASHIGARU robots, using

one leg of each as the bridge to connect them. Therefore, it

had five legs and a “waist” part, resulting in 18 DOFs. The

robot’s task was to stand up within 4 s from the initial posture

shown in Fig. 8. Each DOF was assigned 20 basis functions

of DMPs, as in the previous examples. The stage cost function
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Fig. 5. Simulation model of the three-legged robot ASHIGARU.

(a) Cumulative cost vs the num-
ber of samples (σ0 = 1)

(b) Cumulative cost vs the num-
ber of samples (σ0 = 10)

(c) Cumulative cost vs the num-
ber of updates (σ0 = 1)

(d) Comparison between the
two initial settings

Fig. 6. Results of the learning of the three-legged robot gait. (a) and (b) plot
cumulative cost against the number of samples for the cases of σ0 = 1 and
σ0 = 10, respectively. Note that the number of samples used in each update
can vary in PI2-PA. (c) plots cumulative cost against the number of updates
for the case of σ0 = 1. (d) shows a comparison between the two different
initial settings for PI2-PA.

was defined as:

J(τ ) = −hT
1 hg − hT

2 hg +

m
∑

w=1

10000max{vw − vmax, 0},

(18)

where h1 and h2 are the face vectors of the bases. In the

initial posture, hT
1 hg = hT

2 hg = −1. The number of motors

m was 18. Using these vectors, the task could be expressed as

follows: Find motor inputs that achieve hT
1 hg = hT

2 hg = 1
within 4 s. To enhance the learning, we added the terminal

cost; if hT
1 hg +hT

2 hg ≥ 1, add −1000 to the cumulative cost

and otherwise 0.

Figs. 9(a), 9(b), 9(d) show the cumulative cost plotted

against the number of samples. Fig. 9(a) is for the case

in which the initial covariance matrix is E and Fig. 9(b)

is for 100E. Fig. 9(d) compares the results from the two

(a) 0.0 s (b) 0.5 s

(c) 1.0 s (d) 1.5 s

(e) 2.0 s (f) 2.5 s

(g) 3.0 s (h) 3.5 s

Fig. 7. Motion of the three-legged robot ASHIGARU.

initial covariance settings, both using our proposed method.

Fig. 9(c) shows the plot of the cumulative cost against the

number of updates for the case of σ0 = 1. A similar

tendency to KARAKASA and ASHIGARU gait learning can

be observed, except that, for PI2-PA, fewer samples were used.

The maximum number of samples used in one trial was 2866,

whereas 3000 samples were used for both PI2 and PI2-CMA.

This implies that the population size adaptation rule works

appropriately even in cases in which samples tend to have

similar features. The width of the interquartile range becomes

very wide around the 35th update in the case of σ0 = 1. This

is because some trials begin to succeed in standing up and

obtains the reward of −1000. It is worth noting that this task

was too difficult for PI2 and PI2-CMA: only two trials in total

succeeded in acquiring standing-up behavior in PI2-CMA with

σ0 = 1 and none for other settings. Even with PI2-PA, only 11

trials out of 20 succeeded in the case with σ0 = 1; this is the

reason for the positive cumulative cost at the 75th percentile

(upper edge of the interquartile range) in Fig. 9.

From Fig. 9(d), it is clear that the task was difficult at first

for both cases of σ0 settings: the cost did not decrease rapidly

in both cases. However, in the end, σ0 = 10 resulted in a lower
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Fig. 8. Simulation model of the five-legged robot.

(a) Cumulative cost vs the num-
ber of samples (σ0 = 1)

(b) Cumulative cost vs the num-
ber of samples (σ0 = 10)

(c) Cumulative cost vs the num-
ber of updates (σ0 = 1)

(d) Comparison between the
two initial settings

Fig. 9. Results of the learning of the standing-up behavior of the five-legged
robot. (a) and (b) plot cumulative cost against the number of samples for the
cases of σ0 = 1 and σ0 = 10, respectively. Note that the number of samples
used in each update can vary in PI2-PA. (c) plots cumulative cost against the
number of updates for the case of σ0 = 1. (d) shows a comparison between
the two different initial settings for PI2-PA.

median value, which is opposite to the cases of KARAKASA

and ASHIGARU motion learning tasks. We believe that this

difference was caused by the randomness within the algorithm

and the algorithm works equally well for both cases. Although

the difference seems significant, it would be a result of the

discontinuity of the cost in the decision parameters introduced

by the addition of −1000 at a success.

Fig. 10 shows one of the learned motions. The robot first

turned sideways while bending its body and, after one of the

body parts attained an upward position, unfolded the body to

finally reach the standing state.

VI. CONCLUSION

This paper proposed an extension of the famous RL al-

gorithm, PI2, named PI2-PA. By employing an adaptation

mechanism for population size, the algorithm can efficiently

search for a good policy parameter. The simulations show

(a) 0.0 s (b) 0.5 s

(c) 1.0 s (d) 1.5 s

(e) 2.0 s (f) 2.5 s

(g) 3.0 s (h) 3.5 s

Fig. 10. Standing-up behavior of the five-legged robot.

that it is actually more efficient than PI2 or its extension PI2-

CMA. Using PI2-PA, the robots can successfully learn difficult

motions that were almost impossible to learn using PI2 or PI2-

CMA. Moreover, the proposed method, as the two algorithms

on which it is based, is expected to be capable of dealing

with high dimensional problems. The three numerical tests

have 60, 180, and 360 samples to be learned respectively, and

the proposed algorithm works well for all of these tasks.

Although our learning method succeeded in all of our

test tasks, the motion may be inappropriate for real robots,

because the behavior of simulations and real robots can differ

significantly. Our future work includes designing a method

to learn a motion that is appropriate for real robots, with a

small number of real robot experiments. One possible idea

to make the number of experiments small enough is to use

the solution obtained by simulations as the first guess to

the real-experiment-based learning as in [37]. However, as

simulations and experiments can be very different, we will

need a method that is less dependent on the accuracy of

simulations. Another topic of future research will be to further

improve our proposed method in terms of data efficiency.

Recently, an improved version of a method called importance
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mixing has been proposed [38] to enhance the data efficiency

of evolution strategy. Adopting such a technique may help to

improve our proposed method, although, as yet, the technique

is not well understood.
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