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Neural Network Calculations at the Speed of Light Using Optical
Vector-Matrix Multiplication and Optoelectronic Activation∗
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SUMMARY With the rapid progress of the integrated nanophotonics
technology, the optical neural network architecture has been widely investi-
gated. Since the optical neural network can complete the inference process-
ing just by propagating the optical signal in the network, it is expected more
than one order of magnitude faster than the electronics-only implementation
of artificial neural networks (ANN). In this paper, we first propose an opti-
cal vector-matrix multiplication (VMM) circuit using wavelength division
multiplexing, which enables inference processing at the speed of light with
ultra-wideband. This paper next proposes optoelectronic circuit implemen-
tation for batch normalization and activation function, which significantly
improves the accuracy of the inference processing without sacrificing the
speed performance. Finally, using a virtual environment for machine learn-
ing and an optoelectronic circuit simulator, we demonstrate the ultra-fast
and accurate operation of the optical-electronic ANN circuit.
key words: neural network, optical circuit, multi-layer perceptron, wave-
length division multiplexing

1. Introduction

Today’s highly sophisticated information society, with low
latency access to the Internet, would not be realizablewithout
optical communication technologies and CMOS LSI tech-
nologies. According to Moore’s Law, the propagation delay
of CMOS gates in the LSI circuits has drastically decreased.
Historically, the delays of local level wires also decreased
with transistor downscaling since the delays are determined
by RC time constant which can be reduced along the transis-
tor downscaling. At ultra-scaled dimensions, however, the
effective resistivities (R) of local level wires increase more
rapidly than a decrease of wire capacitance (C) due to size
effects [2] and therefore, the RC time constant cannot be de-
creased by the transistor downscaling. Post-layout analysis
using predictive technology models [3] shows that intercon-
nect performance degradation may dominate over the device
speed improvement in a 22 nm technology node and below
[2], [4]. This means that technology scaling itself cannot
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resolve the latency issue of CMOS LSI circuits in advanced
technology nodes such as 7 nm and below.

Concurrently, optical communication technologies
have also been rapidly growing over the past several decades.
Although optical communication technologies are widely
used for the long-distance communications, electronics still
remain as major players for short-distance communications.
Recent innovation in nanophotonics, however, makes it pos-
sible to migrate power-efficient light-based communication
into ever-shorter distances and move onto silicon chips as
optical networks-on-chip [5]. More recently, significant ef-
forts have been made on architecture development of optical
neural networks (ONN) [6]–[11]. We have also proposed an
ONN architecture in [1] based on an optical vector-matrix
multiplication (VMM) circuit which can fully exploit the
ultra-fast nature of light.

This paper is an extension of our previous work [1]. An
overview of the architecture is depicted in Fig. 1. The archi-
tecture is composed of activation circuits, the optical VMM
circuit, and micro-ring resonators for interfacing the weight
matrix. Although ultra-fast inference is mainly achieved by
the optical VMM, batch normalization and activation func-
tion are integral parts for accurate inference processing in
artificial neural network (ANN). One of the major challenges
for the ONN is developing an ultra-low latency circuit for
an activation function to achieve sufficient inference accu-
racy while maintaining the speed of light. To achieve this
goal, this paper newly proposes optoelectronic circuit imple-
mentation for batch normalization combined with activation
function, which significantly improves the accuracy of the
inference processing without sacrificing the speed perfor-
mance. The detailed circuit for the batch normalization is
explained in Sect. 4.5. Another key challenge for the ONN is
to reduce circuit footprint for providing sufficient scalability.
Towards this challenge, we use ternary values for weights in
the ONN and propose an area efficient interface circuit for

Fig. 1 Overview of our optical neural network.
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the weights. This largely reduces the circuit area required
for interfacing the weight matrices. The detailed structure
for the interface circuit is explained in Sect. 4.2.

The rest of the paper is organized as follows. Section 2
summarizes several previous works on the ONNs. Section 3
explains basic operation of optical arithmetic circuits used
in our ONN. Section 4 shows a detailed architecture of our
ONN. Section 5 shows experimental results obtained with
a commercial optoelectronic circuit simulator and a virtual
environment for machine learning. Section 6 concludes this
paper.

2. Related Work and Motivation

Neural networks are a continued staple of machine learning
and alternative computing, with applications ranging from
classification, anomaly detection and regression to general-
purpose computation. The following subsections summarize
recent architectures proposed for optical neural networks.

2.1 Photonic Weight Banks

An optical circuit structure for calculating a weighted sum
is proposed in [6]. This structure is used for vector-matrix
multiplication in optical neural networks. The basic struc-
ture is depicted in Fig. 2. Incoming wavelength division
multiplexed (WDM) signals are weighted by continuous-
valued filters called microring (MRR) weight banks and
then summed as photocurrent by a photodetector. This is
a very area efficient and low power approach for calculat-
ing the weighted sum. The complexity is O(1) regardless
of the number of weights. However, this approach has the
following drawbacks. If more than one optical signals hav-
ing different wavelengths (i.e., WDM signals) are given to
the photodetector (PD), undesirable oscillation in photocur-
rent occurs. One of the most straightforward approaches to
eliminate the oscillation is low-pass filtering with an elec-
tronic low-pass filter. This is very simple but prevents us
from exploiting the ultra-high speed nature of lights since
the time-constant of the low-pass filter is more than one or-
der ofmagnitude bigger than that of optical-electrical-optical
(O-E-O) repeater. Another approach for eliminating the os-
cillation is using wavelengths which are sufficiently apart
from each other. Since the oscillation frequency depends on
the difference between the wavelengths of the lights, we can
make the frequency to be too high for the photodetector to os-
cillate by setting the wavelengths sufficiently apart from each
other. However, this approach limits the number of different
wavelengths used in WDM signals and limits the scalabil-
ity of the vector-matrix multiplication. In [7]–[9], similar
optical vector-matrix multipliers based on the MRR weight
banks are proposed. The architectures are very compact and
implement the O(1) calculation of the weighted sum using
WDM signals and PD-based accumulation. However, they
also have the oscillation issue in the photodetector which
prevents the light-speed operation of optical vector-matrix
multiplication.

Fig. 2 Calculation of weighted sum using photonic weight banks.

Fig. 3 Calculation of weighted sum using MZI array.

The primary goal of the approaches described above
is providing an area-efficient ONN architecture while the
goal of our approach proposed in this paper is providing an
ultra-fast ONN architecture. Unlike the works presented in
[6]–[9], we use a combiner tree [12] for accumulatingWDM
signals in parallel instead of using PD-based accumulation.
Our approach does not have the oscillation issue in the pho-
tocurrent, since only coherent light signals having a single
wavelength are given to a photodetector.

2.2 Reconfigurable Mach-Zehnder Interferometer Array

In [10], a fully optical neural network (ONN) architecture
is presented for implementing general deep neural network
algorithms using nanophotonic circuits that process coherent
light from laser diode (LD). The core part of the ONN archi-
tecture is a matrix multiplication unit which is composed of a
reconfigurable Mach-Zehnder Interferometer (MZI) array as
shown in Fig. 3. Once a neural network is trained, the archi-
tecture can be passive, and computation can be performed at
the speed of light. In addition to the light-speed processing,
the computation can be performed without additional energy
input. These features could enable ONNs that are substan-
tially more energy-efficient and faster than their electronic
counterparts. As described in [10], the energy consumption
introduced by the switching activity is extremely small in
this architecture. However, one big drawback in the ONN
architecture described above is high photonic component uti-
lization and area cost. Considering a single fully-connected
layer with an n × m weight matrix, the ONN architecture
in [10] requires O(n2 + m2) MZIs for implementation. If
the number of neurons in the network increases, the area for
the implementation increases quadratically. In [11], a more
compact ONN architecture based on fast Fourier transform
(FFT) is proposed. It improves the area efficiency of the
ONN by a factor of 2.2 to 3.7. However, the area required
for the implementation is still very large as the number of
MZIs required is still quadratic to the number of neurons.

Unlike the architecture in [10], [11], our architecture
does not have the circuit structure where the number ofMZIs
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required is quadratic to the number of neurons. Although our
architecture also exploits the ultra-high speed nature of the
Mach-Zehnder Modulator (MZM), the order of the number
of MZMs required for the implementation is linear to the
number of neurons.

2.3 Homodyne Detection-based Vector Matrix Multiplier

A new type of photonic accelerator based on coherent de-
tection is proposed in [13]. It is scalable to large (N ≥ 106)
networks and can be operated at high speeds (GHz) and very
low energies (sub-aJ) per multiply-and-accumulate (MAC),
using the massive spatial multiplexing enabled by standard
free-space optical components. In contrast to previous ap-
proaches [10], both weights and inputs are optically encoded
so that the network can be reprogrammed and trained on
the fly. However, it does not exploit WDM parallelism in
their multiply-and-accumulate operation, which limits the
throughput and area efficiency of the architecture. A tech-
nique proposed in [9] combines the WDM method with the
coherent detection to exploit the optical parallelism. How-
ever, as explained in Sect. 2.1, it suffers from the oscillation
issue in photodetectors, which limits the scalability of high-
speed vector-matrix multiplication.

Unlike the architecture presented above, our ONN ar-
chitecture largely exploits WDM parallelism as well as the
circuit-level spatial parallelism using an optical combiner
tree which can be functioned for accumulating WDM sig-
nals in parallel.

3. Basics of Optical Arithmetic Operation

3.1 Analog Multiplier based on Mach-Zehnder Modulator

We use a Mach-Zehnder Modulator (MZM) as an optical
multiplier. The MZM is a popular device as an analog mul-
tiplier to calculate the product of an electrical voltage input
and an optical signal input [9]. By using optical signals with
different wavelengths to each other, the MZM can work as a
parallel multiplier for the multiple optical signals as shown
in Fig. 4(a) without mutual interference. It is experimentally
demonstrated that optical inter-channel interference is negli-
gible for channels with a wavelength spacing of 1.3 nm [14].
In [15], a broadband silicon Mach Zehnder Switch (MZS in
the following) which operates over a wide wavelength range
from 1510 nm to 1650 nm is proposed. In this case, the MZS
can be functional for more than 100 WDM optical signals.

3.2 Analog Adder based on Optical Combiner

We use a combiner-tree-based analog accumulator presented
in [12]. The analog accumulation operation is performed for
massive WDM signals in parallel as shown in the tree struc-
ture depicted in Fig. 4(b). At every combiner in the tree, two
input signals with the same wavelength interfere and add up
together while for any two input signals with different wave-
lengths do not interfere. As a result, all WDM signals are

Fig. 4 Optically parallelized multiplication and accumulation.

Fig. 5 Combiner-tree and homodyne detection.

individually accumulated in parallel through the combiner-
tree. We use a phase shift for representing a minus value.
Assuming a base optical signal A represents a plus value and
if the phase of an optical signal B is π (i.e., 180 degree)
out of phase from the base signal, the signal B represents a
minus value. With this representation for the plus and minus
values, we can correctly accumulate both plus and minus
values using the combiner-tree.

3.3 Arithmetic Operation based on Electric Field Strength

Since the output value of our multiplication and accumula-
tion (MAC) circuit is expressed by the electric field strength
instead of the signal power, we need to extract the electric
field strength from the optical signal. We use a homodyne
detection circuit shown in Fig. 5 for extracting the electric
field strength from the photocurrent which is proportional to
the signal power. We use O-E converter presented in [16]
for the homodyne detection. This O-E converter does not
need an amplifier to convert the optical signal to the elec-
trical signal and therefore, it is very energy efficient. Once
the photocurrent Ipd in Fig. 5, which is proportional to the
electric field strength of input light is obtained, the Ipd is
converted to electrical voltage just using a load resistance
Rload . If the input capacitance of the device connected to
the Vout in Fig. 5 is an order of femtofarad, the RC time con-
stant can be very small and the O-E-O conversion delay is,
as a result, around 25 picosecond [16].

4. Optical Neural Network Using WDM Parallelism

4.1 Neural Network Overview

An architectural overview of our optical neural network is
depicted in Fig. 6. Each layer is composed of MRR weight
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Fig. 6 Optical neural network overview.

bank [6], parallelized Mach Zehnder Modulator (MZM)-
based multipliers, a combiner-tree-based accumulator [12],
and optoelectronic activation circuits. The output signals of
the activation circuits are passed to the next layer as electri-
cal voltage signals which are used as input operands of the
MZM-based multipliers in the next layer.

Assuming the number of nodes in the input layer is X
and that in the next layer is h, we need X × h micro-ring
array as the MRR weight bank. The number of different
wavelengths needed is h and the number of rows in the bank
is X . The h different light signals are given to every row in
parallel. Note that the signal power of the h lights given as
inputs is the same from each other. Then the X × h weight
values are individually multiplied to the light signals in par-
allel. Once the weighted signals are given, the MZM works
as a parallel multiplier. The number of MZMs is X and
the number of wavelengths used in the WDM signals given
to each MZM is h. Therefore, X × h multiplications are
performed in the MZM-based multipliers in parallel by ex-
ploiting both spatial parallelism and WDM parallelism. The
next step is accumulation. Once the outputs of the MZM-
based multipliers are given to the combiner-tree as WDM
signals, accumulation operations are performed in parallel.
Optical signals with the same wavelength are accumulated in
a tournament fashion in the combiner-tree. This accumula-
tion is performed for every different wavelength in parallel.
Since the optical signals with different wavelengths do not
basically interfere with each other, the h different accumula-
tions can be independently performed in parallel. Finally, the
accumulated values are extracted by micro-ring resonators,
wavelength selective splitters or arrayed waveguide gratings
(AWG), and given to activation circuits separately. The num-
ber of activation circuits needed in the layer is h. The outputs
of the activation circuits are passed to the next layer as inputs
of the MZM-based multiplier in the next layer.

Fig. 7 Propagation delay of optical vector-matrix multiplier.

Fig. 8 Interface for ternary weight matrix.

The MRR weight bank takes a few tens of picoseconds
to read weight parameters [6]. Note that the process for read-
ing the weights through the MRR weight bank is not on the
critical-path since the weight values are unchanged once the
weights have been learned. Therefore, the delay of the op-
tical neural network calculations is determined by the delay
required for the VMM calculation and activation. Since the
VMM calculation is performed by just propagating the op-
tical signals through MZM multipliers and a combiner-tree,
the delay is determined by the total length of the critical-path
along the MZM and the combiner-tree as shown in Fig. 7.
Note that the speed of light traveling through the MZM and
the combiner is about 100 µm per picosecond. The MZM
multiplier takes only a few picoseconds to propagate the op-
tical signals since the length of the MZM is about 100 µm.
The delay of the combiner-tree depends on the number of
inputs [12]. If the number of inputs is 784, the delay is about
70 ps as shown in Fig. 7. If the number of inputs is 100 as
is used in the hidden layers, the delay is down to about 8 ps.
The ELU-based activation circuit explained in the following
sections also takes 25 ps [16]. As a result, the propagation
delay of the single neural network layer is less than 100 pi-
coseconds in total approximately and if we construct a neural
network with less than 10 layers, a sub-nanosecond neural
network is realizable, which is extremely fast.

4.2 Interface for Quantized Weight Matrix

In this paper, we use a quantized weight matrix to save a
circuit area required for implementation. Specifically target-
ing a ternary weight matrix, we propose a compact interface
circuit for the weight matrix. Each element of the matrix can
have ternary values of −1, 0, or 1. These values are encoded
with two bits of 11, 00, and 01, respectively. Figure 8 shows
the interface circuit. The right and left bits of the code are
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applied to the MRR filter and tunable phase shifter in Fig. 8,
respectively. If the weight is 0 whose code is 00, the opti-
cal input with a wavelength corresponding to the MRR filter
does not come to the output. If the weight is 1 whose code is
01, the input with a wavelength corresponding to the MRR
filter comes to the output without a phase shift. If the weight
is −1 and the code is 11, the optical signal with a wavelength
corresponding to the MRR filter comes to the output with
a phase shift of a 180 degree from the base signal which
represents the positive values. As we explained in Sect. 3.2,
we use a phase shift by a 180 degree for representing a mi-
nus value. With this representation for the minus values, we
can correctly accumulate both plus and minus values using
a combiner-tree.

4.3 Vector Matrix Multiplication

We perform vector-matrixmultiplication as shown in Eq. (1),
where a set of Wi, j values forms a weight matrix and a set of
xi values forms an input vector.

y1 = x1 ·W1,1 + x2 ·W1,2 + · · · + xX ·W1,X,

y2 = x1 ·W2,1 + x2 ·W2,2 + · · · + xX ·W2,X,

· · · = · · · + · · · + · · · + ,

yh = x1 ·Wh,1 + x2 ·Wh,2 + · · · + xX ·Wh,X .

(1)

We use an optical vector-matrix multiplier shown in the bot-
tom of Fig. 6 as a core part of the optical neural network. The
input WDM signals are first equally divided into X groups
and given to the rows of the MRR weight bank. Therefore,
the power values of all the X × h optical signals given to
the MRR weight bank are equal to each other. These WDM
signals are then multiplied by the weight parameters. For
example in the topmost row, W1,1,W2,1, · · · ,Wh−1,1,Wh,1 are
individually weighted by the micro-ring modulators. Then
the WDM output of the row is passed to the MZM which
is controlled by the electric voltage signal proportional to
the value of x1. Since the input of the MZM is weighted
WDM signals which do not interfere each other, the value
of x1 is individually and concurrently multiplied to all the
WDM signals. This multiplication corresponds to the first
terms of all the equations in Eq. (1). The MZM controlled
by x2 performs the multiplication corresponding to the sec-
ond terms of all the equations in Eq. (1). Similarly, all the
multiplications which appear in the equations in Eq. (1) are
performed throughout the MZMs in parallel.

All the output WDM signals of the MZMs are passed
to the combiner-tree with being multiplexed for the optically
parallelized accumulation. The number of leaves needed
for the combiner-tree in this example is X . Since it is a tree
structure, the order of the propagation delay in this combiner-
tree is O(log2X). The propagation delay of each combiner
is very small since the size of the combiner can be made
very small [12]. Optical signals with the same wavelength
are accumulated in a tournament fashion by the combiner-
tree. This accumulation corresponds to each equation in
Eq. (1). For given WDM signals to the combiner-tree, all

Fig. 9 Comparison of activation functions.

the accumulations in Eq. (1) are performed individually and
concurrently.

4.4 Activation Function

Figure 9 compares the representative activation functions,
i.e., Rectified Linear Unit (ReLU) [17], exponential linear
unit (ELU) [18], and the Leaky-ELU. ReLU is the most
commonly used activation function in neural networks, es-
pecially in CNNs since it is cheap to compute as there is no
complicated math. Although ReLU has several advantages
over the other activation functions, it has a problem called
dying ReLU. A ReLU neuron is dead if the input is stuck
on the negative side and always outputs 0 since the output
y of ReLU is y = max(0, x) for the input x. Because the
slope of ReLU in the negative range is also 0, once a neuron
gets negative, it is unlikely for it to recover. Leaky ReLU
[19] has been proposed to fix the dying ReLU problem. It
has a small slope for negative values, instead of altogether
zero. For example, leaky ReLU may have y = 0.01x when
x < 0. Similar to leaky ReLU, ELU has a small slope for
negative values. Instead of a straight line, it uses a log curve
for negative values as shown in Eq. (2), where α is a scaling
factor.

y = x (if x ≥ 0),
y = α(ex − 1) (otherwise).

(2)

It is designed to combine the good parts of ReLU and leaky
ReLU, that is, while it does not have the dying ReLU prob-
lem, it saturates for large negative values, allowing them to
be essentially inactive.

In many neural network applications, ReLU, leaky
ReLU and ELU do not have a big difference in training
speed and inference accuracy. However, ELU is the most
suitable activation function for circuit implementation since
it is differentiable at every point and the output changes
gently. Figure 10 shows an example of optoelectronic imple-
mentation of ELU. This circuit is modified from the homo-
dyne detection circuit depicted in Fig. 5. The yellow colored
diode symbol, an ELU diode which is newly added, works as
an ELU function. For positive input values, the ELU diode
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Fig. 10 Optoelectronic implementation of activation function.

Fig. 11 Activation function circuit with batch normalization.

works as an insulator while it works as a resistor where its
resistance is very small for negative input values. Since the
circuit presented in Fig. 10 does not behaves exactly as the
ELU function, we refer to this function as a Leaky-ELU. In
order to use the Leaky-ELU function in the machine learn-
ing process, we perform the regression analysis and fit the
Leaky-ELU function model to the simulation results with
the SPICE-based circuit as shown in Fig. 10. The curve
fitting accuracy is very good. The coefficient of determina-
tion, which represents how well the regression predictions
approximate the real data points is more than 99.9% for the
Leaky-ELU function model.

4.5 Batch Normalization

Batch normalization [20] is a commonly used technique to
normalize activations using a scaling factor γ and a shifting
factor β in intermediate layers of neural networks for improv-
ing inference accuracy. The values of β and γ are learned
for every neurons individually in the learning process. At
the inference phase, every outputs of the vector-matrix mul-
tiplication are individually scaled by γ and shifted by β to
normalize the activations. Figure 11 shows a circuit for the
batch normalization. This circuit ismodified from the activa-
tion circuit depicted in Fig. 10. Since the signal power values
of P1 and P2 are both proportional to the signal power of the
laser diode (LD) used as the reference light, the photocur-
rent Ipd can be scaled by tuning the attenuator connected
to the LD. The photocurrent Ipd can be shifted by β using
PD3 and PD4. The photocurrent drawn from PD3 and PD4
can be controlled by tuning the input voltage to the voltage
controlled phase shifter shown in Fig. 11.

5. Experimental Evaluation

This section evaluates the area and inference accuracy of the

proposed architecture. Section 5.1 estimates the trade-off
relationship between the area and accuracy with a Python-
based deep learning simulator, i.e., TensorFlow. Section 5.2
examines the functional behavior of the proposed architec-
ture via the optoelectronic circuit simulator.

5.1 TensorFlow Simulation

As previously explained in Sect. 4, the proposed architecture
integrates the highly-parallelized VMM thanks toWDM and
the quantized weight matrix interface. To evaluate the pro-
posed architecture’s area-efficiency, we examine the infer-
ence accuracy and circuit area with and without quantization
in this subsection. Section 5.1.1 explains the evaluation
setup for Tensorflow simulation. Section 5.1.2 shows the
evaluation results for the trade-off analysis between the cir-
cuit area and inference accuracy. Section 5.1.3 discusses the
impact of activation function and Batch Normalization on
the inference accuracy.

5.1.1 Evaluation Setup

As a target circuit, we select the multi-layer perceptron
(MLP) with MNIST dataset [21]. This neural network con-
sists of one input layer, several hidden layers, and one output
layer. The input layer has 784 (28 × 28) nodes, and the out-
put layer has 10 nodes. As the activation function, ELU is
adopted to each node in hidden layers. Besides, the Batch
Normalization is added before the activation function in hid-
den layers. We introduce stochastic quantization [22] and
quantize the values of the weight matrices to binary (1-bit)
or ternary (2-bit), which eliminates the need for a digital-
to-analog converter (DAC) and thus significantly saves the
circuit area. By stochastic quantization of the weights, it
is expected that the information of continuous weights can
be reproduced to some extent in calculating weighted linear
sums at each layer during inference.

We construct a test framework of the target circuit us-
ing TensorFlow, the Python-based open-source simulator.
We initialize all trainable weights with a random uniform
initializer, adopt the Adam optimizer [23] with initial learn-
ing rate=3E-03 and a stepwise exponential-decay learning
rate schedule with decay rate=0.99. All NN models are
trained for 1,000 epochs with a minibatch size of 100 until
fully converged. The TensorFlow is run on a computer with
an AMD Ryzen Threadripper 2920X processor under the
Ubuntu 16.04.6 LTS operating system with 128-GB mem-
ory.

We evaluate the inference accuracy and the circuit area
of the test circuits with the different number of nodes in
the middle layers, the different number of hidden layers,
and the different quantization precision. The numbers of
nodes in the middle layers evaluated are 4,096, 2,048, 1,024,
512, 256, 128, and 100, as shown in Fig. 12. The evaluated
numbers of hidden layers are ranging from one to seven, as
shown in Fig. 13. In the experiment, we prepared three dif-
ferent precision scenario, i.e., 32-bit floating-point without
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Fig. 12 Inference accuracy and area on MNIST dataset with different
network configurations, i.e., the number of nodes in hidden layers and the
quantization precision. The number of hidden layers is set to three. The
line graphs show accuracy, and the bar graphs show the optical circuit area.
Binary and ternary represent the quantization precision for the weights.

Fig. 13 Inference accuracy and area on MNIST dataset with different
network configurations, i.e., the number of nodes in hidden layers and the
quantization precision. The number of nodes in every hidden layer is set to
100.

Table 1 Optical component sizes used in the area estimation.

Optical Component Length(µm) Width(µm)
Digital-to-Analog Converter (DAC) [24] 39 1,100
Micro-Ring Resonator (MRR) [6] 25 25
Mach-Zehnder Modulator (MZM) [10] 10 100

quantization, ternary, and binary. In the ternary and binary
quantized weights, the weights are quantized into (−1, 0, 1)
and (−1, 1), respectively. Note that the maximum number
of wavelengths multiplexed in an optical arithmetic unit is
about 100 [15].

To evaluate the entire circuit area, we estimate the area
in each layer from Eq. (3). The circuit of each layer is mainly
composed of MZMs, MRRs, and DACs, and the number of
these components depends on the number of nodes. There-
fore, by estimating the total area of these components, we
can approximate the total area of the proposed circuit. In
Eq. (3), N1st

node
and N2nd

node
are the numbers of nodes in the

first and the next second layer. As for the area of DAC,MRR,
and MZM, i.e., ADAC , AMRR, and AMZM , we estimate the
area by referring to Table 1.

Area =(N1st
node × AMZM ) + (N1st

node × N2nd
node × AMRR)

+ (N1st
node × N2nd

node × ADAC).

(3)

5.1.2 Accuracy and Area Estimation Results

Figure 12 shows the correlation between the optical circuit
area, the number of nodes in the hidden layer, and the in-
ference accuracy in MLP. In Fig. 12, line graphs show the
accuracy, and bar graphs show the optical circuit area. Be-
sides, “Binary” and “Ternary” represent quantization preci-
sion the weights, and “32-bit floating-point (fp32)” corre-
sponds to the weight matrix without quantization. As shown
in Fig. 12, the accuracy degrades as the number of nodes
decreases, and the “Ternary” achieves a sufficiently good
accuracy, which is a negligible degradation compared with
“fp32”. For example, based on “fp32 - 4,096 nodes”, the
inference accuracy with “fp32 - 100 nodes” degrades only
0.39% from 99.04% to 98.63%, and that with “Ternary-100
nodes” does about 0.55% from 99.04% to 98.49%. As the
number of nodes in the hidden layer increases, the number
of elements in the weight matrix increases. Thus, the num-
ber of optical components, such as MRR and MZM used
in weighting and multiplication, also increases. Note that
the number of DACs is the same as that of weight matrix
elements since each weight matrix value is read individually.

Another key observation of Fig. 12 is that the optical
circuit area decreases exponentially as the number of nodes
decreases. For example, comparedwith “fp32 - 2,048nodes”,
the area of “fp32 - 1,024-node” is reduced by 70.8% from
4.36E-01 m2 to 1.27E-01 m2, and the area of “fp32 - 512-
node” is reduced by 90.7% from 3.09E-01 m2 to 4.05E-02
m2. Since the maximum number of wavelengths multiplexed
in an optical arithmetic complement is equal to 100, the
same circuit needs to be added for every time the number of
nodes, which is the same as that of wavelength, exceeds 100.
Moreover, when the weight matrix is quantized, the area is
reduced by about two orders of magnitude. For example,
while the area of “fp32 - 100-node” is 4.34E-03 m2, the area
of “Ternary - 100-node” is 7.16E-05 m2.

Figure 13 shows the correlation between the optical
circuit area and the number of hidden layers and the infer-
ence accuracy in MLP. When the number of hidden layers is
more than 3, the inference accuracy can be maintained even
when the number of nodes is 100. For example, based on
“fp32 - 7-layer”, the accuracy with “fp32 - 3-layer” decreases
by only 0.02%, from 98.65% to 98.63%. We also observe
that the area can be effectively reduced by quantizing the
weight matrix to binary or ternary. From the observation
above, we experimentally confirm that if the application al-
lows for some accuracy degradation, the optical circuit area
can be dramatically reduced by quantizing the weight matrix
to ternary. We note that the better inference accuracy can be
obtained without quantization in the scenario where the area
is not a top-priority constraint.

5.1.3 Discussion

The previous section experimentally evaluates the proposed
architecture’s trade-off characteristics in terms of the area
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Fig. 14 Inference accuracy comparisons with configurations using dif-
ferent activation functions without Batch Normalization based on MNIST
dataset. The MLP consists of 784 (28×28) inputs, three hidden layers with
100 neurons in each layer, and 10 neurons for the last layer. NONE indicates
that the activation function is not used for MLP calculations. The proposed
architecture adopts Leaky-ELU as an activation function.

Fig. 15 Inference accuracy comparisons of different configurations with
and without Batch Normalization based on MNIST dataset. The MLP
configurations are the same as Fig. 14 (i.e., the number of hidden layers is
3 and the number of nodes in every hidden layer is 100).

and inference accuracy. In this section, we focus on the infer-
ence accuracy and discuss the impact of activation function
and Batch Normalization for investigating the effectiveness
of the proposed architecture.

Firstly, let us investigate the impact of activation func-
tion on accuracy. In the experiment, we compare the in-
ference accuracy with different activation functions with-
out Batch Normalization. Specifically, we use Leaky-ELU,
which was proposed in Sect. 4.4, and three representative ac-
tivation functions, i.e., ReLU, ELU, and Sigmoid. Figure 14
shows the comparison results. From Fig. 14, we can see that
the inference accuracy of ReLU and ELU is the highest in all
network configurations. In 32-bit floating-point and Ternary
cases, Leaky-ELU achieves a high inference accuracy with
little difference compared to ReLU and ELU. Here, please
remind that Leaky-ELU is an implementation-friendly func-
tion. Therefore, we experimentally confirm that the proposed
activation function achieves a similar inference accuracy as
ReLU while more suitable to implement.

Then, the impact of Batch Normalization on the accu-
racy is discussed. Figure 15 shows the inference accuracy
with and without Batch Normalization. The graphs in darker
colors indicate the inference accuracy of MLPs with Batch
Normalization, while those in lighter colors show the in-

Fig. 16 Test Circuit Composed of Optical MAC Circuit and ELU-based
Activation Circuit. The upper part represents the first layer, and the lower
part is the second layer in MLP.

ference accuracy of MLPs without it. From Fig. 15, we
can see that the Batch Normalization improves the infer-
ence accuracy in almost all configurations. In particular,
when we quantize the weight matrix, the Batch Normal-
ization significantly enhances accuracy. For example, in
Leaky-ELU with the binary quantization, the Batch Normal-
ization increases the accuracy by about 4.2% from 93.64%
to 97.8%. Moreover, the differences in accuracy between
activation functions, such as ReLU, ELU, and sigmoid, are
reduced. Therefore, we demonstrate that the Batch Normal-
ization, which is incorporated in the proposed architecture,
significantly improves the accuracy. In summary, in this
subsection, we experimentally confirm that the Batch Nor-
malization is highly compatible with the quantized neural
networks. Hence, the proposed architecture achieves good
accuracy with a significant area reduction.

5.2 Optoelectronic Circuit Simulation

Lastly, this subsection examines the functional behavior of
the proposed architecture via the optoelectronic circuit sim-
ulator. Section 5.2.1 explains the evaluation setups. Sec-
tion 5.2.2 shows the evaluation results.

5.2.1 Evaluation Setup

As a target circuit, we design an optical multiplication and
accumulation (OMAC) circuit, as shown in Fig. 16. This
circuit represents two layers in MLP. In Fig. 16, x1 and x2
are inputs to the first layer in MLP, and W0,0, W0,1, W1,0, and
W1,1 areweights in each layer ofMLP. The twoWDMoptical
signals given from the left of the upper section are weighted
W0,0, W0,1, W1,0, and W1,1, respectively. Then, those signals
are individually multiplied with the electrical signal inputs
x1 and x2. The accumulation results are divided into two
wavelengths, then passed to the activation function (ELU),
and finally are given to the next layer as V1 and V2.

For verifying the behavior of the designed circuit, we
use Optisystem and OptiSPICE. These are commercial op-
toelectronic circuit simulators and can analyze integrated
optoelectronic circuits. In addition to MOS transistors, Op-
tisystem and OptiSPICE can simulate optoelectric conver-
sion in photodetectors and linear interference in MZMs and
combiners at the transistor level. In this simulation, W0,0,
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Fig. 17 Simulation results for Digital Optical MAC and ELU Activation
Function. x1 and x2 represent electrical inputs to MZMs in Fig. 16. V1 and
V2 are output from activation functions in the first layer, andV3 andV4 are
that in the second layer.

W1,0, and W1,1 are all set to 1, and only W0,1 is set to −1.
Therefore, from V1 to V4 are represented by Eq. (4). In
this evaluation, we confirm the functional behavior of the
proposed circuit by observing all the values from V1 to V4.

V1 = E LU(W0,0 × x1 +W0,1 × x2) = E LU(x1 − x2),

V2 = E LU(W1,0 × x1 +W1,1 × x2) = E LU(x1 + x2),

V3 = E LU(W0,0 × V1 +W0,1 × V2) = E LU(V1 − V2),

V4 = E LU(W1,0 × V1 +W1,1 × V2) = E LU(V1 + V2).

(4)

5.2.2 Evaluation Results

This section evaluates the functional behavior of the designed
circuit using optoelectronic circuit simulators for verifying
whether the fundamental components in the proposed archi-
tecture, i.e., OMAC circuit and homodyne detector-based
ELU activation circuit, work correctly.

Figure 17 shows the simulation results for the designed
circuit in Fig. 16. Figure 17 indicates that the output, i.e.,
each value from V1 to V4, is identical to the accumulation
result if the result is positive, which is expected behavior.
Similarly, we observe that the output value reduces with the
activation function if the accumulation result is negative.
For example, when x1 is equal to −2 and x2 is equal to
0, the activation function circuit in the top row in Fig. 16
receives −2 as an OMAC result and outputs −0.4 as V1. We
experimentally confirm that the functional correctness of the
optical MAC operation and optoelectronic ELU activation
function through this evaluation.

Lastly, we simulate the functionality of the homodyne
detector-based ELU activation circuit with Batch Normal-
ization. Figure 18 shows the simulation results of the V1 in
Fig. 16. V1 is scaled from 1/4 times to 1 time in Fig. 18(a) and
shifted from −50% to +50% in Fig. 18(b), respectively. Fig-

Fig. 18 Simulation results for the scaling (the left part) and shifting (the
right part) ofV1 by an activation function circuit with Batch Normalization.
The configurations are the same as Fig. 17. ×1/2 indicates that the reference
light electric field is half in Fig. 16, which is the same result asV1 in Fig. 17.
0% indicates that the total photocurrent is not changed from Fig. 17, which
is the same result asV1 in Fig. 17.

ure 18 demonstrates that the outputs are scaled and shifted as
expected by the Batch Normalization circuit. For example,
in Fig. 18(a), ×1/2 represents the reference light’s electric
field strength is halved by tuning the attenuator. Since the
photocurrent Ipd is proportional to the reference light’s elec-
tric field strength, the operation result is halved. Similarly,
in Fig. 18(b), +50% indicates that the total photocurrent is
increased by 50% from the total photocurrent in Fig. 17.
For each 25% change in the current, the operation result
also shifts by about 0.25. In other words, it is possible to
scale and shift the operation result by tuning the LD power
and increasing (decreasing) photocurrent drawn from newly
added PDs. From the above, we experimentally confirm the
functional correctness of the homodyne detector-based ELU
activation circuit with Batch Normalization.

6. Conclusion

This paper proposes a new optical neural network architec-
ture that fully exploits spatial parallelism and optical paral-
lelism with wavelength division multiplexed (WDM) optical
signals. Since only optical signals are propagated in a single
neural network layer, its latency is extremely low. The MRR
weight bank takes a few tens of picoseconds to read the
weight parameters and modulate the optical signals based
on the weight values [6]. Both the MZM multiplier and
combiner-tree takes only a few picoseconds to propagate the
optical signals [12]. The ELU-based activation circuit based
on the amp-less O-E-O converter also takes a few tens of pi-
coseconds [16]. As a result, the single neural network layer’s
propagation delay is less than 100 picoseconds in total ap-
proximately. If we construct a neural network with less than
10 layers, a sub-nanosecond neural network is realizable,
which is extremely fast.

We investigate the trade-off relationship between the
area and the accuracy of the proposed architecture with
TensorFlow. The TensorFlow simulation indicates that our
proposed architecture achieves high area-efficiency with sat-
isfying good accuracy thanks to WDM, Batch Normaliza-
tion, and the weight matrix quantization. Moreover, we also
demonstrate the functional correctness of the proposed archi-
tecture’s fundamental components, i.e., OMAC circuit and
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homodyne detector-based ELU activation circuit, via opto-
electronic circuit simulators. Unlike previous works, our
architecture has a circuit structure where a small number of
optical devices are serially connected.

Our futureworkwill be devoted to developing amethod-
ology for reducing the size of ONN without sacrificing the
inference accuracy by pruning the neurons and their inputs
appropriately.
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