
Integration of Minimum Energy Point Tracking and
Soft Real-Time Scheduling for Edge Computing

Abstract—In the upcoming Internet of Things era, reducing
energy consumption of embedded processors is highly desired.
Minimum Energy Point Tracking (MEPT) is one of the most
efficient methods to reduce both dynamic and leakage energy
consumption of a processor. Previous works proposed a variety
of MEPT methods over the past years. However, none of them
incorporate their algorithms with practical real-time operating
systems, although edge computing applications often require low
energy task execution with guaranteeing real-time properties.
The difficulty comes from the time complexity for identifying
MEP and changing voltages, which often prevents real-time
task scheduling. This paper proposes an approximated MEPT
algorithm, which reduces the complexity of identifying MEP
down to that of Dynamic Voltage and Frequency Scaling (DVFS).
We also propose a task scheduling algorithm, which adjusts
processor performance to the workload, and provides a soft real-
time capability to the system. With these two methods, MEPT
became a general task, and the operating system stochastically
adjusts the average response time of a processor to be equal to a
specified deadline. The experiments using a fabricated test chip
show that the proposed algorithm introduced the energy loss by
only 0.5% at most without sacrificing the fundamental real-time
properties.

Index Terms—Minimum Energy Point Tracking (MEPT), Dy-
namic Voltage and Frequency Scaling (DVFS), Adaptive Body
Biasing (ABB), Real-Time Operating System (RTOS), Soft Real-
Time Scheduling

I. INTRODUCTION

In embedded systems, reducing energy consumption is
raising its importance since the Internet of Things applications,
e.g., sensor networks, become popular and take on a reality.
Such applications are typically equipped with a tiny battery
and evaluate sensor information with wireless communication.
To maximize the battery cycle, the processor must reduce
its energy consumption as low as possible. On the other
hand, such applications deal with sensors or actuators, which
requires real-time capability.

For reducing energy consumption, Dynamic Voltage and
Frequency Scaling (DVFS) has been widely studied. It dy-
namically controls supply voltage (VDD) and the frequency
of a processor. Since dynamic energy is proportional to the
square of VDD, DVFS can drastically reduce the active proces-
sor’s energy consumption. Motivated by the significant energy
reduction and simple implementation, many researchers inte-
grates DVFS into real-time systems [1], [2], [3], [4], [5], [6].
However, in the near- or sub-threshold region, leakage energy
becomes dominant, and DVFS only reduces it linearly, which
limits the efficiency of DVFS.

Leakage energy is proportional to the power of threshold
voltage, which can be controlled linearly through body bias
voltage (VBB). Therefore, supplying the optimal VBB for VDD

reduces overall energy consumption significantly. Such an
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Fig. 1. Contours and MEP curve

operating point is called Minimum Energy Point (MEP), and
several MEP tracking (MEPT) methods are proposed over the
years to overcome the limitation of DVFS [7], [8], [9].

Figure 1 shows the outline of delay contours, energy con-
tours, and an MEP curve of a processor. MEP is the point
where the delay and energy contours are tangent [10]. The
center of the energy contour is the operating point, which
globally minimizes the processor’s energy consumption. We
refer to this point as a global minimum energy point (GMEP)
since it is treated as a reference point in our proposal. Note
that we cannot reduce energy any more than GMEP even if we
reduce the processor’s frequency. Thus, we do not take care
of the MEP curve below the GMEP.

If we assume DVFS uses VBB = 0 only without loss of
generality, MEPT is about three times more energy-efficient
than DVFS in our experiment as shown in Fig. 1. The
processor only consumes 32 pJ per cycle with MEPT while it
consumes 94 pJ with DVFS, when the frequency is 100MHz.

However, searching for MEP at runtime is not trivial. The
difference between DVFS and MEPT is their complexity of
control. DVFS only scales the VDD. In contrast, MEPT needs
to adjust both the VDD and VBB. This additional tuning knob
makes MEPT much more complicated. Since MEP shifts
widely due to the temperature change or process variation,
VDD and VBB need to be appropriately controlled. Otherwise,
a large amount of energy loss may be involved. On the other
hand, accurate MEPT relies on energy measurement, which
requires considerable time. Moreover, the overhead of chang-
ing VDD and VBB also prevents real-time task scheduling.
Therefore, implementing an accurate MEPT algorithm on real-
time systems is challenging.

This paper proposes a concept of approximated MEPT,



where the complexity is almost equivalent to DVFS. The key
idea is to approximate the MEP curve by concatenated straight
lines. The fact that maximum operating frequency on the
processor’s MEP curve is almost linear to VDD also plays an
important role. Thanks to the approximation, the measurement
phase of MEPT is skipped, and the system can find near MEP
immediately on the request of performance change. The points
for deriving the lines are accurately measured at the boot phase
or when the chip temperature changes.

The method mentioned above identifies MEP in a real-
time manner. However, shifting VDD and VBB still includes
overhead, which affects real-time processing. To implement
the MEPT algorithm on a real-time operating system (RTOS),
we also propose a task scheduling algorithm. The key idea
is to introduce an M/M/1 model of queuing theory into soft
real-time scheduling, which stochastically adjusts processor
frequency to the workload. Since it asymptotically controls
average response time to be equal to a specified deadline
to provide a soft real-time capability to the system, it does
not require any rapid voltage and frequency change. It makes
MEPT more practical to integrate into real-time systems.
This algorithm can be implemented by applying some minor
changes to an existing RTOS kernel. To the best of our
knowledge, this is the first approach that integrates a MEPT
algorithm into a real-time task scheduling framework.

The rest of the paper is organized as follows. Section II
summarizes previous works and introduces the main contribu-
tions of this work. Section III describes the theory behind
MEPT. Section IV proposes the method of approximated
MEPT. Section V introduces the task scheduling algorithm
of implementing MEPT to an RTOS. Section VI shows the
experimental result on an actual chip. Section VII concludes
this paper.

II. RELATED WORK AND OUR CONTRIBUTION

As mentioned earlier, several MEPT algorithms are pro-
posed over the years.

A self-tuning MEPT processor is proposed in [9]. It au-
tomatically adjusts circuit voltages by hardware so that the
processor always operates on the MEP condition. However, it
consumes considerable time for power measurement required
to identify MEP. Additionally, since the hardware automat-
ically controls voltages with timing overhead, no real-time
capability of software is guaranteed.

An approximated MEPT algorithm is proposed in [11]. It
approximates the MEP curve by concatenated straight lines to
achieve real-time identification of MEP. However, it does not
discuss the integration of MEPT into a real-time operating
system. Even if MEP is identified in a real-time manner,
shifting VDD and VBB still consumes considerable time, which
may prevent the tasks from real-time processing. Besides, it
does not take care of the GMEP, which may induce a situation
that reducing operating frequency unexpectedly increases en-
ergy consumption. Moreover, it does not propose any concrete
method to deal with the change of temperature.

Our methodology overcomes the two issues mentioned
above, the overhead of identifying MEP and changing voltage.
The method for addressing the former is similar to [11], but
ours tracks GMEP without approximation. It is accurately
tracked at once exceptionally and does not induce overhead
usually. Additionally, our task scheduling model handles the
MEPT operation as a general workload and provides a soft
real-time capability of an operating system.

III. MINIMUM ENERGY POINT TRACKING

This section explains the theoretical background of MEPT
and a conventional method to identify MEP accurately. The
analytical solution of the MEP is formed from circuit delay
and energy consumption. The following subsections describe
how VDD and VBB affect factors of the MEP.

A. Switching Energy Consumption

Logic circuits are composed of switching MOSFET gates.
These can be modeled as charging or discharging capacitors.
Supplying voltage VDD to a capacitor C consumes energy
EC = CVDD

2/2. Summing up these energies for the entire
chip, we obtain dynamic energy consumption per cycle Ed.

Ed =
∑

EC = k1VDD
2. (1)

Here, k1 is a fitting parameter which represents the active gate
capacitances of the entire processor.

B. Threshold Voltage and Leakage Current

Threshold voltage of an FET (VTH) can be approximated
as:

VTH ' VTH0 − kγVBB. (2)

Here, VBB is the body bias voltage of the FET. VTH0 is the
threshold voltage at VBB = 0, and kγ is the constant depending
on process technology and temperature.

Sub-threshold leakage current of an FET (Ids) is modeled
as:

Ids = Ids0 exp

(
Vgs + ηVds − VTH

nφT

){
1− exp

(
−Vds
φT

)}
.

(3)
Here, Ids0 is the leakage current at threshold voltage. Vds is
the drain-source voltage, η represents drain-induced barrier
lowering (DIBL) coefficient [12], and n is the ideal coefficient.
Furthermore, φT is the thermal voltage defined as φT = kT/q
using boltzmann constant k, temperature T , and elementary
charge q.

C. Static Energy Consumption

Static leakage current of a processor (Is) is the summation
of sub-threshold leakage, gate leakage, and junction leakage.
Static energy consumption per cycle (Es) can be expressed as:

Es = VDDIsTclk. (4)

Here, Tclk is the clock period. In this paper, we approximate
Is to be equal to sub-threshold leakage.

Sub-threshold leakage is the leakage current of an off-state
FET, which is equal to the situation Vgs = 0 in (3). The



parameters except for VTH can be approximated as constants.
Thus, Is ∝ exp(−VTH/Ns) holds. Besides, the clock is
controlled so that its period is equal to the critical path delay
D. In this case, (4) can be transformed into

Es = VDDIsD = k2DVDD exp

(
−VTH

Ns

)
(5)

where k2 is a fitting parameter, and Ns = nφT .

D. Delay

Consider discharging a capacitor C of an FET gate by
constant current I . When the gate’s voltage reaches half of
VDD, we assume the switching is done. In this scenario, the
switching time τ is expressed as τ = CVDD/(2I).

In the super-threshold region (VDD � VTH), I can be
modeled as I ∝ (VDD − VTH)

α using a constant α. In
the other case, substituting VDD to Vgs in (3) yields I ∝
exp{(VDD − VTH)/Ns}.

Summing up τ for the critical path, the delay of the
processor can be expressed as:

D =
∑

τ =

{
k3VDD

(VDD−VTH)α (VDD � VTH)

k4VDD exp
(
−VDD−VTH

Ns

)
(otherwise)

.

(6)
Here, k3 and k4 are fitting parameters.

E. Minimum Energy Point

MEP is a pair of VDD and VTH which minimizes overall
energy Ed + Es at the given delay D0. The solution of this
optimization problem satisfies (7) with some constant λ.





∂
∂VDD

(Ed + Es) + λ ∂D
∂VDD

= 0
∂

∂VTH
(Ed + Es) + λ ∂D

∂VTH
= 0

D −D0 = 0

. (7)

By substituting (1), (5), and (6), (7) can be transformed into
(8) in the super-threshold region.

VDDEs

(2Ed + Es)Ns
=

αVDD

αVDD − (VDD − VTH)
. (8)

Accurate MEPT based on (8) can be realized with integrated
on-chip sensors [10]. We assume that accurate MEPT can be
achieved at runtime.

IV. APPROXIMATED MEPT
This section proposes the methodology of approximating an

MEP curve and identifying MEP in real-time.

A. Methods to identify the GMEP

Before approximating the MEP curve, we describe the
method to identify the GMEP. It can be found analytically by
solving the point where the derivative of the energy contour
is zero. In other words, the energy contour at the GMEP is
horizontal and vertical at the same time, as shown in Fig. 2.
The condition which makes the energy contour to be horizontal
is given by (9).

∂

∂VTH
(Ed + Es) = 0. (9)
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In the super threshold region, (9) can be transformed into

VDD − VTH = αNs. (10)

On the other hand, (9) holds true so that the energy contour
is always horizontal in the near- or sub-threshold region.

Based on the discussions above, the following method can
be a practical solution to identify the GMEP.

1) Find a VBB value on the MEP curve where the VDD is
the nominal voltage of the target technology.

2) Increase VBB value with preserving the VDD value until
energy is no longer reduced, i.e, the energy contour is
horizontal. This step put the processor into the near-
threshold region. If such a VBB does not exist, supply
the maximum allowed VBB.

3) Fix VBB and decrease VDD to identify the GMEP. Since
the energy contour is always horizontal in this region,
scaling VDD to make the contour vertical can find the
operating point whose energy consumption is equal to
the GMEP, but the frequency is lower.

4) Fix VDD and decrease VBB until energy increases. This
makes the processor speed faster as possible while
preserving energy consumption.

Figure 2 describes the method. Step 2 and 3 can be accelerated
by applying a binary search algorithm.

B. Linear approximation of the MEP curve

We approximate the MEP curve as shown in Fig. 3. The
method runs in the following sequence. All MEPs except for
GMEP is tracked based on (8).

1) Search for MEP at the nominal VDD. In this case, it is
0.9V.

2) Search for GMEP.
3) Apply VBB of the point obtained by 1) and VDD of the

point obtained by 2), and measure the delay. We refer
to this delay as D1.

4) Search for MEP on the D1 contour.
5) Calculate the average frequency of 1) and 2). We refer

to the delay corresponding to this average frequency as
D2.
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6) Search for MEP on the D2 contour.
7) Connect the points obtained by 1), 2), 4), 6) with three

straight lines.

C. Approximation of VDD

From (6), it is shown that the operating frequency f (inverse
of D) is proportional to VDD

α−1 in the super-threshold region.
Taylor series of f around VDD = V0 is

f =
a0
V0

+
a1

1!V0
2 (VDD−V0)+

a2

2!V0
3 (VDD−V0)2+ · · · (11)

where an is a polynomial proportional to VDD − V0α−n. This
implies that f can be approximated with a linear function of
VDD if V0 is large enough.

Figure 4 shows the plot of f and VDD. It clearly shows
the linearity of the relationship. We approximate this curve by
concatenating three straight lines which connect four points
used in the MEP curve approximation.

V. OS BASED MEPT

This section proposes an algorithm of task scheduling that
treats MEPT as a general workload to provide the soft real-
time capability.

Firstly, we assume the system follows an M/M/1 model as
shown in Fig. 5. The parameters are described in the following
paragraphs. We assume that tasks are activated following the
exponential distribution, and the CPU also processes them
following the exponential distribution. The number of CPUs
is assumed to be one in this paper.

              

d

Tasks
λ µCPU

Usage: ρ

Time

ρ : 1− ρ

Busy Idle

Fig. 5. The M/M/1 model of task scheduling

We define the average arrival time interval of tasks as
1/λ, and the average processing time of tasks as 1/µ. λ can
be estimated by measuring the average time interval of task
activations.

The average utilization ratio of the M/M/1 model is given
by ρ = λ/µ. This can be estimated by measuring the ratio
of times that the processor is busy or idle. Therefore, we can
obtain µ = λ/ρ.

We propose an algorithm to control the average response
time r = 1/(µ− λ) to be equal to the deadline d. Firstly, we
assume dµ/df = 1, i.e., scaling the frequency f by a factor
a makes average processing time 1/µ to be 1/(aµ). In this
scenario, our aim is at holding the following equation true:

d =
1

aµ− λ ⇔ a =
1 + λd

µd
= ρ

(
1

λd
+ 1

)
. (12)

Periodically scaling f by a adjusts the processor performance
for the workload automatically to achieve the best trade-off
between response time and energy consumption.

This methodology can be implemented with a minor change
applied to an existing RTOS, as shown in Algorithm 1 and
2, and a task to perform MEPT, as shown in Algorithm 3.
Although these algorithms do not depend on RTOS, they are
written for TOPPERS ASP3 [13], an ITRON based RTOS as
a prototype.

Algorithm 1 is an extended dispatcher. In addition to the
context switching routine, it measures the time that the pro-
cessor is active, which is referred to as Tbusy. When waking up
from sleep, it starts a timer at line 5. Moreover, when entering
to sleep, it stops the timer and updates Tbusy at line 9.

Algorithm 2 is an extended function to activate a task. In
general, this function provides a task for the ready queue and
updates the scheduled task if needed. The extended part from
line 6 to 8 measures the arrival time intervals of tasks and
update the parameter 1/λ.

Algorithm 3 is a task to perform MEPT. This is a general
task of the RTOS and periodically executes the same routine.
Firstly, it calculates ρ and a from Tbusy and 1/λ obtained
from the kernel. After that, it adjusts the performance of the
processor and change VDD and VBB. This operation involves a
specific overhead; however, since it is one of the general tasks
and the overhead can be considered as included in the time
for measurements of Tbusy and 1/λ, this overhead is treated
as a workload.

In addition to these routines, the characterization of the
MEP curve is necessary. It can be done once at the boot
phase. If the effect of temperature is considerable, it should
be performed periodically according to the time constant of
temperature change. This is also taken into account as a kind
of workload.



Algorithm 1: An extension of dispatcher

1 Function dispatcher(void):
Data: p runtsk: A global variable pointing to a

task control block(TCB) of the currently
running task.

Data: p schedtsk: A global variable pointing to a
TCB of the currently scheduled task.

Description: Perform context switching. Save the
context of p runtsk and restore the
context of p schedtsk.

2 if p runtsk!= NULL then
3 Save context;
4 else
5 Start Tbusy timer;
6 end
7 p runtsk ← p schedtsk;
8 if p runtsk == NULL then
9 Stop Tbusy timer;

10 Update Tbusy by adding the timer value;
11 Enter sleep;
12 else
13 Restore context;
14 end
15 end

Algorithm 2: The function to make a task runnable

1 Function make_runnable(p tcb):
Data: p tcb: A pointer to a TCB to make

runnable.
Description: Add p tcb to the ready queue and

update p schedtsk if needed.
2 Add p tcb to the ready queue;
3 if p tcb has the highest priority then
4 p schedtsk ← p tcb;
5 end
6 Stop 1/λ timer;
7 Update 1/λ;
8 Reset and start 1/λ timer;
9 end

VI. EXPERIMENT

This section shows the experimental results obtained with
a fabricated test chip running in a thermostat chamber to
evaluate our linear approximation method for MEP curves.
They are compared with the precise ones to verify that the
energy loss is negligible.

A. Target Processor

We performed experiments on an actual embedded pro-
cessor. It is fabricated with 55 nm deeply depleted channel
CMOS, and the core is based on 32-bit RISC-V instruction set
architecture. It is equipped with an integrated on-chip leakage
monitor, a temperature sensor, and performance counters to
track minimum energy points accurately.

Algorithm 3: MEPT Task

1 Task mept(void):
Description: Periodically update the operating

condition of the processor.
2 while true do
3 Compute ρ = Tbusy/MEPT PERIOD;
4 Compute a;
5 loc_cpu(); // Disable interrupts
6 if a > 1 then
7 Increase VDD and VBB along linearized

MEP plot;
8 Increase f ;
9 else

10 Decrease f ;
11 Decrease VDD and VBB along linearized

MEP plot;
12 end
13 unl_cpu(); // Enable interrupts

/* Delay task execution for
MEPT PERIOD. */

14 dly_tsk(MEPT PERIOD);
15 end
16 end
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B. Result

Figure 6 shows MEP curves over the temperature ranging
from 25 °C down to −40 °C. When the temperature goes
down, the MEP curve shifts towards the lower-left of the
graph. This behavior is explained from (5). Leakage energy
Es is exponentially related to the temperature. Therefore, in
a lower temperature condition, leakage energy Es is much
smaller than that of an original temperature condition. In
contrast, since switching energy Ed is independent of the
temperature, Ed is dominant in the low-temperature condition.
Thus, the total energy consumption can be reduced toward
MEP by lowering both VDD and VTH without degrading the
performance of the processor. This is the reason why the MEP
curve shifts to the lower-left when the temperature is lowered.
Our method appropriately approximates the MEP curve against
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the change of its shape.
Figure 7 shows the relative energy loss introduced by

our approximation method. There are four points for each
temperature condition where the losses are zero since they
are on the accurate MEP curve. The maximum loss is only
0.5% at 80MHz, −25 °C, which shows that the effect of the
approximation is negligible.

Figure 8 shows the relationship between f and VDD for
each temperature condition. The range of frequency is around
10MHz to 400MHz. In the super-threshold region, all condi-
tions have high linearity, which shows that the linear approx-
imation can be applied for wide range of the temperature.

Figure 9 shows the absolute error of VDD introduced by
the approximation. The maximum error is only on the order
of mV, and especially around 30MHz to 200MHz, which
is mostly used, the error is less than ±5mV. It is negligible
compared to the precision of the DC-DC converter.

VII. CONCLUSION

Throughout this paper, we proposed an approximated MEPT
method. Our approximation of the MEP curve reduces the
complexity of MEPT down to that of DVFS with a small
amount of energy loss and makes it possible to integrate
into RTOS. The method is verified on an actual microproces-
sor chip fabricated with commercial 55 nm deeply depleted
channel CMOS. Although our approximated MEPT method
does not guarantee that the processor’s operating frequency is
exactly the same as the requested frequency, our scheduling
algorithm adjusts processor speed to meet the soft real-time
deadline as much as possible. Additionally, the MEPT oper-
ation itself is treated as a general task of RTOS. This makes
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the kernel to handle MEPT as a workload and prevent other
tasks from violating the deadline.
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