
Dynamic Verification of Approximate Computing
Circuits using Coverage-based Grey-box Fuzzing

Kazuki Yoshisue
Nagoya University

E-mail:yoshi@ertl.jp

Yutaka Masuda
Nagoya University, JST PRESTO

E-mail:masuda@ertl.jp

Tohru Ishihara
Nagoya University

Abstract—Approximate computing (AC) has recently emerged
as a promising approach to the energy-efficient design of digital
systems. For realizing the practical AC design, we need to verify
whether the designed circuit can operate correctly under various
operating conditions. Namely, the verification needs to efficiently
find fatal logic errors or timing errors that violate the constraint
of computational quality. This paper proposes a novel dynamic
verification methodology of the AC circuit. The key idea of the
proposed methodology is to incorporate a quality assessment
capability into the Coverage-based Grey-box Fuzzing (CGF).
CGF is one of the most promising techniques in the research
field of software security testing. By repeating (1) mutation of
test patterns, (2) execution of the program under test (PUT), and
(3) aggregation of coverage information and feedback to the next
test pattern generation, CGF can explore the verification space
quickly and automatically. On the other hand, CGF originally
cannot consider the computational quality by itself. For overcom-
ing this quality unawareness in CGF, the proposed methodology
additionally embeds the Design Under Test (DUT) mechanisms
into the calculation part of computational quality. Thanks to
the integration of CGF and DUT mechanism, the proposed
framework realizes the quality-aware feedback loop in CGF and
thus quickly enhances the verification coverage for test patterns
that violate the quality constraint. In this work, we quantitatively
compared the verification coverage of the approximate arithmetic
circuits between the proposed methodology and the random test.
In a case study of an approximate multiply-accumulate (MAC)
unit, we experimentally confirmed that the proposed methodology
achieves the target coverage three times faster than the random
test.

Index Terms—Approximate Computing (AC), Coverage-based
Grey-box Fuzzing (CGF), Design Under Test (DUT) mechanism,
verification, computational quality

I. INTRODUCTION

Approximate computing has recently emerged as a promis-
ing approach to the energy-efficient design of digital systems
[1]–[7]. While the conventional systems require exact and
completely deterministic computation, approximate computing
allows some loss of quality or optimality in the computed
result. This concept is suitable for a wide range of applications
such as digital signal processing, image, audio, video process-
ing, graphics, wireless communications, and machine learning.
By exploiting the inherent resilience of those applications, ap-
proximate computing techniques substantially improve energy
efficiency (e.g. [1]).

After designing the AC circuit, we need to verify whether
the designed circuit can operate correctly under various op-

erating conditions. Here, the fundamental assumption for the
verification is completely different between the conventional
circuit and the AC circuit. For example, in the conventional
circuit, all paths except for false paths should not cause
logic and timing errors. On the other hand, the AC circuit
gives a constraint in the quality of computational results, e.g.,
inference accuracy in the machine learning domain, and allows
the occurrence of errors as long as the circuit satisfies the
target constraint. Namely, in the verification of AC design,
we need to find fatal logic errors or timing errors that violate
the constraint of computational quality. Originating from the
difference of target errors in the verification, the verification
technique for the AC circuit is still immature compared
with the AC design methodology. Therefore, a novel quality
verification methodology for AC circuits is strongly desired.

Quality verification methodologies of the AC circuit can
be divided into static and dynamic approaches. As a static
approach, formal verification based techniques are proposed in
recent years [8]–[10]. These techniques solve the satisfiability
(SAT) problems and thus find a correction of errors that
violate quality constraints. On the other hand, a dynamic
verification technique prepares the test patterns and gives them
to the target circuit. After running the test patterns on the
circuit, we can obtain the computational results and judge
whether the obtained results are acceptable or not. Since the
dynamic approach is straightforward [11] and easy-to-handle,
the dynamic verification through the simulation is one of
the most widely deployed approaches [12]. However, in the
dynamic approach, the verified hardware components heavily
depend on the input test pattern. From this point of view, the
efficient generation of test patterns is crucially important.

Very recently, for improving the test coverage efficiently,
Coverage-guided Grey-box Fuzzing (CGF) has been actively
developed in the research field of software security test-
ing [13]–[15]. CGF is one of the testing technique called
fuzzing [16]–[22]. CGF automatically generates and executes
test patterns that enhance verification coverage by repeatedly
executing (1) mutation of test patterns, (2) execution of the
program under test (PUT), and (3) tabulating code coverage
and feeding back to the next test pattern generation. CGF
improves the code coverage rapidly by keeping mutation and
coverage aggregation lightweight [16]. This is quite attractive
not only for software testing but also for hardware verification

Verification Runtime

Verification Coverage

Proposed: CGF + DUT

Conv. Rand. Approach

Target Coverage

Fig. 1: Expected speed-up effects thanks to the proposed
verification framework.

[23].
This paper proposes a novel dynamic verification method-

ology of the AC circuit. The key idea of the proposed
methodology is to incorporate a quality assessment capability
into the CGF. We found that CGF originally cannot consider
the computational quality by itself. In this case, the mutation
could not generate test patterns efficiently that violate the
constraint. For overcoming this quality unawareness in CGF,
the proposed methodology additionally embeds the Design
Under Test (DUT) mechanisms into the calculation part of
computational quality. Thanks to the integration of CGF and
DUT mechanism, the proposed framework realizes the quality-
aware feedback loop in CGF and thus quickly enhances the
verification coverage for test patterns that violate the quality
constraint.

Figure 1 illustrates the expected coverage improvement
thanks to the proposed methodology, i.e., a blue curve. As a
baseline, we plotted the random stimulus approach with an or-
ange curve, which is typically used in the dynamic verification
domain [12]. When we start the verification, the random test
may improve the coverage steadily since a number of easy-to-
activate paths are unexplored yet. Then, if we continue to run
the verification, the random test gradually decelerates since
the random approach suffers from finding paths that rarely
activate or scarcely affect the computational quality. On the
other hand, the proposed approach incorporates the coverage-
aware feedback loop into the test pattern generation. Besides,
we take into account the computational quality with the DUT
mechanisms for the AC verification. Thanks to the CGF and
DUT, the proposed framework is expected to accelerate the
verification speed compared with the typical random testing.

The main contributions of this work include (1) the ver-
ification methodology of AC circuits using CGF and (2)
the quality-aware feedback framework thanks to the DUT
mechanism. To the best of our knowledge, this is the first
work that proposes the dynamic verification framework for
AC circuits with CGF. Moreover, for efficiently finding test
patterns that violate quality constraints, the proposed method-
ology utilizes the DUT mechanism. Experimental results show

that the proposed methodology contributes to finding logic
paths with a low activation probability and thus achieves the
target coverage three times faster than the simple random test.

The rest of this paper is organized as follows. Section II
describes the assumed verification of AC design and CGF
and highlights the challenges for applying CGF to AC circuit
verification. Section III proposes a quality verification method-
ology of AC circuits using the CGF and DUT mechanisms.
Section IV compares the coverage between the proposed
framework and the random test. Then, this section discusses
the speed-up effects of coverage improvement thanks to the
proposed methodology in terms of DUT mechanisms. Finally,
the concluding remarks are given in Sect. V.

II. ASSUMPTION AND CHALLENGES

This section explains the assumed verification of AC circuit
and CGF and summarizes the challenges for applying CGF
to the AC verification. Section II-A highlights the difference
between the verification of the AC circuit and the conven-
tional circuit. Then, Section II-A introduces assumed CGF.
Section II-B discusses the challenges of CGF for verifying
the AC design.

A. Assumed Verification of AC Design and Fuzzing

First, let us introduce the fundamental difference of the
verification concept between the conventional circuit and AC
circuit using Fig. 2. In this work, we assume the dynamic
verification where the computational result can be observed,
and the constraint of computational quality is given.

In Fig. 2, three input signals InA, InB, and InC are given
to the adder, and one output signal Y can be observed. Let us
suppose the values of three input signals are 1001(2), 0001(2),
and 0(2). Also, in this example, the quality constraint is set to
the error of Y by less than 15%. In the conventional design,
any logic errors and timing errors cannot be allowed, as shown
in Fig. 2(a). Hence, the verification goal is to find logic and
timing errors as much as possible. On the other hand, in
the AC design, the error occurrence is allowed as long as
the circuit satisfies the quality constraint. For example, in

InA :

InB : AC adder

InC : 0

(b) 4-bit AC adder w/ error. If the error of Y is less than 15%,

computational quality is assumed to be acceptable.

Acceptable

Y :

InA :

InB : Exact

adder
InC : 0

Violate

(a) 4-bit exact adder w/ error

Y :

Fig. 2: (a) In the conventional circuit, any error occurrence
is prohibited. (b) In the AC design, the error occurrence is
allowed as long as the computational quality is acceptable.

Fig. 2(b), Y has the error of 10% (= 1010(2)−1001(2)
1010(2)

), but this
error is smaller than 15% and thus acceptable. From the above,
the AC verification aims to identify errors that violate the
quality constraint, which is totally different from conventional
verification.

Next, this section explains the assumed CGF using Fig. 3.
In CGF, the test target space is automatically searched by
repeating (1) test pattern mutation, (2) PUT execution, and
(3) coverage-wise feedback to the next test pattern generation
[13]–[15]. As for the mutation, various strategies are developed
for exploring the target space efficiently, e.g., bit-flip, byte-flip,
arithmetic operation, havoc, and random operations in [13]. In
the PUT execution, the activated paths can be measured via the
instrumentation codes, which are inserted via the source code
compile. When new paths are activated in the PUT execution,
CGF adds the current input to the queue as an interesting
seed for the mutation. Thanks to the lightweight mutation and
coverage feedback loop, CGF improves the code coverage
rapidly [16], which is quite attractive for the verification.
Here, since CGF has been actively developed in the research
field of software security testing [13]–[15], most of the CGF
methodologies are developed for high-level languages like C
language. Based on this background, this work assumes to
verify the AC design starting from the C-flavored hardware
description language (HDL), e.g., SystemC, CUDA C, and
OpenCL.

B. Challenges of CGF for Verifying the AC Design

As mentioned in the previous section, CGF measures the
code coverage through the PUT execution. When the coverage
improves, the current input pattern is incorporated into the
mutation. Therefore, the heart of CGF lies in the coverage
assessment and feedback on test patterns. From this point of
view, if we apply CGF to the verification of AC circuits, CGF
needs to evaluate the code coverage of the AC circuit, taking
into account the computation quality. However, we found that
CGF originally cannot consider the computational quality by
itself, which will be explained using Listing 1 as an example.

Listing 1: Code example of AC adder written in SystemC
1 int sc_main (int argc, char *argv[]) {
2 sc_signal<bool> InA, InB, InC;
3 sc_signal<bool> Y, OutC;
4 AC_Full_Adder *AC_FA1;
5 AC_FA1 = new AC_Full_Adder ("AC_FA1");
6 (*AC_FA1)(InA, InB, InC, Y, OutC);
7
8 return 0;
9 }

Listing 1 shows a code example of an AC adder written in
SystemC. Lines 2 and 3 are the input and output declaration.
Lines 4 to 6 correspond to the instantiation of the AC adder
module. For simplicity, the content of AC adder module is
omitted in the example. From Listing 1, we can see that the
HDL of pure AC adder does not include any mechanism to

Initial

test pattern
Queue

Test

pattern

PUT w/

C-flavored

HDL

Mutation

Feedback

CGF : Automatic processing inside the dotted line

Information:

Coverage,

Crashes, …

output
Input

Prepared by user

Fig. 3: Assumed CGF for C-flavored HDL. CGF automatically
searches the target space by repeating (1) test pattern mutation,
(2) PUT execution, and (3) feedback to the next test pattern.

evaluate how much calculation error occurs at output, e.g.,
Y, Cout. If CGF fails to acquire the violation condition of
quality constraint, the target coverage information cannot be
corrected appropriately. In this case, the mutation could not
generate test patterns efficiently that violate the constraint. On
the other hand, in the verification of AC circuit, we need to find
test patterns that violate the computational quality constraint
as discussed in Sect. II-A. Therefore, for applying CGF to
the quality verification of AC circuits, the countermeasure
for evaluating the quality-aware code coverage is crucially
important.

III. PROPOSED VERIFICATION FRAMEWORK

In this section, we propose a quality verification framework
for AC circuits using CGF. The key idea of the proposed
framework is to incorporate the quality assessment capability
into the CGF. The proposed methodology embeds the DUT
mechanism into the quality calculation part of HDL and
thus enables CGF to evaluate whether the quality constraint
is satisfied or not. Thanks to the integration of CGF and
DUT mechanism, the proposed framework realizes the quality-
aware feedback loop in CGF and thus quickly enhances the
verification coverage for test patterns that violate the quality
constraint.

Figure 4 shows the overview of the proposed framework.
As inputs, the proposed framework receives the hardware de-
scribed in C-flavored HDL and the target computational qual-
ity. First, the proposed framework inserts the DUT mechanism
into the received HDL. Next, the HDL with the embedded
DUT mechanism is passed through the CGF. In the CGF, PUT
is performed, and then the coverage is derived taking into
account the target quality. Finally, the proposed framework
outputs the results of CGF, such as the coverage, the number
of crashes, and test patterns that violate the constraint. The
following subsection describes the detail of DUT mechanism.

CGF

Violation information
(# of PUT exec. , test pattern)

path 35

path15
…

C-flavored HDL

(e.g., SystemC)

Compt. Const.

Add DUT

mechanism

to HDL

OutputInput

Fig. 4: The overview of the proposed framework. The proposed
framework incorporates the quality assessment capability into
the CGF via the Design Under Test (DUT) mechanism.

A. DUT Mechanism for CGF

The proposed DUT mechanism consists of two key compo-
nents; (1) the bridge between the test cases given from CGF
and the input test patterns for HDL, (2) the classification of
the test pattern with the computational quality. This section
explains the implementation and contribution of DUT mech-
anism using an example of Listing 2, which adds the DUT
mechanism to the pure AC adder, i.e., Listing 1.

Listing 2: Code example of AC adder with DUT
1 int sc_main (int argc, char *argv[]) {
2
3 char buf[8];
4 if (read(0, buf, 8) < 1) { exit(1);}
5 int value = *(int*) &buf[0];
6 input = value%(1<<n);
7 int a, b, c = 0;
8
9 //Update a, b, c referring to input.

10 TestPatternGenerate(input);
11
12 sc_signal<bool> InA, InB, InC;
13 sc_signal<bool> Y, Cout;
14 sc_signal<bool> EX_Y, EX_Cout;
15
16 AC_Full_Adder *AC_FA1;
17 AC_FA1 = new AC_Full_Adder ("AC_FA1");
18 (*AC_FA1)(InA, InB, InC, Y, Cout);
19
20 EX_Full_Adder *EX_FA1;
21 EX_FA1 = new EX_Full_Adder ("EX_FA1");
22 (*EX_FA1)(InA, InB, InC, EX_Y, EX_Cout);
23
24 InA.write(a); InB.write(b); InC.write(c);
25
26 if ((Y - EX_Y) > ERROR_TH){
27 if (value%(1<<n) == 0){;}
28 else if (value%(1<<n) == 1){;}
29 ...
30
31 // When the quality is violated,
32 // CGF records using the crash.
33 abort();
34 }
35
36 return 0;
37 }

First, we explain the bridge part between the mutated test
cases and the input pattern to HDL. We highlight that this
bridge is the essential part for constructing the feedback loop,
as shown in Fig. 3. Let us see the example of Listing 2.
First, the bridge part saves the input character string from
CGF (lines 3 and 4). Then, the stored string is converted to
an integer type (lines 5 to 7). After that, in line 10, the test

Search space

of conv. design

Violate

const.

Focus on errors

that violate the

compt. const.

Satisfy

const.

Search space

of AC design

Satisfy

const.
Violate

const.

Could reduce search space !

Fig. 5: By focusing on errors that violate the computational
quality, the search space and thus the required runtime in the
verification could be reduced.

pattern to the adder is updated by referring to the integer, e.g.,
using the pre-defined look-up table. Finally, the test pattern
can be successfully given to the input of adders in line 24. In
summary, thanks to the bridge, the mutation by CGF can be
reflected directly on the input test patterns to HDL.

Next, the classification part of the test pattern is discussed.
In the proposed framework, the accurate circuit component is
first prepared for calculating the approximation error (Lines
14 and 20 to 22). Then, the computational results in the AC
component are compared with the accurate result for deriving
the error (Line 26). When the error exceeds the given threshold
value, the DUT mechanism starts to identify the test pattern
(Lines 27 to 33). More specifically, our framework inserts
conditional branches of the input test patterns for recogniz-
ing the executed pattern (Lines 27 to 29). For example, in
Listing 2, 8 (= 23) branches could be enumerated at most.
Since the CGF marks each branch at the compile time and
traces the executed branch in PUT phase, the above branch
description enables the CGF to sum up the branch coverage
that violates the computational quality. From the above, thanks
to the computational quality evaluation and classification of
test patterns, the proposed framework realizes the quality-
aware feedback loop in CGF and thus the quality verification
of AC circuit.

Here, another interesting consideration is that the quality-
aware CGF may reduce the verification time. Let us explain
the expectation with Fig. 5. As previously discussed with
Sect. II-A, the AC verification aims to identify errors that
violate the quality constraint. From this point of view, the
total number of errors we need to find could be dramatically
reduced compared with the conventional circuit. Consequently,
the required time consumption for dynamic verification is
expected to be saved significantly. Section IV-C discusses the
speed-up effect thanks to the quality-aware verification.

IV. EXPERIMENTAL EVALUATION

This section evaluates the trade-off relationship of the
proposed framework between the number of PUT execution
and the coverage. Section IV-A describes the evaluation setup.
Section IV-B shows the speed-up effects thanks to the pro-
posed methodology compared with the conventional random

testing. Then, Section IV-C discusses the speed-up effects in
terms of the path activation probability and the target error
space for verification.

A. Evaluation Setup

In this work, we use the approximate multiplier-accumulator
(MAC) unit, where the numbers of input bits and accumulation
clock cycles are set to 3 and 5, respectively. As the AC
technique, we select the bit-width scaling and then truncate
the least-significant bit of input. This circuit was implemented
with the SystemC language. Next, we add the DUT mechanism
to the approximate MAC unit as explained in Sect. III-A. In
this work, we add a quality constraint of the computational
error in approximate MAC result. Namely, we used the fol-
lowing equation to derive the error and set the constraint of
0.3 for the error threshold, e.g., ERROR TH in Listing 2.

error =
|Rac −Rex|

Rex
, (1)

where Rac represents the computational results of approximate
MAC unit, and Rex is the golden results of exact MAC unit.
Note that the above constraint is just an example, and the
proposed framework can cope with other settings in the same
manner.

Then, for taking into account the quality-aware coverage,
the branch insertion is performed, e.g., lines 27 to 29 in List-
ing 2. Here, if we naively enumerate all the combinations of
test patterns, the number of branch descriptions exponentially
explodes with the number of input bits and execution clock
cycles. For mitigating this issue, this work compresses the
number of branch descriptions using the accumulated results.
More specifically, our evaluation focuses on the pair of the
accumulated results until the fourth clock cycles and the test
pattern in the fifth clock cycle. In this case, the maximum
number of enumeration can be dramatically reduced, e.g.,
from 2(3+3)×5 ' 109 to (72 × 4) × (2(3+3)) ' 104 in this
experiment. Since this strategy is heuristic, developing a better
compression approach is one of our future works.

As the CGF tool, we select AFL 2.52b [13] and incorporate
the AFL in the proposed design. By running the PUT in CGF,
the quality-aware branch coverage can be obtained. Note that
other CGF tools [14], [15] can be similarly utilized in the
proposed framework. As a comparison, we select a typical
random approach as discussed with Fig. 1 in Sect. I, and
implement the approach using the C++11 random number
library. Since the implementation difference between the ran-
dom approach and AFL may cause an unfair comparison, we
do not directly compare the runtime but the number of PUT
execution between the proposed and random approaches. Note
that the upper bound of the number of PUT executions is set
to 10 million times. Consequently, the trade-off relationship
between the number of PUT executions and quality-aware
branch coverage is quantitatively evaluated. In this evaluation,
we use a computer machine equipped with Ubuntu 16.04 LTS
and AMD Ryzen Threadripper 3990X 64-Core Processor.

�

���

�

� ������� ������� ������� ������� �������

V
er

if
ic

at
io

n
 C

o
v

er
ag

e

PUT Executions

Proposed: CGF + DUT

Conv. Rand. Approach
3 times faster

@90% coverage

Fig. 6: Trade-off comparison results between the proposed and
random approach. The proposed methodology achieves the
90% coverage three times faster than the random approach.

B. Evaluation Results

Figure 6 shows the comparison results of the trade-off
relationship of the number of PUT executions and coverage
between the random test and the proposed methodology. From
Fig. 6, we can see two interesting observations. The first
finding is that the random test improves the coverage well at
the beginning of verification. For example, when we look at the
line where the coverage equals 50%, the random test repeats
the PUT executions 230 times while the proposed approach
requires 1,200 times. This result leads us to the consideration
that the random test has enough capability to find easy-to-
activate errors, which will be further discussed in Sect. IV-C.

On the other hand, when we continue to run the PUT,
we can observe the second tendency. That is, the proposed
methodology improves the coverage steadily, whereas the
random test rapidly decelerates. For example, if we focus on
the 90% coverage line in Fig. 6, the proposed framework takes
the PUT execution 1.0×106 times while the random approach
requires 3.0×106 times. In other words, at this coverage point,
the proposed approach is three times faster than the random
approach. From these results, we experimentally confirm that
the proposed methodology finally achieves the significant
speed-up effects compared with the typical random approach.

C. Discussion

The evaluation results in Sect. IV-B showed that the pro-
posed methodology achieves the speed-up effects. Let us
investigate the results in detail.

First, we examine the coverage improvement by the pro-
posed and random approaches in terms of the path activation
probability. As previously explained with Sect. III-A, the test
pattern to the AC circuit is determined by the strings from
CGF, e.g., lines 3 to 10 in Listing 2. Therefore, by modifying
the mapping function from the strings to test patterns, we
can control the average activation probability. Based on this
consideration, We prepare the six mapping functions where
the input probability of logical value 1 in each input bit is

0

0.5

1

1.0E+00 1.0E+02 1.0E+04 1.0E+06 1.0E+08V
er

if
ic

at
io

n
 C

o
v

er
ag

e

PUT Executions

Input bias :

Coverage improvement

decelerates w/

deeper input bias.

Fig. 7: The trade-off relationship of random test with different
input bias settings. The smaller value means the deeper bias,
i.e., the logic value 1 is unlikely to be inputted. In random
test, the coverage improvement significantly decelerates with
the deeper input bias.

0

0.5

1

1.0E+00 1.0E+02 1.0E+04 1.0E+06 1.0E+08V
er

if
ic

at
io

n
 C

o
v

er
ag

e

PUT Executions

Input bias :

Coverage improves

quickly even w/

deeper input bias.

Fig. 8: The trade-off relationship of the proposed framework
with different input bias settings. In the proposed framework,
the coverage improves quickly even with the deeper input bias.

biased to 1
4 , 1

8 , 1
16 , 1

64 , 1
128 , or 1

256 . Then, with these mapping
functions, we evaluate the trade-off relationship between the
number of PUT executions and coverage with the random test
and the proposed methodology. In this evaluation, we use an
approximate adder, which is family of adders in the literature
of [24].

Figures 7 and 8 show the evaluation results of random test
and proposed framework, respectively. For simplicity, both
figures plot the three results with the bias of 1

4 , 1
64 , and 1

256 .
From Fig. 7, we can see that the coverage improvement in
the random approach decelerates significantly when the input
bias becomes deeper. For example, when we look at the 40%
coverage line, the numbers of PUT executions are 135 with
the bias of 1

4 but 5.7 × 106 with the bias of 1
64 . On the

contrary, from Fig. 8, the proposed methodology significantly
mitigates the increase of PUT execution even with the deeper
input bias. For example, with the bias of 1

4 and 1
64 , the

required PUT executions at the 40% coverage are 800 and
5,400, respectively. These results clearly indicate that the
proposed methodology achieves a better trade-off relationship
in a circuit system, including a path with a low path activation

0

0.5

1

0 0.02 0.04 0.06 0.08 0.1

V
er

if
ic

at
io

n
 C

o
v

er
ag

e

Runtime (s)

Proposed: Insert branch into quality-

diagnosis part

Insert branch into

non-diagnosis part

Improve coverage

Fig. 9: Coverage improvement thanks to the branch insertion
into the diagnosis part of computational quality.

probability.
Lastly, we investigate the effectiveness of DUT mechanisms

in terms of the branch insertion strategy. As previously dis-
cussed with Fig. 5 in Sect. III-A, the required time consump-
tion for dynamic verification is expected to be reduced by
focusing on errors that violate the quality constraint. Based on
this expectation, we implement the DUT mechanism, which
inserts the branch into non-diagnosis part of computational
quality, e.g., line 25 in Listing 2. Then, we compared the
trade-off relationship between the runtime and coverage for
discussing the effectiveness of branch insertion into the di-
agnosis part, e.g., lines 27 to 29 in Listing 2. Note that the
identical CGF is utilized in the comparison. Figure 9 shows the
comparison result. From Fig. 9, we can see that the proposed
framework achieves a better trade-off between the runtime
and coverage. For example, at the runtime of 0.05 seconds,
the proposed improves the coverage from 43% to 74% by
31%. Therefore, we experimentally confirm that the proposed
framework improves the coverage efficiently thanks to the
quality-aware DUT mechanism.

V. CONCLUSION

This paper proposed the novel dynamic verification method-
ology of the AC circuit. The key idea of the proposed method-
ology is to incorporate the quality assessment capability into
the CGF via the DUT mechanism. Thanks to the integration of
CGF and DUT mechanism, the proposed framework realizes
the quality-aware feedback loop in CGF and thus quickly
enhances the verification coverage for test patterns that violate
the quality constraint. In this work, we quantitatively compared
the verification coverage of the approximate arithmetic circuits
between the proposed methodology and the random test. In a
case study of the approximate MAC unit, we experimentally
confirmed that the proposed methodology improves the cov-
erage by three times faster than the random test.

ACKNOWLEDGEMENT

This work was partially supported by JSPS KAKENHI
Grant Number JP20K19767 and JST, PRESTO Grant Number
JPMJPR20M9, Japan.

REFERENCES

[1] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” Proc. ETS, pp. 1-6, 2013.

[2] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis
and characterization of inherent application Resilience for Approximate
Computing,” Proc. DAC, pp. 1-9, 2013.

[3] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A
survey,” IEEE Design & Test, vol. 33, no. 1, pp. 8-22, 2016.

[4] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture
support for disciplined approximate programming,” Proc. ASPLOS, pp.
301-312, 2012.

[5] R. Hegde and N. R. Shanbhag, ”Soft digital signal processing,” IEEE
TVLSI, vol. 9, no. 6, pp. 813-823, 2001.

[6] A. B. Kahng, S. Kang, R. Kumar, and J. Sartori, “Slack redistribution
for graceful degradation under voltage overscaling,” Proc. ASP-DAC,
pp. 825-831, 2010.

[7] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power
digital signal processing using approximate adders,” IEEE TCAD, vol.
32, no. 1, pp. 124-137, 2013.

[8] S. Froehlich, D. Große, and R. Drechsler, “One method–all error-
metrics: A three-stage approach for error-metric evaluation in approxi-
mate computing,” Proc. DATE, pp. 284–287, 2019.

[9] A. Chandrasekharan, M. Soeken, D. Große, and R. Drechsler, “Precise
error determination of approximated components in sequential circuits
with model checking,“ Proc. DAC, pp. 1–6, 2016.

[10] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan, “MACACO:
Modeling and analysis of circuits for approximate computing,” Proc.
ICCAD, pp. 667–673, 2011.

[11] A. Bosio et al., “Design, Verification, Test and In-Field Implications of
Approximate Computing Systems,” Proc. ETS, pp. 1-10, 2020.

[12] M. Zhou, W. N. N. Hung, X. Song, M. Gu, and J. Sun, “Temporal
coverage analysis for dynamic verification,” IEEE TCAS-II, vol. 65, no.
1, pp. 66-70, 2018.

[13] M. Zalewski, “American Fuzzy Lop,” http://lcamtuf.coredump.cx/afl/.
[14] C. Lemieux and K. Sen, “FairFuzz: A targeted mutation strategy for

increasing greybox fuzz testing coverage,” Proc. ASE, pp. 475-485,
2018.

[15] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“VUzzer: Application-aware evolutionary fuzzing,” Proc. NDSS, 2017.

[16] V. J. M. Manès et al., “The art, science, and engineering of fuzzing: A
survey,” IEEE TSE, Oct. 2019.

[17] H. M. Le, D. Groβe, N. Bruns, and R. Drechsler, “Detection of hardware
trojans in SystemC HLS designs via coverage-guided fuzzing,” Proc.
DATE, pp. 602-605, 2019.

[18] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of UNIX utilities,” Communications of the ACM, vol. 33, no.
12, pp. 32–44, 1990.

[19] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,
“REDQUEEN: Fuzzing with input-to-state correspondence,” Proc.
NDSS, 2019.

[20] A. Takanen, J. D. DeMott, and C. Miller, Fuzzing for software security
testing and quality assurance. Artech House, 2008.

[21] J. E. Forrester and B. P. Miller, “An empirical study of the robustness of
Windows NT applications using random testing,” . Proc. USEC, Aug.
2000.

[22] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated whitebox
fuzz testing,” Proc. NDSS, pp. 151–166, 2008.

[23] K. Laeufer, J. Koenig, D. Kim, J. Bachrach, and K. Sen, “RFUZZ:
Coverage-directed fuzz testing of RTL on FPGAs,” Proc. ICCAD, pp.
1-8, 2018.

[24] C. Liu, J. Han, and F. Lombardi, “A low-power, high-performance
approximate multiplier with configurable partial error recovery,” Proc.
DATE, pp. 1-4, 2014.

