
An End-to-End Multi-Sensor Fusion System for
Autonomous Driving Applications

MONRROY CANO Abraham Israel

博　士　論　文

An End-to-End Multi-Sensor Fusion System for
Autonomous Driving Applications

MONRROY CANO Abraham Israel

名古屋大学大学院情報科学研究科
情報システム学専攻

2022年 3月

An
End-to-End

M
ulti-Sensor

Fusion
System

for
Autonom

ousDriving
Applications

M
ONRROY

CANO
Abraham

Israel

Abstract

Autonomous Driving technologies promise the reduction of accidents, facilitate the

transportation of people, the automation of goods distribution, and other applica-

tions which currently suffer from a shortage of personnel to satisfy transportation

needs. Self-driving technologies additionally pledge to improve the quality of life

of their users and the people in charge of providing the service, such as drivers and

distributors. For the above reason, we can consider this technology brings social

value, convenience, and benefits to all the persons involved, from its development

and production to its end-users.

Navigation robots and self-driving technologies require the precise integration of

multiple sensors to help them perceive their surroundings, detect obstacles and often

base their decisions on the data provided by these sensors to reach their goals safely.

The simultaneous integration of data from multiple sensors is known as fusion, and

it is used to overcome weaknesses in each sensor. Case in point, LiDARs (Light De-

tection and Ranging) fit medium and long-range sensing applications, while cam-

eras are suitable for high-resolution sensing that brings a loss in three-dimensional

as a downside. Wide-angle lenses attached to cameras provide a wide-angle field

view. However, due to its perspective nature, distant objects appear smaller. On the

other hand, cameras equipped with telephoto lenses provide long-range sensing.

Nevertheless, their field of view gets significantly narrowed.

State-of-the-art robots use multiple cameras and LiDARs, among other sensors,

to satisfy their sensing requirements according to their defined application. As de-

scribed before, LiDARs and cameras have a limited field of view. For this reason, the

integration of multiple LiDARS and cameras is considered when designing these

types of vehicles. However, to achieve multi-sensor fusion, it is required to accu-

rately obtain the camera intrinsic parameters and the extrinsic calibration among all

the sensors to enable its integration.

These multi-sensing modules can be used in ADAS (Advanced driver-assistance

systems) to facilitate the development of reliable safety systems such as Collision

vi

Warning Systems, Collision Intervention Systems, and Driving Control Assistance.

These systems have significantly improved the safety of the driver and its compan-

ions over the years since its inception. Moreover, these systems are constantly im-

proving and bringing social value in the shape of safety, reducing accidents, and,

more importantly, protecting the users’ lives. Cameras can be used in conjunction

with computer vision algorithms to obtain imminent obstacles or feed lane detec-

tion modules to notify the driver about dangerous scenarios such as lane departure

or pedestrian detection to enable emergency braking systems. LiDARs, on the other

hand, thanks to their wide field of view and precise range detection, can be em-

ployed to facilitate the detection of occluded objects and the development of other

systems such as adaptive cruise control.

Additionally, highly accurate multi-sensor systems are essential in self-driving

systems as determined by the SAE (Society of Automotive Engineers) to generate

the data required to feed the perception, localization, planning, and control mod-

ules. Perception modules use data from multiple sensors to obtain information such

as the surrounding obstacles, ego lane information, traffic light state, and others. In

a similar manner, localization modules require data from multiple sensors to reduce

the inherent measurement and quantization error while using a single sensor. Sen-

sor fusion techniques help mitigate the error accumulation caused while the vehicle

moves and produce a more reliable localization estimation.

Significant efforts have been made towards the calibration of each sensor. How-

ever, multi-sensor calibration guidelines and fusion frameworks remain unexplored

and scarce. In this dissertation, we develop an end-to-end multi-sensor calibration

framework to accelerate the advancement of sensing and perception systems that

require precise camera-LiDAR calibration.

The first module contained in our framework is the automatic single-shot in-

trinsic camera calibrator. With the help of a simulator, we generated thousands of

synthetic image frames containing multiple calibration targets variating their posi-

tioning and rotation, evaluated them, and selected the optimal ones. We then con-

structed precise guidelines to obtain intrinsic camera parameters accurately using a

single image containing multiple targets in a predefined setting; We validated these

with real-world cameras and lenses commonly used in robotics and autonomous

vii

driving applications. Our findings found that using seven checkerboard targets pro-

duces repeatable and accurate camera intrinsic parameters for its use in 3D applica-

tions, such as the projection of the point cloud generated by 3D LiDARs.

The multi-LiDARs calibration module in our frame framework can accurately

calculate the relative position and angle among them, or in other words, find the ex-

trinsic calibration parameters. Our multi-LiDAR calibration module uses a method

that finds the geometric similarities using the normal distribution computed on the

voxelized space of each point cloud obtained from each LiDAR. After that, our

method uses an optimizer to find the minimum distance between the calculated ge-

ometric similarities until it converges, resulting in the translation and rotation that

relates both point clouds, and therefore obtaining the relative transformation be-

tween LiDARs. This process is repeated sequentially to calibrate all the required

LiDARs extrinsically and finally adjusted to minimize the relative error caused by

the voxelization step.

The camera-LiDAR extrinsic calibration. It follows a guided approach to find

the euclidean transformation between the camera and the LiDAR with the help of

the projection matrix obtained in the intrinsic camera parameter calibrator. The user

provides feature hints related to the image and the point cloud. These features are

fed to an optimizer that follows the PnP method to relate the 3D and 2D features to

obtain the desired camera-LiDAR transformation.

The last module in our framework is data preprocessing and fusion. It contains

methods to classify point cloud as ground, fuse data obtained from a camera, and a

LiDAR using the intrinsic and extrinsic calibration parameters at pixel-cloud level,

also known as low-level fusion. Additionally, it contains back-projection methods

that can enable higher-level perception using deep learning methods such as se-

mantic or panoptic segmentation, among others.

Finally, we evaluated and validated our methods on multiple sensing devices

and platforms, such as robots, data collection vehicles, and Vehicle to Infrastructure

(V2I) systems. We found that our framework is accurate to the sub-centimeter level,

and it helps accelerate the calibration process of multiple sensors, removing the need

for specialized personnel to obtain the parameters. . . .

ix

Acknowledgements

I am incredibly grateful to my supervisors, Dr. Kato and Dr. Edahiro, for their

invaluable advice, continuous support, and patience. Their guidance helped me to

overcome all kinds of obstacles during my Ph.D.

Besides my advisors, I would like to thank Dr. Takeda for his continuous en-

couragement, support, and insightful discussions that helped widen my research

and everyday life.

My sincere thanks go to Dr. Nishida, Dr. Nagao, and Dr. Ide from the real-world

data circulation leading program, which assisted me through the program.

I also thank my teammates, Dr. Wong, Dr. Lambert, Mr. Kitsukawa, Mr. Tanaka,

Mr. Sekino, for their support through my Ph.D. studies.

Last but not least, I would like to thank my family: my wife, my parents, and my

brother for supporting me spiritually throughout my stay in Japan, my studies, and

my life in general.

. . .

xi

Contents

Cover iii

Spine iv

Abstract v

Acknowledgements ix

Contents xi

List of Figures xvii

List of Tables xxi

List of Abbreviations xxiii

1 Introduction 1

1.1 Problem Statement . 4

1.2 Applications . 5

1.2.1 Autonomous Driving . 5

1.2.2 Advanced Driver Assistance Systems 6

1.2.3 Visually Impaired Persons . 6

1.3 Contributions . 7

1.4 Outline . 8

2 Related Work 9

2.1 Autonomous Driving . 9

2.1.1 DARPA Challenges . 10

2.1.2 Google Driverless Car . 10

2.1.3 Autoware . 11

xii

2.1.4 Other Systems . 11

2.2 Camera Intrinsic Calibration . 12

2.3 Sensor Extrinsic Calibration . 14

2.3.1 Multi-LiDAR Extrinsic Calibration 14

2.3.2 Camera-LiDAR extrinsic calibration 14

3 Background 17

3.1 Autonomous Driving . 17

3.1.1 Operational Design Domain (ODD) 19

3.1.2 Dynamic Driving Task (DDT) . 19

3.1.3 Object and Event Detection and Response (OEDR) 21

3.2 Advanced Driver-Assistance Systems (ADAS) 22

3.2.1 Collision Warning Systems . 23

3.2.2 Collision Intervention Systems 24

3.2.3 Driving Control Assistance Systems 25

3.2.4 Other Assistance Systems . 26

3.3 Sensing Systems . 27

3.4 LiDAR . 27

3.4.1 Point Clouds . 30

3.5 Camera . 31

3.5.1 The Camer Pinhole Model . 31

3.5.2 Camera Plumb Bob Model . 33

3.5.3 Images . 34

3.6 Sensor Fusion . 35

4 Automatic Single-Shot Camera Calibration 37

4.1 Problem . 37

4.2 Previous work . 39

4.3 Method . 41

4.3.1 Baseline Calibration . 41

4.4 Simulation . 42

4.4.1 Checkerboard Coordinate System 42

4.4.2 Simulator Coordinate System . 43

xiii

4.5 Checkerboard Corner Detector Evaluation 43

4.5.1 Corner Detector Metrics . 43

4.5.2 Experiments . 44

4.5.3 Results . 45

4.6 Simulated Calibration Experiments . 46

4.6.1 Checkerboard Pose Metrics . 47

4.6.2 Control Points . 48

4.6.3 Dual Checkerboard Calibration 49

Dual Checkerboard Rotation Experiments 50

Dual Checkerboard Horizontal Positioning Experiments 51

Dual Checkerboard Vertical Positioning Experiments 53

Dual Checkerboard Distance Experiments 55

4.6.4 Dual Checkerboard Calibration Results 55

4.6.5 Multiple Checkerboards Calibration 56

4.6.6 Multiple Checkerboards Calibration Results 57

4.7 Real-world Calibration Verification . 59

4.7.1 Multiple checkerboard verification experiments 59

4.7.2 Real-world Calibration Results 62

4.8 Conclusion . 65

5 Multi-Sensor Fusion Toolbox for Autonomous Driving 69

5.1 Introduction . 69

5.2 Related Work . 71

5.2.1 LiDAR-LiDAR extrinsic calibration 71

5.2.2 Camera-LiDAR extrinsic calibration 71

5.2.3 Camera-LiDAR fusion . 73

5.2.4 Point Cloud Ground Classifier 73

5.3 Theory and Implementation . 74

5.3.1 LiDAR-LiDAR extrinsic calibration 74

Theory . 75

Implementation . 76

5.3.2 Camera-LiDAR extrinsic calibration 77

xiv

Theory . 78

Implementation . 79

5.3.3 Image-Cloud fusion . 80

Theory . 81

5.3.4 Ground classification . 82

Theory . 82

Implementation . 85

5.4 Evaluation . 85

5.4.1 LiDAR-LiDAR extrinsic calibration 86

5.4.2 Camera-LiDAR extrinsic calibration 88

5.4.3 Image-Cloud Fusion . 89

5.4.4 Ray Ground Classifier . 91

5.5 Discussion . 92

5.5.1 LiDAR-LiDAR Extrinsic Calibration 92

5.5.2 Camera-LiDAR Extrinsic Calibration 94

5.5.3 Image-Cloud Fusion . 96

5.5.4 Ray Ground Classifier . 96

5.6 Conclusion . 97

6 Real World Applications 99

6.1 Introduction . 99

6.2 Related Work . 100

6.3 Design and Implementation of Hexacam 101

6.3.1 FPGA board . 102

6.3.2 Camera sensors . 103

6.3.3 Image processing . 104

6.3.4 Network transmission to host . 106

6.3.5 Object detector . 108

6.4 Performance Evaluation . 110

6.4.1 Camera sensors . 110

6.4.2 Network speed . 110

6.4.3 Perception System performance 110

xv

6.4.4 Power consumption performance 112

6.5 System Calibration and Fusion . 112

6.6 Conclusion . 114

7 Real World Data Circulation in Multi-Sensor Systems 117

7.1 Introduction . 117

7.2 Automatic Single-Shot Camera Calibration 118

7.3 Multi-Sensor Fusion Toolbox for Autonomous Driving 121

7.4 Leading a Start-Up Company . 123

7.5 Summary . 125

8 Conclusions 127

Bibliography 129

xvii

List of Figures

1.1 LiDAR Market Expansion Forecast. 3

1.2 Road Traffic Accidents in Japan with Fatalities 6

1.3 Road Traffic Accidents in Japan with Serious Injuries 7

2.1 Autonomous Driving History . 12

3.1 Levels of Automation SAE J3016. 18

3.2 Autonomous Mode Functional Architecture Flow Diagram. 19

3.3 ADAS Collision Warning Systems . 24

3.4 LiDAR classifications according to its scanning method. 28

3.5 Camera Pinhole Model. 32

3.6 Types of Radial Distortion. 33

4.1 Our modeled checkerboard simulated in the LGSVL. 42

4.2 Effects of roll (α), pitch (β) and yaw (γ) rotations on the checkerboard

corner detector. 46

4.3 Effects of distance between the checkerboard and the camera on the

checkerboard corner detector. 47

4.4 Control points in camera frustrum . 48

4.5 Control points as an auxiliary metric . 49

4.6 Quantitative result for multiple checkerboards 57

4.7 Multiple checkerboard verification experiments in a garage 62

4.8 Point cloud projection on the Lucid camera using the intrinsic param-

eters by the one-shot experiments. 63

4.9 Point cloud projection on the FLIR camera 64

4.10 Real-world results for the multi-checkerboard experiments. 67

xviii

5.1 Successful calibration result of six wide-angle cameras 70

5.2 High-level diagram of the LiDAR-to-LiDAR calibration tool. 77

5.3 High-level diagram of the camera-to-LiDAR calibration tool. 79

5.4 UI presented to the user to ease the selection of corresponding points. 80

5.5 Result of the real time Image-Cloud fusion 81

5.6 High-level diagram of the image-cloud fusion. 81

5.7 Ray-Ground Filter radial dividers . 83

5.8 Ray Ground Filter classification diagram 84

5.9 High-level diagram of the Ray Ground Classifier 85

5.10 Ray ground filter on KITTI dataset . 86

5.11 Prius Vehicle Setup . 87

5.12 Alphard Vehicle Setup . 88

5.13 Prius Setup Sensor Calibration Qualitative 88

5.14 Prius Setup Sensor Calibration Quantitative results 90

5.15 Alphard Setup Sensor Calibration Quantitative results 91

5.16 Translation absolute error compared with number of selected points

on the Alphard Setup. 92

5.17 Rotation absolute error compared with number of selected points on

the Alphard Setup. 93

5.18 Fusion results on different setups . 94

5.19 Ground Classification qualitative results 95

5.20 Successful calibration of a thermal vision camera 95

6.1 An overview of our prototype system. 102

6.2 Picture of the FPGA board prototype. 103

6.3 Board architecture. 103

6.4 Custom tailored FPGA board diagram. 104

6.5 RGB color reconstruction from RAW image. 105

6.6 Left side, original image. Right side, artifacts due to pixel interpolation 106

6.7 HOG descriptor calculation process . 109

6.8 Network speed measured while capturing 111

6.9 Framerate for each camera while capturing 112

xix

6.10 Processing time on GPU . 113

6.11 Processing time on CPU . 113

6.12 Qualitative results of the Image-cloud on the HexaCam device and a

Velodyne VLP16. 114

6.13 Qualitative results of the Image-cloud on the Ladybug camera and a

Velodyne HDL64. 114

7.1 Continuous improvement RWDC loop applied to sensing systems. . . 119

7.2 Percent change in claim frequency associated with collision avoidance

technologies . 119

7.3 Example Vehicles using real-world multiple sensor calibration tech-

nologies developed by Perception Engine. 124

xxi

List of Tables

1.1 Sensor comparison in ADAS systems . 3

2.1 Feature comparison among the analysed Camera-LiDAR algorithms. . 15

4.1 Summary of the rotation experiments with dual checkerboards and

their results . 51

4.2 Summary of the horizontal and vertical positioning experiments with

dual checkerboards and their results. 54

4.3 Summary of the distance between camera and checkerboard experi-

ments with dual checkerboards and their results. 56

4.4 Summary of the simulation experiments with multiple checkerboards 58

4.5 Summary of the results for the simulation experiments with multiple

checkerboards. 59

4.6 Summary of the extrinsic parameters between the cameras and the 3D

LiDAR for the outdoors datase . 60

4.7 Summary of the real-world experiments with multiple checkerboards . 61

5.1 Feature comparison among tested Camera-LiDAR algorithms. 73

5.2 Prius Setup Sensor Calibration Quantitative 87

5.3 Alphard Setup Sensor Calibration Quantitative 89

5.4 Camera-LiDAR extrinsic calibration results comparison 89

5.5 Fusion measurements for different sensors 90

5.6 Classification performance of the Ray Ground Classifier 91

6.1 Camera sensor supported resolutions and transfer rates 104

6.2 FRAME_START packet structure . 107

6.3 Image reception packet queue . 107

xxii

6.4 FRAME_END packet structure . 108

6.5 Packet Queue . 109

6.6 Comparison between HexaCam and Ladybug 111

7.1 Single-shot calibration related to the Data Circulation 120

7.2 Multi-Sensor Fusion Toolbox related to the Data Circulation 122

xxiii

List of Abbreviations

LiDAR Light Detection And Ranging
SLAM Simultaneous Localization And Mapping
ROS Robot Ooperating Ssystem
NDT Normal Distributions Ttransform
ADS Autonomous Driving Ssystem
ADAS Advanced Driver-Assistance Ssystem
ODD Operational Design Domain
DDT Dynamic Driving Task
OEDR Object and Event Detection and Response
FCW Forward Collision Warning
LDW Lane Departure Warning
CTW Cross Ttraffic Warning
BSW Blind Spot Warning
FCW Forward Collision Warning
AEB Automatic Emergency Braking
DBS Dynamic Break Ssupport
CIB Crash Imminent Braking
PAEB Pedestrian Automatic Emergency Braking
RAB Rrear Automatic Breaking
BSI Blind Spot Intervention
ACC Adaptive Cruise Control
LCA Lane Centering Assistance
FCW Forward Collision Warning
LKA Lane Keeping Assistance
AHB Automatic High Beams
ACN Automatic Crash Notification
PDL Property Damage Liability
BI Bodily Injury
PIP Personal Injury Protection
MedPay Medical Payment

1

Chapter 1

Introduction

Recent advancements in computing, sensing, and robotics have been the driving

force to the swift progress in the development of autonomous driving vehicles.

These self-driving cars promise the reduction of accidents, facilitate the transporta-

tion of the elderly, the automation of goods distribution, and other applications

which are or might suffer shortly from a shortage of personnel to satisfy transporta-

tion needs. Additionally, self-driving technologies also promise to improve the qual-

ity of life of its users and the people in charge of providing the service; This brings

social value, convenience, and joy to all the persons involved in the research, devel-

opment, production up to the end-user.

Autonomous vehicles require a highly accurate representation of their surround-

ings to navigate and reach their target safely. Sensors such as cameras, radars, and

LiDARs are commonly used to provide rich perception information. Each of these

sensors can complement each other to supply reliable and accurate data. For in-

stance, cameras produce a dense representation of the world, including color, tex-

ture, and shape. However, cameras cannot provide reliable depth information at

longer distances. On the other hand, LiDARs capture sparse but highly accurate

range information at short, middle, and in some cases at long range regardless of the

lighting conditions. For this reason, integrating data from multiple sensor sources is

desired.

Cameras have become ubiquitous thanks to their low cost, high quality, and abil-

ity to represent the world with dense and feature-rich images. The images created

by these devices resemble our own vision, depicting objects located at different dis-

tances with different apparent dimensions. The mathematical model commonly

2 Chapter 1. Introduction

used to project the three-dimensional world is the pin-hole camera model. In ad-

dition, the plumb-bob model, also known as the Brown-Conrady model, represents

the distortion caused by the lens attached to the camera [1].

LiDAR, on the other hand, measures its surroundings using lasers transceivers,

generating highly accurate 3D sparse points, commonly known as point clouds [2].

Unlike the images generated by cameras, these point clouds use euclidean coordi-

nates that allow the precise representation of depth.

The simultaneous integration of data from multiple sensors is known as fusion,

and it is used to overcome weaknesses in each sensor. For instance, to project the

point clouds obtained from 3D LiDAR sensors on the images generated by cameras

and use the highly accurate range data contained in the point cloud. It is essential

to get the sensor’s relative physical position and define a transformation method

between the representational sensor data. This process is known as extrinsic cali-

bration. Despite the calibration of each sensor has been widely studied [3–8], the

definition of clear guidelines for multi-sensor calibration, its fusion, and a consistent

preprocessing frameworks still remain unexplored and scarce.

ADAS systems often use other sensors such as radars, ultrasonic, and stereo cam-

era setups. However, this work focuses on developing multi-sensor fusion using

cameras and LiDARs. Table 1.1 summarizes of each sensor used in ADAS systems,

which helps understand our sensor selection. Cameras provide high-resolution and

rich information based on the focal length of the lens installed. Case in point, wide-

angle lenses capture an image with a wide field of view. Nevertheless, long-range

objects are projected in a small sensor area due to their perspective nature, limiting

the use of the data or in some cases drawing it unusable. On the other hand, Tele-

photo lenses capture objects at long ranges in a narrow field of view. LiDARs as

a complementary sensor delivers centimeter-level accurate 3D measurements from

short to long ranges on a limited resolution. Multiple cameras and LiDARs balance

each other and help to solve many of the challenges introduced in Sections 3.1 and 3.2.

Some might argument LiDARs sensors are expensive for its deployment in pro-

duction vehicles. This holds true for current generation sensors, which are produced

in limited volumes. Nevertheless, in the last decade, we have witnessed a swift price

reduction thanks to the constant development and application expansion of LiDAR

Chapter 1. Introduction 3

FIGURE 1.1: LiDAR Market Expansion Forecast.

sensors. Case in point, according to the Yole development group [9], the expansion

of LiDAR is expected to increase by more than 300% in the next 5 years as shown in

Figure 1.1.

TABLE 1.1: Sensor comparison in ADAS systems

Sensor Range Accuracy Resolution
Camera Variable Good Excellent
LiDAR High Excellent Good
RADAR Very High Medium Medium
Ultrasonic Low Medium Good
Stereo Cameras Medium Good Excellent

Given the accuracy of the LiDARs, the ubiquity of the cameras, and the promis-

ing foreseeable future of both sensors, in this work we present an end-to-end sen-

sor fusion and data preprocessing framework that simplifies the calibration process

for multiple cameras and LiDAR sensors for robotics and autonomous driving ap-

plications, and methods for data preprocessing widely tested in the real world on

autonomous vehicles and navigation robots. Nevertheless, in future work we aim

to integrate other sensors to our framework. Each sensor has its unique applica-

tions and depending on the specification of the ADAS system, or the ODD definition

(Section 3.1.1) the final cost of the system can be reduced to match the requirements

using different sensors.

4 Chapter 1. Introduction

1.1 Problem Statement

Given a number of cameras and LiDARs sensors, we are interested in obtaining

the cameras projection parameters, the relative position among the sensors, and the

processing methods to merge and employ the images and point clouds in a fusion

system. In particular, we aim to answer the following questions:

• How to intrinsically calibrate the cameras using a single frame with multiple

targets?

Existing methods commonly use multiple frames and a single target with ran-

dom positionings. In this dissertation, we aim to use multiple targets in a sin-

gle frame instead. This kind of setup helps accelerate and obtain reproducible

intrinsic parameters since multiple strategically positioned targets can be fixed

and used multiple times. In Chapter 4 we present guidelines developed with

the help of thousands of images generated by a simulator to define the opti-

mal multiple target poses in a single frame to obtain accurate camera intrinsic

parameters.

• How to obtain the relative position between cameras and LiDARs?

In order to fuse lidars and cameras, having an accurate camera-LiDAR extrin-

sic calibration system is required. We present a method on how to achieve this

in Chapter 5.

• How to get the relative position between multiple LiDARs?

Surround sensing is essential for safety. For this reason, installing multiple

LiDARs is commonly used to cover the required field of view, which brings the

issue of requiring the extrinsic calibration to enable its fusion. We introduce a

method to achieve this in Chapter 5.

• How to use the obtained relative position among the sensors to merge the data

in a fusion system?

Setups with multiple cameras and LiDARs require intrinsic camera parame-

ters and the camera-LiDAR extrinsic parameters. We present methods on how

1.2. Applications 5

to use the fused data from multiple LiDARs and sensors in Chapter 5. Addi-

tionally, we present real-world applications in Chapters 6 and 7.

• Is the calibration accurate enough for 3D applications?

Accurate intrinsic and extrinsic parameters is essential to fuse the data from

each sensor, in the case of self-driving system an accuracy of at least 0.1 m is

required, as we further analyse in Chapter 3.

We try to answer the above questions through a multi-sensor fusion framework

developed with the help of synthetic data and validated in the real world with au-

tonomous vehicles and navigation robots featuring different number of sensors.

1.2 Applications

We highlight three critical applications of multi-sensor fusion.

1.2.1 Autonomous Driving

According to the World Health Organization (WHO), more than one million persons

die in road traffic accidents every year, causing more deaths than HIV/AIDS and

other common diseases combined [10].

In Japan, even if the number of fatal accidents has been decreasing over time, in

2019, more than 3,000 fatal cases were registered, while the number of accidents with

severe injuries surpassed 30,000 incidents as we see in Figure 1.2 and Figure 1.3.

The ultimate goal of autonomous driving is to substitute the human driver with

an intelligent system that can process the incoming sensor information and react

appropriately to maneuver the vehicle between two positions. This technology can

reduce traffic accidents and vehicle emissions significantly [11, 12], for example, by

increasing road capacity and reducing traffic congestions [13]. So far, autonomous

driving has been successfully demonstrated on highways with little or no traffic.

Busy intersections and urban navigation, however, are well-known challenges.

Sensing systems are one of the integral pieces forming an autonomous driving

platform, these provide raw data to other modules such as perception, localization,

control and planning. We explain further these integrations in Section 3.1.

6 Chapter 1. Introduction

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
0

1,000

2,000

3,000

4,000

5,000

Ac
cid

en
ts

2,309 2,279 2,309 2,193 2,247 2,138 2,020 1,996 1,782 1,596

4,691
4,438 4,388

4,113 4,117
3,904

3,694 3,532
3,215

2,838

Driver Age>= 65 yo
Driver Age < 65 yo

FIGURE 1.2: Number of fatal road traffic accidents in Japan during
the last 10 years.

1.2.2 Advanced Driver Assistance Systems

While the full deployment of self-driving vehicles at a large scale might still be

decades away, numerous research outcomes are doing their way into commercial

ADAS, such as lane departure warning [14], automatic parking or collision avoid-

ance, pedestrian detection, among others [15]. A multi-sensor fusion system can en-

hance the perception and sensing capabilities of other ADAS systems to improve the

general safety of vehicle riders. Case in point, accurate intrinsic calibration of cam-

eras is essential for the correct detection of lanes for collision warning and avoidance

systems (Section 3.2.1). LiDAR and camera fusion systems can additionally enable

a wide variety of ADAS features such as cross traffic warning, blind spot warning

systems, or automatic breaking systems (Section 3.2.3)

1.2.3 Visually Impaired Persons

Accurate multi-sensor fusion systems can be used in perception systems or nav-

igation robots to provide mobility to those with limited vision or other phyisical

disabilities. LiDAR sensors are constantly reducing in price, and improving its

1.3. Contributions 7

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
0

10,000

20,000

30,000

40,000

50,000

60,000

Ac
cid

en
ts

48,663 46,663 44,546
41,658

38,959 37,356 36,895
34,558

32,025
27,774

Serious Injury

FIGURE 1.3: Number of road traffic accidents that caused serious in-
juries in Japan during the last 10 years.

performance and measurement accuracy. Additionally low-cost cameras and well-

established computer vision techniques [16–18] can provide robust perception, alto-

gether contributing to a higher quality of life and an increased user safety.

1.3 Contributions

The contributions of this dissertation are as follows:

• A novel method to obtain the intrinsic camera parameters using a single shot

for three-dimensional applications. In contrast with existing techniques, we

validate its accuracy with the help of thousands of synthetic images and later

verified with real machine vision cameras. We additionally project the point

cloud obtained from a high-resolution LiDAR to validate the parameter accu-

racy.

• A multi-sensor semi-supervised calibration framework that accelerates and fa-

cilitates the fusion process of cameras and LiDARs for self-driving applica-

tions. This framework also contains methods to perform data preprocessing to

8 Chapter 1. Introduction

classify the fused point cloud from multiple LiDAR sensors and the real-time

low-level integration from RGB and range data.

• Extensive evaluations on multiple devices setups and vehicles show the method’s

applicability and confirm that the framework facilitates the fast integration of

multi-sensor systems that provide reliable and accurate sensing information

for higher levels of perception. Additionally, we present a camera-LiDAR sens-

ing system as a proof-of-concept for surround perception that utilizes directly

the two above items.

1.4 Outline

This dissertation is structured as follows; Chapter 2 reviews the current state-of-the-

art and differences the proposed technique to previous work. Chapter 3 introduces

the background and concepts used over the rest of this thesis. Chapter 4 presents an

automatic single-shot camera calibration technique to obtain accurate camera pro-

jection parameters required to fuse the image with other sensor data. Chapter 5

presents a multi-sensor fusion toolbox that accelerates the calibration of multiple Li-

DAR sensors and cameras. It additionally introduces fusion applications derived

from the fused data, such as ground segmentation and RGB-range fusion. Chap-

ter 6 presents a further evaluation of the fusion methods and their application on

different devices, self-driving vehicles platforms, and navigation robots. Chapter 7

exhibits the application of these techniques in the real world through data circula-

tion. Case in point, technology applied to the industry with loop feedback aiming for

constant improvement. Finally, Chapter 8 concludes this manuscript and presents

the remaining challenges in this line of work.

9

Chapter 2

Related Work

This chapter discusses the state-of-the-art multi-sensing systems for self-driving and

positions the contributions of this manuscript concerning other work. We begin

with a summary of the development of autonomous driving systems, survey their

capabilities, and present the open challenges.

2.1 Autonomous Driving

Since early as the 1920s across the United States of America, experiments with driver-

less vehicles started with the "Phantom Autos." Newspapers of the time called them

"one of the most amazing products of modern science." These vehicles could brake,

maneuver the steering wheel, sound the horn, and advance thus as though there was

an invisible driver at the wheel. People from all over the continent traveled to wit-

ness the technology, [19]. Many of the attendants were looking to expect these splen-

did cars, and many exclaimed, "The blind were safe for the first time. Parents found

they could more safely send their children to school in the new car than in the old

cars with a chauffeur.". A piece of the newspaper from that time can be appreciated

in Figure 2.1. However, these phantom cars were not computer-driven but remote-

controlled with the help of morse-code. The thing people focused on most was the

promise of improved safety at a time when vehicles were deadly. Hundred years

later, these words still hold. It was not until the 1980s that the first and self-driving

vehicles appeared. Carnegie Mellon University (CMU) developed the Navlab and

the Autonomous Land Vehicle Project (ALV), which had equipped cameras, road

detection, obstacle avoidance, and navigation algorithms [20, 21]. A picture of that

vehicle can be found in Figure 2.1

10 Chapter 2. Related Work

In the following subsection we introduce notable projects such as the Defense

Advanced Research Projects Agency(DARPA), the Google Driverless car, and the

Autoware project which have significantly shaped the autonomous driving technol-

ogy field.

2.1.1 DARPA Challenges

The DARPA Grand Challenge was a prize competition for American autonomous

vehicles, funded by the Defense Advanced Research Project Agency(DARPA), the

most significant research organization of the United States Defense Department.

This Challenge was created to encourage the development of self-driving technolo-

gies to create a fully autonomous ground vehicle capable of completing a substantial

off-road course within a limited time [22]. The first challenge was held on March 13,

2004 in the Mojave Desert (USA), along a 240 km route. No winner was declared,

and the cash prize was not given. Therefore, a second competition was carried out

on October 8, 2005. Five vehicles succesfully completed the 212 km course. It was

won by the Stanford Team [23]. In 2007, DARPA initiated the Urban Challenge, its

purpose was to benchmark the state-of-the-art in autonomous inner-city driving on

a 96 km test course at an abandones Air Force Base. While this Urban Challenge

endeavor came closer to urban traffic scenarios, the streets were wider, and the field

of view was occluded only by a few other vehicle participants [24]. The vehicles that

participated in the Urban Challenge are shown on Figure 2.1.

These projects used multiple laser sensors, cameras and other ranging sensors,

each used individually for a different purpose: perception, localization, short-range

sensing. Nevertheless, no signs of low-level or extrinsic calibration were mentioned

in this project to achieve multi-sensor fusion.

2.1.2 Google Driverless Car

In 2010 Google officially initiated the driverless car project. The vehicle was equipped

with a 3D laser scanner, a Velodyne spinning LiDAR, similar to vehicles participants

of the DARPA Urban Challenge. Figure 2.1 shows the vehicle setup at the time. In

2.1. Autonomous Driving 11

August 2012, Google announced that their car completed over 300,000 miles with-

out accidents. In 2017, the project was renamed Waymo and spinned off as a new

start-up company part of the Alphabet group [25]. Waymo’s latest vehicle uses mul-

tiple cameras, LiDARs, and radars to perceive the areas around it, as shown in Fig-

ure 2.1. This setup allows the car to see 360 degrees in every direction, day or night,

and at long ranges [26]. Similarly, this work aims to develop automatic and semi-

supervised calibration techniques for multiple sensors. The Waymo project, a pri-

vate company, does not publicly state which methods or algorithms to achieve the

sensor calibration. In contrast, this work targets to develop open methods for multi-

sensor fusion.

2.1.3 Autoware

The Autoware project started in 2015 at Nagoya University as a research project.

It was the first open-source Autonomous driving framework based on the widely

used Robot Operating System (ROS) [27]. For this reason, it quickly became famous

all over the world. In 2018, the first embedded version of Autoware aimed at low

power consumption systems was released [28]. During the same year, The Auto-

ware Foundation was formed to promote the global development of Autoware by

creating synergies among the worlds’ leading tech companies, academic/non-profit

organizations, and individual contributors [29]. The Autoware foundation fits with

the objectives of this work, the global and open development of technologies for the

development of self-driving technologies.

2.1.4 Other Systems

In addition to the previously mentioned self-driving systems. Many other private

endeavors are working on the development of autonomous driving technologies.

Some worth mentioning efforts are Aptiv, Baidu, Lyft, Nuro, and Zoox. However,

except for Baidu and partially Lyft, none of them publicly share their sensor calibra-

tion techniques in the form of open-source software.

12 Chapter 2. Related Work

FIGURE 2.1: Autonomous Driving History

(A) Phantom vehicle adver-
tisement on the newspaper in

1935[30]
(B) Carnegie Mellon University’s NavLab vehicle in 1983

(C) Participant Vehicles to the DARPA Urban Challenge in 2007

(D) Google’s Vehicle in 2010
(E) Google’s Vehicle in 2010

2.2 Camera Intrinsic Calibration

There exists a considerable amount of work dedicated to developing techniques

for estimation of camera intrinsic parameters. Notable mentions include the work

by Zhang [31], Kannala and Brandt [32], and Heikkila and Sliven [33]. Despite

being published more than twenty years ago, these methods provide consistent

and reliable results. Moreover, the widely-used open-source computer vision li-

brary OpenCV [34] and the proprietary Matlab [35] platform use these methods in

2.2. Camera Intrinsic Calibration 13

their camera calibration toolboxes due to their proven accuracy. More recent ap-

proaches use deep learning methods to estimate the camera intrinsic parameters us-

ing neural networks trained on large datasets of images with known intrinsic param-

eters [36][37]. These methods are convenient since they do not require any targets or

calibration datasets. Nevertheless, these approaches are still far from matching the

accuracy achieved by target-based techniques.

Zhang [31] used synthetic data while testing his calibration method to evalu-

ate resilience against noise. He obtained good results with as few as three checker-

boards, without aiming to use the parameters in 3D applications. However, he only

used the checkerboard corners to measure the error, which might result in over-

fitted parameters. Moreover, he did not consider the error introduced by the corner

detection phase.

The work dedicated to the extrinsic calibration of LiDARs, radars, and cameras

explicitly states that accurate intrinsic camera parameters are required [3, 6–8, 38–

42]. These methods find shared features between the 2D perspective space on the

images generated by the camera and the 3D Euclidean space employed by radars

and LiDARs. The shared features are then input to an optimizer to estimate the

extrinsic parameters (relative position t, and rotation R), which attempts to reduce

the projection error of the 3D features (plidar) while using the given camera intrinsic

parameters (Plidar,cam) in the form pcam = Plidar,cam · R · t · plidar. This equation illus-

trates the importance of having high-quality camera intrinsic parameters in order to

obtain accurate sensor extrinsic parameters.

There are a limited number of published studies about verifying estimated cam-

era intrinsic parameters for use in 3D applications. Basso et al. [4] stressed the re-

quirement of accurate intrinsic parameters for 3D applications such as SLAM, and

introduced a method for the intrinsic and extrinsic calibration optimizer for short-

range time-of-flight (ToF) sensors such as the Microsoft Kinect. Geiger et al. [5] pre-

sented a single-shot calibration method for short and long-range LiDARs and cam-

eras. Their approach uses multiple checkerboards in a single frame to accelerate and

simplify the data acquisition. However, they did not analyze or demonstrate why

these positions are optimal. We extend this research direction to create clear guide-

lines on how to achieve consistent and accurate intrinsic parameters and introduce

14 Chapter 2. Related Work

validation metrics to verify them.

2.3 Sensor Extrinsic Calibration

Extrinsic calibration can be defined as the process of calculating the relative position

in space between sensor coordinate frames. This can be achieved by looking for co-

observable features in the data from both sensors. Calibrating different sensors may

use similar optimization methods. However, the features to search for are dependent

on the sensor. In the following subsections we will summarize some of the most

recent developments in each area.

2.3.1 Multi-LiDAR Extrinsic Calibration

To the best of our knowledge, at the time of writing, very few publications can be

found that address the calibration of multiple multi-layer LiDAR sensors. In [43]

a method to calibrate a single-layer LiDAR is presented. This work maximizes the

mutual information entropy, through the estimation of the projection coefficients

between the spaces.

The work presented in [44], shows a semi-automatic extrinsic calibration method

for multiple LiDARs and cameras. In this work, features are inserted in the field

of view of the sensors with the help of spheres. These are detected with the help

of the PointCloud Library (PCL)[2] segmentation and sphere fitting toolbox. The

rigid body transformation is calculated using the Iterative Closest Point (ICP) algo-

rithm[45].

2.3.2 Camera-LiDAR extrinsic calibration

While there is extensive work in this field, most of it focuses on the calibration of a

single LiDAR and a camera. In this subsection we can classify the available methods

into two:

1. The target category requires predefined and specific setups to ease the identi-

fication of shared features between the sensors. Under this class we can find notable

mentions such as [3, 5, 44, 46–48], which take advantage of the purposely inserted

2.3. Sensor Extrinsic Calibration 15

features, fixing the number of targets and optimizing the calibration algorithm un-

der these constraints. The work presented by [3, 5, 44] require the construction of a

setup consisting of several specific targets, and scatter them across the shared field

of view of the camera and the LiDAR. This approach works well in laboratories and

closed environments. However, its application is difficult in the field. Moreover, all

the mentioned work, except in [3], are not open-sourced, reducing their impact and

reachability.

2. The target-less methods focus on finding inherent features to the scene in

both sensors. In this category [49] is a notable mention. It requires an initial rough

position estimate between the sensors, provided by the user. In this position, it gen-

erates an image projection of the LiDAR reflectance values using the given camera

projection matrix. It then slowly modifies the transformation to try to match the gen-

erated reflectivity image with the camera gray-scale image. To measure the error, it

compares the camera brightness histogram, and the LiDAR’s reflectivity histogram.

Since this method relies completely on the reflectivity values, it requires manual

pre-calibration of the LiDAR unit[50], instead of using the parameters given by the

manufacturer. This extra step involves the use of specific equipment, making this

method difficult to deploy and test in practical situations.

Table 2.1 presents a feature summary comparison of the Camera-LiDAR calibra-

tion methods mentioned. From this we can compare characteristics such as integra-

tion, required target type, and sensing devices. After a quick analysis, we can iden-

tify the need of a method that works with different types of cameras and LiDARs,

while maintaining the target-less property. Target-less methods offer the possibility

to calibrate without the need of a special setup, or target. This feature allows users

to reduce the time required to obtain the calibration parameters.

TABLE 2.1: Feature comparison among the analysed Camera-LiDAR
algorithms.

Method
¯

Open-source
¯

Data
Available

¯

ROS
Compatible

¯

Target-Type
¯

LiDAR
Type

¯

Camera
Type

¯
Geiger, et.al [51] X O X Chessboard Rotating Single
Naroditsky, et.al.[46] X X X Blackboard Rotating Single
Velas, et.al. [47] O X O Custom board Rotating Single
Weimin, et.al.[3] O O X Chessboard Rotating Single
Pandey, et.al.[49] O O X Target-less Rotating Omni

16 Chapter 2. Related Work

Having introduced the work related to our study, we will present the formal

theory and mathematical background required to understand the following chapters

in the next chapter.

17

Chapter 3

Background

3.1 Autonomous Driving

Manufacturers are developing Automated Driving Systems (ADS) to automate dy-

namic driving tasks (DDT). These developments hold the assurance to enhance ve-

hicle safety and improve mobility. In many instances, this task is often considered

as adding a cognitive layer to the existing vehicle platforms [52].

According to the Society of Automotive Engineers (SAE), transferring control

from humans to automated vehicles is classified on a scale from 0 to 5, where 0

involves no automation and 5 means a complete full automatic control of the car at

all times, under any roadway and environmental condition as explained in the J3016

standard[53]. Figure 3.1 clarifies the role of the human driver on each of these levels

of automation.

The ADS architecture defined by the SAE envisions sensing, perception, navi-

gation, control and safety modules. Each one of these work together to share data

to achieve Dynamic Driving Tasks (DDT), and assist the system on the reponse of

external events defined by the Object and Event Detection and Response (OEDR).

Figure 3.2 introduces the functional architecture defined by the SAE on the J3016

standard [53]. This document additionally requires automated driving systems to

have a localization system accurate to a minimum of 0.1 m at 95% confidence to be

considered as a level 4 (high automation) driving system. This value is considered

to be enough so the vehicle can precisely and safely execute maneuvers such as lane

change or turn at intersections. Having in mind that this value is purposed for lo-

calization, and that localization (navigation) modules are triggered by the sensing

18 Chapter 3. Background

FIGURE 3.1: Levels of Automation According to the SAE J3016 Stan-
dard

modules in self-driving systems as shown in Figure 3.2. We can consider that sens-

ing module need to have at least the same or better accuracy, specially knowing that

localization, perception and planning modules introduce error [54]

The term for autonomous driving is usually misused to refer to either any level

of automation, or just to levels higher than three. For such reason, it is important to

differentiate the Advanced Driver-Assistance Systems (ADAS) which provide fea-

tures such as keeping the ego vehicle within its lane, controlling the cruise speed, or

breaking automatically in case of emergency.

3.1. Autonomous Driving 19

Sensing

Cameras

LiDARs

RADARs

GNSS

Network

Ultrasonic

IMU

Perception

Roads

Objects

Localization

World Model

Persistent

Transient

Map

Navigation

Mission Planning

Path Planning

Control Commands

Driver Assist

Vehicle Controls

Fusion

Active Safety

Command Arbitrator

Vehicle Dynamics

Steering Braking Power
Train

Diagnostics, Data logging, Prognostics, Heartbeat

FIGURE 3.2: SAE International Autonomous Mode Functional Archi-
tecture Flow Diagram

3.1.1 Operational Design Domain (ODD)

For the above reason, the SAE also introduced the Operational Design Domain (ODD)

concept [55, 56]. The ODD defines the limits in which the AVS is designed to oper-

ate, it is defined as "Operating conditions under which a given driving automation

system, or feature thereof, is specifically designed to function, including, but not

limited to, environmental, geographical, and time-of-day restrictions, and/or the

requisite presence or absence of certain traffic or roadway characteristics." [53, 55].

The precise definition of the ODD is essential during the design phase, as the system

requirements will change according to it. Case in point, a vehicle that should operate

only in sunny weather in a limited area will have different requirements than one

that should operate in foggy or snowy conditions.

3.1.2 Dynamic Driving Task (DDT)

The dynamic driving tasks define the operation and tactical functions required to

operate a vehicle. The operational tasks describe the actions required to drive a car

on a selected route and the all the actuator controls, such as steering or braking,

while the tactical functions include actions to generate and follow a trajectory or

keep the vehicle on a lane. It is important to note that the DDT definition excludes

strategic functions such as scheduling or route planning. The American National

Highway Traffic Safety Administration (NHTSA) further develops DDT and defines

20 Chapter 3. Background

the following working list [57] of tactical and operational maneuvers to ADS driving

control:

• Parking. The vehicle comes to a complete stop within a vacant parking spot.

• Maintain Speed. The vehicle maintains a safe speed set through longitudinal

control with acceptable following distances.

• Car Following. The vehicle identifies and follows a target vehicle at acceptable

following distance while staying within a lane through longitudinal and lateral

control.

• Lane Centering. The vehicle stays within a lane through lateral control.

• Lane Switching/Overtaking. The vehicle crosses lanes or overtakes an up-

coming vehicle based on a projected path or hazard.

• Enhancing Conspicuity. The vehicle controls vehicle blinkers, headlights,

horn, or other methods used to communicate with other drivers.

• Obstacle Avoidance. identifies and responds to on-road hazards, such as

pedestrians, debris, animals, etc.

• Low-Speed Merge. The vehicle merges into a lane below about 70 kph, for

example from an exit ramp, by identifying a vacant lane position and matching

speed.

• High-Speed Merge. The vehicle erges into a lane above about 80 kph, for

example from an exit ramp, by identifying a vacant lane position and matching

speed.

• Navigate On/Off-Ramps. The vehicle drives on on/off-ramps, which are typ-

ically one-way, steeply curved, and banked road segments.

• Right-of-Way Decisions. The vehicle beys directional restrictions; for exam-

ple, one-way roads and actively managed lanes.

• Follow Driving Laws. The vehicle ADS obeys motor vehicle codes and lo-

cal ordinances; for example, following distances, speed limits, etc. This may

include driving norms that vary by region as well.

3.1. Autonomous Driving 21

• Navigate Roundabouts. The vehicle determines right-of-way, enters, navi-

gates, and exits a roundabout, and communicates with other road users as

necessary.

• Navigate Intersection. The vehicle determines right-of-way, enters, navigates,

and exits intersections, including signalized, stop signs, 4/3/2-ways, and com-

municates with other road users as necessary; may include left or right turns

across oncoming traffic.

• Navigate Crosswalk. The vehicle determines right-of-way, enters, navigates,

and exits pedestrian crosswalks, and communicates with other road users as

necessary.

• Navigate Work Zone. The vehicle determines right-of-way and traffic pat-

terns, enters, navigates and exits work zone, and communicates with other

road users as necessary.

• N-Point Turn. The vehicle makes a heading adjustment that involves alternat-

ing between forward and reverse movement and adjusting steering to reposi-

tion the vehicle within a tight space.

• U-Turn. The vehicle determines right-of-way, initiates, and completes a U-

turn, and communicates with other road users as necessary.

• Route Planning. The vehicle ses various information to define (and potentially

update) a route network including road segments, turns, etc.

Finally, the DDT fall-back is defined as the response by the user or by an Au-

tomated Driving System (ADS) to either perform the DDT task or achieve a safety

state after occurrence of a DDT performance-relevant system failure or upon leaving

the designated ODD.

3.1.3 Object and Event Detection and Response (OEDR)

The vehicle while performing tactical maneuvers will interact with static and dy-

namic obstacles that may require the system to change its behavior. For this reason

the SAE defines the Object and Event Detection and Response as to "the subtasks of

22 Chapter 3. Background

the DDT that include monitoring the driving environment (detecting, recognizing,

and classifying objects and events and preparing to respond as needed) and execut-

ing an appropriate response to such objects and events (i.e., as needed to complete

the DDT and/or DDT fallback" [53].

The system to achieve these detection and reponse requires the support from the

sensing, perception, world modeling, and the navigation and planning systems as

shown in Figure 3.2.

3.2 Advanced Driver-Assistance Systems (ADAS)

In the 1950s, the first Advanced Driver-Assistance Systems (ADAS) was introduced

in the form of the anti-lock braking system (ABS) [58]. ADAS technologies installed

on vehicles not only help to keep drivers and passengers safe, but also other drivers

and pedestrians. Some warn the driver if the vehicle is at risk of an impending crash,

while others are designed to overtake the driver action to avoid a crash. Every car

manufacturer uses different terminology for the technologies and capabilities. How-

ever, the NHTSA categorizes these driver assistance technologies in the following

groups:

• Collision Warning.

• Collision Intervention.

• Driving Control Assistance.

• Other Assistance.

Each of these driver assistance systems requires prompt and accurate sensing to

enable prompt triggering of these assistance features. Cameras provide fast read-

outs used in pedestrian, vehicle, and lane detection systems. Algorithms developed

for images have been widely studied and provide high detection rates. However,

camera performance is greatly reduced on low light scenarios, and cameras cannot

provide accurate distance readings at mid or long ranges; LiDARs, on the other

hand, provide accurate measurements in 3D space at short, mid, and long ranges.

Additionally, LiDAR sensors work well regardless of lighting conditions.

3.2. Advanced Driver-Assistance Systems (ADAS) 23

Nevertheless, object detection for these sensors is currently not as developed as

its camera counterparts; Using these two sensors in conjunction can help balance

each other and bring additional benefits if both sensors are accurately calibrated.

Case in point, lane detection could be performed on images captured by the camera,

while accurate distance measurement could be back-projected to 3D space from the

LiDAR readings. Section 5.3.3 presents a method on how to achieve this.

3.2.1 Collision Warning Systems

Collision Warning Systems use different sensors installed to notify the driver of a

potential collision. These warnings are often shown to the driver as a visible no-

tification on the board and an auditory alert so the driver can avoid impact. It is

important to note that this kind of system only warns the driver and does not avoid

a crash. The collision warning systems can be subcategorized as:

• Forward Collision Warning. A forward collision warning system monitors the

vehicle’s speed, the speed of the vehicle in front of it and the distance between

the vehicles. If the distance between vehicle gets too close to, the system will

warn the driver of an impending crash.

• Lane Departure Warning. A lane departure warning system monitors lane

markings and alerts the driver when it detects that the vehicle is drifting out

of the ego lane. However, this kind of system only provides a warning to the

driver and does not take action to avoid a crash.

• Cross Traffic Warning. Cross traffic warning alerts the driver of potential col-

lisions, while in moving moving in reverse, or when slowly merging where

visibility might be limited.

• Blind Spot Warning. The blind spot warning alerts the driver of potential

collision with an income vehicle when trying to make a lane change.

Additionally, Figure 3.3 illustrates some situations on which these types of warn-

ing systems are used.

24 Chapter 3. Background

FIGURE 3.3: ADAS Collision Warning Systems

(A) Forward Collision Warn-
ing (FCW)

(B) Lane Departure Warning
(LDW)

(C) Cross Traffic Warning
(CTW) (D) Blind Spot Warning (BSW)

3.2.2 Collision Intervention Systems

Similar to the Warning Intervention Systems, these systems use the sensors installed

in the car to identify a potential collision. Additionally, these systems are equipped

with vehicle controls to overtake the driver’s action to avoid an imminent crash.

These systems can be categorized as follows:

• Automatic Emergency Braking (AEB). Automatic emergency braking systems

apply the vehicle’s brakes automatically in time to avoid or mitigate an im-

pending forward crash with another vehicle. Dynamic brake support (DBS)

and crash imminent braking (CIB) are AEB systems that the SAE considers

and the NHTSA to reduce moderate and less severe rear-end common crashes

potentially. Additionally, if the system detects a crash and the driver brakes,

but not hard enough to avoid the crash, DBS automatically supplements the

driver’s braking to avoid a crash. If the system detects a crash but the driver

does not brake, CIB automatically applies the vehicle’s brakes to slow or stop

the car, avoiding the crash or reducing its severity [53].

3.2. Advanced Driver-Assistance Systems (ADAS) 25

• Pedestrian Automatic Emergency Braking (PAEB). A pedestrian automatic

emergency braking system uses forward sensors to detect a pedestrian in the

vehicle’s path. The system will provide automatic braking if the driver has not

acted to avoid crashes.

• Rear Automatic Braking (RAB). Rear automatic braking uses sensors like ul-

trasonic sensors and the rear camera to detect objects behind the vehicle. If the

system detects a potential collision while in reverse, it automatically applies

the brakes.

• Blind Spot Intervention (BSI). Blindspot intervention helps prevent a colli-

sion with a vehicle in the driver’s blind spot. If the driver ignores the blind

spot warning and starts to change to a lane where there is a vehicle, the system

activates and automatically applies light braking pressure or provides steering

input to guide the vehicle back into the original lane. The system monitors

for vehicles in the driver’s blind spot using rear-facing cameras or proximity

sensors.

3.2.3 Driving Control Assistance Systems

Driver Control Assistance Systems help the driver to reduce fatigue while driving,

applying automatic actions on steering, the drive train or on the brakes to maintain

certain speed or a safe distance from the front vehicle. These systems are subcatego-

rized as:

• Adaptive Cruise Control (ACC). Adaptive cruise control automatically ad-

justs the vehicle’s speed to keep a safe distance between it and the vehicle in

front of it.

• Lane Centering Assistance (LCA). Lane centering assistance employs a vision

system designed to monitor the vehicle’s lane position and automatically and

continuously apply steering inputs needed to keep the vehicle centered within

the ego-lane.

26 Chapter 3. Background

• Lane Keeping Assistance (LKA). Lane-keeping assistance helps prevent the

vehicle from unintentionally drifting out of the ego-lane. The system uses in-

formation provided by lane departure warning sensors to determine whether

the vehicle is about to move out of the ego-lane unintentionally. In these cases,

the system activates and corrects the steering, braking, or accelerates one or

more wheels, so the vehicle returns to the intended lane of travel.

3.2.4 Other Assistance Systems

Systems that do not fit on the categories presented on Sections 3.2.1 to 3.2.3 are con-

sidered as other systems. These that might help or provide enhanced conspicuity to

the driver. Some examples of these systems are:

• Automatic High Beams (AHB). Automatic high beams automatically switch

the vehicle’s headlights between the lower and higher beams, based on light-

ing conditions and traffic, when an oncoming vehicle approaches. This tech-

nology, also known as semi-automatic beam switching headlamps, uses pho-

tometric sensors or onboard cameras to detect when to switch between high

and low beams.

• Backup Camera. A backup camera, also known as a rearview video system,

helps prevent backover crashes and protect vulnerable people such as children

and the elderly. This camera provides an image of the area behind the vehicle,

and helps the driver see behind the vehicle while in reverse. This system is not

intended to replace mirrors or turn around to look.

• Automatic Crash Notification. An automatic crash notification system is de-

signed to notify emergency responders of a crash and provide its location. In

most cases, when the system detects that an airbag has deployed or that there

has been a dramatic and sudden deceleration, the system automatically con-

nects to an operator, who will then communicate with the driver. The operator

can also collect basic information from the vehicle, without driver input, to

provide to emergency responders to quickly locate the scene of the crash.

3.3. Sensing Systems 27

3.3 Sensing Systems

After introducing Autonomous Driving systems in the previous section, we want to

focus on the sensing modules. Sensing modules are vital in new measurement tech-

niques and instrumentation systems. Essential qualities of a suitable sensor system

are high resolution, high reliability, low cost, appropriate output for a given input

(good sensitivity), rapid response time, small random error in results, and small sys-

tematic error.

The sensing modules used in navigation robots and autonomous vehicles are

often composed of an extensive array of multiple sensors such as LiDAR, camera,

GNSS, ultrasonic, and RADAR. In this work, we focus on cameras and LiDARs. It

is important to note that each sensor "sees" the world from its perspective. In other

words, each sensor has its coordinate system and, therefore, its origin. In order to

combine the data from multiple sensors, it is required first to obtain their relative po-

sition and the conversion required to associate the data among sensors to integrate

and improve the reliability of the sensing system. Case in point, cameras produce

a dense representation of the world, including color, texture, and shape. However,

cameras cannot provide reliable depth information at longer distances. On the other

hand, LiDARs capture sparse but highly accurate range information at short, mid-

dle, and often at long range regardless of the lighting conditions.

The simultaneous integration of data from multiple sensors is known as fusion,

and it is used to overcome weaknesses in each sensor. The following sections will

elaborate on how these sensors work, store data, and how to preprocess and obtain

valuable data, as well as how to perform fusion when using cameras and LiDARs.

3.4 LiDAR

LiDAR, which stands for Light Detection and Ranging, is a remote sensing method

that uses light in the form of a pulsed laser to measure ranges. LiDAR can also

be used to make digital 3D representations of areas, due to differences in laser re-

turn times, and by varying laser wavelengths. LiDAR is also referred as 3D laser

scanning, a special combination of 3D scanning and laser scanning. This sensor has

28 Chapter 3. Background

many applications such as surveying, geodesy, geomatics, archeology, among oth-

ers. In the recent years, thanks to its high accuracy and cost being reduced year after

year, the techology is also used in the sensing, perception, and localization modules

of some ADS and ADAS systems.

LiDAR devices targetting robotics and automotive applications that use lasers

with a wavelength between 800 to 1550 nanometers. These wavelengths are consid-

ered eye-safe since the human eye does not get strongly absorbed. Additionally to

its laser wavelength, LiDARs are classified accordin to its scanning method as Fig-

ure 3.4 shows, while Figure 3.4 illustrates the scanning methods used internally by

the sensors.

FIGURE 3.4: LiDAR classifications by scanning method.

Q
ua

si
S

ol
id

-
S

ta
te

S
ol

id
-S

ta
te

LiDAR

Non-Scanning

Scanning

Non-mechanical

Mechanical

OPA

MEMS

Motorized
Optomechanical

Flash Light

(A) LiDAR classification by its scanning method

Flash LiDAR Optical Phased Array

Emitters

Detectors

Opto Mechanical
LiDAR

MEMS
Mirrors

MEMS LiDAR

(B) LiDAR scanning methods

Motorized optomechanical LiDAR sensors use arrays of multiple infra-red(IR)

lasers paired with IR detectors to measure distances to objects. Sensors manufactur-

ers mount the device components within a compact and weather-resistant casing.

The arrays of sensors and detectors spin rapidly, often generating a 3D-rich and

3.4. LiDAR 29

360-degree view of the surroundings. A digital signal processor (DSP) analyzes the

waveform readings and calculates highly accurate range information. Additionally

to the distance, LiDARs often provide the laser return intensity as read by the de-

tector. The intensity information is helpful to identify light reflecting or absorbing

surfaces such as retro-reflectors, lane markings, or vegetation. The number of laser

arrays installed on 3D LiDARs devices ranges from 4 and 128 at writing. Addition-

ally, sensor-equipped with 128 laser-detector pairs can return millions of points per

second, creating a vibrant environments.

Micro-electromechanical systems (MEMS) LiDAR is called quasi-solid-state Li-

DAR as their moving parts move the laser beam in free space without moving any

optical component. MEMS LiDARs have a modulated laser incident on a MEMS

mirror that scans the laser beam to an object. A photodetector then picks up the

echoed laser signal from the object, and the time of flight can be used to extract the

distance. The mirrors inside a MEMS sensor can steer, modulate, and switch light, as

well as control phase [59]. For this reason, compared to motorized optomechanical

LiDARs, these are smaller, have faster readings, and their cost is usually lower.

Non-scanning LiDAR is also known as Flash LiDAR. The word "Flash" refers to

the idea that the 2D FoV of interest is entirely illuminated by the laser source, like a

camera with a flashlight, while an array of photodetectors at the image plane simul-

taneously picks up the time-of-flight (ToF) information of individual pixels in the

2D FoV [60]. Flash LiDARs use only solid-state components, which have the advan-

tages of having no moving parts, being resistant to vibrations, enjoying a compact

size, and a reduced price. However, the flood illumination required by each pixel of

the photodetector array causes to receive only a tiny fraction of the returning laser

power, leading to a low signal-to-noise ratio (SNR), which significantly limits the

distance measurement range or demands very high laser power [61]. Moreover, the

resolution of the detector array-based non-scanning LiDAR is constrained by the

size and density of the detectors.

Optical phased arrays (OPAs) are a typical solid-state beam steering technology

that enables the non-mechanical steering of optical beams [62]. OPAs benefit from

high stabilization, random-access pointing, and good optical power handling capa-

bility. The laser power is split into an array of transmitters whose phases can be

30 Chapter 3. Background

individually controlled. By dynamically adjusting the relative phase shifts among

the transmitters, a laser beam can be formed and steered [63]. The OPAs with sev-

eral phase modulators have been reported using liquid crystals, MEMS, or silicon

photonics based on different approaches.

Regardless of the technology LiDARs used to scan and generate the 3D repre-

sentation of its surroundings, all the LiDARs sensors produce a point cloud, which

represents the 3-dimensional position of each scan. Additionally to the position of-

ten the sensor also includes information such as the laser return intensity, noise,

echo, and the time-of-flight.

3.4.1 Point Clouds

A point cloud is a set of discrete points in space. Each point position has its set of

Cartesian coordinates (X, Y, Z). Point clouds are generally produced by 3D scanners

or photogrammetry techniques, which measure discrete points on the object’s ex-

ternal surfaces. Point clouds are ideal for representing LiDAR scans because these

sensors create discrete and sparse readings of an object’s surface. Moreover, point

clouds additionally to the reading coordinates, these data structures can have extra

custom fields to store information such as intensity, range, azimuth and specify the

data format. Thus, these can be accommodated to fit the data given by different

sensors and manufacturers.

There are multiple storage formats for point cloud, such as the Polygon File For-

mat (PLY), the object file format developed by Wavefront (OBJ), the Recap Scan for-

mat developed by Autodesk (RCS), and some others. Nevertheless, these formats

suffer from shortcomings, as they were created for a different purpose and before

current laser scanners were widely used [64]. For these reasons, the Point Cloud

Library (PCL) implemented a new format, the Point Cloud Data (PCD) format. This

format aims to fast data processing and a dynamic storage container that can handle

different data types. Additionally, this format is integrated within the PCL library,

allowing fast processing of point clouds.

The PCD format stores the data in three different storage types: In ASCII format,

a human-readable format. It stores each point in a new line and each field separated

by a space. Points with invalid values are represented with the "nan" string; In Binary

3.5. Camera 31

Format, a complete memory dump from the PointCloud array of the C++ object. This

format allows the fastest read and writes access to the data; Finally, the PCD format

can also store the compressed data binary data. This format compresses the binary

format using Lehmann’s LZF algorithm [65]. PCL selected this method, not due to

its size reduction capabilities but its compression-decompression speeds [64].

3.5 Camera

Cameras have become ubiquitous thanks to their low cost, high quality, and abil-

ity to represent the world with dense and feature-rich images. The images created

by these devices resemble our vision, depicting objects located at different distances

with different apparent dimensions. Mathematically speaking, projection geometry

is the way cameras are commonly modeled. Projective geometry alters the angles,

distance, and ratios of distances when projecting objects. The only property main-

tained is straightness when considering lens distortion. The camera can be modeled

using homogeneous coordinates. A point in Euclidean 2-space is represented by an

ordered pair of real numbers (x, y), and a coordinate is added. We now take the crit-

ical conceptual step of asking why the last coordinate must be 1. After all, the other

two coordinates are not so constrained. Formally, points are represented by equiva-

lence classes of coordinate triples. Two triples are equivalent when they differ by a

common multiple. These are called the homogeneous coordinates of the point.

3.5.1 The Camer Pinhole Model

The pinhole camera model describes the mathematical relationship between the co-

ordinates of a point in three-dimensional space and its projection onto the image

plane of an ideal pinhole camera. The camera aperture is represented as a point,

and no lenses are used to focus light. The model does not include, for example, geo-

metric distortions or blurring of unfocused objects caused by lenses and finite-sized

apertures. This model uses homogeneous coordinates to enable the projection of the

3-Dimensional world to a plane.

The mapping from the coordinates of a 2d in euclidean space point P = (x1, x2)

to the 2D image coordinates of the point’s projection onto the image plane p =

32 Chapter 3. Background

(y1, y2), according to the pinhole camera model, illustrated in Figure 3.5 and given

by

y1

y2

 =
f

x3

x1

x2

FIGURE 3.5: Diagram of Camera Pinhole Model

Focal Length f

Pinhole Projected
Image

x1

y1

x3

In computer vision, the projection’s origin is located not in the center as pre-

sented in the model above but at the left-topmost coordinate of the projection plane.

For this reason, the longitudinal and transversal offset is known as the Center Point

(Cx, Cy). Additionally, the distance between the projective plane and the focusing

point is labeled as the focal length (fx, fy). The mapping from 3D coordinates of

points in space to 2D image coordinates is encoded in a matrix known as the Cam-

era Matrix, usually denoted by K, and arranged as:

K =

fx 0 Cx

0 fy Cy

0 0 1

This implies that the left and right hand sides are equal up to a non-zero scalar

multiplication. A consequence of this relation is that also K can be seen as an element

of a projective space; two camera matrices are equivalent if they are equal up to a

scalar multiplication. This description of the pinhole camera mapping, as a linear

transformation K instead of as a fraction of two linear expressions, makes it possible

3.5. Camera 33

to simplify many derivations of relations between 3D and 2D coordinates.

3.5.2 Camera Plumb Bob Model

The Pinhole model can represent an ideal camera with perfect lens and no distor-

tion. Nevertheless, cameras and lenses inherently distort the light, and therefore the

image. Radial and tangential distortions are modeled using the "Plumb Bob" intro-

duced by Brown [66]. Radial distortion bends straight lines into circular arcs, vio-

lating the main invariance preserved in the pinhole camera model, in which straight

lines in the world map to straight lines in the image plane. Radial distortions are pre-

dominant in current projective lenses, and it may appear as a "barrel" or "pincushion

distortion" as illustrated in Figure 3.6.

FIGURE 3.6: Types of Radial Distortion

The radial distortions are represented as:

xradial_distorted = x(1 + k1r2 + k2r4 + k3r6)

yradial_distorted = y(1 + k1r2 + k2r4 + k3r6)

Tangential distortions occur when the lens and the image plane are not parallel,

causing some areas to look nearer than expected. Tangential distortions are repre-

sented by:

xtangential_distorted = x + [2p1xy + p2(r2 + 2x2)]

34 Chapter 3. Background

ytangential_distorted = y + [p1(r2 + 2y2) + 2p2xy]

Merging both distortions we get:

xdistorted = x + (1 + k1r2 + k2r4 + k3r6) + [2p1xy + p2(r2 + 2x2)]

ydistorted = y + (1 + k1r2 + k2r4 + k3r6) + [p1(r2 + 2y2) + 2p2xy]

In both, the radial and tangential distortions r2 is calculated as:

r2 = x2
distorted + y2

distorted

k1, k2, k3 are the radial distortion coefficients, while p1, p2 are the tangential dis-

tortion coefficients. Higher order radial coefficients can be added. Nevertheless, it

has been shown that higher-degree polynomia does not improve much the distor-

tion model [67].

All the camera parameters(Cx, Cy, fx, fy, k1, k2, k3, p1, p2) are obtained through a

method known as camera calibration, which will be further analysed in Chapter 4.

3.5.3 Images

Digital cameras store the projections they generate in digital images, also known as

raster images. These images are composed of a finite number of picture elements

(pixels), each with finite, discrete quantities and a finite size defined by the camera

sensor. Each pixel represents the intensity or gray level that the digital sensor read

at the time of capture. Additionally, these are stored as a retangular matrix or a grid

of pixels. The dimension of the matrix is also known as image resolution.

The fundamental strategy underlying the images is the tessellation of a plane,

into a two dimensional array of squares. A single numeric value is then stored for

each pixel. For most images, this value is a visible color, but other measurements are

possible, even numeric codes for qualitative categories. Each raster grid has a speci-

fied pixel format, the data type for each number. Common pixel formats are binary,

gray scale, palettized, and full color, where color depth determines the fidelity of the

colors represented and color space determines the range of color coverage (which

is often less than the full range of human color vision). Most modern color raster

3.6. Sensor Fusion 35

formats represent color using 24 bits (over 16 million distinct colors), 8 each (0-255)

for red, green, and blue.

3.6 Sensor Fusion

Sensor fusion is the process of merging data from multiple sensors to reduce the

amount of uncertainty involved in a robot navigation motion or perception task.

The three fundamental ways of combining sensor data are [68]:

• Redundant sensors: All sensors provide the same type of reading about the

world.

• Complementary sensors: The sensors gather independent (disjoint) data.

• Coordinated sensors: The sensors collect information about the world sequen-

tially.

Moreover, these sensor can communicate using the following schemes:

• Decentralized: No communication exists between the sensor nodes.

• Centralized: All sensors provide measurements to a central node.

• Distributed: The nodes interchange information at a predefined communica-

tion rate.

Regardless of the type of combination or synchronization method, each sensor

stores perceives the world in its own format, and coordinate system. For the case

of a single camera and a single LiDAR, as detailed in Sections 3.4 and 3.5 we need

to obtain additionally to the camera projection matrix, the transformation matrix

between both sensors in the form:

pcam = Plidar,cam · R · t · plidar

where plidar represents the 3D point in euclidean coordinates in the LiDAR co-

ordinate frame; R and t represent the rotation and translation matrices required to

convert the LiDAR coordinate system to the camera one; Plidar,cam represents the

36 Chapter 3. Background

camera projection matrix after distortion correction. Leaving pcam containing the

projected LiDAR 3D points onto the image. In Chapters 4 and 5 we will present the

methods we developed to obtain these transformation between coordinate systems

and projective spaces.

37

Chapter 4

Automatic Single-Shot Camera

Calibration

4.1 Problem

Navigation robots, such as autonomous vehicles, require a highly accurate represen-

tation of their surroundings to navigate and reach their target safely. Sensors such

as cameras, radars, and LiDARs (Light Detection and Ranging) are commonly used

to provide rich perception information. Each of these sensors can complement each

other to supply reliable and accurate data. For example, cameras produce a dense

representation of the world, including color, texture, and shape. However, cameras

cannot provide reliable depth information at longer distances. On the other hand,

LiDARs capture dense and highly accurate range information at short, middle, and

often at long range regardless of the lighting conditions.

The simultaneous integration of data from multiple sensors is known as fusion,

and it is used to overcome weaknesses in each individual sensor. State-of-the-art

perception algorithms utilize fused data inside deep neural networks to improve

detection accuracy. For example, some of these networks require the image, the

point cloud data, and accurate camera intrinsic and camera-lidar extrinsic parame-

ters to enable training and inference [39–42]. Another common application that re-

quires precise calibration is camera-based localization, also known as visual SLAM

(Simultaneous Localization and Mapping) [69, 70]. On the other hand, applications

that do not require fusion and only operate on images might not be significantly af-

fected by small errors in the intrinsic camera parameters. Recent advances in deep

38 Chapter 4. Automatic Single-Shot Camera Calibration

learning [71, 72] apply data augmentation techniques to increase resilience to image

distortions. Regardless of whether camera data is used independently or as part of

a fusion methodology, any application involving 3D geometry will require accurate

and careful sensor calibration. Fundamental to this is how a camera is modeled in

terms of its intrinsic parameters.

Cameras have become ubiquitous thanks to their low cost, high quality, and abil-

ity to represent the world with dense and feature-rich images. The images created

by these devices resemble our own vision, depicting objects located at different dis-

tances with different apparent dimensions. The mathematical model commonly

used to project the three-dimensional world is the pin-hole camera model. In ad-

dition, the plumb-bob model, also known as the Brown-Conrady model, represents

the distortion caused by the lens attached to the camera[1]. Model parameters can

be estimated using a method known as camera calibration (also referred to as geo-

metric camera calibration or camera re-sectioning). This method requires capturing

images while moving either the camera itself or a calibration target, with identifi-

able features and known dimensions, aiming to cover the entire camera’s field of

view. The targets used in this process depend on the calibration algorithm. Methods

such as the one presented by Zhang [73] use one-dimensional targets in the form of

a stick with beads attached to it separated by a known distance. On the other side,

methods using three-dimensional targets employ two or three planes orthogonal to

each other or a plane undergoing a pure translation. Nevertheless, the calibration

methods used in computer vision applications traditionally use two-dimensional

targets [74]. A large flat checkerboard is often used for this purpose. Correspon-

dences between feature points on the target among all of the frames are determined

in order to calculate the intrinsic parameters. This process can be tedious, especially

on robots or vehicles featuring large arrays of cameras. While there are instructions

on how to perform the data capture procedure, such as taking multiple images while

keeping the focus and focal length fixed, there are no clear instructions on setting

the checkerboard pose to obtain accurate parameters. After finishing the data ac-

quisition and estimating the parameters, their validity is not apparent until they are

applied to project 3D points. The metric commonly used to evaluate the accuracy

of the parameters is the re-projection error. It involves calculating the error between

4.2. Previous work 39

the detected and the corresponding re-projected feature points. However, this met-

ric uses the same points that were used to estimate the parameters, which reduces

its reliability.

Given the importance of accurate camera intrinsic parameters for 3D applica-

tions, we aim to: 1) define clear guidelines to calibrate monocular cameras accu-

rately; and 2) create a method that allows us to calibrate accurately using a single-

shot having a predefined setting with multiple checkerboards. To accomplish this,

we employ a realistic simulator to generate, calibrate and evaluate hundreds of com-

binations to obtain the minimum number of checkerboards, their positions, and ro-

tations that would provide accurate intrinsic parameters. We additionally evaluate

the corner detection accuracy, which is an integral part of the calibration process,

and often overlooked in other work. To overcome the weakness of the re-projection

error metric, we intentionally project virtual 3D points, labeled as Control Points, on

the camera field of view edges. We then use these Control Points to verify the distor-

tion correction qualitatively and select the best checkerboard arrangements based on

score combinations. Finally, we test the top-performing checkerboard poses to cali-

brate real cameras and project the point cloud generated by a 3D LiDAR sensor using

the estimated intrinsic parameters to validate our calibration guidelines findings. To

the best of our knowledge, this is the first work to carry out an in-depth study using

simulations to provide an optimized set of guidelines for one-shot calibration.

4.2 Previous work

There exists a considerable amount of work dedicated to developing techniques

for estimation of camera intrinsic parameters. Notable mentions include the work

by Zhang [31], Kannala and Brandt [32], and Heikkila and Sliven [33]. Despite

being published more than twenty years ago, these methods provide consistent

and reliable results. Moreover, the widely-used open-source computer vision li-

brary OpenCV [34] and the proprietary Matlab [35] platform use these methods in

40 Chapter 4. Automatic Single-Shot Camera Calibration

their camera calibration toolboxes due to their proven accuracy. More recent ap-

proaches use deep learning methods to estimate the camera intrinsic parameters us-

ing neural networks trained on large datasets of images with known intrinsic param-

eters [36][37]. These methods are convenient since they do not require any targets or

calibration datasets. Nevertheless, these approaches are still far from matching the

accuracy achieved by target-based techniques.

Zhang [31] used synthetic data while testing his calibration method to evalu-

ate resilience against noise. He obtained good results with as few as three checker-

boards, without aiming to use the parameters in 3D applications. However, he only

used the checkerboard corners to measure the error, which might result in over-

fitted parameters. Moreover, he did not consider the error introduced by the corner

detection phase.

The work dedicated to the extrinsic calibration of LiDARs, radars, and cameras

explicitly states that accurate intrinsic camera parameters are required [3, 6–8, 38–42,

75]. These methods find shared features between the 2D perspective space on the im-

ages generated by the camera and the 3D Euclidean space employed by radars and

LiDARs. The shared features are then input to an optimizer to estimate the extrinsic

parameters (relative position t, and rotation R), which attempts to reduce the projec-

tion error of the 3D features (plidar) while using the given camera intrinsic param-

eters (Plidar,cam) in the form pcam = Plidar,cam · R · t · plidar. This equation illustrates

the importance of having high-quality camera intrinsic parameters in order to obtain

accurate sensor extrinsic parameters.

There are a limited number of published studies about verifying estimated cam-

era intrinsic parameters for use in 3D applications. Basso et al. [4] stressed the re-

quirement of accurate intrinsic parameters for 3D applications such as SLAM, and

introduced a method for the intrinsic and extrinsic calibration optimizer for short-

range time-of-flight (ToF) sensors such as the Microsoft Kinect. Geiger et al. [5] pre-

sented a single-shot calibration method for short and long-range LiDARs and cam-

eras. Their approach uses multiple checkerboards in a single frame to accelerate and

simplify the data acquisition. However, they did not analyze or demonstrate why

these positions are optimal. We extend this research direction to create clear guide-

lines on how to achieve consistent and accurate intrinsic parameters and introduce

4.3. Method 41

validation metrics to verify them.

4.3 Method

we decided to use a real camera as our baseline. We therefore first needed to cal-

ibrate it, obtain the intrinsic parameters, and verify that these are appropriate for

3D applications. To calibrate our camera, we decided to use planar checkerboards

with checkered patterns since they are widely available, are low cost, and have es-

tablished corner detection methods that provide high accuracy [5], [76]. To make

the simulation closer to reality, we decided to model and simulate the checkerboard

used to calibrate our real camera.

Additionally, to calibrate our real baseline camera and the virtual cameras gener-

ated by the simulator, we re-implemented the corner detection method presented by

Geiger et al. [5], based on Ha’s algorithm [77]. This is due to its simplicity and proven

advantage in noisy and blurry environments when compared to the Harris [78], and

Shi-Tomasi [79] corner detectors included in OpenCV.

4.3.1 Baseline Calibration

We intrinsically calibrated a 5.4 MP Lucid Vision Labs machine vision camera (TRI054S)

paired with an 8 mm focal length Fujinon lens. We used an 800 mm by 600 mm pla-

nar checkerboard printed on 4 mm thick aluminum, with an eight by six pattern,

and a 100 mm square size. A total of 292 checkerboard poses were used to gen-

erate a baseline. We then used the OpenCV [34] camera calibration toolkit based

on Zhang’s method [31], and MATLAB’s [80] Adaptive Thresholding to obtain the

camera intrinsic parameters (principal point, focal length, axis skew), three radial

distortion coefficients, and two tangential distortion coefficients. We projected the

point cloud generated by a 3D LiDAR sensor, a Hesai Pandar 64, extrinsically cal-

ibrated using the method by Zhou et al. [7] to validate that these parameters are

accurate for 3D applications.

42 Chapter 4. Automatic Single-Shot Camera Calibration

FIGURE 4.1: Our modeled checkerboard simulated in the LGSVL.

4.4 Simulation

Having a baseline defined by a real camera calibrated with a checkerboard, we cre-

ated a 3D model with the help of Blender [81], based on the printed planar checker-

board mentioned in Section 4.3.1. We then converted the checkerboard model for

use within the LGSVL (LG Silicon Valley) simulator [82] as a controllable object.

The LGSVL Simulator allows the creation of virtual locations, weather scenarios,

obstacles, and one ego-vehicle. Any number of sensors can be attached to the ego-

vehicle, such as cameras, LiDARs, and GNSS. With the help of the simulator API,

we generated an empty scene with an ego vehicle, one camera with the parameters

introduced in Section 4.3.1. We then dynamically generated multiple instances of our

checkerboard controllable object as illustrated in Figure 4.1. The camera simulated

by the LGSVL simulator rendered images using the plumb-bob model with the given

intrinsic parameters. The simulator API allowed us to save these renders as image

files.

4.4.1 Checkerboard Coordinate System

We defined the checkerboard coordinate system to be right-handed. The Z-axis is

normal to the checkerboard plane, the X-axis is parallel to the checkerboard’s short

4.5. Checkerboard Corner Detector Evaluation 43

side, and the Y-axis is parallel to the long side of the checkerboard. The origin is

located at the center of the checkerboard.

4.4.2 Simulator Coordinate System

The simulator coordinate system is left-handed. The X-axis faces to the right, the Y-

axis points upwards, and the Z-axis is normal to the camera plane and faces forward.

4.5 Checkerboard Corner Detector Evaluation

Before starting to simulate multiple checkerboards, we decided to initially evaluate

the limits of our re-implemented version of the corner detector (based on Geiger et

al. [5], and Guiming and Jidong [76]) inside the simulator. We used this informa-

tion to decide the pose and distance intervals that will have a higher probability of

detecting the checkerboard corners, and therefore produce more accurate intrinsic

parameters. This step is of utmost importance since the detected checkerboard cor-

ners are the inputs for the optimizer. If they contain significant errors, the estimated

parameters will be inaccurate.

4.5.1 Corner Detector Metrics

To experimentally obtain the intervals at which the checkerboard corner detector

will fail, we located the checkerboard at the center of the camera’s field of view in

the simulated world. We rotated the checkerboard with respect to its X (roll, α), Y

(pitch, β), and Z (yaw, γ) axes on a [−90◦ ,90◦] interval with one-degree steps for the

roll and pitch and five degrees steps for the yaw; to obtain the maximum distance at

which the detector would fail, we moved the checkerboard away from the camera

in 1 m steps, until the detector failed. Additionally, to evaluate the corner detector,

we defined the following variables and statistics:

• Ground Truth 3D corners C3Dt in camera space define the checkerboard plane

normal.

• Corner RMSE is calculated between the true 2D corners C2Dt in distorted im-

ages generated by the simulator, and the corners computed when running the

44 Chapter 4. Automatic Single-Shot Camera Calibration

corner detection Cc. The true 2D corners are obtained by projecting the true

3D corners as: P · K · C3Dt, where P and K, are the projection and intrinsic

calibration matrices respectively.

• Inner Checkerboard Area is calculated by obtaining the area of the two triangles

formed by the corners in the checkerboard. Area calculation would be exact

in an undistorted image but is not precise in a distorted one. For this reason,

we use two triangles to estimate the area since we propose that this produces

better results than using a parallelogram.

• Checkerboard-Image Plane Angle is defined as the angle between the checker-

board plane normal (as defined by the corners) and the image plane normal

(camera z-axis).

4.5.2 Experiments

Rolling Experiment. For this experiment, we positioned the origin of the checker-

board at the same height as the camera origin, and set the checkerboard 4 m away

along the Z-axis, then varied the roll angle between 0 and 90 degrees in one-degree

steps.

Pitching Experiment. In this experiment, we aligned the checkerboard and camera

origins, placed the checkerboard 4 m away from the camera, and varied the pitch

rotation in the [0◦, 90◦] interval with one-degree steps.

Yaw Experiment. For this experiment, we aligned the checkerboard and camera

origins and positioned the checkerboard to be 4 m away from the camera on the

Z-axis. We then rotated the checkerboard w.r.t the checkerboard’s Z-axis between

[−90◦, 90◦] in five degrees steps.

Simultaneous Rolling and Pitching Experiment. In this experiment, we examined

the effects of simultaneously varying the pitch and roll on the corner detector. We set

the checkerboard origin height to match the camera’s and placed the checkerboard

4 m away from the camera along the Z-axis. Additionally, we fixed the yaw rotation

to 53.14 degrees. This angle allowed us to align the checkerboard longer diagonal to

the vertical axis; this condition helped us simulate the same circumstances that we

4.5. Checkerboard Corner Detector Evaluation 45

would use in an actual camera-3D sensor extrinsic calibration [7]. We then simulta-

neously varied the roll (α) and pitch (β) over the intervals of [−80◦, 80◦] and [−60◦,

60◦] respectively.

Range Experiment. In this experiment, we set the camera origin and the checker-

board origin to have the same height and initially separated them by 4 m along the

Z-axis. To verify the maximum detection distance of the checkerboard corner detec-

tor, we moved the checkerboard away from the camera in 1 m steps until it failed.

Additionally, once we obtained the checkerboard corner detector failure range, we

repeated the experiment focusing on the working area with 0.5 m steps to under-

stand better the detector’s performance.

4.5.3 Results

Figure 4.2 and Figure 4.3 show the results of the corner detector experiments in the

simulator. From these, we can draw the following guidelines regarding the corner

detector:

• We found that the corner detector peak performance w.r.t roll rotation between

the camera plane normal and the checkerboard normal is between 0 and 60

degrees, as we present in Figure 4.2a. However, rotations below 70 degrees

also obtain reliable corner detection performance. On the other hand, we can

see that the performance quickly decreases at angles larger than 70 degrees

and the detector completely fails for angles larger than 78 degrees.

• We observed in Figure 4.2b that the corner detector performs best between 20

and 60 degrees when varying the pitch angle between the camera plane normal

and the checkerboard normal. The performance degrades at angles larger than

60 degrees, until it cannot detect any corners at all after 78 degrees.

• From Figure 4.2c, we can appreciate that the corner detector performs best

between 20 and 60 degrees when simultaneously varying the pitch and roll

between the camera plane normal and the checkerboard normal. Similarly, we

see a reduction in accuracy when the rotations surpass 78 degrees.

46 Chapter 4. Automatic Single-Shot Camera Calibration

0 20 40 60 80
Board-plane angle [deg]

0.45

0.50

0.55

0.60

0.65
R

M
S

E
 [p

x]

Mean RMSE, : 0.54, : 0.04 px

Distorted Corners RMSE
Not detected (>78.00 deg)

(A) Effects of Roll (α) Angle

0 20 40 60 80
Board-plane angle [deg]

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

R
M

S
E

 [p
x]

Mean RMSE, : 0.50, : 0.02 px

Distorted Corners RMSE
Not detected (>77.98 deg)

(B) Effects of Pitch (β) Angle

0 20 40 60 80
Board-plane angle [deg]

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

R
M

S
E

 [p
x]

Mean RMSE, : 0.51, : 0.03 px

Distorted Corners RMSE
Not detected (>80.00 deg)

(C) Effects of Simultaneous Roll (α) and Pitch
(β)

-75 -50 -25 0 25 50 75
Yaw angle [deg]

0.48

0.50

0.52

0.54

0.56

0.58

0.60

R
M

S
E

 [p
x]

Mean RMSE, : 0.53, : 0.03 px

Distorted Corners RMSE

(D) Effects of Yaw (γ) Angle

FIGURE 4.2: Effects of roll (α), pitch (β) and yaw (γ) rotations on the
checkerboard corner detector.

• From Figure 4.3a we can see that the corner detector can detect corners reliably

up to 35 m. However, in Figure 4.3b we can observe a tendency in the corner

detector RMSE that leads us to the conclusion that the distance between the

camera and checkerboard considerably affects its performance. For this rea-

son, we suggest that the checkerboard’s visible inner area should be at least

20, 000 px2. This value for the area is resolution independent, so we propose it

as a guideline for perspective cameras and lenses that produce a different field

of view.

4.6 Simulated Calibration Experiments

With the knowledge obtained about the impacts of distance and rotation on the cor-

ner detector, we investigated the checkerboard positions in the image frame and

their influence on the camera intrinsic parameters. To achieve this, we needed to de-

fine the metrics to assist evaluation for each set of checkerboard poses and positions.

4.6. Simulated Calibration Experiments 47

10 20 30 40 50
Distance from camera [m]

0

100000

200000

300000

400000

In
ne

r
ch

ec
ke

rb
oa

rd
 a

re
a

[p
x2]

Detected Corners
Not detected (>36.00 m)

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

R
M

S
E

 [p
x]

Detected Corners RMSE
Not detected Corners RMSE

(A) Effects of Distance, 4 to 51 meter interval

10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0
Distance from camera [m]

5000

10000

15000

20000

25000

In
ne

r
ch

ec
ke

rb
oa

rd
 a

re
a

[p
x2]

Detected Corners

0.50

0.52

0.54

0.56

0.58

0.60

0.62

R
M

S
E

 [p
x]

Detected Corners RMSE

(B) Effects of Distance, 10 to 30 meter interval

FIGURE 4.3: Effects of distance between the checkerboard and the
camera on the checkerboard corner detector.

4.6.1 Checkerboard Pose Metrics

To verify if a set of checkerboard poses provides a better estimation of the camera’s

intrinsic parameters, we calculated the Root Mean Square Error (RMSE) between the

ground truth parameters and the those estimated from the corners of the checker-

boards detected on the image using OpenCV [34]. We measured the following pa-

rameters:

• Focal length (fx, fy).

• Center point (cx,cy).

• Distortion coefficients: three radial (k1,k2,k3), and two tangential (p1,p2).

In addition to the intrinsic parameters, we also obtained:

• The RMSE between the ground truth corner positions and the projected corner

points using the estimated intrinsic parameters.

• The checkerboard corner re-projection error, which is the distance between

the detected corners in a calibration image, and the corresponding 3D corner

points projected into the same image.

• The Control Points re-projection error, which is the distance between the pro-

jections of a 3D Control Point when using the estimated and the ground truth

intrinsic parameters. In Section 4.6.2, we introduce and describe the "Control

Points" in more detail.

48 Chapter 4. Automatic Single-Shot Camera Calibration

z

0

10

20

30

40

50

60

x

-40
-20

0
20

40

y

-30
-20
-10

0
10

20

30

Control Points, 5 m
Control Points, 50 m
Camera Origin

FIGURE 4.4: Control Points systematically located inside the camera
frustum.

4.6.2 Control Points

The re-projection error is a metric used to quantify the distance between the projec-

tion estimate of a 3D point and its actual projection. This metric is widely used to

estimate the performance of the camera intrinsic parameters, measuring the detected

corners and their 3D estimated counterparts. However, since these points only con-

tain areas belonging to the checkerboard, this metric is unreliable on other parts of

the image. For this reason, we decided to purposely insert 3D virtual points in the

simulation to assist in measuring the performance on the edges of the image.

The Control Points are 3D virtual points strategically positioned in the camera

frustum. They target the areas of the camera field of view which are prone to project

points incorrectly due to lens distortions. We located these points systematically as

shown in Figure 4.4 at 5 m and 50 m from the camera origin. We defined those two

distances to test the performance at close and long-range.

Figure 4.5 shows two simulated checkerboards with an almost identical re-projection

4.6. Simulated Calibration Experiments 49

(A) Control Points showing a significant projec-
tion error, even when the checkerboard corners

are projected with low error.

(B) Control Points and checkerboard corners
showing a reduced projection error.

FIGURE 4.5: Control points as an auxiliary metric. Green marks rep-
resent the "Control points" projected with the ground truth intrinsic
parameters, while purple marks represent the projection of the "Con-
trol Points" using the estimated intrinsic parameters. Both (a) and
(b) have the same subpixel checkerboard corner re-projection error
value, and corners in the checkerboard are correctly re-projected in
both cases. However, the estimated intrinsic parameters have a large

error in (a), correlating to Control Point re-projection error.

error value when using only the checkerboard corners. The ground truth checker-

board corners are drawn with a red crosshair, while the re-projected corners are

drawn with a green crosshair. The corner points for both checkerboards are re-

projected after un-distortion with sub-pixel accuracy. However, when using the

Control Points to calculate the re-projection error in Figure 4.5a, the error metric in-

creases considerably. The checkerboard in Figure 4.5b, on the other hand, has lower

control point re-projection error due to the intrinsic parameters being closer to the

ground truth. We use this new metric to help us determine whether a checkerboard

pose is adequate or not.

4.6.3 Dual Checkerboard Calibration

In this series of experiments, we evaluated the effect of varying the position and

rotation of each checkerboard. This chapter aims to formulate guidelines that will

help to narrow down the number of combinations required when increasing the

number of checkerboards. To do this, we must determine the poses that result in a

minimized error.

Having explained the proposed method for corner detector evaluation and de-

fined the required metrics, we also aim to answer the following questions for multi-

ple checkerboards:

50 Chapter 4. Automatic Single-Shot Camera Calibration

• How do the checkerboard rotation angles affect the calibration results?

• How do the vertical and horizontal checkerboard positions impact the intrinsic

parameter estimation?

• How does the distance between the camera and the checkerboard influence the

intrinsic parameters?

• What is the minimum number of checkerboards or poses required to accurately

calibrate intrinsically a camera?

Dual Checkerboard Rotation Experiments

In these experiments, we investigate the checkerboard pose performance when vary-

ing the roll (α) and pitch (β) angles in different rotational combination patterns: in-

dividual, simultaneous, symmetric, and asymmetric. For all these experiments, we

fixed the checkerboard yaw angle to 53.14 degrees because this aligns the checker-

board longer diagonal to the vertical-axis, which allowed us to simplify the camera-

LiDAR calibration [7]. This condition was required to simulate the same settings to

use in the real-world scenario.

We used the roll and pitch rotation intervals we obtained in Section 4.5 for the

following experiments, since we previously determined that these would provide

accurate checkerboard corner detections.

We prepend all of the experiments in this section by the letter A, denoting the

angle variation. The following list summarizes the experiments we carried out, with

the rotation experiments being additionally summarized in Table 4.1:

A1. Varying the pitch and roll of the right checkerboard, while keeping the left

checkerboard static. We simulated all the roll (α) and pitch (β) combinations over

the [−60◦, 60◦] interval in 10 degree steps.

A2. Varying the pitch and roll of the left checkerboard, while keeping the right

checkerboard static. We varied the roll and pitch over the [−60◦, 60◦] interval in

10-degrees steps.

A3. Varying the pitch and roll of the left checkerboard and right checkerboard si-

multaneously over the [−60◦, 60◦] interval in 10-degree steps. The yaw angle of

both checkerboards was set to −53.14 degrees.

4.6. Simulated Calibration Experiments 51

TABLE 4.1: Summary of the rotation experiments with dual checker-
boards and their results. The best poses are defined by the top 2 %
lowest error of the projected control points. The subscript letter iden-
tifies the left (l) and right (r) checkerboards respectively. The # symbol

in parenthesis represents the index of the experiment.

Experiment Left Checkerboard
Parameters

Right Checkerboard
Parameters

Top 2%
Poses and its

Control Points
projection Error (ε)[px]

A1
Left Fixed

Right Rotate

x, y, z: (-0.6, 1.0, 5.0)m
α: 0°
β: 0°

γ: -53.14°

x, y, z: (0.6, 1.0, 5.0)m
α: [-60, 60, 10]°
β: [-60, 60, 10]°

γ: -53.14°

(#98) αr:10°, βr:10°, ε:1.807
(#72) αr:-10°, βr:10°, ε:1.8260
(#110) αr:20°, βr:0°, ε:1.8867

(#30) αr:-40°, βr:-20°, ε:1.8930

A2
Left Rotate
Right Fixed

x, y, z: (-0.6, 1.0, 5.0)m
α: [-60, 60, 10]°
β: [-60, 60, 10]°

γ: -53.14°

x, y, z: (0.6, 1.0, 5.0)m
α: 0°
β: 0°

γ: -53.14°

(#52) αl :-20°, βl :-60°, ε:1.1576
(#132) αl :40°, βl :-40°, ε:1.2514
(#94) αl :10°, βl :-30°, ε:1.3005
(#92) αl :10°, βl :-50°, ε:1.3379

A3
Left Rotate

Right Rotate

x, y, z: (-0.6, 1.0, 5.0)m
α: [-60, 60, 10]°
β: [-60, 60, 10]°

γ: -53.14°

x, y, z: (0.6, 1.0, 5.0)m
α: [-60, 60, 10]°
β: [-60, 60, 10]°

γ: -53.14°

(#132) αl :40°, βl :-40°, αr:40°, βr:-40°, ε:1.5329
(#58) αl :-20°, βl :0°, αr:-20°, βr:0°, ε:1.6313

(#157) αl :60°, βl :-50°, αr:60°, βr:50°, ε:1.8264
(#36) αl :-40°, βl :40°, αr:-40°, βr:30°, ε:1.8902

A4
Left Rotate

Right Rotate
Mirror Yaw

x, y, z: (-0.6, 1.0, 5.0)m
α: [-60, 60, 10]°
β: [-60, 60, 10]°

γ: 53.14°

x, y, z: (0.6, 1.0, 5.0)m
α: [-60, 60, 10]°
β: [-60, 60, 10]°

γ: -53.14°

(#28) αl :-40°, βl :-40°, αr:-40°, βr:-40°, ε:1.5135
(#98) αl :10°, βl :10°, αr:10°, βr:10°, ε:1.6489

(#73) αl :-10°, βl :20°, αr:-10°, βr:20°, ε:1.9723
(#68) αl :-10°, βl :-30°, αr:-10°, βr:-30°, ε:2.1704

A5
Left Rotate

Right Rotate
Mirror

Roll/Pitch

x, y, z: (-0.6, 1.0, 5.0)m
α: [-60, 60, 10]°
β: [-60, 60, 10]°

γ: 53.14°

x, y, z: (0.6, 1.0, 5.0)m
α: [60, -60, -10]°
β: [60, -60, -10]°

γ: -53.14°

(#74) αl :-10°, βl :30°, αr:10°, βr:30°,ε:1.7785
(#73) αl :-10°, βl :20°, αr:10°, βr:20°,ε:1.7820
(#21) αl :-50°, βl :20°, αr:50°, βr:20°, ε:1.7852
(#93) αl :10°, βl :-40°, αr:-10°, βr:40°,ε:2.0763

A4. This experiment was similar to A3. It varied the pitch and roll of the left checker-

board and right checkerboard simultaneously over the [−60 ◦, 60◦] interval in 10-

degree steps. However, in this experiment, we mirrored the yaw angle between

checkerboards, setting the left γl angle to 53.14, and the right γl angle to −53.14

degrees.

A5. Similar to the A3 experiment, we varied simultaneously the roll and pitch angles

in the [−60◦, 60◦] interval, in 10 -degree steps. But in this experiment, we mirrored

all the rotations (αl = −αr, βl = −βr, and γl = −γr).

Dual Checkerboard Horizontal Positioning Experiments

In these experiments, we investigated the checkerboard pose performance when

varying the horizontal positioning for two simultaneous checkerboards in the cam-

era field-of-view. We used different combinations while keeping the vertical posi-

tioning fixed.

52 Chapter 4. Automatic Single-Shot Camera Calibration

From Section 4.5.3, we learned that the closer the checkerboard is to the camera

plane, the better the checkerboard corner detector performance. For this reason, we

positioned both checkerboards five meters from the camera plane along the camera’s

Z-axis. Additionally, for these experiments we selected the roll and pitch rotations

that provided the best corner detection results. With these initial conditions, we sim-

ulated the following experiments involving variation of the horizontal positioning

of the checkerboards. We prepend all of the experiments in this section by the letter

H, denoting the horizontal variation. We also summarize the experiment parameters

and results in Table 4.2:

H1. In this experiment, we modified the horizontal position of both checkerboards

simultaneously along the camera X-axis, while each checkerboard was facing the

camera with different rotation angles. We positioned the left checkerboard at the

left edge of the image, with the right checkerboard next to its right side separated

by 0.9 m. Additionally, we set the right checkerboard to have -40, −20, and −53.14

degrees for the roll, pitch, and yaw, respectively; and 0, 0, and −53.14 degrees for

the left checkerboard. We then moved both checkerboards with 0.02 m steps until

the right checkerboard reached the image edge.

H2. Similar to H1, in this experiment we changed only the horizontal position un-

til the right checkerboard reached the image edge, in 0.02 m steps. However, the

checkerboard normals had the rotation angles mirrored. The left checkerboard roll,

pitch, yaw rotations were set to 50, −20, and −53.14 degrees, respectively, while the

right ones were set to −50, 20, and −53.14 degrees.

H3. Contrary to the H1 and H2, in this experiment we fixed the initial position of

both checkerboards to the center of the image and moved the horizontal position of

each checkerboard simultaneously towards the left and right image edges in 0.01 m

steps. We set the right checkerboard roll, pitch, and yaw rotations to −40, −20, and

−53.14 degrees, respectively, while setting the left checkerboard rotations to 0, 0, and

−53.14 degrees.

H4. In this experiment we initially positioned both checkerboards at the center of the

frame, separated by 0.8 m. We then moved each checkerboard towards the left and

right edges respectively in 0.01 m steps. We also set the left and right checkerboards

to point towards opposite directions. The right checkerboard roll was set to−50, the

4.6. Simulated Calibration Experiments 53

pitch to 20, and the yaw to −53.14 degrees; the left one was set to 50, −20, −53.14

degrees in roll, pitch, and yaw, respectively.

H5. In this experiment, we set both checkerboards at the center of the frame sepa-

rated by 0.8 m, with their rotation angles mirrored. We then moved the left checker-

board towards the left edge of the image and simultaneously moved the right checker-

board to the right side of the frame. Both checkerboards were moved in 0.01 m steps.

The right checkerboard roll, pitch, and yaw rotations were set to 50,−20, and−53.14

degrees, respectively, while the left checkerboard rotations were set to −50, 20, and

−53.14 degrees.

Dual Checkerboard Vertical Positioning Experiments

In these experiments, we examined the checkerboard pose performance when vary-

ing symmetrically and asymmetrically the vertical positioning of the two checker-

boards in the camera field-of-view. Similar to the experiments of Section 4.6.3, we se-

lected the most performant rotations for the checkerboard detector from Section 4.5.3.

The following list explains the vertical positioning experiments. We prepend the ex-

periments in this section with V, denoting the vertical variation. We additionally

include a summary of these experiments in Table 4.2:

V1. In this experiment, we initially positioned the left checkerboard at the bottom

left edge and the right checkerboard at the lower right of the frame. We fixed the

rotations of both checkerboards to −40, −20, and −53.14 degrees for the roll, pitch,

and yaw, respectively. We then moved both checkerboards simultaneously to the

top of the image in steps of 0.02 m, without modifying the horizontal position.

V2. In this experiment we initially positioned the left checkerboard to the top-left

edge and the right checkerboard to the lower right of the frame. We fixed both

checkerboard rotations to −40, −20, and −53.14 degrees for the roll, pitch, and yaw,

respectively. We then moved the left checkerboard towards the bottom left and the

right checkerboard to the top right in steps of 0.02 m, without modifying the hori-

zontal position.

54 Chapter 4. Automatic Single-Shot Camera Calibration

TABLE 4.2: Summary of the horizontal and vertical positioning ex-
periments with dual checkerboards and their results. The best poses
are defined by the top 2% lowest error of the projected control points.
The subscripts l and r identify the left and right checkerboards re-
spectively. The # symbol in parenthesis represents the index of the

experiment.

Experiment Left Checkerboard
Parameters

Right Checkerboard
Parameters

Top 2%
Poses and its

Control Points
Re-projection Error(ε)[px]

H1
Left

Perpendicular
Horizontally

Together

α, β, γ: (0, 0, -53.14)°
x: [-1.2, 0.4, 0.02] m

y: 1.0 m
z: 5.0 m

α, β, γ: (-40, -20, -53.14)°
x: [-0.3, 1.3 0.02] m

y: 1.0 m
z: 5.0 m

(#74) xl :0.28 m, xr:1.18 m, ε:1.0277
(#78) xl :0.36 m, xr:1.26 m, ε:1.0783
(#15) xl :-0.89 m, xr:0.0 m, ε:1.3312
(#5) xl :-1.10 m, xr:-0.02 m, ε:1.3568

H2
Left/Right
Mirrored

Horizontally
Together

α, β, γ: (50, -20, -53.14)°
x: [-1.2, 1.3, 0.2] m

y: 1.0 m
z: 5.0 m

α, β, γ: (-50, 20, -53.14)°
x: [-0.3, 0.4, 0.02] m

y: 1.0 m
z: 5.0 m

(#14) xl :-0.92 m, xr:-0.2 m, ε:1.1834
(#75) xl :0.3 m, xr:-1.2 m, ε:2.0962

(#17) xl :-0.86 m, xr:0.04 m, ε:2.1201
(#18) xl :-0.84 m, xr:0.06 m, ε:2.1817

H3
Left

Perpendicular
Horizontally

Separate

α, β, γ: (0, 0, -53.14)°
x: [-0.4, -1.2, -0.01] m

y: 1.0 m
z: 5.0 m

α, β, γ: (-40, -20, -53.14)°
x: [0.4, 1.2, 0.01] m

y: 1.0 m
z: 5.0 m

(#74) xl :-1.14 m, xr:1.14 m, ε:1.0383
(#65) xl :-1.05 m, xr:1.05 m, ε:1.0566
(#73) xl :-1.13 m, xr:1.13 m, ε:1.0842
(#78) xl :-1.18 m, xr:1.18 m, ε:1.1105

H4
Left/Right
Mirrored

Horizontally
Separate

α, β, γ: (50, -20, -53.14)°
x: [-0.4, -1.2, -0.01] m

y: 1.0 m
z: 5.0 m

α, β, γ: (-50, 20, -53.14)°
x: [0.4, 1.2, 0.01] mv y: 1.0 m

z: 5.0 m

(#20) xl :-0.6 m, xr:0.6 m, ε:1.7851
(#43) xl :-0.83 m, xr:0.83 m, ε:1.9118
(#54) xl :-0.94 m, xr:0.94 m, ε:1.9452
(#31) xl :-0.71 m, xr:0.71 m, ε:2.0131

H5
Left/Right
Mirrored
Inverted

Horizontally
Separate

α, β, γ: (-50, 20, -53.14)°
x: [-0.4, 1.2, 0.01] m

y: 1.0 m
z: 5.0 m

α, β, γ: (50, -20, -53.14)°
x: [0.4,-1.2, 0.01] m

y: 1.0 m
z: 5.0 m

(#6) xl :-0.92 m, xr:-0.2 m, ε:4.084
(#14) xl :0.3 m, xr:-1.2 m, ε:4.7277

(#13) xl :-0.86 m, xr:0.04 m, ε:4.7709
(#23) xl :-0.84 m, xr:0.06 m, ε:5.43005

V1
Left/Right
Identical
Rotations
Vertically
Together

α, β, γ: (-40, -20, -53.14)°
x: -1.13 m

y: [0.35, 1.65, 0.02] m
z: 5.0 m

α, β, γ: (-40, -20, -53.14)°
x: 1.13 m

y: [0.35, 1.65, 0.02] m
z: 5.0 m

(#42) yl :1.19 m, yr:1.19 m, ε:0.6763
(#37) yl :1.09 m, yr:1.09 m, ε:0.7285
(#55) yl :1.45 m, yr:1.45 m, ε:0.7542
(#57) yl :1.49 m, yr:1.49 m, ε:0.8238

V2
Left/Right
Identical
Rotations
Vertically
Opposite

α, β, γ: (-40, -20, -53.14)°
x: -1.13 m

y: [1.65, 0.35, -0.02] m
z: 5.0 m

α, β, γ: (-40, -20, -53.14)°
x: 1.13 m

y: [0.35, 1.65, 0.02] m
z: 5.0 m

(#34) yl :0.97m, yr:1.03 m, ε:0.8916
(#46) yl :0.73 m, yr:1.27 m, ε:0.9385
(#37) yl :0.91 m, yr:1.09 m, ε:1.0684
(#64) yl :0.37 m, yr:1.63 m, ε:1.1009

4.6. Simulated Calibration Experiments 55

Dual Checkerboard Distance Experiments

Although we know that the corner detector performs better the closer the checker-

board is to the camera, in these experiments we evaluated the impacts of checker-

board scale on the accuracy of the intrinsic parameters. Similar to the horizontal

and vertical experiments, we selected the most performant poses from Section 4.5.3.

Additionally, from Section 4.6.3 we chose to keep the checkerboards near the left

and right edges since this positioning provided better parameter estimation. The

following list describes the distance experiments. We prepend the experiments in

this section with D, denoting the distance. We additionally include a summary of

these experiments in Table 4.3:

D1. In this experiment, we initially positioned both checkerboards at the camera

height but distanced the left checkerboard 5 m from the camera and the right one at

10 m. We kept the left checkerboard static during the whole experiment on the left

image edge, while we reduced the right checkerboard distance in 0.1 m steps until it

reached 4.6 m. The roll, pitch, and yaw for both checkerboards was set to −40, −20,

and −53.14 degrees, respectively.

D2. In this experiment, we initially positioned both checkerboards at the camera

height, with one on the left image edge and the other on the right. We set the initial

distance of both checkerboards to 10 m, and then moved them towards the camera

until they reached a distance of 5 m from the camera. We fixed the roll, pitch, and

yaw for both checkerboards to −40, −20, and −53.14 degrees, respectively.

4.6.4 Dual Checkerboard Calibration Results

Looking at the results from Table 4.1, Table 4.2, and Table 4.3 we can infer the fol-

lowing guidelines:

1. It is essential to locate the checkerboards near to the image edge in order to

generate distortion parameters closer to the ground truth.

2. Having a single checkerboard pointing directly to the camera while the other

is rotated seems to produce better overall parameters. We hypothesize that

this dual checkerboard combination provides enough information to estimate

56 Chapter 4. Automatic Single-Shot Camera Calibration

TABLE 4.3: Summary of the distance between camera and checker-
board experiments with dual checkerboards and their results. The
best poses are defined by the top 2% lowest error of the projected con-
trol points. The subscript l and r identify the left and right checker-
boards, respectively. The # symbol in parenthesis represents the index

of the experiment.

Experiment
Left

Checkerboard
Parameters

Right
Checkerboard

Parameters

Top 2%
Poses and its

Control Points
Re-projection Error (ε)[px]

D1
Left Fixed

Right Approach

α, β, γ: (-40, -20, -53.14)°
x: -1.13 m
y: 1.0 m
z: 5.0 m

α, β, γ: (-40, -20, -53.14)°
x: 1.13 m
y: 1.0 m

z: [10.0, 4.6, -0.1] m

(#32) zr:6.8 m, ε:1.2415
(#43) zr:5.7 m, ε:1.4161
(#52) zr:4.8 m, ε:1.4630
(#54) zr:4.6 m, ε:1.4680

D2
Left/Right
Approach

α, β, γ: (-40, -20, -53.14)°
x: -1.13 m
y: 1.0 m

z: [10.0, 4.6, -0.1]

α, β, γ: (-40, -20, -53.14)°
x: 1.13 m
y: 1.0 m

z: [10.0, 4.6, -0.1]

(#49) zl :5.1 „ zr:5.1 m, ε:1.3418
(#30) zl :7.0 m, zr:7.0 m, ε:1.5207
(#50) zl :5.0 m, zr:5.0 m, ε:1.5672
(#46) zl :5.4 m, zr:5.4 m, ε:1.5840

the center point and the focal length accurately while also producing sufficient

data to calculate the distortion parameters.

3. Keeping the checkerboard rotation inside the [−60◦, 60◦] interval, as we de-

fined in Section 4.5.3, is essential to increase the corner detection accuracy.

4. Checkerboards located on the image corners are not required, as long as the

user can position the checkerboards near the image edge.

5. Checkerboards with varied rotation relative to the camera plane are more ben-

eficial than those located farther away, since closer checkerboards produce

more accurate corners. We found this to be true because rotated checkerboards

near the acceptable rotation limits also provide scale information.

4.6.5 Multiple Checkerboards Calibration

Based on the guidelines we defined in Section 4.6.4, we defined the poses of up to

10 checkerboards in the image frame. Since we narrowed down the combinations,

all these experiments contain only fixed positions and rotations, instead of simu-

lation intervals. Additionally, for the top-score poses, we manually picked other

performant poses to form two setups: one with six and the other with seven checker-

boards. To form these "custom" setups, denoted by subscript C, we chose what we

considered "easy" to replicate positions in the real world. For instance, we preferred

(but did not prioritize) checkerboard positions closer to the ground or separated

4.6. Simulated Calibration Experiments 57

T
hr

ee
B

oa
rd

s
1

T
hr

ee
B

oa
rd

s
2

F
ou

r
B

oa
rd

s
1

F
ou

r
B

oa
rd

s
2

F
iv

e
B

oa
rd

s
1

F
iv

e
B

oa
rd

s
1

S
ix

B
oa

rd
s

C
us

to
m

C

S
ix

B
oa

rd
s

1

S
ev

en
B

oa
rd

s
C

us
to

m

C

S
ev

en
B

oa
rd

s
1

E
ig

ht
B

oa
rd

s
1

N
in

e
B

oa
rd

s
1

T
en

B
oa

rd
s

1

0

5

10

15

20

25

30

35
R

M
S

E

0.
50

8

0.
52

4

0.
53

7

0.
52

2

0.
50

7

0.
49

4

0.
51

2

0.
52

1

0.
51

2

0.
52

1

0.
51

9

0.
51

5

0.
52

6

0.
76

2

0.
62

1

1.
13

0

0.
86

7

0.
79

8

0.
94

7

0.
62

8

0.
77

8

0.
87

1

0.
67

2

0.
70

8

0.
83

0

0.
67

1

0.
80

8

0.
69

3

1.
32

0

0.
97

4

0.
94

1

1.
22

0

0.
62

8

0.
97

1

0.
98

5

0.
77

6

1.
01

0

0.
88

8

0.
78

7

9.
79

0

32
.5

00

4.
09

0

4.
68

0

8.
59

0

3.
89

0 6.
97

0

7.
62

0

5.
61

0

4.
94

5

1.
58

0

8.
34

4

1.
48

0

1.
72

0

21
.4

00

16
.8

00

11
.8

00

6.
45

0

11
.5

00

3.
26

0

6.
45

0

10
.6

50

4.
13

0

9.
47

0

9.
91

0

7.
40

0

0.
02

3

0.
08

0

0.
07

5

0.
01

8

0.
10

1

0.
06

5

0.
00

9

0.
05

0

0.
00

7

0.
01

1

0.
02

0

0.
07

6

0.
03

3

Distorted Corners RMSE [px]
Undistorted Corners RMSE [px]
Control Points RMSE [px]
Focal Length RMSE [px]
Center Point RMSE [px]
Distortion Coefficients RMSE

FIGURE 4.6: Quantitative result summary for the simulation experi-
ments with multiple checkerboards.

from each other; this would help accelerate checkerboard positioning setup in a

real-world scenario. However, we always followed the guidelines we defined in

Section 4.6.4.

The summary of the simulation experiments with multiple checkerboards is in

Table 4.4. We decided to limit the number of checkerboards to 10 because adding

more checkerboards would prove a challenge to set up in the real and simulated

worlds while maintaining all the checkerboards at a close range to maximize the

performance of the corner detector.

4.6.6 Multiple Checkerboards Calibration Results

Table 4.5 and Figure 4.6 show that it might be feasible to calibrate with as few as three

checkerboards and obtain good calibration results. However, in Figure 4.6 we can

see that the α1 experiment, with three checkerboards, presents a larger than average

focal length error, which might produce scaling problems and an irregular projection

at different distances.

Additionally, on the same Section 4.6.6, we can see that having more checker-

boards produces more accurate calibration intrinsic parameters. However, we can

also infer that using six or seven checkerboards can provide enough information to

estimate highly accurate calibration parameters for 3D applications. This number of

checkerboards gives a realistic and balanced approach since having more than seven

simultaneous checkerboards in the frame might cause difficulties while replicating

58 Chapter 4. Automatic Single-Shot Camera Calibration

TABLE 4.4: Summary of the simulation experiments with multi-
ple checkerboards. The Experiment column contains the number of
checkerboards and the details for each checkerboard per line. Posi-
tion is expressed in meters, while rotations are expressed in degrees.

Experiment
(xyz),(rpy)

Experiment
(xyz),(rpy)

Three Checkerboards α1
(-0.05, 1.0, 4)m, (0, 0, -53.14)°

(1.05, 1.4, 4.9)m, (10.07, 51.04, 40.53)°
(-1.35, 0.65, 5.6)m, (34.04, -27.33, -35.99)°

Three Checkerboards α2
(-0.05, 1, 4)m, (0, 0, -53.14)°

(1.05, 1.4, 4.9)m, (36.84, 42.16, -62.15)°
(-1.35, 0.65, 5.6)m, (-33.57, 18.33, -6.1)°

Four Checkerboards β1
(-0.45, 1.5, 5)m, (4.44, -14.28, -64.04)°

(0.3, 0.7, 4.5)m, (-11.53, -38.45, -60.02)°
(1.05, 1.4, 4.8)m, (10.07, 51.04, 40.53)°

(-1.35, 0.65, 5.6)m, (34.04, -27.33, -35.99)°

Four Checkerboards β2
(-0.45, 1.5, 5.0)m, (-11.53, -38.45, -60.02)°

(0.3, 0.7, 4.5)m, (0, 0, -53.14)°
(1.05, 1.4, 4.8)m, (10.07, 51.04, 40.53)°

(-1.35, 0.65, 5.6)m, (34.04, -27.33, -35.99)°
Five Checkerboards γ1

(0.05, 1, 4.1)m, (0, 0, -53.14)°
(0.95, 1.6, 4.6)m, (-40.17, -20.68, -1.58)°
(0.95, 0.65, 4.6)m, (10.07, 51.04, 40.53)°

(-0.95, 1.5, 4.8)m, (-11.53, -38.45, -60.02)°
(-0.75, 0.6, 4.3)m, (34.04, -27.33, -35.99)°

Five Checkerboards γ2
(0.05, 1, 4.3)m, (0, 0, -53.14)°

(0.95, 1.6, 4.8)m, (-40.17, -20.68, -1.58)°
(0.95, 0.65, 4.8)m, (10.07, 51.04, 40.53)°
(-0.95, 1.5, 5)m, (-11.53, -38.45, -60.02)°
(-0.75, 0.6, 4.5)m, (34.04, -27.33, -35.99)°

Six Checkerboards δ1
(-0.05, 1.4, 4.4)m, (0, 0, -53.14)°

(0.1, 0.6, 4.2)m, (-36.16, -43.53, -61.14)°
(0.95, 1.6, 4.6)m, (20.17, -20.68, -1.58)°
(0.95, 0.65, 4.6)m, (10.07, 51.04, 40.53)°

(-0.95, 1.5, 4.7)m, (-11.53, -38.45, -60.02)°
(-0.75, 0.6, 4.3)m, (34.04, -27.33, -35.99)°

Seven Checkerboards ε1
(-0.05, 1.7, 4.9)m, (-36.16, -43.53, 10.14)°

(0.15, 1.0, 5.2)m, (0, 0, -53.14)°
(0.1, 0.4, 4.7)m, (64.74, 8.31, -24.57)°

(0.95, 1.6, 4.5)m, (20.17, -20.68, -1.58)°
(0.95, 0.65, 4.5)m, (10.07, 51.04, 40.53)°

(-0.95, 1.5, 4.7)m, (-11.53, -38.45, -60.02)°
(-0.75, 0.6, 4.3)m, (34.04, -27.33, -35.99)°

Eight Checkerboards ζ1
(-1.15, 1.1, 5)m, (-11.53, -38.45, -60.02)°
(-0.5, 1.7, 4.9)m, (-36.16, -43.53, 10.14)°
(-0.6, 0.4, 5)m, (34.04, -27.33, -35.99)°

(-0.35, 1.0, 5.4)m, (0, 0, -53.14)°
(0.55, 0.95, 5)m, (40.93, 38.59, 36.58)°
(0.5, 0.5, 4.4)m, (64.74, 8.31, 24.57)°

(0.55, 1.59, 4.5)m, (20.17, -20.68, -1.58)°
(1.35, 0.98, 5.05)m, (10.07, 51.04, 89.53)°

Nine Checkerboards η1
(-1.37, 0.9, 5.1)m, (-11.53, -58.45, -80.02)°
(-0.8, 1.7, 4.9)m, (-36.16, -43.53, 10.14)°
(-0.6, 0.4, 5.0)m, (34.04, -27.33, -35.99)°

(-0.53, 1.08, 4.8)m, (-20.84, 26.11, -4.00)°
(0.03, 1.65, 5.2)m, (0, 0, -53.14)°

(0.4, 0.98, 4.65)m, (40.93, 38.59, 36.58)°
(0.5, 0.5, 4.4)m, (64.74, 8.31, 24.57)°

(0.75, 1.59, 4.5)m, (20.17, -20.68, -1.58)°
(1.35, 0.98, 5.05)m, (10.07, 51.04, 89.53)°

Ten Checkerboards θ1
(-1.41, 1.05, 5.2)m, (-11.53, -58.45, -80.02)°
(-0.8, 1.75, 5.0)m, (-36.16, -43.53, 10.14)°

(-1.06, 0.32, 5.1)m, (39.04, -37.33, -15.99)°
(-0.48, 1.0, 4.4)m, (-20.84, 26.11, -4.00)°

(0.03, 1.65, 5.2)m, (0, 0, -53.14)°
(0.4, 0.98, 4.65)m, (30.93, 28.59, 36.58)°

(0.9, 0.4, 4.7)m, (64.74, 8.31, 24.57)°
(0.89, 1.69, 4.9)m, (20.17, -20.68, -1.58)°
(1.40, 0.95, 5.2)m, (10.07, 51.04, 89.53)°
(-0.06, 0.3, 4.95)m, (64.74, 8.31, -24.57)°

Six Checkerboards δC
(0.05, 1.5, 5.1)m, (0, 0, -53.14)°
(0.05, 0.30, 5.2)m, (10, -5, 0)°

(-1.18, 1.3, 4.9)m, (9.23, -4.70, -1.58)°
(1.18, 1.3, 5.1)m, (-4.72, 23.40, -15.88)°

(1.29, 0.24, 5.2)m, (63.74, 18.31, -12.57)°
(-1.38, 0.32, 5.3)m, (-22.92, -58.33, 5.44)°

Seven Checkerboards εC
(0.05, 1.90, 5.5)m, (0, 5, 0)°

(0.05, 1.05, 5.4)m, (0, 0, -53.14)°
(0.05, 0.28, 5.0)m, (10, -5, 0)°

(-1.18, 1.3, 4.9)m, (9.23, -4.70, -1.58)°
(1.18, 1.3, 5.1)m, (-4.72, 23.40, -15.88)°

(1.29, 0.24, 5.2)m, (63.74, 18.31, -12.57)°
(-1.38, 0.32, 5.3)m, (-22.92, -58.33, 5.44)°

4.7. Real-world Calibration Verification 59

TABLE 4.5: Summary of the results for the simulation experiments
with multiple checkerboards. The subscript C denotes the exper-
iments of which the poses were manually selected following our

guidelines.

Experiment
Distorted
Corners

RMSE [px]

Undistorted
Corners

RMSE [px]

Control
Points

RMSE [px]

Focal
Length

Error [px]

Center
Point

Error [px]

Distortion
Error

Ten Checkerboards θ1 0.526 0.671 0.787 1.48 7.40 0.033
Nine Checkerboards η1 0.515 0.830 0.888 8.344 9.91 0.076
Eight Checkerboards ζ1 0.519 0.708 1.01 1.58 9.47 0.025
Seven Checkerboards ε1 0.521 0.672 0.776 4.945 4.13 0.011

Six Checkerboards δ1 0.521 0.778 0.971 7.62 6.45 0.050
Five Checkerboards γ2 0.494 0.947 1.22 3.89 11.5 0.065
Five Checkerboards γ1 0.507 0.798 0.941 8.59 6.45 0.101
Four Checkerboards β2 0.522 0.867 0.974 4.68 11.8 0.018
Four Checkerboards β1 0.537 1.13 1.32 4.09 16.8 0.075
Three Checkerboards α2 0.524 0.651 0.693 32.5 21.4 0.0803
Three Checkerboards α1 0.508 0.762 0.808 9.79 1.72 0.0232

Six Checkerboards δC 0.512 0.628 0.628 6.97 3.26 0.0092
Seven Checkerboards εC 0.512 0.871 0.985 5.61 10.65 0.007

the setups presented in Table 4.4 when using real checkerboards and tripods. For

this reason, in the next section, we decided to investigate and test these setups with

real cameras, project the point cloud from a 3D LiDAR, and verify the quality of the

camera intrinsic parameters.

4.7 Real-world Calibration Verification

For real-world calibration verification, we used the Lucid Labs machine vision cam-

era that was introduced in Section 4.3.1, and an additional FLIR Blackfly camera

(PGE-23S6C), paired with an 8 mm µTron lens. This camera has a lower resolution

(1920x1200 pixels, approximately 2.3 MP) and a larger image sensor, leading to a

wider field of view even if it uses a lens with the same focal length. Testing the cal-

ibration setups with this camera helped us to validate the checkerboard poses at a

different image scale. We proceeded to replicate the checkerboard positions we ob-

tained in Section 4.6.6 for the setups with six and seven checkerboards: δ1, δC, ε1, εC,

for the Lucid and the FLIR camera, a total of eight experiments.

4.7.1 Multiple checkerboard verification experiments

The checkerboard poses we obtained from the simulator are defined by their roll,

pitch, and yaw rotations. These angles are numbers that we, as humans, might find

60 Chapter 4. Automatic Single-Shot Camera Calibration

TABLE 4.6: Summary of the extrinsic parameters between the cam-
eras and the 3D LiDAR for the outdoors dataset: x, y, z are in meters;
roll, pitch and yaw are in radians. We truncated the floating-point

values to 3 digits for formatting purposes.

Experiment x y z roll pitch yaw
Lucid δ1 0.031 -0.14 0.03 -1.515 0.005 -1.628
Lucid δC 0.031 -0.14 0.03 -1.474 0.01 -1.625
Lucid ε1 0.031 -0.14 0.05 -1.513 -0.01 -1.619
Lucid εC 0.031 -0.12 0.05 -1.51 -0.01 -1.623
FLIR δ1 0.031 -0.14 0.03 -1.5 0.005 -1.564
FLIR δC 0.031 -0.14 0.03 -1.48 0.005 -1.564
FLIR ε1 0.031 -0.14 0.03 -1.5 0.005 -1.564
FLIR εC 0.031 -0.12 0.03 -1.504 -0.02 -1.563

difficult to replicate in the real world with such accuracy. For this reason, and to

simplify and accelerate the checkerboard positioning in a garage, we created trans-

parent image overlays of the checkerboard poses rendered by the simulator. We

rendered these on top of the camera stream and projected the composed image on

a large screen while replicating the checkerboard poses defined by the δ1, δC, ε1, εC

experiments in a garage. Figure 4.7 shows the setup we used while matching the

checkerboards poses with the help of tripods.

Having matched the checkerboard positions with our simulation setups, we cap-

tured a single image for the δ1, δc, ε1 and εc experiments from Section 4.6.5 with the

Lucid and the FLIR cameras; we then proceeded to detect the checkerboard corners

with the corner detector introduced in Section 4.3.1, and obtained the intrinsic pa-

rameters for each camera setup using OpenCV [34].

In addition to the one-shot calibration dataset, we captured camera and LiDAR

data outdoors. With the help of this dataset, we obtained the extrinsic calibration

parameters between the Lucid and FLIR cameras and the 3D LiDAR, which we sum-

marized in Table 4.6. We then individually projected the 3D LiDAR point cloud into

the same image captured by the camera using the four sets of intrinsic parameters

(δ1, δC, ε1, εC). We repeated this procedure for the second camera.

4.7. Real-world Calibration Verification 61

TABLE 4.7: Summary of the real-world experiments with multiple
checkerboards on two different cameras.

Experiment Image

Lucid Six Checkerboards α1

Lucid Six Checkerboards αC

Lucid Seven Checkerboards α1

Lucid Seven Checkerboards αC

FLIR Six Checkerboards α1

FLIR Six Checkerboards αC

FLIR Seven Checkerboards α1

FLIR Seven Checkerboards αC

62 Chapter 4. Automatic Single-Shot Camera Calibration

(A) Image overlays used to help the checker-
board positioning.

(B) Experiment Setup in the garage.

FIGURE 4.7: Multiple checkerboard verification experiments in a
garage. (a) shows the composed image by the camera stream and the
checkerboards overlays. (b) shows the camera and the screen we used

during the experiments to help us match the checkerboards poses.

4.7.2 Real-world Calibration Results

Having estimated the intrinsic parameters for the setups outlined in Table 4.7 using

the single-shot setups, we obtained the absolute error between these intrinsic pa-

rameters and our baseline values. Additionally, we also calculated the checkerboard

corner re-projection error, and summarized the results in Figure 4.10. In this figure,

we can verify that both of the seven checkerboard setups provided the most reliable

intrinsic parameters, as we expected. Finally, as a qualitative examination, we pro-

jected the point cloud from a Hesai Pandar 64 LiDAR on the rectified image by each

set of estimated parameters from the δ1, δC, ε1, εC experiments and compiled them in

Figure 4.8 and Figure 4.9.

Both of the ε experiments (seven checkerboards) show better overall performance

when compared with their equivalent δ counterparts (six checkerboards), as can be

observed in Figure 4.10a and Figure 4.10b. This holds true for both the Lucid and the

FLIR cameras, which is consistent with our simulation results in Figure 4.6 and the

qualitative results in Figures 4.8 and 4.9. The best performing experiment in our sim-

ulation (εC) obtained the lowest error in our real-world experiments. Moreover, the

corresponding qualitative results from both cameras also exhibit an excellent point

cloud projection as illustrated by Figures 4.8g, 4.8h, 4.9g and 4.9h.

Interestingly, the worst performing simulated experiment (δC) also matched with

our real experiment results. While obtaining the extrinsic parameters, we noted that

the roll rotation for both cameras in the δC test is slightly different from the rest of

4.7. Real-world Calibration Verification 63

(A) Projection using δ1’s intrinsic parame-
ters, point cloud colored by depth.

(B) Projection using δ1’s intrinsic parame-
ters, point cloud colored by laser intensity.

(C) Projection using δC’s intrinsic parame-
ters, point cloud colored by depth.

(D) Projection using δC’s intrinsic parame-
ters, point cloud colored by laser intensity.

(E) Projection using ε1’s intrinsic parame-
ters, point cloud colored by depth.

(F) Projection using ε1’s intrinsic parame-
ters, point cloud colored by laser intensity.

(G) Projection using εC’s intrinsic parame-
ters, point cloud colored by depth.

(H) Projection using εC’s intrinsic parame-
ters, point cloud colored by laser intensity.

FIGURE 4.8: Point cloud projection on the Lucid camera using the
intrinsic parameters by the one-shot experiments, replicating the
δ1, δC, ε1, andεC experiments. In the left column the projected point
cloud is colored by distance. In the right column, the projected point

cloud is colored by the laser intensity of each return value.

64 Chapter 4. Automatic Single-Shot Camera Calibration

(A) Projection using δ1’s intrinsic parameters,
point cloud colored by depth.

(B) Projection using δ1’s intrinsic parameters,
point cloud colored by laser intensity.

(C) Projection using δC’s intrinsic parameters,
point cloud colored by depth.

(D) Projection using δC’s intrinsic parameters,
point cloud colored by laser intensity.

(E) Projection using ε1’s intrinsic parameters,
point cloud colored by depth.

(F) Projection using ε1’s intrinsic parameters,
point cloud colored by laser intensity.

(G) Projection using εC’s intrinsic parameters,
point cloud colored by depth.

(H) Projection using εC’s intrinsic parameters,
point cloud colored by laser intensity.

FIGURE 4.9: Point cloud projection on the FLIR camera using the
intrinsic parameters by the one-shot experiments, replicating the
δ1, δC, ε1, εC experiments. Figures on the left column, colored the pro-
jected point cloud by distance. In the left column the projected point
cloud is colored by distance. In the right column, the projected point

cloud is colored by the laser intensity of each return value.

4.8. Conclusion 65

the experiments as we can see in Table 4.6. The extrinsic calibration method searches

for shared features in the image and LiDAR domain and uses these as an input to

an optimizer to minimize the re-projection error. It utilizes the detected 3D features

and projects them using the given camera intrinsic parameters. However, if the in-

trinsic parameters erratically project the 3D features, the optimizer will estimate an

incorrect relative camera-LiDAR position, leading us to infer that the camera-LiDAR

extrinsic calibration algorithm incorrectly converged due to inaccurate intrinsic pa-

rameters. Additionally, after analyzing the qualitative results for the δC experiment,

we noticed an adequate projection at long range, but on the right-bottom section

of Figures 4.8c, 4.8d, 4.9c and 4.9d we found that the point cloud hitting the barri-

cade located closer to the camera is incorrectly projected, pointing out a large error

in the focal length. This can be confirmed in the quantitative results presented in

Figure 4.10a and Figure 4.10b.

4.8 Conclusion

We presented a first-of-its-kind method to generate clear guidelines for single shot

camera intrinsic calibration using multiple checkerboards, suitable for use in 3D

applications. With the help of a simulator, we defined the position and rotation

intervals that allow a corner detector to obtain optimal detections; we then gener-

ated thousands of multiple checkerboard poses and evaluated them to obtain po-

sition and rotation intervals that maximize the probability of estimating accurate

camera intrinsic parameters. These results gave us enough information to generate

checkerboard pose guidelines. Using these guidelines, we developed sets of mul-

tiple checkerboard poses and evaluated them synthetically and in the real world

using two different cameras with different resolutions. We found consistent results

between our simulations and our real-world evaluations. This enabled us to confirm

that if our guidelines are followed, accurate intrinsic parameters for 3D applications

can be obtained by using seven checkerboards.

The overall results show that the camera simulations helped us to accelerate the

camera modeling process, its evaluation, and ultimately the creation of guidelines to

obtain accurate intrinsic parameters. We can also infer that even if the simulations

66 Chapter 4. Automatic Single-Shot Camera Calibration

create ideal image conditions, i.e., images without chromatic aberration, vignetting,

and so on, we can still transfer the lessons learned to the real world. It would have

been challenging and costly to replicate the simulated experiments in the real world

since they require specialized equipment to position and rotate the checkerboards.

Moreover, to obtain the ground truth corner coordinates, a team of labelers would

be necessary to identify each corner at the pixel level, extending the time required to

complete this work.

In this chapter, we simulated and evaluated a single plumb-bob camera synthet-

ically. For this reason, the distances we mentioned might not apply to other focal

length lenses. Nevertheless, as an additional finding, we learned in Section 4.5.3

that if the checkerboard guidelines we defined in Section 4.6.6 are to be used with

a different field of view camera, instead of following the recommended checker-

board distance, the user should aim to project the checkerboard area with at least

20, 000 px2 to produce precise corner detection. We validated this experimentally

when testing on the FLIR camera in Section 4.7, which has a wider field of view and

less than half the resolution of the Lucid camera. However, it is important to note

that our results might not be applied to cameras paired with fish-eye lenses since

these lenses are normally modeled with a non-perspective projection model, which

we aim to test in future work.

Finally, the checkerboard pose guidelines we defined in Section 4.6.4 and Ta-

ble 4.4 can also be used with the original method presented by Zhang [31] which

involves using a single checkerboard and capturing multiple images with random

orientations. Instead of moving the checkerboard randomly around the whole cam-

era field of view, the user might aim to replicate the checkerboard poses we defined

for the δ1, εC experiments, or even the ζ, η or θ experiments, and use the images as an

input for either the OpenCV or Matlab calibration toolboxes. This would simplify

and accelerate the calibration process, while helping to estimate accurate intrinsic

parameters for 3D applications such as robotics, autonomous driving, or other ap-

plications that require high quality parameters.

4.8. Conclusion 67

Lu
ci

d
S

ix
 B

oa
rd

s
1

Lu
ci

d
S

ix
 B

oa
rd

s
C

us
to

m

C

Lu
ci

d
S

ev
en

 B
oa

rd
s

1

Lu
ci

d
S

ev
en

 B
oa

rd
s

C
us

to
m

C

0

20

40

60

80

100

120

140

160

f,
c

A
bs

ol
ut

e
E

rr
or

20
.8

13

14
2.

59
3

68
.4

94

5.
72

4

67
.5

66

86
.8

50

52
.3

23

33
.2

71

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

k,
 A

bs
ol

ut
e

E
rr

or

0.
39

6

0.
24

5

0.
17

4

0.
04

6

0.
28

6

0.
39

3

0.
17

5

0.
15

3

Focal Length (f) [px]

Center Point (c) [px]

Distortion Coefficients (k)

Corner Reprojection Error () [px]

(A) Absolute error comparison for the Lucid
camera.

F
LI

R
S

ix
 B

oa
rd

s
1

F
LI

R
S

ix
 B

oa
rd

s
C

us
to

m

C

F
LI

R
S

ev
en

 B
oa

rd
s

1

F
LI

R
S

ev
en

 B
oa

rd
s

C
us

to
m

C

0

20

40

60

80

f,
c

A
bs

ol
ut

e
E

rr
or

14
.2

43

84
.0

90

41
.9

32

6.
81

2

52
.0

07

64
.8

65

42
.7

34

32
.0

99

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

k,
 A

bs
ol

ut
e

E
rr

or

0.
29

3

0.
35

2

0.
21

7 0.
23

4

0.
16

9

0.
20

4

0.
14

7

0.
13

1

Focal Length (f) [px]

Center Point (c) [px]

Distortion Coefficients (k)

Corner Reprojection Error () [px]

(B) Absolute error comparison for the FLIR cam-
era.

FIGURE 4.10: Real-world results for the multi-checkerboard experi-
ments. The left axis denotes the error in pixels for the sum of both
focal lengths (f) and the sum of the center point (c). The right
axis denotes the absolute error for the sum of distortion coefficients

(k1, k2, k3, p1, p2) and checkerboard corner re-projection error (ε).

69

Chapter 5

Multi-Sensor Fusion Toolbox for

Autonomous Driving

5.1 Introduction

The field of autonomous vehicles has undergone amazingly fast development in re-

cent years. Demonstrations from software giants such as Google, NVIDIA and Intel

show that we are closer than ever to achieve the deployment of fully autonomous

driving systems on general roads. Nevertheless, these solutions are completely

closed, not providing feedback to the research community.

The importance of the benefits to society of the deployment of autonomous ve-

hicle technology has been widely discussed[83]. Reduction of road accidents, safe

mobility for the elderly, independent transportation for the disabled, and reduction

of traffic congestion are just a few of the potential benefits promised by the adoption

of autonomous driving technology.

An autonomous vehicle requires several sensors to understand its surroundings,

and act accordingly in different scenarios[84]. Images from camera devices, range

data from LiDARs, speed information from radars, and other sensor data is fused to

achieve single-digit centimeter-level accuracy of the object detection. Thanks to the

fast development of autonomous driving technologies, the cost of these sensors is

rapidly reducing.

A lot of research has been carried out in the calibration, fusion and classification

field. However, most existing work focus on a unique sensor type (i.e. rotating

LiDAR), or are not designed to function with multiple sensors simultaneously.

70 Chapter 5. Multi-Sensor Fusion Toolbox for Autonomous Driving

FIGURE 5.1: Successful calibration result of six wide-angle cameras,
one rotating LiDAR and four MEMS (Micro Electro-Mechanical Sys-

tems) LiDARs. Each LiDAR is shown in different color.

The integration of multiple LiDARs and cameras allows the system to benefit

from redundant, complementary and timely information. Moreover, multiple sen-

sors distributed around the vehicle improve the field of view, and hence the safety

of the system and its users. Nevertheless, increasing the number of sensors requires

better synchronization, fast and reliable fusion techniques, and optimized process-

ing methods due to the increased bandwidth. Figure 5.1 shows a successful integra-

tion of multiple LiDAR and camera sensors of different types using this work.

In this paper, we present an open and easy-to-use perception framework for

multi-LiDAR, multi-camera calibration, fusion, and a point cloud ground classi-

fier. Our experience with autonomous vehicles has showed that these phases are

the foundation for any higher level perception system, whether it is based on tra-

ditional machine learning [85] or deep learning. New approaches such as [86], [87],

[88] are good examples of state-of-the-art systems that require a solid calibration and

fusion framework. In summary, the main contributions of this work are as follows:

• The proposal of a reliable LiDAR-to-LiDAR extrinsic calibration based on 3D

shape matching.

5.2. Related Work 71

• Implementation of an easy-to-use "target-less" Camera-to-LiDAR extrinsic cal-

ibration method built around a user interface.

• A real-time pixel to point cloud fusion algorithm.

• The proposal of an accurate, and real-time ground classifier for point cloud

that works regardless the type and number of LiDARs.

5.2 Related Work

Extrinsic calibration can be defined as the process of calculating the relative position

in space between sensor coordinate frames. This can be achieved by looking for co-

observable features in the data from both sensors. Calibrating different sensors may

use similar optimization methods. However, the features to search for are dependent

on the sensor. In the following subsections we will summarize some of the most

recent developments in each area.

5.2.1 LiDAR-LiDAR extrinsic calibration

To the best of our knowledge, at the time of writing, very few publications can be

found that address the calibration of multiple multi-layer LiDAR sensors. In [43]

a method to calibrate a single-layer LiDAR is presented. This work maximizes the

mutual information entropy, through the estimation of the projection coefficients

between the spaces.

The work presented in [44], shows a semi-automatic extrinsic calibration method

for multiple LiDARs and cameras. In this work, features are inserted in the field

of view of the sensors with the help of spheres. These are detected with the help

of the PointCloud Library (PCL)[89] segmentation and sphere fitting toolbox. The

rigid body transformation is calculated using the Iterative Closest Point (ICP) algo-

rithm[45].

5.2.2 Camera-LiDAR extrinsic calibration

While there is extensive work in this field, most of it focuses on the calibration of a

single LiDAR and a camera. In this subsection we can classify the available methods

into two:

72 Chapter 5. Multi-Sensor Fusion Toolbox for Autonomous Driving

1. The target category requires predefined and specific setups to ease the identi-

fication of shared features between the sensors. Under this class we can find notable

mentions such as [90], [46], [47], [48], [44], and [91], which take advantage of the pur-

posely inserted features, fixing the number of targets and optimizing the calibration

algorithm under these constraints. The work presented by [44], [90], and [91] require

the construction of a setup consisting of several specific targets, and scatter them

across the shared field of view of the camera and the LiDAR. This approach works

well in laboratories and closed environments. However, its application is difficult

in the field. Moreover, all the mentioned work, except in [91], are not open-sourced,

reducing their impact and reachability.

2. The target-less methods focus on finding inherent features to the scene in

both sensors. In this category [49] is a notable mention. It requires an initial rough

position estimate between the sensors, provided by the user. In this position, it gen-

erates an image projection of the LiDAR reflectance values using the given camera

projection matrix. It then slowly modifies the transformation to try to match the gen-

erated reflectivity image with the camera gray-scale image. To measure the error, it

compares the camera brightness histogram, and the LiDAR’s reflectivity histogram.

Since this method relies completely on the reflectivity values, it requires manual

pre-calibration of the LiDAR unit[50], instead of using the parameters given by the

manufacturer. This extra step involves the use of specific equipment, making this

method difficult to deploy and test in practical situations.

Table 5.1 presents a feature summary comparison of the Camera-LiDAR calibra-

tion methods mentioned. From this we can compare characteristics such as integra-

tion, required target type, and sensing devices. After a quick analysis, we can iden-

tify the need of a method that works with different types of cameras and LiDARs,

while maintaining the target-less property. Target-less methods offer the possibility

to calibrate without the need of a special setup, or target. This feature allows users

to reduce the time required to obtain the calibration parameters.

5.2. Related Work 73

Method
¯

Open-source
¯

Data
Available

ROS
Compatible

Target
Type

LiDAR
Type

Camera
Type

Geiger, et.al [51] X O X Chessboard Rotating Single
Naroditsky, et.al.[46] X X X Blackboard Rotating Single
Velas, et.al. [47] O X O Custom board Rotating Single
Weimin, et.al.[91] O O X Chessboard Rotating Single
Pandey, et.al.[49] O O X Target-less Rotating Omni
This work O O O Target-less any any

TABLE 5.1: Feature comparison among tested Camera-LiDAR algo-
rithms.

5.2.3 Camera-LiDAR fusion

Having both sensors extrinsically calibrated, we can perform fusion at a point-to-

pixel level. This enables both sensors to complement each other. The camera can in-

tegrate distance information for each of the 3D points projected on the image, while

the LiDAR can extract color information to each of the points projected onto the

camera field of view. The work presented in [92] achieves fusion using distinct shots

taken with a single camera pointing towards the LiDAR field of view. Having the

camera intrinsics known and using photogrammetry techniques, they obtain the col-

ored point cloud. However, this approach requires several pre-computations and is

not capable of real-time performance. A different approach can be found in [47]. In

this work, the authors integrate the intrinsic and extrinsic calibration over several

phases. Nevertheless, they neither present the fusion method nor their findings on

computation time.

5.2.4 Point Cloud Ground Classifier

The last part of our calibration framework involves the ground removal. This step

is essential to ease the identification of obstacles on the road. Most work on this

field ([93], [94], [95], and [96]) is focused on airborne applications, with LiDARs

attached to a flying drone and pointing towards the ground. These methods can also

be applied to both the rotating and solid-state LiDARs usually found in autonomous

vehicles. However, these methods are not designed to be executed in real time.

Ground classification is often confused with road classification. This kind of re-

search is focused on autonomous driving applications. The work by [97], and [98]

74 Chapter 5. Multi-Sensor Fusion Toolbox for Autonomous Driving

present the current state-of-the-art developments. However, these require large la-

beled datasets, a frequently ignored limitation for its real application. For this rea-

son, most of this work does not perform well when the resolution of the LiDAR

sensor is changed, requiring a new dataset.

5.3 Theory and Implementation

In this section, we will explain each of the contributing parts of the framework, the

theory behind each one, and its corresponding open-source implementation.

During the remaining sections we will employ the following coordinate frame

conventions, which observe the ROS (Robot Operating Systems)[27] standard. In

summary:

• All systems are right handed.

• LiDAR coordinates: x axis points forward, y axis extends to the left, and z faces

upwards.

• Camera frames follow: z points forward, x extends to the right, and y faces

downwards.

5.3.1 LiDAR-LiDAR extrinsic calibration

LiDAR sensors obtain the distance to an object by illuminating it with a pulsed laser,

and measuring the time required to reflect and return. The 3D version of these

sensors are offered by manufacturers as multi-layered, electro mechanical based,

or solid-state devices. In all these cases, the device is equipped with one or more

laser transceivers. Either by moving a single or multiple lasers, or pulsing the array

constantly, the device generates a 3D point cloud, instead of a single 2D scan. This

allows the device to generate 3D shapes with high resolution. Taking advantage of

this feature, our LiDAR-LiDAR extrinsic calibration is based on a shape-based ap-

proach. Moreover, as originally shown in [99], the transformations obtained by this

approach produce considerably lower error, while also performing up to three times

faster than point-to-point based algorithms (i.e. ICP).

5.3. Theory and Implementation 75

LiDAR-to-LiDAR calibration can be applied in a variety of sensor configurations.

For example, new LiDAR technologies provide faster readings, reduced cost, non-

mechanical solutions, velocity reading included on each point, etc. However, these

sensors tend to have a narrower field of view, compared to their traditional mechani-

cal counterparts. For this reason, extrinsic calibration is required when using several

of these sensors. Another setting for multi-LiDAR application would be the integra-

tion of multiple LiDARs on bigger vehicles, such as SUVs, trucks, buses, etc., where

a single rotating LiDAR would not be able to cover the entire field of view.

Theory

In order to extrinsically calibrate the sensors, both must have shared features as sug-

gested by [43]. Our strategy employs the Normal Distributions (ND) method [100],

[99] to match shapes, instead of a direct PDF (Probability Density Function) pro-

jection matching as presented in [43]. The ND algorithm tries to successively find

the rigid transformation (Equation 5.1) between the b and a point cloud coordinate

frames where Rab is a rotation matrix, represented by the rotation on the three co-

ordinate axes as shown in Equation 5.2. The translation vector between these two

spaces is represented by t as shown in Equation 5.3.

pa = Rab ∗ pb + tab (5.1)

R(α, β, γ) = R(α)× R(β)× R(γ) =
cosα −sinα 0

sinα cosα 0

0 0 1

×

cosβ 0 sinβ

0 1 0

−sinβ 0 cosβ

×

1 0 0

0 cosγ −sinγ

0 sinγ cosγ

(5.2)

t = (tx ty tz) (5.3)

76 Chapter 5. Multi-Sensor Fusion Toolbox for Autonomous Driving

To solve this problem, and assuming we have an initial estimate pose (x, y, z,

raw, pitch, and yaw), the ND algorithm uses the Newton algorithm to maximize

Equation 5.4, when comparing the point clouds we wish to align, where w, pi, and

∑i are the desired pose (matching parameter), the mean vector, and the covariance

matrix respectively.

Fitness(X, w) =
N−1

∑
i

exp(
−(xi − pi)

T ∑−1
i (x− pi)

2
) (5.4)

This calculation involves: 1) the partitioning of the point cloud Pa in smaller k

regions, called Voxels. Voxels are quantized versions of a point cloud, obtained by

dividing the space into cubic lattices. The points are assigned to the appropriate

Voxel, by rounding the coordinate value of each point pi; 2) The computation of the

normal vectors nk,i for each of the Mk points inside the Voxels; 3) The probability

distribution for the resulting normal vectors, which requires the calculation of the

average p and covariance matrix Σk as shown in Equations 5.5 and 5.6, respectively.

pk =
1

Mk

Mk−1

∑
i=0

xki (5.5)

Σk =
1

Mk

Mk−1

∑
i=0

(xki − pk)(xki − pk)
T (5.6)

Finally, the normal distribution for each Voxel is estimated as:

e(x)k ≈ e(
(x− pk)

t ∑−1
k (x− pk)

2
) (5.7)

Implementation

Our implementation follows the original design by [99], integrated in the PCL (Point

Cloud Library) library [89]. The parameters we used are: 0.1 and 1.0 meters for the

voxel sizes on the downscaling step, for the point clouds to be aligned; the termina-

tion value for the score as 0.01 (ε); the step size for the optimization as 0.1; and 400 as

the maximum number of iterations before forcing the termination of the algorithm

when the algorithm cannot converge. As defined in [99], the algorithm requires a

rough estimated initial pose. In summary, the inputs required by our tool are:

5.3. Theory and Implementation 77

LiDAR A

LiDAR B

LiDAR A
ROS Driver

LiDAR B
ROS Driver

LiDAR-to-LiDAR
calibration tool

Point cloud A

Point cloud B

Transformation
Matrix

FIGURE 5.2: High-level diagram of the LiDAR-to-LiDAR calibration
tool.

• The point clouds generated by the LiDAR sensors to be aligned. These can

be obtained directly from the sensor, in an online fashion, or from previously

recorded data.

• An optional voxel size for both point clouds. A larger value will accelerate the

process, but will decrease the accuracy due to a larger quantization.

• A rough estimation of the transformation between the sensors, in the form

(x, y, z, raw, pitch, yaw).

The LiDAR-to-LiDAR calibration tool is implemented as a ROS node. This ap-

proach allows us to add an abstraction layer between the sensors and the algorithm,

enabling our node to support any kind of LiDAR sensor, as long as we can add its

respective driver. Figure 5.2 shows a high-level diagram of the node.

The resulting transformation matrix is then registered in the ROS Transforma-

tions Tree (TF). The TF eases the conversion between the coordinate frames in a syn-

chronized manner. In the specific case of LiDAR-to-LiDAR calibration, this transfor-

mation is static. This means that the transformation will not change over time, since

both sensors are fixed to the vehicle’s chassis.

5.3.2 Camera-LiDAR extrinsic calibration

We decided to implement our method as a semi-automatic calibration tool. The user

is required to select the corresponding points between the image and point cloud,

using a point-and-click approach. This method removes the necessity to setup a

special room, or create particular markers or targets to identify the corresponding

points. Moreover, this allows our method to work with not only RGB cameras, but

also other types of projective cameras, such as infrared ones.

78 Chapter 5. Multi-Sensor Fusion Toolbox for Autonomous Driving

Theory

The Camera-LiDAR extrinsic calibration follows the same idea as the LiDAR-LiDAR

extrinsic calibration. Find the relative transformation between both spaces with the

help of shared features between spaces. However, in the case of cameras and Li-

DARs, these do not represent the data in the same number of dimensions. To find

the relationship between them, we need to add an extra step. Knowing that LiDARs

represent the points in an orthogonal 3D space using euclidean coordinates (x, y, z);

and that cameras represent 2D points in a perspective space (u, v), we can relate these

spaces through a linear transformation in the form:

pcam = P ∗ R ∗ t ∗ plidar (5.8)

where:

pcam represents the final projected points in image space.

P is the camera projection matrix, also known as the camera intrinsics, or the

intrinsics parameters.

R is the rotation matrix on 3D space as mentioned in Equation 5.2.

t is the translation vector between the camera and the LiDAR, described on

Equation 5.3.

plidar is the LiDAR point cloud in 3D space.

Multiplying all of these, we derive the following matrix:

u

v

1

 =

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

x

y

z

 (5.9)

Equation 5.9 represents the complete relationship between the LiDAR and the

camera spaces, where u and v represent the coordinates in pixel space, and x, y and

z represent the 3D space in the LiDAR frame.

To obtain the transformation parameters m, we need to solve the generated sys-

tem of equations. However, it is important to note that knowing in advance the

intrinsic parameters of the setup helps to simplify this problem. Knowing the pro-

jection parameters, we would only need to find the Euler rotations (α, β, γ) and the

5.3. Theory and Implementation 79

LiDAR

Camera

LiDAR A
ROS Driver

Camera
ROS Driver

Camera-to-LiDAR
calibration tool

Point cloud

Image

Transformation
Matrix

Camera
Intrinsic parameters Camera Info

FIGURE 5.3: High-level diagram of the camera-to-LiDAR calibration
tool.

translation vector t. Since our objective is to obtain the extrinsic calibration we will

assume the intrinsic matrix P is known. To obtain these parameters we followed the

well-established intrinsic calibration methods integrated in OpenCV[101].

Having simplified the parameters calculation, we proceed to estimate the pose

between the intrinsically calibrated camera to the LiDAR sensor. This problem is

commonly known as Perspective-n-Point (PnP). To solve it we employed the Effi-

cient PnP method[102]. This algorithm estimates the R and t matrices minimizing

the re-projection error using the Gauss-Newton method, given the corresponding

2D-3D points (in our case, pcam and plidar), and the camera intrinsics (P). Even if the

method requires as low as five points to calculate the parameters, we ask the user to

provide at least nine corresponding points, as shown in [102].

Implementation

As previously mentioned, to feed the point correspondences between the points in

LiDAR space and camera space, we developed a simple, yet effective point-and-click

user interface (UI) solution. This UI shows the image and the point cloud in parallel.

The user can quickly identify the correspondences between image and the projected

point cloud by clicking on the screen. This approach removes any specific setup or

marker prerequisite, and enables our method to work virtually anywhere, as long as

the user is able to identify features between the image and point cloud.

Similarly to the LiDAR-LiDAR calibration tool, the camera-LiDAR extrinsic cal-

ibration is a ROS node. It can connect to any camera and LiDAR supported by the

system. Figure 5.3 shows the components of the calibration tool.

80 Chapter 5. Multi-Sensor Fusion Toolbox for Autonomous Driving

FIGURE 5.4: UI presented to the user to ease the selection of corre-
sponding points.

Figure 5.4 presents the user interface displayed to allow the selection of the cor-

responding points between 3D and 2D space.

Finally, the node is designed to work with both a real sensor or use previously

recorded data. This feature allows the selection of points located at different instants

in time, easing the selection of better matching features between both sensors.

5.3.3 Image-Cloud fusion

With the Camera-LiDAR extrinsic calibration complete, we can fuse the data from

both sensors. The range information from the LiDAR can be projected to the 2D

space. Similarly, the color information contained in the image can be back-projected

to the LiDAR space. Figure 5.5 illustrates this concept. The point cloud projected

to the image is displayed using a color map representing the distance between the

LiDAR and the object being observed. The red color represents a closer distance,

while a blue color represents a further one. This kind of point cloud representation

is specially useful when detecting and tracking objects [86], [87], [88]. For this reason,

we decided to present an open real-time solution to this problem. Our approach uses

a hashing function to temporarily store the 3D-2D correspondences. This enables

us to back-project the color information in constant time O(1), at the cost of O(n)

storage space.

5.3. Theory and Implementation 81

FIGURE 5.5: Result of the real time Image-Cloud fusion using a Velo-
dyne HDL-64 and a wide-angle camera.

LiDAR

Camera

LiDAR A
ROS Driver

Camera
ROS Driver

Image -Cloud fusion

Point cloud

Image

RGB+Intensity
Image

Camera
Intrinsic parameters Camera Info

Camera
extrinsic parameters Transformation

RGB+Intensity
Point cloud

FIGURE 5.6: High-level diagram of the image-cloud fusion.

Theory

With the help of Equation 5.8 and having known the matrices P, R and t from the

calibration steps, we can obtain the correspondence between the LiDAR points and

the image pixels. The distance for each point is calculated on the ground plane as√
x2 + y2.

In order to back-project the color information from the image to the LiDAR’s

point cloud, we use an unordered map data structure. We define the unordered

map as a list of ordered pairs < (u, v), (x, y, z) >, that use the point coordinates in

both spaces as the hashing function for indexing. Defining the map this way, allows

us to find the correspondences in constant time O(1).

The implementation of the node was done following the ROS messaging stan-

dard. An outline of the node is shown in Figure 5.6.

82 Chapter 5. Multi-Sensor Fusion Toolbox for Autonomous Driving

5.3.4 Ground classification

The final component of the framework presented in this work is a ground classi-

fier for point cloud data. We call it the Ray Ground Filter. It is a binary classifier

(Ground or No-Ground) for the points in the point cloud. As previously mentioned in

Section 5.1 and 5.2, this step is important to ease the implementation of higher level

perception methods, since it determines the points considered as an obstacle for its

classification and tracking.

Theory

The first phase of the Ray Ground Filter algorithm involves converting the point

cloud from Euclidean space to an alternative quantized polar space. The new space

is partitioned into a fixed number of radial dividers or rays. The steps involved in

this conversion are:

1. Remove the points which are above the height of the LiDAR hlidar. It is impor-

tant to remove objects above the vehicle that are not considered obstacles (i.e.

bridges, signals, etc.).

Pe = {(x, y, z) ∈ R×R×R | z < hlidar} (5.10)

2. Convert the points from 3D Euclidean space (x, y, z) to 2D Polar space (r, θ),

while also storing the point’s height (z) and a reference to the original point,

where θ ∈ [0, 2π).

Pp = {(θ, r, z)} , such that

θ = atan(y, x)

r =
√

x2 + y2

z = z

(5.11)

3. Quantize θ into N radial dividers.

N = ceil(2π/α ∗ i) | α ∈ [0, 2π] (5.12)

5.3. Theory and Implementation 83

0N α

FIGURE 5.7: Diagram of the radial dividers (rays) used in the Ray
Ground Algorithm. Showing only 0 to π for simplicity.

where α is a value decided by the user. We use a 100th of a degree (1.74 e-04

rad).

4. Create a list for each of the N radial dividers.

5. Assign the points to the quantized angle and add it to the list. Figure 5.7 shows

each the radial dividers generated and differentiated by color.

∀p ∈ Pp, n = f loor(pθ/α) (5.13)

6. Order all the points inside of each of the rays (unordered lists).

At this point we achieve a new point cloud formed by N lists. Each one of these

lists contain points of a new type (x, y, z, i, r, θ, n), where (x, y, z) are the original

coordinates; i represents the intensity of the laser reflectivity; θ is the angle in polar

coordinates; and n is the index of the quantized radial divider or ray to which this

points belong; and k is the number of points in each of the ordered rays.

With all the points organized and ordered, we proceed to classify them into two

classes Ground and No-Ground using a triangle geometry, as shown in Figure 5.8. The

adjacent side of the triangle is defined as the distance (di) between two consecutive

points in the ray.

di = ri − ri−1, i ∈ (0, k] (5.14)

The first point in the ray is classified using the same geometry shape. However,

the initial point is a virtual one located below the LiDAR sensor hlidar. The opposite

84 Chapter 5. Multi-Sensor Fusion Toolbox for Autonomous Driving

Initial point calculation

LiDAR Sensor Class change
triggered

Class change
triggered

Class change
triggered

r

z

γ
γ

hmin_tminimum height
threshold

d

hopposite

hlidar

FIGURE 5.8: Ray Ground Filter classification diagram following tri-
angle geometries inside a ray. The points shown in blue color were

classified as ground, while the red ones as obstacles.

side is calculated according to a given angle threshold (γ), while d and γ define the

maximum height difference to which the next point in the ray might be (hopposite).

If the next point falls inside the triangle geometry, the point is considered to be

of the same class as the previous point.

hi,opposite = tan(γ) ∗ di

if hi,opposite < hmin,

then hi,opposite = hmin

(5.15)

Otherwise, it triggers a change of class. However, the points located closer to the

sensor tend to be adjacent due to the laser arrangement, triggering a class change on

uneven terrain. For this reason, if hopposite is less than a given value hmint , the change

is not generated (Figure 5.8).

If a change of class is detected when the previous class was No-Ground, then the

point needs to be re-classified to ensure it is Ground. To achieve this, we re-calculate

the geometry of the triangle using the distance between the last point classified as

Ground and the current one.

5.4. Evaluation 85

LiDAR LiDAR A
ROS Driver

Camera -to-LiDAR
calibration tool

Point cloud

Ground Point Cloud

Obstacle Point Cloud

FIGURE 5.9: High-level diagram of the Ray Ground Classifier com-
ponent.

Implementation

The classifier was implemented as a ROS node. The node can receive a point cloud

from any LiDAR sensor. It requires as inputs:

• A point cloud of type (x, y, z) or (x, y, z, i).

• The height of the LiDAR sensor hlidar.

• The quantization angle for the radial divisions α.

• The angle γ which defines the maximum height of a consecutive point.

• The minimum height threshold between points hmin.

To accelerate the processing, the conversion from (x, y, z) to (θ, r, z), and the quanti-

zation is performed in parallel. The resulting radial dividers are stored in N vectors.

If the host architecture supports OpenMP, the node will perform conversion and

sorting on each one of the CPU cores, reducing the load and accelerating execution.

Figure 5.9 presents the high-level architecture design of the classifier. Finally, the

result of ground classification on the KITTI dataset on a Velodyne HDL-64 can be

seen in Figure 5.10. Blue colored points denote the ones classified as ground, while

the red points indicate those belonging to an obstacle.

Due to nature of the algorithm, it can virtually work with any type and/or num-

ber of LiDARs. It also does not require a large dataset for a training phase. Moreover,

the algorithm was implemented completely using the CPU, allowing it to work on

low-power and embedded systems without a GPU.

5.4 Evaluation

86 Chapter 5. Multi-Sensor Fusion Toolbox for Autonomous Driving

FIGURE 5.10: Ray ground filter on KITTI dataset. Image shown only
for reference.

5.4.1 LiDAR-LiDAR extrinsic calibration

LiDAR to LiDAR evaluation using well-established resources is difficult. Currently

there are no public datasets including the assessment of multiple LiDARs. For this

reason, we decided to prepare two vehicles with different settings, obtain the ground

truth, and evaluate our method.

The first setup is built on top of a Toyota Prius sedan. We mounted a rotat-

ing LiDAR (Velodyne HDL-64, with a 360 degrees field of view), and four low-cost

smaller Micro-Electro-Mechanical-based Scanning LiDARs (MEMS). Each MEMS Li-

DAR had 140 degrees of horizontal field of view. To obtain the position and Euler

rotations, we used a chessboard pattern as a guide to manually identify points be-

tween each of the LiDAR frames using the changes in intensity. Having identified

the corresponding points, we calculated the rigid-transformation matrix between the

rotating LiDAR, and each of the solid-state ones using the Singular-value decompo-

sition (SVD) method. The manually obtained measurements are shown in Figure

5.11.

The second setup consisted of five rotating Velodyne HDL-16 LiDARs mounted

on a Toyota Alphard minivan. The ground truth was calculated in the same way as

in the Prius setup. Figure 5.12 shows the setup and the obtained measurements.

Using our LiDAR-to-LiDAR extrinsic calibration tool, we collected a database of

20 different experiments. The average resulting parameters are shown in Table 5.2

and Table 5.3, for the Prius and Alphard setups respectively. Figure 5.13 displays

5.4. Evaluation 87

30cm 46cm
79cm

87cm
27cm

90cm

26cm

77cm95cm

Top View

Top LiDAR

Side View

Top LiDAR

270cm 190cm
145cm

95cm

10cm
8cm

180cm

Right LiDAR

Left LiDAR

Front LiDAR
Rear LiDAR

Rear LiDAR

Front LiDAR

Top LiDAR

FIGURE 5.11: Manually obtained measurements used as ground truth
to evaluate our method. Prius setup, Velodyne HDL-64 and four nar-

row MEMS LiDARS.

the average accuracy and standard deviation for the calculations compared to the

manually obtained points.

TABLE 5.2: Prius Setup. LiDAR-LiDAR extrinsic calibration quanti-
tative results between each of the narrow field of view LiDARs, and
a rotating LiDAR. All units are in meters. Reporting absolute error.

Rotating to Front LiDAR Rotating to Left LiDAR
Parameter Ground Truth Our method Error Ground Truth Our method Error
X [meters] 2.70 2.67724 0.0228 1.450 1.4387 0.0113
Y [meters] -0.10 -0.10886 0.0089 0.950 0.9574 0.0074
Z [meters] -1.54 -1.56121 0.0212 -1.100 -1.0274 0.0726
α [rads] 1.57 1.5708 0.0008 3.140 3.096 0.0440
β [rads] 0.00 0.0074 0.0074 0.000 -0.0537 0.0537
γ [rads] 1.57 1.5708 0.0008 1.570 1.5243 0.0457

Rotating to Right LiDAR Rotating to Rear LiDAR
Parameter Ground Truth Our method Error Ground Truth Our method Error
X [meters] 1.450 1.44314 0.0069 -1.90 -1.8782 0.0218
Y [meters] -0.950 -0.9678 0.0178 0.08 0.0737 0.0063
Z [meters] -1.100 -1.1095 0.0095 -1.34 -1.3665 0.0265
α [rads] 3.140 3.13085 0.0091 1.57 1.5708 0.0008
β [rads] -3.140 -3.1368 0.0032 3.13 3.1153 0.0147
γ [rads] -1.570 -1.5773 0.0073 -1.57 -1.5708 0.0008

Finally, the extrinsic calibration obtained using our method can be seen in Figure

5.14 and 5.15 for the Prius and Alphard setups respectively. For the Prius Setup,

white points represent the point cloud belonging to the rotating LiDAR, while the

88 Chapter 5. Multi-Sensor Fusion Toolbox for Autonomous Driving

4.89m
2.83m

1.87m
0.95m

1.72m

0.
42

m

FIGURE 5.12: Manually obtained measurements used as ground truth
to evaluate our method. Alphard setup, Five Velodyne VLP-16.

0.111

0.010

0.022

0.001

0.002

0.001

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

Error

X Average
X calculations
Y Average
Z Average
Y calculations
Z calculations
Yaw Average
Yaw calculations
Pitch Average
Pitch calculations
Roll Average
Roll calculations

FIGURE 5.13: Prius Setup. Average absolute error for 20 repeated
calculations of the extrinsic parameters between LiDARs. X, Y, Z error

is reported in meters, while Yaw, Pitch, Roll in radians.

colored ones belong to the other low-resolution MEMS LiDARs. In a similar way,

for the Alphard setup, white points represent the point cloud generated by the top

rotating lidar, while the colored ones belong to the other rotating sensors located to

the front, left, right, and rear of the vehicle.

5.4.2 Camera-LiDAR extrinsic calibration

To evaluate our method, we took as reference the regarded KITTI dataset[51]. The

authors of the dataset calibrated their sensors using the method described in [90].

This approach is used in other work as standard baseline.

5.4. Evaluation 89

TABLE 5.3: Alphard Setup. LiDAR-LiDAR extrinsic calibration quan-
titative results between each the top LiDAR, and a five rotating Li-
DAR covering blind spots. All units are in meters. Reporting absolute

error.

Top to Front LiDAR Top to Right LiDAR
Parameter Ground Truth Our method Error Ground Truth Our method Error
X [meters] 2.75 2.75793 0.00793 -1.70 -1.7198 0.0198
Y [meters] 0.05 0.04227 0.01227 -0.95 -0.95033 0.00033
Z [meters] -1.31 -1.31587 0.00587 -1.3500 -1.39294 0.04294
α [rads] 0.00 0.00584 0.00584 0.03 0.0394 0.0094
β [rads] 0.05 0.06284 0.01284 0.00 -0.0032 0.0032
γ [rads] 0.00 0.01505 0.01505 -1.57 -1.5782 0.0082

Top to Left LiDAR Top to Rear LiDAR
Parameter Ground Truth Our method Error Ground Truth Our method Error
X [meters] -1.74 -1.74005 0.00005 -2.14. -2.1429 0.0029
Y [meters] 0.93 0.9391 0.0091 -0.05 -0.0453 0.0153
Z [meters] -1.45 -1.46752 0.016752 -1.23. -1.23756 0.00756
α [rads] 0.0 -0.0273 0.0273 0. -0.0267 0.0267
β [rads] 0.0 -0.02206 0.02206 0. 0.0206 0.0206
γ [rads] 1.58 1.58036 0.00036 3.1415 3.14124 0.00034

To calibrate the LiDAR and the camera we randomly selected a frame, as shown

in Figure 5.4. Then, we proceeded to point and click the correspondent points in the

image and the point cloud. Table 5.4 shows our results compared to the measure-

ments reported by [51]. However, it is important to note that our approach lets the

user to select data from as many frames as needed over the time. This helps to ease

the matching process over the image field, and at different ranges.

TABLE 5.4: Camera-LiDAR extrinsic calibration results comparison.
Units in meters and radians.

Parameter KITTI Ground
Truth

Geiger, et.al.[90] Our method Absolute Error

X [meters] 0.27 0.2717 0.3017 0.0317
Y [meters] -0.06 -0.076 -0.089 0.029
Z [meters] -0.08 -0.04 -0.0937 0.0137
Yaw [rads] 1.57 -1.5632 -1.5625 0.039
Pitch [rads] 0.0 0.0006 0.0012 0.0356
Roll [rads] -1.57 -1.5559 -1.5622 0.358

5.4.3 Image-Cloud Fusion

Due to the nature of the back-projection calculation, the results of Image-Cloud fu-

sion depend on the accuracy of both the camera intrinsics, and extrinsics parameters.

For this reason, to evaluate this section of the framework, we decided to carry out

instead a performance evaluation. We measured the average performance of our

tool on four different camera and LiDAR setups. Table 5.5 shows the arrangements

90 Chapter 5. Multi-Sensor Fusion Toolbox for Autonomous Driving

FIGURE 5.14: Prius Setup. Result of extrinsic calibration between ro-
tating LiDAR (shown in white), and four MEMS narrow view LiDAR

sensors (displayed in blue, green, pink, and red).

used for this purpose. Figure 5.18 presents qualitative fusion results for each ar-

rangement. All these tests were performed on a desktop computer running Ubuntu

16.04, ROS Kinetic, with an Intel Core i7-6700K CPU with 4 cores, and 16GB of RAM.

The node was compiled with OpenMP to distribute the execution on the multi-core

system.

TABLE 5.5: Fusion measurements for different sensors and cameras
on an Intel Core i7-6700K CPU with 4 cores. A. Baumer VLG-22C@
20 Hz; B. PointGrey Grasshopper3@15Hz; C. PointGrey Grasshop-

per3@15 Hz; D. PointGrey Flea2 @ 15Hz
.

Camera Image Resolution Velodyne LiDAR Point cloud size Execution (ms)
A 1288x960 HDL-64 ∼ 120,000 116
B 800x600 HDL-32 ∼ 70,000 78
C 1384x1036 VLP-16 ∼ 25,000 50
D 1384x1032 HDL-64 ∼ 120,000 128

5.4. Evaluation 91

FIGURE 5.15: Alphard Setup, Result of extrinsic calibration of five ro-
tating LiDARs (Top: white; Front: Cyan; Right: Purple; Left: Orange;

and Rear: Yellow).

5.4.4 Ray Ground Classifier

To evaluate the classification accuracy, we decided to manually label 12 point clouds.

We chose four random point clouds for each of the most commonly used Velo-

dyne sensors: HDL-64, HDL-32 and VLP-16. Each scan was taken from previously

recorded log data from various urban settings. For the Velodyne HDL-64 case, we

used the point clouds provided by the KITTI dataset. The average results for the

point clouds classified can be seen in Table 5.6. In this table we also included the

average execution time for each sensor model. The execution time was measured on

a desktop computer running on an Intel Core i7-6700K CPU with 4 cores, and 16GB

of RAM with OpenMP enabled.

TABLE 5.6: Classification performance of the Ray Ground Classifier
on the point clouds by sensor type.

Measurement HDL-64 HDL-32 VLP-16
Accuracy 0.8247 0.8429 0.8461
TP 0.8429 0.7737 0.6954
FP 0.1952 0.1025 0.0653
TN 0.8047 0.8974 0.9346
FN 0.1570 0.2262 0.3045
Precision 0.8258 0.8560 0.8619
Execution time (ms) 55 20 11

Finally, qualitative results on three different sensors can be seen on Figure 5.19.

92 Chapter 5. Multi-Sensor Fusion Toolbox for Autonomous Driving

x
y
z

4 6 8 10 12 14 16 18 20

Number of points vs absolute error

Ab
so

lu
te

 E
rr

or
 [m

]

N mber of selected points

0.09

0.06

0

u

0.08

0.07

0.05

0.02

0.04

0.03

0.01

FIGURE 5.16: Translation absolute error compared with number of
selected points on the Alphard Setup.

The last sub figure shows the Ray Ground classifier working on four merged Velo-

dyne VLP-16 LiDARs. These were previously calibrated using our method pre-

sented in Section 5.3.1.

5.5 Discussion

5.5.1 LiDAR-LiDAR Extrinsic Calibration

Like any other approximation algorithm, the ND algorithm may fail to converge un-

der the maximum number of iterations. This is due to the absence of differentiable

features, leading to the cost-function to become insensitive to the rotational parame-

ters. In Figure 5.13, we can observe that when providing a feature rich environment,

the ND algorithm can obtain highly accurate results. The error on the x-axis, even if

it is considerably low, presents a higher value than the rest of the parameters. While

analyzing this difference, we found out that this was caused by an inaccurate inter-

nal laser calibration from the manufacturer. Figure 5.2 shows that the points hitting

the wall (the x-axis), display an uneven wall surface.

5.5. Discussion 93

4 6 8 10 12 14 16 18 20

Ab
so

lu
te

 E
rr

or
 [m

]

Number of selected points

r
p
y

Number of points vs absolute error
0.012

0.01

0.008

0.006

0.004

0.002

0

FIGURE 5.17: Rotation absolute error compared with number of se-
lected points on the Alphard Setup.

During our indoor and outdoor experiments, we realized that selecting a com-

plex and/or asymmetric environment leads to a faster convergence. Since our tool

shows the calibration result after completing each set of iterations in real-time, the

user can quickly identify if the selected setting is appropriate for calibration. Thus,

from our experiments we conclude that it is important to have large objects (i.e.

walls or other vehicles) in the shared field of view of the LiDARs being calibrated.

It is important to note, that our method requires features to be shared between the

sensor views, otherwise calibration will not be possible.

When calibrating more than two LiDAR sensors that all share an overlapping

field of view, the calibration must be performed N-1 times, where N is the number

of sensors. In situations when multiple LiDARs only share a field of view with some

of the other sensors, the obtained solution might not converge to a local optima. This

is because the NDT algorithm is designed to match only two point clouds at a time.

To overcome this, one approach would be to complete calibration N-1 times, and

afterwards repeat calibration N-1 times using a different order. If the same solution

is obtained, the current solution is very likely to be a global optima. Nevertheless,

this cannot be confirmed due to the lack of extra information from other sensors.

94 Chapter 5. Multi-Sensor Fusion Toolbox for Autonomous Driving

(A) (B)

(C) (D)

FIGURE 5.18: Fusion results on different setups a) BaumerVLG-22
and HDL-64; b) Grasshopper3 and HDL-32; c) Grasshopper and VLP-

16; d) Flea2 and HDL-64 (KITTI)

If a different solution is obtained, then an average between the solutions might be

used. To further improve the optimization of the calibration parameters, a bundle

adjustment-like approach could be performed. This would allow to tune the indi-

vidual calibration results to maximize global consistency.

5.5.2 Camera-LiDAR Extrinsic Calibration

As mentioned in Section 5.3.2, our method provides an easy and practical way to

quickly obtain the extrinsic calibration between the Camera and LiDAR. It does not

require the preparation of a specific setting, or marker of any kind. For this reason,

it allows calibration of the sensors while directly connected to them, or the use of

previously recorded data. Since our method depends completely on the points fed

to the algorithm, its accuracy highly depends on the ability of the user to find proper

correspondences. During our experiments we found it is easier to observe the shared

features between sensors when there are objects nearby. This is due to the nature of

the multi-layered laser and the perspective camera model. After several experiments

we defined the following guidelines to ease the calibration process. Users familiar

with these, were able to obtain the parameters in as short as one minute.

1) Capture a single scene with different objects scattered around the field of view.

2) It is easier to identify objects’ corners, points hitting lowest and highest points of

an identified object in the point cloud. 3) Since our method allows the selection of

5.5. Discussion 95

(A) (B)

(C) (D)

FIGURE 5.19: Ground Classification, using our Ray Ground Algo-
rithm on a) Velodyne HDL-64 (KITTI); b) Velodyne HDL-32; c) Velo-
dyne VLP-16; d) Four Velodyne VLP-16 calibrated. The points be-
longing to the road are shown in blue, while obstacles are painted in

red.

FIGURE 5.20: Successful calibration of a thermal vision camera (FLIR
ADK), and a Velodyne HDL-64.

points regardless time of the the frame, using recorded log data eases the selection

of these points while the car is running in a urban scenario. Taking advantage of this

attribute is highly recommended in cases where a static scenario does not contain

enough identifiable features. 4) As shown in Figure 5.16 and 5.17, selecting more

points will obtain a reduced error on the translation parameters. However, if the

selected features are not easily identifiable, selecting more points will increase the

final absolute error.

Finally, an additional advantage of our method is that it also allows the calibra-

tion regardless of the image format. Figure 5.20 shows a successful extrinsic calibra-

tion between a thermal vision camera and a Velodyne HDL-64.

96 Chapter 5. Multi-Sensor Fusion Toolbox for Autonomous Driving

5.5.3 Image-Cloud Fusion

The image-cloud fusion node is an example of an application of a successful in-

tegration of sensor fusion. It complements and integrates distance and color data

between the sensors, providing extra information to other perception applications.

We consider that this tool will help other researchers in the development of real-time

perception systems. As previously mentioned, recent developments based on deep

learning require the post-fusion data to be fed to the network [87], [86], [88]. All

these techniques perform the data fusion off-line, forwarding it at a later phase. Our

method provides a real-time solution to this problem in many applications. It is im-

portant to note that the performance might be reduced when using higher resolution

images and LiDAR sensors.

5.5.4 Ray Ground Classifier

The Ray Ground Classifier presents an elegant and effective way to classify the

ground on complex point clouds. Being a shape and rule based method, is possible

to use it on different sensor types and setups. It requires few or none of its parame-

ters to be tuned for successful application. Moreover, being implemented completely

on the CPU, it can be ported to other embedded architectures. Our evaluation shows

that it achieves a high accuracy across different sensor types as indicated in Table 5.6.

Due to its nature, it does not require specific measurements, such as rings numbers

or specific intensity ranges, making our approach sensor independent. Figure 5.19

presents qualitative results of the ground classification on four Velodyne VLP-16 Li-

DAR sensors, previously calibrated with the approach presented in Section 5.4.1.

During our experiments and evaluation, we found out that to obtain better clas-

sification results it is important to set correctly the height of the LiDAR (hlidar), and

the angle threshold of the maximum slope (γ). The first one is usually known and

when it is not, it can be estimated by averaging the first point of each of the rays.

The latter can be quickly estimated using the UI provided by ROS, while analyzing

the height values in the ground of the point cloud. Finally, we also carried out ex-

periments on steep roads. On these we found out the classifier to be reliable, when

5.6. Conclusion 97

changing the slope parameter. However, we also found that keeping a high slope

value on regular roads might cause misdetections.

5.6 Conclusion

We described an open-source multi-sensor fusion toolbox for autonomous vehicles.

It is composed of a LiDAR-to-LiDAR extrinsic calibration algorithm, a Camera-

LiDAR extrinsic calibration method, Multi-LiDAR fusion, Camera-LiDAR fusion,

and a ground classification method.

Our LiDAR-to-LiDAR calibration algorithm successfully adapts a state-of-the-

art matching algorithm. Through several experiments, we showed that provides

calibration to the centimeter-level accuracy, without requiring a special setup. We

also shared recommendations and limitations on Section 5.5.1 to ease the use of our

calibration tool.

We introduced an easy-to-use Camera-to-LiDAR extrinsic calibration method. It

applies the latest developments on camera pose estimation in computer vision. In-

stead of requiring the preparation of an specific setup, or the printing of predefined

markers, a UI is provided, so the user feeds the corresponding points between the

camera and LiDAR space to our algorithm. To accelerate this task, we also shared

the guidelines we defined through experimentation in Section 5.3.2. Our method

achieved error as low as one centimeter, comparable to other state-of-the-art devel-

opments in the field. It is important to note that our method will fail to obtain an

accurate calibration if the intrinsic parameters are incorrect. The application of our

method becomes challenging when using low resolution LiDARs in combination

with telephoto lenses. Users can have a hard time to find shared features between

images and point clouds. In these cases, targets might be inserted manually. We

found that cones, or highly reflective materials are easy to identify between images

and point clouds.

The third part of our framework, presented a real-time image and point cloud fu-

sion. The tool integrates the range data to the image space. It also allows point cloud

back-projecting the color information to the 3D space. To the best of our knowledge,

it is the first real-time open-source available as the time of writing.

98 Chapter 5. Multi-Sensor Fusion Toolbox for Autonomous Driving

The final part of our framework is an accurate geometric and rule-based ground

classifier. Thanks to the nature of the algorithm, and the low number of configurable

parameters, it can be used with virtually any kind of LiDAR sensor, including data

composed by several LiDARs. Moreover, our method performed on average as fast

as 55 ms for the high-resolution Velodyne HDL-64. It averaged 20 and 11 ms on the

HDL-32 and VLP-16 sensors respectively, achieving real-time performance on the

three tested sensors.

Our multi-sensor fusion toolbox is integrated in the autonomous driving frame-

work known as Autoware[103]. The source code can be downloaded from the fol-

lowing URL <https://gitlab.com/autowarefoundation/autoware.ai>. Future work

on our toolbox will involve the full automation of the calibration methods. For in-

stance, employing recent developments on the Structure from Motion field. We also

plan to implement the fusion and classification algorithms on GPUs to further accel-

erate its execution.

<https://gitlab.com/autowarefoundation/autoware.ai>

99

Chapter 6

Real World Applications

6.1 Introduction

Obtaining precise perception data of the environment surrounding an autonomous

robot has shown to impact significantly ts performance [104]. This kind of data is

especially valuable in areas such as autonomous driving, driving assistance, and

self-localization systems [105, 106]. TThe perception data such as distance, posi-

tion, the velocity of the robot and nearby objects, may be provided by different sen-

sors, including but not limited to Global Navigation Satellite System (GNSS), Inertial

Measurement Unit (IMU), wheel odometry, Light Detection and Ranging (LIDAR)

or cameras.

Cameras devices sometimes are left aside in favor of the LIDAR, mainly because

the latter can provide data of the whole surrounding area, depth, and position in a

precise way. However, object detection through point clouds is not as developed as

its image-based counterpart. As pointed by [107], object detection on images have

shown a quick development and achieved high recognition rates.

The main drawback of camera based perception systems is that in most cases

those provide a narrow angle of view compared to the LIDAR. To tackle this, some

camera vendors provide 360 degrees cameras, but those solutions are not cost wise.

An affordable, high performance perception device for autonomous robots would

also make possible the development of a wide range of simultaneous localization

and mapping solutions. In this respect, since the processing requirements of the

camera are well defined, Field-Programmable Gate Array (FPGA) devices can play

a key role due to its low price, high dynamism and performance.

100 Chapter 6. Real World Applications

Nowadays, FPGAs are devices that more than low priced, their energy require-

ments have improved through time [108]. Recent series of FPGAs are passing the

16 nm barrier, leading to even lower power consumption. Moreover, these devices

are adopting technologies from the Application-Specific Integrated Circuit (ASIC),

becoming simultaneously faster. The size of these gadgets is compact enough to be

fitted in a small casing. These features, plus the programmability inherent to them,

enables the use of these circuits in mobile or portable applications, such as cameras

and network devices.

In recent years, camera sensors have quickly become ubiquitous. We can see

them in our everyday life: attached to our smart phones, integrated in mobile com-

puters and used in large quantities as part of security systems in all sorts of facilities.

Because of this, price of image sensors are constantly dropping. Besides, the size and

quality are also quickly improving due to the high demand for these devices.

The work presented in this chapter aims to show the prototype of a 360 de-

gree cost-effective, high performance camera based Cyber Physical System (CPS)

for perception. This development provides a full view of the surroundings, using

six camera sensors attached to a custom tailored FPGA board. The prototype board

is equipped with standardized Camera Interface Specification (CSI) and Gigabit Eth-

ernet ports. This provides future compatibility with newer versions of sensors and

transceivers. In addition, being a programmable device, updates to the firmware

can be quickly tested.

On the FPGA board, the images are captured by each sensor in RAW format.

Afterwards, those are converted into full color ones and transferred to the host com-

puter through two Gigabit Ethernet ports. Finally, the network stream is converted

into a bitmap image and processed using a Histogram of Oriented Gradients (HOG)

+ Support Vector Machine (SVM) based object detector, so it can provide the percep-

tion information in a real time fashion.

6.2 Related Work

A few vendors in the market develop devices that can capture images from the com-

plete surrounding of the camera. Unfortunately, most of them are targeted for the

6.3. Design and Implementation of Hexacam 101

end-user, with small resolutions and they do not provide an Application Program-

ming Interface (API) to communicate with the device. Even if we try to use some of

these cameras, those provide no access to the image stream, making its use for real

time processing pointless.

The only device with access to the stream and API control we found was the La-

dybug camera, developed by PointGrey. This device outputs a spherical view of the

surrounding with the help of six camera sensors attached to the body. This device

is capable of generating a spherically stitched 30 Mega pixel (MP) image at a rate

of 10 frames per second (fps) through a Universal Serial Bus (USB) 3.0 port [109].

Sadly, the cost of the mentioned device is still high for general purpose applica-

tions. Furthermore, the camera requires a high-performance host and specific USB

hub controllers to reach the mentioned performance, making it difficult for all the

configuration environments.

6.3 Design and Implementation of Hexacam

This section presents a prototype system for real time image acquisition and process-

ing of pedestrian detection that may be used in a perception system. The network

design of the cyber physical system is illustrated in Figure 6.1, it can be described

as follows:

1. Six cameras are connected to a custom made board for the Spartan-6 FPGA,

those capture the image data in RAW format from each sensor through a Mo-

bile Industry Processor Interface (MIPI)/CSI port

2. The FPGA packs and sends each image through a UDP port using the Gigabit

Ethernet ports on the board.

3. The PC host receives, unpacks, reconstructs and stitches the images into a

bitmap.

4. Finally, the algorithm known as histogram of gradients (HOG), used in con-

junction with a support vector machine (SVM), obtains the pedestrian local-

ization in the panoramic image.

102 Chapter 6. Real World Applications

The last stage is executed in a general purpose graphics processing unit (GPGPU),

in this way the complete process can be performed in a real time fashion.

GPGPU

Object Localization

Host PC

Image Processing

FPGA

UDP over Ethernet

Camera Sensors

MIPI/CSI

FIGURE 6.1: An overview of our prototype system.

6.3.1 FPGA board

For the prototype, a custom built board with a Xilinx Spartan-6 (XC6SLX100) with

no microprocessor is used. All the computation is implemented as hardware logic.

As for the camera sensors interfaces, these are connected directly to the FPGA pin

out and implemented at hardware level as CSI ports. The network interfacing is

done with the help of Ethernet PHY transceivers (Microchip SMSC LAN8700).

The operation unit required for each camera is about 750 slices, 1800 registers

and 1800 LUTs. An overview of the logical architecture is shown in Figure 6.3.

To make sure the images are synchronized, the CSI commands to reset, setup the

sensors and initialize the stream, are sent simultaneously to the six cameras. Once

the data have been acquired from all the sensors, it is sent through the Ethernet port

6.3. Design and Implementation of Hexacam 103

FIGURE 6.2: Picture of the FPGA board prototype.

FPGA board

M
U

X

CSI Interface

CSI Interface

CSI Interface

RAW to
RGB

RAW to
RGB

RAW to
RGB

sare
maC

Ethernet
PHY

Eth0

FPGA board

M
U

X

CSI Interface

CSI Interface

CSI Interface

RAW to
RGB

RAW to
RGB

RAW to
RGB

sare
maC

Ethernet
PHY

Eth0

FIGURE 6.3: Board architecture.

in a serial way. To achieve this, each camera stream is connected to a multiplexer.

This one selects and sends each image in round robin through the network.

6.3.2 Camera sensors

The custom tailored board includes six MIPI/CSI interfaces, to each one of which, an

OmniVision 5647 camera sensor is connected. The cameras have been set in a fixed

focus module. This module includes a 5 mega pixel Complementary metal–oxide–semiconductor

(CMOS) image sensor which features automatic white balance, exposure, band fil-

ter and illumination detection. Moreover, the camera sensor support several image

sizes, shown in Table 6.1 [110].

Since we aim to use the Ethernet bandwidth as much as possible, the sensors

are configured to a predefined Full HD resolution (1920x1080). The FPGA board

104 Chapter 6. Real World Applications

FPGA

OmniVision 5647

MIPI/CSI MIPI/CSI MIPI/CSI

MIPI/CSI MIPI/CSI MIPI/CSI

Gigabit Ethernet Ports

OmniVision 5647 OmniVision 5647

OmniVision 5647 OmniVision 5647 OmniVision 5647

FIGURE 6.4: Custom tailored FPGA board diagram.

TABLE 6.1: Camera sensor supported resolutions and transfer rates

Mode Resolution Frame rate
QSXGA 2592x1944 15 fps
1080p 1920x1080 30 fps
960p 1280x960 45 fps
720p 1280x720 60 fps
VGA 640x480 90 fps
QVGA 320x240 120 fps

configures and transfers data with each camera through a CSI interface. In Figure

6.4, an organization of the board is illustrated.

6.3.3 Image processing

The image received on the FPGA is in RAW format, also known as Bayer filter mo-

saic [111] in its BG2R variant. As it can be appreciated cameras only capture one

color per pixel. This layout for arranging colors in the filter is 50% green, 25% blue

and 25% red. This is due to the fact that our eyes are more sensitive to the color

green.

The process of reconstructing the full color RGB image, from the under sampled

Bayer filter data acquired from the camera sensor is known as “demosaicing or de-

mosaicking” [112]. In short, the camera sensor captures 10 bits representing a single

pixel. These 10 bits are then converted to a full color RGB image (24 bits). It is worth

6.3. Design and Implementation of Hexacam 105

1920

1080

960

540

Bayer Format (from camera sensor)

RGB Format

B0,0 G0,1

G1,0 R1,1

B0,2 G0,3

G1,2 R1,3

R0,0

G0,0 B0,0

R0,1

G0,1 B0,1

FIGURE 6.5: RGB color reconstruction from RAW image.

noting that the RGB image process reconstruction from the data obtained by each

camera sensor will reduce the final resolution by four times due to the Bayer format

nature, this can be easily appreciated in Figure 6.5.

There are several other algorithms to perform the demosaicing that eschew the

loss of image resolution. To achieve this, those use complex interpolation methods to

fill the pixel data. Unfortunately, these algorithms introduce image artifacts depend-

ing on the type of pattern found in the captured picture [113] [114]. In the Figure 6.6

is easy to appreciate one kind of the artifacts generated by the interpolation.

Due to the generation of undesired artifacts during the pixel interpolation, and

since we will be down sampling anyway the image during the object detection

phase. We decided not to use any algorithm to interpolate the missing pixels.

106 Chapter 6. Real World Applications

FIGURE 6.6: Left side, original image. Right side, artifacts due to pixel
interpolation

If we represent the data in a matrix we get:

BayerArray1080,1920 =

b0,0 g0,1 · · · g0,1919

g1,0 r1,1 · · · r1,1919
...

...
. . .

...

b1078,0 g1078,1 · · · g1078,1919

g1079,0 r1079,1 · · · r1079,1919

Since we are not applying interpolation methods, the conversion is defined by the

values of the Bayer array, except for the green element, which must be calculated as

the average of the two elements corresponding to the Red Green Blue (RGB) pixel.

These can be expressed as follows:

R0,0 = BayerArray[r1,1] (6.1)

G0,0 =
BayerArray[g0,1] + BayerArray[g0,1]

2
(6.2)

B0,0 = BayerArray[b1,1] (6.3)

6.3.4 Network transmission to host

As for the actual process of acquiring images in the FPGA, it can be summarized as

follows: Once the board initializes each camera, the sensors start transmitting the

6.3. Design and Implementation of Hexacam 107

image data continuously through each CSI interface. As soon as the data is on the

FPGA, it is then forwarded to the host PC over two Ethernet ports. To achieve this,

the image data is split into several User Datagram Protocol (UDP) packets. Two

Ethernet ports are used since the network bandwidth available in one port is not

enough to carry the image data of the six sensors and achieve at least 10 frames per

second. A simple protocol over UDP was created to successfully transfer the image

data through the network. Three types of packets were implement to achieve the

image transmission: frame start, data packet and frame end.

The FRAME_START packet is used to indicate the initial frame corresponding to

an image. Its structure is shown in the Table 6.2. An X in the value field means don’t

care.

TABLE 6.2: FRAME_START packet structure

Offset Value Description
0 XXXXXXXX Packet ID
4 00000000 Data Offset
8 00000000 Data length
12 01000000 Frame Start

The FRAME_DATA contains the raw color data of the image acquired from the

camera sensor. The structure of the packet is shown in the Table 6.3.

TABLE 6.3: Image reception packet queue

Offset Value Description
0 XXXXXXXX Packet ID
4 XXXXXXXX Data Offset
8 XXXXXXXX Data length
12 00XXXXXX Packet Type + Row Number
16 XXXXXXXX Image Data
... ... Image Data
16+Length XXXXXXXX Image Data

The FRAME_END packet is used to indicate that the transmission of data corre-

sponding to the current image is completed. The packet structure is shown in the

Table 6.4.

The Algorithm 1 describes how to receive images using the presented packet

types.

To illustrate how the network transmission is done, part of an image reception

packet queue is shown in the Table 6.5

108 Chapter 6. Real World Applications

TABLE 6.4: FRAME_END packet structure

Offset Value Description
0 XXXXXXXX Packet ID
4 00000000 Data Offset
8 00000000 Data length
12 02000000 Frame End

Algorithm 1 UDP Image reception

while running do
if Packet is FRAME_START then

Create new Image
else if Packet is FRAME_END then

Close Image
Set image as ready to be read

else
Store Data in specified Row

end if
end while

Once all the packets are received on the host, these are processed to form the final

image. The process is repeated continuously to obtain the image stream from the six

cameras on different UDP ports. It can be observed in the Table 6.5, that the sum of

lengths is the width of the captured image.

6.3.5 Object detector

The final step in the CPS network is object detection. This phase will extract the per-

ception information contained in the stream captured from the six camera sensors.

For this prototype, a HOG+SVM based pedestrian detector is used to provide

the perception information. We decided to use this object detection algorithm since

it is robust and mature. Moreover, it has shown a high recognition rate, and due to

its iterative nature it is well fitted for parallelization.

In order to obtain the highest possible frame rate from the prototype, our objec-

tive became to extract the perception data in no longer than the next frame is cap-

tured and transmitted to the host. The initial CPU implementation takes longer and

creates a bottle neck. For this reason, a GPU version of the algorithm was required.

The CPU and GPU versions use the HOG descriptor provided by Dalal and

Triggs, which is a vector of 64x128 elements previously trained in the INRIA per-

son dataset [115]. The parameters of the HOG detector used during our tests are 64

6.3. Design and Implementation of Hexacam 109

TABLE 6.5: Packet Queue

Queue Packet ID Offset Lenght Type
FRAME_START 0001 0000 0000 01000000
FRAME_DATA 0002 0000 0144 00000000
FRAME_DATA 0002 0144 0144 00000000
FRAME_DATA 0002 0288 0138 00000000
...
FRAME_END 021D 0000 0000 02000000

levels in the pyramid, 9 bins for the gradient calculation and a block size of 16. The

detector returns a vector of bounding boxes containing the pedestrians detected in

the environmental image for each frame.

As specified by Dalal and Triggs in [115] the GPU and CPU implementation

follow the workflow shown in Figure 6.7.

A short summary of the process to calculate the descriptor is:

1. The input image is divided into small sub-images known as ’cells’. These cells

can be rectangular (known as R-HOG) or circular (C-HOG). In this work we

use rectangular cells as describes in the original work.

2. Within each cell, accumulate a histogram of edge orientations.

3. The combined histogram entries are used as the vector descriptor.

4. A normalization between cells is performed to provide a better illumination

invariance.

To conduct the object detection, a sliding window is passed through the image.

The HOG descriptor is calculated for each of the subregions. Then, the obtained de-

scriptor vector is classified with the help of a pre trained SVM model (given by Dalal

and Triggs). Finally, the output score is checked against a threshold to determine if

the object is found in the region.

Input Image Creation of
cells

Histograms
of edges

orientation

Feature
descriptor

Normalization HOG
Descriptor

FIGURE 6.7: HOG descriptor calculation process

110 Chapter 6. Real World Applications

6.4 Performance Evaluation

This last section will show the result of the quantitative evaluation performed on the

CPS prototype for every phase of the system.

6.4.1 Camera sensors

Each of the Omnivision 5647 camera sensors are initially configured to work at a

resolution of 1920 x 1080 (Full HD), 10 bit RAW, and 30 fps. In our measurements

we were able to obtain 522.96 Mbps from each of the six sensors on the CSI ports.

This bandwidth, delivered an effective frame rate of 26.6 fps on each sensor. This

do not represent a problem since we know that the transmission stage support a

maximum theoretical speed of 1 Gps on the Ethernet port.

6.4.2 Network speed

Each of the six reconstructed image requires 960x540x32 bits before being trans-

ferred. Furthermore, if we aim to achieve 10 fps on each camera, this will require

a bandwidth of 121.5MiB/s. A Gigabit Ethernet port is capable of transmitting, the-

oretically, 122 MiB/s, but due to a limitation on the clock frequency on the FPGA,

a maximum of 65 MiB/s can be obtained on each Ethernet port. For the previous

reason, two Gigabit Ethernet ports should be used to accomplish the desired perfor-

mance. In the 6.8 the transmission speed monitored during a sampling period with

a mean of 9.41 fps can be appreciated.

As for the frame rate, the obtained result for each camera during the sampling is

shown in Figure 6.9.

6.4.3 Perception System performance

The evaluation of the GPGPU implementation of the HOG with SVM detector is

shown in the Figure 6.10. All the tests were done with the help of an NVIDIA GTX

Titan GPU on a Linux Host running Ubuntu 14.04 with a Core i7 4770K@3.5GHz.

It is worth pointing out that the prototype is programmed in a parallel way. In

other words, after the images of the six cameras have been acquired and transferred

to the host, the object detection phase starts, but simultaneously the next batch of

6.4. Performance Evaluation 111

62.4

62.6

62.8

63

63.2

63.4

63.6

1 2 3 4 5 6 7 8

)s/Bi
M(deepS krowteN

Sample

Port 0 Rx Port 1 Rx

FIGURE 6.8: Network speed measured while capturing

frames is transmitted immediately. This detection phase is executed in less time

than next image acquisition cycle. Thanks to this, the execution is entirely limited to

the camera response time.

In Figure 6.10 can be observed that the execution time of the GPU implemen-

tation of the detector just takes 25.35 milliseconds. Put differently, the perception

phase does not interfere with the image acquisition stage.

For benchmarking purposes the same detector was implemented in CPU mode,

optimized using the multi threading library pthread. Unfortunately, the sequential

version led to the loss of performance. The processing time required by the serial ex-

ecution is 339.88 milliseconds. This would cause a serious bottle-neck in the system

flow, dropping the frame rate from 9.41 to 2.94 fps. The timing of the CPU version

can be appreciated in Figure 6.11.

By way of comparison, the Table 6.6 summarizes the features between our pro-

totype and the commercially available Ladybug 5 camera.

TABLE 6.6: Comparison between HexaCam and Ladybug

Feature Ladybug 5 HexaCam
Interface USB 3.0 Gigabit Ethernet
Bandwidth 5 Gbps 1 Gbit
Maximum Resolution 30 MP 3 MP in current setting

configurable up to 30 MP
Frame rate 10 fps 9.41 fps
Programmability Possible Possible
Cost USD $20,000~ USD $2,000~

112 Chapter 6. Real World Applications

0 2 4 6 8 10 12

1

2

3

4

5

6

7

8

Frames per second

elp
maS

cam5

cam4

cam3

cam2

cam1

cam0

FIGURE 6.9: Framerate for each camera while capturing

6.4.4 Power consumption performance

HexaCam being an FPGA based system in the range of the 40 nm has a low power

consumption requirement. Due to this and to its reduced size and weight, it can eas-

ily be used in mobile scenarios such as robotics and automotive applications [108].

6.5 System Calibration and Fusion

Having evaluated the hardware and obtained its performance, we calibrated the

cameras intrinsically and extrinsically with a Velodyne VLP-16 3D LiDAR. The de-

vice is equipped with six cameras equally distributed over a circumference, as de-

scribed in Section 6.3.2; the LiDAR is installed directly on top of the camera mod-

ules. Using the guidelines discussed in Section 4.8 we obtained the camera intrin-

sic parameters, and later the camera-LiDAR extrinsic parameters as introduced in

6.5. System Calibration and Fusion 113

Acquisition , 106.2 Resize, 0.95 HOG+SVM, 24.4

0% 20% 40% 60% 80% 100%

Process

Time in miliseconds

Image Capture GPU Image Resize GPU HOG+SVM

FIGURE 6.10: Processing time on GPU

Resize , 1.38 HOG+SVM, 232.41

0% 20% 40% 60% 80% 100%

Process

Time in miliseconds

Image Capture CPU Image Resize CPU HOG+SVM

Acquisition,106.2

FIGURE 6.11: Processing time on CPU

Section 5.3.2. With these on hand, we proceeded to validate them qualitatively us-

ing the Image-Cloud fusion presented in Section 5.3.3. Qualitative results of this

calibration and fusion are presented in Figure 6.12.

In a similar manner to the HexaCam module, we performed camera intrinsic

calibration and camera-LiDAR using the LadyBug camera and a Velodyne HDL64

3D LiDAR, and fused the image from the five cameras and the point cloud from

the LiDAR sensor. Qualitative results of this calibration and fusion are presented in

Figure 6.13.

Both sensors provided excellent projection and backprojection results, helping to

further validate the calibration methods presented in this work.

114 Chapter 6. Real World Applications

FIGURE 6.12: Qualitative results of the Image-cloud on the HexaCam
device and a Velodyne VLP16.

FIGURE 6.13: Qualitative results of the Image-cloud on the Ladybug
camera and a Velodyne HDL64.

6.6 Conclusion

In this chapter we presented a cyber-physical system prototype to obtain the percep-

tion information contained on 360 degree images captured by a custom built FPGA

board.

We found that with a tenth of the cost of the commercially available devices, we

were able to provide a remarkable performance. Our prototype is able to capture

images from six camera sensors and extract the perception information at a rate of

9.41 frames per second with the help of an NVIDIA GTX Titan GPU.

Additionally, we also tested and validated the methods presented in Chapters 4 and 5

using both the HexaCam presented in this chapter, and the commercially available

Ladybug5 camera, which we used as a comparison point with the HexaCam device.

Both sensors provided good fusion results as shown in Section 6.5. Moreover, we

confirmed that our calibration methods helped us to reduce the time required to

6.6. Conclusion 115

calibrate these sensors feature large array of cameras.

For future improvements, as for the hardware, we plan to update the camera sen-

sors configuration and increase the transmission rate of the Ethernet port, so it fully

uses the available bandwidth. As for the software, we will update the firmware to

transfer the RAW image instead of the full color RGB reconstruction, in this way the

bandwidth will be reduced. As direct consequence, only one Ethernet port will be

required, allowing the device to be used in more common hardware configurations.

Moreover, one possible approach to improve the data copy between the Hexacam

and the host, is to use a direct copy between the network controller and the GPU

[116–118]. Finally, since the GPU implementation of HOG is quick enough, we plan

to change the object detector algorithm for the well-known Deformable Part Model,

using as well a GPGPU implementation [119, 120].

117

Chapter 7

Real World Data Circulation in

Multi-Sensor Systems

7.1 Introduction

Industries worldwide are continuously looking for growth, development, and ex-

pansion of business activities. Japan is a global leader in developing and manu-

facturing high-quality products and services. For this reason, Japanese companies

should consider the situation and events happening overseas. Additionally, compa-

nies should stay continuously open to feedback to improve and create new products

and services required and desired by customers. To achieve this, companies need to

create loop feedback between them and the customer base.

Real-World Data Circulation (RWDC) encompasses continuous improvement. It

does it while integrating scientific fields such as Information Science, Medicine, and

Economics in the loop between industry and customer, to promote the growth of

companies while simultaneously developing convenient and enjoyable products for

end-users that encourage social value generation. Social value quantifies the relative

importance that people place on the changes they experience in their lives.In sum-

mary, RWDC aims to develop successful applications in commercial and non-profit

fields, backed by data analysis and a spirit of continuous improvement. In order to

achieve this, it encloses three specific phases: 1) The data acquisition step; 2) Data

analysis; and 3) System implementation phase.

118 Chapter 7. Real World Data Circulation in Multi-Sensor Systems

Autonomous Driving and Self-Navigation Robots promise the reduction of acci-

dents, facilitate the transportation of the elderly, the automation of goods distribu-

tion, and other applications which currently suffer, or might shortly, from a shortage

of personnel to satisfy transportation needs. Self-driving technologies also promise

to improve the quality of life of its users and the people in charge of providing the

service. For the above reason, we can consider this technology brings social value,

convenience, and joy to all the persons involved, from its development and produc-

tion to its end-users.

The work presented in this dissertation introduces an An End-to-End Multi-

Sensor Fusion System for Autonomous Driving Applications, which as presented

in Chapter 3 is part of the sensing module which enable other tasks such as percep-

tion, localization, planning and control. These modules are a niche market, targeted

explicitly to the automotive, robotics, and "Mobility as a Service (MaaS)" sectors to

mention some. However, sensing is essential to implement self-driving technolo-

gies, which, when implemented, implicitly improve the quality of life of users and

thus bring social value.

In the following subsections, we will discuss the work presented in Chapters 4

to 6 in terms of the RWDC. All these works are tightly related to each other. Camera

intrinsic calibration is essential to enable the camera-LiDAR extrinsic calibration.

Consequently, accurate LiDAR-LiDAR calibration is critical to allow a multi-sensor

fusion system. Finally, in Section 7.4 this work introduces the personal experience of

the author as the leader of a startup backed up by the University.

7.2 Automatic Single-Shot Camera Calibration

The research related to sensing focuses on the continuous improvement of percep-

tion systems for self-driving vehicles, as shown in the loop in Figure 7.1. In this cycle,

the safe deployment of sensing systems provides wellness and improved quality of

life to the users. In a study conducted by the Highway Loss Data Institute (HLDI), in

the last 20 years, ADAS technologies installed in vehicles have been continuously en-

hancing user safety [121]. Figure 7.2 shows the accident reduction achieved thanks

to each of the sensing technologies introduced in Chapter 3. This figure shows how

7.2. Automatic Single-Shot Camera Calibration 119

Acquisition

Analysis Implementation

Sensors

Sensor Calibration & Fusion

- Algorithm Development
- Processing Acceleration
- New Sensing Integration

ADAS/Self-Driving
Safety Systems

- User Comfort
- User Safety
- System Convenience

- User Feedback
- New Sensing Systems
- ECU improvements

- Data Extraction
- Multi-sensor

State-of-the-art
ADAS and
self-driving systems

FIGURE 7.1: Continuous improvement RWDC loop applied to sens-
ing systems.

FIGURE 7.2: Percent change in claim frequency associated with colli-
sion avoidance technologies by coverage type since 2009. Please refer
to Table 1 and section 3.2 for an explanation of each of the technolo-

gies.

sensing technologies are constantly improving and bringing social value in the shape

of safety, reducing accidents, and, more importantly, protecting the users’ lives.

There are two critical points to be considered when developing sensing systems;

the first is the system’s usability, and the second is the reliability. First, we devel-

oped a completely automatic system that can obtain the camera intrinsic parameters

using a single shot. A fully automatic system helps accelerate development and

deployment, removing the need for specialized personnel. To address the second

point, we generated thousands of multiple checkerboard poses and evaluated them

to obtain position and rotation intervals that maximize the probability of estimat-

ing accurate camera intrinsic parameters. These results gave us enough information

120 Chapter 7. Real World Data Circulation in Multi-Sensor Systems

to generate checkerboard pose guidelines. Using these guidelines, we developed

sets of multiple checkerboard poses and evaluated them using synthetic data ob-

tained from a simulator and three different cameras in the real world, as explained

in Sections 4.6.5 and 4.7.

Each of the above developments can be associated with Figure 7.1 and summa-

rized in Table 7.1. Acquisition. Data Acquisition might take multiple forms in the

sense of the Data Circulation. For instance, camera sensors provide raw data, mil-

lions of bits forming an image, these images in our case contain checkerboards used

for camera calibration. However, these images by themself do not expose imme-

diate useful information. For this reason, we performed an analysis, on which we

detect checkerboards, as explained in Section 4.3 backed by previous research [31–

33]. Once understanding the methods used for calibration we proceeded to simu-

late and score checkerboard positionings to find the optimal poses as described in

Section 4.4. With these results, we generated guidelines to position checkerboards to

obtain accurate calibration parameters. Finally, we implemented a fully automated

calibration system as illustrated in Section 4.8, and also released an image overlay

tool to help the checkerboard positioning on the real-world as shown in Figure 4.7.

In order to close the loop, we additionally pointed some of the improvements that

our method in Section 4.8. Case in point, extend our work for other non-perspective

cameras such as fish-eye lenses.

TABLE 7.1: Single-shot calibration related to the Data Circulation

Circulation Phase Method Data
Acquisition Single Sensor Images

Analysis
Simulation +

Statistical Analysis
Optimized Score

Implementation
Positioning helper +

Single-Shot calibration toolbox
Calibration Parameters

7.3. Multi-Sensor Fusion Toolbox for Autonomous Driving 121

7.3 Multi-Sensor Fusion Toolbox for Autonomous Driving

As we introduced in Section 7.2 accurate sensing systems are required to ensure user

safety and enable the prompt triggering of ADAS systems and self-driving applica-

tions. An autonomous vehicle requires several sensors to understand its surround-

ings and act accordingly in different scenarios [84]. Images from camera devices,

range data from LiDARs, speed information from radars, and other sensor data

are fused to achieve single-digit centimeter-level accuracy of the object detection.

Thanks to the fast development of autonomous driving technologies, the cost of

these sensors is rapidly reducing. The simultaneous integration of data from multi-

ple sensors is known as fusion, and it is used to overcome weaknesses in each sensor.

Multiple LiDARs and cameras allow the system to benefit from redundant, comple-

mentary, and timely information. Moreover, multiple sensors distributed around the

vehicle improve the field of view, hence the safety of the system and its users. Nev-

ertheless, increasing the number of sensors requires better synchronization, fast and

reliable fusion techniques, and optimized processing methods due to the increased

bandwidth.

The multi-sensor fusion toolbox we presented in Chapter 5 is integrated in the

autonomous driving framework known as Autoware [103], and it is currently being

used all over the world. Thank to this, our sensing framework brings impact and

accelerate the development of systems that consequently bring social value by im-

proving the safety of users. For example, the Autoware platform could be adapted

in multiple vehicles to transport individuals who cannot drive by themselves or do

not have someone to assist them and are located in the countryside, where other

transportation services are unavailable.

Additionally, Autoware, being an open-source project, is an evolving software

with constantly changing requirements, thanks to opinions from users riding self-

driving vehicles and feedback from other developers. The development of Auto-

ware is constant and continuously improving, integrating new algorithms and, more

importantly, bringing value to the riders’ life.

In a similar manner to Section 7.2, we can identify the data circulation phases

122 Chapter 7. Real World Data Circulation in Multi-Sensor Systems

as: Acquisition. Data obtain from sensors, in this case not only cameras which gen-

erate images as explained in Section 3.5, and LiDARs, which generate point cloud

as explained in Section 3.4 and Section 3.4.1. Analysis. When working with images

and point clouds, in order to obtain their relationship, we pointed that an additional

step for its relation is required (Section 5.3). Once established the relationship, the

analysis consisted of the direct projection of the 3D points to the image and the opti-

mization of the projection as explained in Section 5.3.3. Implementation. It implied

the integration of multi-LiDAR calibration using the features obtained in the analy-

sis and a score reduction. We implemented this in the form of an online optimization

toolbox and a semi-supervised calibration method inside the Autoware [103] frame-

work.

The data circulation phases related to our work in Multi-Sensor Fusion Toolbox

for Autonomous Driving is summarized in Table 7.2.

TABLE 7.2: Multi-Sensor Fusion Toolbox related to the Data Circula-
tion

Circulation Phase Method Data
Acquisition Multiple Sensors Images + Point Cloud

Analysis
Feature Extraction+
Statistical Analysis

Optimized Score

Implementation
Semi-supervised

calibration toolbox
Calibration Parameters

In summary, an accurately calibrated multi-sensor system, being an integral part

of an ADAS system (Section 3.2), helps to build technologies that save lives in short-

term while being used in current generation level 2 systems enabling the prompt

and accurate triggering of collision warning (Section 3.2.1) and collision intervention

systems (Section 3.2.2). Additionally, automated calibration systems, such as the

one presented in this dissertation, helps develop and deploy next-generation self-

driving systems at a large scale in the long term, providing the sensing required for

different dynamic driving tasks such as parking, lane changing, planning, among

others (Section 3.1.2).

7.4. Leading a Start-Up Company 123

7.4 Leading a Start-Up Company

As a member of the Real-World Data Circulation Leaders program, the author of this

work had the chance to start a company, name it Perception Engine, and perform

the role of chief representative while being a foreign national. Perception Engine, a

startup focused on sensing and perception systems, has given the author the chance

to practice the RWDC with the products and services it currently offers.

Perception Engine has been a bridge between the research results presented in

Chapters 4 to 6 and the industry. Case in point, as explained in Section 7.1, accu-

rate calibration parameters are of the utmost importance to ADAS and self-driving

systems. For this reason, calibration systems that accelerate the calibration process

are essential to expedite deployment and production. Figure 7.3 shows some of the

real-world systems in the results of calibration have been successfully applied. Fig-

ure 7.3a illustrates the Olympic Vehicle Platform debuted on the Tokyo Olympics,

which used the calibration method presented in Chapter 5, a system composed only

by multiple LiDAR sensors.

Vehicle To Everything (V2X) systems are a new generation of information and

communication technologies that connect vehicles to everything (vehicle-to-vehicle,

vehicle-to-infrastructure, vehicle-to-network, vehicle-to-device, vehicle-to-grid). V2x

systems create a more comfortable and safer transportation environment and have

much significance for improving traffic efficiency and reducing pollution and acci-

dent rates. Figure 7.3b shows a system requiring multiple sensor calibration in a V2X

application. The autonomous vehicle shown below and the sensing system installed

in the utility pole seen on the top right required the calibration of multiple LiDARs

and cameras.

Similarly, the vehicle shown in Figure 7.3c required not only multiple LiDAR cal-

ibrations but also multiple camera intrinsic and extrinsic calibration. Finally, the ex-

perimental vehicle developed in Nagoya University vehicle illustrated in Figure 7.3d

is equipped with state-of-the-art LiDARs, radars, and camera sensors. This vehicle

requires constant calibration and maintenance since its constantly capturing data all

around Japan, and due to mechanical vibration, sensors are slowly changing their

physical position, modifying the calibration parameters.

124 Chapter 7. Real World Data Circulation in Multi-Sensor Systems

(A) Olympic Vehicle Platform Calibration. (B) Vehicle To Everything Calibration

(C) Robot Taxi. (D) Nagoya University’s Experimental Ve-
hicle

FIGURE 7.3: Example Vehicles using real-world multiple sensor cali-
bration technologies developed by Perception Engine.

7.5. Summary 125

7.5 Summary

This chapter discussed each of the works in this dissertation to the RWDC. The de-

velopment of accurate and sensing and automatic camera and multi-sensor calibra-

tion systems aimed to improve vehicle users’ safety and constant enhancement in

the current generation of ADAS systems and the future development of fully self-

driving systems.

Finally, the work executed in Perception Engine helped to continuously close

the data circulation loop as presented in Figure 7.1. Numerous projects required

constant changes and adaptations for continuous implementation cycles, bringing

customer feedback. Each of these presented new challenges, demanding additional

data acquisition, processing, and implementation; Leading to continuous improve-

ment in terms of the whole system while simultaneously bringing important infor-

mation for further enhancements.

127

Chapter 8

Conclusions

This thesis has proposed an end-to-end multi-sensor fusion system for autonomous

driving applications, a first-of-its-kind method to generate clear guidelines for single

shot camera intrinsic calibration using multiple checkerboards, suitable for use in 3D

applications. Additionally, we also introduced an open-source multi-sensor fusion

toolbox for autonomous vehicles. It is composed of a LiDAR-to-LiDAR extrinsic

calibration algorithm, a Camera-LiDAR extrinsic calibration method, Multi-LiDAR

fusion, Camera-LiDAR fusion, and a ground classification method. Our LiDAR-to-

LiDAR calibration algorithm successfully adapts a state-of-the-art matching algo-

rithm. Through several experiments, we showed that provides calibration to the

centimeter-level accuracy, without requiring a special setup.

The overall results show that with the help of camera simulations we accelerated

the camera modeling process, its evaluation, and ultimately the creation of guide-

lines to obtain accurate intrinsic parameters. We can also infer that even if the sim-

ulations create ideal image conditions, i.e., images without chromatic aberration,

vignetting, and so on, we can still transfer the lessons learned to the real world. It

would have been challenging and costly to replicate the simulated experiments in

the real world since they require specialized equipment to position and rotate the

checkerboards. Moreover, to obtain the ground truth corner coordinates, a team of

labelers would be necessary to identify each corner at the pixel level, extending the

time required to complete this work.

We introduced an easy-to-use Camera-to-LiDAR extrinsic calibration method. It

applies the latest developments on camera pose estimation in computer vision. In-

stead of requiring the preparation of an specific setup, or the printing of predefined

128 Chapter 8. Conclusions

markers, a UI is provided, so the user feeds the corresponding points between the

camera and LiDAR space to our algorithm.O ur method achieved error as low as

one centimeter, comparable to other state-of-the-art developments in the field. It is

important to note that our method will fail to obtain an accurate calibration if the in-

trinsic parameters are incorrect. The application of our method becomes challenging

when using low resolution LiDARs in combination with telephoto lenses. Users can

have a hard time to find shared features between images and point clouds. In these

cases, targets might be inserted manually. We found that cones, or highly reflective

materials are easy to identify between images and point clouds.

The final part of our framework is an accurate geometric and rule-based ground

classifier. Thanks to the nature of the algorithm, and the low number of configurable

parameters, it can be used with virtually any kind of LiDAR sensor, including data

composed by several LiDARs. Moreover, our method performed on average as fast

as 55 ms for the high-resolution Velodyne HDL-64. It averaged 20 and 11 ms on the

HDL-32 and VLP-16 sensors respectively, achieving real-time performance on the

three tested sensors.

Regarding future extension of our single-shot camera intrinsic calibration mod-

ule, we still need to explore cameras other than perspective ones. For instance, inte-

grate the fish-eye lens model by Scaramuzza [122] which would help to extend the

applications of our framework, and ensure a one-shot accurate calibration for this

type of ultra wide angle lenses.

Additionally, we also aim to convert our semi-supervised camera-LiDAR to fol-

low a fully unsupervised approach. This would allow the acceleration and deploy-

ment of this module that could be built into a calibration garage that would allow

to perform full automatic calibration of the cameras and LiDARs installed in the

vehicle.

Finally, we believe the theory and algorithms developed in this work can be fur-

ther extended to integrate other sensors such as radars, stereo cameras and ultra-

sonic sensors. Integrating all these in our framework, would extend and facilitate

the calibration and processing of data for different ODDs and ADAS tasks in auto-

motive and robotics applications. This would additionally ease the sensor selection

to fit production costs, while also ensuring accuracy on the sensor calibration.

129

Bibliography

[1] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer

Vision. 2nd ed. New York, NY, USA: Cambridge University Press, 2003. ISBN:

0521540518.

[2] Radu Bogdan Rusu and Steve Cousins. “3D is here: Point Cloud Library

(PCL)”. In: IEEE International Conference on Robotics and Automation (ICRA).

Shanghai, China: IEEE, 2011.

[3] Weimin Wang, Ken Sakurada, and Nobuo Kawaguchi. “Reflectance Inten-

sity Assisted Automatic and Accurate Extrinsic Calibration of 3D LiDAR

and Panoramic Camera Using a Printed Chessboard”. In: Remote Sensing 9.8

(2017). ISSN: 2072-4292. DOI: 10.3390/rs9080851. URL: https://www.mdpi.

com/2072-4292/9/8/851.

[4] Filippo Basso, Emanuele Menegatti, and Alberto Pretto. “Robust Intrinsic

and Extrinsic Calibration of RGB-D Cameras”. In: IEEE Transactions on Robotics

34.5 (2018), pp. 1315–1332. DOI: 10.1109/TRO.2018.2853742.

[5] Andreas Geiger et al. “Automatic camera and range sensor calibration using

a single shot”. In: 2012 IEEE International Conference on Robotics and Automa-

tion. 2012, pp. 3936–3943. DOI: 10.1109/ICRA.2012.6224570.

[6] Francisco Vasconcelos, João P. Barreto, and Urbano Nunes. “A Minimal So-

lution for the Extrinsic Calibration of a Camera and a Laser-Rangefinder”.

In: IEEE Transactions on Pattern Analysis and Machine Intelligence 34.11 (2012),

pp. 2097–2107. DOI: 10.1109/TPAMI.2012.18.

[7] Lipu Zhou, Zimo Li, and Michael Kaess. “Automatic Extrinsic Calibration

of a Camera and a 3D LiDAR Using Line and Plane Correspondences”. In:

2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

2018, pp. 5562–5569. DOI: 10.1109/IROS.2018.8593660.

https://doi.org/10.3390/rs9080851
https://www.mdpi.com/2072-4292/9/8/851
https://www.mdpi.com/2072-4292/9/8/851
https://doi.org/10.1109/TRO.2018.2853742
https://doi.org/10.1109/ICRA.2012.6224570
https://doi.org/10.1109/TPAMI.2012.18
https://doi.org/10.1109/IROS.2018.8593660

130 Bibliography

[8] Zoltan Pusztai and Levente Hajder. “Accurate Calibration of LiDAR-Camera

Systems Using Ordinary Boxes”. In: 2017 IEEE International Conference on

Computer Vision Workshops (ICCVW). 2017, pp. 394–402. DOI: 10.1109/ICCVW.

2017.53.

[9] Yole Développement. LIDAR FOR AUTOMOTIVE AND INDUSTRIAL AP-

PLICATIONS 2021. 2021. URL: https://www.yole.fr (visited on 01/07/2022).

[10] World Health Organization. Global Status Report on Road Safety. Tech. rep.

Management of Noncommunicable Diseases, Disability, Violence and Injury

Prevention, 2018.

[11] Eleni Petridou and Maria Moustaki. “Human Factors in the Causation of

Road Traffic Crashes”. In: European Journal of Epidemiology 16.9 (2000), pp. 819–

826.

[12] R. O’toole. “Gridlock: Why We’re Stuck in Traffic and What to Do About It”.

In: 2010.

[13] S. Widodo, T. Hasegawa, and S. Tsugawa. “Vehicle fuel consumption and

emission estimation in environment-adaptive driving with or without inter-

vehicle communications”. In: Proceedings of the IEEE Intelligent Vehicles Sym-

posium 2000 (Cat. No.00TH8511). 2000, pp. 382–386. DOI: 10.1109/IVS.2000.

898373.

[14] Bing Yu, Weigong Zhang, and Yingfeng Cai. “A Lane Departure Warning Sys-

tem Based on Machine Vision”. In: 2008 IEEE Pacific-Asia Workshop on Com-

putational Intelligence and Industrial Application. Vol. 1. 2008, pp. 197–201.

[15] Handbook of Driver Assistance Systems. Springer, 2016.

[16] Nicolas Carion, Massa, and others. “End-to-End Object Detection with Trans-

formers”. In: Computer Vision – ECCV 2020. 2020.

[17] Kaiming He et al. “Mask R-CNN”. In: 2017 IEEE International Conference on

Computer Vision (ICCV). 2017, pp. 2980–2988.

[18] Joseph Redmon and Ali Farhadi. “YOLO9000: Better, Faster, Stronger”. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 2017.

https://doi.org/10.1109/ICCVW.2017.53
https://doi.org/10.1109/ICCVW.2017.53
https://www.yole.fr
https://doi.org/10.1109/IVS.2000.898373
https://doi.org/10.1109/IVS.2000.898373

Bibliography 131

[19] Markus Maurer et al. Autonomous driving: technical, legal and social aspects.

Springer Nature, 2016.

[20] Chuck Thorpe et al. “Vision and navigation for the Carnegie-Mellon Navlab”.

In: IEEE Transactions on Pattern Analysis and Machine Intelligence 10.3 (1988),

pp. 362 –373.

[21] Takeo Kanade, Chuck Thorpe, and William (Red) L. Whittaker. “Autonomous

Land Vehicle Project at CMU”. In: Proceedings of ACM 14th Annual Conference

on Computer Science (CSC ’86). 1986, pp. 71 –80.

[22] Martin Buehler, Karl Iagnemma, and Sanjiv Singh. “The 2005 DARPA grand

challenge: the great robot race”. In: 36 (2007).

[23] Michael Montemerlo, Becker, et al. “Junior: The Stanford entry in the Urban

Challenge”. In: Journal of Field Robotics 25.9 (2008), pp. 569–597.

[24] Martin Buehler, Karl Iagnemma, and Sanjiv Singh. The DARPA urban chal-

lenge: autonomous vehicles in city traffic. Vol. 56. springer, 2009.

[25] Waymo. Waymo Story. 2021. URL: https://waymo.com/company/ (visited on

12/07/2021).

[26] Waymo. Introducing the 5th-generation Waymo Driver. 2020. URL: https : / /

blog.waymo.com/2020/03/introducing-5th-generation-waymo-driver.

html (visited on 12/07/2021).

[27] Morgan Quigley et al. “ROS: an Open-Source Robot Operating System”. In:

ICRA workshop on open source software. Vol. 3. 3.2. Kobe, Japan. 2009, p. 5.

[28] Shinpei Kato et al. “Autoware on Board: Enabling Autonomous Vehicles with

Embedded Systems”. In: 2018 ACM/IEEE 9th International Conference on Cyber-

Physical Systems (ICCPS). 2018, pp. 287–296.

[29] The Autoware Foundation. Autoware Story. 2019. URL: https://www.autoware.

org/visionandmission (visited on 12/07/2021).

[30] Greeley Daily Tribune. Phantom Auto Parade Greely Streets Saturday. 1935. URL:

https://www.newspapers.com/newspage/24976380/ (visited on 12/07/2021).

https://waymo.com/company/
https://blog.waymo.com/2020/03/introducing-5th-generation-waymo-driver.html
https://blog.waymo.com/2020/03/introducing-5th-generation-waymo-driver.html
https://blog.waymo.com/2020/03/introducing-5th-generation-waymo-driver.html
https://www.autoware.org/visionandmission
https://www.autoware.org/visionandmission
https://www.newspapers.com/newspage/24976380/

132 Bibliography

[31] Z. Zhang. “A flexible new technique for camera calibration”. In: IEEE Trans-

actions on Pattern Analysis and Machine Intelligence 22.11 (2000), pp. 1330–1334.

DOI: 10.1109/34.888718.

[32] J. Kannala and S.S. Brandt. “A generic camera model and calibration method

for conventional, wide-angle, and fish-eye lenses”. In: IEEE Transactions on

Pattern Analysis and Machine Intelligence 28.8 (2006), pp. 1335–1340. DOI: 10.

1109/TPAMI.2006.153.

[33] J. Heikkila and O. Silven. “A four-step camera calibration procedure with

implicit image correction”. In: Proceedings of IEEE Computer Society Conference

on Computer Vision and Pattern Recognition. 1997, pp. 1106–1112. DOI: 10.1109/

CVPR.1997.609468.

[34] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools

(2000).

[35] MATLAB version (R2021a). The Mathworks, Inc. Natick, Massachusetts, 2021.

[36] Oleksandr Bogdan et al. “DeepCalib: a deep learning approach for automatic

intrinsic calibration of wide field-of-view cameras”. In: Proceedings of the 15th

ACM SIGGRAPH European Conference on Visual Media Production. 2018.

[37] Yannick Hold-Geoffroy et al. “A Perceptual Measure for Deep Single Image

Camera Calibration”. In: 2018 IEEE/CVF Conference on Computer Vision and

Pattern Recognition. 2018, pp. 2354–2363. DOI: 10.1109/CVPR.2018.00250.

[38] Joris Domhof, Julian F.P. Kooij, and Dariu M. Gavrila. “An Extrinsic Calibra-

tion Tool for Radar, Camera and Lidar”. In: 2019 International Conference on

Robotics and Automation (ICRA). 2019, pp. 8107–8113. DOI: 10.1109/ICRA.

2019.8794186.

[39] Martin Simony et al. “Complex-YOLO: An Euler-Region-Proposal for Real-

time 3D Object Detection on Point Clouds”. In: Proceedings of the European

Conference on Computer Vision (ECCV) Workshops. 2018.

[40] Jason Ku et al. “Joint 3D Proposal Generation and Object Detection from View

Aggregation”. In: 2018 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS). 2018, pp. 1–8. DOI: 10.1109/IROS.2018.8594049.

https://doi.org/10.1109/34.888718
https://doi.org/10.1109/TPAMI.2006.153
https://doi.org/10.1109/TPAMI.2006.153
https://doi.org/10.1109/CVPR.1997.609468
https://doi.org/10.1109/CVPR.1997.609468
https://doi.org/10.1109/CVPR.2018.00250
https://doi.org/10.1109/ICRA.2019.8794186
https://doi.org/10.1109/ICRA.2019.8794186
https://doi.org/10.1109/IROS.2018.8594049

Bibliography 133

[41] Charles R. Qi et al. “Frustum PointNets for 3D Object Detection from RGB-D

Data”. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion. 2018, pp. 918–927. DOI: 10.1109/CVPR.2018.00102.

[42] Xiaozhi Chen et al. “Multi-view 3D Object Detection Network for Autonomous

Driving”. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 2017, pp. 6526–6534. DOI: 10.1109/CVPR.2017.691.

[43] A Alempijevic et al. “Mutual Information Based Sensor Registration and Cali-

bration”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems.

IEEE. 2006.

[44] Marcelo Pereira et al. “Self Calibration of Multiple LiDARs and Cameras

on Autonomous Vehicles”. In: Robotics and Autonomous Systems 83 (2016),

pp. 326–337.

[45] P. J. Besl and N. D. McKay. “A method for registration of 3-D shapes”. In:

IEEE Transactions on Pattern Analysis and Machine Intelligence 14.2 (1992), pp. 239–

256. ISSN: 0162-8828. DOI: 10.1109/34.121791.

[46] Oleg Naroditsky, Alexander Patterson, and Kostas Daniilidis. “Automatic

Alignment of a Camera with a Line Scan LiDAR System”. In: Robotics and Au-

tomation (ICRA), 2011 IEEE International Conference on. IEEE. 2011, pp. 3429–

3434.

[47] Martin Vel’as et al. “Calibration of RGB Camera with Velodyne LiDAR”. In:

(2014).

[48] Kiho Kwak et al. “Extrinsic Calibration of a Single Line Scanning LiDAR and

a Camera”. In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ Interna-

tional Conference on. IEEE. 2011, pp. 3283–3289.

[49] Gaurav Pandey et al. “Automatic Targetless Extrinsic Calibration of a 3D Li-

DAR and Camera by Maximizing Mutual Information.” In: AAAI. 2012.

[50] Jesse Levinson and Sebastian Thrun. “Unsupervised Calibration for Multi-

Beam Lasers”. In: Experimental Robotics. Springer. 2014, pp. 179–193.

https://doi.org/10.1109/CVPR.2018.00102
https://doi.org/10.1109/CVPR.2017.691
https://doi.org/10.1109/34.121791

134 Bibliography

[51] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for Au-

tonomous Driving? The KITTI Vision Benchmark Suite”. In: Conference on

Computer Vision and Pattern Recognition (CVPR). 2012.

[52] Sagar Behere and Martin Torngren. “A functional architecture for autonomous

driving”. In: 2015 First International Workshop on Automotive Software Architec-

ture (WASA). 2015, pp. 3–10. DOI: 10.1145/2752489.2752491.

[53] Society of Automotive Engineers. “Taxonomy and Definitions for Terms Re-

lated to Driving Automation Systems for On-Road Motor Vehicles”. In: (2021).

[54] Gröchenig S Rehrl K. “Evaluating Localization Accuracy of Automated Driv-

ing Systems”. In: Sensors (Basel). MDPI. 2021.

[55] Japanese Automotive Standards Organization. “Taxonomy and definitions

for terms related to driving automation systems for On-Road Motor Vehi-

cles”. In: (2018).

[56] Society of Automotive Engineers. “Taxonomy & Definitions for Operational

Design Domain”. In: (2021).

[57] National Highway Traffic Safety Administration. “A framework for auto-

mated driving system testable cases and scenarios”. In: (2018).

[58] Marco Galvani. “History and future of driver assistance”. In: IEEE Instrumen-

tation Measurement Magazine 22.1 (2019), pp. 11–16. DOI: 10.1109/MIM.2019.

8633345.

[59] Barry L Stann et al. “MEMS-scanned ladar sensor for small ground robots”.

In: Laser Radar Technology and Applications XV. Vol. 7684. International Society

for Optics and Photonics. 2010, 76841E.

[60] Jingyun Liu et al. “TOF Lidar Development in Autonomous Vehicle”. In: 2018

IEEE 3rd Optoelectronics Global Conference (OGC). 2018, pp. 185–190. DOI: 10.

1109/OGC.2018.8529992.

[61] Asher Gelbart et al. “Flash lidar based on multiple-slit streak tube imaging

lidar”. In: Laser Radar Technology and Applications VII. Vol. 4723. International

Society for Optics and Photonics. 2002, pp. 9–18.

https://doi.org/10.1145/2752489.2752491
https://doi.org/10.1109/MIM.2019.8633345
https://doi.org/10.1109/MIM.2019.8633345
https://doi.org/10.1109/OGC.2018.8529992
https://doi.org/10.1109/OGC.2018.8529992

Bibliography 135

[62] Paul F McManamon et al. “Optical phased array technology”. In: Proceedings

of the IEEE 84.2 (1996), pp. 268–298.

[63] Youmin Wang and Ming C. Wu. “Micromirror based optical phased array

for wide-angle beamsteering”. In: 2017 IEEE 30th International Conference on

Micro Electro Mechanical Systems (MEMS). 2017, pp. 897–900. DOI: 10.1109/

MEMSYS.2017.7863553.

[64] Point Cloud Library. The Point Cloud Data file format. 2021. URL: https://

pointclouds.org/documentation/tutorials/pcd_file_format.html (vis-

ited on 12/20/2021).

[65] Alexander Lehmann. LibLZF. 2008. URL: http://oldhome.schmorp.de/marc/

liblzf.html (visited on 12/20/2021).

[66] C Brown Duane. “Close-range camera calibration”. In: Photogramm. Eng 37.8

(1971), pp. 855–866.

[67] Fanlu Wu, Hong Wei, and Xiangjun Wang. “Correction of image radial dis-

tortion based on division model”. In: Optical Engineering 56.1 (2017), pp. 1 –

10.

[68] “Mobile Robot Localization and Mapping”. In: (2014). Ed. by Spyros G. Tzafes-

tas, pp. 479–531.

[69] Tim Caselitz et al. “Monocular camera localization in 3D LiDAR maps”. In:

2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

2016, pp. 1926–1931. DOI: 10.1109/IROS.2016.7759304.

[70] Ryan W. Wolcott and Ryan M. Eustice. “Visual localization within LIDAR

maps for automated urban driving”. In: 2014 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems. 2014, pp. 176–183. DOI: 10.1109/IROS.

2014.6942558.

[71] Jesus Muñoz-Bulnes et al. “Deep fully convolutional networks with random

data augmentation for enhanced generalization in road detection”. In: 2017

IEEE 20th International Conference on Intelligent Transportation Systems (ITSC).

2017, pp. 366–371. DOI: 10.1109/ITSC.2017.8317901.

https://doi.org/10.1109/MEMSYS.2017.7863553
https://doi.org/10.1109/MEMSYS.2017.7863553
https://pointclouds.org/documentation/tutorials/pcd_file_format.html
https://pointclouds.org/documentation/tutorials/pcd_file_format.html
http://oldhome.schmorp.de/marc/liblzf.html
http://oldhome.schmorp.de/marc/liblzf.html
https://doi.org/10.1109/IROS.2016.7759304
https://doi.org/10.1109/IROS.2014.6942558
https://doi.org/10.1109/IROS.2014.6942558
https://doi.org/10.1109/ITSC.2017.8317901

136 Bibliography

[72] Agnieszka Mikołajczyk and Michał Grochowski. “Data augmentation for im-

proving deep learning in image classification problem”. In: 2018 International

Interdisciplinary PhD Workshop (IIPhDW). 2018, pp. 117–122. DOI: 10.1109/

IIPHDW.2018.8388338.

[73] Zhengyou Zhang. “Camera calibration with one-dimensional objects”. In:

IEEE Transactions on Pattern Analysis and Machine Intelligence 26.7 (2004), pp. 892–

899. DOI: 10.1109/TPAMI.2004.21.

[74] Fabio Remondino and Clive Fraser. “Digital camera calibration methods: Con-

siderations and comparisons”. In: Ine. Arch. Photogramm. Remote Sens. Spat.

Inf. Sci. 36 (Nov. 2005).

[75] Jiunn-Kai Huang and Jessy W. Grizzle. “Improvements to Target-Based 3D

LiDAR to Camera Calibration”. In: IEEE Access 8 (2020), pp. 134101–134110.

DOI: 10.1109/ACCESS.2020.3010734.

[76] Shi Guiming and Suo Jidong. “Multi-Scale Harris Corner Detection Algo-

rithm Based on Canny Edge-Detection”. In: 2018 IEEE International Conference

on Computer and Communication Engineering Technology (CCET). 2018, pp. 305–

309. DOI: 10.1109/CCET.2018.8542206.

[77] Jong-Eun Ha. “Automatic detection of chessboard and its applications”. In:

Optical Engineering 48.6 (2009), pp. 1 –8. DOI: 10 . 1117 / 1 . 3156053. URL:

https://doi.org/10.1117/1.3156053.

[78] Chris Harris and Mike Stephens. “A combined corner and edge detector”. In:

In Proc. of Fourth Alvey Vision Conference. 1988, pp. 147–151.

[79] Jianbo Shi and Tomasi. “Good features to track”. In: 1994 Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition. 1994, pp. 593–600. DOI:

10.1109/CVPR.1994.323794.

[80] J. Y. Bouguet. A Release of a Camera Calibration Toolbox for Matlab, 2008. URL:

{http://www.vision.caltech.edu/bouguetj/calib_doc/}.

[81] Blender Online Community. Blender - a 3D modelling and rendering package.

Blender Foundation. Stichting Blender Foundation, Amsterdam, 2018. URL:

http://www.blender.org.

https://doi.org/10.1109/IIPHDW.2018.8388338
https://doi.org/10.1109/IIPHDW.2018.8388338
https://doi.org/10.1109/TPAMI.2004.21
https://doi.org/10.1109/ACCESS.2020.3010734
https://doi.org/10.1109/CCET.2018.8542206
https://doi.org/10.1117/1.3156053
https://doi.org/10.1117/1.3156053
https://doi.org/10.1109/CVPR.1994.323794
{http://www.vision.caltech.edu/bouguetj/calib_doc/}
http://www.blender.org

Bibliography 137

[82] Guodong Rong et al. “LGSVL Simulator: A High Fidelity Simulator for Au-

tonomous Driving”. In: 2020 IEEE 23rd International Conference on Intelligent

Transportation Systems (ITSC). 2020, pp. 1–6. DOI: 10.1109/ITSC45102.2020.

9294422.

[83] Daniel J Fagnant and Kara Kockelman. “Preparing a Nation for Autonomous

Vehicles: Opportunities, Barriers and Policy Recommendations”. In: Trans-

portation Research Part A: Policy and Practice 77 (2015), pp. 167–181.

[84] Umit Ozguner, Christoph Stiller, and Keith Redmill. “Systems for Safety and

Autonomous Behavior in Cars: The DARPA Grand Challenge Experience”.

In: Proceedings of the IEEE 95.2 (2007), pp. 397–412.

[85] Anna Petrovskaya and Sebastian Thrun. “Model Based Vehicle Tracking for

Autonomous Driving in Urban Environments”. In: Proceedings of Robotics: Sci-

ence and Systems IV, Zurich, Switzerland 34 (2008).

[86] Jason Ku et al. “Joint 3D Proposal Generation and Object Detection from

View Aggregation”. In: arXiv preprint arXiv:1712.02294 (2017).

[87] Martin Simon et al. “Complex-YOLO: Real-time 3D Object Detection on Point

Clouds”. In: arXiv preprint arXiv:1803.06199 (2018).

[88] Charles R Qi et al. “Frustum PointNets for 3D Object Detection from RGB-D

Data”. In: arXiv preprint arXiv:1711.08488 (2017).

[89] Radu Bogdan Rusu and Steve Cousins. “3D is Here: Point Cloud Library

(PCL)”. In: Robotics and automation (ICRA), 2011 IEEE International Conference

on. IEEE. 2011, pp. 1–4.

[90] Andreas Geiger et al. “Automatic Camera and Range Sensor Calibration Us-

ing a Single Shot”. In: Robotics and Automation (ICRA), 2012 IEEE International

Conference on. IEEE. 2012, pp. 3936–3943.

[91] Weimin Wang, Ken Sakurada, and Nobuo Kawaguchi. “Reflectance Inten-

sity Assisted Automatic and Accurate Extrinsic Calibration of 3D LiDAR

and Panoramic Camera Using a Printed Chessboard”. In: Remote Sensing 9.8

(2017), p. 851.

https://doi.org/10.1109/ITSC45102.2020.9294422
https://doi.org/10.1109/ITSC45102.2020.9294422

138 Bibliography

[92] Ahmed Abdelhafiz, Björn Riedel, and Wolfgang Niemeier. “Towards a 3D

True Colored Space by the Fusion of Laser Scanner Point Cloud and Digital

Photos”. In: Proceedings of the ISPRS Working Group V/4 Workshop (3D-ARCH).

Citeseer. 2005.

[93] Keqi Zhang et al. “A Progressive Morphological Filter for Removing Non-

ground Measurements from Airborne LiDAR Data”. In: IEEE transactions on

geoscience and remote sensing 41.4 (2003), pp. 872–882.

[94] Xuelian Meng et al. “A Multi-Directional Ground Filtering Algorithm for Air-

borne LiDAR”. In: ISPRS Journal of Photogrammetry and Remote Sensing 64.1

(2009), pp. 117–124.

[95] Francesco Pirotti, Alberto Guarnieri, and Antonio Vettore. “Ground Filtering

and Vegetation Mapping using Multi-Return Terrestrial Laser Scanning”. In:

ISPRS Journal of Photogrammetry and Remote Sensing 76 (2013), pp. 56–63.

[96] Daniel Maturana and Sebastian Scherer. “3D Convolutional Neural Networks

for Landing Zone Detection from LiDAR”. In: Robotics and Automation (ICRA),

2015 IEEE International Conference on. IEEE. 2015, pp. 3471–3478.

[97] Zhe Chen and Zijing Chen. “RBNet: A Deep Neural Network for Unified

Road and Road Boundary Detection”. In: International Conference on Neural

Information Processing. Springer. 2017, pp. 677–687.

[98] Xiaofeng Han et al. “Semisupervised and Weakly Supervised Road Detec-

tion Based on Generative Adversarial Networks”. In: IEEE Signal Processing

Letters 25.4 (2018), pp. 551–555.

[99] Martin Magnusson, Achim Lilienthal, and Tom Duckett. “Scan Registration

for Autonomous Mining Vehicles Using 3D-NDT”. In: Journal of Field Robotics

24.10 (2007), pp. 803–827.

[100] Eijiro Takeuchi and Takashi Tsubouchi. “A 3-D Scan Matching Using Im-

proved 3-D Normal Distributions Transform for Mobile Robotic Mapping”.

In: Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on.

IEEE. 2006, pp. 3068–3073.

Bibliography 139

[101] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools

(2000).

[102] Vincent Lepetit, Francesc Moreno-Noguer, and P Fua. “EPnP: Efficient Perspective-

n-Point Camera Pose Estimation”. In: International Journal of Computer Vision

81.2 (2009), pp. 155–166.

[103] Shinpei Kato et al. “An Open Approach to Autonomous Vehicles”. In: IEEE

Micro 35.6 (2015), pp. 60–68.

[104] C. Urmson et al. “High speed navigation of unrehearsed terrain: Red Team

technology for the Grand Challenge 2004”. In: TR CMU-RI-TR-04-37. 2004,

pp. 39–40.

[105] Levinson et al. “Map-Based Precision Vehicle Localization in Urban Environ-

ments”. In: In: Proceedings of Robotics: Science and Systems, Atlanta, GA, USA.

2007.

[106] McNaughton et al. “Motion planning for autonomous driving with a confor-

mal spatiotemporal lattice.” In: In: ICRA. 2011, 4889––4895.

[107] R. Girshick et al. “Rich Feature Hierarchies for Accurate Object Detection and

Semantic Segmentation”. In: 2014.

[108] M. Smerdon. High-Volume Spartan-6 FPGAs: Performance and Power Leadership

by Design. 2011. URL: http://www.xilinx.com/support/documentation/

white_papers/wp396_S6_HV_Perf_Power.pdf (visited on 04/01/2015).

[109] PointGrey. Ladybug 5. http://www.ptgrey.com/support/downloads/10150.

Accessed: 2015-04-01.

[110] OmniVision. Omnivision 5647 Product Brief. http://www.ovt.com/uploads/

parts/OV5647.pdf. Accessed: 2015-04-01.

[111] Bryce E. Bayer. “Color imaging array”. Pat. 1976.

[112] R. Kimmel. “Demosaicing: Image reconstruction from color CCD samples.”

In: IEEE Trans. on Image Processing. Vol. 1. 1999.

[113] Ronald W Schafer and Russel M Mersereau. “Demosaicking: color filter array

interpolation”. In: Signal Processing Magazine, IEEE 22.1 (2005).

http://www.xilinx.com/support/documentation/white_papers/wp396_S6_HV_Perf_Power.pdf
http://www.xilinx.com/support/documentation/white_papers/wp396_S6_HV_Perf_Power.pdf
http://www.ptgrey.com/support/downloads/10150
http://www.ovt.com/uploads/parts/OV5647.pdf
http://www.ovt.com/uploads/parts/OV5647.pdf

140 Bibliography

[114] Zhan Yu et al. “An analysis of color demosaicing in plenoptic cameras”.

In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on.

IEEE. 2012, pp. 901–908.

[115] N. Dalal and B. Triggs. “Histograms of Oriented Gradients for Human De-

tection”. In: 2005, pp. 886–893.

[116] Shinpei Kato, Jason Aumiller, and Scott Brandt. “Zero-copy I/O Processing

for Low-latency GPU Computing”. In: Proceedings of the ACM/IEEE 4th Inter-

national Conference on Cyber-Physical Systems. ICCPS ’13. Philadelphia, Penn-

sylvania: ACM, 2013, pp. 170–178. ISBN: 978-1-4503-1996-6. DOI: 10.1145/

2502524.2502548.

[117] Yusuke Fujii et al. “Data transfer matters for GPU computing”. In: Parallel

and Distributed Systems (ICPADS), 2013 International Conference on. IEEE. 2013,

pp. 275–282.

[118] Anh Nguyen et al. “Reducing Data Copies between GPUs and NICs”. In:

Cyber-Physical Systems, Networks, and Applications (CPSNA), 2014 IEEE Inter-

national Conference on. IEEE. 2014, pp. 37–42.

[119] Pedro Felzenszwalb, David McAllester, and Deva Ramanan. “A discrimina-

tively trained, multiscale, deformable part model”. In: Computer Vision and

Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. IEEE. 2008, pp. 1–8.

[120] Manato Hirabayashi et al. “GPU implementations of object detection using

HOG features and deformable models”. In: Cyber-Physical Systems, Networks,

and Applications (CPSNA), 2013 IEEE 1st International Conference on. IEEE. 2013,

pp. 106–111.

[121] Highway Loss Data Institute. Compendium of HLDI collision avoidance research.

2020. URL: https://www.iihs.org (visited on 12/29/2021).

[122] Davide Scaramuzza, Agostino Martinelli, and Roland Siegwart. “A flexible

technique for accurate omnidirectional camera calibration and structure from

motion”. In: Fourth IEEE International Conference on Computer Vision Systems

(ICVS’06). IEEE. 2006, pp. 45–45.

https://doi.org/10.1145/2502524.2502548
https://doi.org/10.1145/2502524.2502548
https://www.iihs.org

	Cover
	Spine
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Problem Statement
	Applications
	Autonomous Driving
	Advanced Driver Assistance Systems
	Visually Impaired Persons

	Contributions
	Outline

	Related Work
	Autonomous Driving
	DARPA Challenges
	Google Driverless Car
	Autoware
	Other Systems

	Camera Intrinsic Calibration
	Sensor Extrinsic Calibration
	Multi-LiDAR Extrinsic Calibration
	Camera-LiDAR extrinsic calibration

	Background
	Autonomous Driving
	Operational Design Domain (ODD)
	Dynamic Driving Task (DDT)
	Object and Event Detection and Response (OEDR)

	Advanced Driver-Assistance Systems (ADAS)
	Collision Warning Systems
	Collision Intervention Systems
	Driving Control Assistance Systems
	Other Assistance Systems

	Sensing Systems
	LiDAR
	Point Clouds

	Camera
	The Camer Pinhole Model
	Camera Plumb Bob Model
	Images

	Sensor Fusion

	Automatic Single-Shot Camera Calibration
	Problem
	Previous work
	Method
	Baseline Calibration

	Simulation
	Checkerboard Coordinate System
	Simulator Coordinate System

	Checkerboard Corner Detector Evaluation
	Corner Detector Metrics
	Experiments
	Results

	Simulated Calibration Experiments
	Checkerboard Pose Metrics
	Control Points
	Dual Checkerboard Calibration
	Dual Checkerboard Rotation Experiments
	Dual Checkerboard Horizontal Positioning Experiments
	Dual Checkerboard Vertical Positioning Experiments
	Dual Checkerboard Distance Experiments

	Dual Checkerboard Calibration Results
	Multiple Checkerboards Calibration
	Multiple Checkerboards Calibration Results

	Real-world Calibration Verification
	Multiple checkerboard verification experiments
	Real-world Calibration Results

	Conclusion

	Multi-Sensor Fusion Toolbox for Autonomous Driving
	Introduction
	Related Work
	LiDAR-LiDAR extrinsic calibration
	Camera-LiDAR extrinsic calibration
	Camera-LiDAR fusion
	Point Cloud Ground Classifier

	Theory and Implementation
	LiDAR-LiDAR extrinsic calibration
	Theory
	Implementation

	Camera-LiDAR extrinsic calibration
	Theory
	Implementation

	Image-Cloud fusion
	Theory

	Ground classification
	Theory
	Implementation

	Evaluation
	LiDAR-LiDAR extrinsic calibration
	Camera-LiDAR extrinsic calibration
	Image-Cloud Fusion
	Ray Ground Classifier

	Discussion
	LiDAR-LiDAR Extrinsic Calibration
	Camera-LiDAR Extrinsic Calibration
	Image-Cloud Fusion
	Ray Ground Classifier

	Conclusion

	Real World Applications
	Introduction
	Related Work
	Design and Implementation of Hexacam
	FPGA board
	Camera sensors
	Image processing
	Network transmission to host
	Object detector

	Performance Evaluation
	Camera sensors
	Network speed
	Perception System performance
	Power consumption performance

	System Calibration and Fusion
	Conclusion

	Real World Data Circulation in Multi-Sensor Systems
	Introduction
	Automatic Single-Shot Camera Calibration
	Multi-Sensor Fusion Toolbox for Autonomous Driving
	Leading a Start-Up Company
	Summary

	Conclusions
	Bibliography

