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Abstract 

Cycling is becoming popular because of environment and health demands. Cyclists have high 

traveling velocity and many cyclists are involved in traffic accidents. In Japan, the number of 

cyclist fatalities is 2,839 in 2020, which accounted for 14.8% of all traffic fatalities. Japanese 

police data shows that the largest percentage of cyclist’s traffic accidents occurred at 

intersections (53.4%). The reduction of cyclist traffic accidents is one of the important issues to 

be addressed toward vision zero of traffic injuries. Hence, the objective of this dissertation is to 

identify the causes of car-to-cyclist collisions at perpendicular intersections through 

understanding driver responses and cyclist behavior from the drive recorder data. 

The behaviors of cyclists and car drivers before collisions are difficult to be determined in 

police data and in-depth accident data. In this study, videos of drive recorders were collected. 

First, the car kinematics and driver responses interacting with cyclists in avoiding collisions 

were examined by comparing the near-miss incidents and the collisions of drive recorders. 

Second, the mechanism of cyclist avoided collisions was investigated by comparing near-misses 

avoided by the cyclists and the near-misses not avoided by the cyclist to understand the factors 

influencing the cyclist behavior in conflicts. In the analysis of driver and cyclist responses, 

statistical comparison and logistical regression analysis were applied. Driving simulator 

experiments were carried out to investigate driver responses in cyclist collisions. Finally, an 

autonomous emergency braking system (AEB) was applied in all collision reconstructions to 

estimate the effectiveness of AEB in avoiding car-to-cyclist collisions. 

The collision occurred when the sum of the driver braking reaction time (BRT) and the car 

deceleration time is larger than the time-to-collision (TTC) when the cyclist is visible to drivers. 

In comparing between the near-misses and collisions in the videos, collisions occurred as the 

TTC was smaller and the BRT was longer. Two types of collisions were identified: one was 

small TTC with cyclist’s sudden appearance and the other was long BRT with driver’s 

inappropriate attention. From a physical point of view, collisions occurred when the required 

braking deceleration to stop before the cyclist path was beyond the braking limit (5.2 m/s2). It 

was demonstrated in the video analysis that under the conflicts that exceeded the braking limit, 

the cyclist’s behavior was effective to avoid the collisions. Cyclists were more likely to 

proactive collision avoidances as the TTC was smaller and the cyclist velocity was higher. 

In the driving simulator experiments, participants showed various BRT which affected the 
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collision occurrence. Braking was effective to avoid collisions while swerving was not effective 

to avoid collisions. As the TTC was smaller, the driver responses changes from braking to 

swerving. The decision tree indicated that TTC provided the conflict environments, and BRT 

was the most important parameter to determine collision occurrences under the environment. 

Besides, the driver’s BRT in the scenario from the far side was larger than from the near side, 

which was associated with drivers’ gaze distributions. The driver’s gaze angle between the 

cyclist and their looking position was larger at the time when the cyclist was visible from the 

far side than from the near side, therefore, it took time for drivers to move their eyes to notice 

the cyclists intruding from the far side.  

All collisions in the drive recorder were reconstructed, and the collisions were reconstructed 

again when the AEB was installed. The effectiveness of AEB increased as the field of view 

(FOV) increased and the sensor delay time (DT) decreased. The AEB with 90° FOV and DT 

0.5 s could avoid half of the car-to-cyclist collisions. The AEB was effective to avoid collisions 

caused by the driver’s long BRT while not useful for the collisions with cyclist’s sudden 

appearance behind obstacles even using an ideal AEB (360° FOV and DT 0 s). This result 

implies that collisions would continue to occur for autonomous cars even though an ideal AEB 

system is installed.  

This study identified the driver and cyclist behaviors that cause car-to-cyclist collisions at 

perpendicular intersections. The effectiveness of AEB in protecting cyclists was determined. 

This study could contribute to developing advanced driver assistant systems in reducing the 

number of car-to-cyclist collisions, as well as to serve as basic data for considering measures 

against collisions for the future autonomous driving society. 
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Nomenclature 

𝑡𝑎 Time when the cyclist is visible 

𝑡𝑏 Time when the driver starts braking 

𝑡𝑛 Time when the driver notices the cyclist 

𝑡𝑟 Time when the driver releases gas pedal 

𝑡𝑠 Time when the driver starts swerving 

𝑡𝑒 Time when the car enters intersections during turning 

𝑎 Car braking deceleration 

𝐴𝑎 Car acceleration at 𝑡𝑎 

𝐷 Distance from the car to the cyclist path 

𝑉𝑎 Car velocity at 𝑡𝑎 

𝑉𝑏 Car velocity at 𝑡𝑏 

𝑣𝑎 Cyclist velocity at 𝑡𝑎 

𝑑𝑎 Distance from the cyclist to the car path at 𝑡𝑎 

𝑇𝑇𝐶𝑎 Car time-to-collision at 𝑡𝑎 

𝑇𝑇𝐶𝑏 Car time-to-collision at 𝑡𝑏 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iv 
 

Contents 

Abstract ........................................................................................................................................................... i 

 

Nomenclature ............................................................................................................................................... iii 

 

1. Introduction ............................................................................................................................................... 1 

1.1. Accident analysis ..................................................................................................................................... 1 

1.1.1. Accident in Japan ..................................................................................................... 1 

1.1.2. Police data and in-depth data ................................................................................... 2 

1.1.3. Drive recorder data .................................................................................................. 3 

1.2. Driver response in conflicts .................................................................................................................... 5 

1.2.1 Driver responses in intrusions of cars ....................................................................... 6 

1.2.2 Driver responses in intrusions of pedestrians ........................................................... 7 

1.2.3 Driver responses in intrusions of cyclists ................................................................. 8 

1.2.4 Driver’s gaze analysis ............................................................................................... 9 

1.3. Cyclist behavior ..................................................................................................................................... 11 

1.3.1 Cyclist behavior in naturalistic cycling .................................................................. 11 

1.3.2 Cyclist behavior in conflicts ................................................................................... 12 

1.4. Autonomous emergency braking system ........................................................................................... 14 

1.4.1 AEB effectiveness in car-to-car collisions .............................................................. 14 

1.4.2 AEB effectiveness in car-to-pedestrian collisions .................................................. 15 

1.4.3 AEB effectiveness in car-to-cyclist collisions ........................................................ 18 

1.5. Scope and aims of this study ................................................................................................................ 19 

 

2. Analysis of Causes of Collisions Using Drive Recorder ................................................................. 22 

2.1. Introduction ............................................................................................................................................ 22 

2.2. Methods .................................................................................................................................................. 22 

2.2.1. Drive recorder ........................................................................................................ 22 

2.2.2. Definition of parameters ........................................................................................ 23 

2.2.3. Statistical analysis of parameters ........................................................................... 26 

2.3. Results .................................................................................................................................................... 26 



 

v 
 

2.3.1. Driver behavior with TTC ..................................................................................... 26 

2.3.2. Statistical analysis .................................................................................................. 27 

2.3.3. Driver response before braking .............................................................................. 29 

2.3.4. Factors affecting collision occurrence ................................................................... 33 

2.4. Discussion .............................................................................................................................................. 36 

2.5. Conclusions ............................................................................................................................................ 38 

 

3. Cyclist Avoidance Behavior Interacting with Drivers .................................................................... 39 

3.1. Introduction ............................................................................................................................................ 39 

3.2. Method ................................................................................................................................................... 39 

3.2.1. Data of drive recorder ............................................................................................ 39 

3.2.2. Definition of parameters ........................................................................................ 40 

3.2.3. Calculation of cyclist velocity and distance .......................................................... 40 

3.2.4. Identification of cyclist avoidable behavior ........................................................... 41 

3.2.5. Statistical analysis .................................................................................................. 42 

3.3. Results .................................................................................................................................................... 44 

3.3.1. The number of cyclist avoidance behavior ............................................................ 44 

3.3.2. Descriptive parameters of car and driver ............................................................... 45 

3.3.3. Cyclist avoidance behavior .................................................................................... 46 

3.3.4. Effects of right of way ........................................................................................... 50 

3.3.5. Parameter determining taking avoidance behavior ................................................ 50 

3.4. Discussion .............................................................................................................................................. 52 

3.5. Conclusions ............................................................................................................................................ 54 

 

4. Study of Driver Response in Avoiding Collisions Using Driving Simulator .............................. 56 

4.1. Introduction ............................................................................................................................................ 56 

4.2. Methods .................................................................................................................................................. 56 

4.2.1. Driving simulator and participants ........................................................................ 56 

4.2.2. Test procedure ........................................................................................................ 57 

4.2.3. Eye track ................................................................................................................ 60 

4.2.4. Participants ............................................................................................................. 61 

4.2.5. Statistical analysis .................................................................................................. 61 



 

vi 
 

4.2.6. Threshold of collision occurrence .......................................................................... 62 

4.3. Results .................................................................................................................................................... 62 

4.3.1. Driver avoidable results ......................................................................................... 62 

4.3.2. Descriptive statistics .............................................................................................. 64 

4.4. Discussion .............................................................................................................................................. 77 

4.5. Conclusions ............................................................................................................................................ 79 

 

5. Evaluation Effectiveness of AEB for Cyclist Protection Using Drive Recorder ....................... 81 

5.1. Introduction ............................................................................................................................................ 81 

5.2. Methods .................................................................................................................................................. 81 

5.2.1. Collision reconstruction ......................................................................................... 81 

5.2.2. AEB algorithm ....................................................................................................... 82 

5.2.3. AEB parameter change .......................................................................................... 85 

5.3. Results .................................................................................................................................................... 85 

5.3.1. Effectiveness of AEB in perpendicular collisions ................................................. 85 

5.3.2. Effectiveness of AEB in turning collisions ............................................................ 91 

5.4. Discussion .............................................................................................................................................. 94 

5.5. Conclusions ............................................................................................................................................ 96 

 

6. General Discussion and Conclusions .................................................................................................. 97 

6.1. General discussion ................................................................................................................................ 97 

6.2. Conclusions ............................................................................................................................................ 99 

6.3. Future work .......................................................................................................................................... 100 

 

References .................................................................................................................................................. 101 

 

Acknowledgements .................................................................................................................................. 112 

 

 



 

  1  
 

Chapter 1 

Introduction 

1.1. Accident analysis 

1.1.1. Accident in Japan 

In Japan, many people sustain injuries in traffic accidents every year. Figure. 1.1 shows the 

number of fatalities and injuries involved in traffic accidents in the last decade, and there is a 

tendency that the number of fatalities and injuries is decreasing over time. The number of traffic 

fatalities decreases from 4,948 in 2010 to 2,839 in 2020, and the number of injuries also 

decreases from 896,297 in 2010 to 369,476 in 2020. Besides, the number of traffic accidents 

decreases from 725,924 in 2010 to 309,178 in 2020 (National Police Agency, 2021). 

 

 

Fig. 1.1 The number of fatalities and injuries in traffic accidents in Japan. 

 

Figure. 1.2 shows the percentage of traffic fatalities by road user of in Japan in 2020. The 

percentages of fatalities by vehicle occupants, motorcyclists, cyclist and pedestrians are 31.1%, 

18.5%, 14.8% and 35.3%, respectively. Vulnerable road users (pedestrians, cyclists, and 

motorcyclists) account for 68.6% among all the fatalities. As environment and health concerns 

increase, cycling becomes popular, while cyclist accidents are gaining more attention. Blaizot 

et al. (2013) showed that the injury risk was 8 times higher for cyclists than for vehicle 

occupants. In Japan, the number of fatalities of cyclists (66,137) in accidents is larger than the 
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pedestrians (38,918) and motorcyclist (41,516), however, the fatality risk of cyclists is lower 

than that of pedestrians and motorcyclists (National Police Agency, 2021). Hence, prevention 

of cyclists has become an important issue in the field of traffic safety. 

Most of cyclist accidents occurs between cyclists and vehicles (94%). Figure. 1.3 shows the 

configurations of vehicle-to-cyclist collisions in 2020. The percentages of configurations are 

large in the perpendicular collisions, rear-end collisions, left turn collisions, and right turn 

collisions, accounting for 56.8%, 11.5%, 10.1%, and 8.0%, respectively. Therefore, 

perpendicular vehicle-to-cyclist collisions need to be focused on to enhance the safety of 

cyclists. 

 

Fig. 1.2 Fatalities of various road users in traffic accidents in Japan in 2020. 

 

 

Fig. 1.3 Configurations of car-to-cyclist collisions in Japan in 2020. 

 

1.1.2. Police data and in-depth data 

Many people consider traffic safety issues as major barriers to cycling (Fruhen et al., 2019). 
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Risks while cycling are associated with sharing the road with motor vehicles, which can 

discourage people from riding bicycles (Fruhen and Flin, 2015; Thørrisen, 2013). Hence, it is 

important to reduce the risk of vehicle-to-cyclist accidents to encourage people cycling. First, 

it is necessary to figure out causes of car-to-cyclist collisions. Previous studies usually used in-

depth accident data and police data to investigate factors of car-to-cyclist collisions. Bíl et al. 

(2010) conducted a multiple regression analysis of police accident data, and found that the 

critical factors affecting car-to-cyclist collisions were high vehicle velocity, head-on collisions, 

and nighttime. Kaplan et al. (2014) analyzed car-to-cyclist collisions to determine factors 

influencing the injury severity of cyclists. Their results show that car velocity limits above 70-

80 km/h and slippery roads were factors that could lead to serious cyclist injuries. Räsänen and 

Summala (1998) found two common types of mechanisms of collision occurrences based on 

car-to-cyclist in-depth collision data: one was inappropriate allocation of attention causing the 

other not noticed, and the other had unjustified expectation of others’ behaviors.  

Most studies use police data and in-depth data to investigate accidents. It should be noted 

most single-cyclist crashes are not registered in the police accident database. Therefore, the 

number of single cyclist collisions and that of cyclist minor injuries are probably underestimated 

(Billot-Grasset et al. 2016; Isaksson-Hellman, 2012). In-depth accident data are usually 

collected in a limited area with a limited number of cases and for specific collision 

configurations, thereby results obtained by in-depth accident data are difficult to apply to the 

entire country (Larsen, 2004; Aust, 2010; Habibovic et al. 2013). The drawback of car-to-cyclist 

collisions using in-depth accident data and police data is that they can include uncertain 

information of cyclist behavior (Loftus, 1979; Rosen, 2013). For example, the cyclist and driver 

behavior is generally based on the testimony of persons involved in accidents and witnesses. In 

addition, the vehicle velocity is determined based on tire skid marks and the cyclist’s throw 

distance. Therefore, the in-depth accident data and the police data have difficulties to investigate 

the time process that led to accident occurrences. 

 

1.1.3. Drive recorder data 

With the development of technology, drive recorders (dashboard cameras) are widely used as a 

tool to record events during the driving process. The drive recorders are installed on the 

windshield and can record kinematics of vehicles and behaviors of people involved in the traffic 

before and after an event (Arai et al. 2001; Ito et al. 2018; Lin et al. 2008; Stange et al. 2017). 
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Naturalistic driving data recorded by car drive recorders can provide important information 

before conflicts for analyzing the factors that contribute to crashes, especially risks of human 

errors (Cheng et al., 2011; Shino et al., 2010; Klauer et al., 2006; Uchida et al., 2010; Habibovic 

et al., 2013). 

Some previous researches explored factors influencing the occurrence of car-to-pedestrian 

conflicts using the videos of drive recorders. Habibovic et al. (2013) used a modified reliability 

and error analysis to understand causes of incidents using 90 cases of car-to-pedestrian incidents 

collected in Japan. Their results shows that the incidents occur because the drivers’ attention 

was not properly allocated, causing them to fail to timely recognize the pedestrians at 

intersections. Matsui et al. (2011, 2013) analyzed 103 car-to-pedestrian near-miss incidents 

collected in Japan, and they showed that the time-to-collision (TTC) in the incidents where the 

pedestrian was walking on roads with crosswalks was smaller than that without crosswalks. 

Moreover, the average TTC was smaller in the cases where pedestrians emerging from obstacles 

than in the cases where the driver’s sight was unobstructed. 

It is generally considered that conflicts involved cyclists are different from pedestrians. Lin 

et al. (2011) compared car-to-pedestrian and car-to-cyclist conflicts using videos of taxi drive 

recorder data collected in Beijing. They concluded that most of car-to-cyclist conflicts occurred 

at intersections and T-junctions, and the largest proportion of car-to-pedestrian conflicts 

occurred at intersections. Compared to car-to-pedestrian collisions, car-to-cyclist collisions 

usually occur at lower impact speeds, and injuries to cyclists are less frequent and less severe 

than those to pedestrian (Maki et al., 2003; Peng et al., 2012). Consequently, a separate study 

of car-to-cyclist conflicts is necessary. 

Matsui et al. (2015, 2016) and Matsui and Oikawa (2015) compared near-misses database 

to the national car-to-cyclist collision database, and concluded that the near-miss was 

representative for collisions because the proportion of accident configurations between near-

miss incidents and minor injuries were comparable. On the other hand, Ito et al. (2018) 

compared the perpendicular cat-to-cyclist collisions and near-misses at intersections using the 

drive recorder data, and they found that there were two patterns of collisions: driver’s braking 

delay with large TTC and cyclist’s sudden appearance with small TTC. The percentage of small 

TTC cases was larger and that of large TTC cases was lower in collisions compared to near-

miss incidents. They concluded that the proportion of response types (i.e. braking or swerving) 

were different depending on the emergency situations (TTC) in near-miss incidents and 
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accidents although the near-miss database included all patterns of driver responses in incidents. 

Thus, the near-miss incidents will not be enough to examine driver responses in extreme 

emergency situations, and it is necessary to use collision data to investigate driver responses 

before/during/after collisions. 

 

1.2. Driver response in conflicts 

Drivers show various responses in emergency situations. Many researches have used test tracks 

and driving simulator experiments to understand driver’s responses in many traffic situations 

(Markkula et al., 2019; Bella and Silvestri, 2018; Wu et al., 2018; Calvi and D’amico, 2013). 

The test track (proving ground) is a useful tool to obtain behaviors of driver in a realistic 

environment in various experimental scenarios. Previous studies have used the test track to 

investigate driver responses to intrusions of cars, pedestrians, and cyclists. Test tracks could 

provide drivers with similar experiences to that of a real car during testing, however, it has 

limitations in terms of repeatability, data collection and experimental costs (Boda et al., 2018). 

In addition, there are limitations on the scenarios for ethics related reasons in test tracks such 

as tests in emergency collisions. As the cost of driving simulator experiments decreases and the 

fidelity increases, driving simulators became commonplace (McGehee et al., 2002). Driving 

simulators simulates the real-world driving environments, and driver behaviors can be 

investigated effectively and safely (Boda et al., 2018; Underwood et al., 2011). 

Hamdar et al. (2016) used a driving simulator to study the drivers’ behaviors in various 

weather and road configurations. Their results show that in addition to dealing with different 

weather conditions, drivers need to spend more efforts to address road challenges such as other 

road users. Chang et al. (2019) recruited participants to drive in 3 weather conditions: clear 

zone, transition zone and fog zone. They found that a warning system was useful in assisting a 

driver to slow down before entering a foggy area. Papantoniou et al. (2019) examined the 

drivers’ performance with various types of distractions (no distractions, talking to passengers 

and using smartphones) in the rural and urban roads, and they found that characteristics of 

drivers and the road configurations were the only important factors influencing drivers’ 

behaviors instead of talking to passengers and using smartphones. Malaterre et al. (1988) used 

test tracks to study the driver’s reaction to the obstacles (plastic cones) appeared on the race 

track, and they found that drivers tended to use intuition to make decisions rather than 

sophisticated perceptual judgments in emergency situations. However, the intersections of roads 
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are locations where accidents occur frequently (Wei and Lovegrove, 2013; Poch and 

Mannering, 1996; Simon et al., 2009; Kumara et al., 2003). Thus, it is important to investigate 

drivers’ reactions at the intersections. 

 

1.2.1 Driver responses in intrusions of cars 

Previous researches examined the drivers’ response in the car-to-car conflicts at intersections 

(Lechner and Malaterre, 1991; Hankey et al., 1991; McGehee et al., 1999; Markkula et al., 2012; 

Li et al., 2019). Lechner and Malaterre (1991) used a driving simulator to study the driver 

reactions of 49 participants facing an unexpected emergency at an intersection. Most of the 

drivers in their study applied braking to avoid collisions. They indicated that drivers would be 

more successful in avoiding collisions if drivers could properly use lateral swerving at the right 

time. Muttart (2005) showed that braking was the most primary response in avoiding collisions, 

and driver also combined with swerving to avoid collisions in scenarios where there was small 

time-to-collision (TTC) due to lateral intrusions. Li et al. (2019) used a driving simulator to 

analyze reactions of 45 drivers in three scenarios: perpendicular collision, head-on collision, 

and pedestrian collision. They found that applied braking alone was the most common reaction, 

and that long braking reaction time and wrong turn directions were the main causes of collisions. 

In the scenarios with small TTC, drivers have to use the fastest initial reaction time to avoid a 

collision, thereby, more drivers used steering as an initial reaction in extremely dangerous 

situations (Hankey et al., 1996). 

McGehee et al. (2002) used a test track to analyze the behavior of 192 participants in 

response to cars approaching laterally at an intersection. According to their study, the average 

time of releasing gas pedal after the mock-up car appeared was 1.28 s, and that the driver 

reaction after releasing gas pedal had a more important effect on collision avoidance than the 

time of releasing gas pedal. Morita et al. (2013) recruited 56 participants to conduct experiments 

on collision avoidance maneuvers in a scenario that a mock-up car suddenly appeared from the 

left side of the road (near side in Japan). They found that drivers avoided collisions by braking 

although they also used steering when the mock-up car suddenly appeared from the side. In 

their study, the average brake reaction time (BRT) of the drivers was 0.45 s and the average 

braking deceleration was 7 m/s2. 
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1.2.2 Driver responses in intrusions of pedestrians 

In the driver responses to pedestrian intrusions, Fu et al. (2018) proposed a driver model to 

make a decision based on the car speed and the distance to the pedestrian path in the situation 

where pedestrians were crossing the road. In their study, drivers have three phase in decision: 

driver cannot yield to pedestrian (Phase I), drivers uncertainly yield (Phase II), and drivers can 

yield to pedestrians (Phase III) (Fig. 1.4). In the Phase Ⅰ, the drivers judge that the car cannot 

stop before arriving at the pedestrian path, and they would decide to pass the pedestrian path. 

In the Phase Ⅲ, the driver judge that the car can safely stop and they would yield to the 

pedestrian since the car speed is low and the distance to pedestrian path is large. Phase Ⅱ is 

dangerous for drivers because the driver is not sure if the car can safely stop before arriving the 

pedestrian path. 

 

Fig. 1.4 Driver decision making in pedestrians crossing roads based on the relationship of car 

speed and distance to pedestrian path (Fu et al., 2018). 

 

Lubbe and Rosén (2014) conducted a test track to quantify the driver comfort boundaries in 

pedestrians’ crossing roads, and this could be used as a guide for warning systems appropriately 

working in the driver’s comfort zone. They found that the average time-to-collision (TTC) at 

the driver started braking was independent of driving velocity. In addition, the order of the trials 

in scenarios had no effects on TTC at driver’s braking start time.  

In the emergency situation of pedestrians intruding laterally, Jurecki et al. (2014) conducted 

two scenario trials with pedestrians intruding from the left and the right side on the track. They 

found that the driver braking reaction time (BRT) for pedestrians intruding from the left side 

(far side) was longer than that from the right side (near side). Moreover, they also found that 

the braking reaction time was linearly related to TTC at the time when the pedestrian intruded 

into the road.  
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1.2.3 Driver responses in intrusions of cyclists 

Some researchers investigated driver responses in lateral intrusions of cyclists at intersections 

though the number of these studies are limited (Toxopeus et al., 2018; Boda et al., 2018; Petzoldt 

et al., 2017). Petzoldt et al. (2017) recruited 42 participants and instructed them to sit in a car 

to respond against cyclists approaching at different speeds. Participants was instructed to 

express their willingness to cross the intersection by depressing the pedal, which was quantified 

by an accept gap (gap from the car position to entry of the intersection). They found that as a 

cyclist speed increased, the accept gap to cross intersections became shorter. Toxopeus et al. 

(2018) conducted a simulated experiment on 13 male and 13 female university students in a 

scenario where the cyclist appeared from the right side. They concluded that the average time-

to-impact was 3.26 s from the time when the cyclist appeared at the stop sign, and that there 

was no differences in driver response time between male and female. Moreover, in emergency 

scenarios when the cyclist suddenly appears, braking rather than steering was a primary 

response used to avoid collisions.  

Some researchers have also used test tracks to study the driver responses to car-to-cyclist 

conflicts. Boda et al. (2018) examined driver responses to cyclists approaching laterally at a 

non-signalized intersection using a test track and a driving simulator. They shows that the 

configuration of the intersection affects the driver’s strategy approaching the intersection 

although it does not directly affect the driver braking response, and the time-to-arrival (TTA) 

of cyclist presence has the greatest effect on driver responses of braking. From braking reaction 

processes of participants, the relationship between the TTC at the time of braking onset (TTABO) 

and TTA (Fig. 1.5): TTA of cyclist visibility and TTABO is close to linear when the TTA is small, 

and TTABO tends to be constant when TTA is large. Thus, the driver starts immediately when 

the cyclist intrudes suddenly with small TTC whereas they do not start braking immediately if 

the driver has enough time to avoid collisions with cyclists.  

Most studies of driver responses in car-to-cyclist collisions have focused on near-side 

cyclist’s intrusions using drive simulators. However, accident data show that the number of car-

to-cyclist collisions at intersections are comparable for cyclists’ crossing at intersections from 

the near-side and the far-side of the car (Den Camp et al. 2017). Besides, there are no research 

on driver behavior in car-to-cyclist conflicts based on real-world accidents. 
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Fig. 1.5 Relationship of TTA at cyclist visible and TTA at braking onset (Boda et al., 2018). 

 

1.2.4 Driver’s gaze analysis 

The gaze of drivers reflects intension of driving behavior. Hence, analyzing driver gaze and eye 

movements is useful to understand driver behavior in driving and collision avoidance. Lee 

(1976) proposed an optical time-to-time, indicating the time to reach a target ahead was the 

inverse of the image expansion rate of the target on the driver’s retina. The time to the object 

𝑇𝐶 in the vehicle following scenario was calculated as follows: 

 
𝑇𝐶 =

𝜃1
(𝜃2 − 𝜃1)/(𝑡2 − 𝑡1)

 (1.1) 

where 𝜃1 and 𝜃2 were the angular separations of the image point at times 𝑡1 and 𝑡2, and 

(𝜃2 − 𝜃1)/(𝑡2 − 𝑡1) represents the image expansion rate from 𝑡1 to 𝑡2. McLeod and Ross 

(1983) recruited 24 volunteers to conduct an experiment showing film clips, and found that the 

observers estimated the information of objects based on the changes of optical array rather than 

the observers’ viewing time. 

Later, many researchers used inverse tau (inverse of 𝑇𝐶) to quantify kinematic metrics in 

vehicle-to-vehicle rear-end conflicts. Wada et al. (2006) included the change of area of the 

preceding car on the retina of driver’s eyes as a parameter for braking in their driver model for 

approaching a preceding car in longitudinal direction. Markkula et al. (2016) performed a time 

series recording analysis of 116 collisions and 241 near-crashes using collected naturalistic 

driving rear-end conflict data. They proposed a model of the driver’s braking response in the 

car following scenario (Figure 1.6). In their study, the driver’s reaction is depended on the visual 
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looming cues such as inverse tau, the driver’s perception of the urgency of the leading vehicle 

gradually increased as the visual looming increased. The driver usually starts braking in less 

than 1 s when the urgency reaches a threshold (i.e., 0.2 s-1), and the braking deceleration also 

depends on the urgent level. According to Eiríksdóttir (2016), the driver’s last glance off the 

ahead road before events is related to visual looming cues. Short glance durations are usually 

accompanied by rapid changes of situations, while longer glance duration could lead to 

collisions. Kovaceva et al. (2010) used an expansion rate and the inverse tau to analyze the 

driver’s reaction in overtaking a leading bicycle. They combined the experimental data from 

driving simulators and test tracks, and concluded that a model based on inverse tau was more 

appropriate to analyze driver behaviors than using the expansion rate. 

 

Fig 1.6 Driver’s reactions to leading vehicle in rear-end conflicts quantifying with visual 
looming cues (Makkula et al., 2016). 

 

In addition, drivers’ eye movements have been examined during reactions against interacting 

with hazards (Lamble et al., 1999; Klauer et al., 2006; Pomarjanschi et al., 2012; Sarkar et al., 

2021). Lamble (1999) used the eccentricity of sight to quantify the effects of driving tasks on 

drivers’ responses in a car following scenario, showing that TTC was inversely proportional to 

the eccentricity of the task to the normal sight. Pomarjanschi et al. (2012) concluded that 

driver’s eye movements guided by gaze were highly correlated with the tasks in the driving. In 

Klauer’s research (2006), the driver’s eyes off the ahead road for more than 2 s could increase 

the risk of collisions and near-miss incidents by two times. Crundall et al. (1998) shows that the 

driver’s detection rate is significantly greater in the near eccentricity than in the far eccentricity 

in both high-demand and low-demand tasks. This may be because the fact that intrusion at a 

distance would use the driver’s peripheral retina and the detection rate was slower in far 

intrusions (Green, 2000). 
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Previous researches on the driver’s gaze and eye movements have examined the driver 

reactions to the tasks in a forward or longitudinal direction, while a few studies were carried 

out for the driver’s eye movement of traffic intrusions from lateral direction. 

 

1.3. Cyclist behavior 

1.3.1 Cyclist behavior in naturalistic cycling 

In car-to-cyclist collisions, not only driver behavior but also cyclist behavior is critical for 

avoiding accident occurrences. Studying the cyclist behavior in naturalistic condition is 

instructive to the research of the cyclist behavior under conflicts and collisions. The cyclist 

behavior in naturalistic cycling has been investigated in many studies from real time cycling 

data collected using instruments with global position system (GPS) and accelerometers.  

Blanc and Figliozzi (2016) used an application with GPS to collect naturalistic cycling data. 

They used ordinal logistic regression to establish a function with cyclist comfort as the 

dependent variable and bicycle facility types, trip stress and trip characteristics as the 

independent variables. They found that bicycle boulevards and separated paths increased cyclist 

comfort. Strauss et al. (2013) shows that the building environment such as subway entrances 

and schools near intersections has a significant influence on cycling activity, and the number of 

cyclists significantly increased near that buildings. In addition, the traffic volume of bicycles 

and motor vehicles are the main factors influencing the injury risk for cyclists. For every 1% 

increase of bicycle volume, the number of injuries of cyclists increased by 0.87%. 

Another method of collecting cycling data is using cameras to record traffic participants at 

specific locations at a certain time, and the cyclist associated data is then filtered from all 

recorded data. This method is usually applied at intersections to obtain effects of traffic flow on 

the cyclist behavior. Ling and Wu (2004) used a video camera to collect data of 561 cyclists at 

a wide and complex signalized intersection. They concluded that the crosswalks and the 

pedestrians on the road affected the cyclist behavior, and they obeyed traffic rules less often. 

The cyclist speed is an important parameter in the analysis of cyclist behavior. Obtaining the 

cyclist speed is important for traffic control, accident safety analysis, and sight distance analysis 

(Kassim et al., 2020). Thompson et al. (1997) measured the speeds of 152 cyclists by using a 

radar gun and a stopwatch on roads without motor vehicles, showing the average cycling speed 

was 14.8 km/h. Dill and Gliebe (2008) investigated the cyclist behavior using GPS data, and 

their study shows that the route choice of cyclists is affected by cycling purposes (commuting 
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or leisure), cycling distance, availability of bicycle lanes, and traffic signals. In their study, the 

average total speed of cyclists was 17.4 km/h, and the average speed after removing time of 

zero speed (i.e., time of waiting traffic lights) was 17.9 km/h.  

The cycling speed usually changes when cyclists approach intersections. Pein (1997) 

collected data from 16 intersections for 442 cyclists using camera videos, and they calculated 

the average speed of cyclists crossing the intersection was 12.7 km/h. In Ling and Wu’s study, 

the average crossing speed at the signalized intersection was 11.44 km/h. Kassim et al. (2020) 

used meta analysis and summarized the average cyclist speeds at the road sections and the 

signalized intersections in many studies. The frequency distribution of average cyclist speed is 

shown in Fig. 1.7. The average speed distributes from 15 km/h to 25 km/h at the road sections, 

and the average velocity distributes closer to the low speed at intersections and the maximum 

frequency distribution was between 10 km/h and 15 km/h. 

 

Fig. 1.7 Frequency distribution of average cyclist velocity at the road sections (a) and the 

signalized intersections (b) (Kassim et al., 2020). 

 

1.3.2 Cyclist behavior in conflicts 

The cyclist behavior in conflicts has also been studied using in-depth accident data, self-reports 

of cyclists, naturalistic cycling and cycling simulators. Using in-depth accident data, Räsänen 

(1998) examined the avoidance behavior of drivers and cyclists in car-to-cyclist collisions. The 

collision occurrence depends on the perception of driver or cyclist each other, and 

misunderstanding of cyclists for driver’s yielding behavior when a cyclist is traveling on the 

priority road. De Camp et al. (2017) investigated the cyclist behavior before collisions to make 

scenarios of car-cyclist autonomous braking tests in EuroNCAP. The road crossing of cyclists 

occupies the largest percentage, followed by right and left turn of the car. The cyclist velocity 

of 50 percentile was 12 to 15 km/h, and the 90 percentile was 20 to 25 km/h. 
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The self-report of participants is also an effective method to know the cyclist behavior in 

critical events. Kovácsová et al. (2019) showed participants video clips that the car intruded 

into the path of cyclists (participants). The participants answered to slow down their bicycle 

when anticipating the car did not stop, especially when the car was accelerating. Their study 

shows that the cyclist’s behavior depends on the driver’s behavior, deciding to go or stop based 

on whether the driver perceives them and yields the path for the cyclist. Lehtonen et al. (2015) 

showed participants video clips of the cyclist in critical events, asking them to indicate their 

caution level by using a slider. They showed the caution level was high for high-velocity cyclists 

and for cyclist’s traveling on sidewalks than on bicycle paths.  

Naturalistic cycling of participants is a useful method to investigate the cyclist behavior 

(Johnson et al., 2010; Dozza and Werneke 2014; Werneke et al., 2015). The data including 

critical events are collected from the cycling of participants who rides a bicycle with video. In 

Johnson’s study (2010), cyclists avoided collisions by braking (75.9%) and steering (7.4%), and 

no reactions were 11.1%. The participants reported subjectively in interviews that the reaction 

time was smaller when they traveled at a high velocity. In a study by Werneke (2015), critical 

events between cars and cyclists occurred around intersections (86%), and half of the 

participants reported that they traveled at high velocity. 

Cyclist avoidance behavior with braking and steering maneuvers against stationary obstacles 

was investigated in experiments of participants (Lee et al. 2020). The participants applied 

braking with constant deceleration. As the cyclist velocity increased, they started to brake earlier, 

maintaining constant time-to-collision. The higher the cyclist speed, the steering maneuver 

tended to delay compared to the braking. In Lee’s study, the participants already knew the 

presence of the obstacle in advance, and an instructor directed to apply braking or steering to 

avoid the obstacle, which may be different from their behavior in a collision. 

To avoid collisions, the cyclist’s behavior might be more effective than the driver’s because 

the bicycle can stop with a short distance. Though many studies investigated drivers’ avoidance 

behavior in critical events in car-to-cyclist conflicts, limited information is available on cyclist’s 

avoidance behavior in such emergency situations. Besides, the fundamental relationship 

between cyclist behavior and crash avoidance has not been understood yet (Billot-Grasset et al., 

2016; Werneke et al., 2015). 
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1.4. Autonomous emergency braking system 

Autonomous emergency braking system is an active safety technology designed to avoid 

collisions with other cars and other road users in the driving. AEB uses a sensor system to detect 

potential hazards, and AEB calculates the distance to the front cars or the time-to-collision 

(TTC) at different intervals to evaluate the hazardous level (Fig. 1.8). AEB applies braking if 

drivers did not take actions in time to avoid collisions. Current AEB sensing systems contain 

cameras, radar and LiDAR, and car manufacturers may have various combinations of these 

systems. 

There are various types of AEB, which are commonly classified into two types for high 

speed driving and low speed driving. The sensing system of AEB for low speed driving 

generally combines a camera and a LiDAR. In the AEB for high speed driving, a combination 

of a radar and a camera is usually applied in cars in order to detect hazards at longer distances 

(Euro NCAP, 2014). 

 

Fig. 1.8 AEB system installed in the car; adapted from Euro NCAP 

 

1.4.1 AEB effectiveness in car-to-car collisions 

Rear-end collisions account for a large portion of accidents involving passenger cars, and this 

collision type usually occurs when driving at low speeds in cities (Isaksson-Hellman and 

Lindman, 2012; Euro NCAP, 2014). Thus, AEB is first applied in cars in rear-end collisions. 

The effectiveness of AEB in rear-end collisions is usually studied using the database from police 

reported data of injured accidents and insurance accident data. 

Isaksson-Hellman and Lindman (2012) used insurance claims data of 2009-2011 to compare 

the difference in claim rates between the AEB-equipped Volvo XC60 model (also named as 

City Safety in this model) and other Volvo models that were not equipped with AEB. Their 
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study found that the XC60 model with AEB systems had 23% lower collision claim rates than 

other models without AEB. They then went on to use insurance claims data from 2010 to 2015 

to compare the collision rates between Volvo V70 model with AEB and V70 model without 

AEB (Volvo V70 model with AEB was introduced as standard from 2012). Their result indicates 

that cars equipped with low-speed AEB had lower rear-end frontal collision rates by 27% and 

lower severity collision rates by 37% than the cars without low-speed AEB (Isaksson-Hellman 

and Lindman, 2016). 

Rizzi et al. (2014) used police reported injury accidents data in Sweden from 2010 to 2014 

to compare cars with and without AEB from the same manufacturer as well as cars without 

AEB from other manufacturers to assess the overall effectiveness of AEB in Sweden. Their 

study shows that AEB could reduce 54%-57% rear-end collisions at the car speed lower than 

50 km/h and reduce 35%-41% rear-end collisions for all speed conditions. Cicchino (2014) used 

police reported accident data in 2010-2014 from 22 states in the US to compare the collision 

rates of AEB equipped vehicles of the same model without AEB, and he reported that AEB 

equipped cars were able to reduce rear-end accidents by 43%. 

Fildes et al. (2015) used a meta-analysis to combine data collected from government, 

organizations and researchers from various countries. They compared the number of vehicle 

collisions in the vehicles with and without AEB, and they concluded that AEB equipped 

vehicles could reduce 38% rear-end collisions overall. AEB can greatly reduce the rear-end 

collisions at low speed and thus, it is probable that more accidents can be avoided if AEB system 

can work at wider speed (Cicchino, 2014; Den Camp et al., 2017). 

 

1.4.2 AEB effectiveness in car-to-pedestrian collisions 

As the effectiveness of AEB in reducing rear-end collision in car-to-car scenarios was 

confirmed in accident data, AEB was expected to be applied in more scenarios (Coelingh et al., 

2010). AEB protection for pedestrians has been tested by Euro NCAP since 2016 (Euro NCAP, 

2016). A vehicle impact velocity is a key factor in evaluating the injury outcomes when 

vulnerable road users (VRU) collide with vehicles. Thus, AEB protection for VRU should be 

reflected in collision avoidances or reduction of vehicle velocity at the time impacting with 

VRU.  

Coelingh’s study (2010) was the first to test the effectiveness of AEB for pedestrian 

protection. They conducted experiment using Volvo third generation AEB (named collision 
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warning with full auto brake and pedestrian detection (CWAB-PD)) with a long range radar and 

a wide angle camera. The field of view (FOV) of the camera and the radar was 48° and 60°, and 

the deceleration with full automatic braking was 10 m/s2. Their result shows that the CWAB-

PD system could avoid collisions with car velocity up to 35 km/h. Gruber et al. (2019) installed 

a virtual AEB system on the car to simulate in-depth accident data from CEDATU (Austria), 

GIDAS (Germany) and P-VAD (Sweden). The detection distance of the virtual AEB was 80 m, 

and three FOV of 60°, 90° and 120° were used. Two braking deceleration jerk of 24.5 m/s3 and 

35 m/s3 and two decelerations of 0.8 g and 1.1 g could be combined for the AEB system, and 

AEB was triggered to activate when the TTC of the car was less than 1 s. According to their 

results, the effectiveness of AEB for pedestrians depends on the parameters of AEB and selected 

accident databases. Their result shows that the AEB with ±60° FOV and an advanced braking 

system (1.1 g and 35 m/s3 deceleration jerk) could avoid 42% of CEDATU accidents. Besides, 

the lower the car average velocity in collisions, the more effective AEB was for collision 

avoidance. 

Hamdane et al. (2015) investigated the effectiveness of AEB in car-to-pedestrian conflicts 

by reconstructing 100 real world accidents from CASR (Australia) and IFSTTAR-LMA 

(France). The simulated AEB has a specification of detection distance of 40 m and FOV of 20°-

40°, and the maximum braking deceleration of 8 m/s2. In their study, the position of pedestrians 

distributed relative to the car with different TTC was a critical factor affecting the effectiveness 

of AEB. Before TTC of 1.5 s, pedestrians are scattered relative to the front of the car, and TTC 

between 1.5 s and 0.5 s is the critical time for AEB activing, as pedestrians gather in front of 

the car (Fig. 1.9). Thus, the trigger time of AEB should be set during TTC of 1.5-0.5 s for 

pedestrians, and the FOV should include as many pedestrians as possible. In addition, they 

indicated that the effectiveness of AEB decreased as reaction time of sensor increased. 70% of 

collisions could be avoided despite using 20° FOV, and the effectiveness of AEB rapidly 

declined when the reaction time of the AEB system was larger than 1 s. 
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Fig. 1.9 Position of pedestrians relative to the car with different TTCs (Hamdane et al., 2015).  

 

Some researchers used different methods to evaluate the benefit of AEB in car-to-pedestrians 

collisions by calculating the injury risks and nominal benefits (Edwards et al., 2014; Haus et al., 

2019; Jeppsson et al., 2018; Lubbe and Kullgren, 2015). Jeppsson et al. (2018) used an AEB 

system with vacuum emergency brake (VEB) to estimate the injury risk of pedestrians in 526 

accidents (GIDAS). The maximum braking deceleration with 1.3 g, 1.5 g and 1.8 g was applied 

in AEB. They shows the relationship of TTC and the car speed at the pedestrian was visible in 

Fig. 1.10, and more pedestrians could be avoided as the braking deceleration increased. In their 

study, the AEB with VEB could reduce 8-22% pedestrian casualties compared to AEB without 

VEB. Haus et al. (2018) concluded that the AEB with TTC 1.5 s and delay time 0 s could reduce 

the fatality risk by 84-87%, and MAIS3+ injury risk by 83-87%. Lubbe and Kullgren (2015) 

estimated that the AEB could reduce 25% of casualty costs in the pedestrian collisions. Edwards 

et al. (2018) used UK and German accident database and calculated the change in speed 

distribution in pedestrian collisions by AEB, and the application of AEB brought nominal 

benefits of £119-385 million and €63-216 million in the UK and Germany per year, respectively. 
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Fig. 1.10 Relationship of TTC and the car speed at the time when the pedestrian was visible. 

Three brake levels of AEB was shown (Jeppsson et al., 2018). 

 

1.4.3 AEB effectiveness in car-to-cyclist collisions 

Cyclists have higher travelling velocity compared to pedestrians, thus AEB for pedestrian 

protection may not be enough for cyclist protection. Lenard et al. (2018) analyzed the position 

of pedestrians and cyclists relative to the cars at different TTCs using 175 car-to-pedestrian 

accidents and 127 car-to-cyclist accidents in UK. Their study shows that the positions of cyclists 

distributes in a wider area relative to cars than those of pedestrians: 90% of the pedestrians 

locates in the ±20° FOV of the cars whereas 90% of the cyclists locates in the ±80° FOV (Fig. 

1.11). Therefore, the AEB designed for pedestrians is not appropriate for cyclists. Besides, the 

test of the effectiveness of AEB for cyclists was implemented by Euro NCAP since 2018 (Euro 

NCAP, 2018). 

   

Fig. 1.11 Position of pedestrians and cyclist relative to the car at TTC 3 s (Lenard et al., 

2018). 
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Previous analyses of the effectiveness of AEB for cyclists usually used in-depth data or 

police-reported accident data (Den Camp et al., 2017; Fredriksson et al., 2015; Chajmowicz et 

al., 2019; Jeppsson and Lubbe, 2020). Fredriksson et al. (2015) used 34 car-to-cyclist accidents 

from GIDAS to evaluate the effectiveness of the passive safety, the active safety and the 

integrated safety system in protecting cyclists from collisions. The FOV of the three simulated 

AEB was 40°, 40° and 60°, and the AEB trigger width (width beside the car path) was 1 m and 

3 m, respectively. Their study showed that the AEB with 60° FOV and trigger width 3 m had 

the highest protection effectiveness of 48% on cyclists. Den Camp et al. (2017) simulated the 

AEB effectiveness for velocity reduction in the three most common car-to-cyclist scenarios 

(cyclist crossing from the near side, cyclist crossing from the near side with obstructions, and 

cyclist crossing from the far side). Their result shows that the AEB with ±24° FOV and DT 0 s 

for pedestrians was insufficient for cyclist, and the performance of AEB for cyclist protection 

depends on the FOV of the sensor at low vehicle velocities (under 60 km/h). Besides, the AEB 

in reducing car velocity was not effective in the car velocity of 10-20 km/h because the cyclist 

and the car have comparable velocity and the direction of the cyclist relative to the car 

unchanged, thereby the cyclist was difficult to be detected by the AEB sensor. 

Some researchers evaluated AEB benefits in preventing cyclist collisions with injury 

severity and combination post-crashes (Rosen, 2013; Leo et al., 2020). Rosen (2013) used 8 

fatal and 43 injury car-to-cyclist collision from GIDAS-PCM to calculate the AEB effectiveness 

in reducing fatalities and serious injuries (AIS3+F). He concluded that AEB protection for 

cyclists was close to 50% under ideal conditions (weather and light), but the effectiveness of 

AEB in protecting against fatal injuries was greatly reduced in dark and high-speed conditions. 

Leo et al. (2020) analyzed 112 car-to-cyclist collisions from CEDATU database using the 

simulated AEB with 60° FOV and DT 0.2 s. Their study shows that the car speed of collisions 

against cyclist would be reduced by 1/3 with after installing AEB, and the position, angle and 

velocity of impact of the cyclist head against cars were all greatly reduced. 

 

1.5. Scope and aims of this study 

The cyclist safety is more and more important because a bicycle is positioned as an important 

role as a commuter and a travelling. Perpendicular car-to-cyclist intersection collisions needs 

to be focused because they occupy more than 50% among all cyclist collisions. To reduce the 

number of cyclist accidents, it is necessary to understand driver and cyclist responses in 
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emergency situations. Many previous studies examined the factors influencing collision 

occurrences and evaluated the effectiveness of AEB to prevent vulnerable road users from 

collisions using various approaches. However, there were still some limitations and problems 

that were not solved: 

 Previous researches studied the driver response in emergency situations based on in-depth 

accident data and police data, which have limitations and uncertainness to understand driver 

behavior before collisions.  

 Previous studies examined the cyclist behavior usually used the naturalistic traveling data, 

and some studies used questionnaires and some information of cyclists recorded in the in-

depth data to obtain the cyclist behavior in emergencies, which had subjectivities and 

uncertainness. The mechanism of cyclist avoidance in collisions at intersections was not 

clear. 

 Some studies investigated the relationship of TTC and BRT in the scenarios with lateral 

intrusions, however the relationship of TTC and BRT in the emergency situation involving 

cyclists at intersections was not clear. 

 The driver’s braking reaction time against the lateral intrusions in the far side was larger 

than in the near side, however the reason of BRT differences in the far side and the near side 

was not investigated. 

 The AEB effectiveness for pedestrians in the collisions was evaluated based on the in-depth 

data or police data in the previous studies, however the AEB effectiveness for cyclists was 

not evaluated. 

In this study, the drive recorder data in collisions are newly collected in corporation with 

Aichi and Nagoya taxi association, and the driver and cyclist behavior are investigated based 

on video observations. The purpose of this study is to understand driver responses in emergency 

in car-to-cyclist perpendicular conflicts, which resulted in near-miss or collision. First, videos 

from drive recorders are analyzed for perpendicular car-to-cyclist near-misses and collisions to 

identify the boundary or the threshold to separate collisions and near-misses and the causes of 

collisions. Also, the factors affecting collision avoidance by cyclists is examined by comparing 

the near-misses avoided by cyclists and not avoided by cyclists in the videos of drive recorders. 

Next, three typical collisions (large TTC near side, small TTC near side and far side) are 

extracted from the drive recorder and reconstructed in the driving simulator to explore causes 

of collision occurrences through understanding of driver and cyclist responses in emergency 
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situations. Finally, all collisions are reconstructed with autonomous emergency braking (AEB) 

to examine the collision prevention effectiveness of AEB for cyclists to reduce the number of 

cyclist victims in the traffic conflicts. 

This dissertation consists of the following 6 chapters. Chapter 1 introduces the background 

of traffic collisions worldwide and in Japan and the collected data of drive recorders. Chapter 2 

analyzes the driver’s responses in the collisions and the near-misses using the videos of drive 

recorders. Chapter 3 analyzes the cyclist’ behavior in avoiding collision using the videos of 

drive recorders. Chapter 4 examines the driver’s responses in scenarios from the drive recorder 

video using the driving simulator experiments. In Chapter 5, the effectiveness of autonomous 

emergency braking (AEB) for preventing the cyclist involved in the car-to-cyclist collisions is 

evaluated. Finally, Chapter 6 summarizes the general discussion and conclusions. 

 

 

Fig. 1.12 Dissertation structure.  
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Chapter 2 

Analysis of Causes of Collisions Using Drive Recorder 

2.1. Introduction 

Previous studies usually analyzed accidents based on police data and in-depth data. This data 

were recorded referring to the testimonies of people involved in the collisions and witnesses, as 

well as judging the velocities of the vehicles and the cyclist behavior before crash through the 

vehicle skid marks of the vehicles and the cyclist fall distance. Hence, this data contains 

uncertain information (Loftus, 1979; Rosen, 2013). Another drawback of using police recorded 

data and in-depth data is that this data usually focused on fatal accidents and serious injury 

accidents and thus, the single-bicycle collisions and the cyclist victims of minor injuries are 

underestimated (Billot-Grasset et al. 2016).  

In this chapter, the videos from drive recorder are used to analyze the collision occurrences, 

which clearly provides the drivers’ responses and the cyclist behaviors before crash. The car 

kinematics and the drivers’ responses leading to collision occurrences for the cyclists crossing 

perpendicular intersections are compared in the near-miss incidents and the collisions. Also, the 

boundary separates collisions and near-misses is obtained using the data from taxi drive 

recorders. 

 

2.2. Methods 

2.2.1. Drive recorder 

Figure. 2.1 shows the image of the video of the drive recorder used in this study. The drive 

recorder can record time, global position system (GPS) information, acceleration, velocity, 

indicator and brake lamp on/off, and the front video. An event before 10 s and after 5 s is 

automatically saved and upload when the lateral or longitudinal car acceleration exceeds 0.45 𝑔. 
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Fig. 2.1 Image of video of drive recorder. 

 

2.2.2. Definition of parameters 

Figure. 2.2 shows the car velocity over time sequence in avoiding collisions from the time 

before cyclist is visible to the time when the car stops. The time when the cyclist is visible to 

drivers (the cyclist appears from) behind the obstacles such as buildings or stopping cars is 

defined as 𝑡𝑎. The driver starts to brake is defined as 𝑡𝑏 after the driver notices the cyclist at 

𝑡𝑛. 𝑡𝑟 is time when the driver’s foot releases the gas pedal before 𝑡𝑏. 𝑡𝑠 is defined as time of 

swerving onset (note that 𝑡𝑠 in the Fig. 2.2 is schematic, and the driver may apply swerving 

before or after 𝑡𝑏).  

The time interval of 𝑡𝑎 and 𝑡𝑏 is define as the driver’s braking reaction time (BRT = 𝑡𝑏 −

𝑡𝑎), and the time interval of 𝑡𝑎 and 𝑡𝑠 is defined as swerving reaction time (SRT = 𝑡𝑆 − 𝑡𝑎). 

Moreover, the time interval of 𝑡𝑎 and 𝑡𝑟 is defined as gas releasing time (GRT = 𝑡𝑟 − 𝑡𝑎). 

The car velocity at 𝑡𝑎 and 𝑡𝑏 is given as 𝑉𝑎 and 𝑉𝑏, respectively.  

The car acceleration at the time when the cyclist is visible (𝑡𝑎) is defined as 𝐴𝑎, which is 

calculated by the average acceleration during 1.0 s before and after 𝑡𝑎 in this study. Unlike 

braking deceleration 𝑎, the car acceleration 𝐴𝑎 might be used to examine the driver’s behavior 

to anticipate hazards at 𝑡𝑎 in intersections and to judge whether divers are proactive.  

The relative position and distance between the driver and the cyclist in the perpendicular 

configuration is shown in Fig. 2.3. Since the vehicle is driven in the left side of roads in Japan, 

the cyclist appears from the left side of the car is near side with respect to the car, and the right 

side is far side. 
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Fig. 2.2 Car velocity over time sequence in avoiding collisions. 

 

 

 

Fig. 2.3 Relative position and distance of the car and the cyclist in perpendicular 

configuration (cyclist intruding from the left corresponds to near side and the right 

corresponds to far side in Japan). 

 

The time-to-collision (TTC) is the remaining time before crash, which can be calculated by 

the braking distance 𝐷 between the car and the bicycle and the car velocity 𝑉 as following: 

 
𝑇𝑇𝐶 =

𝐷

𝑉
 (2.1) 

The TTC at 𝑡𝑎  (cyclist is visible) and 𝑡𝑏  (start braking) is denoted as 𝑇𝑇𝐶𝑎  and 𝑇𝑇𝐶𝑏 , 

respectively.  

Assume that the driver applies braking at constant deceleration 𝑎  until the car makes 
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contact with the cyclist. At the time of braking (𝑡𝑏), the collision occurs if the distance between 

the car and the cyclist is small than that calculated by the car velocity 𝑉𝑏 and the car braking 

deceleration (𝑎) as follows: 

 
𝐷𝑏 ≤

𝑉𝑏
2

2𝑎
 (2.2) 

Substitute Eq. (2.2) into Eq. (2.1) and eliminate the braking distance 𝐷 , the braking 

deceleration limit is determined as: 

 
𝑎 =

𝑉𝑏
2 ∙ 𝑇𝑇𝐶𝑏

 (2.3) 

The car cannot avoid a crash when the car deceleration required to stop is higher than the 

braking deceleration limit. The braking deceleration limit depends on the friction coefficient 

between the car’s tires and the road surface, and varies depending on the road conditions such 

as dry, wet, and snow. The speed at which the driver presses the brake pedal also affects the 

braking deceleration limit. 

Collisions occur when the distance between the cyclist and the car is smaller than the sum 

of braking distance and the car travel distance during braking reaction time.  

 
𝐷𝑎 ≤ 𝐵𝑅𝑇 ∙ 𝑉𝑎 +

𝑉𝑏
2

2𝑎
 (2.4) 

Assuming that the driver does not react and the car velocity remains constant from 𝑡𝑎 to 𝑡𝑏 

(𝑉𝑎 = 𝑉𝑏), the following equation is obtained with dividing both side by 𝑉𝑎 in Eq. (2.5) as: 

 
𝑇𝑇𝐶𝑎 ≤ 𝐵𝑅𝑇 +

𝑉𝑏
2𝑎

= 𝐵𝑅𝑇 + 𝑇𝑇𝐶𝑏 (2.5) 

Using Eqs. (2.2) (2.4) and (2.5), the available time and distance before collisions can be 

examined from the driver’s braking reaction time (𝐵𝑅𝑇) and the braking acceleration (𝑎). 
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2.2.3. Statistical analysis of parameters 

The parameters affecting the collision occurrences is examined in the drive recorders. The mean 

of car velocity, TTC, driver BRT, and car acceleration 𝐴𝑎 at the 𝑡𝑎 when the cyclist is visible 

are compared between the near-misses group and the collision group. Moreover, the mean of 

the parameters is also compared in the near side and the far side to investigate effects of cyclist’s 

appearing sides.  

To examine the significance of means, first, the parameters in near-misses and in collision 

are tested for equality of variance for the data using F-test. Based on the results of F-test, the 

Student’s t-test for the data of heterogeneity and Welch t-test for the data of homogeneity of 

variance is employed to examine significances of the two groups. In all tests, p-value of 0.05 is 

taken to say that the differences of the mean of the two groups are statistically significant. 

The driver responses can affect collision occurrences in emergency situations. A logistic 

regression analysis is used to analyze the independent parameters 𝑇𝑇𝐶𝑎 , 𝐵𝑅𝑇 , and 𝐴𝑎 

affecting collision occurrences. The logistic regression of collision occurrences can be 

expressed as follows: 

 
ln

𝑃

1 − 𝑃
= 𝛽0 + 𝛽1𝑥1 +⋯+ 𝛽𝑛𝑥𝑛 (2.6) 

where P is the probability of collision occurrences (0 is near-misses and 1 is collisions). 𝑥𝑖 

(𝑖 = 1, 2, 3) is explanatory variables, and 𝛽𝑖 is their coefficients. 𝑇𝑇𝐶𝑎, 𝐵𝑅𝑇, and 𝐴𝑎 are 

applied in the logistic regression as explanatory variables to investigate the factors influencing 

collision occurrences. All the significant level of statistical analysis is set to 0.05 in this study. 

Generally, drivers slow down at low velocities at intersections because the drivers yield for 

the right of way, and this decelerations are not the responses for the cyclist appearance. 

Therefore, cases with car velocities below 20 km/h are removed in the analysis of drive 

recorders. 

 

2.3. Results 

2.3.1. Driver behavior with TTC 

The driver behavior in emergency situation observed using drive recorder was compared. Figure. 

2.4 shows the drivers’ behavior classification in avoiding collisions in the near-miss and the 

collision with various 𝑇𝑇𝐶𝑎. Generally, the drivers are more likely to apply braking to avoid 
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collisions in the near-miss compared to the collisions group. In the near-miss group, three drives 

apply braking with swerving with 𝑇𝑇𝐶𝑎 greater than 2 s, and this is probably because the 

driver does not immediately notice the cyclists and does not take actions after the cyclists appear 

behind the obstacles until the cyclists gradually approach the car. In the collision group, most 

of drivers also apply braking to avoid collisions. However, more drivers apply braking with 

swerving and only swerving because the situation is more emergent in the collisions compared 

to near-miss. Another behavior of the driver is no reaction, which means that the drivers do not 

take any actions before the collision occurs because they do not notice the cyclists. 

 

 

Fig. 2.4 Driver’s response to avoid collisions in the near-miss and the collision with 

various 𝑇𝑇𝐶𝑎. 

 

2.3.2. Statistical analysis 

The parameters of driver responses are compared between the near-miss and the collision 

groups. Figure. 2.5 shows the mean of the parameter 𝑉a, 𝑇𝑇𝐶a, 𝐵𝑅𝑇, and 𝐴a in the near-miss 

and the collision at 𝑡𝑎  when the cyclist is visible. 𝑇𝑇𝐶a  is smaller, and 𝐵𝑅𝑇 and 𝐴a  is 

larger in the collision group compared to the near-miss group. The mean of 𝑇𝑇𝐶a in the near-

miss is 2.15 s, which is significantly larger than 𝑇𝑇𝐶a in the collisions 1.28 s (t(64) = 4.1, p < 

0.001). There is a significant difference in driver’s 𝐵𝑅𝑇 between the near-miss of 0.43 s and 

the collision of 0.88 s (t(41) = -3.11, p = 0.003). Car velocity does not show significant 

differences in the near-miss and the collision (t(62) = -0.95, p = 0.34). The mean value of car 

acceleration 𝐴a in the near-miss is negative (-0.05 m/s2) and in the collision is positive (0.33 
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m/s2), showing a significant trend (t(86) = -1.81, p = 0.073). 

 

 

 

 

 

 

Fig. 2.5 Mean of 𝑉𝑎, 𝑇𝑇𝐶𝑎, 𝐵𝑅𝑇, and 𝐴𝑎 at the cyclist visible time in the near-miss and the 

collision (the error bars represented standard errors).  

 

The effects of cyclist appearance direction on driver responses were compared. The mean 

values of 𝑉a, 𝑇𝑇𝐶a, 𝐵𝑅𝑇, 𝐴a of the near side and the far side at the time 𝑡a when the cyclist 

was visible are compared in Fig. 2.6. The mean value of 𝑉a for the near side and the far side is 

36.1 km/h and 31.5 km/h, respectively, showing a significant trend between these two groups 

(t(76) = 1.83, p = 0.07). The average value of 𝑇𝑇𝐶a is 1.76 s in the near side, and 1.87 s in the 

far side. The 𝐵𝑅𝑇 of the near side and far side is 0.55 s and 0.71 s. The average of 𝐴a of the 

near side and the far side is 0.06 m/s2 and 0.17 m/s2, respectively. However, there are no 

significant differences in the variables of 𝑇𝑇𝐶a (t(54) = -0.41, p = 0.69), 𝐵𝑅𝑇 (t(75) = -1.2, 

p = 0.24) and 𝐴a (t(64) = -0.49, p = 0.63). In other words, the car velocity for the cyclist 

crossing from the far side was slightly lower than the near side, even though 𝑇𝑇𝐶a  was 

comparable between near side and far side. 
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Fig. 2.6 Mean values in the near and far side incidents at 𝑡a in drive recorder data. 

 

2.3.3. Driver response before braking 

The driver braking reaction time is different between the near-miss and the collision group as 

well as far side and near side of cyclist appearance, which implies the braking reaction time is 

a key factor for collision occurrences. Figure. 2.7 shows the relationship of 𝑇𝑇𝐶a, 𝐵𝑅𝑇 and 

𝐴a at the time 𝑡a when the cyclist is visible. In Fig. 2.7(a), the area of the driver’s 𝐵𝑅𝑇 and 

the 𝑇𝑇𝐶a can be divided into three areas for collision occurrence and near-miss by 𝑇𝑇𝐶a. 

There are only collisions when 𝑇𝑇𝐶a is less than 1 s regardless of 𝐵𝑅𝑇. In the area where 

𝑇𝑇𝐶a is greater than 1 s and less than 2 s (transition area from collision to near-miss), the 

collisions and the near-misses are separated by 𝐵𝑅𝑇 = 𝑇𝑇𝐶a − 1, and the collisions occurrs 

when 𝐵𝑅𝑇 is greater than 𝑇𝑇𝐶a − 1. There were only near-misses in the area where 𝑇𝑇𝐶a is 

greater than 2 s and the 𝐵𝑅𝑇 is less than 1 s. In addition, the 𝐵𝑅𝑇 of all the near-misses is 

less than 1 s. Figure. 2.7(a) implies that collisions and the near-miss incidents can be 

distinguished by 𝑇𝑇𝐶a  and 𝐵𝑅𝑇 . Hence, it is confirmed that 𝑇𝑇𝐶a  and 𝐵𝑅𝑇  are two 

variables that affect collision occurrences. 

The relationship of 𝐵𝑅𝑇 and car acceleration 𝐴a when the cyclist is visible is shown in 
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Fig. 2.6(b). The near-misses are distributed in both 𝐴a < 0 and 𝐴a > 0, while the collision 

are mostly distributed in the part of 𝐴a > 0. The 𝐵𝑅𝑇 increases gradually as 𝐴a increased in 

the side of 𝐴a > 0. It is probable that some drivers who did not pay attention in intersections 

accelerated to pass intersections and collided cyclists. 

 

(a) BRT vs. TTCa  

 

 (b) BRT vs. Aa 

Fig. 2.7 The relationship between 𝑇𝑇𝐶a, 𝐵𝑅𝑇 and 𝐴a at 𝑡a when the cyclist was visible. 

 

The relationships between car velocity 𝑉a and 𝑇𝑇𝐶 at the time 𝑡a when the cyclist is 

visible, and the time 𝑡b of braking onset are plotted in Fig. 2.8(a) and (b), respectively. The 

cases with car velocity below 20 km/h are also included in the figures. From Fig. 2.8(a)(b), 

collision data distributes in the left upper area of the graph (high velocity and small TTC). 

The car braking deceleration was calculated from Eq. (2.3) using the car velocity and the 
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𝑇𝑇𝐶 . The car brake deceleration 𝑎  and 𝐵𝑅𝑇  in the near-misses and the collisions was 

respectively substituted into the logistic regression analysis as the only explanatory variable (0 

corresponds to near-misses 1 corresponds to collisions). The following regressions is obtained: 

 
𝑃(𝑎) =

1

1 + exp⁡(10.51 − 2.04𝑎)
 (2.7) 

 
𝑃(𝐵𝑅𝑇) =

1

1 + exp⁡(1.62 − 2.34𝐵𝑅𝑇)
 (2.8) 

The car braking deceleration 𝑎 = 5.2  m/s2 corresponds 50% of probability of collision 

occurrences using the Eq. (2.7). This deceleration 𝑎 was the car braking limit, which indicates 

that the collision could not be avoided when the braking deceleration required to stop the car 

exceeded the braking limit. Similarly, driver’s braking reaction time 𝐵𝑅𝑇 = 0.7⁡s corresponds 

50% of probability of collision occurrences using the Eq. (2.8).  

The car braking deceleration limit of 5.2 m/s2 and 𝐵𝑅𝑇 of 0.7 s is also drawn in the figures. 

In Fig. 2.8(a), many collisions distributes on the left area of the braking limit, and these cases 

are already difficult to be avoided when the cyclist was visible. Besides, there are some cases 

located on the right area of the 𝐵𝑅𝑇 limit 0.7 s, which indicates that these collisions could be 

avoided if the drivers could starts braking immediately (e.g., within 0.7 s) after the cyclist was 

visible to the driver from obstacles. From 𝑡a to 𝑡b, all the cases moves to the left, and the near-

misses and the collisions are clearly separated by the car braking limit when the car velocity is 

above 20 km/h (Fig. 2.8(b)). 

 



 

32 
 

 

(a) Time when the cyclist is visible (ta) 

 

(b) Time of braking onset (tb) 

Fig. 2.8 Relationship of car velocity and TTC at the time when the cyclist is visible 𝑡a and 

the time of braking onset 𝑡b. 

 

The relationship between the car velocity and TTC can be also expressed using the car 

velocity and the distance between the car and the cyclist path. The relationship of the car 

velocity 𝑉a and the distance to the collision point 𝐷a at the time 𝑡a when the cyclist was 

visible and the time 𝑡b of braking onset is shown in the Fig. 2.9. The braking distance limit of 

the car to avoid collisions can be derived from Eq. (2.4) using the braking deceleration limit 

5.2 m/s2. In Fig. 2.9(a), it can be observed that larger car velocity and shorter distance more 

likely to lead to collisions. Collisions occurs when the required braking distance exceeds the 

braking limit distance, as shown in the Fig. 2.9(b). There are some collision cases located below 
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the braking distance limit. This is because these drivers applied braking late or the braking 

deceleration level is low. 

 

(a) Time when the cyclist is visible (ta) 

 

(b) Time of braking onset (tb) 

Fig. 2.9 Relationship of the car velocity and the distance to the collision point at the time 

when the cyclist is visible 𝑡a and the time of braking onset 𝑡b. 

 

2.3.4. Factors affecting collision occurrence 

To identify variables which affect a collision occurrence, a multiple logistic regression analysis 

was applied to the near-miss and the collision data. Table 2.1 shows the independent parameters 

𝑇𝑇𝐶a, 𝐵𝑅𝑇 and 𝐴a affecting collision occurrences at the time when the cyclist is visible to 

the driver using the multiple logistic regression analysis. From the p-value, 𝑇𝑇𝐶a and 𝐵𝑅𝑇 

are the two most important factors influencing the occurrence of collisions (p < 0.001), and 𝐴a 
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is not significant in influencing collision occurrences (p = 0.208). From the standard partial 

coefficient, it can be concluded that 𝐵𝑅𝑇 is the most important factor influencing the collision 

occurrences, and smaller 𝑇𝑇𝐶a and larger 𝐵𝑅𝑇 can lead to collision occurrences. The car 

acceleration (𝐴a ) is not significant probably because not all drivers who accelerated in 

intersections did not pay attention to cyclists with distracted driving.   

 

Table 2.1. Logistic regression of parameters affecting collisions in the drive recorder. 

Explanatory 

variables 

Partial regression 

coefficient 

Standard partial 

coefficient 
P-value 

Intercept 𝛼 -1.6829  p < 0.001 

TTCa -0.7308 -2.3431 p < 0.001 

BRT 4.9356 3.1009 p < 0.001 

Aa 0.3910 0.3990 0.2083 

 

To easily understand the relationship of 𝑇𝑇𝐶a and 𝐵𝑅𝑇 leading to collision occurrences, 

two examples are shown in the Fig. 2.10 and Fig. 2.11. In Fig. 2.10, the TTC at the cyclist is 

visible is 1.45 s, and the 𝐵𝑅𝑇 is 1 s. Instituting the car velocity at braking onset 56 km/h, 𝐵𝑅𝑇 

is larger than 𝑇𝑇𝐶a − 𝑉𝑏 2𝑎⁄ , thus the collision cannot be avoided. In Fig. 2.11, TTC at the 

cyclist is visible is 1.72 s, and the 𝐵𝑅𝑇 is relatively small as 0.3 s. Instituting the car velocity 

at braking onset 25 km/h, and the BRT is smaller than 𝑇𝑇𝐶a − 𝑉𝑏 2𝑎⁄ , hence this case could be 

avoided. 
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t = -1.6 s 

cyclist is visible 

t = -0.8 s 

Driver notices the cyclist 

  

t = -0.6 s 

Driver starts braking 

t = 0 s 

Collision occurs 

 

Fig. 2.10 Example of a collision caused by the driver’s delayed braking (𝑇𝑇𝐶a 1.45 s and 

𝐵𝑅𝑇 1 s, 𝑡 = 0 represents collision occurs). 

 

 

  

t = -1.55 s 

cyclist is visible 

t = -1.42 s 

Driver notices the cyclist 

  

t = -1.22 s 

Driver starts braking 

t = 0 s 

Car completely stops 

 

Fig. 2.11 Example of a near-miss avoided by the driver’s early braking (𝑇𝑇𝐶a 1.72 s and 

𝐵𝑅𝑇 0.3 s, 𝑡 = 0 represents car completely stops). 
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2.4. Discussion 

In this chapter, the parameters of the car environment 𝑉a, 𝑇𝑇𝐶a, and the driver’s response 𝐵𝑅𝑇, 

𝐴a in the perpendicular car-to-cyclist conflicts were compared in the collisions and the near-

miss incidents. The average of the parameters was first compared (Fig. 2.5), and 𝑇𝑇𝐶𝑎 in the 

near-misses (2.15 s) was significantly larger than in the collisions (1.28 s), which indicates that 

the conflict severity in near-miss incidents was lower than in the collisions. Moreover, the 

driver’s braking response time (𝐵𝑅𝑇) was significantly smaller in the near-miss incidents than 

in the collisions, thereby, the collisions were more likely to be avoided.  

These results could be also obtained from Table 2.1. The p-value shows 𝑇𝑇𝐶a and 𝐵𝑅𝑇 

were the important parameters affecting the collision occurrences, and the partial regression 

coefficients suggest that 𝐵𝑅𝑇 was the most critical parameter leading to collisions. Matsui 

(2015) analyzed 166 car-to-cyclist near-miss and calculated the 𝑇𝑇𝐶. They concluded that the 

average 𝑇𝑇𝐶 in the near-misses was 2.1 s, and shortest average 𝑇𝑇𝐶 was 1.9 s when the 

cyclists suddenly appeared from obstacles. In the near-misses of drive recorder data, the 𝐵𝑅𝑇 

distributed from 0.47 s to 2.13 s with the average 1.02 s. In this study of dissertation, 𝐵𝑅𝑇 was 

0.43 s and 0.88 s in near-misses and collisions, respectively. Probability of collision occurrences 

of 50% corresponded to 0.7 s of 𝐵𝑅𝑇. These results were comparable with Makishita and 

Matsunaga’s study (2002), who concluded that 𝐵𝑅𝑇  in the conflicts against sudden 

appearances of pedestrians was small as 0.7 s. 

In this chapter, the braking deceleration limit of 5.2 m/s2 was newly proposed by comparing 

the collisions and the near-miss incidents from drive recorders as shown in the Fig. 2.8(b): 

collisions would occur when the required braking deceleration to stop the car exceeded the 

braking deceleration limit. From the time 𝑡𝑎 when the cyclist was visible to the time 𝑡b of 

driver’s braking onset (Fig. 2.8 (a)(b)), there were two types of collisions in terms of collision 

avoidance: one was that the 𝑇𝑇𝐶 was too smaller to be avoided (this type collisions were 

already in the left unavoidable area of braking deceleration braking in Fig. 2.8 (a)(b)). The 

second type was that the driver’s 𝐵𝑅𝑇 was too large and the collision occurred (this type 

collisions were on the right avoidable area from the braking deceleration limit as shown in Fig. 

2.8 (b).  

Based on the above results, the collision occurrence threshold of 𝐵𝑅𝑇 can be expressed by 

𝑇𝑇𝐶𝑎 according to Eq. (2.5) as follows: 
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𝐵𝑅𝑇 ≤ 𝑇𝑇𝐶𝑎 −

𝑉𝑏
2𝑎0

 (2.9) 

where 𝑎0 is 5.2 m/s2 (braking deceleration limit). 

Figure. 2.7(a) shows the relationship of 𝐵𝑅𝑇  and 𝑇𝑇𝐶a  bounded by the collision 

threshold at the time when the cyclist was visible. In the area 1 < 𝑇𝑇𝐶a < 2 s, the near-misses 

and the collisions was separated by 𝐵𝑅𝑇 = 𝑇𝑇𝐶a − 1. Assuming the typical car velocity 40 

km/h, the 𝑉𝑏 2𝑎⁄  was 1.07 s corresponding the velocity at braking start 𝑉b of 40 km/h and the 

car braking deceleration 𝑎  of 5.2 m/s2. Previous studies show that the driver’s BRT was 

relative to TTC at the appearance time of intrusion. Boda et al. (2018) used driving simulator 

experiments and test track experiments to compare the drivers’ response against the crossing 

cyclists, and they concluded that BRT and TTC had a linear relationship. Jurecki and Stańczyk 

(2014) shows that the driver’s BRT was linear relative to TTC at the time when the pedestrian 

was visible. However, the relationship of TTC and BRT was examined in the scenarios with 

lateral intrusions instead of in the emergency situations. In our study, the linear relationship of 

TTC and BRT was examined in the emergency situations, and 𝐵𝑅𝑇 = 𝑇𝑇𝐶a − 1 was proposed 

to separate the collisions and the near-miss incidents.  

In the area of 𝑇𝑇𝐶a > 2⁡s, the 𝐵𝑅𝑇 no longer increased as 𝑇𝑇𝐶a increased. Usually, we 

can consider two types of near-miss incidents in the area with 𝑇𝑇𝐶a > 2⁡s. One type is that the 

driver noticed the cyclist when he/she was visible and the driver applies braking to slow down. 

However, drivers usually did not apply heavy braking, but rather lighter braking to move slowly 

due to comfortability because the available time 𝑇𝑇𝐶 is large enough to avoid collisions. The 

second type is that drivers started braking as they approached the intersections to observe 

surroundings, although they did not notice the cyclist until the cyclist was close to the car. Since 

the driver’s foot was already on the braking pedal, they can immediately stop the car to avoid 

collisions. The driver’s slow down behavior at intersection is consistent with the findings of Op 

den Camp and Montella’ research (Montella et al., 2011; Op den Camp et al., 2017). They also 

observed that many drivers slowed down as they approached the intersection. Since the driver’s 

foot was already on the braking pedal, they can immediately stop the car to avoid collisions. 

Sharma’s research (2020) points out that the driver’s response time includes the delay time 

before the braking onset. During this delay time, some drivers intentionally delay braking to 

react against the stimulus. In our study, drivers did not intentionally delay braking but avoided 
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collisions by controlling the braking deceleration probably because the emergency level was 

high and close to collisions. 

In addition, the parameters 𝑉a, 𝑇𝑇𝐶a, 𝐵𝑅𝑇 and 𝐴a were compared in the near side and 

the far side shown in Fig 2.6. The driver’s response time 𝐵𝑅𝑇 was significantly smaller in the 

near side of 0.64 s than in the far side of 0.98 s. Jurecki and Stańczyk (2014) found that 𝐵𝑅𝑇 

increased with 𝑇𝑇𝐶a in response against the lateral pedestrians crossing on the road in the near 

side and the far side. From their study, the BRT was expressed as follows:  

 𝐵𝑅𝑇 = 0.286⁡𝑇𝑇𝐶 + 0.506 (near side) (2.10) 

 𝐵𝑅𝑇 = 0.351⁡𝑇𝑇𝐶 + 0.560 (far side) (2.11) 

On the other hand, in this study, the result of drive recorders shows that there was no differences 

of 𝑇𝑇𝐶a and 𝐵𝑅𝑇 in the near side and the far side of cyclist appearance (Fig. 2.6). This may 

be because the car-to-cyclist conflicts in the drive recorder data included all collisions and near-

misses at all intersections instead of the specific intersections. More study will be necessary to 

identify differences of the braking reaction time between the near side and the far side. 

 

2.5. Conclusions 

In this chapter, differences between the car kinematics and driver responses were examined in 

the perpendicular car to-cyclist conflict configuration. The near-miss and collision cases were 

newly compared using the real-world data of drive recorders. The results are summarized as 

follows: 

 The average of 𝑇𝑇𝐶a and drivers’ braking reaction time 𝐵𝑅𝑇 is significantly different 

while the car velocity is not significantly different in the near-misses and the collision at the 

time when the cyclist is visible to the driver. 

 𝑇𝑇𝐶a  and 𝐵𝑅𝑇  are significant parameters affecting collision occurrences: 𝑇𝑇𝐶a 

determines the conflict environment, and 𝐵𝑅𝑇  is the critical parameter leading to 

collisions. 

 Collisions cannot be avoided when the required braking deceleration exceeds the braking 

deceleration limit of 5.2 m/s2 at the time of braking onset.  

 The collision occurrences can be assessed by the 𝑇𝑇𝐶a, 𝐵𝑅𝑇, car velocity and braking 

deceleration, and the linear relationship of 𝑇𝑇𝐶a  and 𝐵𝑅𝑇  can be obtained when 

substituting the braking deceleration limit and the typical car velocity. 
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Chapter 3 

Cyclist Avoidance Behavior Interacting with Drivers 

3.1. Introduction 

In Chapter 2, the kinematic parameters of the cars and the driver responses between near-miss 

incidents and collisions were compared to understand the factors affecting car-to-cyclist 

collision occurrences. From observation of the drive recorder videos, it is implied that the cyclist 

behavior at intersections can have a significant influence on the collision occurrence. Previous 

studies of the cyclist behavior usually have used cyclist driving naturistic data. Landis et al. 

(2002) indicates that road traffic volume, total outside road width, cyclist’s crossing distance, 

and the number of lanes close to the intersection are the main factors affecting the prediction of 

risk for cyclists on shared roads. However, the cyclist behavior such as the cyclist traveling 

velocity or trajectory before collisions are usually obtained from the testimony of cyclists and 

witness involved in the collisions, or the cyclist behavior is inferred based on the reconstructed 

accidental scenarios. Thus, basically the cyclist behavior recorded in global accident data as 

well as in-depth accident database can include uncertainties. 

In this chapter, the near-misses and collisions of driver recorders are first classified into two 

types: near-miss cases avoided by cyclists and cases not avoided by cyclists. The parameters of 

cyclists are obtained from drive recorders, and the influencing factors that affect the cyclist 

avoided behavior in emergency situations are identified by analyzing the cyclist parameters and 

the kinematic parameters of cars in the two types of cases. 

 

3.2. Method 

3.2.1. Data of drive recorder 

To examine the cyclist avoidance behavior in emergency situations, car-to-cyclist perpendicular 

incidents were extracted from the near-miss database. The avoidance maneuvers of drivers and 

cyclists were classified into three types according to who took avoidance behaviors:  

(1) Near-misses avoided by cyclist 

(2) Near-misses avoided by car driver 

(3) Near-misses avoided by both cyclist and driver  

In the database, there were 228 near-miss car-to-cyclist perpendicular conflicts. In addition, we 

compared the near miss incidents with 63 collisions. Collison data of the driver recorder were 
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collected by this research project from the Aichi taxi association and Nagoya taxi association. 

Near-miss data were used from the database of Tokyo University of Agriculture and Technology. 

In order to simplify the analysis and to examine the effective avoidance behaviors against 

collisions, this study ignored avoidance behaviors of the cyclist and the driver during impact 

interactions phase in collisions. 

 

3.2.2. Definition of parameters 

The configuration of car-to-cyclist near-miss incidents at a perpendicular intersection is shown 

in Fig. 5.1. Cyclists have three positions (right, center, and left) on the road according to the 

cyclist’s direction, and cyclists traveling on the left can be judged as following traffic rules in 

Japan. In Section 2.2.2, the parameters related to the car were defined in uppercase. Similarly, 

the cyclist related parameters are defined here in lowercase. The cyclist traveling velocity and 

the distance to the collision point are defined as 𝑣 and 𝑑, respectively. The cyclist velocity 

and the cyclist distance to the collision point at the time when the cyclist is visible (𝑡𝑎) are 

denoted as 𝑣𝑎 and 𝑑𝑎, respectively. 

 

 

Fig. 3.1 Configuration in the car-to-cyclist perpendicular conflict. The right, middle and left of 

the road is the location relative to the cyclist traveling direction. 

 

3.2.3. Calculation of cyclist velocity and distance 

The parameters of the cyclists including the cyclist velocity and the distance from the front tire 

to the collision point cannot be directly obtained from videos of drive recorders. Thus, video 

analysis software TUAT-DRM for near-misses and Movias 2.0 for collisions are used to 

calculate the velocity and the distance of the cyclist. In the two software, there are three 
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processes to determine the distance. First, the video screen distortion caused by the camera lens 

is corrected. Second, the perspective transformation is conducted to the screen using 4 corner 

points on the screen, and the vanishing point on the screen is obtained. Third, a scaling factor 

from the screen to real dimension is determined. In TUAT-DRM, the distance between the right 

and left fender mirrors of the taxi is used as the reference, and the horizon distance can be 

obtained using this reference by a perspective theory. In Movias 2.0, the reference distance is 

the dimensions of the road signs (i.e., the width of the lines in crosswalks) on the road. Then 

the position of the front wheel tire’s contact point on the road surface is determined in each time 

frame, and the velocity of the bicycle relative to the taxi can be calculated. By using a fixed 

point on roads, the absolute velocity of bicycle is calculated, subtracting the fixed point velocity 

relative to the taxi from the bicycle velocity relative to the taxi. 

 

3.2.4. Identification of cyclist avoidable behavior 

In this study, the cyclist avoidance behavior is identified from the video and divided into 4 types 

as: 

 (1) Brake 

(2) Brake and swerve 

(3) Swerve 

(4) Brake and back 

In the cyclist’s avoided near-miss, the identification of brake is that the cyclist stops or 

obviously decelerates before entering the collision area, and the identification of swerve is that 

the cyclist turns the bicycle’s handlebar around (Fig. 3.2). The behavior to avoid collisions is 

judged to be swerving with brake if the cyclist stops after swerving, and the behavior of cyclists 

is judged to be swerving if the cyclist rides away after turning the handle. Another identification 

of cyclist avoidable behavior is when the cyclist stops the bicycle and backs it up until the car 

passes in front of the cyclist. 
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-0.5 s -0.2 s 0 s 

(a) Cyclist avoided near-miss by braking 

 

-0.5 s -0.2 s 0 s 

(b) Cyclist avoided near-miss by swerving 

Fig. 3.2 Two examples of cyclist avoided collision by braking (a) and swerving (b). Time 0 s 

represents the time when the car arrives at the cyclist path. 

 

3.2.5. Statistical analysis 

3.2.5.1. Descriptive statistics 

First, independent parameters which can affect the cyclist’s and driver’s avoidance behavior are 

selected: 𝐴𝑎, 𝐵𝑅𝑇, 𝑉𝑎, and 𝐷𝑎 for drivers, and 𝑣𝑎, and 𝑑𝑎 cyclists involved in the car-to-

cyclist near-miss at the time 𝑡𝑎  when the cyclist is visible. Although the 𝐵𝑅𝑇  (braking 

reaction time) is a parameter related to driver responses, cyclists may take actions to avoid 

collisions through judging the time duration of between their positions and the car braking. 

Thus, 𝐵𝑅𝑇 is included in the data analysis. Second, these parameters are subjected to one-way 

ANOVA to examine whether there are significant differences in these groups for the cyclist 

avoided near-miss, cyclist not avoided near-miss and collision groups. When there is a 

significant difference in the variance in the sets of data, Dunnett’s test is applied to calculate the 

difference among the means of the three avoidance groups. All significant level in the tests are 

set to 0.05. 
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3.3.5.2. Discriminant analysis 

Traveling in the right-of-way road would have different behavioral influences on traffic 

participants. In car-to-cyclist perpendicular conflicts at intersections, two types of right of way 

are classified as follows:  

(1) The car has the right of way, and the cyclist needs to yield to the right of way, 

(2) The cyclist has the right of way, and the car driver needs to yields to the right of way.  

To examine if the right of way has influences on the parameters of the cyclist avoidable behavior, 

discriminant analysis is applied. The right-of-way of the car and the cyclist is set as a nonmetric 

dependent variable (0 represents right of way of the car, and 1 represents right of way of the 

cyclist). All relevant variables 𝐴𝑎, 𝐵𝑅𝑇, 𝑉𝑎, 𝐷𝑎, 𝑣𝑎, and 𝑑𝑎 at the time when the cyclist is 

visible are selected as explanatory variables. In addition, Fisher’s function and Unstandardized 

function are used as function coefficients in this discriminant analysis. 

 

3.2.5.3. Logistical regression analysis 

A logistical regression analysis is applied to express the presence/absence of cyclist’s avoidance 

behavior using the parameters of velocity and distance of cars and bicycles. The logistical 

regression for cyclist avoidance is expressed as: 

 
ln

𝑃

1 − 𝑃
= 𝛽0 + 𝛽1𝑥1 +⋯+ 𝛽𝑛𝑥𝑛 (3.1) 

where 𝑃 is the probability of cyclist avoidance (0: cyclist avoided in near-miss incidents, and 

1: the cyclist did not avoid but the driver avoided in near-miss incidents), and 𝑥𝑖  is the 

explanatory variable, and 𝛽𝑖  is the coefficient of explanatory variables (𝑖 = 1,2, … ,6). The 

parameters 𝐴𝑎 , 𝐵𝑅𝑇 , 𝑉𝑎 , 𝐷𝑎 , 𝑣𝑎 , and 𝑑𝑎  are explanatory variables to estimate factors 

influencing the presence/absence of the cyclist avoidance behavior. Parameters with P-values 

less than 0.05 in the result of logistic regression analysis are extracted for the further logistic 

regression analysis to obtain more precise equations. 

In Chapter 2, 𝑇𝑇𝐶𝑎, 𝐵𝑅𝑇 and 𝐴𝑎 were employed as explanatory variables in the logistic 

regression, this is because we focus on the effect of driver behavior on collision occurrences 

instead of the driver’s judgement to cross the cyclist path. In the collected collisions and near-

miss data, all the drivers had taken behaviors to avoid collisions for cyclist intrusion (they 

decide to react to avoid collisions for cyclist intrusion), and thus only driver responses and car 

parameters were examined. Instead, in the analysis of cyclist behavior in this chapter, we focus 
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on the factors that influence the cyclist’s judgment whether to cross the intersections or not, and 

thus all factors involving the cyclists crossing intersections are included in the logistic 

regression analysis. 

 

3.3. Results 

3.3.1. The number of cyclist avoidance behavior 

The number of the near-miss incidents and collisions classified by cyclist and driver avoidance 

behavior is presented in Table 3.1. There are 85 cases of cyclist avoidance behavior: among 

them 31 cases are avoided by both cyclist and driver avoidance behavior, and 54 cases are only 

a cyclist took avoidance behavior (near-miss is successfully avoided by the cyclist avoidance 

behavior instead of the car driver avoidance behavior). The cyclist does not take avoidance 

behavior 143 cases: among them the driver’s avoidance behavior is observed in 80 cases, and 

the driver’s avoidance behavior is not observed in 63 cases.  

 

Table 3.1 Number of cyclists and drivers with and without avoidance behavior in near-miss 

incidents and collisions. 

  Car driver 

  
w/ avoidance 

behavior 

w/o avoidance 

behavior 
Total 

Cyclist 

w/ avoidance behavior 31 54 85 

w/o avoidance behavior 80 63 143 

Total 111 117 228 

 

Figure. 3.3 shows the relationship of 𝑇𝑇𝐶𝑏 and the car velocity 𝑉𝑏 at the time of car’s 

brake onset 𝑡𝑏 in the cyclist avoided and the cyclist not avoided near-miss incidents. When the 

required acceleration of the car (𝑉𝑏 2⁡𝑇𝑇𝐶𝑏⁄ ) is higher than the braking performance limit (𝑎 =

5.2⁡m/s2 in the Section 2.3.3 of Chapter 2), the car cannot stop before reaching the collision 

point. The cyclists who do not take avoidance behavior is distributed in the right area of the 

car’s braking performance limit (𝑉𝑏 2⁡𝑇𝑇𝐶𝑏⁄ < 5.2⁡m/s2 ), and car drivers can avoid the 

collision by car braking. In this area, the cyclists do not take avoidance behavior probably 

because 𝑇𝑇𝐶𝑏 is still large to take avoidance behavior for cyclists. 

Of the 85 near-miss incidents in which the cyclists took avoidance behavior, 14 cyclists are 

beyond the car’s braking limit. These 14 cases would have resulted in a collision if the cyclist 
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had not taken avoidance behavior, indicating that cyclist avoidance behavior is effective in 

avoiding collisions. 

 

Fig. 3.3 Relationship between 𝑇𝑇𝐶𝑏 and the car velocity 𝑉𝑏 at the time of brake onset tb 

with/without cyclist avoidance behavior in near-miss incidents (the line shows the braking 

limit). Note: collisions are not included. 

 

3.3.2. Descriptive parameters of car and driver  

Figure. 3.4 shows the mean of the parameter 𝐴𝑎, 𝑉𝑎, and 𝐷𝑎 of the car at the time when the 

cyclist is visible ( 𝑡𝑎 ). Statistical differences using one-way ANOVA is also added. All 

parameters are significantly different among groups except for 𝐵𝑅𝑇 (F(2, 224) = 2.228, p = 

0.11). The mean acceleration of the car 𝐴𝑎 in the near-miss group is lower than in the collision 

group. The p-value of the difference of the car velocity 𝑉𝑎 between the cyclist avoided near-

miss and the cyclist not avoided near-miss is close to the significant level (p = 0.054). The 

distance of the car 𝐷𝑎 does not show significant difference in between the cyclist avoided near-

miss and the cyclist not avoided near-miss (p = 0.005). 
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(a) Car acceleration                       (b) Brake reaction time 

 

(c) Car velocity                      (d) Distance from car to cyclist 

Fig. 3.4. Mean values of 𝑉𝑎 and 𝐷𝑎 in cyclist avoided near-misses and cyclist not avoided 

near-miss incidents. The error bars represent 95% confidence interval. 

 

3.3.3. Cyclist avoidance behavior 

3.3.3.1. Behavior classification 

The percentage of the cyclist behavior with different car velocities 𝑉𝑎 at the time when the 

cyclist is visible 𝑡𝑎 is shown in Fig. 3.5(a). The percentage of avoidance behavior increases 

while that of no avoidance behavior of cyclists decreases as the car velocity increases. Among 

types of cyclist avoidance behavior, the primary behavior of the cyclists is bicycle braking. 

Some cyclists use swerving or applied both braking and swerving to avoid collisions. In addition, 

4 cyclists applies braking and go back the bicycle to avoid accidents.  

Figure. 3.5(b) shows the percentage of the cyclist behavior with cyclist velocity 𝑣𝑎. The 

trend of cyclist behavior with the cyclist velocity is contrary to that with the car velocity. The 

percentage of the avoidance behavior decreases, and that of no avoidance increases as the cyclist 

velocity increases. Hence, it can be summarized that cyclists tend to take avoidance behavior 

as the car velocity is high and the cyclist velocity is low. 

 

 

Group p = 0.11 
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Fig. 3.5 Cyclist avoidance behavior with different car velocity 𝑉𝑎 and cyclist velocity 𝑣𝑎 

when the cyclist is visible (𝑡𝑎). 

 

3.3.3.2. Cyclist direction and location relative to the car 

Table 3.2 presents the ratio of cases with cyclist’s traveling location and intruding direction 

relative to the car in the cyclist avoided near-miss, cyclist not avoided near-miss and the 

collision group. Traffic violation of the cyclists is also included in this table. The ratio of 

cyclist’s intruding from the far side is larger than that from the near side, particularly in the 

cyclist not avoided near-miss incidents. On the other hand, more cyclists violate traffic rules 

(traveling in the right side of the road) in collisions (61%) than in near-miss incidents (53% and 

46%). 
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Table 3.2. Proportion of intruding direction and location of cyclists relative to the car 

and traffic violation of the cyclists. 

 
Cyclist avoided  

(near-miss) 

Cyclist not avoided 

(near-miss) 
Collision 

Side Near Far Near Far Near Far 

Left 0.27 0.20 0.24 0.30 0.21 0.30 

Center 0.04 0.16 0.04 0.16 0.02 0.07 

Right 0.14 0.19 0.10 0.16 0.20 0.28 

Total 0.45 0.55 0.38 0.63 0.43 0.57 

Violation 0.53 0.46 0.61 

 

 

3.3.3.3. Cyclist velocity and distance 

The mean velocity of the cyclist in the cyclist avoided, cyclist not avoided and collision groups 

at the time when the cyclist is visible is compared in Fig. 3.6(a). The mean velocity of cyclists 

in the cyclist avoided near-miss, cyclist not avoided near-miss and collision group is 9.8 km/h, 

12.7 km/h and 13.5 km/h, respectively (F(2, 198) = 12.393, p < 0.001). The p-value indicates 

that the velocity of the cyclist’s avoided near-miss is significantly lower than that of the cyclist’s 

not avoided near-miss and the collision. Figure. 3.6(b) shows the distance from the bicycle to 

the collision area. The distance 𝑑𝑎 in the cyclist’s not avoided near-miss is significantly larger 

than in the cyclist’s avoided near-miss and the collision. Hence, cyclists tend to take avoidance 

behavior as the cyclist velocity is low and the distance to the car is small. On the other hand, 

collisions tend to occur as the cyclist velocity is high and the distance to the car is small. 

The distribution of cyclist velocity at the time when the cyclist is visible in the cyclist 

avoided near-misses, cyclist not avoided near-misses and collisions is shown in Fig. 3.7. The 

accumulation of cyclist velocity in the cyclist avoided near-misses is higher than the cyclist not 

avoided near-misses and the collision group, which imply that the overall cyclist velocity in 

cyclist avoided near-misses is smaller than the other two groups. The distribution and 

cumulative curve of the collision show that the percentage of high cyclist velocity in the 

collisions is larger than the other two groups. 
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         (a) Cyclist velocity                         (b) Distance from cyclist to car path 

Fig. 3.6 Cyclist velocity and distance at the time when cyclist is visible classified by cyclist 

avoidance behavior. 

 

   

(a) Cyclist avoided near-misses            (b) Cyclist not avoided near-misses 

 

(c) Collision 

Fig 3.7 Distribution of cyclist velocity at the time when the cyclist is visible in cyclist avoided 

collision group, cyclist not avoided group and collision (cases where cyclist velocity cannot 

be calculated were not included). 
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3.3.4. Effects of right of way 

Table 3.3 presents the influences of the right of way of drivers or cyclists on the parameters 𝐴𝑎, 

𝐵𝑅𝑇, 𝑉𝑎, 𝐷𝑎, 𝑣𝑎, and 𝑑𝑎 using logistic regression analysis. The car deceleration 𝐴𝑎 (p = 

0.023), the car velocity 𝑉𝑎 (p =0.004), and the cyclist distance to the collision point 𝑑𝑎 (p = 

0.007) is significant to discriminate the right of way of the car and the cyclist. Based on the sign 

of the partial regression coefficients, the car acceleration and the car velocity is higher, while 

the distance between the cyclist and the collision point is smaller when the car has the right of 

way at the time when the cyclist was visible. 

 

Table 3.3 Effects of right of way using discriminant analysis. (0 represents right of way of 

the car and 1 represents right of way of the cyclist).  

Explanatory 

variables 

Discriminant 

coefficient 
Wilks’ lambda F-value P-value 

𝐴𝑎 0.3341 0.9675 5.3060 0.0226 

𝐵𝑅𝑇 -0.1401 0.9963 0.5882 0.4443 

𝑉𝑎 0.0603 0.9497 8.3620 0.0044 

𝐷𝑎 0.0395 0.9912 1.4068 0.2374 

𝑣𝑎 0.0064 0.9997 0.0517 0.8204 

𝑑𝑎 -0.1639 0.9551 7.4284 0.0071 

 

3.3.5. Parameter determining taking avoidance behavior 

Table 3.4 presents the partial coefficients and p-values of explanatory variables for the presence 

or absence of cyclist’s avoidance behavior in the logistic regression analysis. Car velocity 𝑉𝑎, 

car distance 𝐷𝑎, and cyclist velocity 𝑣𝑎 at the time when the cyclist is visible, are primary 

parameters for determining cyclist’s taking avoidance behavior in near-miss incidents based on 

the p-value (P < 0.05). The partial regression coefficient indicates that the cyclist is more likely 

to take maneuvers to avoid collisions when 𝑉𝑎 is higher, 𝐷𝑎 is smaller, and 𝑣𝑎 is lower. 

Significant parameters such as 𝑉𝑎, 𝐷𝑎, and 𝑣𝑎 are chosen based on p-value < 0.05 in Table 

3.4, and applied to the logistic regression, again. Table 3.5 presents the coefficients and p-value 

of the logistic regression. Fitting the partial regression coefficient, the probability of avoidance 

by cyclists is expressed as follows: 

 

𝑃 =  
1

1 + exp⁡(−1.006 − 0.1348⁡𝑉𝑎 + 0.1996⁡𝐷𝑎 + 0.1448⁡𝑣𝑎)
 (3.2) 
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In Eq. (3.2), the probability of cyclist avoidance increases as the car velocity is higher and the 

distance between the cyclist and the collision point is smaller. Thus, we can set up a hypothesis 

that a cyclist may avoid collisions based on TTC (= 𝑉/𝐷). Hence, a logistic regression was 

conducted using 𝑇𝑇𝐶𝑎 instead of 𝑉𝑎 and 𝐷𝑎. The regression coefficients of cyclist avoidance 

is presented in Table 3.6, and the probability of avoidance by cyclists using TTC can be 

expressed simply as follows: 

 

𝑃 =  
1

1 + exp⁡(−2.2738 + 0.3131⁡𝑇𝑇𝐶𝑎 + 0.1376⁡𝑣𝑎)
 (3.3) 

The prediction accuracy of the regression is the same level as 70.9% in Eq. (3.2) and Eq. (3.3).  

 

Table 3.4 Probability of presence/absence of cyclist avoidance behavior in 

logistic regression analysis (cyclist avoided near-misses (P = 1) and the cyclist 

not avoided near-misses (P = 0)). The prediction accuracy is 71.5%. 

Explanatory 

variables 

Partial 

regression 

coefficient 

Standard 

error 

Standard 

regression 

coefficient 

P-value 

𝐴𝑎 0.2855 0.2331 0.2698 0.2207 

𝐵𝑅𝑇 0.3829 0.2749 0.3846 0.1636 

𝑉𝑎 0.1443 0.0402 1.6135 <0.001 

𝐷𝑎 -0.2170 0.0654 -1.4866 <0.001 

𝑣𝑎 -0.1095 0.0428 -0.5390 0.0105 

𝑑𝑎 -0.1458 0.0956 -0.4578 0.1272 

Constant 1.0754 0.6887  0.0983 

 

Table 3.5. Reduced parameters of 𝑽𝒂, 𝑫𝒂, and 𝒗𝒂 of the cyclist avoidable 

behavior using logistic regression analysis. The prediction accuracy is 70.9%. 

Explanatory 

variables 

Partial 

regression 

coefficient 

Standard 

error 

Standard 

regression 

coefficient 

P-value 

𝑉𝑎 0.1348 0.0316 1.5082 <0.001 

𝐷𝑎 -0.1996 0.0523 -1.3675 <0.001 

𝑣𝑎 -0.1448 0.0403 -0.7124 <0.001 

Constant 1.0060 0.5748  0.0801 
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Table 3.6. Reduced parameters 𝑻𝑻𝑪𝒂 and 𝒗𝒂 of the cyclist avoidable behavior 

using logistic regression analysis. The prediction accuracy is 70.9%. 

Explanatory 

variables 

Partial 

regression 

coefficient 

Standard 

error 

Standard 

regression 

coefficient 

P-value 

𝑇𝑇𝐶𝑎 -0.3131 0.1326 -0.5005 0.0182 

𝑣𝑎 -0.1376 0.0376 -0.6773 < 0.001 

Constant 2.2738 0.5476  < 0.001 

 

 

3.4. Discussion 

In this chapter, the cyclist behavior in emergency situations was examined through 

comparing between the cyclist collision avoided group and the cyclist not collision avoided 

group using videos in the drive recorders. In chapter 2, the driver responses to cyclist intrusions 

at intersections were compared in collisions and near-miss incidents after the drivers had 

determined to take actions to avoid cyclist collisions. The data where the driver decided to cross 

the cyclist path after the driver judged all parameters involving the car and the cyclist could not 

be collected by drive recorder in this study (the car does not have large decelerations in the 

lateral and the longitudinal directions in this situation, and data cannot not be uploaded). Thus, 

only the 𝑇𝑇𝐶𝑎, 𝐵𝑅𝑇 and 𝐴𝑎 relative to the car and the driver as explanatory variables were 

used in logistic regression analysis to investigate the factors influencing the collision 

occurrences. Unlike the analysis of driver behaviors in Chapter 2, the cyclist motivation to cross 

the car path at intersections to avoid collisions could be obtained from drive recorder data. Thus 

all parameters 𝐴𝑎 , 𝐵𝑅𝑇, 𝑉𝑎 , 𝐷𝑎 , 𝑣𝑎 , and 𝑑𝑎  relative to the judgements by cyclist were 

examined in the logistic regression analysis to investigate the factors influencing the cyclist 

decide to avoid collisions. Besides, the avoidance behavior taken by cyclists was more effective 

than taken by drivers, because the cyclist could stop or swerve in a short time. Hence this chapter 

did not focus on the behavior after the cyclists decided to take actions to avoid the collisions. 

In this chapter, the parameters of cars such 𝑉𝑎, 𝐷𝑎, 𝐴𝑎 and 𝐵𝑅𝑇, as well as the kinematic 

parameters of cyclists 𝑣𝑎  and 𝑑𝑎  at the time when the cyclist was visible were firstly 

compared in the cyclist avoided group and the cyclist not avoided group. The results show that 

the car velocity 𝑉𝑎, the cyclist velocity 𝑣𝑎 and the cyclist distance to the collision point 𝑑𝑎 

were significantly different in the two groups (Fig. 3.4 for cars and Fig. 3.6 for cyclists). These 

parameters were further examined to understand the influences affecting the cyclist avoidance 
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behavior using logistical regression analysis. The car velocity 𝑉𝑎, the distance of the car to the 

collision point 𝐷𝑎 and the cyclist velocity 𝑣𝑎 were the critical factors affecting the cyclist 

avoided behavior. As 𝑉𝑎 increased, 𝐷𝑎 decreased and the 𝑣𝑎 decreased, then cyclists were 

more likely to avoid and stop (Table 4).  

These results imply that there is some basis for a cyclist to judge to cross intersections when 

a car approaches. It is likely that cyclists judged whether they could pass an intersection based 

on car’s approaching velocity and distance. Besides, cyclists also did not tend to take avoidance 

behavior if cyclist’s traveling velocity was high probably because they did not recognize hazard 

for crossing the intersection. 

Figure. 3.3 shows the effectiveness of cyclist’s avoidance behavior in preventing collisions 

from occurring. The 14 cases in which avoidance behavior was taken by cyclists are distributed 

on the left side above the braking limit of the car. On the other hand, all cases in which no 

avoidance behavior was taken by cyclists are distributed on the right side below the braking 

limit. This suggests that cyclists may have thought that there was a possibility of a collision if 

they did not take avoidance behavior by themselves. Previous studies have investigated only 

the avoidance behavior of car drivers in emergency situations. However, the results of this study 

show that even if a car cannot stop due to braking restrictions, a collision can still be avoided if 

the cyclist notices emergencies and applies braking and stops.  

It should be noted that near-miss incidents in drive recorder is recorded by the trigger 

(threshold) of braking deceleration. Therefore, the drive recorder data do not include near-miss 

incidents that drivers did not take any maneuvers but only cyclists took avoidance behaviors. 

This can underestimate the effectiveness of cyclist avoidance behavior in the analysis using 

drive recorder. 

One of the highlights of this study is that we calculated the cyclist velocity at intersections 

in the conflicts by using video processing software. The average cyclist velocity in the cyclist 

avoided and cyclist not avoided group was 9.9 km/h and 12.9 km/h. The average cyclist velocity 

in the collisions was slightly higher as 13.5 km/h. Some previous studies calculated the cyclist 

velocity in the naturistic traveling. Thompson (1997) shows that the average cyclist velocity 

was 14.8 km/h on the road without motor vehicles. Balevski and Lyubenov (2018) calculated 

the average cyclist velocity 14-15 km/h and 12 km/h on the narrow road. Pein et al. (1997) 

calculated the cyclist velocity of 12.7 km/h crossing intersections. In this dissertation, the 

cyclist’s velocity was measured when the cyclist was approaching to the intersection, thereby 
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the average velocity was probably lower than the normal cycling on the road without 

intersections. The cyclist velocity on the cyclist avoided group was lower than in the cyclist not 

avoided group (see Fig. 3.6(a)), this is because the cyclists who took the avoidance behavior 

determined to decelerate recognizing the conflict configuration.  

The cyclist can have various velocity distributions depending on the road type. However, in 

this research study, the road of the cyclists traveled was not classified, and the data included all 

road types in the collisions and near-misses such as pavements as well as vehicle and pedestrian 

shared roads. Besides, Blanc et al. (2016) showed that the facilities and the width of roads have 

influences on cycling comfort, thus this result in Japan cannot be applied to road environments 

in foreign countries. 

In this chapter, errors may occur when calculating the cyclist velocity: although the video 

was calibrated before using TUAT-DRM and Movias 2.0, errors may be included when the 

cyclist appeared from the edge of the screen with high distortion of the screen. At the time when 

the cyclist was visible, the cyclist was far from the drive recorder camera, and the wheel of 

bicycle sometimes was not be clearly extracted in the screen, which may also lead to errors. 

Moreover, in the near-miss incidents, the collision point was determined based on the 

assumption of the cyclist trajectory.  

3.5. Conclusions 

The avoidance behavior of cyclists in the near-miss incidents was investigated based on the 

observation of videos of driver recorders. The conclusions are as follows: 

 Among the 85 near-miss incidents where cyclist shows avoidance behavior, 14 cases are 

found to be effective to avoid actual collisions. These cases are included in the area which 

exceed the car braking limit. 

 The velocity of the cyclists in the cyclist collision avoided group is significantly smaller 

than that of the cyclist not taking avoidance behavior in near-miss incidents and collisions. 

 The right of way of the road has a significant influence on the car deceleration and the 

distance from the bicycle to the collision point: the car on the road with the right of the way 

tends to have high acceleration and high velocity, and small distance of cyclist to the 

collision point. 
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 The probability of taking avoidance behavior by cyclist is expressed with logistic regression 

by using vehicle 𝑇𝑇𝐶𝑎 and the cyclist velocity 𝑣𝑎: smaller 𝑇𝑇𝐶𝑎 and lower 𝑣𝑎 lead to 

high probability of cyclist to take avoidance behavior. 
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Chapter 4 

Study of Driver Response in Avoiding Collisions Using Driving Simulator 

4.1. Introduction 

Many cyclists are involved in collisions against cars every year. Hence, understanding the driver 

responses in an emergency car-to-cyclist scenario is necessary to develop active safety systems 

such as autonomous emergency braking (AEB) and advanced driver assistance system (ADAS) 

to reduce the injuries and fatalities in collisions involving cyclists.  

Driving simulators can effectively and safely reflect drivers’ behavior in the real world 

(Underwood et al., 2011). Driving simulators are used as a useful method to understand driver’s 

responses in the traffic conflicts (Markkula et al., 2019). Some studies investigated driver 

behavior using driving simulators and test tracks in the car-to-car and car-to-pedestrian 

conflicts, showing that braking is the primary response in avoiding collisions, and driver also 

combines with swerving to avoid collisions in scenarios where there is small time-to-collision 

due to lateral intrusions (Morita et al., 2013; Jurecki and Stańczyk, 2014; Li et al., 2019). 

However, there is no research examining the driver responses interacting with intruding cyclist 

from both right and left directions in collisions. 

The driver responses and car kinematics in collisions and near-miss incidents from drive 

recorder data were compared in chapter 2. In this chapter, three typical collisions are extracted 

from drive recorder data and reconstructed to examine responses of different drivers in the three 

scenarios using a driving simulator. The driver responses and car kinematics in the scenarios 

involving the cyclist intruding from the near side and the far side with various time-to-collisions 

(TTC) at the time when the cyclist is visible are examined. In addition, gaze distributions of 

drivers are measured by an eye track system in the driving simulator experiments to determine 

the driver’s gaze location and hazard recognition ability for cyclist intruding from different 

sides. The time when the driver notices the cyclist is measured, and the driver responses is 

investigated by the TTC when the driver notices the cyclist. 

 

4.2. Methods 

4.2.1. Driving simulator and participants 

An immersive driving simulator from Nagoya University is used to examine the driver’s 

reactions in emergency situations as shown in Fig. 4.1. This driving simulator is surrounded by 
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five 240-inch high-brightness displays to provide the driver with a 315 degrees wrap-around 

driving experience. The front compartment of a mini car is mounted on a 6-axis motion pedestal 

with 6 degrees of freedom, which can provide the driver with the sensation of accelerating and 

decelerating the vehicle in both linear and rotational modes. 

 

Fig. 4.1 Immersive driving simulator. 

 

4.2.2. Test procedure 

Three typical collisions are extracted from drive recorder data and were reconstructed using 

UC/win Road software in the driving simulator. Table 4.1 and Fig. 4.2 show the parameters and 

reconstructed scenarios. In scenario N1, the cyclist model is illegally traveling on the right on 

his/her way at a velocity of 10 km/h and appearing from the left side (near side) with respective 

to the car in an intersection. The participants are asked to drive the car at 40 km/h and the 

distance to the path of the cyclist is 17 m, resulting in 𝑇𝑇𝐶a of 1.5 s at the time when the cyclist 

is visible.  

In scenario N2, the cyclist intrudes into an intersection from the left side (near side) with a 

velocity of 10 km/h relative to the driver. The cyclist model is illegally riding on the right side 

of his/her road. The participants are asked to drive at a velocity of 30 km/h. The distance to the 

cyclist path is 7 m at the time when the cyclist appears from the obstacle, and 𝑇𝑇𝐶a is small 

as 0.8 s.  

In scenario F, the cyclist model emerges from the right side (far side) relative to the driver, 

and the cyclist is traveling at a velocity of 15 km/h on the left side of his/her road. The 

participants are asked to drive the car at 40 km/h. The distance from the front of the car to the 

cyclist traveling trajectory is 23 m when the cyclist was visible, resulting in relatively larger 

𝑇𝑇𝐶a of 2.0 s.  
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The cyclist appears at the 7th, 3rd, and 9th intersection, and the distance from the starting 

point to the cyclist traveling path is 311 m, 186 m, and 756 m in the scenario N1, N2, and F, 

respectively (Fig. 4.3). When the car passes the checkpoint, the cyclist model is set to start to 

move, and 𝑇𝑇𝐶a  could be consistent with the expected 𝑇𝑇𝐶a  if the driver drove at an 

instructed velocity. 

Before the participants starts the three scenarios, the participants are asked to drive at 

50 km/h on the practice trial with 4 intersections over 900 m. In the practice trial, the 

participants are instructed to drive in compliance with traffic rules to adapt to 

accelerate/decelerate and follow the front car of them. Three scenarios are randomly allocated 

to the participants after completing the practice trial. 

 

Table 4.1 Parameters in the driving simulator experiments 

Scenario 𝑇𝑇𝐶a (s) 
Car velocity 

𝑉a (km/h) 

Cyclist velocity 

𝑣 (km/h) 

Distance from the 

car to the cyclist 

𝐷a (m) 

Cyclist side 

N1 1.5 40 10 17 Near 

N2 0.8 30 10 7 Near 

F 2.0 40 15 23 Far 
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(a) Scenario N1 

 

(b) Scenario N2 

 

 

(c) Scenario F 

Fig. 4.2 Three reconstructed test scenarios in the driving simulator. 
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(a) Scenario N1  

 

(b) Scenario N2 

 

(c) Scenario F 

Fig. 4.3 Top view of three scenarios. The distance from the starting point to the cyclist path of 

scenario N1, scenario N2, and scenario F is 311 m, 186 m, and 756 m, respectively. 

 

 

4.2.3. Eye track 

Figure. 4.4 shows the Smart Eye Pro DX system installed in the driving simulator as a gaze 

track system. This system consists of four cameras: three cameras are installed on the instrument 

panel and one is installed above the mirror. The system measures the driver’s gaze with 160 

degrees by calculating the driver’s head movement, direction of gaze, eye position, and eye 

opening degree in the video. Calibration is required before each participant starts the experiment. 

First, the participants are asked to hold up a cardboard with a chessboard in the front of the 

cameras for camera lens calibration. Next, the participants are asked to stare at the red point in 

the center of the screen for gaze calibration. 

 

Checkpoint

Start

Checkpoint

Start

StartCheckpoint
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Fig. 4.4 Eye track system installed in the car 

 

4.2.4. Participants 

Thirty-one participants with driver’s licenses are recruited through the Nagoya University 

website, including 29 males and 2 females. The age distributions are 14 participants in their 20s, 

1 participant in their 30s, 5 participants in their 40s, 6 participants in their 50s, 3 participants in 

their 60s, and 2 participants in their 70s. The mean age is 40.3 years old with the standard 

deviation of 17.2 years old. Moreover, the work or study of all participants is not relevant to 

this research. This experiment is approved by the Ethics Committee of Nagoya University 

Graduate School of Engineering (No. 20-1). 

 

4.2.5. Statistical analysis 

The same statistical analysis is applied in the driving simulator experiment as in the Section 

2.2.2. The difference of mean values of the car kinematic parameters 𝑇𝑇𝐶a and 𝑉a and the 

parameters of the driver’s response 𝐵𝑅𝑇 and 𝐴a at the time 𝑡a when the cyclist is visible are 

examined in the avoidance and the collision groups. Moreover, the sample in the driving 

simulator is small, and thus normality is examined before t-test. If the data do not satisfy the 

normal distribution, Mann-Whitney test (non-parametric test) is applied instead of t-test. 

A decision tree is applied to hierarchically clarify the factors influencing the collision 

occurrence. The independent parameter 𝑇𝑇𝐶a , 𝐵𝑅𝑇  and 𝐴a  was used in the IBM SPSS 

Statistic as explanatory variables. The growth method of classification regression tree (CRT) is 

selected for the decision tree. 
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A logistic regression analysis is employed in the three scenarios to calculate the values of 

drivers’ braking response 𝐵𝑅𝑇 and braking deceleration 𝑎0 to determine the threshold of the 

collision occurrence. The logistic regression is expressed as follows: 

 
ln

𝑃

1 − 𝑃
= 𝛽0 + 𝛽1𝑥1 (4.1) 

where 𝑃 is the probability of collision occurrence (0 was avoidance and 1 was crash), 𝑥1 is 

explanatory variable 𝐵𝑅𝑇 or 𝑎0, and 𝛽𝑖 is its coefficients (𝑖 = 1, 2).  

 

4.2.6. Threshold of collision occurrence 

The collision occurrence/avoidance can be expressed using TTC, BRT, velocity, and braking 

deceleration (see Eq. (2.5)). The threshold of collision avoidance can be obtained if the drivers 

apply braking to avoid collisions. 

 
𝑇𝑇𝐶a − 𝐵𝑅𝑇 −

𝑉b
2𝑎0

> 0 (4.2) 

The value of 𝐵𝑅𝑇 and 𝑎0 corresponding 50% probability can be calculated from Eq. (4.1), 

and this value is substituted into Eq. (4.2) to obtained the threshold of collision occurrence. 

In addition to applying driver’s braking to avoid collisions, there are also situations where 

drivers can avoid collisions by accelerating or maintaining velocity at the intersection: the driver 

passes the collision point before the cyclist reaches the collision point. In this situation, it takes 

time 𝑑a/𝑣a  for the cyclist to arrive at the collision point, and this time duration 𝑑a/𝑣a  is 

smaller than the time duration 𝑇𝑇𝐶a + 𝐿/𝑉a for the rear end of the car (car length 𝐿 in Fig. 

2.3) to pass the collision point. Hence, the threshold to avoid collisions can be expressed as 

follows: 

 
𝑇𝑇𝐶a +

𝐿

𝑉a
−
𝑑a
𝑣a

< 0 (4.3) 

The collision occurrences can be examined using Eqs. (4.2) and (4.3).  

 

4.3. Results 

4.3.1. Driver avoidable results 

The driver responses to avoid cyclists in the car-to-cyclist conflicts at a perpendicular 
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intersection was examined by the driving simulator. Figure. 4.5 shows the number of driver’s 

avoidance/collision is shown with classification of driver’s responses in the driving simulator. 

In scenario N1, 8 drivers avoids collisions, and 23 drivers collide with the cyclist. In scenario 

N2, 10 drivers avoid collisions, and 21 drivers have collisions against the cyclist. In scenario F, 

18 drivers avoid collisions, and 13 drivers do not avoid collisions. The driver has 4 types of 

behaviors to avoid collisions: braking, braking with swerving, swerving only, and no response. 

No response is that the driver maintains the behaviors after the cyclist is visible. In addition, 

driver’s braking and swerving but impacting with the cyclist is also included in the avoidance 

behavior.  

Most drivers applied braking to avoid collisions in all scenarios. In the collision group, more 

drivers apply braking with swerving and only swerving compared to the avoidance group. The 

drivers take more evasive maneuvers in the near side than in the far side. In scenario N1, 10 

drivers apply braking with swerving and 3 drivers take swerving only in the collision group, 

and there is only 1 driver applies braking with swerving in the avoidance group. In scenario N2, 

7 drivers employ braking with swerving and 1 driver employs swerving only in the crash group, 

and 3 drivers apply braking with swerving in the avoided group. In scenario F, 3 drivers apply 

braking with swerving and 1 driver applies only swerving in the crash group, and only 1 driver 

applies braking with swerving and 1 driver applies only swerving in the avoided group. In all 

scenarios, there are 6 driver apply only swerving, and 5 drivers of them do not avoid collisions, 

which suggests that only swerving is not effective for avoiding collisions. 

 

Fig. 4.5 Result of the driving simulator experiment in scenario N1, N2, and F. 
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4.3.2. Descriptive statistics 

The mean of the parameter for 𝑇𝑇𝐶a, 𝑉a, 𝐵𝑅𝑇, and 𝐴a in the driving simulator experiments 

is shown in Fig. 4.6. In scenario N1, 𝑉a (t(8) = -2.34, p = 0.045) and 𝐵𝑅𝑇 (U = 2, p < 0.001) 

is significantly different in the avoidance and the collision group. 𝑇𝑇𝐶a in the avoidance group 

is larger than in the collision group, although the p-value is close to the significant level 0.05 

(t(7) = 2.24, p = 0.06). This indicates that the driver travels at a lower velocity and applies 

braking earlier if the drivers avoided collisions in scenario N1. 

In scenario N2, 𝑇𝑇𝐶a (U = 25, p < 0.001), 𝑉a (U = 30, p = 0.006) and 𝐵𝑅𝑇 (U = 4, p < 

0.001) shows significant differences between the avoided group and the crash, which suggests 

that all parameters need to satisfy a lower velocity, larger 𝑇𝑇𝐶a and early braking for avoiding 

collisions in the scenario with small 𝑇𝑇𝐶a. 

In scenario F, only 𝐵𝑅𝑇 shows the significant differences in the avoided group and the 

crash group (t(21) = -5.15, p < 0.001). This indicants that the driver needs to applied braking 

early for avoiding collisions in this scenario F where the cyclist travels from the far side with 

relatively large 𝑇𝑇𝐶a. 

In addition, 𝐵𝑅𝑇 in all scenarios shows the significant differences between the avoidance 

group and the collision group, and the mean of avoidance group is significantly smaller than of 

the collision group. The car acceleration in all scenarios does not show the differences in the 

avoidance group and the collision group, which indicates that the car acceleration at the time 

when the cyclist is visible, is not the critical parameter affecting the collision occurrence in 

emergency situations. 
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(a) Car velocity                        (b) Time-to-collision 

 

(c) Braking reaction time                (d) Car acceleration 

Fig. 4.6 Mean of parameters 𝑇𝑇𝐶a, 𝑉a, 𝐵𝑅𝑇, and 𝐴a in the driving simulator experiments 

(error bar represents standard errors). 

 

It is shown from Fig. 4.6 that 𝐵𝑅𝑇  is as a key factor which influenced the collision 

occurrences. Thus, 𝐵𝑅𝑇 is examined particularly in the different intruding sides of cyclist. 

Figure. 4.7 shows the mean value of 𝐵𝑅𝑇 in the near side and the far side. The mean of 𝐵𝑅𝑇 

in the near side and far side is 0.65 s and the 1.35 s, respectively. The p-value shows that the 

driver response time in near side is significantly smaller than in the far side (U = 109, p < 0.001). 

 

Fig. 4.7 Mean of driver reaction time 𝐵𝑅𝑇 in the near side and the far side. 
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To understand the structure of collision occurrence parameters, a decision tree is applied to 

collision occurrence using parameters as 𝑇𝑇𝐶a, 𝐵𝑅𝑇, and 𝐴a (Fig. 4.8). The classification 

regression tree (CRT) is selected as the method of pruning tree.  

The result shows that 𝑇𝑇𝐶a as the most important parameter to divide cases into two parts 

with 𝑇𝑇𝐶a ≤ 2.2⁡s and 𝑇𝑇𝐶a > 2.2⁡s with the collision occurrence probability difference of 

75% and 15%. 𝐵𝑅𝑇 as the second parameter divides case into 𝐵𝑅𝑇 ≤ 0.56⁡s and 𝐵𝑅𝑇 >

0.56⁡s under 𝑇𝑇𝐶a ≤ 2.2⁡s, and 𝐵𝑅𝑇 ≤ 1.5⁡s and 𝐵𝑅𝑇 > 1.5⁡s under 𝑇𝑇𝐶a > 2.2⁡s. This 

result shows that collisions can be avoided when 𝑇𝑇𝐶a is greater than 2.2 s and 𝐵𝑅𝑇 is less 

than 1.5 s. The overall prediction accuracy of the decision tree is 87.1%. 

 

 

Fig. 4.8 Collision occurrence using decision tree. 

 

4.3.3. Cyclist trajectory  

Figure. 4.9 shows the trajectories of the front end of the bicycle relative to the front end of the 

car from time 𝑡a. The slope of the bicycle trajectory is given by the ratio of the car velocity to 

the cyclist velocity 𝑉(𝑡)/𝑣(𝑡). In collision avoided cases, the trajectories of the bicycle are not 

included in the area of the car. When a collision is avoided by braking of the car, the trajectory 

of the bicycle is plotted laterally in front of the car. 
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In scenario N1 (Fig. 4.8(a)), there are many cases that the cyclists collide the side of the car 

because many participants drive more than 40 km/h (instructed velocity). There is one collision-

avoided case where the cyclist go behind the left rear corner of the car. In this case, the 

participant drive at a high velocity and passes the crash point before the cyclist arrives. In 

scenario N2 (Fig. 4.8(b)), the TTC is so small that most drivers are unable to decelerate enough 

in time and collide with the bicycle at the front of the car. Because the TTC is so small that the 

collision cannot be avoided driving at a high velocity through passing the bicycle. 

In scenario F (Fig. 4.8(c)), the cyclist trajectories distribute widely from the front, right side 

and rear of the car. This is because TTC is large in the far side and driver responses varies 

depending on the recognition time of the cyclist. There are 3 participants who avoid a collision 

without car deceleration: they do not notice the cyclist model until they pass the cyclist. 

 

 

(a) Scenario N1            (b) Scenario N2            (c) Scenario F 

Fig. 4.9 Trajectory of the front end of the bicycles relative to the front end of the car in the 

driving simulator experiments. 

 

4.3.3. Gaze analysis  

Figure. 4.10 shows the percentage of the driver’s gaze distributions on the screen before the 

cyclist is visible. The percentage is cumulative frequency of gaze positions summed for all 

drivers in all frames from the start of the scenario until the cyclist becomes visible. Generally, 

the drivers mostly look at the center of their lane (future path), and the gaze points distributes 
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in the horizontal direction to monitor pedestrians and cyclists on the pavements. Since we asked 

the participants to travel at the target velocity, the gaze is also distributed in the area of the 

speedometer. Besides, the gaze points of participants are located relatively to the left from the 

center in all three scenarios before the cyclist appears from behind obstructions. 

 

 

(a) Scenario N1                      (b) Scenario N2 

 

(c) Scenario F 

Fig. 4.10 Percentage of gaze point distributions on the screen before the cyclist is visible in 

the driving simulator experiments. 

 

The driver’s looking point on the screen at the time when the cyclist is visible at 𝑡a is shown 

in Fig. 4.11. The point is where the driver looks on the screen, and the color represents different 

𝐵𝑅𝑇s. The blue rectangle represents the speedometer on the dashboard of the car. Most of 

drivers look the front road (future path), and some drivers look the speedometer, resulted in 

relatively large 𝐵𝑅𝑇. In all scenarios, many drivers look at the left of the crossing road at the 

intersection probably because they predict hazard at the intersection. Particularly in the scenario 

N2 with a T-junction, most drivers look to the left of the road because they can concentrate on 

the direction where hazards might occur. It is likely that this driver’s gaze behavior makes large 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 2 9 9 0 0 0 0 0 0 0

0 0 0 1 1 2 7 22 17 3 1 0 0 0 0 0

0 0 0 0 0 0 2 3 2 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

2 (m)-2

-2 (m)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 2 5 3 1 1 0 0 0 0 0

0 1 1 1 2 3 8 19 15 4 2 1 0 0 0 0

0 0 0 0 1 1 2 4 3 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 (m)-2

-2 (m)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 2 8 7 2 1 0 0 0 0 0

0 0 0 1 1 2 6 22 17 4 2 1 0 0 0 0

0 0 0 0 0 0 1 5 2 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 (m)-2

-2 (m)



 

69 
 

BRT in the far-side scenario (see Fig. 4.6).  

 

   

(a) Scenario N1                      (b) Scenario N2 

 

(c) Scenario F 

Fig. 4.11 Position of the drivers’ looking point with different 𝐵𝑅𝑇 at the time when the 

cyclist is visible in the driving simulator. 

 

When the driver notices the cyclist model, the gaze location suddenly change and continue 

to look at the cyclist model. Then, the driver starts to response of braking and steering. By this 

gaze analysis, we can identify the driver’s notice time 𝑡n of the cyclist.  

The braking reaction time of drivers can be divided into two parts: notice time from the time 

when the cyclist is visible 𝑡a to the time when the cyclist is noticed by drivers 𝑡n (𝑡n − 𝑡a); 

and the pedal change time from the accelerator pedal is released and the foot is put on the brake 

pedal after the driver notices the cyclist (𝑡b − 𝑡n) (see Fig. 2.1). In Fig. 4.12, the mean values 

of notice time and pedal change time of the avoided group and the crash group are compared. 

There were significant differences in the notice time between the avoidance group and the 

collision group in all scenarios (scenario N1: t(29) = -3.54, p = 0.001; scenario N2: U = 44, p = 

0.01; scenario F: t(29) = -3.35, p = 0.002). Meanwhile, the difference in pedal change time 
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between the avoidance and the collision group is not significant in the scenarios N1 (U = 32, p 

= 0.22) and F (t(21) = -1.11, p = 0.28). In combination with the mean of 𝐵𝑅𝑇 in Fig. 4.6, this 

implies that the 𝐵𝑅𝑇 is affected by the notice time instead of the pedal change time in the 

scenarios with a relatively large 𝑇𝑇𝐶a such as in scenarios N1 and F. 

In the scenario N1 and F1 with relatively large TTC, driver’s notice time is significantly 

different while the pedal change time is not significantly different between avoidance and 

collision groups. In the scenario N2, significant differences are found for both driver’s notice 

time and the pedal change time (U = 27, p = 0.004), indicating that a collision cannot be avoided 

simply by shortening the notice time after the cyclist is visible in such scenarios with such a 

very small 𝑇𝑇𝐶a . In other words, it is important to apply braking immediately or even 

decelerate in small TTC situation in advance of approaching the intersection before the cyclist 

appears behind obstructions. 
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     (a) Scenario N1                       (b) Scenario N2 

 

(c) Scenario F 

Fig. 4.12 Mean values of the notice time (𝑡n − 𝑡a) and the pedal change time (𝑡b − 𝑡n) of 

the avoided and the crash group in the driving simulator experiments. 

 

The relationship of the notice time (𝑡𝑛 − 𝑡𝑎) and the gaze angle between the cyclist and the 

gaze direction at the time when the cyclist is visible is shown in Fig. 4.13. There is a tendency 

that the notice time increased as the gaze angle increased across all scenarios. The notice time 

distributes below 1.0 s for scenario N1 and below 0.5 s for scenario N2. Besides, the 

distributions of the notice time in scenario F is wider, ranging from 0.3 s and 2.0 s. 
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Fig. 4.13 Relationship between the notice time (𝑡𝑛 − 𝑡𝑎) and the gaze angle of the cyclist and 

the gaze at the time when the cyclist is visible. 

 

Because the notice time distributes differently in the three scenarios from the Fig. 4.13, the 

𝐵𝑅𝑇 components of notice time (𝑡n − 𝑡a) and the pedal change time (𝑡b − 𝑡n) are separately 

compared in the near side and the far side as shown in Fig. 4.14. The notice time in the near 

side and the far side is 0.29 s and 0.94 s, showing the significant differences (t(28) = -7.4, p < 

0.001). The pedal change time is 0.45 s and 0.49 s in the near side and the far side, the p-value 

does not show differences between them (t(73) = -0.56, p = 0.57). This indicates that the 

difference of 𝐵𝑅𝑇 between the near side and the far side is due to the difference of notice time, 

not the driver’s pedal change time. 

 

Fig. 4.14 Mean of the notice time (𝑡n − 𝑡a) and the pedal change time (𝑡b − 𝑡n) in the near 

side and the far side. 
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From the gaze analysis, it can be obtained that the time when the driver notices the cyclist 

is a critical factor influencing the collision occurrence. Hence, the driver’s response to avoid 

conflicts in emergency situations with different 𝑇𝑇𝐶n is examined again using the notice time, 

as shown in the Fig. 4.15. Clear trends of driver responses are observed using the notice time. 

The percentage of driver applies braking increases consistently as the 𝑇𝑇𝐶n increases. As the 

𝑇𝑇𝐶n decreases, the driver’s response in avoiding collisions changes from braking to braking 

with swerving. Moreover, there are 10 cases that the driver does not change their behaviors (no 

response) with the 𝑇𝑇𝐶n smaller than 1.0 s. This is because the driver does not have enough 

time to respond after they notices the cyclists. 

 

 

Fig. 4.15 Drivers’ response to avoid collisions with different 𝑇𝑇𝐶n. 

 

4.3.4. Braking and swerving response 

Figure. 4.16 shows the boxplot of driver’s braking reaction time 𝐵𝑅𝑇 (𝑡b − 𝑡a), swerving 

reaction time 𝑆𝑅𝑇 (𝑡s − 𝑡𝑎), and gas release time 𝐺𝑅𝑇 (𝑡𝑟 − 𝑡𝑎) in the cases where the driver 

applies braking with swerving. The mean of 𝐵𝑅𝑇, 𝑆𝑅𝑇 and 𝐺𝑅𝑇 is 0.99 s, 0.74 s and 0.7 s. 

The p-value shows the significant differences between the 𝐵𝑅𝑇 and 𝑆𝑅𝑇 (U = 182.5, p = 

0.012), and there are no differences between the 𝑆𝑅𝑇 and 𝐺𝑅𝑇 (U = 312, p = 0.99). This 

indicates that the driver releases the gas pedal and simultaneously applies swerving, and the 

time difference between 𝐵𝑅𝑇 and 𝐺𝑅𝑇 is the time that the driver’s foot changes from the gas 

pedal to the braking pedal. 
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Fig. 4.16 The driver’s braking reaction time 𝐵𝑅𝑇 (𝑡b − 𝑡a), swerving reaction time 𝑆𝑅𝑇 

(𝑡s − 𝑡a), and gas release time 𝐺𝑅𝑇 (𝑡r − 𝑡a) in the cases where the driver applies braking 

with swerving. The number of participants applying braking with swerving is 25. 

 

 

4.3.5. Threshold of collision occurrence  

Figure. 4.17 shows the relation between collisions/avoidances by braking (the cases where the 

driver swerves or no responses are omitted) and the allowance time 𝑇𝑇𝐶𝑎 − 𝐵𝑅𝑇 − 𝑉b 2𝑎0⁄  

calculated using parameters in each test based on Eq. (4.2). The value of 𝑎0 is the average car 

deceleration over the time duration from the start to end of braking by each participant. All the 

participants who have positive allowance time of driver response (𝑇𝑇𝐶a − 𝐵𝑅𝑇 − 𝑉b 2𝑎0⁄ >

0) avoided collisions, and all the participants who have negative allowance time for driver 

responses (𝑇𝑇𝐶𝑎 − 𝐵𝑅𝑇 − 𝑉𝑏 2𝑎0⁄ < 0) collide with the cyclists. Therefore, the allowance 

time 𝑇𝑇𝐶𝑎 − 𝐵𝑅𝑇 − 𝑉b 2𝑎0⁄  is confirmed to be a reliable parameter to predict collision 

occurrences. 

 

  

P = 0.012 P = 0.99 

P = 0.012 p = 0.012 

p = 0.012 p = 0.99 
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Fig. 4.17 Prediction of collision occurrence/avoidances as a function of the allowance time 

for driver response at the time of cyclist emergence. The avoided case is 0 and the collision 

case is 1 in the vertical axis. 

 

Figure. 4.18 shows the relationship between 𝐵𝑅𝑇 and 𝑇𝑇𝐶a at the time when the cyclist 

becomes visible. The line based on Eq. (4.2) in the figure clearly separates the avoided cases 

and collision cases. When the 𝐵𝑅𝑇  is above this line (𝐵𝑅𝑇 > 𝑇𝑇𝐶𝑎 − 0.63 ) collisions 

occurred:  Longer 𝐵𝑅𝑇 can be acceptable for avoiding collisions in emergency cases with 

long 𝑇𝑇𝐶a. 

 

 

Fig. 4.18 Relationship of BRT and TTCa at the time when the cyclist is visible. 

 

Figure. 4.19 shows the relationship between the car velocity 𝑉a and 𝑇𝑇𝐶a at the time when 

the cyclist becomes visible for thresholds with/without braking to avoid collisions in each 

scenario. The 𝑇𝑇𝐶a needs to be larger than 𝐵𝑅𝑇 + 𝑉𝑏 2𝑎0⁄  when drivers apply braking to 
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avoid collisions (see Eq. (4.2)). The 𝐵𝑅𝑇 (0.78 s, 0.55 s and 1.53 s in scenario N1, N2 and F) 

and the car braking deceleration 𝑎0 (6.5 m/s2) substituted in each scenario is calculated from 

50% probability of collision occurrence in the logistic regression. For the cases where the driver 

does not apply braking to avoid collisions before arriving at the cyclist path, 𝑇𝑇𝐶a needs to be 

smaller than 𝑑/𝑣 − 𝐿 𝑉⁄  (see Eq. (4.3)). Hence, collision risks are high in the area bounded by 

the two lines shown in the figure. Most avoided cases are located above the braking line and 

the collisions distributed below the line in each scenario. There are a total of 5 cases in large 

TTC scenarios (1 case in scenario N1 and 4 cases in scenario F) where the participants do not 

brake but accelerates to avoid collisions. On the other hand, in scenario N2 (Fig. 4.19(b)), the 

cyclist emerges in front of the car with a very small 𝑇𝑇𝐶a  that there are no cases where 

collisions are avoided by acceleration or by keeping high velocity.  

 

   

     (a) Scenario N1                            (b) Scenario N2 

 

(c) Scenario F 

Fig. 4.19 Collision occurrences shown by vehicle velocity and TTC at the visible time of 

cyclists. The upper boundary is thresholds of collision occurrence with braking (Eq. (4.2)) and 

the lower boundary is without braking (Eq. (4.3)). 

 

 

TTCa= d/v-L/V 
 

 

TTCa= d/v-L/V 
 

 

TTCa= d/v-L/V 
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4.4. Discussion 

This chapter examined drivers’ response in three scenarios with different 𝑇𝑇𝐶a using driving 

simulator experiments. The driver behavior interacting with the cyclist intruding from the near 

and far side in the conflicts was examined (Fig. 4.5). The parameters such as 𝑉a, 𝑇𝑇𝐶a, 𝐵𝑅𝑇 

and 𝐴a at the time when the cyclist was visible were then compared in the avoidance group 

and collision group (Fig. 4.6). Independent parameters as 𝑇𝑇𝐶a , 𝐵𝑅𝑇  and 𝐴a  were also 

examined to investigate the structural influence of collision occurrences using a decision tree 

(Fig. 4.8). 

Previous studies show that braking was applied as the primary means of collision avoidance, 

followed by the braking with swerving (Muttart, 2005; Li et al., 2019). In the cases where the 

driver applied braking with swerving, the driver started braking and started swerving 

simultaneously, and the time difference between 𝐵𝑅𝑇 and 𝑆𝑅𝑇 was due to the driver’s foot 

moving from the braking pedal to the gas accelerator pedal. This conclusion was consistent with 

Toxopeus’s conclusion (2018). Moreover, in this study, a total of 6 drivers applied only 

swerving, and 5 of them were involved in collisions. Therefore, swerving alone was not 

effective in avoiding collisions. On the other hand, since the driver applied swerving, the 

position of the cyclist contact with the car may change from the front of the car to the side of 

the car. This may result in reducing the car’s longitudinal impulse on the cyclist. 

In driving simulator experiments in this study, there were many cases where the car arrived 

earlier at the collision point than the cyclist, and the cyclist impacted the side of the car (Fig. 8). 

Accident analysis shows that the front, right side, left side and rear of the bicycle were impacted 

in 45.6%, 28.3%, 22.1% and 3.9%, of the cases, respectively when classified by the impact 

location of the bicycle in these collisions (Maki et al. 2000). Hence, it is probable that such 

collision occurrences (the front of the bicycle impacting the side of the car) are common in real-

world events. In real-world crashes, cyclists will not be impacted substantially against car’s side 

impact compared to car’s frontal impact. Besides, cyclist may detect crossing cars ahead of 

them and apply braking to avoid such collisions. Thus, cyclists may not be injured seriously in 

such impacts against the side of a car. More research will be necessary to investigate such events 

that occur.  

In this driving simulation experiment, there were two ways to avoid a collision with braking 

or not braking (keeping the original velocity after the cyclist appeared from the obstacles). The 

collision occurrence was formulated by 𝑇𝑇𝐶a instead of 𝑇𝑇𝐶n, this is because the 𝑇𝑇𝐶a as a 
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car kinematic parameter was easier to be measured than 𝑇𝑇𝐶n even though the 𝑇𝑇𝐶n was 

found to be related to the driver responses (Fig. 4.15). For the cars without eye track systems, 

using 𝑇𝑇𝐶a to investigate the collision occurrence could be applied in general scenarios and 

experimental equipment. Morita et al., (2013) used the braking distance to predict the collision 

occurrence. When the braking distance required for stopping the car was greater than 𝑉𝑏 ∙

𝐵𝑅𝑇 + 𝑉𝑏
2/2𝑎, collisions cannot not be avoided. He substituted the average 𝐵𝑅𝑇 of 0.45 s and 

the average braking deceleration of 6.9m/s2 into collision occurrence threshold to verify the 

accuracy of this threshold with 77%. In this study, we used time (e.g. TTC) instead of distance, 

which will be useful to activate the driver assistant systems. Moreover we applied parameters 

independently in each scenario to predict collision occurrence using Eq. (4.2) and Eq. (4.3). 

The results show that 𝑇𝑇𝐶𝑎 and 𝐵𝑅𝑇 were important determinants of collision occurrence. 

𝑇𝑇𝐶𝑎 determined the conflict environment before contact (i.e., the near side and the far side in 

this study) and the driver’s reaction time 𝐵𝑅𝑇 determined collisions occurred or not. This 

result was consistent with the results we obtained from drive recorder data in Chapter 2. Li et 

al. (2019) examined driver behavior in car-to-pedestrian collision conflict scenarios with 

different 𝑇𝑇𝐶  in a driving simulator. Their finding shows that in the car-to-pedestrian 

scenarios, drivers’ braking reaction time 𝐵𝑅𝑇 and the maximum swerving radian were the 

primary factors affecting the collision occurrence. However the results was obtained from the 

configuration where the pedestrian running from only the near side. In this study, the effects of 

𝑇𝑇𝐶𝑎 and 𝐵𝑅𝑇 was concluded from the conflict configurations where the cyclist intruding 

from the near and far side at an intersection, thus this study was more informative for broader 

scenarios.  

Drivers’ gaze distribution was measured by an eye track system in the driving simulator. The 

driver responses actually started after they notice the cyclist, and thus the time when the driver 

noticed the cyclist 𝑡n was introduced in this study. Green (2000) showed that driver’ peripheral 

retina was used when the intrusions came from the lateral directions. This could be explained 

by the driver’s gaze angle between the cyclist position and the looking direction at 𝑡a in this 

study. Driver’s gaze angle in the near scenarios was smaller than in the far side (Fig. 4.13), thus 

the time difference (notice time) from the cyclist was visible 𝑡a to the time the cyclist was 

noticed 𝑡n was larger in the far side than in the near side. Moreover, the 𝑇𝑇𝐶n at the time 

when the driver noticed the cyclist was also newly introduced, and driver responses to cyclists 

intruding from braking to swerving as 𝑇𝑇𝐶n  decreased (Fig. 4.15). 𝑇𝑇𝐶a  determines the 
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crash environment that cannot be changed by drivers, but the 𝑇𝑇𝐶n determines the remaining 

time that could react before collisions. For the collisions led by driver’s long BRT, the 𝑇𝑇𝐶n 

in this type of collisions was small, and thus collisions also occurred although the 𝑇𝑇𝐶a was 

relatively large. 

In the research of driver reactions to intrusions from different sides, Jurecki’s research (2014) 

shows that drivers’ 𝐵𝑅𝑇 response to pedestrians was greater in far side than in near side 

intrusion into a road. Their study agrees with this study that drivers’ 𝐵𝑅𝑇 in the near side and 

the far side was 0.65 s and 1.35 s, respectively, with significant differences (Fig. 4.7, Fig 4.11 

and Fig 4.13). However, Jurecki et al. (2014) did not show the reason of 𝐵𝑅𝑇 difference in 

near and far side intrusion. In the experiments in this dissertation, the drivers were looking 

towards the future road (Fig. 4.11), and the angle between the driver’s gaze and the cyclist in 

the scenario where the cyclist intruded from far side was larger than that the cyclist from the 

near side (Fig. 4.13). As a result, the driver’s 𝐵𝑅𝑇 in the far side was larger than that in the 

near side. In this study, we also analyzed in more detail about the components of the 𝐵𝑅𝑇 in 

the near side and far side (Fig. 4.12 and Fig 4.14). The difference of the 𝐵𝑅𝑇 in the near side 

and far side was caused by the notice time (𝑡n − 𝑡a) rather than pedal change time (𝑡b − 𝑡n). 

In the driving simulator experiments, the drivers were asked to drive at the instructed 

velocity. However, since each driver have different driving manner, experiences and abilities to 

anticipate hazards, the car’s velocities at the time at the intersection when the cyclist was visible 

were different, which resulted in that the TTC was not well controlled. In addition, only two 

females participated this experiment, and the age distribution was also not balanced enough. 

Thus, this may lead to biases in the driver’s response compared to other researches. 

 

4.5. Conclusions 

The driver’s response in the three scenarios with different TTCs was examined using driving 

simulator experiments. The car’s kinematics and driver’s response was investigated in the near 

side and the far side. This study also used eye track system to analyze the effect of the driver’s 

gaze on response in emergency situations. The conclusions are listed as follows: 

 Drivers’ braking reaction time 𝐵𝑅𝑇 in the near side is significantly smaller than in the far 

side, and the difference of 𝐵𝑅𝑇 caused by the notice time from the cyclist is visible to the 

driver notices the cyclist. 

 The driver applies braking and swerving simultaneously, the time difference between the 
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braking reaction time 𝐵𝑅𝑇 and the gas pedal releasing time 𝐺𝑅𝑇 is the time for drivers 

changing foot from the gas acceleration pedal to the braking pedal. 

 𝑇𝑇𝐶a  and 𝐵𝑅𝑇  are the critical parameters affecting the collision occurrence: 𝑇𝑇𝐶a 

determines the conflict severity, and 𝐵𝑅𝑇 determines a collision occurred or not. 

 When 𝑇𝑇𝐶 at the time of notice of a cyclist by the driver is larger, driver response to avoid 

collisions changes from control action of swerving to braking.  

 Collisions are avoided when drivers applied the brakes or when the driving velocity exceeds 

the target velocity specified to the subjects. Collision avoidance by braking and driving 

without deceleration is predicted using expression involving 𝑇𝑇𝐶 , 𝐵𝑅𝑇  and car 

deceleration. 
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Chapter 5 

Evaluation Effectiveness of AEB for Cyclist Protection Using Drive Recorder 

5.1. Introduction 

In order to decrease the number of collision occurrences, assisted driving is increasingly used 

in automobiles today. Autonomous emergency braking (AEB) system is a technology that 

automatically stops a vehicle in an emergency to avoid collisions. Previous study focused on 

the topic of the effectiveness of AEB for pedestrian protection. Rosen et al. (2013) and Rosen 

(2010) calculated the effectiveness of AEB for pedestrians using GIDAS data, and they found 

that the effectiveness of AEB for pedestrian protection was 40% at a field of view (FOV) of 

40°, brake deceleration of 0.6 g, and 1 s of initial time. However, cyclists travel at higher speeds 

and enter the FOV immediately than pedestrians, thus, the AEB for pedestrian protection is 

probably no longer appropriate for cyclists. 

According to the findings in Chapters 2 and 4 as well as the study by Ito et al. (2018), car-

to-cyclist collisions could be divided into two types: one type includes collisions caused by the 

driver’s large brake reaction time (BRT), and the other type is that the cyclists’ sudden 

appearance. The purpose of this chapter is to evaluation the effectiveness of AEB in protecting 

cyclists from both types of collisions. In this chapter, all car-to-cyclist perpendicular collisions 

and turning collisions are reconstructed first, and then the reconstructed collisions are 

recalculated with AEB by changing the AEB parameters. 

 

5.2. Methods 

5.2.1. Collision reconstruction 

Collisions from drive recorder is reconstructed using an accident reconstruction program, PC-

Crash. The time when the cyclist contacted with the car is set to 𝑡𝑐, as it is used in the drive 

recorder analysis. In this study, in the reconstruction of car-to-cyclist collisions, the paths of the 

cyclist and the car are set from 𝑡𝑐 rewinding to the time 𝑡𝑎 when the cyclist appears from 

obstacles. Using the collision video of drive recorder, it is possible to determine the paths of the 

cyclists and the cars based on their relative positions to the road and surrounding buildings and 

houses. 

It is then necessary to input the kinematics of the car and the cyclist before collisions 

including car and cyclist braking in PC-Crash. The acceleration or deceleration can be 
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determined directly from the driver recorder video. However, the acceleration and deceleration 

of the car are fluctuating, and it will be not realistic to exactly reconstruct the acceleration or 

deceleration shown in the drive recorder video every time step in the PC-Crash reconstruction. 

For this reason, it is sufficient when the acceleration and deceleration of the car in the 

reconstructed matched the average value in the drive recorder video every time step duration 

(i.e., 1 s). Based on the surrounding landmarks, the acceleration or deceleration of the car during 

the reconstruction are adjusted to confirm that positions and velocity of the car with time 

basically coincided that observed in the original video. For the cyclist, since the kinematics 

cannot be obtained directly from the video, the velocity of the cyclist is set temporarily based 

on velocity distributions of cyclists (i.e., 10 km/h at the intersection), and then the velocity is 

adjusted based on the position of the cyclist relative to the surroundings in the video. In this 

study, 63 car-to-cyclist perpendicular collisions and 51 left and right turning collisions are 

reconstructed using PC-Crash. 

 

5.2.2. AEB algorithm 

The time-to-collision (TTC = 𝑉/𝐷 ) is used to activate the AEB in the algorithm. In 

perpendicular collision configurations, assuming that the car decelerates with constant 

deceleration 𝑎, the deceleration can be expressed by the car velocity 𝑉 and the distance to the 

cyclist path 𝐷 as following: 

 𝑉2 = 2𝑎𝐷 (5.1) 

Substitute the definition of TTC into Eq. (5.1), and the deceleration can be expressed by 𝑉 and 

𝑇𝑇𝐶: 

 𝑉 = 2𝑎 ∙ 𝑇𝑇𝐶 (5.2) 

Cars using the AEB cannot stop to avoid collisions when the deceleration 𝑎 calculated by Eq. 

(5.2) exceeds the braking limit. In this study, the upper limit of the braking deceleration is set 

to 𝜇𝑔 (𝑎 ≤ 𝜇𝑔), where is the friction coefficient between the tire and the road and 𝑔 is 9.8 

m/s2. The AEB deceleration 𝑎 can be smaller than the braking limit when there is enough 

distance for the car to stop. In this study, the friction coefficient 𝜇 is set to 0.8 in the dry 

condition and 0.2 in the wet condition. 

In the turning configuration, the cyclists have two positions relative to the cars: same 

direction with the car and opposite direction from the car (Fig. 5.1(b)). In the reconstructions of 
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left and right turning collisions involving cars equipped with AEB, the collision point is not 

known for the car (the collision point is the crossing path of the car and the cyclist in the 

perpendicular collision), thus, the TTC is calculated as a function of the relative distance and 

relative velocity between the cyclist and car to determine the time of AEB onset shown in the 

Fig. 5.1(b). The relative vector velocity of the cyclist relative to the car 𝑽𝑅 is calculated by the 

car velocity 𝑽 and cyclist velocity 𝒗 as follow: 

 𝑽𝑅 = 𝒗 − 𝑽 (5.3) 

Assuming that 𝑽𝑅  forms an angle 𝜃 of with respect to the direction of travel from car to 

cyclist (the angle between the relative velocity and the line of the car and the car), the effective 

velocity of the cyclist closing in on the car is equal to 𝑉𝑅 ∙ cos 𝜃 (𝑉𝑅: the magnitude of 𝑽𝑅). 

As a result, TTC in turning collisions can be expressed as follows: 

 
𝑇𝑇𝐶 =

𝐷𝑅
𝑉𝑅 ∙ cos 𝜃

 (5.4) 

where 𝐷𝑅 is the relative distance between the car and the cyclist.  

 

               

(a) Perpendicular collision         (b) Turning collision 

 

Fig. 5.1. Relative position of the car and the cyclist and TTC in a perpendicular collision and 

in a turning collision. 

 

AEB algorithm for cyclists and the car deceleration in the time sequence is shown in Fig. 5.2, 

and the relative position of the car and the cyclist in the time sequence is shown in Fig. 5.3. 

When the cyclist enters the field of view (FOV) of AEB (Fig. 5.3(b)), the AEB starts to calculate 

the 𝑇𝑇𝐶 between the car and the cyclist after the sensor delay time (SDT). Once 𝑇𝑇𝐶 is 

𝐷

𝑽

𝑑
ν



 

84 
 

smaller than 1.4 s (Fig. 5.3(c)), the AEB starts braking with a braking deceleration 𝑎. It takes 

time for the AEB system to the car’s start braking because of the process of braking: the pressure 

of the brake system is increased, and the brake rotter moves until the brake pad contacting the 

brake disc. This required time is brake pre-charge time (BPT). The time it takes for the car to 

start braking to the maximum deceleration 𝑎 is brake boost time (BBT). In this study, the SDT, 

BPT and BBT is set to 0.4 s, 0.1 s and 0.15 s, respectively. The delay time (DT) of this AEB 

system consists of SDT and BPT, and the delay time is set to 0.5 s. Besides, the cyclist can be 

included in the FOV from a long distance, thus the time 𝑡𝑒  when the cyclist enters an 

intersection is introduced in the turning collisions. In this study, the AEB is set to start detecting 

after 𝑡𝑒. 

 

 

Fig. 5.2. AEB algorithm and car deceleration changing with time. 

 

 

(a) Cyclist appeared 𝑡𝑎  (b) Cyclist entered FOV 𝑡FOV   (c) Braking starts 

Fig. 5.3. Relative position of the car and the cyclist with time. 
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5.2.3. AEB parameter change 

Three types of FOVs of AEB is used to examine effectiveness for avoiding collision with 

cyclists in this study. The camera of AEB is installed at the top of the windshield (see Fig. 5.4), 

and the camera is assumed to be unaffected by weather and light. First one is 50° FOV applied 

in the current cars for preventing pedestrian collisions: The angle of FOV is 50° (±25°), and 

the sensing distance of this AEB is 50 m. The second type is 90° FOV where the sensing angle 

is 90° (±45°) and the sensing distance is 75 m. This FOV 90° is required to ensure that sensors 

detect the cyclist by AEB in Euro NCAP cyclist AEB test configurations. The last one is the 

360° FOV where the sensing angle is 360° (±180°) and the sensing distance is 75 m. The ideal 

AEB used in this study is that the FOV angle is 360° and the delay time of AEB is 0 s. 

 

Fig. 5.4. Three field of views (FOVs) used in this research. 

 

5.3. Results 

5.3.1. Effectiveness of AEB in perpendicular collisions 

The effectiveness of AEB for preventing cyclist collisions using the AEB designed for 

pedestrians (50° FOV and DT 0.5 s) is examined first. The relationship of the car velocity 𝑉𝑎 

and the 𝑇𝑇𝐶𝑎 at the time when the cyclist is visible is shown in Fig. 5.5. Based on Eq. (5.2), 

the relationship between 𝑉𝑎 and 𝑇𝑇𝐶𝑎 with the braking deceleration upper limit 0.8 g is also 

shown in the figure.  

Among 63 car-to-cyclist perpendicular collisions, only 14 collisions are avoided by the AEB 

with 50°FOV. 12 collisions are not avoided by the AEB and the car collides with the cyclist, 

even though the AEB is active. 37 AEBs are not active in collisions because the cyclist does not 

enter the relatively small FOV of AEB for pedestrians and AEB does not reach the process to 

start braking. This result indicates that the AEB for pedestrians is not so effective for cyclists 

 

Fig. 1. Three types of AEB sensor 

FOVs. 
 

360° FOV 

90° FOV 

50° FOV 
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since cyclists have a higher traveling velocity compared to pedestrians. Thus, more robust AEB 

is needed for preventing cart-to-cyclist collisions effectively. 

 

Fig. 5.5. Result of AEB effectiveness in car-to-cyclist perpendicular collisions using the 

50°FOV for pedestrians. 

 

Figure. 5.6 shows the position of the cyclist with respect to the car at the time when the 

cyclist is visible. The results of collision avoidances are also included by the AEB system of 

increasing FOV angle (50° FOV, 90° FOV and 360° FOV) with DT 0.5 s. Six collisions avoided 

by AEB with 50° FOV locate in the 50° FOV, and 8 collisions avoided by 50° FOV locate out 

of 50° FOV. Then, 9 collisions avoided by AEB with 90° FOV locate in the area of 90° FOV, 

and 6 collisions locate out of 90° FOV. Finally, 8 collisions are avoided by AEB with 360° FOV. 

Though this figure shows the relative positions of the car and the cyclist at the time when the 

cyclist is visible, and the relative position may change after the cyclist is visible. This is the 

reason why some collisions can be avoided, despite being located outside the FOV. For the 

collisions that cannot be avoided by AEB with 360° FOV (including collisions with reduced 

impact velocity as well as collisions with AEB not active), most of them locate 10 m in front of 

the car. 
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Fig. 5.6 Position of the cyclists with respect to the car using 50°FOV, 90° FOV and 360°FOV 

with DT 0.5 s at the time when the cyclist is visible in car-to-cyclist perpendicular collisions. 

 

Figure. 5.7 shows the relationship between the car velocity and 𝑇𝑇𝐶𝑎  using AEB with 

50°FOV, 90° FOV and 360°FOV with DT 0.5 s at the time when the cyclist is visible. The blue 

dotted line and the brown dotted line represent the braking limit of the car with no braking delay 

(DT) and with 0.5 s braking delay, respectively. 

All the avoided collisions distribute on the right of the braking limit with no braking delay 

(blue dotted line), and all the collisions with AEB not active distribute on the left side of the 

braking limit. Some collisions that are not avoided by AEB with 360° FOV but impact velocities 

reduced are distributed between two dotted lines. This indicates that this type of collisions could 

be avoided if the braking delay time decreased. In the area where 𝑇𝑇𝐶𝑎 is greater than 3 s, 

there are 6 collisions avoided by AEB with 90° FOV with car velocity less than 30 km/h and 4 

collisions avoided by AEB with 360° FOV with car velocity less than 10km/h. This is because 

car velocity is low and the relative angle between the cyclist and the car is relatively large, 

which makes it difficult for the cyclist to enter the FOV. Hence, this type of collisions require 

an AEB with larger FOV to avoid collisions. 

All the collisions are then investigated using an ideal AEB with 360° FOV and DT 0 s, and 

the relationship of car velocity and 𝑇𝑇𝐶𝑎 is shown in Fig. 5.8. Eleven collisions cannot be 

avoided even using an ideal AEB, and 9 of them distribute on the left of the braking limit and 

2 of them is close to the braking limit. 𝑇𝑇𝐶𝑎 of these 11 collisions is smaller than 0.9 s. 

0

10

20

30

40

50

-50 -40 -30 -20 -10 0 10 20 30 40 50

90 FOV 

50 FOV 

(m) 

Collision avoided at 50 

Collision velocity reduced at 360 

AEB not activated 

Collision avoided at 90 
Collision avoided at 360 



 

88 
 

 

Fig. 5.7 Relationship of car velocity and 𝑇𝑇𝐶𝑎 using 50°FOV, 90° FOV and 360°FOV 

with DT 0.5 s at the time when the cyclist is visible in car-to-cyclist perpendicular collisions. 

 

 

Fig. 5.8 Relationship of car velocity and 𝑇𝑇𝐶𝑎 in avoiding collisions using an ideal AEB 

with 360°FOV and DT 0 s in car-to-cyclist perpendicular collisions. 

 

The effectiveness of the three AEBs with 50° FOV, 90° FOV and 360° FOV in avoiding 

perpendicular car-to-cyclist collisions are examined and shown in the Fig. 5.9. As the FOV 

increases, the effectiveness of collision avoidance increases. The effectiveness of AEB in 

preventing cyclists using AEB for pedestrians (50° FOV and DT 0.5 s) is only 22.2%, and AEB 

is not activated in 58.7% of collisions. Thus, the AEB currently installed in vehicles for 

pedestrian protection is not effective enough for prevention of car-to-cyclist collisions. This 

effectiveness increases to 50.8% when the FOV angle increases to 90°, while 27% of collisions 

is not still avoided since the AEB is not activated. Even though the ideal AEB (360° FOV and 
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DT 0 s) is applied to car-to-cyclist collisions, there are still 17.5% collisions that cannot be 

avoided.  

 

 
Fig. 5.9 Effectiveness of AEB with 50°FOV, 90° FOV and 360°FOV in avoiding collisions 

in car-to-cyclist perpendicular collisions. 

 

The configuration of crash and car kinematic of the 11 unavoidable collisions are shown in 

the Table 5.1. 9 of 11 unavoidable collisions occur at intersections without traffic signals, and 

the other 2 collisions occur at larger intersections with traffic lights. These 11 collisions can be 

divided into three categories. The first category is the sudden appearance of the cyclists from 

behind cars and buildings (No. 1. 2. 3. 4. 5): the cyclists in No. 1, No. 2 and No. 3 suddenly 

intrude into roads from the opposite lanes (far side); the cyclists in No. 4 and No. 5 appear from 

buildings, and the 𝑇𝑇𝐶𝑎 in No. 5 where the cyclist intrudes from near side is the smallest 

(0.287) in the first category. The second category is that the cyclist suddenly changed his/her 

travelling direction from the near side (No. 6. 7. 8. 9), and 3 of 4 collisions are that the cyclists 

change their directions to cross the crosswalks. The car velocity in the second category of 

collisions is relatively higher (No. 6, No. 8, and No.9), this may be explained by that the drivers 

do not expect the cyclist changing their directions and thus keep high velocities. The third 

category is that the cyclist (No.10) or the car driver (No. 11) violated traffic rules. Although 
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these 11 collisions are not avoided by ideal AEB, the impact velocity of the cars are all reduced.  

 

Table 5.1 Collisions that cannot be avoided by ideal AEB with 360°FOV and DT 0 s. 

 

 

No. 1 TTCA 0.880 s VA 38.4 km/h 

Impact velocity: w/o AEB 30 km/h 

              w/ AEB 6.5 km/h 

No. 2 TTCA 0.517 s VA 49.6 km/h 

Impact velocity: w/o AEB 35 km/h 

             w/ AEB 32.3 km/h 

No. 3 TTCA 0.555 s VA 30.5 km/h 

Impact velocity: w/o AEB 8 km/h 

             w/ AEB 4.6 km/h 

   

No. 4 TTCA 0.587 s VA 33.8 km/h 

Impact velocity: w/o AEB 10 km/h 

              w/ AEB 7.0 km/h 

No. 5 TTCA 0.287 s VA 25.0 km/h 

Impact velocity: w/o AEB 25 km/h 

             w/ AEB 14.5 km/h 

No. 6 TTCA 0.595 s VA 55.0 km/h 

Impact velocity: w/o AEB 50 km/h 

             w/ AEB 25.8 km/h 

 
 

 

No. 7 TTCA 0.144 s VA 20.7 km/h 

Impact velocity: w/o AEB 15 km/h 

             w/ AEB 10.5 km/h 

No. 8 TTCA 0.535 s VA 44.5 km/h 

Impact velocity: w/o AEB 32 km/h 

             w/ AEB 15.3 km/h 

No. 9 TTCA 0.522 s VA 47.1 km/h 

Impact velocity: w/o AEB 20 km/h 

             w/ AEB 16.2 km/h 

 

 

 

No. 10 TTCA 0.299 s VA 39.7 km/h 

Impact velocity: w/o AEB 35 km/h 

             w/ AEB 25.3 km/h 

No. 11 TTCA 0.493 s VA 25.9 km/h 

Impact velocity: w/o AEB 15 km/h 

             w/ AEB 11.3 km/h 

 

  

 

Building 

Building 
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5.3.2. Effectiveness of AEB in turning collisions 

AEBs with 50° FOV, 90° FOV and 360° FOV are also applied in reconstruction of car-to-cyclist 

turning collisions to examine the effectiveness of AEB. The positions of the cyclists relative to 

the car at the time when the cyclist enters intersections is shown in Fig. 5.10. The cyclists in 

turning collisions locate closer to the car compared to perpendicular collisions (see Fig. 5.6), 

and most of them distribute within 20 m in the front of the car. There are some collisions locate 

outside the FOV but can be avoided by the corresponding AEB (i.e., 11 collisions avoided by 

AEB with 50° FOV locate outside 50° FOV), and this is because positions of the cyclists relative 

to the car change during the car turns. 

 

 

Fig. 5.10 Position of the cyclists relative to the car using AEB with 50°FOV, 90°FOV and 

360°FOV at the time when the cyclist enters intersections (𝑡𝑒) in car-to-cyclist turning 

collisions. 

 

Figure. 5.11 shows the relationship between the car velocity and 𝑇𝑇𝐶𝑒 at the time when the 

cyclist enters intersections. The collision avoidances using AEB with 50° FOV, 90° FOV and 

360° FOV are also included. Unlike the performance of AEB in perpendicular collisions, the 

car velocity during car turning is below 30 km/h, which results in a wider distribution of 𝑇𝑇𝐶𝑒. 

In addition, more collisions with larger 𝑇𝑇𝐶𝑒  can be avoided by AEB with 50° FOV. All 

collisions locate on the right area of the braking limit, indicating that failure to avoid collisions 

during car’s turning is not because the required braking deceleration to stop the car exceeds the 

braking limit. 
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Fig. 5.11 Relationship of car velocity and 𝑇𝑇𝐶𝑒 with different FOV at the time when the 

cyclist enters intersections in car-to-cyclist turning collisions. 

 

Figure. 5.12 shows the result of AEB with 50 °FOV, 90° FOV and 360° FOV in avoiding 

car’s left turning collisions. In general, the collisions when the cyclist approaches in the same 

direction of the car is difficult to be avoided because the cyclist approaches from the rearward 

of the car. In the collisions using AEB with 50° FOV and DT 0.5 s, the AEB is not effective for 

the cases where the cyclist comes from same direction. Only 1 collision can be avoided, and the 

AEB in 8 collisions is not active since the cyclist does not enter the FOV of AEB until the car 

collides with the cyclist. However, the same AEB is effective for preventing the collisions where 

the cyclist approaches from the opposite direction. When the FOV increases to 90°, the AEB is 

able to protect the majority of the cyclists coming from the same or the opposite direction. The 

ideal AEB with 360°FOV and DT 0 s is effective for preventing all collisions except 1 collision 

where the cyclist travels from the opposite direction. 

The result of AEB effectiveness in avoiding right turning collisions is shown in Fig. 5.13. 

The trend is comparable with AEB specifications (FOV and DT) and the cyclist direction (same 

opposite) between the right and left turning collisions (Fig. 5.12 and Fig. 5.13). As with AEB 

in left turning collision, the 50° FOV is not effective in protecting the cyclist approaching from 

the same direction in right turning collisions, and only 2 collisions are avoided. The majority of 

collisions can be avoided AEB with 90° FOV, irrespective of the cyclist approaching direction 

(same or opposite). When the FOV increases to 360° FOV and the DT decreases to 0 s, the AEB 

is effective for all collisions except 1 collision where the cyclist comes from opposite direction. 
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In left turning and right turning collisions, the 2 collisions that cannot be avoided by the ideal 

AEB is that the cyclist suddenly enters the pedestrian crosswalk occurs on the side of the car. 

Since the low velocity of the car in the turning, the braking of the car because of AEB makes 

the impact position change from the rear of the side to the front of the side. 

 

Fig. 5.12 Effectiveness of AEB with 50°FOV, 90°FOV and 360°FOV in left turning 

collisions. 

 

 

Fig. 5.13 Effectiveness of AEB with 50°FOV, 90°FOV and 360°FOV in right turning 

collisions. 
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5.4. Discussion 

This chapter examined the effectiveness of AEB in protecting cyclists in perpendicular 

collisions and turning collisions by reconstructing the accidents obtained from the car drive 

recorder. The advantage of using collisions collected from drive recorders instead of the in-

depth data or police data used in past studies is that the kinematic parameters of the cars and 

the behavior of the cyclists could be accurately determined, especially before the collisions 

occurred. This is because the parameters of the cars and the cyclists are usually inferred from 

tire skid marks and testimonies of the persons involved in the collisions or eyewitness in in-

depth accident data or police data, and thus these data contain uncertainness in the information. 

In this study, the results shows that AEB for pedestrians (50°FOV and DT 0.5 s) was 

insufficient in preventing occurrences of perpendicular and turning car-to-collisions. This 

finding is consistent with Lenard’s study (2018) showing that cyclists appear at a wider angle 

relative to cars than pedestrians, thus a larger FOV is required to avoid car-to-cyclist collisions. 

In this study, the effectiveness of AEB was greatly improved when FOV increased to 90° (Fig. 

5.9, Fig. 5.12 and Fig. 5.13), and this results coincide with other studies indicating that the 

effectiveness of AEB increases as angle of FOV increases (Fredriksson et al., 2015; Sander and 

Lubbe, 2018; Gruber et al., 2019).  

In this study, it was shown that the effectiveness of delay time for avoiding collisions is not 

larger than widening the angle of FOV. Fig. 5.6 shows 11 unavoidable collisions with 360° FOV 

and DT 0.5 s and 8 collisions with AEB not activated distributed 10 m in front of the car at the 

time when the cyclist was visible in the perpendicular collisions. In these cases, the braking 

distance left for the car after delay time was insufficient, thus it is necessary to shorten the delay 

time for the collision where the cyclist appeared in close to the car. This result was verified in 

Fig. 5.8 showing that the number of the collisions was decreased to 11 using the AEB without 

delay time (DT 0 s). Since the required braking deceleration exceeded the braking limit (Table 

5.1), the 11 collisions could not be avoided by ideal AEB with 360° FOV and DT 0 s. Based on 

these results, this study demonstrated a new finding that it is worth noting that these collisions 

would also occur in autonomous driving. In the first category of unavoidable collisions, the 

collisions were difficult to be detected and avoided since the cyclists suddenly intruded from 

view blocking obstructions, causing small 𝑇𝑇𝐶𝑎. To avoid this type of collisions, it may be 

necessary to discuss to obey traffic rules for drivers and cyclist to prevent sudden appearance 

into the road or inter-vehicle communication including car-to-cyclist communication. In the 



 

95 
 

second category of collisions, the cyclists travelling along the roads were visible, but the driver 

could not perceive the cyclist’ motivation of sudden changing directions. Similarly, the sudden 

intruding behavior of cyclists was also difficult to be judged by autonomous cars. Thus, 

enhancing the cyclist’ education is a better approach to avoid collisions in this situation. For 

example, the cyclist shows clearer motivations of crossing intersections at the proper time. 

In Figure 5.7, the car with higher velocity seems more likely to be avoided by AEB, and 

AEB with a larger FOV was needed to avoid collisions when the car velocity was below 20 

km/h. This is because the relative angle between the cyclist and the car was large when the car 

traveled with low velocity, causing more difficulty for the cyclist to enter the FOV of AEB.  

In the turning collisions, lower velocities of cars during turning resulted in the cars to stop 

more easily though the cyclists appeared laterally and closer to the car compared to 

perpendicular collisions. Sander (2017) calculated the effectiveness of AEB in avoiding left 

turning car-to-car collisions using GIDAS accident database, and they concluded that AEB 

could hardly avoid collisions when the car velocity exceeds 40 km/h. In addition, for the conflict 

configuration where the object was straight going vehicles (equivalent to the opposite direction 

in the right turning collision in this study), an AEB with 40°FOV could avoided 80% of the 

collisions. This is consistent with the results in this dissertation showing that AEB was effective 

for the cyclist traveling from the opposite direction (Fig. 5.13). However, small FOV of AEB 

was insufficient for the cyclists traveling at lower velocity or coming from the same direction 

since the cyclist velocity is close to parallel to the car. Thus, it is necessary to enhance the FOV 

of AEB to protect the cyclist coming from the same direction. 

To sum up, the AEB with FOV 50° (± 25°) and DT 0.5 s designed for pedestrians was not 

insufficient for cyclists no matter in the perpendicular configuration or the turning configuration 

because cyclists have higher traveling velocity compared to pedestrians. Moreover, traffic 

situations are more complex in the real world, for instance, non-motorized vehicles including 

electric bicycles and electric two-wheelers are also traveling at same time, which have higher 

traveling speed. Thus, the AEB applied in the future is necessary to technically increase FOV 

and decrease the delay time as much as possible for preventing traffic users from various crash 

configurations.  

In this study, the trajectory of the cars could be determined from the videos, but the trajectory 

of the cyclists was determined by comparing the cyclist position with landmarks in the video 

since the parameters of the cyclists were not directly available. This may include errors in the 
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results of AEB activation. Besides, intentions and behaviors of the cyclists were not taken into 

account in the simulation with AEB (cyclists may stop when they hear the braking noise of the 

AEB), thus the results in this study may be different from the results using AEB to avoid 

collisions in the real world. 

 

5.5. Conclusions 

This chapter estimated the effectiveness of AEB in the reconstruction of car-to-cyclist 

perpendicular collisions and turning collisions obtained from the drive recorder videos. The 

conclusions are summarized as follows: 

 The AEB designed for pedestrians is not effective in preventing cyclists from the 

perpendicular collisions because FOV range of AEB is not enough to detect cyclists who 

travels at high velocity than pedestrians. 

 The number of cases to avoid collisions by AEB increases as the field of view (FOV) of 

AEB widened and delay time decreases. The FOV of the AEB is more effective to avoid 

collisions than reducing the delay time. 

 Ideal AEB is not effectiveness in the collisions with small time-to-collision where the cyclist 

suddenly appears from the obstacles. Probably, these collisions cannot be avoided in 

autonomous cars. 

 In turning collisions, the cyclist traveling from the same direction with the car is difficult to 

enter FOV of AEB because the cyclist approaches from the behind of the car. Widening the 

FOV angle range of AEB can also effective to avoid this type of collisions. 
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Chapter 6 

General Discussion and Conclusions 

6.1. General discussion 

This dissertation investigated causes of collision occurrences in car-to-cyclist conflicts 

including the driver behavior and the cyclist behavior in emergency situations using videos of 

drive recorders. The cyclist and driver behaviors were identified with time in videos which is 

advantage compared to research study using police data and in-depth data. The driver reactions 

in three typical scenarios reconstructed from the drive recorder data was then investigated using 

a driving simulator. Finally, an AEB with different field of view and sensor delay time was 

applied to all collisions in drive recorder videos in order to examine the effectiveness of 

advanced driver-assistance systems in protecting cyclists from collisions. 

As far as the author knows, this is first research to identify causes of car-to-cyclist collisions 

by comparing driver behaviors in near-miss incidents and collisions using videos of drive 

recorders. Many research studies investigated collision occurrences using near-miss incidents 

of drive recorders, however, collision videos have not been used. The collision data of drive 

recorder was newly corrected in this study, and they were compared to the near-miss database.  

In the collisions that could not be avoided by drivers, the required braking deceleration to 

stop the cars before collisions was beyond the braking performance limit (5.2 m/s2). This was 

identified as the boundary of near-miss and collisions. Two typical configurations were 

observed in car-to-cyclist collisions. The first configuration is the cyclist suddenly intruding 

behind the obstacles such as stopping cars or buildings. TTC was too small for cars to stop when 

the cyclist was visible. The second configuration is the delay of driver’s reaction with long 

brake reaction time.  

One of the highlights of this study was that driver’s gaze was newly examined combining 

with driver reactions to intruding cyclists from the side direction at an intersection, though 

driver’s gaze has been analyzed by previous research studies in car following scenarios. In 

driving simulator experiments, it was found that drivers usually looked to their lane where they 

were driving (future path). Driver had longer braking reaction time in cyclist’s intruding from 

the far side than from the near side because the gaze to the cyclist from the far side required a 

larger gaze angle to notice. This can be different collision occurrence mechanism compared to 

that in the longitudinal direction (rear-end collisions). The gaze analysis made it possible to 
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identify notice of the cyclist. Drivers were more likely to use swerving instead of braking when 

driver’s notice time of the cyclist is smaller. Moreover, the drivers released the accelerating 

pedal and turned the steering wheel at the same time, indicating that the drivers applied braking 

and swerving simultaneously when the driver applied braking combining with swerving. 

Another highlight is that this is a first study that investigated the cyclist behavior to avoid 

collision by comparing the near-miss incidents by the cyclist avoided and not incidents avoided 

based on drive recorder videos. It was demonstrated that cyclist avoidance behavior was 

effective to avoid collisions particularly for cases that the cyclist intruded into the area that car 

could not stop to avoid collisions. The cyclist velocity was calculated according to the real 

world near-misses and the collisions, showing that the cyclist velocity in the near-miss incidents 

was significantly lower than in the collisions. Previous studies show that the cyclist avoided the 

car at intersection was related to the car acceleration at the time when the cyclist was visible. In 

this study, the regression analysis indicates that the cyclist showed avoidance behavior as the 

TTC was smaller and the cyclist velocity is lower. This cyclist avoidance behavior needs to be 

investigated to develop cyclist models which can predict collisions in driving models.  

AEB was applied to all collision cases in the videos of drive recorders. The collision 

configuration with relatively large TTC with long brake reaction time of the driver could be 

avoided effectively using an AEB system. However, the collision configurations with small 

TTC (< 1.0 s) such that the cyclist suddenly appeared were difficult to be avoided. 18% of 

collisions were still not be avoided even using an ideal AEB system with 360 FOV without 

delay time. This result implies that collisions will continue to occur in autonomous cars with 

AEB. Thus, other technical solutions such as vehicle-to-cyclist communication and education 

of cyclists will be necessary. This study probably demonstrated firstly that some types of 

accidents still occur in autonomous cars while some people considered that accidents can be 

zero in autonomous cars.  

The limitation of this study is that the number of collisions in drive recorders is smaller 

compared to the in-depth data and police-reported accident data, and the data do not include 

records of post-crash injuries. Because the drivers in the collected data are experienced and 

professional taxi drivers, their reactions in emergency situations will not be representative of 

all drivers. Besides, the majority of taxi drivers in Japan is males, therefor, the data in gender 

and gender are unbalanced. Moreover, the drivers in the drive recorder experiments might be 

more attentive with no distraction than those in naturalistic driving. The driver avoidance 
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reactions might be stronger than in naturalistic driving because they did not have to consider 

the physical influences of sudden hard braking and steering on the oncoming and following 

cars. Finally, the cyclist behavior analyses may include errors because the cyclist was visible 

from a distance was sometimes not clear in the videos. 

 

6.2. Conclusions 

The objective of this study is to identify causes of collision occurrences in the car-to-cyclist 

perpendicular conflicts at intersections using the drive recorders and to determine the 

effectiveness of AEB for preventing the cyclist from collisions. The conclusions of this study 

are as follows: 

1. Collisions and near-miss incidents can be distinguished whether the cyclist enters the 

braking performance limit of the car (5.2 m/s2). If the cyclist enters this area, the car cannot 

stop before the cyclist path while a collision can be avoided only by cyclist avoidance. 

2. Time-to-collision (TTC) and braking reaction time (BRT) are the most critical parameters 

in collision occurrences: TTC can determine the conflict environment, and BRT determines 

the collision occur or not. 

3. Applying braking is primary reaction of drivers in emergency situations, and drivers are 

more likely to change their reaction from braking to swerving as the TTC decreases. 

However, applying swerving alone is not effectiveness in avoiding collisions. 

4. Drivers apply braking and swerving simultaneously in the cases where the drivers take 

braking combining with swerving, and the time difference of BRT of swerving reaction 

time SRT is the time that the driver change the foot from the accelerating pedal to the 

braking pedal. 

5. Driver braking reaction time in interacting with the cyclist intruding from the far side is 

larger than from the near side, and this difference is caused by the notice time of drivers 

from the time of cyclist visible to the driver notices the cyclist. 

6. Cyclists avoided behavior is effective in avoiding collisions that cannot be avoided by 

drivers since the required braking deceleration of these collisions exceeds the braking limit 

of the car.  

7. The cyclist avoided behavior is associated with the car TTC to the cyclist path and the 

cyclist velocity at the time when the cyclist is visible: smaller TTC and higher cyclist 

velocity results in high probability of cyclist to take avoidable maneuvers. 
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8. The effectiveness of AEB in preventing cyclists from collisions increases with the field of 

view (FOV) increases and the sensor detecting delay time (DT) decreases in both 

perpendicular collisions and turning collisions, and increasing FOV is more effective to 

avoid collisions than decreasing DT. 

9. Ideal AEB is not effectiveness to avoid collisions for cyclist sudden appearance from 

obstacles with small TTC, even though the car velocity impacted with cyclist is reduced by 

the ideal AEB.  

 

6.3. Future work 

In this thesis, fundamental responses of drivers were understood in car-to-cyclist perpendicular 

conflicts, which led to collisions. Further analysis of driver responses in systematic method is 

necessary to apply its outcomes for driving assistant systems. First, the future work needs to 

include responses of drivers and cyclists in the emergency configurations in various traffic 

conflicts, such as car left and right turn interacting with cyclists at intersections and car 

overtaking cyclists. Second, driver gaze in the lateral direction was found to affect driver 

recognition of cyclists to avoid lateral collisions. Thus, the sequence of driver’s gaze and 

recognition is necessary to be understood in the mechanism of collision occurrences. This 

analysis needs to include individual differences of drivers because drivers showed various scans 

of gazes during driving simulator experiments. Moreover, recognitions and responses of elderly 

drivers and cyclists also needs to be studied because this study did not take into account the 

effects of ages. Besides, the driver’s responses in the rural and urban areas for cyclist’s 

intrusions may be different, and thus the different responses of drivers need to be examined in 

the future. 
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