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Abstract—Future applications such as anomaly detection in
a network and autonomous driving require extremely low, sub-
microsecond latency processing in pattern classification. Towards
the realization of such an ultra-fast inference processing, this
paper proposes an optical neural network architecture which can
classify anomaly patterns at sub-nanosecond latency. The archi-
tecture fully exploits optical parallelism of lights using wavelength
division multiplexing (WDM) in vector-matrix multiplication. It
also exploits a linear optics with passive nanophotonic devices
such as microring resonators, optical combiners, and passive
couplers, which make it possible to construct low power and
ultra-low latency optical neural networks. Optoelectronic circuit
simulation using optical circuit implementation of multi-layer
perceptron (MLP) demonstrates sub-nanosecond processing of
optical neural network.

Index Terms—optical neural network, wavelength division
multiplexing, multi-layer perceptron

I. I NTRODUCTION

Today’s highly sophisticated information society, with low
latency access to the Internet, would not be realizable without
optical communication technologies and CMOS LSI technolo-
gies. According to Moore’s Law, the propagation delay of
CMOS gates in the LSI circuits has drastically decreased.
Historically, the delays of local level wires also decreased
with transistor downscaling since the delays are determined by
RC time constant which can be reduced along the transistor
downscaling. At ultra-scaled dimensions, however, the effec-
tive resistivities (R) of local level wires increase more rapidly
than a decrease of wire capacitance (C) due to size effects [1]
and therefore, the RC time constant cannot be decreased by the
transistor downscaling. Post-layout analysis using predictive
technology models [2] shows that interconnect performance
degradation may dominate over the device speed improvement
in a 22 nm technology node and below [1] [3]. This means
that technology scaling itself cannot resolve the latency issue
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of CMOS LSI circuits in advanced technology nodes such as
7 nm and below.

Concurrently, optical communication technologies have also
been rapidly growing over the past several decades. Although
optical communication technologies are widely used for the
long-distance communications, electronics still remain as ma-
jor players for short-distance communications. Recent ad-
vances in nanophotonics, however, make it possible to migrate
power-efficient light-based communication into ever-shorter
distances and move onto silicon chips as optical networks-
on-chip [4].

In this paper, we propose an integrated optical neural
network (ONN) architecture as a principle building block for
in-network optical computing. The optical networks-on-chip
(ONoC) described above [4] is a part of the in-network optical
computing concept. Fundamental technologies required for the
ONoCs such as memory interface and wavelength division
multiplexing (WDM) are also the key technologies for the
in-network ONN. An overview of our ONN is depicted in
Fig. 1. This architecture fully exploits area efficiency of micro-
ring modulators for interfacing electrical memory and exploits
optical parallelism of light using WDM. It also exploits
low power and ultra-low latency natures of linear optics in
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Fig. 1. Overview of our Optical Neural Network



optical passive devices such as combiners and couplers for
constructing in-network highly parallelized multiplication and
accumulation.

The rest of the paper is organized as follows. Section 2
summarizes several previous works on the optical neural
networks and shows contributions of this work. Section 3
shows an architecture overview of our optical neural network.
Section 4 shows experimental results obtained with a commer-
cial optoelectronic circuit simulator. Section 5 concludes this
paper.

II. RELATED WORK AND MOTIVATION

Neural networks are a continued staple of machine learning
and alternative computing, with applications ranging from
classification, anomaly detection and regression to general-
purpose computation. The following subsections summarize
recent architectures proposed for optical neural networks.

A. Photonic Weight Banks

An optical circuit structure for calculating a weighted sum
is proposed in [5]. This structure is used for vector-matrix
multiplication in optical neural networks. The basic structure
is depicted in Fig. 2. Incoming WDM signals are weighted
by continuous-valued filters called microring (MRR) weight
banks and then summed by a photodetector as photocurrent.
This is a very area efficient, low power and low latency
approach for calculating the weighted sum. It can calculate the
weighted sum in a constant order regardless of the number of
weights. However, this approach has the following drawbacks.
If more than one optical signals having different wavelengths
(i.e. WDM signals) are given to the photodetector, undesirable
oscillation in photocurrent occurs. One of the most straight-
forward approaches to eliminate the oscillation is low-pass
filtering with an electronic low-pass filter. This is very simple
but prevents us from exploiting the ultra-high speed nature
of lights since the time-constant of the neural network is
dominated by the RC time-constant of the electronic low-pass
filter. Another approach for eliminating the oscillation is using
wavelengths which are sufficiently apart from each other. Since
the oscillation frequency depends on the difference between
the wavelengths of the lights, we can make the frequency to
be too high for the photodetector to oscillate by setting the
wavelengths sufficiently apart from each other. However, this
approach limits the number of different wavelengths used in
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Fig. 2. Calculation of Weighted Sum Using Photonic Weight Banks

WDM signals and limits the scalability of the vector-matrix
multiplication.

In [6], a similar architecture for optical vector-matrix mul-
tiplication based on the MRR weight banks is proposed. The
architecture is very compact and implements the constant order
calculation of the weighted sum using WDM signals and PD-
based accumulation. However, it has the oscillation issue in
the photodetector which limits the scalability of high-speed
vector-matrix multiplication.

Unlike the approaches described above, we use a combiner
tree [7] for accumulating WDM signals in parallel instead of
using PD-based accumulation. Our approach does not have the
oscillation issue in the photocurrent, since only coherent light
signals having a single wavelength are given to a photodetec-
tor.

B. Reconfigurable Mach-Zehnder Interferometer Array

In [8], a fully optical neural network (ONN) architecture
is presented for implementing general deep neural network
algorithms using nanophotonic circuits that process coherent
light. The core part of the ONN architecture is a matrix mul-
tiplication unit which is composed of a reconfigurable Mach-
Zehnder Interferometer (MZI) array as shown in Fig. 3. Once
a neural network is trained, the architecture can be passive,
and computation can be performed at the speed of light. In
addition to the light-speed processing, the computation can
be performed without additional energy input. These features
could enable ONNs that are substantially more energy-efficient
and faster than their electronic counterparts. As described
in [8], the energy consumption introduced by the switching
activity is extremely small in this architecture.

However, one big drawback we see in the ONN architecture
described above is large energy consumption in laser sources,
which may limit the scalability of this architecture. Since the
signal power attenuation is exponential to the number of MZIs
connected in series, the signal power on the laser sources
has to be sufficiently large so that the optical signals at the
output can be surely detected by photodetectors even in case
that the signals are largely attenuated when they are passing
through the MZI array. The order of the number of serial
connections in the architecture isO(n), where then is the
number of nodes in a single neural network layer. If the size
of the neural network layer increases, the energy consumption
in laser sources increases exponentially.

Unlike the architecture in [8], our architecture does not have
the circuit structure where a large number of optical devices
are serially connected. Although our architecture also exploits
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the ultra-high speed nature of the serially connected optical
devices, the order of the number of serial connections in our
architecture isO(log2n).

C. Homodyne Detection-based Vector Matrix Multiplier

A new type of photonic accelerator based on coherent
detection is proposed in [9]. It is scalable to large (N ≥ 106)
networks and can be operated at high speeds (GHz) and very
low energies (sub-aJ) per multiply-and-accumulate (MAC), us-
ing the massive spatial multiplexing enabled by standard free-
space optical components. In contrast to previous approaches
[8], both weights and inputs are optically encoded so that
the network can be reprogrammed and trained on the fly.
This architecture is highly parallelized by the massive spatial
multiplexing. However, it does not exploit WDM parallelism
in their multiply-and-accumulate operation, which limits the
throughput and area efficiency of the architecture.

Unlike the architecture presented above, our ONN architec-
ture largely exploits WDM parallelism as well as the circuit-
level spatial parallelism using an optical combiner tree which
can be functioned for accumulating WDM signals in parallel.

III. O PTICAL NEURAL NETWORK EXPLOITING WDM
PARALLELISM

A. Neural Network Overview

An architectural overview of our optical neural network is
depicted in Fig. 4. Each layer is composed of MRR weight
bank [5], parallelized Mach Zehnder Modulator (MZM)-
based multipliers, a combiner-tree-based accumulator [7], and
optoelectronic activation circuits. The output signals of the
activation circuits are passed to the next layer as electrical
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Fig. 4. Optical Neural Network Overview

voltage signals which are used as input operands of the MZM-
based multipliers in the next layer.

Assuming the number of nodes in the input layer isX and
that in the next layer ish, we needX×h micro-ring array as
the MRR weight bank. The number of different wavelengths
needed ish and the number of rows in the bank isX. Theh
different light signals are given to every row in parallel. Note
that the signal power of theh lights given as inputs is the
same from each other.

Then theX × h weight values are individually multiplied
to the light signals in parallel. Once the weighted signals are
given, the MZM works as a parallel multiplier. The number
of MZMs is X and the number of wavelengths used in the
WDM signals given to each MZM ish. Therefore,X × h
multiplications are performed in the MZM-based multipliers
in parallel by exploiting both spatial parallelism and WDM
parallelism.

The next step is accumulation. Once the outputs of the
MZM-based multipliers are given to the combiner-tree as
WDM signals, accumulation operations are performed in
parallel. Optical signals with the same wavelength are accu-
mulated in a tournament fashion in the combiner-tree. This
accumulation is performed for every different wavelength in
parallel. Since the optical signals with different wavelengths
are basically not interfered with each other, theh different
accumulations can be independently performed in parallel.

Finally, the accumulated values are extracted by micro-ring
resonators, wavelength selective splitters or arrayed waveguide
gratings (AWG), and given to activation circuits separately.
Since we make decisions whether the corresponding output
should be activated or not for every wavelengths separately,
the number of activation circuits needed ish. The outputs of
the activation circuits are passed to the next layer as inputs of
the MZM-based multiplier in the next layer.

The MRR weight bank takes a few tens of picoseconds
to read weight parameters [5]. Both the MZM multiplier and
combiner-tree takes only a few picoseconds to propagate the
optical signals [7]. The ELU-based activation circuit explained
in the following sections also takes a few tens of picoseconds
[13]. As a result, the propagation delay of the single neural
network layer is less than 100 picoseconds in total approxi-
mately and if we construct a neural network with less than 10
layers, a sub-nanosecond neural network is realizable, which
is extremely fast.

B. Vector Matrix Multiplication

We perform vector-matrix multiplication as shown in (1),
where a set ofWi,j values forms a weight matrix and a set of
xi values forms an input vector.

y1 = x1 ·W1,1 + x2 ·W1,2 + · · ·+ xX ·W1,X ,

y2 = x1 ·W2,1 + x2 ·W2,2 + · · ·+ xX ·W2,X ,

· · · = · · · + · · · + · · ·+ ,

yh = x1 ·Wh,1 + x2 ·Wh,2 + · · ·+ xX ·Wh,X .

(1)

We use an optical vector-matrix multiplier shown in Fig. 5
as a core part of the optical neural network computation. The
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leftmost WDM signals are first equally divided intoX groups
and given to the rows of the MRR weight bank. Therefore,
the signal power of all theX × h optical signals given to the
MRR weight bank is the same from each other. These WDM
signals are then multiplied by the weight parameters. For
example in the topmost row,W1,1,W2,1, · · · ,Wh−1,1,Wh,1

are individually weighted by the micro-ring modulators. Then
the WDM output of the row is passed to the MZM which
is controlled by the electric voltage signal proportional to the
value ofx1. Since the input of the MZM is weighted WDM
signals which do not interfere each other, the value ofx1

is individually and concurrently multiplied to all the WDM
signals. This multiplication corresponds to the first terms of
all the equations in (1). The MZM controlled byx2 performs
the multiplication corresponding to the second terms of all
the equations in (1). Similarly, all the multiplications which
appear in the equations in (1) are performed throughout the
MZMs in parallel.

All the output WDM signals of the MZMs are passed to
the combiner-tree with being multiplexed for the optically
parallelized accumulation. The number of leaves needed for
the combiner-tree in this example isX. Since it is a tree
structure, the order of the propagation delay in this combiner-
tree isO(log2X). The propagation delay of each combiner
is very small because the size of the combiner can be made
very small [7]. Optical signals with the same wavelength are
accumulated in a tournament fashion by the combiner-tree.
This accumulation corresponds to each equation in (1). For
given WDM signals to the combiner-tree, all the accumulations
in (1) are performed individually and concurrently.

1) MZM-based Parallelized Multiplication: We use a
Mach-Zehnder Modulator (MZM) as an optical multiplier. By
using optical signals with different wavelengths to each other,
an MZM can work as a parallel multiplier for the multiple
optical signals without mutual interference. It is experimen-
tally demonstrated that optical inter-channel interference is
negligible for channels with a wavelength spacing of 1.3 nm
[11]. In [12], a broadband silicon Mach Zehnder Switch (MZS
in the following) which operates over a wide wavelength range
from 1510 nm to 1650 nm is proposed. In this case, the MZS
can be functional for more than 100 WDM optical signals.

For obtaining good linearity of the sinusoidal wave gener-
ated by the MZM, we use the first±π/8 parts of the sinusoidal
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wave as shown in Fig. 6. This makes it possible to handle
both plus and minus input values accurately and obtain good
linearity in the MZM outputs for both plus and minus input
values.

2) Combiner-based Parallelized Analog Accumulation:We
use a combiner-tree-based analog accumulator presented in
[7]. The accumulation is performed for massive WDM signals
in parallel as shown in the leftmost tree structure depicted in
Fig. 7. At every combiner in the tree, two input signals with
the same wavelength are interfered and added to each other
while for any two input signals with different wavelengths do
not interfere. As a result, all WDM signals are individually
accumulated in parallel through the combiner-tree. We use a
phase shift for representing a minus value. Assuming a base
optical signalA represents a plus value and if the phase of an
optical signalB is π (i.e. 180 degree) out of phase from the
base signal, the signalB represents a minus value. With this
representation for the plus and minus values, we can correctly
accumulate both plus and minus values using the combiner-
tree.

Since the accumulation operation is based on the electric
field strength instead of the signal power, the result of mul-
tiplication and accumulation (MAC) operation is obtained as
a value proportional to the electric field strength. Therefore,
we use a homodyne detection circuit shown at the middle
in Fig. 7 for extracting the electric field strength from the
photocurrent which is proportional to the signal power. We use
O-E converter presented in [13] for the homodyne detection.
This O-E converter does not need an amplifier to convert
the optical signal to the electrical signal and therefore, it is
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very energy efficient. Once the photocurrentIpd in Fig. 7,
which is proportional to the electric field strength of input
light is obtained, theIpd is converted to electrical voltage just
using a resistanceRload. If the input capacitance of the device
connected to theVout in Fig. 7 is an order of femtofarad, the
RC time constant can be very small and the O-E-O conversion
delay is, as a result, around 25 picosecond [13].

C. Activation Function

ReLU stands for rectified linear unit, and is a type of
activation function. Mathematically, it is defined as (2)

y = max(0, x). (2)

ReLU is the most commonly used activation function in
neural networks, especially in CNNs because of the following
reasons;

• It is cheap to compute as there is no complicated math.
The model can, therefore, take less time for both training
and inference.

• It converges faster. It does not have the vanishing gra-
dient problem suffered by other activation functions like
sigmoid or hyperbolic tangent.

• It is sparsely activated. Since ReLU is zero for all
negative inputs, it is likely for any given unit to not
activate at all. This is often desirable since it makes
intuitive sense if we think about the biological neural
network that artificial neural networks try to imitate.

Although ReLU has several advantages over the other
activation functions, it has a problem called dying ReLU. A
ReLU neuron is dead if it is stuck on the negative side and
always outputs 0. Because the slope of ReLU in the negative
range is also 0, once a neuron gets negative, it is unlikely
for it to recover. Such neurons are not playing any role in
discriminating the input and is essentially useless.

Leaky ReLU has been proposed to fix the dying ReLU
problem. It has a small slope for negative values, instead of
altogether zero. For example, leaky ReLU may havey = 0.01x
whenx < 0. Similar to leaky ReLU, an exponential linear unit
(ELU) has a small slope for negative values [10]. Instead of a
straight line, it uses a log curve for negative values as shown
in (3), whereα is a scaling factor.

y = x (if x ≥ 0),

y = α(ex − 1) (otherwise).
(3)

It is designed to combine the good parts of ReLU and leaky
ReLU, that is, while it does not have the dying ReLU problem,
it saturates for large negative values, allowing them to be
essentially inactive.

In many neural network applications, ReLU, leaky ReLU
and ELU do not have a big difference in training speed and
inference accuracy. However, in terms of implementation, ELU
is the most practical activation function for the optoelectronic
implementation of neural networks. Since a function which
is not differentiable at some points is hard to implement
using optical devices or MOS transistors, a differentiable
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function is preferable as an activation function. Although
ReLU and leaky ReLU are not differentiable at zero, ELU is
differentiable at any points. Fig. 8 (a) shows an optoelectronic
implementation of ELU. This circuit is modified from the
homodyne detection circuit depicted in Fig. 7. As explained
for the homodyne detection circuit, the input of the ELU
function is proportional to the total photocurrent obtained by
summing up the photocurrents drawn from PD1 and PD2
in Fig. 8 (a). The yellow colored diode symbol, ELU diode
which is newly added, works as an ELU function. For positive
input values, ELU diode works as an insulator while it works
as a resistor where its resistance is very small for negative
input values. The circuit simulation result obtained with a
commercial optoelectronic circuit simulator, OptiSPICE, is
shown in Fig. 8 (b). The simulation result demonstrates that
the ELU circuit shown in Fig. 8 (a) accurately works as the
ELU function.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

This section shows the following two evaluation results;

1) Linearity of MZM-based multiplier and combiner-based
accumulator.

2) Functional correctness and accuracy of OMAC (opti-
cal multiplication and accumulation) circuit and homo-
dyne detector-based ELU activation circuit combined
together.

For evaluating the above two items, we designed an opto-
electronic circuit shown in Fig. 9. For the first evaluation, we
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use an MZM-based multiplication circuit and a combiner-tree-
based accumulation circuit (i.e. left two parts) in Fig. 9. For the
second evaluation, we use the entire circuit shown in Fig. 9.

B. Simulation Results

Fig. 10 shows the electric field strength values of four MZM
outputs and MAC output, which correspond to the results of
the first evaluation described above. We give electric voltage
signals tox1 to x4 shown in Fig. 9 so that the electric field
strength values in the corresponding MZM outputs exhibit the
values shown in the lower part of Fig. 10. As explained with
Fig. 6, MZM outputs have nonlinearity since we use a part of
the sinusoidal curve produced by the optoelectronic response
of the MZM as a linear function. The worst-case nonlinearity
appears in the middle, where all the MZM outputs have the
intermediate electric field strength. The upper part of Fig. 10
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shows an enlargement of the result. At this worst case, 2%
error is involved, which is not very big as an analog multiplier.

Fig. 11 and Fig. 12 show the results for the second evalu-
ation. The results for analog inputs are shown in Fig. 11 and
those for digital inputs are shown in Fig. 12. The upper four
graphs in the figures represent input voltage signals given to
the corresponding four inputsx1 · · ·x4 of MZM multipliers.
The lower graphs in the figures show electrical voltage output
signals of the ELU activation circuit. The figures demonstrate
the functional correctness of the optical MAC operation and
optoelectronic ELU activation function.

The reason why we perform the evaluation for digital inputs
is because inference accuracy in quantized neural networks
rapidly improves in recent years. Several related work [14]–
[16] proved that inference accuracy does not widely degrade
even if we use binary weights and binary activations while
those binarizations largely reduce necessary memory and
neural network sizes, and simplifies the memory interface.
For example, BinaryConnect proposed in [14] obtains near
state-of-the-art accuracy results using binary weights for the
permutation-invariant MNIST. Our optical neural network ar-
chitecture handles both analog values and digital values for
weight parameters and inputs. If we use the binary inputs and
binary weights, we can largely reduce the hardware complexity
and footprint with negligible degradation in inference accu-
racy.

V. CONCLUSION

This paper proposes a new optical neural network architec-
ture which fully exploits spatial parallelism and optical paral-
lelism with wavelength division multiplexed (WDM) optical
signals. Since, in a single neural network layer, only optical
signals are propagated, its latency is extremely low. The MRR
weight bank takes a few tens of picoseconds to read the weight
parameters and to modulate the optical signals based on the
weight values [5]. Both the MZM multiplier and combiner-tree



takes only a few picoseconds to propagate the optical signals
[7]. The ELU-based activation circuit based on the amp-less
O-E-O converter also takes a few tens of picoseconds [13].
As a result, the propagation delay of the single neural network
layer is less than 100 picoseconds in total approximately and if
we construct a neural network with less than 10 layers, a sub-
nanosecond neural network is realizable, which is extremely
fast.

The optoelectronic circuit simulation demonstrated the func-
tional correctness of our optical neural network architecture.
Unlike previous works, our architecture has a circuit structure
where a small number of optical devices are serially connected.
This largely reduces the signal power attenuation along the
serially connected path. Therefore, power consumption of laser
sources needed for our architecture is very small.

To come up with a new algorithm for canceling out the
impacts of the nonlinearity of optical devices and process
variation on the inference accuracy through the training of
weights is our future work.

REFERENCES

[1] A. Ceyhan, M. Jung, S. Panth, S. K. Lim and A. Naeemi, “Impact
of Size Effects in Local Interconnects for Future Technology Nodes:
A Study Based on Full-Chip Layouts,” Proceedings of Interconnect
Technology Conference / Advanced Metallization Conferenc, pp.345–
348, May 2014.

[2] Y. Cao, “Predictive Technology Model for Robust Nanoelectronic De-
sign,” Springer, 2011.

[3] S. Sinha, B. Cline, G. Yeric, V. Chandra and Y. Cao, “Design Bench-
marking to 7nm with FinFET Predictive Technology Models,” Proceed-
ing of International Symposium on Low Power Electronics and Design,
pp.15–20, July 2012.

[4] X. Wu, J. Xu, Y. Ye, Z. Wang, M. Nikdast and X. Wang “SUOR:
Sectioned Undirectional Optical Ring for Chip Multiprocessor,” ACM
JETC, vol.10, no.4, pp.1–25, April 2014.

[5] A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M.l A. Nahmias, B.
J. Shastri and P. R. Prucnal “Neuromorphic Photonic Networks using
Silicon Photonic Weight Banks,” Scientific Reports volume 7, Article
number: 7430, August 2017.

[6] N. Janosik, Q. Cheng, M. Glick, Y. Huang, and K. Bergman, “High-
resolution Silicon Microring based Architecture for Optical Matrix
Multiplication,” in Proceeding of CLEO, SM2J.3, May 2019.

[7] S. Kita, K. Nozaki, K. Takata, A. Shinya, and M. Notomi “Silicon Linear
Optical Logic Gates for Low-Latency Computing,” in Proceeding of
CLEO, SF1A.2, May 2018.

[8] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. B.-Jones, M. Hochberg,
X. Sun, S. Zhao, H. Larochelle, D. Englund and M. Soljacic, “Deep
Learning with Coherent Nanophotonic Circuits,” Nature Photonics, vol.
11, pp. 441-446, June 2017.

[9] R. Hamerly, L. Bernstein, A. Sludds, M. Soljacic, and D. Englund,
“Large-Scale Optical Neural Networks Based on Photoelectric Multi-
plication,” Physical Review X 9, 021032, May 2019.

[10] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and Accu-
rate Deep Network Learning by Exponential Linear Units (ELUs),”
arXiv:1511.07289v5, Feb. 2016.

[11] Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded Silicon Micro-
ring Modulators for WDM Optical Interconnection,” Optics Express, vol.
14, no. 20, pp. 9431–9436, October 2006.

[12] S. Chen, Y. Shi, S. He, and D. Dai, “Low-Loss and Broadband
2× 2 Silicon Thermooptic MachZehnder Switch with Bent Directional
Couplers,” Optics Letters, vol. 41, no. 4, pp. 836–839, February 2016.

[13] K. Nozaki, S. Matsuo, T. Fujii, K. Takeda, A. Shinya, E. Kuramochi,
and M. Notomi, “Femtofarad Optoelectronic Integration Demonstrating
Energy-Saving Signal Conversion and Nonlinear Functions,” Nature
Photonics, vol. 13, pp. 454-459, July 2019.

[14] M. Courbariaux and Y. Bengio, “BinaryConnect: Training Deep
Neural Networks with Binary Weights During Propagations,”
arXiv:1511.00363v3, April 2016.

[15] M. Courbariaux, I. Hubara, D. Soudry, R. E.-Yaniv and Y. Bengio,
“Binarized Neural Networks: Training Neural Networks withWeights
and Activations Constrained to+1 or −1,” arXiv:1602.02830v3, March
2016.

[16] M. Rastegariy, V. Ordonezy, J. Redmon, A. Farhadi, “XNOR-Net:
ImageNet Classification Using Binary Convolutional Neural Networks,”
arXiv:1603.05279v4, August 2016.


