An Optical Neural Network Architecture based on
Highly Parallelized WDM-Multiplier-Accumulator
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Abstract—Future applications such as anomaly detection in of CMOS LSI circuits in advanced technology nodes such as
a network and autonomous driving require extremely low, sub- 7 nm and below.
microsecond latency processing in pattern classification. Towards Concurrently, optical communication technologies have also

the realization of such an ultra-fast inference processing, this b idl . th ¢ ld d Alth h
paper proposes an optical neural network architecture which can €en rapidly growing over the past several decades. oug

classify anomaly patterns at sub-nanosecond latency. The archi- Optical communication technologies are widely used for the
tecture fully exploits optical parallelism of lights using wavelength long-distance communications, electronics still remain as ma-

division multiplexing (WDM) in vector-matrix multiplication. It jor players for short-distance communications. Recent ad-
also exploits a linear optics with passive nanophotonic devices vances in nanophotonics, however, make it possible to migrate

such as microring resonators, optical combiners, and passive - . L .
couplers, which make it possible to construct low power and power-efficient light-based communication into ever-shorter

ultra-low latency optical neural networks. Optoelectronic circuit ~ distances and move onto silicon chips as optical networks-
simulation using optical circuit implementation of multi-layer  on-chip [4].

per_ceplnron (I\l/ILP) delznonstrates sub-nanosecond processing of |n this paper, we propose an integrated optical neural
optical neural network. . network (ONN) architecture as a principle building block for
Index Terms—optical neural network, wavelength division . g . ; -
multiplexing, multi-layer perceptron in-network optical computing. The optical networks-on-chip
(ONoC) described above [4] is a part of the in-network optical
computing concept. Fundamental technologies required for the
ONoCs such as memory interface and wavelength division

Today’s highly sophisticated information society, with lownultiplexing (WDM) are also the key technologies for the
latency access to the Internet, would not be realizable withddtnetwork ONN. An overview of our ONN is depicted in
optical communication technologies and CMOS LS| technol&dd. 1. This architecture fully exploits area efficiency of micro-
gies. According to Moore’s Law, the propagation delay ding modulators for interfacing electrical memory and exploits
CMOS gates in the LSI circuits has drastically decrease@ptical parallelism of light using WDM. It also exploits
Historically, the delays of local level wires also decreasd@W power and ultra-low latency natures of linear optics in
with transistor downscaling since the delays are determined by
RC time constant which can be reduced along the transistor
downscaling. At ultra-scaled dimensions, hOWE‘VGI’, the effeCArea efficient memory interface  WDM & Linear optics Non-linear optics

I. INTRODUCTION

tive resistivities (R) of local level wires increase more rapidly wj wj, ww.o ) . % i Next
than a decrease of wire capacitance (C) due to size effects [1L. = 'é>' .
and therefore, the RC time constant cannot be decreased by e — ... ..... . >_>->7 =
transistor downscaling. Post-layout analysis using predictve v, wj,. v, Woun, %ot - baew
technology models [2] shows that interconnect performance_, Wé =

degradation may dominate over the device speed improvemﬁ%/_/ N

in a 22 nm technology node and below [1] [3]. This means Weight modulation ~ Multiplication Accumulation  Activation
that technology scaling itself cannot resolve the latency issue

Identify applicable funding agency here. If none, delete this. Fig. 1. Overview of our Optical Neural Network



optical passive devices such as combiners and couplers YoDM signals and limits the scalability of the vector-matrix
constructing in-network highly parallelized multiplication andnultiplication.
accumulation. In [6], a similar architecture for optical vector-matrix mul-
The rest of the paper is organized as follows. Sectiont@lication based on the MRR weight banks is proposed. The
summarizes several previous works on the optical neugkchitecture is very compact and implements the constant order
networks and shows contributions of this work. Section &lculation of the weighted sum using WDM signals and PD-
shows an architecture overview of our optical neural networkased accumulation. However, it has the oscillation issue in
Section 4 shows experimental results obtained with a commtire photodetector which limits the scalability of high-speed
cial optoelectronic circuit simulator. Section 5 concludes thigector-matrix multiplication.
paper. Unlike the approaches described above, we use a combiner
tree [7] for accumulating WDM signals in parallel instead of
Il. RELATED WORK AND MOTIVATION using PD-based accumulation. Our approach does not have the

.oscillation issue in the photocurrent, since only coherent light

Neural networks are a continued staple of machine learmigg, s haying a single wavelength are given to a photodetec-
and alternative computing, with applications ranging fror{br

classification, anomaly detection and regression to general-
purpose computation. The following subsections summariBe Reconfigurable Mach-Zehnder Interferometer Array

recent architectures proposed for optical neural networks.  |n [8], a fully optical neural network (ONN) architecture
_ _ is presented for implementing general deep neural network
A. Photonic Weight Banks algorithms using nanophotonic circuits that process coherent

An optical circuit structure for calculating a weighted sunight. The core part of the ONN architecture is a matrix mul-
is proposed in [5]. This structure is used for vector-matrifPlication unit which is composed of a reconfigurable Mach-
multiplication in optical neural networks. The basic structuréehnder Interferometer (MZI) array as shown in Fig. 3. Once
is depicted in Fig. 2. Incoming WDM signals are weighte@ neural netvv_ork is trained, the architecture can be passive,
by continuous-valued filters called microring (MRR) weigh@nd computation can be performed at the speed of light. In
banks and then summed by a photodetector as photocurrédgition to the light-speed processing, the computation can
This is a very area efficient, low power and low IatencPe performed without additional energy input. These features
approach for calculating the weighted sum. It can calculate th@uld enable ONNs that are substantially more energy-efficient
weighted sum in a constant order regardless of the numberdpd faster than their electronic counterparts. As described
weights. However, this approach has the following drawback8. [8]. the energy consumption introduced by the switching
If more than one optical signals having different wavelengtr@§tivity is extremely small in this architecture.

(i.e. WDM signals) are given to the photodetector, undesirableHowever, one big drawback we see in the ONN architecture
oscillation in photocurrent occurs. One of the most straighi€scribed above is large energy consumption in laser sources,
forward approaches to eliminate the oscillation is |OW_pagghich may limit the scalability of this architecture. Since the
filtering with an electronic low-pass filter. This is very simpléignal power attenuation is exponential to the number of MZIs
but prevents us from exploiting the ultra-high speed natug@nnected in series, the signal power on the laser sources
of lights since the time-constant of the neural network f3as to be sufficiently large so that the optical signals at the
dominated by the RC time-constant of the electronic low-pa84tPut can be surely detected by photodetectors even in case
filter. Another approach for eliminating the oscillation is usinghat the signals are largely attenuated when they are passing
wavelengths which are sufficiently apart from each other. Sinfgough the MZI array. The order of the number of serial
the oscillation frequency depends on the difference betweg@nnections in the architecture (n), where then is the

the wavelengths of the lights, we can make the frequencyrf_gmber of nodes in a single neural network layer. If the size
be too high for the photodetector to oscillate by setting tH the neural network layer increases, the energy consumption
wavelengths sufficiently apart from each other. However, thi laser sources increases exponentially.

the circuit structure where a large number of optical devices

are serially connected. Although our architecture also exploits

WDM MRR weight bank photocurrent
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Fig. 2. Calculation of Weighted Sum Using Photonic Weight Banks Fig. 3. Calculation of Weighted Sum Using MZI Array



the ultra-high speed nature of the serially connected opticalltage signals which are used as input operands of the MZM-

devices, the order of the number of serial connections in doased multipliers in the next layer.

architecture isD(logan). Assuming the number of nodes in the input layeXisand
that in the next layer i%, we needX x h micro-ring array as

C. Homodyne Detection-based Vector Matrix Multiplier  the MRR weight bank. The number of different wavelengths

A new type of photonic accelerator based on coherefgeded ish and the number of rows in the bankls. The h
detection is proposed in [9]. It is scalable to largé ¢ 106) different light signals are given to every row in parallel. Note
networks and can be operated at high speeds (GHz) and Vgt the signal power of thé lights given as inputs is the
low energies (sub-aJ) per multiply-and-accumulate (MAC), ugame from each other. o o
ing the massive spatial multiplexing enabled by standard free-Then theX x h weight values are individually multiplied
space optical components. In contrast to previous approackghe light signals in parallel. Once the weighted signals are
[8], both weights and inputs are optically encoded so theven, the MZM works as a parallel multiplier. The number
the network can be reprogrammed and trained on the % MZMs is X and the number of wavelengths used in the
This architecture is highly parallelized by the massive spatfDM signals given to each MZM is.. Therefore, X x h
multiplexing. However, it does not exploit WDM para||e|ismmultiplications are performed in the MZM-based multipliers
in their multiply-and-accumulate operation, which limits thén parallel by exploiting both spatial parallelism and WDM
throughput and area efficiency of the architecture. parallelism. _ .

Unlike the architecture presented above, our ONN architec-1"€ next step is accumulation. Once the outputs of the
ture largely exploits WDM parallelism as well as the circuitMZM-based multipliers are given to the combiner-tree as
level spatial parallelism using an optical combiner tree whicdyDM signals, accumulation operations are performed in

can be functioned for accumulating WDM signals in paralleParallel. Optical signals with the same wavelength are accu-
mulated in a tournament fashion in the combiner-tree. This

I1l. OPTICAL NEURAL NETWORK EXPLOITING WDM accumulation is performed for every different wavelength in
PARALLELISM parallel. Since the optical signals with different wavelengths
are basically not interfered with each other, thelifferent
accumulations can be independently performed in parallel.
An architectural overview of our optical neural network is Finally, the accumulated values are extracted by micro-ring
depicted in Fig. 4. Each layer is composed of MRR weighesonators, wavelength selective splitters or arrayed waveguide
bank [5], parallelized Mach Zehnder Modulator (MZM)-gratings (AWG), and given to activation circuits separately.
based multipliers, a combiner-tree-based accumulator [7], aBithce we make decisions whether the corresponding output
optoelectronic activation circuits. The output signals of thehould be activated or not for every wavelengths separately,
activation circuits are passed to the next layer as electrithk number of activation circuits neededhisThe outputs of
the activation circuits are passed to the next layer as inputs of
the MZM-based multiplier in the next layer.
Input layer W Hidden layers Output layer The MRR weight bank takes a few tens of picoseconds
: to read weight parameters [5]. Both the MZM multiplier and
combiner-tree takes only a few picoseconds to propagate the
optical signals [7]. The ELU-based activation circuit explained
% in the following sections also takes a few tens of picoseconds
[13]. As a result, the propagation delay of the single neural
network layer is less than 100 picoseconds in total approxi-
mately and if we construct a neural network with less than 10
layers, a sub-nanosecond neural network is realizable, which
is extremely fast.

A. Neural Network Overview

B. Vector Matrix Multiplication

_____ Weight matrix We perform vector-matrix multiplication as shown in (1),
~~~~~~~~~~~~~~~~~~~~~~ where a set o#¥/; ; values forms a weight matrix and a set of
) x; values forms an input vector.

" Weight matrix
Va

y1=x1 - Wii+axs - Wis+- - +ax- Wix,

X -~ h ya =21 -Wa1+xo - Woo+---+ax- W x, )
. 3 = T ,
nd Mlt'l'/t' e
uiplication yn=x1 - Whi+x2 - Wha+ - +2x - Wphx.

We use an optical vector-matrix multiplier shown in Fig. 5
Fig. 4. Optical Neural Network Overview as a core part of the optical neural network computation. The
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. . o _ wave as shown in Fig. 6. This makes it possible to handle
leftmost WDM signals are first equally divided info groups poth plus and minus input values accurately and obtain good

and given to the rows of the MRR weight bank. Thereforginearity in the MZM outputs for both plus and minus input
the signal power of all theX x h optical signals given to the yajyes.

signals are then multiplied by the weight parameters. FQge a combiner-tree-based analog accumulator presented in
example in the topmost rowVy 1, Wa1,--, Wh-1,1,Wh1  [7]. The accumulation is performed for massive WDM signals
are individually weighted by the micro-ring modulators. Thefy parallel as shown in the leftmost tree structure depicted in
the WDM output of the row is passed to the MZM whichrig 7. At every combiner in the tree, two input signals with
is controlled by the electric voltage signal proportional to thge same wavelength are interfered and added to each other
value ofz,. Since the input of the MZM is weighted WDM e for any two input signals with different wavelengths do
signals which do not interfere each other, the valuerof not interfere. As a result, all WDM signals are individually
is individually and concurrently multiplied to all the WDM gccymulated in parallel through the combiner-tree. We use a
signals. This multiplication corresponds to the first terms ‘thase shift for representing a minus value. Assuming a base
all the equations in (1). The MZM controlled by, performs  gntical signalA represents a plus value and if the phase of an
the multiplication corresponding to the second terms of alhtical signalB is 7 (i.e. 180 degree) out of phase from the
the equations in (1). Similarly, all the multiplications whichyzge signal, the signd represents a minus value. With this
appear in the equations in (1) are performed throughout thgyresentation for the plus and minus values, we can correctly
MZMs in parallel. accumulate both plus and minus values using the combiner-
All the output WDM signals of the MZMs are passed tgree.

the combiner-tree with being multiplexed for the optically gince the accumulation operation is based on the electric
parallelized accumulation. The number of leaves needed fi|g strength instead of the signal power, the result of mul-
the combiner-tree in this example . Since it is a tree tipjication and accumulation (MAC) operation is obtained as
structure, the order of the propagation delay in this combing{-yajue proportional to the electric field strength. Therefore,
tree is O(log>X). The propagation delay of each combineje yse a homodyne detection circuit shown at the middle
is very small because the size of the combiner can be maferig. 7 for extracting the electric field strength from the
very small [7]. Optical signals with the same wavelength aggotocurrent which is proportional to the signal power. We use
accumulated in a tournament fashion by the combiner-tres.g converter presented in [13] for the homodyne detection.
This accumulation corresponds to each equation in (1). Fekis O-E converter does not need an amplifier to convert

given WDM signals to the combiner-tree, all the accumulatione optical signal to the electrical signal and therefore, it is
in (1) are performed individually and concurrently.

1) MZM-based Parallelized Multiplication: We use a
Mach-Zehnder Modulator (MZM) as an optical multiplier. By
using optical signals with different wavelengths to each other,
an MZM can work as a parallel multiplier for the multiple
optical signals without mutual interference. It is experimer=>
tally demonstrated that optical inter-channel interference s -
negligible for channels with a wavelength spacing of 1.3 nm
[11]. In [12], a broadband silicon Mach Zehnder Switch (MZS= —..
in the following) which operates over a wide wavelength range"—/"~

Input light
—

ey,
N

from 1510 nm to 1650 nm is proposed. In this case, the MZS i —a

. . . combiner
can be functional for more than 100 WDM optical signals.

For obtaining good linearity of the sinusoidal wave gener-

ated by the MZM, we use the firgtr /8 parts of the sinusoidal Fig. 7. Combiner-Tree and Homodyne Detection



very energy efficient. Once the photocurrefyy; in Fig. 7, Lao<Pi =P,

out

which is proportional to the electric field strength of input meufisnt p 8
light is obtained, thd,; is converted to electrical voltage just v e | 4 S
using a resistancl;,,q. If the input capacitance of the device 7 opa| G o] — =
i I i _ A
connected to thé&,,; in Fig. 7 is an order of femtofarad, the ;> ioht 4] Roags  —4 oput 10 ELU (< 1,0

RC time constant can be very small and the O-E-O conversion -8 ‘ ‘ ‘

delay is, as a result, around 25 picosecond [13]. =
(a) Optoelectronic Implementation of ELU (b) OptiSPICE Simulation Result of ELU

C. Activation Function

ReLU stands for rectified linear unit, and is a type of

. . . . . Fig. 8. Optoelectronic Implementation of Activation Function.
activation function. Mathematically, it is defined as (2)

y = maz(0, z). (2) function is preferable as an activation function. Although

ReLU is the most commonly used activation function "l;;{.eLU af.‘d leaky ReLU. are npt differentiable at zero, ELU is_
neural networks, especially in CNNs because of the followin ferentiable at any points. Fig. 8 (a) shows an optoelectronic
reasons: ' implementation of ELU. This circuit is modified from the

It is ch h . i q homodyne detection circuit depicted in Fig. 7. As explained
« Itis cheap to compute as there is no complicated maig, ,q homodyne detection circuit, the input of the ELU

The model can, therefore, take less time for both tralnlr1‘9nction is proportional to the total photocurrent obtained by

and inference. umming up the photocurrents drawn from PD1 and PD2

- S
« It converges faster. It does not have the vanishing gra- Fig. 8 (a). The yellow colored diode symbol, ELU diode

dﬁent problem suffer.ed by other activation functions Iik9\/hich is newly added, works as an ELU function. For positive
S|g'm0|d or hyperbghc tangept. . input values, ELU diode works as an insulator while it works
- Itis _spar_sely ac_tw_ate_d. Since ReLL? IS z€ro for alls 4 resistor where its resistance is very small for negative
negatlve Inputs, 't. |s_I|ker for any given umt_ to nOtinput values. The circuit simulation result obtained with a
gcuygte at all .Th's IS .often deswable-smc.e it make ommercial optoelectronic circuit simulator, OptiSPICE, is
intuitive sense if we think about the biological neur hown in Fig. 8 (b). The simulation result demonstrates that

network that artificial neural networks try to imitate. the ELU circuit shown in Fig. 8 (a) accurately works as the
Although RelLU has several advantages over the othe[y function.

activation functions, it has a problem called dying ReLU. A
ReLU neuron is dead if it is stuck on the negative side and IV. EXPERIMENTS AND RESULTS
always outputs 0. Because the slope of ReLU in the negatixe
range is also O, once a neuron gets negative, it is unlikely
for it to recover. Such neurons are not playing any role in This section shows the following two evaluation results;
discriminating the input and is essentially useless. 1) Linearity of MZM-based multiplier and combiner-based
Leaky RelLU has been proposed to fix the dying RelLU accumulator.
problem. It has a small slope for negative values, instead 0f2) Functional correctness and accuracy of OMAC (opti-
altogether zero. For example, leaky ReLU may have0.01x cal multiplication and accumulation) circuit and homo-
whenz < 0. Similar to leaky ReLU, an exponential linear unit dyne detector-based ELU activation circuit combined
(ELU) has a small slope for negative values [10]. Instead of a  together.

;traight line, it uses a I<_)g curve for negative values as shoywg, evaluating the above two items, we designed an opto-
in (3), wherea is a scaling factor. electronic circuit shown in Fig. 9. For the first evaluation, we

y=z (if z > 0),

y=a(e® —1) (otherwise).

Experimental Setup

®3)

X combiner

It is designed to combine the good parts of ReLU and Ieak)wll-
ReLU, that is, while it does not have the dying ReLU problem,
it saturates for large negative values, allowing them to béVi."
essentially inactive. X3
In many neural network applications, ReLU, leaky RelLU Wl,s-é?-“"z_”fs
s
<>

o out

ELU
iy
diode

Rload

and ELU do not have a big difference in training speed and =
inference accuracy. However, in terms of implementation, ELUWM/ ------ MzZm4 . = /
is the most practical activation function for the Optoe|ectroniCMuItipIication Accumulation  Homodyne Detection and ELU Activation
implementation of neural networks. Since a function which

is ot differentiab_b at some points _iS hard to impleme'ﬁg. 9. Test Circuit Composed of Optical MAC Circuit and ELU-based
using optical devices or MOS transistors, a differentiabketivation Circuit.
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Function.

use an MZM-based multiplication circuit and a combiner-tree- | £ th it At thi 204
based accumulation circuit (i.e. left two parts) in Fig. 9. For th ows an enlargement of the result. At this worst case, 2%

second evaluation, we use the entire circuit shown in Fig. grror is involved, which is not very big as an analog multiplier.
’ Fig. 11 and Fig. 12 show the results for the second evalu-

ation. The results for analog inputs are shown in Fig. 11 and
those for digital inputs are shown in Fig. 12. The upper four
Fig. 10 shows the electric field strength values of four MZ'\ﬁraphs in the figures represent input voltage signals given to
outputs and MAC output, which correspond to the results gie corresponding four inputs; - - - z4 of MZM multipliers.
the first evaluation described above. We give electric voltagge |ower graphs in the figures show electrical voltage output
signals toz; to x4 shown in Fig. 9 so that the electric fieldsignals of the ELU activation circuit. The figures demonstrate
strength values in the corresponding MZM outputs exhibit thge functional correctness of the optical MAC operation and
values shown in the lower part of Fig. 10. As explained withptoelectronic ELU activation function.
Fig. 6, MZM outputs have nonlinearity since we use a part of The reason why we perform the evaluation for digital inputs
the sinusoidal curve produced by the optoelectronic respoRseyecause inference accuracy in quantized neural networks
of the MZM as a linear function. The worst-case nonlineari%pidw improves in recent years. Several related work [14]-
appears in the middle, where all the MZM outputs have theg] proved that inference accuracy does not widely degrade
intermediate electric field strength. The upper part of Fig. IQen if we use binary weights and binary activations while
those binarizations largely reduce necessary memory and
neural network sizes, and simplifies the memory interface.
For example, BinaryConnect proposed in [14] obtains near
N/ 1 state-of-the-art accuracy results using binary weights for the
T permutation-invariant MNIST. Our optical neural network ar-
¥ chitecture handles both analog values and digital values for
Y S— 0 S N 0 2 weight parameters and inputs. If we use the binary inputs and
1 binary weights, we can largely reduce the hardware complexity
0 -1 ! X3 and footprint with negligible degradation in inference accu-
racy.

B. Simulation Results

T T T I T
1 \ 2\ \ \ \
N NGO 7 TN -
! !
\ \

-
|

-
o

0 -1 X4 V. CONCLUSION

This paper proposes a new optical neural network architec-

/4 ture which fully exploits spatial parallelism and optical paral-

2 Minus ~ ~ ~ Vour  lelism with wavelength division multiplexed (WDM) optical
——— e ~_/ - signals. Since, in a single neural network layer, only optical

04 L’;F;Z— signals are propagated, its latency is extremely low. The MRR

weight bank takes a few tens of picoseconds to read the weight
Fig. 11. Simulation Results for Analog Optical MAC and ELU ActivationParameters and to modulate the optical signals based on the
Function. weight values [5]. Both the MZM multiplier and combiner-tree




takes only a few picoseconds to propagate the optical signgk
[7]. The ELU-based activation circuit based on the amp-less
O-E-O converter also takes a few tens of picoseconds [13].
As a result, the propagation delay of the single neural netwdule]
layer is less than 100 picoseconds in total approximately and if
we construct a neural network with less than 10 layers, a sub-
nanosecond neural network is realizable, which is extremely
fast.

The optoelectronic circuit simulation demonstrated the func-
tional correctness of our optical neural network architecture.
Unlike previous works, our architecture has a circuit structure
where a small number of optical devices are serially connected.
This largely reduces the signal power attenuation along the
serially connected path. Therefore, power consumption of laser
sources needed for our architecture is very small.

To come up with a new algorithm for canceling out the
impacts of the nonlinearity of optical devices and process
variation on the inference accuracy through the training of
weights is our future work.
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