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Abstract— The logarithmic approximate multiplier proposed
by Mitchell provides an efficient alternative to accurate multi-
pliers in terms of area and power consumption. However, its
maximum error of 11.1% makes it difficult to deploy in appli-
cations requiring high accuracy. To widely reduce the error of
the Mitchell multiplier, this paper proposes a novel operand de-
composition method which decomposes one operand into multiple
operands and calculates them using multiple Mitchell multipli-
ers. Based on this operand decomposition, this paper also pro-
poses an accuracy reconfigurable vector accelerator which can
provide a required computational accuracy with a high paral-
lelism. The proposed vector accelerator dramatically reduces the
area by more than half from the accurate multiplier array while
satisfying the required accuracy for various applications. The ex-
perimental results show that our proposed vector accelerator be-
haves well in image processing and robot localization.

I. INTRODUCTION
Modern microprocessors mostly integrate vector multipli-

cation units to cope with intensive computing requirements.
However, a multiplier is also known as a power-hungry and
area-expensive unit in a circuit. In applications involving a
large number of multi-bit data or floating-point multiplication,
the area and power dissipation of multipliers become domi-
nant.

On the other hand, in many applications, the result of multi-
plication does not need to be accurate. For applications that
require massive parallelism, a multiplier array with smaller
area and higher speed is needed [1]. Thus, many approxi-
mation methods are proposed to improve the performance of
multiplication. For example, approximate unsigned multipli-
ers have been applied to some image processing applications,
like sharpening and smoothing [2]-[5]. These researchers’ pro-
posals focus on bitwise truncation or compression of partial
products of Wallace trees, with limited effect on the reduction
of the overall area and energy consumption of the multiplier.

The logarithmic approximate multiplier proposed by
Mitchell [6] converts multiplication to simpler shift and ad-
dition operations. Mitchell multiplier has been experimentally
confirmed that it can significantly reduce the area to as low
as 34% of an accurate multiplier. It is very effective for ap-
plications such as deep neural networks (DNN) that include
massive parallel computing and do not necessarily achieve a
high computational accuracy [7] [8]. However, for those ap-
plications that require a specific degree of accuracy and high
parallelism simultaneously, the accuracy of the Mitchell multi-
plier needs improvement. One naive approach to achieving this
goal is integrating both the accurate but not highly parallelized
multiplier and the highly parallelized approximate multiplier
on a chip and selectively using them depending on the target
application and situation. However, since chip area is limited,
integrating the two types of multipliers impairs the high area
efficiency of the Mitchell multipliers and significantly reduces
the degree of parallelism for the multiplication.

This paper first proposes a novel operand decomposi-
tion (OD) method which is more accurate than existing meth-

ods [9] [10]. Based on our OD method, this paper also pro-
poses an accuracy reconfigurable vector accelerator for mas-
sive parallel multiplication and multiply-accumulate computa-
tion. The key idea of our proposal is a novel OD method comb-
ing with the Mitchell approximate multiplication [6]. Thanks
to the proposed reconfigurable unit exploiting our OD mecha-
nism, the area can be dramatically reduced from the accurate
multiplier array while satisfying the required accuracy for var-
ious applications. The main contributions of our proposal in-
clude:

• Multiple accuracies can be reconfigured by different OD
modes to suit various usage scenarios.

• The area is greatly reduced compared to the accurate mul-
tiplier, effectively improving the parallelism of operations
with the same limited circuit area.

• The accuracy is significantly improved over the original
logarithmic approximate multiplication.

We show that the proposed accuracy reconfigurable vector ac-
celerator can be deployed in image smoothing and robot simul-
taneous localization and mapping (SLAM) applications with
good performance. We can use the same accelerator by re-
configuring the accuracy to obtain different quality images as
needed, or select different modes in robot localization and
mapping to obtain the desired results, with high parallelism
and small area overhead.

The rest of this paper is organized as follows. Section II re-
views the conventional Mitchell logarithmic approximate mul-
tiplication and the original operand decomposition (OOD) ap-
proaches. Section III proposes the novel OD method, which
is essential for the proposed reconfigurable vector accelerator,
then gives the detail and advantages of the “accuracy reconfig-
urable” feature of the proposed vector accelerator. The exper-
imental results regarding the accuracy improvement and area
reduction are shown in Sect. IV. Section V describes the appli-
cability of the proposed vector accelerator to image smoothing
and robot SLAM applications. Lastly, concluding remarks are
given in Sect. VI.

II. RELATED WORK

This section summarizes the existing related works, includ-
ing the original Mitchell algorithm and OOD methods, and an-
alyzes their principles and shortcomings.

A. Mitchell Algorithm
In this section, we briefly describe the Mitchell algorithm

based on logarithmic approximate multiplication.
The Mitchell algorithm only requires shift and addition op-

erations [6]. First, we find the positions kA and kB , which are
the positions of the leading “1” bit in the two inputs A and B,
respectively. The position can be identified by shifting the in-
put bits left until the most significant bit is a “1” with a leading
“1” detector. The remaining bits after the leading “1” are used
as mantissa mA and mB . Then, we combine k and m into



floating-point format f as shown in following equations.

fA = kA.mA, (1)
fB = kB .mB . (2)

Next, we add the two approximate logarithmic values to get
fAB , which is the logarithm of A×B.

Sum = fAB = fA + fB
= kA.mA + kB .mB = kAB .mAB .

(3)

Lastly, we decode fAB to get the approximate result of A×B.
The decoding method concatenates fAB after leading “1” and
shifts left to make leading “1” to position kAB .

Whereas the multiplier based on Mitchell’s algorithm re-
duces the area compared to the accurate one, it suffers from
the computational accuracy. The maximum error of the tradi-
tional Mitchell algorithm is 11.11%, which occurs when the
mantissa part is 0.5. The average error is 3.83%. The approx-
imate product is always less than the exact value, which may
cause an accumulation and widening of the error.

In order to improve the accuracy of the traditional Mitchell’s
algorithm, some improved methods have been proposed. Babic
et al. [11] proposed an iteration based logarithmic multiplier,
reducing the maximum error of the approximate multiplication
to less than 0.5% (3 correction circuits). However, the paral-
lel implementation with one correction circuit doubles the area
compared to the Mitchell multiplier. Ansari et al. [12] pro-
posed to round operand to its nearest power of two instead
of the highest power of two that is smaller than or equal to
the operand. Both of their proposed multipliers improved the
multiplication accuracy. Alla et al. [13] proposed a method
that combines Mitchell’s approximation with a hardware prun-
ing technique, producing an area-efficient multiplier architec-
ture without compromising accuracy. In addition, the approx-
imate logarithmic multiplier with two-stage operand trimming
proposed by Pilipovic et al. [14] further reduces the area and
power consumption compared to the Mitchell multiplier, but as
a cost, it has a larger error than the Mitchell multiplier.

B. Original Operand Decomposition (OOD)
Mahalingam et al. [9] proposed an operand decomposition

method to improve the accuracy of Mitchell’s logarithmic ap-
proximation.

Assume that the two n-bit inputs of the multiplication
are X (X = {xn−1xn−2 . . . x2x1x0}) and Y (Y =
{yn−1yn−2 . . . y2y1y0}). Decompose X and Y into
four operands A = {an−1an−2 . . . a2a1a0}, B =
{bn−1bn−2 . . . b2b1b0}, C = {cn−1cn−2 . . . c2c1c0} and D =
{dn−1dn−2 . . . d2d1d0}. Among them, ai = xi ∨ yi, bi =
xi ∧ yi, ci = x̄i ∧ yi, di = xi ∧ ȳi. The final product is
calculated by (4):

X × Y = (C ×D) + (A×B). (4)

The advantage of this method is to reduce the number of
“1”s in every decomposed operand. Therefore, the switch-
ing power dissipated for the multiplication operation can be
reduced. Although the OOD method slightly reduces the av-
erage error of the Mitchell algorithm, the maximum error does
not decrease.

Nandan et al. [10] proposed a variant of the OOD method
with the main objective of improving the delay and power con-
sumption of the circuit, but with limited improvement in accu-
racy.

The above solutions have solved the problem of excessively
large area of the accurate multiplier, and some other methods
offer a few degrees of improvement in accuracy. However, the

above methods do not achieve the requirements of multiple ac-
curacy reconfigurable, and cannot adapt to the application sce-
narios with high parallelism and various accuracies.

III. PROPOSED APPROACH

First, this section proposes the novel OD method. Next, we
introduce the working mode implementation on the proposed
vector accelerator, and then highlight the advantages of the ac-
curacy reconfigurable vector accelerator.

A. Proposed Operand Decomposition
Fig. 1(a) shows a non-Decomposition configuration which

calculates four multiplication in parallel using a 4-Mitchell
multiplier array. Since there is no decomposition of operands
and one multiplication remains as it is, we refer to this mode
as OD-1. Similarly, the proposal to decompose a multiplica-
tion into two or four ways will be referred as OD-2 and OD-4
respectively, which are shown in Fig. 1(b) and Fig. 1(c), re-
spectively. Let us then explain how the proposed OD method
improves the accuracy of approximate multiplication by re-
configuring the original Mitchell based configuration shown
in Fig. 1(a). This proposed OD method is suitable for realizing
the accuracy reconfigurable feature highlighted in Sect. III.B.

First, we explain the proposed OD-2 method as illustrated
in Fig. 1(b). For given two binary operand X1 and Y1, the
OD-2 method finds the position kX1

of the leading “1” of X1,
and fills kX1

“0”s after “1”. As a result, the first decomposed
number of X11 can be obtained. The second number is the
remaining part of X1 (X ′1), which removes the leading “1”
from X1. The method calculates X ′1 using (5).

X ′1 = X̄11 ∧X1. (5)

Then X1 × Y1 can be calculated by (6).

X1 × Y1 = (X11 +X ′1)× Y1 = X11 × Y1 +X ′1 × Y1. (6)

Since it is obvious that X11 is the exponent of 2, the mantissa
part of the approximate value of log2X11 is 0. When applying
the Mitchell algorithm to X11 × Y1, only the integer part of
X11 is added to the approximate value of log2 Y1. Therefore,
decoding the sum of the two logarithms is equivalent to shift-
ing Y1 to the left by kX1

bits. This shifting left operation does
not involve any errors. Meanwhile, since X ′1 is a smaller num-
ber than X1, X ′1 × Y1 produces a smaller error when applying
the Mitchell algorithm than applying it to X1 × Y1 directly.
Therefore, the proposed OD reduces the overall error for the
multiplication.

Decomposing a smaller operand of X1 and Y1 can fur-
ther improves the accuracy. By decomposing the smaller
operand (suppose Y1) into a power of 2 (Y11) and a much
smaller operand (Y ′1 ), we expect Y ′1 to contain fewer “1”s, re-
sulting in a smaller error in the approximate logarithm opera-
tion, so that the result of Mitchell approximate multiplication
of Y ′1 and X1 will produce smaller errors that minimize the
effect of the product error.

+
+

+
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+
+

+

X11Y1 X1’Y1 X21Y2X2’Y2
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+
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(c) OD-4

Fig. 1. OD-1/2/4 mode of the proposed vector accelerator.



The operand X1 can also be decomposed into four
operands (OD-4), which corresponds to Fig. 1(c). X ′1 gen-
erated after the initial decomposition is decomposed into X12
and X ′′1 , then decompose X ′′1 into X13 and X ′′′1 . Therefore,
X1 × Y1 can be obtained by (7).

X1 × Y1 = (X11 +X12 +X13 +X ′′′1 )× Y1
= X11 × Y1 +X12 × Y1 +X13 × Y1 +X ′′′1 × Y1.

(7)

X11 × Y1, X12 × Y1, and X13 × Y1 do not produce any er-
rors when applying the Mitchell algorithm, and X ′′′1 occu-
pies a much smaller proportion of the original operand X1.
Therefore, X ′′′1 × Y1 produces a much smaller error, which
ultimately makes the overall result more accurate. Conse-
quently,compared to the original Mitchell multiplication and
the proposed OD-2 method, further reduces overall error. In
Sect. IV, we experimentally show the accuracy improvement
effect thanks to the proposed OD method. Another key point
of the proposed OD method is that the most of the parts in
Fig. 1(a) can be reused in the configuration shown in Fig. 1(b)
and Fig. 1(c). In other words, just providing the decomposed
operands to the configuration improves the approximation ac-
curacy. The accuracy reconfigurable feature in Sect. III.B is
achieved by switching between the above three modes.

B. Accuracy Reconfigurable Feature
The vector accelerator proposed in this paper satisfies both

the high accuracy and high parallelism with only small area
overhead, and supports on-demand accuracy reconfiguration.
The key idea is illustrated in Fig. 2. The conventional accurate
multiplier (black) has the highest accuracy but occupies the
largest area. Namely, only a small amount of accurate multi-
pliers can be integrated in the limited circuit area. In contrast,
the original Mitchell approximate multiplier (red) greatly re-
duces the area and increases the parallelism of the multiplier
array. However, its error sometimes have the difficulty cop-
ing with the need for high accuracy. Therefore, integrating one
of the two parallel computing units in the circuit alone can-
not meet the needs of both high parallelism and high accuracy.
In addition, integrating both at the same time makes the area
overhead more than worthwhile.

Compared with these integration strategies, our pro-
posal (blue) has an advantage that, by making a trade-off be-
tween accuracy and parallelism, it can meet the usage require-
ments of various accuracies, keeping high parallelism with
only small area overhead. The key idea behind of this accuracy
reconfiguration is the OD proposed in the Sect. III.A, which
improves the accuracy by decomposing one multiplication into
two or four ways. More specifically, in the OD-1 mode (“1” in
Fig. 2, which corresponds to Fig. 1(a)), the accuracy is iden-
tical with that of the original Mitchell multiplier, but with a
slight increase in the occupied area due to the decomposi-
tion circuit. OD-2 mode (“2” in Fig. 2, which corresponds
to Fig. 1(b)) makes one multiplication to use two approximate
multipliers, and the accuracy can be greatly improved. OD-4
mode (“4” in Fig. 2, which corrsponds to Fig. 1(c)) gives an
accuracy comparable to that of the accurate multiplier, but at
the expense of the most parallelism. Also, by integrating the
proposed vector accelerator into the processor in the form of
an extended instruction set, the accuracy can be reconfigured
at the software level, making the proposed vector accelerator
generalizable to any usage scenario.

IV. EVALUATION OF THE VECTOR ACCELERATOR
In this section, we experimentally evaluate the accuracy,

area, and critical path delay of the proposed vector acceler-
ator, and compare with the conventional Mitchell multiplier

Accuracy

Parallelism (Area-Efficiency)

Conventional 
Vector Unit

Original Mitchell Vector Unit

2

4

Accuracy
Reconfigurable
Vector Accelerator

4X parallelism
1

2X parallelism

Fig. 2. The trade-off between accuracy and parallelism.

and OOD implementation. First, we evaluate the accuracy of
the proposed vector accelerator. We use our proposal based on
OD-2, OD-4, the OOD method in [9], and the original Mitchell
method (which is the same in principle as OD-1) in [6]. Using
the above multiplication, we implement the multiplier whose
input is 8-bit, 16-bit, and 32-bit unsigned integers, respectively.

We use mean relative error distance (MRED) [15] as a crite-
ria for the accuracy evaluation:

MRED =
1

N

N∑
i=1

|Pi − P ′i |
Pi

, (8)

where N is the number of test cases of the multiplication, i is
the index of each test case, Pi is the accurate product of the
i-th test case, and P ′i is the approximate product of the i-th test
case.

Table I shows the evaluation results of the maximum error
and MRED in various situations. Compared with the original
Mitchell multiplier (OD-1), the maximum errors of the pro-
posed OD method are only 4.81% (OD-2) and 1.10% (OD-
4), and the MRED are only 1.05% (OD-2) and 0.10% (OD-
4), which has been significantly improved up to a factor of 30
compared to the MRED of Mitchell multiplier.

Then, we compare the circuit area and critical path delay.
We use a commercial logic synthesis tool to obtain the area
and timing reports for the proposed accuracy reconfigurable
vector accelerator. At the same time, we synthesize the vector

TABLE I
ACCURACY OF 8-BIT, 16-BIT AND 32-BIT INTEGER MULTIPLICATION

No. of bits Method Max Error (%) MRED (%)

8

Mitchell (OD-1) [6] 11.11 3.67
OOD [9] 11.11 1.88

Proposed OD-2 4.81 0.89
Proposed OD-4 1.08 0.03

16

Mitchell (OD-1) [6] 11.11 3.84
OOD [9] 11.11 2.17

Proposed OD-2 4.81 1.05
Proposed OD-4 1.10 0.10

32

Mitchell (OD-1) [6] 11.11 3.84
OOD [9] 11.11 2.18

Proposed OD-2 4.81 1.05
Proposed OD-4 1.10 0.10



TABLE II
AREA AND CRITICAL PATH DELAY OF ACCURATE, MITCHELL, OOD

UNIT AND PROPOSED VECTOR ACCELERATOR

No. of bits 32-bit
Area (µm2) Delay (ns)

Accurate 117,768.85 1,438.19
Mitchell [6] 36,581.71 1,567.51

OOD [9] 36,581.71 1,567.51
Proposed 55,071.58 2,190.28
Proposed1 50,504.28 1,942.02
Proposed2 40,236.36 1,934.48

1 Without operand comparison
2 Without operand comparison, OD-1 and

OD-2 only

unit using eight accurate multipliers and the vector unit with
eight Mitchell multipliers only. We also synthesize a vector
unit with eight Mitchell multipliers using the OOD method in
[9]. We use a commercial standard cell library based on 55 nm
CMOS process technology. We evaluate and compare the area
and delay of the above synthesized circuits.

Table II shows the comparison results. The area of the
Mitchell vector unit is only 31.1% of the accurate vector unit.
The OOD unit using bit manipulation has no change in area
and delay compared to the Mitchell unit, but the degree of
parallelism is fixed by half. The area of the proposed ac-
curacy reconfigurable vector accelerator is 55,071.58 µm2,
which is slightly increased compared to the Mitchell unit, but
still only 46.76% of the accurate unit, achieving a significant
saving. If we ignore the accuracy gain from decomposing
smaller oprands, the area is 50,504.28 µm2, which is only
42.88% of the accurate unit. If we further simplify the accel-
erator to which with only two reconfigurable accuracy-parallel
modes (e.g. OD-1 and OD-2 mode), the area is even reduced to
34.17% of the accurate unit. With this area saving, we can ac-
celerate the vector multiplication or multiply-accumulate op-
eration by integrating higher parallel vector unit on a chip. On
the other hand, due to the decomposition circuit, the critical
path delay has increased by up to 52.29% from the accurate
unit, which is one of our primary future works.

V. APPLICATION CASE STUDIES
In this section, we discuss the applicability of the pro-

posed accuracy reconfigurable vector accelerator in the im-
age smoothing and Simultaneous Localization and Map-
ping (SLAM). In these applications, we compare the perfor-
mance of the proposed accuracy reconfigurable vector accel-
erator in OD-2 mode, OD-4 mode, and OD-1 mode (which is
parallel Mitchell multipliers) with the parallel accurate multi-
pliers.

A. Image Smoothing
Image smoothing [16] is an application that reduces the

noise from an image by convolving the image using a smooth-
ing kernel. The smoothing kernel is a square matrix with each
value conforming to a Gaussian distribution:

H(x, y) =
1

2πσ2
e−

x2+y2

2σ2 , (9)

where H(x, y) represents the value of the x-th row and y-th
column in the smoothing kernel, and σ2 is variance of the ker-
nel. By multiplying and accumulating the value of each pixel
of the target image and its surrounding pixels with the smooth-
ing kernel, and then averaging, we can obtain the value of the
pixel after the smoothing process.

TABLE III
SSIM AND PSNR IN THE IMAGE SMOOTHING

Color Grayscale
SSIM PSNR SSIM PSNR

OD-1 0.973 20.603 0.990 26.599
OD-2 0.984 22.919 0.995 29.132
OD-4 0.986 23.628 0.996 29.887

(a) OD-1 (b) OD-2 (c) OD-4

(d) OD-1 (e) OD-2 (f) OD-4

Fig. 3. Smoothed color and grayscale Lenna images. The color image using
OD-1 has dull colors and severe distortion (Especially in the red line box
area), while images smoothed using the proposed OD-2 or OD-4 mode are
brighter. In the case of grayscale image, the difference is not significant.

We quantify the floating-point smoothing kernel to the
unsigned fixed-point number with 8 fractional bits as
bH · 28c/28, where H is the floating-point value of smooth-
ing kernel. As image quality metrics, we select the Structural
Similarity Index (SSIM) [17] and the Peak-Signal-to-Noise
Ratio (PSNR). We evaluate the SSIM and PSNR between the
images smoothed with the accuracy reconfigurable vector unit
and accurate parallel multipliers as the criteria for the evalu-
ation. As test images, we use the color and grayscale Lenna
images of 512× 512 pixels with random noise.

Table III shows the results of image smoothing. Com-
pared to the image smoothed using OD-1 mode, the PSNR
of the image using OD-2 mode improved by 11.2% (color)
and 9.5% (grayscale). The OD-4 mode further improves the
accuracy, e.g. the PSNR improved by 14.7% (color) and
12.4% (grayscale) compared to OD-1 mode. Fig. 3 visualizes
the smoothed Lenna image. In the case of color image smooth-
ing, the tone of the low PSNR and low SSIM image smoothed
by parallel Mitchell multipliers with the lowest accuracy is
darker, especially the red line box area in Fig. 3(a). Mean-
while, the images smoothed using the OD-2 or OD-4 mode
with improved accuracy are brighter and closer to the original
color of the image. Therefore, it is recommended to use OD-
2 or OD-4 for better results in cases where high accuracy is
required. On the other hand, with grayscale images, there is
no significant difference between three modes, and hence, the
OD-1 mode can be selected. In this case study, we can recon-
figure the accuracy as needed to obtain good smoothing results
for color and grayscale images, respectively, while ensuring
high parallelism in the computation.



B. Simultaneous Localization and Mapping

Simultaneous Localization and Mapping is the computa-
tional problem of constructing or updating a map of an
unknown environment while simultaneously estimating an
robot’s pose (position, orientation, etc.) within it. The re-
searches of [18] and [19] have high expectation to the possi-
bility and prospect of applying approximate calculation in the
field of SLAM. We use a laser-based SLAM application named
LittleSLAM proposed by Tomono [20] to evaluate the perfor-
mance of the proposed accuracy reconfigurable vector acceler-
ator. The core approach to robot localization in LittleSLAM
is the Iterative Closest Point method based on the scan match-
ing. It estimates the rigid-body transformation of the robot
by matching the scans of the environmental landmarks by the
robot’s mounted sensors. In this process, the point cloud in the
current scan frame needs to be matched to the reference frame.
After that, gradient descent method is used to find the robot’s
pose that minimizes the cost function. These two processes are
repeated iteratively until the decrease of the cost function is
less than a threshold, then the gradient descent method is con-
sidered to converge, i.e., the most probable pose of the robot is
found. Finally, all points in the current scan frame are multi-
plied with the coordinate transformation matrix to be added to
the global map.

The SLAM processing involves a vast number of multiplica-
tions in many part. However, we anticipate that some parts are
resilient to errors introduced by proposed accuracy reconfig-
urable vector accelerator. We deploy accuracy reconfigurable
vector accelerator on two parts of the SLAM program to eval-
uate the performance of the proposed vector accelerator in si-
multaneous localization and mapping, respectively: (1) The
square operation in the cost function of simultaneous localiza-
tion:

G(tx, ty, th) =

N∑
i=0

[(xci − xri)2 + (yci − yri)2], (10)

where tx and ty represent the robot’s position and th repre-
sents the robot’s orientation. (xci, yci) and (xri, yri) are the
coordinate of i-th point pair in the current scan frame and ref-
erence scan frame, respectively. N is the total number of as-
sociated point pair. (2) Matrix multiplication in the coordinate
transformation step of map generation:(

xi
yi

)
=

(
cos(th) − sin(th)
sin(th) cos(th)

)(
xli
yli

)
+
(
tx
ty

)
, (11)

where (xi, yi) is the coordinate of the i-th point in generated
map under global coordinate system. (tx, ty, th) is the esti-
mated robot’s pose. (xli, yli) is the coordinate of the i-th point
under robot coordinate system. We implement the accurate re-
configurable vector accelerator in C++ language to replace the
accurate multipliers. We use the two datasets, i.e., corridor and
hall, that come with the program as test inputs.

Table IV shows the maximum and mean distances between
the robot coordinates estimated by performing the square op-
eration in the cost function using the proposed accuracy recon-
figurable vector accelerator and the accurate multipliers. The
choice of accuracy mode has no significant effect on the con-
vergence position of the gradient descent method using itera-
tions. In general, using the OD-1 mode of the accuracy recon-
figurable vector accelerator yields an estimated pose trajectory
that is quite close to that of using the accurate multipliers. In
the hall dataset scenario, the maximum error of 19.27 cm is
only 0.43% of the total walking distance of 44.64 m, while in
the corridor dataset, maximum error (30.36 cm) is only 0.46%

TABLE IV
MAXIMUM AND MEAN DIFFERENCE IN ROBOT LOCALIZATION

hall corridor
Max (cm) Mean (cm) Max (cm) Mean (cm)

OD-1 19.27 10.74 30.36 18.19
OD-2 13.40 9.51 15.72 5.74
OD-4 21.97 14.04 11.92 4.49

TABLE V
MAXIMUM AND MEAN DIFFERENCE IN MAPPING

hall corridor
Max (cm) Mean (cm) Max (cm) Mean (cm)

OD-1 59.79 11.27 46.42 1.83
OD-2 27.50 3.25 25.12 1.00
OD-4 5.77 0.29 6.32 0.52

of the total walking distance of 66.05 m. Fig. 4 shows the esti-
mated robot pose trajectory under the hall dataset. The orienta-
tion of the robot is omitted. The dots in the figure represent the
estimated robot pose corresponding to each scan frame. The
zoomed area shows the location where the maximum error oc-
curs. The trajectory using OD-1 and that using the accurate
multipliers in the Fig. 4 overlap to a high degree, so that suf-
ficient accuracy can be obtained by using OD-1 mode in the
simultaneous localization part of SLAM.

Table V shows the maximum and mean distances between
the map point generated by performing the coordinate trans-
formation matrix multiplication using the proposed accuracy
reconfigurable vector accelerator and the accurate multipliers.
It can be seen that with the hall dataset, the map error using
the OD-1 mode is up to more than 50 cm. The maps gener-
ated using the OD-1 mode produce a larger offset compared
to the maps generated using the accurate multiplier. Mean-
while, as can be seen in the generated map of the hall dataset
shown in Fig. 5, the map generated using the OD-1 is more
heavily smearing, i.e., the representation of obstacles in the
environment is not fine enough. The red part is where the er-
ror exceeds 50 cm compared to the map generated using the
accurate multiplier array. The maximum errors (59.79 cm) oc-
cur at the two larger red dots in the lower right corner. The
proposed OD-2 mode reduces the mean error to 28.8% of the
OD-1 mode, making the generated maps much closer to those
generated using the accurate multipliers. In the case of higher
accuracy requirements, the OD-4 mode even reduces the mean
error to within 1 cm. Therefore, in order to build finer maps
without losing high parallelism, the OD-2 or OD-4 mode of
the proposed vector accelerator is an good choice.

In this case study, if the accurate multiplier array is used, it
is limited by the circuit area to achieve high parallelism calcu-
lation, which will inevitably increase the number of execution
cycles and require significant amount of energy. Meanwhile,
if only Mitchell multiplier array is used, it is not possible to
obtain high accuracy localization and mapping results simulta-
neously when performing high parallelism operations. By ap-
plying the proposed vector accelerator in different parts of this
SLAM application and configuring the different accuracies, it
is possible to obtain high accuracy results for both robot lo-
calization and mapping at the same time, and to maintain high
parallelism.

VI. CONCLUSIONS

This paper proposed a novel operand decomposition method
which widely improves the accuracy of existing OD methods
for multiplication. One of the inputs can be optionally de-
composed into multiple operands, and the final product is ex-



Fig. 4. Estimated robot’s location trajectory (44.64 m) of hall dataset. The
maximum error using OD-1 mode (19.27 cm) is only 0.43% of the total
walking distance, which is small enough for localization.

pressed as the sum of the product of the decomposed number
and another input. Based on the proposed OD method, we
also proposed the accuracy reconfigurable vector accelerator.
Multiple accuracy can be obtained by different OD modes to
suit various usage scenarios, while remaining high parallelism.
Through the hardware evaluation, the area of the proposed ac-
curacy reconfigurable vector accelerator can be significantly
reduced to only 34.17% of the traditional accurate multiplier
array.

We have successfully deployed the proposed accuracy re-
configurable vector accelerator in image smoothing and simul-
taneous localization and mapping applications. We experimen-
tally confirmed that the proposed vector accelerator behaved
well. In image smoothing applications, we can reconfigure
the accuracy as needed to obtain a slightly lower quality im-
age (OD-1 mode) or sacrifice a certain degree of parallelism
to obtain a high quality image (OD-2 or OD-4). Meanwhile,
in SLAM application, applying OD-1 mode of the proposed
vector accelerator in simultaneous localization can achieve ac-
ceptable localization accuracy. In the case of mapping, the
OD-2 or OD-4 mode of the proposed vector accelerator can be
utilized to obtain a better quality map. Our proposal addresses
both the low parallelism of accurate multipliers and the lack of
accuracy of original logarithmic approximate multipliers, and
achieves on-demand accuracy and high parallelism computa-
tion with only small area overhead.
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