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Abstract 

Improving the hardness of amorphous carbon nitride with tantalum was realized by using ion beam 

assisted filtered arc deposition to obtain a low friction coefficient and low specific wear rate in 

ambient air. The coatings were prepared with different nitrogen flow during coating at different 

discharge cycles of tantalum. The wear scar and as-deposited surfaces were observed and analyzed by 

means of FESEM, AES, XPS, and Raman analysis. The lowest friction coefficient (~0.07) was 

obtained for ta-C:Ta200, which exhibited a low specific wear rate of <1.0×10−7 mm3/Nm. The XPS 

analysis revealed the existence of amorphous Ta2O5, and the friction coefficient seemed to be 

positively correlated with oxygen desorption from the coatings. 
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1. Introduction  

Carbonaceous hard thin coatings referred to as DLC (diamond-like carbon) have attracted 

attention as materials capable of exhibiting a low friction coefficient and high wear resistance in various 

atmospheres. Several types of carbonaceous coatings exist, the friction coefficient and wear property 

are strongly depending on which type of coating do you use and what the friction test surroundings is. 

In the case of using DLC coating in lubricants, we should consider that several pairs of a coating and an 

additive have undesirable wear acceleration and high friction coefficient. Haci et al. reported that 

tetrahedral amorphous carbon (ta-C) with glycerol mono-oleate (GMO) and zinc dialkylditiophosphate 

(ZnDTP) did not show low friction under boundary lubrication [1]. Kassim et al. reported that 

molybdenum materials derived from molybdenum dithiocarbamate (MoDTC) can accelerate wear of 

hydrogenated DLC (a-C:H), especially for Mo2C as an abrasive, MoO3 as a coatings’ oxidation [2, 3]. 

Especially for non-hydrogenated carbonaceous coatings, main mechanism of low friction was assumed 

the existence of graphite domain at the topmost surface. Heimberg et al. reported the friction force 

between graphite plane surface and tungsten carbide (WC) tip which was strongly depended on sliding 

direction. The friction force became large when the tip slid a commensurate phase direction, and it 

became small when it slid an incommensurate phase [4]. Such graphite structure (or graphite domain) 

on the topmost surface of carbonaceous coating is important key to generate low friction coefficient. 

Therefore, several observation techniques were pursued to reveal existence of sp2/sp3 orbitals of 

coatings during friction by in-situ reflect spectroscopy [5, 6], surface enhanced Raman spectrometry 

(SERS) to obtain only surface information from the topmost surface (less than approximately 1.7 nm 

depth) [7], in-situ Raman analysis to understand additives’ structural change and relation between those 

additives and DLC coating [8], and so on. Graphitization is one of the keys to generate low friction with 

high hardness substrate.  

The wear mechanism of DLC is divided roughly two as mechanical and chemical wear. Cyclic 

impact induced sp2 cluster size reduction of a-C coating which is associated to mechanical wear [9, 10], 

carbon atoms diffusion to a mating material was reported [11–13], and it was strongly depended on 

counterpart material affinity/solubility to carbon which is associated to chemical wear. To prevent such 

mechanical and chemical wear, we synthesized ta-C to reduce its defects [14–16], to reduce large 

delamination by structured ta-C [17, 18], to improve mechanical and chemical properties by doping 

several atoms such as nitrogen [19, 20], silicon, chromium, boron [21, 22], and tantalum [23, 24]. 

Especially for the Ta included a-C coating showed low friction coefficient under ambient air [24], 

however, the coating hardness was insufficient (around 10 GPa), so obtaining Ta included high hardness 

type coating is demanded to use in ambient air. Our first target of this research is applying Ta doping to 

ta-C by IBA-FAD (ion beam assisted-filtered arc deposition) combined with another FAD source was 

used to synthesize tetrahedral-type CNx with Ta (so-called ta-CNx:Ta), to obtain hardness higher than 

10 GPa which value is reported by authors as Ta and nitrogen included in a-C.  



The second target of this research is to investigate low friction coefficient ability of Ta, nitrogen 

included ta-C coatings (so-called ta-C:Ta, ta-CNx:Ta). The authors reported that the inclusion of Ta or 

other elements in the carbon structure resulted in a low friction coefficient in ambient air [23, 24], 

although DLC and/or CNx generally did not perform low friction coefficient less than around 0.1 under 

ambient air [25–27]. The cause of “not low friction” was assumed that oxygen could adhere graphite 

edge or dangling bond to enhance its wear and rise friction [26, 28–30]. Especially the literature reported 

by Kelemen et al. [30] that O2 adsorbs damaged graphite or edge easier than plane of graphite. It implies 

that low friction phenomena of DLC or CNx because of graphite like structure can be prolonged if DLC 

or CNx has some element which can prevent O2 adsorption to graphite edges or dangling bonds in a 

coating. The tribological properties of the material were investigated via friction tests. After these tests, 

the surfaces were observed and analyzed by means of FESEM (field emission scanning electron 

microscopy), AES (Auger electron spectroscopy), and Raman spectroscopy. Finally, low friction 

maintaining mechanism was discussed. 

 

2. Experimental procedure 

2.1 ta-CNx:Ta coating process and materials properties 

The samples of ta-CNx:Ta were prepared using laboratory equipment, such as an IBA-FAD 

system, the schematic is shown in Fig. 1 [31]. To ionize the carbon, arc discharge is applied to the carbon 

target used as the cathode. The ionized carbon contains neutral particles, which were removed by 

deflecting the beam direction by 90° using a magnetic field, and only the ionized carbon was irradiated 

to the samples. A ta-CNx:Ta coating was synthesized by means of a dynamic mixing method. This 

method mixes carbon, nitrogen, and tantalum by irradiating a nitrogen ion beam from a microwave ion 

source and then irradiating a tantalum ion beam from an arc plasma source. The coating vacuum 

chamber was evacuated by rotary and turbo molecule pump to reach 5.0×10-4 Pa as back pressure. The 

carbon target was pre-arced before coating procedure to clean target surface by 50 A pre-arc ampere and 

15 V duct bias voltage. Consequently, the substrate was cleaned by Ar ion-beam bombardment by 20 

sccm Ar gas flow and substrate bias voltage of -100 V at first, then the voltage increased to -600 V 

during 2 min. The bombardment process was conducted twice to clean the substrate surface to prevent 

peel-off. After the cleaning procedure, 20 min. interval was applied to cool the substrate in high vacuum. 

The ta-C:Ta coating was conducted by the parameters listed in Table 1. The coating procedure was 20 

cycles of 1 min. deposition and 2 min. interval because of temperature rise suppression of the substrate, 

and a ta-CNx:Ta coating thickness of ~200 nm was realized. The carbon target and Ta target are provided 

from Kojundo Chemical Lab. Co., Ltd. Japan. Each target purity is higher than 99.9%. The sample 

preparation with using nitrogen ion beam and Ta ion beam source were independently controlled. The 

Ta doping to a ta-CNx:Ta coating was conducted by an arc plasma gun (Ulvac, ARL-300, Japan). To 



achieve the desired Ta concentration, an arc deposition frequency ranging from 0 to 200 pulse/min was 

employed. Nitrogen ion beam was generated by another ion beam source (Alios, EMIS-221, Japan) with 

using a microwave power source (Alios, MP-201B, Japan). A 2.45 GHz microwave and magnets can 

generate electron cyclotron resonance at a plasma chamber, then it was extracted by several acceleration 

cathodes. The nitrogen ion beam was controlled by flow rate of nitrogen gas as 0, 3, and 5 sccm (standard 

cubic centimeter). The friction pair of substrates included a SUJ2 (stainless steel) ball (diameter: 8.0 

mm) and a SUJ2 disk (diameter: 22.5 mm and thickness: 4 mm). The resulting samples were referred to 

as ta-CN5:Ta200 corresponding to a N2 gas supply of 5 sccm and a Ta arc deposition frequency of 200 

pulse/min. The sample names and the atomic percentage of C, N, O and Ta are listed in Table 2 (detailed 

explanation presented in section 3.1). The atomic percentage of each coating was measured via x-ray 

photoelectron spectroscopy, (XPS; Ulvac phi Quantera II) with an Al K monochromatic x-ray source 

under vacuum lower than 10-5 Pa. Prior to measurements of the topmost surface, Ar ion beam sputter 

cleaning was performed (acceleration voltage: 4 kV) on an ~2 mm2 area. Afterward, XPS measurements 

were performed (acceleration voltage: 15 kV and power: 25 W) on an ~100 m2 area. Wide peak 

measurements for 1 to 1100 eV with 1.0 eV/step were conducted to confirm all elements. In addition, 

narrow peak measurements for energy ranging from 280.0 to 295.0 eV, 392.0 to 410.0 eV, and 18.0 to 

38.0 eV for C1s, N1s, and Ta4f, respectively, were conducted at 0.1 eV/step. The hardness of each 

coating was measured using a nanoindentation tester (ENT-1100a, Elionix). The Berkovich type 

diamond tip applied a force of 1000 N to each coating surface for 1 s holding time at the highest normal 

load. The summary of main coating and experimental procedures are summarized in Fig. 2. 
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2.2 Friction test procedure by using ball-on-disk friction tester and analysis equipment conditions 

The friction test used in this study is ball-on-disk type [31]. The normal load was applied by a 

dead weight of 1.0 N. The ball specimen was fixed by a ball holder during the tests, and the friction 

force was measured by a load cell. A flow of dry air (~5 L/min) to the contact between the ball and the 

disk specimen occurred during each friction test without any additional force detected by the load cell. 

The load cell can obtain frictional force by applying the force at the contact point through the bar with 

the pivot. The gap between the gas flow port and specimen was ~5 mm with the flow direction 

perpendicular to the sliding direction. The employed sliding speed (150 rpm) and rotation radius (4 mm) 

corresponded to a sliding speed of ~62.8 mm/s. All friction tests were conducted for 5 min at room 



temperature (23–24°C). The friction test pairs were same coating synthesized on a SUJ2 ball and a SUJ2 

disk (such as ta-CN5:Ta200 coated ball vs. ta-CN5:Ta200 disk). After the friction tests, the wear scar 

diameter was determined via optical microscopy. The wear volume was then calculated from the wear 

scar diameter by considering geometric factors (e.g., as the wear loss volume was assumed to be portion 

of spherical). 

 Moreover, AES (PHI-650, Perkin-Elmer) measurements were conducted under high vacuum 

pressure (lower than 1.0×10-7 Pa). An acceleration voltage and current of 5.0 kV and 100 nA, 

respectively, were employed. In addition, 20 cycle measurements from 150 to 550 eV with 0.2 eV/step 

were conducted and accumulated. The highest intensity was C KLL as peak position is 275.0 eV, O KLL 

as 389.0 eV, and N as 510.0 eV. The gap between the highest peak intensity of C KLL and the lowest of 

C KLL was determined to a normalization, and then we calculated the atomic percentage ratio of N/C 

and O/C. 

 The ID and IG peaks were measured via Raman analysis (NRS-1000, Jasco) performed at a 

wavelength of 530.3 nm and power of 10 mW for wavenumbers ranging from 800 to 2000 cm-1. Each 

measurement was conducted twice to eliminate undesirable noise from outer space. 

 

3. Results 

3.1 XPS analysis for ta-CNx:Ta 

 The effect of Ta arc discharges on the covalent bonds between Ta and other elements was 

analysed. The results presented in Fig. 3(a) to (c) show different pulses with different N2 flow during 

the synthesis process. The peak of ~25 eV corresponds to Ta4f5/2 and Ta4f7/2. Other peaks occurring at 

226, 238, and 401 eV are also Ta peaks, indicating that the discharge method can introduce Ta into the 

ta-CNx coating. The narrow peak of C1s and others corresponded to ta-C with sp2 (C1: 284.4 eV), sp3 

or aliphatic (C2: 285.0 eV), and hydroxyl (C3: 286.3 eV). For the Ta-containing materials, the peaks 

corresponded to Ta–C: 283.6-284.1 eV, sp2 and sp3 C–C type bonds (C1: 284.4 eV), sp2 C=N (C2: 286.2 

eV), and the sp3 bond of C–N (C3: 287.8 eV) [24], [32, 33]. 

 

-Figure 3- 

 

The representative C1s peaks are shown in Fig. 4(a) as ta-C (without N2 flow and Ta discharge), 

(b) as ta-C:Ta200, (c) as ta-CN5, and (d) as ta-CN5:Ta200. The Ta and C detailed bonding is shown in 

Fig. 5(a) to (e) corresponding to the results shown in Fig. 4. The results of the material without the Ta 

discharge (i.e., ta-C) are shown in Fig. 5(a). No clear Ta peak was observed. The effect of the Ta 

discharge and the N2 flow effect on the coatings is shown as Fig. 5(b) ta-C:Ta200, (c) ta-CN5, (d) ta-

CN5:Ta100, and (e) ta-CN5:Ta200. 

The Ta discharges revealed the occurrence of Ta in the coatings, but the N2 flow had little effect 



on the Ta4f peak (compare (b) and (e)). Additionally, the discharge effect on the Ta peak intensities is 

manifested as a significant increase in the intensity of Ta (Fig. 5(c) to (e). The gap between the main 

two peaks is 1.8 eV (Ta4f5/2: 25.2 eV, Ta4f7/2: 23.3 eV) [24, 34]. 

The N1s peaks are shown in Fig. 6(a) to (d). The peaks of pyridine-like C–N=C bonds (398.5–

398.6 eV) [35] and TaNx (402–403 eV) [36] were considered. The ta-C (Figure 6(a)) and ta-C:Ta200 

(Fig. 6(b)) peaks were compared, and clear sp2 C=N (400 eV) was observed only for the Ta discharge 

coating. Furthermore, the N2 flow effect of N1s on ta-CN5 is shown in Fig. 6(c). The peak intensity was 

slightly larger than that of the only ta-C material (see Fig. 6(a)), and the peak was attributed to the 

splitting of two peaks such as those corresponding to pyridine-like C–N=C and sp2 C=N. The ta-

CN5:Ta200 material was strongly affected by the Ta discharge and N2 flow as shown in Fig. 6(d), where 

clear TaNx, pyridine-like C–N=C, and TaOxNy (402.6 eV) [36] peaks are observed. 

 

-Figure 4- 
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3.2 Hardness of coatings and Raman analysis results before friction 

The hardness and Young’s modulus are listed in Table 3. The hardness decreased slightly (from 

42 to 39 GPa) with increasing N2, whereas the Young’s modulus decreased significantly (from ~415 to 

290 GPa). Ta inclusion in the coating led to reductions in the hardness and Young’s modulus, owing 

possibly to reductions in the sp3 content accompanying the formation of other covalent bond types in 

the coating (see above section). 

The Raman analysis results of representative coatings are shown in Fig. 7(a) to (d); these 

correspond to the coating results shown in Fig. 4. Each peak was deconvoluted to an ID peak and an IG 

peak at ~1330 cm-1 and ~1580 cm-1, respectively. A comparison of the ta-C (Fig. 7(a)) and ta-C:Ta200 

(Fig. 7(b)) peaks indicated that including Ta in the coatings led to deterioration of the Raman signal. 

The assumption is that the inclusion of Ta affected the carbon structure through (for example) reduction 

in the size of the carbon-carbon covalent bond network. However, including N in the coating had only 

a modest effect on the Raman data (see ta-CN5 in Fig. 7(c)). The inclusion of Ta in the coating had 

considerable effect on the data. This effect was manifested as a high ID peak intensity and signal noise, 

as shown in Fig. 7(b) for the Ta-including material. The high intensity may have resulted from hardness 

reduction associated with increasing sp2 C=C hybridization or small fragmentation of the carbon-carbon 

network [37]. 

-Table 3- 

-Figure 7- 

 



3.3 Tribological properties of coated ball and coated disks 

 Friction tests on coated balls and coated disks were conducted at room temperature under an 

atmosphere of dry air. Representative friction coefficient values of the balls and disks are shown in Fig. 

8(a) as ta-C, (b) ta-C:Ta200, (c) ta-CN5, and (d) ta-CN5:Ta200. After each friction test, the ball surfaces 

were observed via FESEM (see corresponding images in Fig. 9(a) to (d)). Determining the specific wear 

rate of the disks was difficult, owing to the low wear experienced by each disk. The specific wear rate 

of the ball specimens was calculated from the observed wear scar diameter. The wear rates as a function 

of the inverse coating hardness is shown in Fig. 10(a), and the average friction coefficient from 150 to 

750 cycles is shown in Fig. 10(b). Almost all the rates were <1.010-7 mm3/Nm, which lies in the mild 

wear regime. In addition, the specific wear rate of ta-C with Ta (shown by circle) decreased with 

decreasing hardness. Generally, the specific wear rate is inversely proportional to the hardness. The 

results suggested that both the ta-C coated ball and disk specimens were excessively hard, and hence, 

maintaining each coating during the friction test was difficult. This was especially true for the balls, 

which experienced more severe friction than the disks, owing to continuous contact with the mating 

surface. The effect of N in the coatings on the specific wear rate was unclear (shown as circle, triangle, 

and square; a sharp trend with increasing N was absent). The hardness of the Ta-containing materials 

decreased with increasing amount of Ta (shown as black and white, gray, and black). Furthermore, the 

average friction coefficient was only slightly proportional to the coating hardness. From the viewpoint 

of ta-C with Ta, the hardness reduction occurred primarily at low friction levels. The hardness of the ta-

CNx:Tay coating was higher than that of the coating without N, and the average friction coefficient was 

slightly higher. 

The average friction coefficient and specific wear rate results of the coated balls are 

summarized in Fig. 11. The friction coefficient decreased with increasing amount of Ta in the Ta-

containing ta-C coatings (shown as circles), but increased (in general) in the case of the N-containing 

coatings. The lowest friction coefficient (~0.07) was obtained for the ta-C:Ta200. 

 

-Figure 8- 
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3.4 Raman analysis of coated balls after friction tests 

After the friction tests, Raman analysis was performed on the coated disks and balls (see Fig. 

12(a) to (d) for representative examples). The disks before and after testing were almost identical, and 

hence, are excluded from further discussion. In contrast, the coated balls exhibited significant 



differences after testing. In the case of ta-C, the ID peak increased sharply as shown in Fig. 12(a). The 

effect of Ta was evident in Fig. 12(b), even without a considerable ID peak increment. An ID peak 

increment was, however, observed for ta-CN5 (see Fig. 12(c)). No clear increment was observed for the 

Ta- and N-containing ta-CN5:Ta200 material. The lack of ID peak increment in the coatings without Ta 

may have resulted from the lower level of graphitization occurring in these materials compared with 

that occurring in the ta-C or ta-CN series. 

-Figure 12- 

 

3.5 AES analysis of the coated balls before and after friction tests 

 The coated balls before and after the friction tests were compared through AES analysis (see 

Fig. 13(a) to (d) for representative examples). Testing led to only slight differences in ta-C (Fig. 13(a)). 

In the case of ta-C:Ta200 (Fig. 13(b)), the O KLL peak intensity decreased with testing. Moreover, a 

considerable N KLL peak loss was observed for ta-CN5, indicating nitrogen atom desorption from the 

material, as previously reported [38]. N KLL peak and O KLL peak losses were observed for ta-

CN5:Ta200 (Fig. 13(d)) suggesting that nitrogen atom desorption, and some oxidative molecule 

desorption (involving Ta oxide) occurred in this material. 

 

-Figure 13- 

 

4. DISCUSSION 

 From the viewpoint of N KLL and O KLL peak intensity change during the friction tests, 

we summarized the N/C and O/C ratios of each coating from AES data (see Fig. 14(a) and (b)). The 

series of ta-C to ta-C:Ta200 contained no N and the N/C ratios before and after the tests were lower than 

0.02. This value indicated that the topmost surface of the coating contained almost no nitrogen 

(generally the depth was <5 nm) [39]. The N content of ta-CN3 with Ta series and ta-CN5 with Ta series 

decreased after the friction tests. This result is consistent with the previously reported [38] “desorption 

of nitrogen” phenomenon. Such light element in carbonaceous coating was reported several authors 

[40–42]. Previously, we revealed that nitrogen atoms incorporated in the CNx desorbed when it slid 

against a Si3N4 ball in N2 environment. The nitrogen desorption was assumed to be happened by 

breaking C–N covalent bonds by flash temperature or tribochemical reaction generated from 

tribomicroplasma [43]. Tribomicroplasma generally includes visible, infrared (IR), and ultraviolet (UV) 

light. Therefore, IR and UV have possibility to break several covalent bonds in those coatings. After or 

during friction tests, there was no clear temperature increase, so UV is assumed one of the triggers to 

break covalent bonds. Our previous experiments proved tribomicroplasma generation under N2 from 

CNx coating [44], and 254, 312, and 365 nm UV irradiation affect the CNx that nitrogen desorption by 

UV irradiation and transmission electron microscope with electron diffraction pattern revealed the 



formation of graphite domains [45].  

 From the viewpoint of O in the coatings, a friction-induced increase in O occurred only in 

ta-CN3 and ta-CN5 (see Fig. 14(b)). The differences between the N/C and O/C ratios before and after 

the friction tests (N/C and O/C) were calculated. Afterward, the effect of these differences on the 

specific wear rate and the average friction coefficient was investigated (see Fig. 15(a) to (b) and Fig. 

16(a) to (b)). N/C and O/C had almost no effect on the specific wear rate, and N/C had only a small 

effect on the average friction coefficient, as evidenced by an R2 value of <0.28. However, O/C ratio 

had a considerable effect on the friction coefficient (R2 = 0.55). This result indicated that oxygen 

desorption from the coating affected the low friction orientation at the topmost surface, as reported in a 

previous study [19]. The XPS spectra of each Ta-containing coating consisted of two clear peaks (see 

Fig. 5(b), (d), and (e)). Peaks corresponding to Ta4f7/2 and Ta4f5/2 from Ta2O5 [46] were observed, and 

the O1s peak revealed that the Ta-only coatings gave rise to an O KLL peak at ~530 eV, which 

corresponds to pure Ta2O5 [47]. Raman analysis of the coating including Ta indicated that the Raman 

shift data was noisier than that of the coating without Ta. This implied that the carbon network was 

affected by Ta, Ta-carbide or Ta2O5 incorporated into the coatings. From the viewpoint of Raman 

analysis data (Fig. 12) and friction coefficient with O/C in Fig. 16, ta-C and ta-CN5 showed higher 

friction coefficient rather than ta-C:Ta200. Both ta-C and ta-CN5 showed clear two peaks related to ID 

and IG, it indicated carbon network disordering [48–50]. On the other hand, ta-C:Ta200 did not show 

such peak separation, therefore, the most part of carbon structure in ta-C:Ta200 did not change.  

 In the case of Ta2O5 is adjacent to carbon atoms, oxygen desorption is likely to be happened 

and a vacancy is generated [51]. Above mentioned Ta2O5 in the coating naturally grew after deposition 

process. Therefore, if the oxygen desorption by friction was taken place, it has a possibility of 

oxidization again. Such Ta-oxidation and oxygen desorption repeatability are assumed to protect 

graphite edges or dangling bonds because of less possibility of carbon oxidation. Regarding the role of 

nitrogen, the ID peak intensity increased when a N2 flow was applied during the coating synthesis 

procedure. The hardness reduction was attributed mainly to nitrogen incorporation between the carbon-

carbon network and carbon-X (X = Ta, O, N) network. No X-ray diffraction studies were performed in 

this work. However, the assumption was that the Ta-containing species were the amorphous phase based 

on the high carbon content and low N2 flow, as reported in previous studies [52, 53]. 
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5. CONCLUSIONS 



Previously, Ta incorporated a-C type coating showed low friction coefficient in ambient air, 

however, the low friction phenomena did not maintain due to low hardness of the coating. Therefore, 

we changed most part of carbon structure in the coating to tetrahedral type to reach hardness higher than 

10 GPa. The separated coating sources such as ionized carbon, nitrogen ion beam, and sputtered Ta were 

mixed on SUJ2 balls and SUJ2 disks. Friction tests under ambient air between same coating pairs were 

conducted, then XPS, AES, Raman analysis as well as nano-indentation hardness measurements were 

conducted. Obtained main results are shown below. 

Ta included ta-C and ta-CNx were successfully synthesized on SUJ2 balls and SUJ2 disks. The 

highest hardness of the coating (i.e. ~42.4 GPa) was obtained without any nitrogen and Ta. Incorporation 

of both Ta and N led to hardness reduction of the coatings. However, the lowest hardness of ta-

CN5:Ta200 showed approximately 18 GPa. Therefore, obtaining hard coatings higher than 10 GPa by 

IBA-FAD was realized. 

The tribological properties of the coating pair under ambient air were investigated. Almost all 

coating pairs exhibited a small specific wear rate (<1.0×10-7 mm3/Nm) of the coated ball. The lowest 

friction coefficient (~0.07) was obtained for the ta-C:Ta200 coating. 

The low friction mechanism was investigated by XPS, AES, and Raman analysis. The XPS 

analysis revealed each Ta incorporated coatings have Ta–C covalent bond. AES analysis performed 

before and after the friction tests indicated that oxygen desorption from the wear scar was occurred. The 

oxygen desorption ratio based on carbon (O/C) had a considerable effect on the friction coefficient. 

From the viewpoint of Raman analysis, ta-C and ta-CN5 showed higher friction coefficient rather than 

ta-C:Ta200. Both ta-C and ta-CN5 showed clear two peaks related to ID and IG, it indicated carbon 

network disordering. 
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Figure 4 
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Table 1  

Deposition time t, min 20

Ratio of interval, deposition[s]/interval[s] 60/120

Arc current Ac, A 50

Substrate bias voltage Vs, -V 100

Duct bias voltage Vd, V 15

Rotation speed of substrate, rpm 5

Nitrogen mass flow, sccm 0, 3, 5

Anode current IA, mA 50

Screen bias voltage Vsc, V 1500

Acceleration bias voltage Vacc, V -100

Voltage between anode and cathode Va-c, V 200

Number of discharge Dn, pulse/min 0, 100, 200



Table 2 

 

 

 

 

 

 

 

 

 

 

  

C (at.%) N (at.%) O (at.%) Ta (at.%)

ta-C 97.76 1.46 0.78 0.00 

ta-C:Ta100 88.54 2.20 1.43 7.83 

ta-C:Ta200 88.61 0.49 1.14 9.76 

ta-CN3 97.57 1.65 0.79 0.00 

ta-CN3:Ta100 93.13 4.09 0.38 2.40 

ta-CN3:Ta200 88.35 4.90 1.33 5.42 

ta-CN5 96.49 3.32 0.19 0.00 

ta-CN5:Ta100 94.16 4.30 0.00 1.53 

ta-CN5:Ta200 86.54 7.46 0.74 5.27 



Table 3 

 

 

 

 

 

 

 

 

 

 

ta-C ta-CN3 ta-CN5 ta-C:Ta100 ta-CN3:Ta100 ta-CN5:Ta100 ta-C:Ta200 ta-CN3:Ta200 ta-CN5:Ta200

Hardness H, GPa 42.4 38.1 38.9 31.6 31.4 33.8 24.2 24.8 18.5 

Young's modulus E, GPa 415.6 365.0 289.4 361.1 332.9 242.6 344.7 282.0 207.7 


