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We investigate the wave optical imaging of black holes with Hawking radiation. The spatial correlation
function of Hawking radiation is expressed in terms of transmission and reflection coefficients for scalar
wave modes and evaluated by numerically summing over angular quantum numbers for the Unruh-
Hawking state of the Kerr-de Sitter black hole. Then, wave optical images of an evaporating black hole are
obtained by the Fourier transformation of the spatial correlation function. For a short wavelength, the image
of the black hole with the outgoing mode of the Unruh-Hawking state has the appearance of a star with its
surface given by the photon sphere. It is found that interference between incoming modes from the
cosmological horizon and reflected modes due to the scattering of the black hole can enhance brightness of
images in the vicinity of the photon sphere. For a long wavelength, the entire field of view is bright, and the
emission region of Hawking radiation cannot be identified.

DOI: 10.1103/PhysRevD.105.045022

I. INTRODUCTION

In general relativity, a black hole is defined as a spacetime
region surrounded by the event horizon, fromwhich no light
signals can escape to the null infinity. There are several
possibilities for the formation of black holes in our universe:
the gravitational collapse of stars, coalescence of compact
stars, phase transition in the early universe, and so on. An
important concept characterizing black holes is the photon
sphere, which is defined as a surface composed of bounded
null geodesics [1–3]. For a rotating black hole, there are two
circular photon orbits in the equatorial plane, and their radii
differ depending on the signs of the photon angular
momentum. There are also other bounded photon orbits,
which depart from the equatorial plane.1 We call a set of
bounded photon orbits as a “photon sphere” in this paper.
When considering the propagation of ingoing null rays
toward a black hole, null rays that cross the photon sphere
cannot escape the photon sphere. From a distant observer, a
set of projected bounded photon orbits on a far observer’s

view plane appears as a distorted disk that corresponds to the
black hole shadow for a rotating black hole [2].
Astrophysical black holes are associated with the sur-

rounding gases showing light emission. Thus, the photon
sphere of a black hole can be visible as the rim of a dark
shadow region in bright background emission. Indeed,
recent observation of the central region of M87 with very
large baseline interferometry (VLBI) reported an image of
the photon sphere associated with the central supermassive
black hole [4–9]. As the apparent angular sizes of black
hole candidates are very small from the Earth, the key
technology to resolve black hole shadows by observation is
aperture synthesis; by combining several independent
telescopes on the Earth, the effective size of the aperture
can be increased, making it possible to resolve black holes
with very small apparent sizes. The image reconstruction of
black holes is performed based on a property of the wave
optics known as the van Cittert-Zernike theorem [10–12],
which states that the Fourier transformation of the first-
order degrees of coherence (interferometic fringe pattern)
in an observer’s screen provides an intensity distribution of
a source object if the spatial incoherence of the source field
is assumed.
In this paper, we aim to obtain wave optical images of

evaporating black holes. Owing to the quantum effect,
black holes can emit thermal radiation known as Hawking
radiation [13,14], the temperature of which is proportional
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1The radius of a bounded photon orbit is determined by

combination of parameters ðLz=E; C=E2Þ, where C is the Carter
constant, Lz is the z component of the angular momentum and E
is the energy of photon [2]. The orbit forms a shell-like structure
(photon shell) [3].
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to the surface gravity of black hole horizons. Hence, if we
detect Hawking radiation of a black hole from a spatially
distant region, it is possible to reconstruct wave optical
images of the evaporating black hole by applying the van
Cittert-Zernike theorem. Of course, this investigation is
only a theoretical thought experiment because the Hawking
temperatures of astrophysical black holes are too low to
detect directly. However, we expect that our analysis will
provide a deeper understanding of Hawking radiation and
black hole spacetimes from the viewpoint of wave optics. In
particular, it may be possible to acquire information on the
emission region of Hawking radiation by performing the
wave optical imaging of a black hole, and this direction of
investigation is related to the question “where does
Hawking radiation originate?” [15,16]. In our previous
studies [17,18], we discussed the wave optical imaging of
black holes with a coherent point wave source. Interference
fringes due to wave scattering by a black hole appear on the
observer’s screen. By the Fourier transformation of the
interference fringe, images of the Einstein ring and photon
sphere are obtained. For the case of an evaporating black
hole, the wave source is the black hole itself, and all the
information necessary for imaging is contained in the
correlation function of Hawking radiation. Concerning
the quantum state of black holes, we assume the Unruh-
Hawking vacuum state, which is realized as black hole
formation via gravitational collapse [1,13,14,19–23].
In our analysis, instead of treating the asymptotically flat

Kerr spacetime, we consider the Kerr-de Sitter (KdS)
spacetime because it allows the evaluation of the reflection
and transmission coefficients for wave modes. As we will
show, for a massless conformal scalar field that represents
scalar Hawking radiation, the radial wave equation can be
transformed into the Heun equation, which has four regular
singular points. In this case, the outer black hole horizon
and the cosmological horizon correspond to regular sin-
gular points of the Heun equation. Therefore, the asymp-
totic solutions at the horizon can be written with the local
regular solutions of the Heun equation (local Heun func-
tion) via the Frobenius method, and it is possible to obtain
the exact form of reflection and transmission coefficients in
terms of the local Heun function. For the asymptotically flat
Kerr spacetime, the radial wave function is represented by
the confluent Heun function, which has two regular
singular points and one irregular singular point, and spatial
infinity corresponds to the irregular singular point.
Although we have local solutions for the outer black hole
horizon, it is technically difficult to match this solution to
that of infinity. Concerning this issue, Hatsuda [24]
proposed a method of taking a small cosmological constant
and extrapolating the value to obtain the quasinormal
frequency for the asymptotically flat black hole spacetime
and further checked its validity. In the present paper, we
adopt his approach and investigate Hawking radiation in
the KdS spacetime with a sufficiently small value of the

cosmological constant, and the effect of radiation from the
cosmological horizon is not significant. The vacuum
condition is imposed on the past event horizon and the
past cosmological horizon of the Kruskal extended KdS
spacetime. For detecting Hawking radiation, we prepare
two qubit detectors to measure the spatial correlation of
Hawking radiation. Then, by the Fourier transformation of
the spatial correlation function, we can obtain wave optical
images of black holes.
The remainder of this paper is organized as follows. In

Sec. II, we shortly review thevanCittert-Zernike theorem and
the qubit detector model.We adopt two qubit detectors as our
imaging system, which can extract the spatial correlation of a
wave field. In Sec. III, after reviewing Hawking radiation in
theKdS spacetime,we present the spatial correlation function
of Hawking radiation in terms of transmission and reflection
coefficients for wave modes. In Sec. IV, we explain a
numerical method to evaluate reflection and transmission
coefficients. In Sec. V, we present images of black holes.
SectionVI is devoted to a summary and conclusion.We adopt
units of c ¼ ℏ ¼ G ¼ 1 throughout this paper.

II. VAN CITTERT-ZERNIKE THEOREM AND
WAVE OPTICAL IMAGING

We shortly review a method of wave optical imaging
based on the van Cittert-Zernike theorem [10–12] for the
flat spacetime, which corresponds to asymptotically flat
black hole spacetimes. We also show in the Appendix that
the same form of the theorem also holds for the de Sitter
case by replacing the radial coordinate in the phase factor
with the tortoise coordinate of de Sitter space. Then, we
review the qubit detector system, which is applicable to the
detection of the spatial correlations of Hawking radiation,
to employ image formation based on the van Cittert-
Zernike theorem.

A. Van Cittert-Zernike theorem

Let us consider the emission of a scalar wave from a
source ρðt; xÞ, which possesses a random statistical prop-
erty. We observe the emitted wave far from the source
(Fig. 1). We consider the scalar wave function Φ that obeys

FIG. 1. A wave source is located around the origin. Detection
points P1 and P2 are assumed to be far from the source.
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the wave equation ð∂2
t −∇2ÞΦ ¼ ρðt; xÞ. Time depen-

dence is separated using the temporal Fourier compo-
nents as

Φðt; xÞ ¼
Z þ∞

−∞
dωe−iωtΦωðxÞ;

ρðt; xÞ ¼
Z þ∞

−∞
dωe−iωtρωðxÞ; ð1Þ

with Φω ¼ Φ�
−ω; ρω ¼ ρ�−ω. The wave equation is then

expressed as

ð∇2 þ ω2ÞΦω ¼ −ρω: ð2Þ

The Green’s function of this equation with a retarded
boundary condition is

Gωðx; xsÞ ¼
eiωjx−xsj

4πjx − xsj
≈
eiωðr−x·xs=rÞ

4πr
; ð3Þ

where r ¼ jxj and we assume the detection point x is far
from the source region. The solution of Eq. (2) is given by
ΦωðxÞ ¼

R
d3xsGωðx; xsÞρωðxsÞ. The correlation function

of the scalar field is

hΦðt1;x1ÞΦðt2;x2Þi¼
Z þ∞

−∞
dωe−iωðt1−t2ÞhΦωðx1ÞΦ�

ωðx2Þi;

ð4Þ
where h� � �i denotes statistical averaging and we used
the stationarity condition for the scalar field
hΦω1

ðx1ÞΦω2
ðx2Þi ∝ δðω1 þ ω2Þ. The correlation function

of the temporal Fourier component of the field is

Gðω; x1; x2Þ ≔ hΦωðx1ÞΦ�
ωðx2Þi ¼

Z
d3xs1d3xs2Gωðx1; xs1ÞG�

ωðx2; xs2Þhρωðxs1Þρ�ωðxs2Þi

¼
Z

d3xsGωðx1; xsÞG�ðx2; xsÞIωðxsÞ; ð5Þ

where we assumed spatial incoherency of the source field.
This means that the correlation between different spatial
points is zero:

hρωðxs1Þρ�ωðxs2Þi ¼ Iωðxs1Þδ3ðxs1 − xs2Þ; ð6Þ

where IωðxsÞ is the intensity of the source at xs. Using (3)
with jx1j ¼ jx2j ¼ r,

Gðω;x1;x2Þ¼
1

16π2r2

Z
d3xsIωðxsÞexp½−iωðx1−x2Þ ·xs=r�

¼ 1

16π2r2

Z
d2xkĨωðxkÞe−iωx12·xk=r; ð7Þ

where we decompose xs as xs ¼ x⊥ þ xk;
ðx1 − x2Þ · x⊥ ¼ 0, and x12 ¼ x1 − x2. The projected
source intensity is introduced as

ĨωðxkÞ ¼
Z

dx⊥Iωðx⊥; xkÞ: ð8Þ

Ultimately, we obtain a relation between the spatial field
correlation function and the spatial distribution of source
intensity:

Gðω; x1; x2Þ ∝
Z

d2yĨωðyÞ exp
�
−i

ω

r
x12 · y

�
: ð9Þ

This formula is called the van Cittert-Zernike theorem
[10–12]. Thus, we can reconstruct the distribution of the
source intensity (image of the source) from the spatial field
correlation function as follows:

ĨωðyÞ ∝
Z

d2x12Gðω; x1; x2Þ exp
�
i
ω

r
y · x12

�
: ð10Þ

Even if the property of spatial incoherence of the source is
unknown, ĨωðyÞ obtained using Eq. (10) provides one
possible visualization of the source field, irrespective of
the spatial incoherence of the source field.
For asymptotic de Sitter spacetimes, as we explain in the

Appendix, the same relation (10) holds on replacing the
radial coordinate with the tortoise coordinate, provided that
the impact parameters of the involved wave modes are
shorter than the Hubble horizon length.

B. Qubit detector and response functions

As a measurement apparatus of the spatial correlation of
Hawking radiation, we introduce two detectors interacting
with Hawking radiation and obtain the field correlation
through correlation between two detectors. The detectors
are assumed to have two internal levels (qubit) with the
energy gap ω0 > 0. The interaction Hamiltonian between
qubits and the quantum scalar field Φ̂ (Hawking radiation)
is assumed to be

Ĥint¼g1ðtÞðσþ1 þσ−1 ÞΦ̂ðx1ðtÞÞþg2ðtÞðσþ2 þσ−2 ÞΦ̂ðx2ðtÞÞ;
ð11Þ

where σþ1;2 and σ−1;2 are raising and lowering operators,
respectively, for the detector’s state and g1;2ðtÞ are switch-
ing functions. The world lines of detectors are denoted by
x1;2ðtÞ. This detector system setup is often employed to
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investigate the entanglement harvesting of quantum
fields [25–28]. In our investigation to measure the spatial
correlation of Hawking radiation, two detectors are placed
at the same radial coordinate far from the black hole. For
the initial ground state of the detectors, after inter-
action with the scalar field, the detector state becomes
[28,29]

ρ12 ¼

2
666664

X4 0 0 X

0 E1 E12 0

0 E12 E2 0

X� 0 0 1 − E1 − E2 − X4

3
777775
; ð12Þ

where

X¼−2
Z þ∞

−∞
dt1

Z
t1

−∞
dt2g1g2eiω0ðt1þt2ÞhΦ̂ðt1;x1ÞΦ̂ðt2;x2Þi;

ð13Þ

E12¼
Z þ∞

−∞
dt1

Z þ∞

−∞
dt2g1g2e−iω0ðt1−t2ÞhΦ̂ðt1;x1ÞΦ̂ðt2;x2Þi;

ð14Þ

E1 ¼ E12j2¼1; E2 ¼ E12j1¼2; X4 ¼ Oðg4Þ: ð15Þ

The expectation values of field operators are taken with
respect to the assumed quantum state of the scalar field. The
component E1;2ðω0Þ represents the amount of local quan-
tum fluctuation measured by detectors and shows the
Planckian distribution for black hole cases [19,23]. The
component X represents quantum coherence between two
detectors. The entanglement between two detectors can be
judged by the entanglement negativity [30], which is
proportional to jXj − ffiffiffiffiffiffiffiffiffiffiffi

E1E2

p
in the present case. Positive

values of this quantity imply that two detectors are
entangled and entanglement of the quantum field is
measured by the detectors. Entanglement harvesting in
black hole spacetimes has been investigated in several
studies (BTZ case [27], Schwarzschild case [31], and Kerr
case [32]). The two-point function (Wightman function) is
expressed as

Dþðt1; t2; x1; x2Þ ≔ hΦ̂ðt1; x1ÞΦ̂ðt2; x2Þi

¼
Z þ∞

−∞
dωe−iωðt1−t2ÞGðω; x1; x2Þ ð16Þ

because of the stationarity of the correlation
Dþðt1; t2; x1; x2Þ ¼ Dþðt1 − t2; x1; x2Þ. By changing the
integration variables to x¼ðt1þ t2Þ=2 and y ¼ ðt1 − t2Þ=2,

and assuming constant switching functions g1 ¼ g2 ¼ g,
we obtain2

X¼−4g2
Z þ∞

−∞
dxe2iω0x

Z þ∞

0

dyDþð2y;x1;x2Þ∝g2δðω0Þ;

ð17Þ

E12 ¼ 2g2
Z þ∞

−∞
dx

Z þ∞

−∞
dye−2iω0yDþð2y; x1; x2Þ

¼ 4πg2
�Z

dx

�
Gð−ω0; x1; x2Þ; ð18Þ

E1 ¼ E12jx2¼x1 ; E2 ¼ E12jx1¼x2 : ð19Þ

The formal expression (18) contains an infinite factor, but it
should be treated with some cutoff of integration and G is
replaced by the Fourier transformation with finite interval
of the correlation function. Becauseω0 ≠ 0, we haveX ¼ 0
for constant switching functions. By considering the state
tomography of the detector system, that is, by measu-
ring components of the state (12), it is possible to access
the component E12, which is proportional to the tempo-
ral Fourier component of the Wightman function
Gðω0; x1; x2Þ, and this quantity represents the spatial
correlation of the quantum field. Therefore, the setup of
two detectors can be applied as an imaging system of black
holes with Hawking radiation.

III. HAWKING RADIATION IN
KERR-DE SITTER SPACETIME

We shortly review Hawking radiation in the Kerr-de
Sitter spacetime [1,19–21,23].

A. Basic formulas

We consider a massless conformal scalar field φ in the
Kerr-de Sitter (KdS) spacetime. This scalar field is equiv-
alent to the scalar mode of gravitational perturbation, which
obeys the Teukolsky equation. The metric of the KdS
spacetime is

ds2 ¼−
Δr

ρ2χ4
ðdt−a sin2 θdϕÞ2

þ Δθ

ρ2χ4
sin2 θððr2þa2Þdϕ−adtÞ2þ ρ2

�
dr2

Δr
þdθ2

Δθ

�
;

ð20Þ

with

2

Gð−ω; x1; x2Þ ¼ G�ðω; x1; x2Þ; Gð−ω; x; xÞ ¼ Gðω; x; xÞ:
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Δr¼ðr2þa2Þ
�
1−

Λ
3
r2
�
−2Mr; Δθ¼1þΛ

3
a2cos2θ;

ð21Þ

ρ2 ¼ r2 þ a2 cos2 θ; χ2 ¼ 1þ Λ
3
a2: ð22Þ

The parameters specifying this spacetime are ðM; a;ΛÞ.
The scalar field obeys the following wave equation:

−∇μ∇μφþ 1

6
Rð4Þφ ¼ 0; Rð4Þ ¼ 4Λ; ð23Þ

where Rð4Þ is the four-dimensional Ricci scalar. We
introduce the tortoise coordinate r� defined by

r� ¼
Z

dr
r2 þ a2

Δr
¼ log jr − rcj

2κc
þ log jr − rþj

2κþ

þ log jr − r−j
2κ−

þ log jr − r−−j
2κ−−

; ð24Þ

where r−− < 0 < r− < rþ < rc are four roots of Δr ¼ 0;
rþ is the radius of the outer event horizon, and rc is the
radius of the cosmological horizon (Fig. 2). The surface
gravity κ and the angular velocity Ω at these points are
given by

κj ≔ κðrjÞ ¼
Δ0

rðrjÞ
2χ2ðr2j þ a2Þ ; Ωj ¼

a
r2j þ a2

;

j ¼ −−;−;þ; c; ð25Þ

where 0 ¼ ∂=∂r. The right panel of Fig. 2 shows a
parameter region for a real rþ and a real rc in the

ðΛM2; a=MÞ plane [33]. For such values of parameters,
we have a Kerr black hole enclosed by a cosmological
horizon.
The scalar field in the KdS spacetime is separated as

φωlm ¼ RωlmðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p Sωlmðcos θÞeimϕ; ð26Þ

where Sωlmðcos θÞ is the angular wave function obeying
the following equation:

�
d
dξ

f1þ ðχ2 − 1Þξ2gð1− ξ2Þ d
dξ

− 2ðχ2 − 1Þξ2

−
χ4fm− ð1− ξ2Þaωg2

f1þ ðχ2 − 1Þξ2gð1− ξ2Þ þ λlmðaω;ΛÞ
�
SωlmðξÞ ¼ 0;

ð27Þ

where ξ ¼ cos θ and λlmðaω;ΛÞ is the eigenvalue of this
equation. As Eq. (27) has four regular singular points, it can
be written in terms of the Heun equation with an appro-
priate transformation [24,34] to obtain the values of
SωlmðξÞ for the range of 0 ≤ θ ≤ π using the local Heun
functions. Moreover, the eigenvalues λlmðaω;ΛÞ are also
obtained by finding the zero point of the Wronskian for the
linear independent local Heun functions, which is equiv-
alent to the regularity condition for SωlmðξÞ at θ ¼ 0; π
[24,34]. For the eigenvalues, an analytic formula was
derived in [35]. We have checked that the formula provides
numerical values of λlm with acceptable accuracy even for
the parameter region aω ∼Oð1Þ with Λ ¼ 1=100. Hence
we used the analytic formula in the present study.

FIG. 2. Left panel: global structure of the KdS spacetime considered to investigate Hawking radiation with the Unruh-Hawking
vacuum state. Dotted vertical lines represent singularity. Right panel: colored region represents the parameters for a real rþ and a real rc.
The upper boundary is the extremal limit, where κþ ¼ 0. The lower boundary corresponds to rþ ¼ rc (Nariai limit). Black holes with
a > 1 (“over spinning” yet maintaining its horizon structure) are possible for Λ > 0.
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The radial wave function RωlmðrÞ obeys
�
d2

dr2�
− VωlmðrÞ

�
Rωlm ¼ 0 ð28Þ

with the potential

VωlmðrÞ¼−χ4ðω−mΩÞ2þ Δr

χ4ðr2þa2Þ2
�
λlmðaω;ΛÞ

þ2

3
Λr2þðr2þa2Þ1=2

�
rΔr

ðr2þa2Þ3=2
�0�

: ð29Þ

For investigating Hawking radiation, we consider the
extended KdS spacetime shown in the left panel of
Fig. 2. The Kruskal coordinates about bifurcating horizons
rþ and rc are defined as

U ¼ þ e−κþu

κþ
; V ¼ eκþv

κþ
in region I; ð30Þ

U¼−
e−κþu

κþ
; V¼eκþv

κþ
; Vc¼−

e−κcv

κc
inregionII; ð31Þ

Vc ¼
e−κcv

κc
in region III; ð32Þ

where u ¼ t − r� and v ¼ tþ r�.
As the state of Hawking radiation, we adopt the Unruh-

Hawking vacuum state. The condition for the quantum state
is presented in the subsection B of the present section. We
shortly comment on three typical vacuum states for quantum
fields in the asymptotically flat static black hole spacetime.
The Boulware vacuum state is defined by taking positive
frequency modes for the past and future null infinities. This
vacuum state shows no particle emission from a black hole.
The Hartle-Hawking vacuum state is defined by taking
incoming modes to be positive frequency modes with
respect to ∂V (V is the canonical affine parameter on the
past black hole horizon) and outgoing modes to be positive
frequency modes with respect to ∂U (U is the canonical
affine parameter on the future black hole horizon). This
vacuum state is time symmetric and represents the thermal
equilibrium state of a black hole andHawking radiation. The
Unruh-Hawking vacuum state is defined by taking modes
incoming from the past null infinity to be positive frequency
modes with respect to ∂t and those emanating from the past
black hole horizon to be positive frequency modes with
respect to ∂U. This vacuum state is realized by the formation
of a black hole via gravitational collapse. To specify the
Unruh-Hawking vacuum state in the KdS spacetime, which
is not asymptotically flat, we take modes incoming from the
past cosmological horizon to be positive frequency modes
with respect to ∂Vc

[22].
To express the vacuum condition for the Unruh-Hawking

vacuum, we first introduce the up mode and the dn mode;
the mode φup has support only in region II, and φdn has

support only in region I (see the left panel of Fig. 2)3; they
are defined by imposing their asymptotic forms at the past
event horizon as

φupjH−
h
∼ exp

�
i
ωþ
κþ

lnð−UÞ
�
Θð−UÞ;

φdnjH−
h
∼ exp

�
−i

ωþ
κþ

lnðUÞ
�
ΘðUÞ; ð33Þ

where ωþ ¼ ω −mΩþ > 0 and ΘðxÞ is the unit step
function. Even for ω > 0, there is a possibility that
ωþ < 0 and positive frequency modes with ω > 0 become
effectively negative frequency modes. These modes are
called superradiant modes, which are peculiar to the Kerr
spacetime. Then, the UP mode, which is the outgoing
positive frequency mode with respect to the coordinate U
on the past event horizonH−

h and analytic across the future
event horizonHþ

h , is defined as a linear combination of φup

and φdn (for ω;ωþ > 0):

φðUP1Þ
ωþ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 sinhðπωþ=κþÞ
p ðeπωþ=2κþφup

ωlm

þ e−πωþ=2κþðφdn
−ωl−mÞ�Þ; ð34Þ

φðUP2Þ
−ωþ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 sinhðπωþ=κþÞ
p ðeπωþ=2κþφdn

−ωl−m

þ e−πωþ=2κþðφup
ωlmÞ�Þ: ð35Þ

The IN mode, which is the incoming positive frequency
mode with respect to the coordinate Vc on the past
cosmological horizon H−

c and analytic across the future
cosmological horizon Hþ

c , is defined as

φðIN1Þ
ωc ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2sinhðπωc=κcÞ
p ðeπωc=2κcφin

ω þe−πωc=2κcðφot
−ωÞ�Þ;

ð36Þ

φðIN2Þ
−ωc ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2sinhðπωc=κcÞ
p ðeπωc=2κcφot

−ωþe−πωc=2κcðφin
ωÞ�Þ;

ð37Þ
with ωc ≔ ω −mΩc. The mode φin

ω has support only in the
region II, φot

−ω has support only in region III, and their
asymptotic forms at the past cosmological horizon are
specified by

3The modes of the wave equation are normalized with respect
to the inner product

ðφ1;φ2Þ ≔ i
Z
Σ
dσμððφ1Þ�∂μφ

2 − φ2∂μðφ1Þ�Þ;

where Σ is a spacelike or null hypersurface and dσμ is the volume
element on this surface.
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φinjH−
c
∼ exp

�
−i

ωc

κc
lnð−VcÞ

�
Θð−VcÞ;

φotjH−
c
∼ exp

�
i
ωc

κc
lnðVcÞ

�
ΘðVcÞ: ð38Þ

The asymptotic behaviors of radial functions Rin
ωlm ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ a2
p

φin
ωlm and Rup

ωlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
φup
ωlm are

Rup
ωlm →

�
eiωþr� þ R̃ωlme−iωþr� ; r� → −∞ðr → rþÞ
T̃ ωlmeiωcr� ; r� → þ∞ðr → rcÞ

;

ð39Þ

Rin
ωlm →

�
T ωlme−iωþr� ; r� → −∞ðr → rþÞ
e−iωcr� þRωlmeiωcr� ; r� → þ∞ðr → rcÞ

;

ð40Þ

where reflection coefficients Rωlm and R̃ωlm, and trans-
mission coefficients T ωlm and T̃ ωlm are introduced. These
coefficients satisfy the following relation, which is origi-
nated from the conservation of the Wronskian:

1− jRωlmj2¼
ωþ
ωc

jT ωlmj2; 1− jR̃ωlmj2¼
ωc

ωþ
jT̃ ωlmj2;

ð41Þ

ωcT̃
�
ωlmRωlm¼−ωþT ωlmR̃

�
ωlm; ωcT̃ ωlm¼ωþT ωlm:

ð42Þ

B. Correlation function

The introduced combinations of modes φðUPÞ and φðINÞ
are called the Unruh modes. UP mode is defined onH− and
IN mode is defined on I−; Thus H− ∪ I− is the initial
Cauchy surface to define the Unruh-Hawking vacuum
state. Using the Unruh mode functions, the field operator
is expanded as

Φ̂ðxÞ¼
X
lm

Z
∞

0

dωþðâðUP1Þωþ φðUP1Þ
ωþ þ âðUP2Þ−ωþ φðUP2Þ

−ωþ Þ

þ
X
lm

Z
∞

0

dωcðâðIN1Þωc φðIN1Þ
ωc þ âðIN2Þ−ωc φðIN2Þ

−ωc ÞþðH:c:Þ:

ð43Þ

The Unruh-Hawking vacuum state jUi is defined by [22]

âðUP1Þωþ jUi ¼ âðUP2Þ−ωþ jUi ¼ âðIN1Þωc jUi ¼ âðIN2Þ−ωc jUi ¼ 0;

ωþ;ωc ≥ 0: ð44Þ

This state is realized by black hole formation via gravita-
tional collapse in the KdS spacetime, and the UP and IN
modes are thermally populated at the past black hole
horizon and the past cosmological horizon, respectively.
These modes are regular on H−

h and H−
c . The Hadamard’s

elementary function with the Unruh-Hawking vacuum state
is (we assume x1; x2 ∈ region II in Fig. 2)4

Gðx1; x2Þ ≔ hUjfΦ̂ðx1Þ; Φ̂ðx2ÞgjUi

¼
X
lm

Z
∞

0

dωþ coth
�
πωþ
κþ

�
φup
ωlmðx1Þφup

ωlmðx2ÞSωlmðξ1ÞSωlmðξ2Þeimðϕ1−ϕ2Þ

þ
X
lm

Z
∞

0

dωc coth

�
πωc

κc

�
φin
ωlmðx1Þφin �

ωlmðx2ÞSωlmðξ1ÞSωlmðξ2Þeimðϕ1−ϕ2Þ þ ðx1 ↔ x2Þ þ ðH:c:Þ

¼ 1

4πðr21 þ a2Þ1=2ðr22 þ a2Þ1=2
X
lm

Z
∞

0

dωe−iωðt1−t2Þ
�
ΘðωþÞ
ωþ

coth

�
πωþ
κþ

�
Rup
ωlmðr1ÞRup�

ωlmðr2Þ

þ ΘðωcÞ
ωc

coth

�
πωc

κc

�
Rin
ωlmðr1ÞRin�

ωlmðr2Þ
�
Sωlmðξ1ÞSωlmðξ2Þeimðϕ1−ϕ2Þ þ ð1 ↔ 2Þ þ ðH:c:Þ; ð45Þ

where ξ1;2 ¼ cos θ1;2. To derive the last expression of Eq. (45), we have changed the integration variable from ωþ;ωc to ω
and introduced the unit step function in the integrand. For r1 ¼ r2 → rc, the temporal Fourier component of the correlation
function is given by

Gðω; x1; x2Þ ∝
X
lm

�
ΘðωþÞ
ωþ

coth

�
πωþ
κþ

�
jT̃ ωlmj2 þ

ΘðωcÞ
ωc

coth

�
πωc

κc

�
j1þRωlmeiδj2

�
Sωlmðξ1ÞSωlmðξ2Þeimðϕ1−ϕ2Þ

≡G1 þ G2; ð46Þ

4ðuωðrÞÞ� ¼ u−ωðrÞ.
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where a phase factor δ ¼ 2ωcr� is introduced. As the radial
function Rin is a linear combination of the incoming wave
and the reflected wave with amplitude Rωlm, G2 contains
phase information determined by the reflection coefficient
and δ. Coefficients cothðπωþ=κþÞ and cothðπωc=κcÞ reflect
the thermal property of the black hole horizon and the
cosmological horizon, respectively. For ωþ → 0, jT̃ ωlmj →
ωþ [see Eq. (42)] and G1ðωÞ is finite, whereas G2 diverges
for ωc → 0.
The Fourier component of Hadamard’s elementary

function G consists of the contribution G1 of the UP mode
and G2 of the IN mode. G1 represents the illumination of
the black hole by both the thermally populated UP mode
with the Hawking temperature κþ=ð2πÞ and vacuum
fluctuation from the inside of the photon sphere. On the
other hand, G2 is the contribution of the IN mode and
represents scattering of the incoming thermal radiation with
temperature κc=ð2πÞ from the cosmological horizon and the
vacuum fluctuation by the black hole. These types of
radiations illuminate the black hole from the outside of the
photon sphere. Concerning the superradiant phenomena,
G1 includes no superradiant modes, because it only
contains ωþ > 0 modes, whereas G2 includes superradiant
modes ωþ < 0 < ωc and can potentially show the super-
radiant scattering effect.
In G2, the phase factor originating from the reflection

coefficientRωlmeiδ provides the interference term between
incoming and reflected waves. As the behavior of the

interference term depends on r�, and for the purpose of
qualitative understanding of images of the black hole, it is
convenient to evaluateG2 by replacing j1þRωlmeiδj2 with
1þ jRωlmj2, which corresponds to the dropping of the
interference term between the incoming and the reflected
waves by hand. For this purpose, we introduce the
correlation function without the interference term as

G̃2 ≔
X
lm

ΘðωcÞ
ωc

coth

�
πωc

κc

��
2 −

ωc

ωþ
jT̃ ωlmj2

�

× Sωlmðξ1ÞSωlmðξ2Þeimðϕ1−ϕ2Þ; ð47Þ

where we used the relations (41) and (42) to express
jRωlmj2 using jT̃ ωlmj2. The correlation functionG ¼ G1 þ
G̃2 neglects the interference term between incoming and
reflected waves. In the eikonal limit, as wave optical
images obtained using G̃2 correspond to images obtained
by the ray tracing method in geometric optics, it is possible
to identify wave effect in images by comparing images with
G2 and those with G̃2.
To extract the pure thermal effect of Hawking radiation,

we expressGðωÞ for the Boulware vacuum, which includes
no thermal emission from the black hole horizon and the
cosmological horizons. The form of the correlation func-
tion for this vacuum state formally obtained by taking the
limits of κþ → 0 and κc → 0 in (46):

GBoulwareðωÞ ∝
X
lm

�
ΘðωþÞ
ωþ

jT̃ ωlmj2 þ
ΘðωcÞ
ωc

j1þRωlmeiδj2
�
Sωlmðξ1ÞSωlmðξ2Þeimðϕ1−ϕ2Þ

¼
X
lm

�
ΘðωþÞ
ωc

ð2þ 2Re½Rωlmeiδ�Þ þ
Θð−ωþÞ

ωc
j1þRωlmeiδj2

�
Sωlmðξ1ÞSωlmðξ2Þeimðϕ1−ϕ2Þ; ð48Þ

where we assume that there are no superradiant modes associated with the cosmological horizon (ωc > 0). The contribution
of particle creations from the black hole and the cosmological horizon in the correlation function is encoded in the following
two point functions obtained by subtracting the contribution of the Boulware vacuum, and this correlation function includes
the Planckian factor:

GðωÞ −GBoulwareðωÞ ∝
X
lm

�
ΘðωþÞ

e2πωþ=κþ − 1

jT̃ ωlmj2
ωþ

þ ΘðωcÞ
e2πωc=κc − 1

j1þRωlmeiδj2
ωc

�
Sωlmðξ1ÞSωlmðξ2Þeimðϕ1−ϕ2Þ: ð49Þ

By definition, G −GBoulware becomes zero for κþ; κc → 0.
We use this correlation function for images of the black
hole that directly reflect the Hawking effect.

IV. EVALUATION OF TRANSMISSION AND
REFLECTION COEFFICIENTS

In this section, we introduce our computation of the grey-
body factor jT̃ ωlmj2 and the reflection coefficient Rωlm.
We adopt the method developed in [34], which utilizes the

local solutions around regular singular points of the Heun
equation (local Heun function) with the Frobenius method
to construct solutions of the Teukolsky equation. The local
Heun functions have been implemented as built-in func-
tions in Mathematica version 12.1 released in 2020. Here,
we discuss the relation between scattering problems based

on the Teukolsky radial function RðTÞ and on the radial
function R introduced in (26). They are related as

RðTÞ ¼ R=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
. RðTÞ obeys
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�
d
dr

Δr
d
dr

þ χ4

Δr
½ωðr2 þ a2Þ − am�2

−
2Λ
3

r2 − λlmðaω;ΛÞ
�
RðTÞ ¼ 0: ð50Þ

This equation is the same as that of the massless conformal
scalar field in the KdS spacetime. To use the method with
the local Heun function, we transform the above equation
into the Heun equation by introducing the coordinate
transformation from r to z and the redefinition of the
radial equation:

z ¼ rc − r−
rc − rþ

r − rþ
r − r−

;

RðTÞ ¼ zB1ðz − 1ÞB2ðz − zrÞB3ðz − z∞ÞyðrÞðzÞ; ð51Þ

and the radial equation yields

d2yðrÞ

dz2
þ
�
2B1 þ 1

z
þ 2B2 þ 1

z − 1
þ 2B3 þ 1

z − zr

�
dyðrÞ

dz

þ ð1 − 2B4Þzþ v
zðz − 1Þðz − zrÞ

yðrÞ ¼ 0; ð52Þ

where

z∞ ¼ rc − r−
rc − rþ

; zr ¼ z∞
r−− − rþ
r−− − r−

;

Bj ¼ i
χ2ðr2j þ a2Þðω −mΩjÞ

Δ0
rðrjÞ

; ð53Þ

with B1 ¼ Bþ; B2 ¼ Bc; B3 ¼ B−−; B4 ¼ B−, and

v ¼ λlm − ðΛ=3Þðrþr− þ rcr−−Þ
ðΛ=3Þðr− − r−−Þðrþ − rcÞ

−
i½2χ2fωðrþr− þ a2Þ − amg�

ðΛ=3Þðr− − r−−Þðr− − rþÞðrþ − rcÞ
: ð54Þ

The sets of the linear independent local solutions of
Eq. (52) at z ¼ 0 (black hole outer horizon) and at
z ¼ 1 (cosmological horizon) are represented as
(y01; y02Þ and (y11; y12Þ, respectively [34]. These solutions
are related to each other as

y01ðzÞ ¼ C11y11ðzÞ þ C12y12ðzÞ;
y02ðzÞ ¼ C21y11ðzÞ þ C22y12ðzÞ; ð55Þ

y11ðzÞ ¼ D11y01ðzÞ þD12y02ðzÞ;
y12ðzÞ ¼ D21y01ðzÞ þD22y02ðzÞ; ð56Þ

with the connection coefficients

C11 ¼
Wz½y01; y12�
Wz½y11; y12�

; C12 ¼
Wz½y01; y11�
Wz½y12; y11�

;

C21 ¼
Wz½y02; y12�
Wz½y11; y12�

; C22 ¼
Wz½y02; y11�
Wz½y12; y11�

; ð57Þ

and

D11 ¼
Wz½y11; y02�
Wz½y01; y02�

; D12 ¼
Wz½y11; y01�
Wz½y02; y01�

;

D21 ¼
Wz½y12; y02�
Wz½y01; y02�

; D22 ¼
Wz½y12; y01�
Wz½y02; y01�

; ð58Þ

where Wz½u; v� ¼ uðdv=dzÞ − vðdu=dzÞ. Note that the

local solutions are evaluated with the built-in function

HeunG in Mathematica.5

To obtain the greybody factor and reflection coefficient,
we investigate the behavior of the in and up modes in terms
of Rðr�Þ and RTðrÞ. In the tortoise coordinate r�, the up and
in modes have been obtained as Eqs. (39) and (40),
respectively. Equivalently, in the r coordinate, it is
expressed as

RðTÞup →
�
DðupÞΔB1

r þDðrefÞΔ−B1
r ; r → rþ

DðtransÞΔB2
r ; r → rc

ð59Þ

RðTÞin →
�
CðtransÞΔ−B1

r ; r → rþ
CðrefÞΔB2

r þ CðincÞΔ−B2
r ; r → rc:

ð60Þ

The reflection coefficient Rωlm and the greybody factor
jT̃ ωlmj2 can be written with the coefficients of the above
solutions as

Rωlm ¼ CðrefÞ

CðincÞ ; jT̃ ωlmj2 ¼
�
r2c þ a2

r2þ þ a2

�				D
ðtransÞ

DðupÞ

				
2

ð61Þ

by comparing the asymptotic form of Rðr�Þ and RðTÞ using
the relation between r� and r. Furthermore, Cðref=up=transÞ

and Dðref=up=transÞ are represented with the connection
coefficients of the local Heun functions as demonstrated
in [34] as

CðincÞ ¼ C22ð−1ÞB2ð1 − zrÞB3ð1 − z∞ÞðA2Þ−B2 ; ð62Þ

CðrefÞ ¼ C21DðtransÞ

¼ C21ð−1ÞB2ð1 − zrÞB3ð1 − z∞ÞðA2ÞB2 ; ð63Þ

DðupÞ ¼ D11ð−1ÞB2ð−zrÞB3ð−z∞ÞðA1ÞB1 ; ð64Þ

5See the detailed computation in [34].
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DðrefÞ ¼ D12CðtransÞ

¼ D12ð−1ÞB2ð−zrÞB3ð−z∞ÞðA1Þ−B1 ; ð65Þ
with

A1¼
z∞

ðrþ−r−ÞΔ0ðrþÞ
; A2¼

z∞ðrþ−r−Þ
−ðrc−r−Þ2Δ0ðrcÞ

: ð66Þ

V. IMAGING OF BLACK HOLES WITH
HAWKING RADIATION

As we have shown in Eq. (18), the qubit detector system
is applicable to the detection of the spatial correlation of
Hawking radiation, and we adopt it as our imaging system
for black holes.

A. Detail of imaging method and an example with a
simple model

In our imaging setup, two detectors are placed near the
cosmological horizon. In the spherical coordinate system,
detector 1 is placed at ðr; θ1;ϕ1Þ ¼ ðr; π=2; 0Þ (on the
equatorial plane), and detector 2 is placed at ðr; θ2;ϕ2Þ.
In the Cartesian coordinates ðx; y; zÞ ¼ ðr sin θ cosϕ;
r sin θ sinϕ; r cos θÞ, the detector locations are

x1¼ðr;0;0Þ; x2¼ðrsinθcosϕ;rsinθsinϕ;rcosθÞ: ð67Þ

We define two-dimensional coordinates in the observer’s
screen as

X ¼ ðX; YÞ ¼ ðsin θ sinϕ; cos θÞ: ð68Þ

Then, the locations of two detectors in the observer’s
screen are

ðX1;Y1Þ¼ð0;0Þ¼X1; ðX2;Y2Þ¼ðsinθsinϕ;cosθÞ¼X2:

ð69Þ

Applying Eq. (10), images (intensity distributions) are
obtained through the following Fourier transformation of
the correlation function in the observer’s screen:

F ½G�ðXimÞ ≔
Z

d2X12Gðω;X1;X2Þ exp ðiωXim · X12Þ;

X12 ¼ X1 − X2; ð70Þ

where Xim denotes coordinates in the image plane.
To check our imaging method, we analytically evaluate

images for the model correlation function G ¼ G1 þ G̃2,
which includes important features of the correlation func-
tion of Hawking radiation from the Schwarzschild-de Sitter
black hole:

G1 ¼
g1
ω

X∞
l¼0

Θðl� − lÞð2lþ 1ÞPlðcosΔÞ;

G̃2 ¼
g2
ω

X∞
l¼0

ð1þ Θðl − l�ÞÞð2lþ 1ÞPlðcosΔÞ: ð71Þ

Here, Pl is the Legendre polynomial. The transmission and
reflection coefficients are replaced with the unit step
function to reflect the property of perfect absorption of
black holes. The parameter l� denotes the critical angular
momentum of perfect absorption corresponding to the
photon sphere, and Δ ≔ θ − π=2 is the angle between an
observing point and the optical axis. In the eikonal limit,
the critical impact parameter of photons is l�=ω which
corresponds to the size of the black hole shadow. This
model well represents the correlation function of Hawking
radiation in the eikonal region. The constants g1 and g2
depend on the surface gravity of horizons

g1 ¼ coth

�
πω

κþ

�
; g2 ¼ coth

�
πω

κc

�
: ð72Þ

By replacing the sum with an integral, it is possible to
evaluate the correlation function analytically; with the
approximation PlðcosΔÞ ∼ J0ðlΔÞ;l ≫ 1 and by replac-
ing the upper bound of the infinite sum by lmax ≫ l�, we
obtain

G1 ≈
2g1
ω

Z
l�

0

dλλPλðcosΔÞ ¼
2g1
ω

Z
l�

0

dλλJ0ðλΔÞ

¼ 2g1l�
ωΔ

J1ðl�ΔÞ; ð73Þ

where J0 and J1 are Bessel functions and

G̃2 ¼
g2
ω

Xlmax

l¼0

ð2lþ 1ÞPlðcosΔÞ

þ g2
ω

�Xlmax

l¼0

−
Xl�
l¼0

�
ð2lþ 1ÞPlðcosΔÞ

≈
4g2
ω

lmax

Δ
J1ðlmaxΔÞ −

2g2
ω

l�
Δ

J1ðl�ΔÞ: ð74Þ

The angle Δ is related to the coordinates ðX; YÞ in the
observer’s screen as jΔj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
< 1. Figure 3 shows

the behavior of G1 and G̃2. G1 represents the interference
fringe due to Hawking radiation from the black hole. For
lmax → ∞, the peak of G̃2 at Δ ¼ 0 becomes infinite, and
the peak approaches the Dirac delta function.
Now, we consider the two-dimensional Fourier trans-

formation (70) of a function fð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
Þ:
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F ½f� ¼ 1

2π

Z þ∞

−∞
dXdYfð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
ÞeiωðXimXþY imYÞ; ð75Þ

where Xim and Ym are coordinates in the image plane.
Then,

F ½f� ¼ 1

2π

Z
∞

0

ΔðdΔÞ
Z

2π

0

dϕfðΔÞeiω
ffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
imþY2

im

p
Δ cosϕ

¼
Z

∞

0

ΔðdΔÞJ0ðωRimΔÞfðΔÞ; ð76Þ

where Rim ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
im þ Y2

im

p
. Applying this formula,6 we

obtain

F ½G1� ∝
2g1
ω

Θðl�=ω − RimÞ; ð77Þ

F ½G̃2�∝
4g2
ω

Θðlmax=ω−RimÞ−
2g2
ω

Θðl�=ω−RimÞ; ð78Þ

F ½G1 þ G̃2� ∝
4g2
ω

Θðlmax=ω − RimÞ

−
2g2 − 2g1

ω
Θðl�=ω − RimÞ: ð79Þ

Figure 4 shows images obtained from the correlation
function (71). For high frequency, ω > κþ;c=ð2πÞ, and g1 ≈
g2 ≈ 1 holds. The image F ½G1� is a bright disk with the
intensity 2g1, which represents Hawking radiation from the
black hole. On the other hand, the image F ½G̃2� shows a
dark shadow of the black hole in bright background,
which is originated from emission of the cosmological

horizon. F ½G1 þ G̃2� is constant, and the images F ½G1�
and F ½G̃2� complement each other. On the other hand,
for low frequency ω < κþ;c=ð2πÞ, g1 ≈ κþ=ð2πωÞ, and
g2 ≈ κc=ð2πωÞ. Thus, for κþ < κc, emission from the
cosmological horizon has a higher temperature than that
of the black hole, and the image F ½G1 þ G̃2� shows a dark
shadow with radius l�=ω. On the contrary, for κþ > κc, the
image F ½G1 þ G̃2� shows a bright disk, which repre-
sents the emission of Hawking radiation from the
black hole.

B. Black hole images

Now, we proceed to image reconstruction of black holes
using Eqs. (46) and (49). Assuming that detector 1 is
located on the equatorial plane reduces much computa-
tional time because in the summation with respect to l and
m of G1 and G2, the spheroidal harmonics Sωlm (π=2, 0) is
nonzero only form ¼ l;l − 2;…;−ðl − 2Þ;−l. To evalu-
ate G2, we must truncate infinite sum of l with a
sufficiently large value lmax that does not change the
qualitative behavior of the correlation function. A rough
estimation to determine lmax is as follows: for the radial
distance of observation robs, lmax is estimated as
robs ∼ lmax=ω. Thus, lmax ≳ ωrobs is required. In our
calculation, we choose lmax ¼ 70 for ω ¼ 5 and lmax ¼ 7
for ω ¼ 0.5. These values are chosen to be larger than the
value of l corresponding to the photon sphere of the black
hole. The original correlation function, Eq. (45), includes
the prefactor 1=ð4πðr2obs þ a2ÞÞ, which depends on robs.
This factor only affects the total intensity of images, and the
structure of images is not altered if we omit this factor. G2

contains robs as the phase factor δ ¼ 2ωcr�jobs. In our
analysis, we do not fix robs, and δ is chosen as
0; π=2; π; 3π=2. As the black hole parameters, we choose
a ¼ 0, 0.1, and 1 as well as Λ ¼ 1=100. For these values,
the horizon radius and surface gravity are (in units
of M ¼ 1)

FIG. 3. G1 and G̃2 with l� ¼ 20;lmax ¼ 50;ω ¼ 1, and g1 ¼ g2 ¼ 1.

6 Z
∞

0

dxJ0ðaxÞJ1ðbxÞ ¼
1

b
Θðb − aÞ:
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a ¼ 0∶ rþ ¼ 2.028; rc ¼ 16.22; κþ ¼ 0.2364; κc ¼ 0.05026;

a ¼ 0.1∶ rþ ¼ 2.023; rc ¼ 16.22; κþ ¼ 0.2359; κc ¼ 0.05025;

a ¼ 1∶ rþ ¼ 1.094; rc ¼ 16.22; κþ ¼ 0.03685; κc ¼ 0.05015: ð80Þ

In the observer’s screen, we evaluate G1 and G2 in a
region −1 ≤ θ − π=2 ≤ 1;−1 ≤ ϕ ≤ 1 with 60 × 60 sam-
pling points by taking the summation with respect to l and
m. In our calculation of images, we pick data points of
X2 þ Y2 < 1=4 in the observer’s screen, which defines the
aperture of our imaging system. We applied the Tukey
window to reduce unwanted aliasing originating from the
sharp cutoff of the aperture in discrete Fourier trans-
formation in a finite region. Around the equatorial plane
θ ≈ π=2, difference between the spheroidal harmonics Sωlm
and the spherical harmonics Ylm is not so large; indeed, the
relative difference between them is smaller than 0.1 even
for l ≥ 5 with aω ¼ 5. Thus, we evaluate the sum in G by
replacing Sωlm with Ylm to reduce computational time. We
checked that the relative difference of G is less than 1% for
aω ¼ 5; hence, we expect that this replacement does not
produce much qualitative difference in the images.

1. Images for a = 0 (Schwarzschild case)

Figure 5 shows the reflection and transmission coeffi-
cients in the ðl; mÞ-plane as well as G1 and G2 for ω ¼ 5.

As the black hole is spherically symmetric, the reflection
and transmission coefficients have nom dependence. The l
dependence of the reflection coefficient contains informa-
tion of the phase shift of waves scattered by the black hole.
For l ≤ l� ≈ 25, Rωlm ∼ 0; T̃ ωlm ∼ 1, and incoming
waves from spatial infinity are perfectly absorbed by the
black hole. In wave optics, the photon sphere corresponds
to a boundary between perfect absorption and perfect
reflection in the ðl; mÞ-plane. In the eikonal limit, the
boundary is represented as a relation between l and m,
which corresponds to a set of bounded photon orbits. This
critical value l�=ω ∼ 5M corresponds to the size of photon
sphere of the Schwarzschild black hole. jRωlmj and jT̃ ωlmj
satisfy the conservation law jRωlmj2 þ jT̃ ωlmj2 ¼ 1. The
correlation functions G1 and G2 on the observer’s screen
show circular interference fringes. G2 has a sharp peak at
the origin, which originated from the incoming radiation
from the cosmological horizon. The Fourier transformation
of this peak provides a nearly homogeneous background
intensity of images. The imaginary part of G is zero
for a ¼ 0.

FIG. 4. One-dimensional images obtained from the correlation function (71). The lower panel is F ½G1 þ G̃2�. The red line is for the
case of g1 < g2ðκþ < κcÞ and the blue line is for the case of g1 > g2ðκþ > κcÞ. For high frequency, g1 ¼ g2, andF ½G1 þ G̃2� is constant.
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Figure 6 shows images obtained by the Fourier trans-
formation of G. F ½G1� is the image of the black hole
illuminated by the UP mode with the vacuum fluctuation.
We superimpose the photon sphere (dotted circle) with the
image. As the photon sphere is a concept in geometric
optics, its shape has a finite width in wave optics. To
identify the location of the photon sphere in our calculation,
we define it as the location where the intensity of F ½G1�
becomes half of that of the central bright region. The black
hole has the appearance of a “shining star” with its surface
coinciding with the photon sphere. F ½G2� and F ½G̃2�
are images of the black hole illuminated by the IN mode,
which is incoming radiation from the cosmological hori-
zon. The emission from the black hole is not included inG2

or G̃2. The incoming radiation is scattered and absorbed by
the black hole. A dark circular shadow region surrounded
by a bright ring appears in these images. The shadow
region is not black, because G2 has a contribution from
incoming waves directly reaching the detectors from the

cosmological horizon (see Fig. 4). F ½G1 þG2� and
F ½G1 þ G̃2� are images with contributions from both the
UP mode and the IN mode. The black hole is visible as a
bright disk in F ½G1 þ G2�. A comparison of these two
images reveals that the interference effect sharpens the
structure of the photon sphere. We can confirm this
behavior more clearly by checking one-dimensional slice
of the images (right panels of Fig. 6; slices of images along
the Y im ¼ 0 line). Depending on the values of the phase δ,
the intensity around the photon sphere becomes brighter or
darker than that of the image without the interference effect.
The intensity inside and outside of the photon sphere is not
affected by the values of δ.
Figures 7 and 8 show the results for ω ¼ 0.5. From

jT̃ ωlmj andRωlm, l� ≈ 2 corresponds to the location of the
photon sphere, but the shape of the photon sphere becomes
hazy for low frequency. The image of G1 spreads over the
field of view, and the structure of the photon sphere is not
visible as an image. This is because small l modes mainly

FIG. 5. Reflection and transmission coefficients in the ðl; mÞ-plane (upper panels) as well as G1 and G2 on the observer’s screen
(lower panels) for a ¼ 0 with ω ¼ 5. G1 shows interference fringes caused by Hawking radiation emitted by the black hole. G2 shows
the interference fringes caused by scattering of incoming radiation from the cosmological horizon by the black hole. A sharp peak in G2

at X ¼ Y ¼ 0 is due to the background incoming mode from the cosmological horizon, which results in homogeneous background
intensity distribution in images. The imaginary part of G1;2 is zero.
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FIG. 6. Images for a ¼ 0 and ω ¼ 5. Two-dimensional images with δ ¼ 3π=2 and one-dimensional slice of images along Y im ¼ 0
(right panels). Dotted circles in two-dimensional images represent the photon sphere. In the one-dimensional slice of F ½G1 þG2�,
images with four different phases δ ¼ 0; π=2; π, and 3π=2, are shown.

FIG. 7. Reflection and transmission coefficients in the ðl; mÞ-plane (upper panels) as well as G1 and G2 (lower panels) for a ¼ 0 and
ω ¼ 0.5. The imaginary part of G1;2 is zero.
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contribute to G1 for the low-frequency case. The image of
G shows that the entire field of view becomes bright, and
the brightness is much larger than that for ω ¼ 5 because
the emission of Hawking radiation is mainly supported
by the low-frequency mode ω ∼ κþ=ð2πÞ, the wavelength
of which is much larger than the size of the photon
sphere.

2. Images for a = 1=10 (slowly rotating case)

Figures 9 and 10 show the reflection and transmission
coefficients as well as images for a ¼ 1=10 and ω ¼ 5. The
introduction of a small spin results in a small deformation
of Rωlm and T̃ ωlm and causes the m dependence of these
coefficients. The small spin parameter leads to a nonzero
imaginary part of G1;2, which results in a left-right
asymmetric fringe pattern in the observer’s screen. The
image of G1 shows a spherical photon sphere, which is not
possible to distinguish for the image of a ¼ 0. However,
the images of G2 shows an irregular-shaped ring, which is
caused by the interference effect between incoming and
outgoing waves. Indeed, the image of G̃2 shows a circular
ring corresponding to the photon sphere. Moreover, the
interference effect enhances the left-right asymmetry of
intensity of images around the photon sphere, which is
clearly visible from the one-dimensional slice of images
(right panels of Fig. 10).
Figures 11 and 12 show the reflection and transmission

coefficients as well as images for a ¼ 1=10 and ω ¼ 0.5.
jT̃ ωlmj and Rωlm show a small m dependence. It is
not possible to distinguish the l dependence from that

for a ¼ 0 and ω ¼ 0.5. The small a induces the imaginary
part of G, which shows left-right asymmetry. We cannot
recognize the shape of the emission region of Hawking
radiation (Fig. 12). The effect of the small spin parameter
is manifested as a small left-right asymmetry in the
one-dimensional intensity distribution (right panel of
Fig. 12).

3. Images for a = 1 (fast-rotating case)

Figure 13 shows the transmission and reflection
coefficients for a ¼ 1 and ω ¼ 5. The transmission and
refection coefficients show a larger m dependence than
those for a ¼ 0.1, and the boundary between perfect
reflection and absorption is much deformed from an
l ¼ constant line. This reflects the nonspherical shape
of the photon sphere. The interference fringe pattern Re½G1�
is elongated in the Y direction and becomes elliptic owing
to the spin of the black hole. Although superradiant modes
are included in the sum of the correlation function, the
impact of these modes on images is not visible because
the amplification factor is small for the scalar mode
superradiance.
Figure 14 shows images obtained from G. The image of

G1 shows a deformed D-shaped region corresponding to
shape of the photon sphere. The intensity inside of the
photon sphere slightly decreases asXim increases because of
the dragging effect of the Kerr black hole. The image of G2

shows a dark shadow region caused by absorption of the
incoming radiation from the cosmological horizon by the
black hole. A peculiar feature of this image is a bright spot at

FIG. 8. Images for a ¼ 0 and ω ¼ 0.5. Two-dimensional images are drawn with δ ¼ 3π=2. Dotted circles in two-dimensional images
represent the photon sphere. The entire field of view becomes bright, and it is not possible to identify the structure of the photon sphere.
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FIG. 10. Images for a ¼ 1=10 and ω ¼ 5. Two-dimensional images are obtained with δ ¼ 3π=2. Dotted circles in the two-
dimensional images represent the photon sphere. The asymmetry of F ½G2� and F ½G1 þ G2� reflect the effect of the small nonzero value
of the spin parameter.

FIG. 9. Reflection and transmission coefficients in the ðl; mÞ-plane (upper panels) as well asG1 andG2 (lower panels) for a ¼ 0.1 and
ω ¼ 5. The reflection and transmission coefficients show m dependence. The imaginary part of G1;2 presents left-right asymmetric
fringe patterns, which are caused by the small value of the spin parameter.
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the left side of the photon sphere; this enhancement of the
intensity is due to the interference effect because we could
not find any intensity enhancement in the image of G̃2. As
we can see from the one-dimensional slice of images of

F ½G1 þ G2� (right panels of Fig. 14), the right side of the
photon sphere can also become bright depending on the
value of δ. However, the intensity ofF ½G1� at the left side is
larger than that at the right side, and this difference is due to

FIG. 11. Reflection and transmission coefficients in the ðl; mÞ-plane (upper panels) as well as G1 and G2 (lower panels) for a ¼ 1=10
and ω ¼ 0.5. The left-right asymmetry of fringe patterns of Im½G1� and Im½G2� is also shown for the low-frequency case.

FIG. 12. Images for a ¼ 1=10 and ω ¼ 0.5. Two-dimensional images are obtained with δ ¼ 3π=2. Dotted circles in two-dimensional
images represent the photon sphere. Left-right asymmetry is visible in F ½G1 þ G2�.
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the dragging effect of the Kerr black hole: for πωþ=κþ ≫ 1,
the factor cothð2πωþ=κþÞjT̃ lmj2=ωþ in the summation of
G1 is approximated to 1=ωþ ¼ 1=ðω −mΩþÞ. The m
dependence of this factor represents the left-right asymmetry

of intensity in the image because in the eikonal limit, m
corresponds to the z component of photon angular momen-
tum and is related to the screen coordinate bym=ω ∝ −Xim
[2]. The intensity of the photon sphere projected on the

FIG. 14. Images for a ¼ 1 and ω ¼ 5. Dotted circles in two-dimensional images represent the photon sphere. F ½G2� and F ½G1 þG2�
are images with δ ¼ 3π=2, and they show bright spots at the left side of the photon sphere, which are caused by interference between
incoming and reflected modes.

FIG. 13. Reflection and transmission coefficients in the ðl; mÞ-plane (upper panels) as well as G1 andG2 (lower panels) for a ¼ 1 and
ω ¼ 5. The interference fringe pattern Re½G1� is elongated in the Y direction and becomes elliptic because of the spin of the black hole.
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screen is determined by this factor after mapping m to the
screen coordinate Xim. A positivem is mapped to a negative
Xim, and a negativem is mapped to a positive Xim. From the
positive direction ofm (corotating direction) to the negative
direction of m (counterrotating direction), this factor
decreases because of ω −mΩþ dependence, which is
caused by the nonzero value of Ωþ.
Figures 15 and 16 show transmission and reflection

coefficients as well as images for a ¼ 1 and ω ¼ 0.5.
Although we cannot identify the photon sphere in the
images, the left-right asymmetry of intensity caused by the
dragging effect of fast rotation of the black hole is visible.

4. Images of G1 and emission region of
Hawking radiation

Figure 17 shows the one-dimensional slice of images
F ½G1� with different frequencies. For ω ¼ 5, we can
identify the location of the photon sphere, which is visible
as sharp edges in the image. The size of the effective
emission area of Hawking radiation is the same as that of
the photon sphere, as discussed in [15,16]. For low
frequency, the effective size of the radiation source
obtained from the images becomes larger than the photon
sphere. This is because the l ¼ 0 mode mainly contri-
butes to the greybody factor jT̃ωlmj2 for ω → 0 and the

characteristic size of the emission region depends onω. The
introduction of the spin of the black hole does not alter this
behavior of ω dependence of the size of the emission region
of Hawking radiation. For obtaining black hole images
directly related to the emission of Hawking radiation, we
consider images of the UP mode with the correlation
function G1 − GBoulware

1 given by Eq. (49), which subtracts
contribution of the vacuum fluctuation (Fig. 18). The
obtained images are sensitive to the values of the spin
parameter. For a ≠ 0, owing to the m-dependence of the
Planckian factor in (49), ðe2πωþ=κþ − 1Þ−1jT̃ lmj2=ωþ ∼
e−2πωþ=κþ=ωþ for πωþ=κþ ≫ 1, the intensity of the emis-
sion region around the left side of the photon sphere
becomes larger and decays exponentially while departing
from this region. The peak intensity of the emission region
strongly depends on the spin parameter: 9.5 × 10−49 for
a ¼ 0.1 and 4.8 × 10−10 for a ¼ 1. As this m dependence
in the Planckian factor is proportional to the angular
velocity of the black hole, the images of G1 −GBoulware

1

reflect the dragging effect in the vicinity of the event
horizon of the Kerr black hole.

VI. SUMMARY

We investigate the wave optical imaging of black holes
using Hawking radiation. For the theoretical investigation

FIG. 15. Reflection and transmission coefficients in the ðl; mÞ-plane (upper panels) and G1 and G2 (lower panels) for a ¼ 1 and
ω ¼ 0.5. Im½G1;2� shows left-right asymmetry due to the spin of the black hole.
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FIG. 16. Images for a ¼ 1 and ω ¼ 0.5. Two-dimensional images are obtained with δ ¼ 3π=2. Dotted circles in two-dimensional
images represent the photon sphere. F ½G2� and F ½G1 þ G2� are images with δ ¼ 3π=2. Left-right asymmetry is visible in the one-
dimensional slice of F ½G1 þ G2�.

FIG. 17. Slices of images F ½G1� along the Y im ¼ 0 line. For lower frequencies, the effective size of emission region becomes larger
than the photon sphere.

FIG. 18. Images of the UP mode for G1 − GBoulware
1 with ω ¼ 5. Dotted circles indicate the photon sphere. The right panel is the one-

dimensional slice of images along Y im ¼ 0. The intensity is normalized by its peak value. The unnormalized values of the intensity are
5.1 × 10−57 for a ¼ 0, 9.5 × 10−49 for a ¼ 0.1 and 4.8 × 10−10 for a ¼ 1.
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of the imaging of astrophysical black holes, Falcke et al.
[36] obtained images of black hole shadows using the ray
tracing of photons emitted from infalling gas around a Kerr
black hole. Their images show a left-right asymmetry of
intensity due to the spin of the black hole and frequency
dependence of images such that the “shadow” becomes
invisible for low frequency because of the scattering of
photons by the plasma around the black hole. Comparing
their images with those obtained in the present study, the
apparent structure of our images F ½G2� (Figs. 14 and 16)
resembles theirs. However, images F ½G1 þ G2� show no
specific structure associated with the photon sphere. As
discussed in Sec. VA, for high-frequency waves beyond
the Hawking temperature, the structure of the images
F ½G1 þ G2� becomes flat if we neglect the interference
effect. In our calculation, the adopted frequency is far
higher than the Hawking temperature with ωþ ≈
0.006;ωc ≈ 0.008 for a ¼ 1, which is why we do not have
shadow images for F ½G1 þG2�. Although it is not possible
to identify the exact location of the wave source for
Hawking radiation, we applied the van Cittert-Zernike
theorem and obtained projected two-dimensional images
of the black hole using the Fourier transformation of spatial
correlation functions. The obtained images trace the shape
of the photon sphere of the black hole for high frequency,
and the black hole has appearance of a shining star with the
photon sphere as its surface. For low frequency, a definite
surface of emission is lost, and the emission region extends
over entire field of view and is larger than the
photon sphere. We found that interference between incom-
ing modes from the cosmological horizon and modes
reflected by the black hole enhances the intensity of images
in the vicinity of the photon sphere for fast-spinning
black holes.
We are not certain whether the “source” region of

Hawking radiation is spatially incoherent, which is a crucial
assumption of the van Cittert-Zernike theorem for imaging.
However, although the detail of the spatial incoherence is
not justified, it is possible to adopt the Fourier trans-
formation of the spatial correlation function as a tool to
visualize black holes with Hawking radiation. The spatial
correlation function of the UP mode near the black hole
(near the past event horizon) is roughly estimated as
follows. The radial wave function in the vicinity of the
horizon is Rup

lm ∼ e−iðω−mΩÞr� , and

G1ðθ1;ϕ1; θ2;ϕ2Þ ∼
X
lm

jRup
lmðrÞj2Slmðθ1ÞSlmðθ2Þeimðϕ1−ϕ2Þ

∼ δðθ1 − θ2Þδðϕ1 − ϕ2Þ ð81Þ

because jRup
ωlmj2 does not have an l or m dependence.

Therefore, if we assume that Hawking radiation is emitted
from an r ¼ constant surface in the vicinity of the horizon,

the spatial coherence of that source surface is zero and we
have justified the applicability of the van Cittert-Zernike
theorem to imaging with Hawking radiation. The emission
region of Hawking radiation may differ from the vicinity
of the horizon, and for such a case, we cannot make
assertions on the spatial incoherence of the source region
of Hawking radiation. The spatial coherence of the source
will result in hazy images, and more rigorous investigation
on the spatial coherence of Hawking radiation will reveal
its “quantumness.” The word “quantumness” is obscure,
and we should properly define it based on entanglement. If
we reconsider the van Cittert-Zernike theorem for a source
with spatial coherence, it may be possible to access
information on the degree of coherence of Hawking
radiation. This direction of investigation is related to
entanglement harvesting in black hole spacetimes with
the method of intensity correlation [37], and we will report
on this subject in a separate publication.
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APPENDIX: VAN CITTERT-ZERNIKE THEOREM
IN DE SITTER SPACETIME

In this Appendix, we consider the van Cittert-Zernike
theorem in de Sitter spacetime with the metric

ds2¼−fdt2þdr2

f
þr2dΩ2; f¼1−

Λ
3
r2; Λ>0: ðA1Þ

A massless conformal scalar field Φ obeys

�
□ −

R
6

�
Φ ¼ 0; R ¼ 4Λ; ðA2Þ

and the scalar field is separated as

Φ ¼ e−iωt
RlðrÞ
r

Ylmðθ;ϕÞ: ðA3Þ

The radial wave equation is

�
d2

dr2�
þω2−

lðlþ1ÞH2

sinh2ðHr�Þ
�
Rlðr�Þ¼0; Hr¼ tanhðHr�Þ;

H2¼Λ
3
; ðA4Þ

where r� ¼
R
dr=f is the tortoise coordinate. The Green’s

function for Eq. (A2) is given by
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Gωðx; xsÞ ¼
iω

4πrrs

X
l

Rð1Þ
l ðrs�ÞRð2Þ

l ðr�Þð2lþ 1ÞPlðn · nsÞ;

ðA5Þ

where x ¼ r�n and xs ¼ rs�ns with jnj ¼ jnsj ¼ 1, andRð1Þ
l

is regular at r ¼ 0, and Rð2Þ
l is outgoing at r� ¼ ∞. We

assume l=ω ≪ 1=H, which means that the “impact para-
meter” of the wave mode with l is smaller than the Hubble
horizon length and that the effect of the cosmological
constant is negligible. Under this condition, for rs� ≪ 1=

ðωHÞ, Rð1Þ
l ðrs�Þ ∼ rs�jlðωrs�Þ, and for 1 ≪ ωr�, R

ð2Þ
l ðr�Þ∼

ð−iÞlþ1eiωr�=ω. Thus, the Green’s function behaves as

Gωðx; xsÞ ∝
eiωr�

r

X
l

ð2lþ 1Þð−iÞljlðωrs�ÞPlðn · nsÞ

¼ 1

r
exp½iωðr� − x · xs=r�Þ�: ðA6Þ

This Green’s function corresponds to (3) for the case of flat
space. The only difference is that the radial coordinate is
replaced with the corresponding tortoise coordinate.
Therefore, the van Cittert-Zernike theorem for de Sitter
spacetime has the same form as the flat case with the
replacement r → r� in the phase factor.
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