1 Original article

2	Influence of Frailty on Patient Global Assessment in Rheumatoid Arthritis
3	
4	Mochihito Suzuki ^{1,2} , Shuji Asai ¹ , Yasumori Sobue ³ , Yoshifumi Ohashi ^{1,4} , Hiroshi Koshima ² , Nobuyuki
5	Okui ⁴ , Hisato Ishikawa ³ , Nobunori Takahashi ¹ , Kenya Terabe ¹ , Kenji Kishimoto ¹ , Kyosuke Hattori ¹ , Shiro
6	Imagama ¹ , Toshihisa Kojima ¹
7	
8	¹ Department of Orthopedic Surgery and Rheumatology, Nagoya University Graduate School of Medicine,
9	Aichi, Japan
10	² Department of Orthopedic Surgery, Japan Community Health care Organization Kani Tono Hospital, Gifu,
11	Japan
12	³ Department of Rheumatology, Japanese Red Cross Nagoya Daiichi Hospital, Aichi, Japan
13	⁴ Department of Orthopedic Surgery, Yokkaichi Municipal Hospital, Mie, Japan
14	
15	Key words: Frailty; Kihon Checklist; Multifaceted; Patient Global Assessment; Rheumatoid arthritis
16	
17	A short running title: Frailty in Rheumatoid Arthritis
18	

19 **Corresponding author:**

- 20 Shuji Asai, MD, PhD.
- 21 Department of Orthopedic Surgery
- 22 Nagoya University Graduate School of Medicine
- 23 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
- 24 Tel: +81-52-741-2111
- 25 Fax: +81-52-744-2260
- 26 E-mail: <u>asai@med.nagoya-u.ac.jp</u>

27 ABSTRACT

28 Objective: Patient Global Assessment (PtGA, range: 0-10 cm) is an important indicator of clinical 29 outcomes, including physical function, in self-assessment of patients with rheumatoid arthritis (RA). Frailty 30 is a concept that encompasses not only physical, but also mental, psychological, and social vulnerability. 31 This study aimed to investigate the influence of frailty on PtGA in patients with RA. 32 Methods: Among 581 patients with RA who completed a questionnaire survey on frailty between June and 33 August 2020, 559 who completed the Kihon Checklist (KCL; a 25-item questionnaire with seven domains) 34 were included. The proportion of patients with PtGA ≤ 1 was compared between the frailty (KCL score ≥ 8), 35 pre-frailty (KCL score 4-7), and robust (KCL score 0-3) groups. Factors associated with PtGA ≤1 were 36 examined using multivariate logistic regression models. 37 **Results:** Of the 559 patients, 221 (39.5%) had frailty. The proportion of patients with PtGA ≤ 1 was 38 significantly lower in the frailty group (33.9%) than in the robust (65.4%, P<0.001) and pre-frailty (55.7%, 39 P<0.001) groups. Multivariate analysis revealed that frailty (vs. robust, OR: 0.37, 95% CI: 0.22-0.69), as 40 well as disease duration and tender joint count, were factors independently associated with $PtGA \leq 1$. When 41 each domain of the KCL was examined, activities of daily living, physical strength, isolation, and 42 depressive mood were factors associated with $PtGA \leq 1$. 43 Conclusion: Frailty affects PtGA in patients with RA. Since frailty impacts the physical, mental, and social

44 vulnerability aspects of PtGA, a multifaceted approach, including inflammation suppression, is needed to

45 improve PtGA in patients with RA.

46 Introduction

47	Rheumatoid arthritis (RA) is a chronic and systemic autoimmune inflammatory disease
48	characterized by bone destruction and synovial inflammation. The goals of RA treatment are to prevent
49	structural joint damage and normalize physical function by achieving and sustaining clinical remission (1).
50	However, in recent years, the importance of subjective patient self-assessment has also been recognized in
51	the treatment of RA. This is because the symptoms are experienced by the patients themselves and are best
52	reflected in patient-reported outcomes (PROs) (2). PROs are now actively incorporated into the evaluation
53	of drug efficacy. Patient Global Assessment (PtGA), a PRO, is an important indicator of clinical outcomes,
54	including physical function (3). The most stringent remission criteria developed by the American College
55	of Rheumatology/European League Against Rheumatism (ACR/EULAR) in 2011 (Boolean-based
56	definition) include a 28 tender joint count (TJC28) of ≤ 1 , 28 swollen joint count (SJC28) of ≤ 1 , serum C-
57	reactive protein (CRP) level of $\leq 1 \text{ mg/dl}$, and PtGA (0-10 cm) of ≤ 1 (4). A significant proportion of patients
58	with RA do not achieve remission under the Boolean-based definition due to PtGA scores being >1, even
59	if all other criteria are met (i.e., TJC28, SJC28, and CRP (mg/dl) all \leq 1) (5). In other words, improvement
60	of PtGA is also an important therapeutic goal in RA treatment.
61	Frailty is a multidimensional concept encompassing not only physical but also mental,
62	psychological, and social vulnerability (6, 7). The prevalence of frailty increases with age (8). RA, a chronic
63	systemic autoimmune inflammatory disease characterized by bone destruction and synovial inflammation,

64	is a cause of osteoporosis, pain, and loss of motor function, as well as frailty (9, 10). Our previous study
65	targeting RA patients (age range, 40-79 years) at urban university hospitals found that depression, physical
66	function, and disease activity are independently associated with frailty in patients with RA (11). However,
67	no study has examined the relationship between PtGA and frailty in this patient population. Accordingly,
68	the present study aimed to investigate the influence of frailty on PtGA in patients with RA using new data
69	obtained from the Tsurumai-Frailty and Locomotive Syndrome of Rheumatoid Arthritis for Globalization
70	(T-FLAG) study.

71

72 Materials and Methods

73 Patients

74	Data were obtained from participants of the Tsurumai-Frailty and Locomotive Syndrome of
75	Rheumatoid Arthritis for Globalization (T-FLAG) study, a multicenter cohort study involving patients
76	from three institutions. We conducted a questionnaire survey on frailty in 581 patients with RA between
77	June 1 and August 31, 2020. After excluding 22 patients who did not complete the Kihon Checklist
78	(KCL), 559 patients were included in this study. All patients met the 1987 ACR classification criteria (12)
79	or the 2010 ACR/European League Against Rheumatism classification criteria for RA (13). This study
80	was approved by the Ethics Committee of Nagoya University Graduate School of Medicine (2017-0271-
81	3) and complied with the principles set forth in the Declaration of Helsinki. Informed consent was
82	obtained by an opt-out procedure.
83	
84	Kihon Checklist
85	The KCL is a screening tool used to identify older people who are at high risk of requiring nursing
86	care in the future (14, 15). This simple, self-reporting yes/no survey consists of 25 questions, each scored
87	as 0 or 1 point. The KCL is divided into the following seven domains: activities of daily living (questions
88	1-5), physical strength (questions 6-10), nutrition (questions 11-12), oral function (questions 13-15),
89	isolation (questions 16-17), cognitive function (questions 18-20), and depressive mood (questions 21-25).

91 'robust,' respectively. (15, 16).
92
93 Data collection
94 The following demographic and clinical data were collected from clinical records: age, sex, body
95 mass index (BMI), disease duration, SJC and TJC, serum C-reactive protein (CRP) levels, PtGA, use of
96 MTX, targeted disease-modifying antirheumatic drugs (DMARDs), and/or glucocorticoids, KCL score, and
97 Health Assessment Questionnaire-Disability Index (HAQ-DI) score. With regard to PtGA, patients were

Total KCL scores range from 0 to 25 points, with 8, 4-7, and 0-3 points defining 'frailty,' 'pre-frailty,' and

98 asked to rate the question, "Considering all of the ways your arthritis has affected you, how do you feel

99 your arthritis is today (in Japanese)?" (4), on a visual analog scale with anchors of 0 cm (very well) and 10

100 cm (very poor).

101

90

102 Statistical analysis

103 Continuous variables are presented as mean ± standard deviation (SD), and categorical variables 104 are presented as percentage. Differences in demographic and clinical data, including PtGA, among the 105 frailty, pre-frailty, and robust groups were analyzed by the chi-squared test for categorial variables and one-106 way analysis of variance (ANOVA) for continuous variables. The significance of individual differences in 107 PtGA was evaluated with the Bonferroni test, if one way ANOVA yielded significant differences. The

108	proportion of patients with $PtGA \le 1$, one of the ACR/EULAR remission criteria (4), was compared between
109	the three groups using the chi-squared test. Trends in the proportion of patients with $PtGA \le 1$ according to
110	scores of each domain of the KCL were assessed by the Cochran-Armitage trend test. Factors associated
111	with $PtGA \leq 1$ were assessed using univariate and multivariate logistic regression models with frailty and
112	scores of each KCL domain as experimental variables, and age, sex, BMI, disease duration, SJC, TJC,
113	serum CRP levels, and use of methotrexate, tDMARDs and/or glucocorticoids as a priori variables
114	according to previous studies (17, 18). In addition, sensitivity analysis was performed to assess the potential
115	confounding effect of age by dividing patients into two groups: <65 years and ≥ 65 years. Statistical analyses
116	were performed using SPSS version 26.0 software (IBM Corp., Armonk, NY, USA) and EZR (Saitama
117	Medical Center, Jichi Medical University, Saitama, Japan) (19). P<0.05 was considered statistically
118	significant.

Results

120 Patient characteristics

121	Demographic and clinical characteristics of all patients included in this study are shown in Table
122	1. Data on BMI, CRP, and HAQ-DI were available for 543, 554, and 557 patients, respectively, and other
123	data were available for all patients. Of all patients, 221 (39.5%) had frailty as defined by a KCL score ≥ 8 .
124	Patients with frailty were more likely to be older, had a longer disease duration, had a higher TJC, SJC,
125	CRP, and HAQ-DI score, and had a lower rate of methotrexate use and higher rate of glucocorticoid use,
126	compared to those without frailty.
127	
128	Proportion of patients with $PtGA \leq l$
129	One way ANOVA revealed significant differences in PtGA among the robust (1.1 ± 1.6) , pre-frailty
130	
	(1.9 ± 2.2) , and frailty (2.9 ± 2.5) groups (P<0.001) (Figure 1a). The Bonferroni test revealed significant
131	(1.9 ± 2.2) , and frailty (2.9 ± 2.5) groups (P<0.001) (Figure 1a). The Bonferroni test revealed significant differences in PtGA between the robust and pre-frailty groups (P<0.01), the robust and frailty groups
131 132	
	differences in PtGA between the robust and pre-frailty groups (P<0.01), the robust and frailty groups
132	differences in PtGA between the robust and pre-frailty groups (P<0.01), the robust and frailty groups (P<0.001), and the pre-frailty and frailty groups (P<0.001). The proportion of patients with PtGA \leq 1 was
132 133	differences in PtGA between the robust and pre-frailty groups (P<0.01), the robust and frailty groups (P<0.001), and the pre-frailty and frailty groups (P<0.001). The proportion of patients with PtGA \leq 1 was significantly lower in the frailty group (33.9%) than in the robust (65.4%, P<0.001) and pre-frailty (55.7%,

137 significant trend was observed in the proportion of patients with PtGA ≤1 according to the scores of oral
138 function and cognitive function.

139

140 Factors associated with $PtGA \leq l$

141 Of all patients included in this study, 278 (49.7%) had PtGA ≤ 1 . Odds ratios (ORs) for PtGA ≤ 1 142 were calculated using logistic regression analyses, with frailty as an experimental variable (Table 2) or 143 scores of each KCL domain as experimental variables (Table 3). Multivariate analysis revealed that frailty 144 (vs. robust, OR: 0.37, 95% CI: 0.22-0.69), as well as disease duration (OR: 0.97, 95% CI: 0.95-0.99) and 145 tender joint count (OR: 0.57, 95% CI: 0.49-0.67), were factors independently associated with PtGA ≤ 1 , 146 whereas pre-frailty had no significant association with PtGA ≤ 1 (Table 2). Frailty was independently 147 associated with PtGA ≤ 1 in both patients aged ≤ 65 years (n=196) (vs. robust, OR: 0.36, 95% CI: 0.15-0.88) 148 and those aged ≥65 years (n=363) (vs. robust, OR: 0.41, 95% CI: 0.21-0.81) (Supplementary Table 1). After 149 adjusting for age, sex, BMI, disease duration, SJC, TJC, and serum CRP levels, activities of daily living 150 (OR: 0.78, 95% CI: 0.67-0.90), physical strength (OR: 0.68, 95% CI: 0.58-0.80), isolation (OR: 0.79, 95% 151 CI: 0.50-0.97), and depressive mood (OR: 0.79, 95% CI: 0.69-0.90) were significantly associated with 152 PtGA ≤ 1 (Table 3).

11

Discussion

154	This study demonstrated that frailty is associated with PtGA in patients with RA. The proportion
155	of patients with PtGA≤1 was roughly 30% lower in the frailty group than in the robust group. Multivariate
156	analysis revealed that frailty is negatively associated with the achievement of $PtGA \leq 1$ independently of
157	signs of joint inflammation. Although causality cannot be proven due to the cross-sectional design, PtGA
158	appears to be partially driven by frailty. The present findings provide important new insights into further
159	research to improve PtGA scores in patients with RA.
160	PtGA is a crucial component of validated disease activity scores and remission criteria in patients
161	with RA, such as the ACR/EULAR remission criteria (i.e., $PtGA \leq 1$) (4). $PtGA$ is reportedly driven by
162	signs of joint inflammation, including SJC, TJC, and serum inflammation markers (20). Based on
163	multivariate analysis, TJC, but not SJC and CRP, was identified as a factor independently associated with
164	PtGA≤1. This might be explained by TJC being more dependent on a patient's perception of disease activity
165	than SJC (21). A previous study reported that PtGA was higher in patients with established RA than in those
166	with early RA (22). A similar difference was observed between the two groups, even in the sub-population
167	of patients with no visible inflammation (TJC, SJC, and CRP all ≤ 1). These findings are consistent with
168	disease duration being another factor independently associated with $PtGA \le 1$.
169	Other than inflammation (i.e., TJC, SJC28, and CRP), a variety of factors have been reported to

170 affect PtGA, including sex, pain, and disease activity (3, 23). In patients with RA suffering from joint

171	deformities, the HAQ-DI, a measure of physical function, has been reported to correlate with PtGA (24).
172	Previous studies reported that frailty is significantly associated with higher disease activity in patients with
173	RA (11, 25, 26). The present study focused on the influence of frailty on PtGA, a major limiting factor in
174	achieving clinical remission, and is the first to show that such an association exists in RA patients. We also
175	found that frailty affected PtGA independently of signs of joint inflammation. PtGA in patients with joint
176	inflammation can be improved by reinforcement with immunosuppressive treatment, but PtGA driven
177	primarily by factors not related to joint inflammation may not. Appropriate adjuvant measures for frailty
178	may be necessary in patients who do not achieve PtGA≤1, even in the absence of signs of significant joint
179	inflammation. Frailty is a multifaceted concept that encompasses not only physical but also mental and
180	social vulnerability (27). Previous studies reported that depression and health-related QOL were
181	significantly associated with frailty in patients with RA (11, 25, 26) as well as in the general population (6).
182	In the present study, activities of daily living, physical strength, isolation, and depressive mood were the
183	domains of frailty associated with $PtGA \leq 1$. In other words, $PtGA$ is affected by not only physical frailty
184	but also mental/social frailty, suggesting the need for a multifaceted approach that also aims to improve
185	depression. The rate of frailty has been known to increase with age (8). Therefore, age should also be taken
186	into account when considering the effects of frailty. In the present study, sub-analyses revealed that frailty
187	was associated with PtGA both in younger and older patients. Given the concern for adverse events related
188	to immunosuppressant use, it is important to determine whether the cause of high PtGA is inflammation or

189 frailty in order to improve PtGA and provide appropriate treatment in RA patients regardless of age.

190	Notably, patients with frailty had a significantly lower rate of MTX use and a higher rate of						
191	glucocorticoid use compared to those without frailty. These differences in treatment are possibly due to the						
192	higher age of patients with frailty. Indeed, patients aged ≥ 65 years were more likely to have a lower rate of						
193	MTX use and a higher rate of glucocorticoid use compared to those aged <65 years (Supplementary Table						
194	1). Similar differences were observed in a previous study (28). Elderly patients may have less tolerance to						
195	MTX due to comorbidities such as renal dysfunction. MTX use was associated with PtGA in univariate						
196	analysis but not in multivariate analysis. Accordingly, it is unlikely that the differences in treatment have						
197	affected our main finding that frailty is associated with PtGA.						
198	An important goal of therapeutic interventions for frailty is to improve PtGA. Exercise						
199	interventions have been reported to prevent frailty by improving gait, muscle strength, physical motor						
200	functions, and activities of daily living (29). While exercise therapy has also been reported to be effective						
201	in treating psychological frailty (30), few high-quality intervention studies have been conducted on social						
202	frailty. This suggests that a multifaceted approach to prevent frailty may ultimately improve PtGA in						
203	patients with RA.						
204	There are several limitations in this study. First, as this was a cross-sectional study that analyzed						
205	frailty status and PtGA at the time of the questionnaire survey, causality between frailty and PtGA cannot						
206	be proven in a strict sense. However, based on a previous longitudinal study reporting the impact of frailty						

207	on changes in physical function (18), PtGA may be partially driven by frailty. In addition, the present study							
208	did not demonstrate the effect of therapeutic interventions for frailty to improve PtGA. A longitudinal study							
209	will be necessary to address these issues in the future. Second, there was no information on medical history,							
210	history of surgery, comorbidities, complications, nutrition, or exercise habits. Since these factors may affect							
211	frailty, physical function, and disease activity in RA patients, future studies which include these factors are							
212	warranted.							
213	In conclusion, PtGA is affected by not only physical frailty but also mental/social frailty. In order							
214	to improve PtGA in patients with RA, mental, psychological, and social care will be necessary in addition							
215	to controlling inflammation and improving physical function.							
216								
217	Acknowledgements							
218	We thank Ms. Sachiko Kato, Ms. Emi Yokota, Ms. Ritsuko Otake, and Ms. Takako Sashikata for							
219	their assistance with information collection.							
220								
221	Disclosure statement							

222 The authors declare no conflicts of interest.

223 References

Smolen JS, Landewe RBM, Bijlsma JWJ, Burmester GR, Dougados M, Kerschbaumer A,
 et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and
 biological disease-modifying antirheumatic drugs: 2019 update. Ann Rheum Dis. 2020;79(6):685 99.

Gossec L, Dougados M, Dixon W. Patient-reported outcomes as end points in clinical
 trials in rheumatoid arthritis. RMD Open. 2015;1(1):e000019.

Nikiphorou E, Radner H, Chatzidionysiou K, Desthieux C, Zabalan C, van Eijk-Hustings
 Y, et al. Patient global assessment in measuring disease activity in rheumatoid arthritis: a review
 of the literature. Arthritis Res Ther. 2016;18(1):251.

Felson DT, Smolen JS, Wells G, Zhang B, van Tuyl LH, Funovits J, et al. American
 College of Rheumatology/European League against Rheumatism provisional definition of
 remission in rheumatoid arthritis for clinical trials. Ann Rheum Dis. 2011;70(3):404-13.

5. Studenic P, Smolen JS, Aletaha D. Near misses of ACR/EULAR criteria for remission:
effects of patient global assessment in Boolean and index-based definitions. Ann Rheum Dis.
2012;71(10):1702-5.

Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. The Lancet.
2013;381(9868):752-62.

7. Wleklik M, Uchmanowicz I, Jankowska EA, Vitale C, Lisiak M, Drozd M, et al.
Multidimensional Approach to Frailty. Front Psychol. 2020;11:564.

243 8. Collard RM, Boter H, Schoevers RA, Oude Voshaar RC. Prevalence of frailty in
244 community-dwelling older persons: a systematic review. J Am Geriatr Soc. 2012;60(8):1487-92.

Salaffi F, Di Carlo M, Farah S, Di Donato E, Carotti M. Prevalence of frailty and its
associated factors in patients with rheumatoid arthritis: a cross-sectional analysis. Clin Rheumatol.
2019;38(7):1823-30.

248 10. Motta F, Sica A, Selmi C. Frailty in Rheumatic Diseases. Front Immunol.
249 2020;11:576134.

11. Kojima M, Kojima T, Waguri-Nagaya Y, Takahashi N, Asai S, Sobue Y, et al. Depression,
physical function, and disease activity associated with frailty in patients with rheumatoid arthritis.
Mod Rheumatol. 2020:1-8.

253 12. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, et al. The
254 American Rheumatism Association 1987 revised criteria for the classification of rheumatoid
255 arthritis. Arthritis Rheum. 1988;31(3):315-24.

Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO, 3rd, et al. 2010
rheumatoid arthritis classification criteria: an American College of Rheumatology/European

League Against Rheumatism collaborative initiative. Ann Rheum Dis. 2010;69(9):1580-8.

14. Tomata Y, Hozawa A, Ohmori-Matsuda K, Nagai M, Sugawara Y, Nitta A, et al.
[Validation of the Kihon Checklist for predicting the risk of 1-year incident long-term care
insurance certification: the Ohsaki Cohort 2006 Study]. Nihon Koshu Eisei Zasshi. 2011;58(1):313.

263 15. Satake S, Senda K, Hong YJ, Miura H, Endo H, Sakurai T, et al. Validity of the Kihon
264 Checklist for assessing frailty status. Geriatr Gerontol Int. 2016;16(6):709-15.

265 16. Arai H, Satake S. English translation of the Kihon Checklist. Geriatr Gerontol Int.
266 2015;15(4):518-9.

Lindstrom Egholm C, Krogh NS, Pincus T, Dreyer L, Ellingsen T, Glintborg B, et al.
Discordance of Global Assessments by Patient and Physician Is Higher in Female than in Male
Patients Regardless of the Physician's Sex: Data on Patients with Rheumatoid Arthritis, Axial
Spondyloarthritis, and Psoriatic Arthritis from the DANBIO Registry. J Rheumatol.
2015;42(10):1781-5.

Andrews JS, Trupin L, Wysham KD, Hough CL, Yelin EH, Katz PP. The Impact of
Frailty on Changes in Physical Function and Disease Activity Among Adults With Rheumatoid
Arthritis. ACR Open Rheumatol. 2019;1(6):366-72.

19. Kanda Y. Investigation of the freely available easy-to-use software 'EZR' for medical
statistics. Bone Marrow Transplant. 2013;48(3):452-8.

20. Khan NA, Spencer HJ, Abda EA, Alten R, Pohl C, Ancuta C, et al. Patient's global
assessment of disease activity and patient's assessment of general health for rheumatoid arthritis
activity assessment: are they equivalent? Ann Rheum Dis. 2012;71(12):1942-9.

280 21. Smolen JS, Breedveld FC, Schiff MH, Kalden JR, Emery P, Eberl G, et al. A simplified
281 disease activity index for rheumatoid arthritis for use in clinical practice. Rheumatology (Oxford).
282 2003;42(2):244-57.

283 22. Gossec L, Kirwan JR, de Wit M, Balanescu A, Gaujoux-Viala C, Guillemin F, et al.
284 Phrasing of the patient global assessment in the rheumatoid arthritis ACR/EULAR remission
285 criteria: an analysis of 967 patients from two databases of early and established rheumatoid
286 arthritis patients. Clin Rheumatol. 2018;37(6):1503-10.

287 23. Hekmat K, Jacobsson LT, Nilsson J, Lindroth Y, Turesson C. Changes and sex
288 differences in patient reported outcomes in rheumatoid factor positive RA-results from a
289 community based study. BMC Musculoskelet Disord. 2014;15:44.

24. Strand V, Kaine J, Alten R, Wallenstein G, Diehl A, Shi H, et al. Associations between
Patient Global Assessment scores and pain, physical function, and fatigue in rheumatoid arthritis:
a post hoc analysis of data from phase 3 trials of tofacitinib. Arthritis Res Ther. 2020;22(1):243.

293 25. Furuya T, Oh K, Ikari K, Inoue E, Tanaka E, Yamanaka H, et al. Factors associated with

frailty in Japanese patients with rheumatoid arthritis: results from the Institute of RheumatologyRheumatoid Arthritis cohort study. Clin Rheumatol. 2021.

296 26. Yoshii I, Kondo M. Clinical Characteristics of frailty in Japanese Rheumatoid Arthritis
297 Patients. J Frailty Aging. 2020;9(3):158-64.

298 27. Sieber CC. Frailty - From concept to clinical practice. Exp Gerontol. 2017;87(Pt B):160299 7.

Nakajima A, Sakai R, Inoue E, Harigai M. Prevalence of patients with rheumatoid
arthritis and age - stratified trends in clinical characteristics and treatment, based on the National
Database of Health Insurance Claims and Specific Health Checkups of Japan. Int J Rheum Dis.
2020;23(12):1676-84.

29. Chou CH, Hwang CL, Wu YT. Effect of exercise on physical function, daily living
activities, and quality of life in the frail older adults: a meta-analysis. Arch Phys Med Rehabil.
2012;93(2):237-44.

307 30. Larson EB, Wang L, Bowen JD, McCormick WC, Teri L, Crane P, et al. Exercise is
308 associated with reduced risk for incident dementia among persons 65 years of age and older. Ann
309 Intern Med. 2006;144(2):73-81.

310

311 Graphical Abstract Text

- 312 Frailty affects Patient Global Assessment (PtGA) in patients with rheumatoid arthritis (RA). Since frailty
- 313 impacts the physical, mental, and social vulnerability aspects of PtGA, a multifaceted approach, including
- 314 inflammation suppression, is needed to improve PtGA in patients with RA.
- 315

		Robust	Pre-frailty	Frailty	
	Total	KCL score 0-	KCL score 4-		
		3	7	KCL score ≥8	
	(n=559)	(n=153)	(n=185)	(n=221)	P valu
Age, years	67 ± 13	63 ± 13	66 ± 13	70 ± 13	<0.00
Female, %	73.0	69.9	73.0	75.1	0.541
Body mass index ^a	22.0 ± 4.0	22.0 ± 3.8	22.1 ± 4.2	21.8 ± 4.0	0.828
Disease duration, years	11 ± 10	10 ± 8	10 ± 9	13 ± 10	0.004
SJC, 0-28 scale	0.7 ± 2.0	0.4 ± 1.6	0.6 ± 1.5	0.9 ± 2.6	0.035
TJC, 0-28 scale	2.1 ± 4.0	1.3 ± 2.9	1.6 ± 2.9	3.1 ± 5.0	<0.00
CDD (11)	$0.42 \pm$	0.04 + 0.50	0.34 ± 0.71		
CRP, mg/dl ^b	1.08	0.24 ± 0.53		0.62 ± 1.51	0.002
PtGA, cm	2.1 ± 2.3	1.1 ± 1.6	1.9 ± 2.2	2.9 ± 2.5	<0.00
PhGA, cm	1.7 ± 2.0	0.9 ± 1.4	1.5 ± 1.9	2.4 ± 2.2	<0.00
	2.21 ±	1.04 - 0.70	2.12 ± 0.94		
DAS28-CRP	1.05	1.84 ± 0.78		2.55 ± 1.19	<0.00
Use of methotrexate, %	61.4	73.2	61.1	53.4	< 0.00

316 Table 1. Baseline characteristics of patients

Use of ta	argeted		36.2		
	38.5	34.6		43.0	0.197
DMARDs, %					
Use of glucocorticoid	ds, % 30.6	27.5	25.4	37.1	0.024
KCL	6.9 ± 4.7	1.9 ± 1.0	5.3 ± 1.1	11.7 ± 3.3	< 0.001
	$0.48 \pm$		0.24 ± 0.39		
HAQ-DI°	0.66	0.11 ± 0.22		0.92 ± 0.78	<0.001
HAQ-DI°		0.11 ± 0.22	0.24 ± 0.39	0.92 ± 0.78	<0.0

317 SJC: swollen joint count; TJC: tender joint count; CRP: C-reactive protein; PtGA: Patient Global

318 Assessment; PhGA: Physical Global Assessment; DAS28: 28-joint disease activity score, DMARDs:

- 319 disease-modifying antirheumatic drugs; KCL: Kihon Checklist; HAQ-DI: Health Assessment
- 320 Questionnaire Disability Index.
- 321 Data are shown as mean \pm SD or percentage.
- 322 ^aData were obtained from 543 patients.
- 323 ^bData were obtained from 546 patients.
- 324 °Data were obtained from 557 patients.

			Odds ratio (95% confidence interval)		
	PtGA≤1	PtGA>1			
	(n=278)	(n=281)	Univariate	Multivariate	
Age, years	66 ± 13	67 ± 13	0.99 (0.96-1.01) ^a	1.01 (0.99-1.03) ^a	
Female, %	73.0	73.0	1.01 (0.69-1.46)	1.04 (0.64-1.68)	
Body mass index	21.9 ± 4.2	22.1 ± 3.9	0.99 (0.95-1.03) ^a	0.99 (0.94-1.05) ^a	
Disease duration, years	10 ± 9	12 ± 10	0.98 (0.96-0.99) ^a	0.97 (0.95-0.99) ^a	
SJC, 0-28 scale	0.3 ± 1.2	1.1 ± 2.6	0.73 (0.63-0.85) ^a	0.86 (0.74-1.01) ^a	
TJC, 0-28 scale	0.6 ± 1.2	3.6 ± 5.0	0.57 (0.50-0.66) ^a	0.57 (0.49-0.67) ^a	
CRP, mg/dl	0.29 ± 0.73	0.56 ± 1.33	0.73 (0.58-0.92) ^a	0.90 (0.68-1.18) ^a	
Use of methotrexate, %	65.8	56.9	1.46 (1.03-2.05)	1.16 (0.75-1.80)	
Use of tDMARDs, %	34.9	42.0	0.74 (0.53-1.04)	1.02 (0.66-1.57)	
Use of glucocorticoids, %	27.0	34.2	0.71 (0.50-1.02)	0.92 (0.59-1.45)	
Frailty status					
Robust, %	36.0	18.9	1.00 (reference)	1.00 (reference)	
Pre-frailty, %	37.1	29.2	0.67 (0.43-1.04)	0.72 (0.43-1.20)	
Frailty, %	27.0	52.0	0.27 (0.18-0.42)	0.37 (0.22-0.69)	

- 326 SJC: swollen joint count; TJC: tender joint count; CRP: C-reactive protein; DMARDs: disease-modifying
- antirheumatic drugs.
- 328 Data are shown as mean \pm SD or percentage.
- 329 Values in bold indicate statistical significance (P<0.05).
- 330 ^aOR for a 1-unit increase in each item.

	Odds ratio (95% c	io (95% confidence interval)	
Domains	Unadjusted	Adjusted ^a	
Activities of daily living	0.76 (0.68-0.86)	0.78 (0.67-0.90)	
Physical strength	0.63 (0.56-0.71)	0.68 (0.58-0.80)	
Nutrition	0.66 (0.48-0.90)	0.92 (0.62-1.36)	
Oral function	0.75 (0.25-2.23)	1.23 (0.28-5.46)	
Isolation	0.67 (0.51-0.87)	0.79 (0.50-0.97)	
Cognitive function	0.82 (0.66-1.01)	0.84 (0.65-1.10)	
Depressive mood	0.73 (0.65-0.82)	0.79 (0.69-0.90)	

331 Table 3. Associations between scores of each Kihon Checklist domain and Patient Global Assessment ≤1

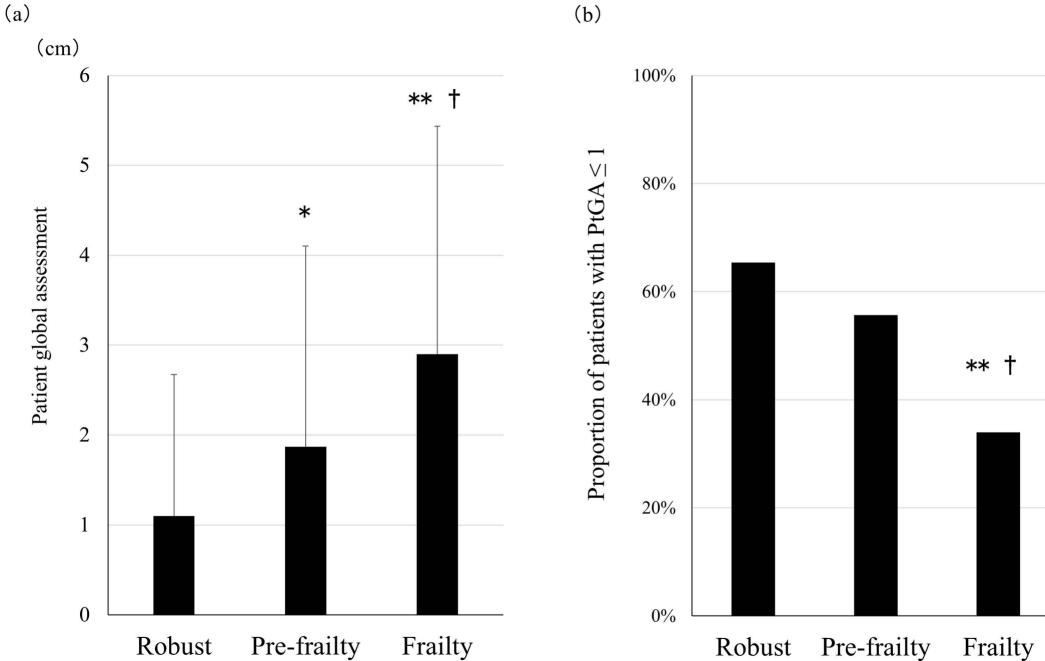
332 Data are shown as odds ratio for a 1-point increase in each domain.

333 Values in bold indicate statistical significance (P<0.05).

334 ^aOdds ratio adjusted for age, sex, body mass index, disease duration, swollen joint count, tender joint

335 count, serum C-reactive protein levels, and use of methotrexate, targeted disease-modifying antirheumatic

336 drugs, and/or glucocorticoids


337 Figure legends

- 338 Figure 1. (a) Patient Global Assessment (PtGA, 0-10 cm scale) and (b) proportion of patients with PtGA
- 339 ≤ 1 stratified by frailty. *P<0.01 vs. robust, **P<0.001 vs. robust, †P<0.001 vs. pre-frailty.

340

341 Title of the supplementary table

342 Supplementary Table 1. Factors associated with Patient Global Assessment ≤ 1 by age

(b)

	Age <65 years		Age ≥65 years	
		Multivariate OR		Multivariate OR
	n=196	(95% CI)	n=363	(95% CI)
Age, years	52 ± 10	1.02 (0.98-1.06) ^a	75 ± 6	0.99 (0.94-1.03) ^a
Female, %	76.0	0.47 (0.18-1.20)	71.3	1.43 (0.79-2.60)
Body mass index	22.3 ± 4.4	1.02 (0.93-1.12) ^a	21.8 ± 3.8	0.95 (0.88-1.03) ^a
Disease duration, years	8 ± 7	0.94 (0.89-0.99) ^a	13 ± 10	0.98 (0.95-1.01) ^a
SJC, 0-28 scale	0.8 ± 2.1	0.83 (0.66-1.04) ^a	0.6 ± 2.0	0.85 (0.67-1.07) ^a
TJC, 0-28 scale	2.1 ± 3.5	0.55 (0.43-0.71) ^a	2.1 ± 4.2	0.56 (0.45-0.68) ^a
CRP, mg/dl	0.36 ± 1.04	0.88 (0.57-1.36) ^a	0.46 ± 1.11	0.86 (0.58-1.27) ^a
Use of methotrexate, %	67.9	0.75 (0.34-1.67)	57.9	1.47 (0.85-2.56)
Use of tDMARDs, %	45.9	0.94 (0.44-2.00)	34.4	1.20 (0.69-2.10)
Use of glucocorticoids, %	28.6	0.81 (0.36-1.80)	31.7	1.01 (0.57-1.78)
Frailty status				
Robust, %	35.7	1.00 (reference)	22.9	1.00 (reference)
Pre-frailty, %	33.7	0.41 (0.18-0.95)	32.8	1.01 (0.53-2.10)
Frailty, %	30.6	0.36 (0.15-0.88)	44.4	0.41 (0.21-0.81)

Supplementary Table 1. Factors associated with Patient Global Assessment ≤1 by age

OR: odds ratio; CI: confidence interval; SJC: swollen joint count; TJC: tender joint count; CRP: C-

reactive protein; DMARDs: disease-modifying antirheumatic drugs.

Data are shown as mean \pm SD or percentage.

Values in bold indicate statistical significance (P<0.05).

^aOR for a 1-unit increase in each item.