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Abstract: Naturally deposited clays/sands are mostly found in structured, and usually also in overconsolidated states. Furthermore, they 
exhibit what is more or less a condition of anisotropy. In order to describe the mechanical behavior of these natural soils, this study 
models super/subloading yield surfaces together with rotational hardening using the modified Cam-Clay model. Three evolution laws are 
introduced naturally into the constitutive laws of soils; the first one describes decay/collapse of soil structure, the second loss of 
overconsolidation, and the third evolution of anisotropy. Although all of these proceed with ongoing plastic deformation, it is newly 
emphasized that the decay of structure tends to promote plastic volume compression while the loss of overconsolidation leads to plastic 
volume expansion. Clay is clearly distinguished from sand by the difference in the rates of these evolution laws. As highly structured 
overconsolidated clay reverts to the normally consolidated state, it initially retains its structure. Then the clay begins to lose its structure 
very gradually with ongoing plastic deformation, during which process secondary consolidation and/or delayed compression is observed. 
In contrast, sand loses its structure very rapidly, not in the manner of a decay, but rather in a sudden collapse, while remaining in its 
overconsolidated state. The loss of overconsolidation for sand requires a huge amount of plastic deformation. Fundamental constitutive 
model responses of natural clay are illustrated through numerical simulations of secondary consolidation and/or delayed compression, 
during which softening is clearly observed with the occurrence of plastic volume compression. For sand, typical model responses are 
illustrated through numerical simulations of compaction of a loose sand deposit. Repeated application of low-level shear stress upon the 
loose sand leads to a huge amount of volume compression, which is due to the rapid collapse of the initial soil structure. Repetition of 
the loading also results in a rapid increase of the overconsolidation ratio. 

1  INTRODUCTION 

1.1 Purposes of this paper  

Whether a certain soil is a sand or a clay may be easy enough to 
tell from such things as its color and feel, its grain size distribution 
and its permeability constant. Perceptual and physical properties 
like these can certainly tell us that what we have before us is a soil 
of such and such a kind rather than of some other. Yet the 
important problem remains that in triaxial tests in the laboratory, 
no matter how accurately we classify these perceptual and 
physical indicators, we are unable, on the basis of such variations 
alone, to arrive at a direct mechanical derivation of the different 
elasto-plastic responses of sand and clay soils with which we are 
so familiar. The author of this paper can remember frequently 
being told by his mother “Don’t play with clay, play with sand.” 
Even to the intuitive sense of a child, it seems, this difference 
between sand and clay is perfectly easy to recognize. How strange, 
then, that up until now there should have been virtually no clear 
descriptions of this difference in language appropriate to the 
mechanics of elasto-plasticity. 

Of course, there are groups of researchers working out 
completely separate constitutive equations for use with sand and 
clay. But, given a particular soil sample, if for the initial decision 
of which constitutive equation to apply, these groups still go on 
depending on the same kind of “child’s intuition” referred to above, 
it can hardly be said that the two constitutive equations in question 
have been produced on the basis of a single consistent logic. After 
all, even children who have grown up healthily on clay and sand 
games are sometimes known to say “I don’t know if it’s sand or 
clay.” This is what happens to us in the case of clayey sands or 
sandy clays. Although the difference between sand and clay may 

be clear enough in principle, the fact that there is no firm 
borderline distinguishing between them puts us metaphorically 
back in the position of these children. 

Even leaving aside this distinction between sand and clay, in 
work with sand alone there are research groups who set up 
separate constitutive equations and material constant parameters 
for “loose sand” and “dense sand,” according to density and/or 
void ratio. As a research attitude in soil mechanics, this is 
illegitimate, for the following reason. When a soil is compressed, 
water is drained out from the pores in it, leading to a rise in density 
and a lowering of the void ratio. In other words, the density and 
void ratio are expressions of the mechanical state of the soil 
material, made up as it is out of soil particles and pore water. A 
constitutive equation is, of its essence, a description of the changes 
in the mechanical state of a soil as a result of loading or unloading. 
Therefore, a procedure assigning different constitutive equations 
and material constants to the same sand depending on its density 
and void ratio simply does not deserve to be called research into 
the constitutive equations of materials. In fact, a “constitutive 
equation” of this kind dispenses from the start with any principled 
discussion of shear behavior under drained conditions, or behavior 
under volume compression. Such work marks a theoretical retreat 
even from the Cam-Clay model of 45 years ago, which set out to 
integrate these compression and shear behaviors. 

The purposes of this paper and Invited Lecture will be: 
(1) to make clear the difference between sand and clay in the 
language of the mechanics of elasto-plasticity, 
(2) by means of a finite element method of calculation, to provide 
an elasto-plastic constitutive equation for sands and clays in actual 
engineering use, 
(3) to present some examples of the calculation’s application. 
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The examples presented under (3) specifically include soil-
water coupled computations for the compaction of loose sand and 
for the secondary consolidation and/or delayed compression of 
naturally deposited clay. The fact that these two terms 
“compaction” and “consolidation” have always been 
distinguished in classical geotechnical engineering suggests that 
there is a difference in the mechanisms of volume compression 
between sand and clay, and the inclusion in this paper of examples 
for both compaction and consolidation is therefore not without its 
good reasons. 
 
1.2 Content of the study  

In what will always be remembered as an outstanding achievement, 
the Critical State Soil Mechanics approach (e.g. Roscoe et al., 
1958, 1963) established approach established some 45 years ago 
by the Soil Mechanics Group at the University of Cambridge was 
the first in the world to propose an elasto-plastic constitutive 
equation, the Cam-Clay model, capable of integrating both the 
shear and volume change behaviors of a soil. The present paper 
will be rearranging the essential elements of this Cam-Clay model, 
and arguing that a close scrutiny of the model’s limits of 
application is an indispensable step towards an integral 
understanding of the relations between sand and clay.  

As hardly needs mentioning, the essentials of the Cam-Clay 
model are that: 
(1) hardening of soil accompanies plastic volume compression, 
(2) softening of soil accompanies plastic volume expansion, and 
(3) in the stress space, the borderline is given by the critical state 
line M 'q p=   (One further essential to mention, for present 
purposes, is that the coefficient M   is constant throughout the 
whole process of plastic deformation). The fact that the Cam-Clay 
model has rarely been used for analyses of softening/expansion 
has to do with the limited capabilities of electronic computational 
technology at that time, and does not reflect any limitations in the 
model itself.  

The limitation that does exist in the Cam-Clay model is, of 
course, that the only mechanical behaviors it can describe are 
those of fully remolded and normally consolidated soil under 
loading. In other words, behaviors such as 
(1) hardening with plastic expansion in regions above the critical 
state line, such as occurs with dense sand or overconsolidated clay, 
or 
(2) softening in regions below the critical state line, such as 
appears with the shearing of highly structured natural clay under 
undrained conditions, 
cannot be represented using the Cam-Clay model. These two 
shortcomings can however be overcome, not by abandoning the 
model as such, but by supplementing it with two additional 
concepts, “overconsolidation” and “soil skeleton structure,” from 
hierarchies not taken into account when the model was first put 
forward. These two concepts can be introduced by the definition 
of two new super/subloading surfaces (e.g. Hashiguchi K., 1989, 
Asaoka et.al., 2000a) similar in shape to the yield surface/plastic 
potential of the model as proposed. At the risk of repeating himself, 
the author again wishes to make it clear that he has no intention of 
renouncing the Cam-Clay model, which continues to maintain its 
position as the theoretical foundation of soil mechanics. 

Just as was remarked above of density and void ratio, 
overconsolidation and soil structure are mechanical states, which 
will vary in the same soil depending on loading and unloading. An 
important consequence of introducing the super/subloading 
surfaces, therefore, is that it makes possible the description of two 
soil behaviors, 

(1) loss of overconsolidation, and 
(2) decay/collapse of structure in the soil skeleton, 
which accompany the development of plastic deformation. As a 
result of these behaviors, the slope M of the critical state line can 
become greater or smaller depending on how plastic deformation 
proceeds, so that it is no longer necessarily the case that hardening 
always accompanies compression, and softening always 
expansion, as assumed in the Cam-Clay model. 

Overconsolidation is explained by comparing the current 
loading state with the most severe loading state in the past, while 
the concept of structure is explained by showing how much bulk 
a certain soil occupies. For example, a highly structured soil is able 
to sustain a higher load than a less structured soil of the same void 
ratio, or is able to sustain the same amount of loading at a higher 
void ratio. For the purposes of this paper, there would be no point 
in pursuing more intuitive interpretations of these terms 
“overconsolidation” and “soil skeleton structure,” by defining 
them physically from such visually determined characteristics as 
the size and configuration of soil particles. We have no need of 
intuitive definitions at the micro level. What is needed is a 
mechanical description of overconsolidation and soil structure “at 
work,” or “in action.” Nothing else matters for soil mechanics as 
a species of continuum mechanics. For example, we need to 
understand loss of overconsolidation as acting in the direction of 
expansion, and decay/collapse of structure as acting in the 
direction of compression. As the reader will appreciate, the 
introduction of super/subloading surfaces serves to make 
mechanical responses of these kinds describable. 

The treatment of these matters will take us through to the end 
of Chapter 4. The description up to that point will make use of the 
terms of infinitesimal strain mechanics, and arguments concerning 
anisotropy will be avoided altogether. But this is only in order to 
simplify the formulation and ― if truth be told ― to make the 
lecture a little easier to deliver, given the author’s limited 
command of English. No great leap of theory would be required 
in these first four chapters to introduce questions of anisotropy into 
the argument, or to reformulate the description in the terms of 
finite deformation theory so as to satisfy objectivity. There is no 
need, then, of such an undue amount of explanation. The aspects 
omitted here are supplied in a complete form in APPENDICES A 
to D (Asaoka et.al., 2002). The results presented in the concluding 
three chapters 5, 6 and 7 are all computed making use of this 
“complete model.”  

Chapter 5 is an account of the differences in mechanical behavior 
between sand and clay. In the case of sand, while any development 
of plastic deformation leads to a prompt collapse in the soil 
structure, it does not lead to any loss at all of overconsolidation. 
The behavior of clay is the exact opposite of this: while 
overconsolidated clay returns immediately to its normally 
consolidated state upon the development of plastic deformation, 
almost no collapse takes place in the structure. These behaviors 
are expressed by manipulating the differences in rate in the 
evolution laws for overconsolidation and soil structure. In this way, 
the use of the proposed model incorporating super/subloading 
surfaces is found to account consistently well for the typical 
mechanical responses of clay and sand, as known from laboratory 
experiments. 

Chapter 6 offers a simulation of the compaction process in loose 
sand, produced through the repeated application of small-
amplitude shear stresses to a quantity of loose sand in the drained 
condition. In this process, a considerable degree of compression 
occurs in the sand, accompanied by an abrupt simultaneous 
change to a state of overconsolidation. From this computation it is 
clearly seen that this degree of compression is due to the readiness 
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of the sand soil structure to collapse at the slightest onset of plastic 
deformation, while the sudden overconsolidation comes about 
because the loss of overconsolidation under loading is minimal. 
Conversely, it is also easy to see why there is hardly any 
compaction at all in the case of clay, which persistently resists any 
breakdown of soil structure while readily permitting loss of 
overconsolidation. The mechanical properties of sand in its 
various stages of compaction display considerable differences, 
with respect to both density and void ratio. But as this chapter 
makes clear, these can all be fully explained using one constitutive 
equation and a single set of material constants. 

Chapter 7 analyzes secondary consolidation and/or delayed 
compression in structured clay. The causes of large-scale 
secondary settlement in clay naturally lie in the decay of the soil 
skeleton structure. As to the delay with which this happens, this is 
because the compression resulting from the decay of the soil 
structure is able to occur without any great increase in effective 
stress. That is to say, all that it takes for decay to proceed is that 
the excess pore water pressure shed from the soil pores in the 
course of compression should not be allowed to dissipate. In some 
cases compression is possible even when effective stress is 
decreasing. That, in fact, is what “compression accompanied by 
softening” refers to. When softening of this kind takes place, the 
excess pore pressure even increases during consolidation, due to 
the decrease in the effective stress level. 

It may appear that compaction and secondary consolidation are 
quite distinct phenomena pertaining to sand and to clay, 
respectively. But both processes alike occur as a result of collapse 
or decay in the soil structure. There is therefore nothing to stop us 
classing them together, from a mechanical point of view, as 
phenomena of the same sort. One of the things that the present 
paper hopes to make evident is that there will be no great error in 
regarding compaction in sand as the equivalent of secondary 
consolidation in clay. 
 
2  ESSENTIALS OF THE CAM-CLAY MODEL 

For simplicity’s sake, the Cam-Clay model discussed here is the 
original one, but exactly the same conclusions would be reached 
if the modified Cam-Clay model (Roscoe K.H. and Burland J. B., 
1968) were considered. 
 
2.1 Yield function and/or plastic potential  

From isotropic consolidation tests using fully remolded clay, the 
following equation is obtained for the normal consolidation line. 
 
 1 N ln 'e pλ+ = −   (2.1) 
 
This is naturally for the case where stress ratioη　 
 

 0
'

q
p

η = = 　 (2.2) 

 
However, from a series of triaxial compression/extension tests 
using the same clay in undrained/drained conditions the equation 
obtained is 
 
 1 ln 'e pλ+ = Γ −   (2.3) 
 
This, of course, is for the case where stress ratio η　 is in the  
critical state 
 

 M
'

q
p

η = = 　 (2.4) 

 
In these equations, , , λΝ Γ 　   and M   ( ) > Ν Γ  are material 
constants of the soil, e　  is the void ratio, and mean effective 
stress 'p  and shear stress q　 are defined as: 
 

 1 3' tr ', , ' '
3 2

p q p= = ⋅ = −　 　σ S S S σ I  (2.5) 

 
where 'σ   and S   are the effective stress (compression 
positive) and deviatoric stress tensors, and I  is the unit tensor. 
The curves for Equations (2.1) and (2.3) are shown in Fig. 2.1.  

In the critical state expressed by Equations (2.3) and (2.4), the 
shear strain is indefinite even where there is no change in the 
effective stress, and it is well known that in these conditions, 
whatever variation occurs in the shear strain, there will be no 
corresponding change in the soil volume. The example shown in 
Fig. 2.2 is from a drained triaxial compression test on a fully  
 

 
 
Fig. 2.1 Normal consolidation line and critical state line. 
 
 

 
 

Fig. 2.2 Drained triaxial compression test of a fully remolded clay 
(after Bishop A.W. and Henkel D.J., 1962). 
remolded clay sample. So long as the soil undergoes no change in 
effective stress, the change in the elastic component in the 
volumetric strain will naturally be 0, so that on the basis of a first-

ln p’

1 N ln 'e p+ = − λ

1 ln 'e p+ = − Γ λ

Normal consolidation line

Critical state line

1+e
ln p’

1 N ln 'e p+ = − λ

1 ln 'e p+ = − Γ λ

Normal consolidation line

Critical state line

1+e
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order strain increment approximation 
 
 e p

v v vε ε ε= +    (2.6) 
 
the volumetric strain at the critical state will be 
 
 0p

vε =  at M 'q p=  (2.7) 
 
where vε  stands for the volumetric strain (compression positive), 
the upper dot is for the material time derivative or increment, and 
the superscript e　 or p　 shows the elastic or plastic component. 

Now, taking account of the fact that λ  in Equations (2.1) and 
(2.3) does not depend on stress ratio η , let us suppose that the 
relation corresponding to Equations (2.1) and (2.3) in the range 
0 / ' Mq pη< = <  is of the kind 
 
 1 ( ) ln 'e x pη λ+ = −   (2.8) 
 
where the segment ( )x η  fulfills the condition 
 
 ( 0) ( ),x xη η= = Ν = Μ = Γ　  (2.9) 
 
The simplest means of fulfillment is through the linear 
interpolation 
 

 ( )
'

qx
p

η
 Γ − Ν

= Ν +  Μ  
 (2.10) 

 
Therefore,  
 

 1 ln '
'

qe p
p

λ
 Γ − Ν

+ = Ν + − Μ  
  (2.11) 

 
may most simply be assumed as the general form fitting all stress 
ratios obtained from Equations (2.1) and (2.3).  

Let us next suppose that this clay in its normally consolidated 
state, without any unloading, changes from a state of

0 0,  ' ',  0e p p q= =  to one of ,  ',  e p q . From Equation (2.11) in 
such a case, we obtain 
 
 0 01 ln 'e pλ+ = Ν −   (2.12) 

 1 ln '
'

qe p
p

λ
 Γ − Ν

+ = Ν + − Μ  
  (2.13) 

 
which means that the volumetric strain resulting from this change 
of state can be calculated as: 
 

 0

0 0 0

(1 ) (1 ) 1 'ln
1 1 ' 'v

e e q p
e e p p

ε λ
  + − + Ν − Γ = = +  + + Μ   

  (2.14) 

 
Since the elastic component in this volumetric strain, calculated 
using elastic constant κ , can be given as: 
 

 
0 0

'ln
1 '

e
v

p
e p

κε =
+
  (2.15) 

by means of an approximation 
 
 e p

v v vε ε ε= +  (2.16) 

 
it becomes possible to express the plastic volumetric strain for this 
interval of change as: 
 

'
0 0

1 '( ', ) ( ) ln ( ')
1 ' '

p
v

q pf p q f
e p p

ε λ κ
  Ν − Γ = = + − =  + Μ   

σ
  σ  

(2.17) 
 
This Equation (2.17) is well known as the yield function of the 
original Cam-Clay model. It is Equation (2.10) that actually gives 
the dilatancy component of the volume change, but since Equation 
(2.17) is based on the relation between the two log 'e p  terms 
in Equation (2.1) and (2.3), the system of soil mechanics deduced 
from Equation (2.17) is also known as “ log 'e p   soil 
mechanics.” 

Equation (2.17) reveals that plastic volumetric strain does not 
depend on the loading path, but is determined purely in terms of 
the initial and final stress states. Henkel’s experiment, as shown in 
Fig. 2.3, is famous for its demonstration of this. Invoking the 
mathematical ‘concept of potential,’ therefore, we may also think 
of Equation (2.17) as expressing the plastic potential surface in the 
original Cam-Clay model. From here a natural step leads on to the 
next hypothesis, the “associated plastic flow rule.”  
 

 '

'
p fλ ∂

=
∂

 σε
σ

 (2.18) 

 
The term pε  here represents the plastic strain increment tensor, 
while 'σ  is the effective stress tensor. Plastic multiplier 0λ >  
at the time of loading. Since the term '( ')fσ σ  in Equation (2.17) 
is known to be a scalar valued isotropic function, the current stress 
tensor and the plastic strain increment tensor are co-axial. Indeed, 
making use of actual results from triaxial test sets, only isotropic 
functions ever arise. This can only be called a stroke of genius on 
the part of Bishop. To express this isotropic nature of ' ( ')fσ σ  in 
a way that is easier to understand, the following pair of related 
equations, having the same form as (2.18), are frequently used. 
 

 
 
Fig. 2.3 Equi-water content contours (after Henkel D.J., 1960). 

 
'

p
v

p
s

f
p
f
q

ε λ

ε λ

∂ = ∂
 ∂ =
 ∂





 (2.19) 
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where p

sε  and p
vε  are the scalar valued plastic shear strain rate 

and the plastic volumetric strain rate, respectively, the definitions 
of which are as follows: 
 

 
tr

2 1, (tr )
3 3

p p
v

p p p p p p
s

ε

ε

 =



= ⋅ = −


 

     
　　　

　　　e e e I

ε

ε ε
 (2.20) 

 
Equation (2.19) shows the two components, compression and 
shear, of the plastic strain increment vector represented in a 

'p q  stress space (in the outward normal direction to the plastic 
potential surface). For this, see Fig. 2.4. The calculation in 
Equation (2.19) is simpler than in (2.18), making it convenient for 
the interpretation of triaxial test results, in which 'p  and q  are 
all that occur. For example, the zero condition for the plastic 
volumetric strain increment in the critical state shown in Equation 
(2.7) can be written as: 
 

 0
'

f
p

∂
=

∂
 (2.21) 

 
 

 
 

Fig. 2.4 Decomposition of plastic strain increment vector on 
'p q  space. 

 
 

 
 

Fig. 2.5 Non plastic volume change condition at the critical state. 
and if Equation (2.17) is substituted into this Equation, the 
following relation among the material constants is easily obtained. 
 
 λ κΝ − Γ = −   (2.22) 

 
An explanation of Equation (2.21) by means of a 'p q  diagram 
can be seen in Fig. 2.5.  

The shapes of the yield function/plastic potential in Figs. 2.4 
and 2.5 indicate that plastic volume expansion is occurring in the  
region of the stress space above the critical state line, and plastic 
volume compression in the region below the line. More formally, 
 

 0 when M '
0 when M '

p
v
p

v

q p
q p

ε
ε

 > <


< >





　　 　　

　　 　　
 (2.23) 

 
as summarized in Fig. 2.6. 

For the yield function/plastic potential in the modified Cam-
Clay model, the interpolation between Equations (2.1) and (2.3) is 
performed not as in Equation (2.10), but in the form 
 

 
2 2

2
M ( / ')( ) ln

ln 2 M
q px η

 Γ − Ν +
= Ν +  

 
 (2.24) 

 
 
 

 
 
Fig. 2.6 Plastic volume compression below the critical sate line 
and plastic volume expansion above the critical state line in 

'p q  space. 
 
 

 
 

Fig. 2.7 Plastic volume compression/expansion in the modified 
Cam-Clay model. 
However, the subsequent reasoning can be pursued in precisely the 
same way as above, leading also to the same outcome, with plastic 
expansion occurring above the critical state line, and plastic 
compression below it, as in Equation (2.23). This is shown in Fig. 
2.7. The following two Equations may offer a little guidance: 

p
s

f
q

ε λ ∂
=

∂


pq ′= M

p′

q

=tr
'

f
p

ε λ ∂
=

∂
 p p

v ε

,
'

T
p f f

p q
λ λ

 ∂ ∂
=  ∂ ∂ 

ε

p
s

f
q

ε λ ∂
=

∂


pq ′= M

p′

q

=tr
'

f
p

ε λ ∂
=

∂
 p p

v ε

,
'

T
p f f

p q
λ λ

 ∂ ∂
=  ∂ ∂ 

ε

0

pq ′= M

p′

q
pq ′= M

p′

q

0

pq ′= M

p′

q Plastic volume
expansion

Plastic volume
compression

pq ′= M

p′

q
pq ′= M

p′

q Plastic volume
expansion

Plastic volume
compression

0

pq ′= M

p′

q
Plastic volume

expansion Plastic volume
compression

pq ′= M

p′

q
Plastic volume

expansion Plastic volume
compression

0
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( )22

'2
0 0

( ', )

M / '1 'ln ( ) ln ( ')
1 ln 2 M '

p
v f p q

q p p f
e p

ε

λ κ

=

  +Ν − Γ   = + − = +     
σ

  σ
 

  (2.25) 
 ln 2( )λ κΝ − Γ = −   (2.26) 
 
2.2 Hardening and softening  

If we take the total derivative from Equation (2.17), 
 

 '
'

p
v

f fp q
p q

ε ∂ ∂
= +

∂ ∂
    (2.27) 

 
and equate it with the first of the equations in Equation (2.19), the 
plastic multiplier λ  is found to be 
 

 

0

' '
' '

1 M' M(1 ) ' '

f f f fp q p q
p q p q

f q
p e p p

λ
λ κ

∂ ∂ ∂ ∂+ +
∂ ∂ ∂ ∂= =

∂  − − ∂ +  

   

 
 (2.28) 

 
Accordingly, for the loading condition 
 
 0λ >  (2.29) 
 
we can distinguish three distinct situations, as follows: 
 

 

' 0 when M '
'

' 0 when M '
'

' 0 when M '
'

f fp q q p
p q
f fp q q p
p q
f fp q q p
p q

 ∂ ∂
+ > <∂ ∂

 ∂ ∂ + < >∂ ∂
 ∂ ∂

+ = =
∂ ∂

 

 

 

　　 　　

　　 　　

　　 　　

 (2.30) 

 
Now, since '

'
f fp q
p q

∂ ∂
+

∂ ∂
    represents the inner product of the 

outward normal vector to the plastic potential 
'

f
p
f
q
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  and the 

stress increment vector 
'p

q
 
 
 




 , its positive or negative polarity 

will indicate whether the stress increment vector is directed out 
from the outer surface, or in toward the inner surface of the plastic 
potential. The contents of Equation (2.30) can accordingly be set 
out as in Fig. 2.8. Subsequent yield surfaces will either expand 
below the critical state (hardening) or diminish above it 
(softening). Thus, the critical state line M 'q p=  also marks the 
borderline between hardening and softening. 

It is important to take Fig. 2.8 in alignment with the previous 
Fig. 2.6. From their combination, the following three results 
become evident: 
① Hardening always accompanies plastic compression, 

s o f t e n i n g  a c c o m p a n i e s  p l a s t i c  e x p a n s i o n , 
② The border between both hardening and softening, and plastic 

compression and plastic expansion, is represented by the 
critical state line M 'q p= , 

③ The slope M  of the critical state line is a material constant, 
which does not vary with changes in loading.  

These properties of the original Cam-Clay model continue to 
apply in exactly the same way to the modified Cam-Clay model.  
 
2.3 Constitutive equation and loading criterion  

If the total derivative from Equation (2.17)  
 

 ' '
'

p
v

fε ∂
= ⋅

∂
 σ σ

σ
 (2.31) 

 
is combined with the associated plastic flow rule as expressed in 
Equation (2.18), it can be rewritten in the form 

 

 'tr
'

p
v

fε λ ∂
=

∂
 σ

σ
 (2.32) 

 
 
 

 
 

(a) 
 

 
 

(b) 
 

Fig. 2.8 Hardening below M 'q p=   and softening above 
M 'q p= . 

 
 
Since (2.31) and (2.32) both express the same thing, we may 
equate them. Making use of the effective stress tensor 'σ  , the 
plastic multiplier λ  is then found to be 
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'

'

'
'

tr
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fλ

∂ ⋅
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∂
∂

σ

σ

σ
σ

σ

 (2.33) 

 
This is known as the “plastic multiplier in terms of stress.” The 
stress increment term in the numerator can be rewritten as: 
 
 ' e= σ Eε  (2.34) 
 
This is known as the “incremental elastic response,” where E  is 
a nonlinear elastic modulus tensor. It will be noticed that 
 

 '

'
e p fλ ∂

= − = −
∂

    σε ε ε ε
σ

 (2.35) 

 
next, substituting Equation (2.34) into Equation (2.33), the plastic 
multiplier can be rewritten in the form 
 

 
'

' ' '

'
tr
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σ
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σ σ σ
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 (2.36) 

 
Λ  is of course the same as the λ  in (2.33), but in this case is 
called the “plastic multiplier in terms of strain rate.” Using this 
Λ  , we can now obtain the following equation for the relation 
between the stress and strain increments: 
 

 
'

' ( )

'

e p

f
= = −

∂
= − Λ

∂

  

 σ

σ E E

E E
σ

ε ε ε

ε
 (2.37) 

 
Equation (2.37) is called the “incremental (linear) elasto-plastic 
response.” Naturally, the terms on either side are in a unique 
inverse relation to each other, but the equation is nonetheless 
useful for computations of deformation using the finite element 
method, which takes as its starting point the weak form of the 
equation of equilibrium. 
 
 

 
 

 
Fig. 2.9 Unloading with no movement of the yield surface. 
 

The choice in use between elastic response Equation (2.34) and 
elasto-plastic response Equation (2.37) is made on the basis of the 
loading criterion. The second denominator term in Equation (2.36) 
is a positive definite quadratic form, and it tends to be the case 

with most soil constants that denominators come out positive, 
irrespective of the stress state. Generalizing from this, we may 
adopt the name “Cam-Clay parameters” to refer to material 
constants that make the denominator of Equation (2.36) positive, 
for any stress state. Details for this can be found in Asaoka et. al. 
(1994). The loading condition 
 
 ( ) 0λΛ = >  (2.38) 
 
effectively guarantees that the numerator in Equation (2.36) is also 
positive. Thus, the loading criterion can be given as: 
 

 
'

'

0 loading  (Equation(2.37))
'

0 unloading (Equation(2.34))
'

f

f

∂ ⋅ >∂
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　 : 　  　

　 : 　 　

σ

σ

Ε
σ

Ε
σ

ε

ε
 (2.39) 

 
This loading criterion is indispensable for allowing us to 
distinguish between softening and unloading (elastic response). 
Softening is accompanied by a diminution of the yield surface 
down to the current stress state (Fig. 2.8(b)). Unloading partly 
resembles softening, in that the incremental stress vector is 
directed toward the inside of the yield surface, but in unloading 
the surface itself does not move but remains as it is (Fig. 2.9). 

In the Cam-Clay model, once the stress has come down inside 
the yield surface as a result of unloading, it is assumed that an 
elastic response will continue, even in the event of a subsequent 
reloading, until such time as the current stress state reaches the 
previous yield surface again. It is worth noting that this is not 
actually stated in the loading criterion in Equation (2.39), but 
nonetheless this point, too, ought to be regarded as one of the 
essentials of the Cam-Clay model. Stated more formally: 
④ When the stress changes on the inside of the yield surface, the 

soil shows an elastic response (Equation (2.34)). 
In the Introduction to this paper, the author said it was not 

legitimate to offer separate constitutive equations for sand and clay, 
and to rely on childlike intuition for the choice of which equation 
to use. That would be the exact equivalent of presenting Equations 
(2.34) and (2.37), without supplementing them with loading 
criterion (2.39) and the above property ④. 
 
3  LIMITATIONS OF THE CAM-CLAY MODEL 

3.1 Loss of overconsolidation 

Fig. 3.1 shows the typical experimental results obtained from a 
drained triaxial compression test performed on fully remolded but 
heavily overconsolidated clay. The effective stress path on the 

'p q   diagram for this test is shown in Fig. 3.2. Similar test 
results were reported by Bishop and Henkel, 1962, some 40 years 
ago. In shaded zone 1 in Fig. 3.1, the stress state is still below the 
critical state line, and the soil specimen is under compression. In 
zone 2, however, the specimen begins to display expansion as the 
stress state rises above the line. Expansion accompanied by 
softening is noticeable in zone 3. The reason we can tell that zone 
3 shows softening, not unloading, is because in the case of 
unloading there would need to be some decrease in the axial strain. 

A typical case of a phenomenon that cannot be explained using 
the Cam-Clay model is seen in zone 2. In the terms of the model, 
the stress state in this zone ought to be still on the inner side of the 
yield surface, where an elastic response would be expected, so that 
the material would have to display compression, not expansion, 
with the rise in 'p  . The expansion that actually occurs in this 

Current stress
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q

Current stress
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zone is due to the fact that the plastic volume expansion greatly 
exceeds the elastic volume compression. Considering further that 
① an elasto-plastic response must be occurring on the inner side 
of the yield surface, while ② shear stress q  is also increasing, 
it is even possible that hardening and plastic expansion are 
occurring together. Phenomena ①  and ②  are completely 
inexplicable in terms of the Cam-Clay model. 

In the case of a clay with an overconsolidation ratio as large as 
 

 
 

Fig. 3.1 Drained triaxial test of a fully remolded and heavily 
overconsolidated clay. 

 

 
 

Fig.3.2 Effective stress path and volume change with 'p   in a 
draind triaxial test of remolded and overconsolidated clay. 
24, the response computed by the Cam-Clay model is of the kind 
shown in Figs. 3.3(a) and 3.3(b), which is altogether different from 
what we see in Figs. 3.1 and 3.2. When the overconsolidation ratio 
is this high, the yield surface lies far above the current stress, and 
therefore in the case of reloading, assuming no movement occurs 

in the yield surface, the peak of the stress-strain curve will be 
considerably higher than in Fig. 3.1. Moreover, since the stress 
remains on the inside of the yield surface all the way up to the 
point where it reaches this peak, the material can be seen to be in 
elastic compression. At the peak the stress reaches the yield 
surface, and thereafter the material becomes normally 
consolidated clay. However, as the stress lies above the critical 
state line, the material must be subject to softening, and the peak 
described turns out to be correspondingly sharp and precipitous 
(Fig. 3.3(a)). Similarly, the stress level at this peak is also far 
higher than in Fig. 3.2 (Fig. 3.3(b)). It is evident from this that the 
Cam-Clay model is totally inadequate for expressing the shear 
behavior of an overconsolidated clay. 

In order to model the behaviors in Figs. 3.1 and 3.2 faithfully, it 
is necessary 
① to allow for elasto-plastic responses on the inside of the yield 
surface, and 
②  to allow for plastic expansion in accompaniment with 
hardening. 

These problems can be completely solved by introducing the 
concept of a subloading surface, which was first established by 
Hashiguchi (Hashiguchi, 1978). It is important to emphasize here 
that what Hashiguchi did was not to deny the Cam-Clay model, 
but only to restrict its application to the loading and unloading of 
normally consolidated soils. Hashiguchi was the first researcher in 
the world to show cogently that loading leads to a progressive loss 
of overconsolidation, that is to say, that through the development 
of plastic deformation brought on by loading an overconsolidated 
soil returns to the normally consolidated state. Previously it had 
been supposed that loss of overconsolidation came about through 
elastic deformation, and in this sense there can be no doubt that 
Hashiguchi’s argument, even if not a denial of the Cam-Clay 
model, was a considerable leap forward in theory. Typical elasto-
plastic responses during reloading are shown in Figs. 3.4(a) and 
3.4(b). 
 

 
 

Fig. 3.3 Responses of the heavily overconsolidated Cam-Clay 
in a draind triaxial compression test. 
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(a) Increase in “yield stress” due to hardening. 
 

 
 
(b) Decrease in “yield stress” due to softening. 
 
Fig. 3.4 Loss of overconsolidation due to loading. 
 
3.2 Decay/collapse of the soil skeleton structure 

Fig. 3.5 shows results from an oedometer test performed on highly 
structured natural clay material (Asaoka et. al., 2000). The straight 
line in the figure is the normal consolidation line for remolded clay, 
obtained by fully remolding the material and then running the 
oedometer test again. In terms of the Cam-Clay model, the area 
above the normal consolidation line is an impossible region, in 
other words, it ought to be impossible for a soil to assume this sort 
of state. But in fact we see that the highly structured clay can very 
well occur in a state of this kind that is not possible for the 
remolded material. 

Fig. 3.5 also shows that, compared with a clay that has had its 
structure broken down through remolding, the highly structured 
clay is able to sustain greater vertical loads for the same void ratio, 
or to tolerate a larger void ratio while under the same load. In this 
paper, this is described by saying that the structured soil has a 
greater ‘bulk.’  

Fig. 3.6 presents results for comparative oedometer tests on 
minimally disturbed and slightly disturbed clay specimens 
(Leroueil S., 1996). It is evident that the minimally disturbed clay 
has a more developed structure, and is therefore bulkier. As for the 
question of what is slightly disturbed in the one case but not in the 
other, it is of course the soil skeleton structure, invisible though 
this may be to the naked eye. 

As no normal consolidation line for fully remolded clay is 
indicated in Fig. 3.6, let us return again to Fig. 3.5. Here, we can 
see that the greater the consolidation load, and consequently the  

 
 
Fig. 3.5 Typical oedmeter test results on highly structured soil 
(after Asaoka et.al., 2000c). 
 

 
 

Fig. 3.6 Comparative oedometer tests on minimally disturbed and 
slightly disturbed clay specimens (after Leroueil S., 1996). 
 
greater the degree of compression, the greater the tendency will be 
for the soil in the upper “impossible region” to revert back down 
toward the destructured state (that is, to approach the normal 
consolidation line for remolded clay). This leads us to suppose, 
therefore, that the collapse or progressive decay of structure is the 
result of the ongoing plastic deformation that occurs under loading. 

From what has been said about structure in this section, and 
about overconsolidation in Section 3.1, it will by now be clear that 
the Cam-Clay model is applicable only to the loading and 
unloading of soils in which 
① the skeleton structure has been completely destroyed through 
full remolding, and 
② there has been a complete loss of overconsolidation, and a 
reversion to the normal consolidation state. 

Let us from here on refer to clay of this description as “Cam-
Clay.”  

In order to allow the Cam-Clay model to handle the mechanical 
states of soils in its supposedly impossible upper region, Asaoka 
et.al., (1998, 2000a, b) have further introduced the concept of a 
superloading yield surface. In conjunction with the subloading 
yield surface concept introduced by Hashiguchi, this has made it 
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possible to represent the ways in which, under ongoing loading, a 
progressive loss of overconsolidation and breakdown of structure 
leads all soils, without restriction, to approach the conditions of 
“Cam-Clay.”  

In the next chapter it will be shown how the slope Ms of the 
borderline between hardening and softening (from the slope 
formula =M 'q p   of the Cam-Clay model) tends to become 
smaller or larger with the loss of overconsolidation, or the decay 
or collapse of soil structure, under loading. Soils in which these 
movements have come to a complete stop (“Cam-Clays”) are in a  
 

 
 
 

 
 

Fig. 3.7 Hardening with plastic volume expansion and softening 
with plastic volume compression. 
 
 

 
 

Fig. 3.8 Undrained shear behavior of a structured normally 
consolidated clay. 
 
sense “dead.” But in “living soils,” that is, soils which retain either 

an overconsolidation state or a skeleton structure, or sometimes 
both, as Ms  continues to rise or fall with the loss of  
overconsolidation or structure, combinations of hardening with 
plastic expansion, or softening with plastic compression remain a 
possibility, as shown in Fig. 3.7. Note that in this figure  

=M 'q p  : borderline between plastic compression and expansion 
( M  constant), while 

=M 'sq p   : borderline between hardening and softening ( Ms  
variable). 

We have already seen an instance of hardening in combination 
with plastic expansion (Fig. 3.1, zone 2). Softening in combination 
with plastic compression is very commonly observed in undrained 
shear tests of naturally deposited clays in states close to normal 
consolidation. An example is shown in Fig. 3.8. A detailed 
explanation of this figure will be given in Chapter 4. 
 
4  SUPER/SUBLOADING SURFACES FOR STRUCTURED 
AND OVERCONSOLIDATED SOILS  

In this chapter we represent the elasto-plastic behaviors of 
structured and overconsolidated soils by introducing superloading 
and subloading yield surfaces into the original Cam-Clay model. 
The account will be in terms of an infinitesimal strain description, 
and there will be no discussion of anisotropy. This way of 
proceeding will make the explanation of new concepts relating to 
structure and overconsolidation much more plain and simple, and 
therefore facilitate understanding.  

To represent anisotropy a yield surface of the form provided for 
in the modified Cam-Clay model is appropriate, while for a 
description of the kind of large deformation that leads up to the 
failure of soil structure a finite deformation theory is indispensable. 
A “complete model” satisfying these additional conditions is given 
in APPENDIX A. From this chapter on, all of the actual 
computations presented will be making use of this “complete 
model.” But for an understanding of the accompanying 
explanations in each case the knowledge supplied in this chapter 
will be sufficient. 
 
4.1 Super/subloading Yield Surfaces 

Before we go on to formalize the details of the model in the next 
section, we need to begin here by explaining and defining some 
new concepts. 
The Cam-Clay model 
When a fully remolded and then perfectly destructured normally 
consolidated soil is subjected to loading, the soil is assumed to 
follow the elasto-plastic behavior of the Cam-Clay model. 

Superloading yield surface 
In a structured soil, on the outside of the yield surface as defined 
in the Cam-Clay model, that is to say, in the supposedly 
“impossible region” beyond the state boundary (or Roscoe) 
surface, there exists a superloading yield surface similar in form 
to the normal one. This is shown by the 'p q  stress space (Fig. 
4.1). As can be seen in the figure, both surfaces are similar in 
relation to the point of origin. Since the current stress 'p  , q  
shown on the superloading yield surface in the figure corresponds 
to the stress 'p , q  on the yield surface in the Cam-Clay model, 
the similarity ratio between the two can be expressed as *R , as in 
Fig. 4.1, and will lie between 0 and 1. 
 

Normally consolidated state 
When a current stress state is situated on the superloading yield 
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surface, the soil is said to be in a normally consolidated state. 
When a soil in this state undergoes loading, its elasto-plastic 
response can be described by applying the associated flow rule on 
the superloading yield surface. 

Evolution law for R* 
Let the degree of the structural be denoted by *R  . A complete 
decay of structure would then correspond to * 1R =  , and an 
infinitely developed state of structure to * 0R = . Since decay of 
structure is a consequence of plastic deformation, *R   will 
increase with the development of plastic deformation and 
eventually attain the value of 1. In other words, the material time 
derivative of *R , *R , is a function of the plastic strain rate, and 
will always be positive (evolution law for *R ). Only in the state 

* 1R =  , representing a complete decay of structure, will the 
superloading yield surface completely come to overlie the Cam-
Clay yield surface beneath it. 

Overconsolidated state 
When a soil in a normally consolidated state undergoes unloading, 
the soil is said to be in an overconsolidated state. 

Subloading yield surface 
When a soil in an overconsolidated state is subjected to reloading, 
an elasto-plastic response occurs. This response can be described 
by applying the associated flow rule on the subloading yield 
surface. That is to say，in an overconsolidated soil the current 
stress will invariably be on the subloading yield surface, as shown 
in Fig. 4.2. Again, as shown in the figure, this subloading surface 
is taken to be similar in form to the Cam-Clay yield surface in 
relation to the point of origin. 

In Fig. 4.2, as seen from the fact that 'p , q  give the current 
stresses and 'p  , q   the size of the superloading yield surface 
under unloading, the similarity ratio R  between the subloading 
and superloading yield surfaces will represent the state of 
overconsolidation ( 0 1R< ≤ ). In fact, the reciprocal of R , 1/ R , 
is equivalent to the overconsolidation ratio as defined in classical 
soil mechanics. That is, 1R =   represents the normal 
consolidation state, and in this state, only, the subloading and 
superloading yield surfaces will coincide. In general, however, the 
subloading surface lies on the inside of the superloading one, 
where 1R < . 
 

 
 

 
 

 
Fig. 4.1 Superloading yield surface. 

Evolution law for R 

As an overconsolidated soil undergoes progressive plastic 
deformation under loading, its overconsolidated state will come to 
approach a normally consolidated state. In other words, if an 
overconsolidated soil is allowed to evolve in its loaded state, the 
value of R  will steadily increase and eventually reach 1 (normal 
consolidation). In such cases the plastic strain rate function R , 
the material time derivative of R  , will always be positive 
(evolution law for R ). 

A crucial point to notice is that during plastic deformation not 
only R  , but also *R   increases. That is, when soil in an 
overconsolidated state reverts back toward the normally 
consolidated state, the superloading yield surface also changes 
from its initial unloading position, either increasing or decreasing. 
This means that the change in the overconsolidation ratio results 
not only from the change in current stress, but also from this 
movement of the superloading yield surface. This can also be 
appreciated from the previous Figs. 3.4(a) and (b) in Chapter 3. 
Naturally, when this plastic deformation leads to a change in the 
plastic volumetric strain, this will also result in a change of 
position for the Cam-Clay yield surface, which will either increase 
or decrease in size. 

Four possible states for soils 
From the preceding explanations, it is evident that soils can exist 
in the following four states: 
① overconsolidated structured state  ( 0 1R< < , *0 1R< < ) 
② normally consolidated structured state  ( 1R = , *0 1R< < ) 
③ overconsolidated non-structured state  ( 0 1R< < , * 1R = ) 
④ normally consolidated non-structured state  ( 1R = , * 1R = ) 
Soils in states ①, ② and ③ pass through a process of plastic 
deformation before finally arriving at state ④. This process will 
be the central concern of Chapter 5. 
 
4.2 Model formulation 

Three yield surfaces  
It is assumed here that for a structured soil in an overconsolidated 
state after unloading, the current stresses 'p , q  are situated on 
the subloading yield surface. Noting that the center of similarity is 
at the point of origin, we next denote the corresponding stresses 
on the superloading and Cam-Clay yield surfaces as 'p , q  and 

'p , q  respectively. Thus *R  and R  can be given as: 
 

 
 
 

Fig. 4.2 Three yield surfaces. 
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 '
'

q pR
q p

= =  (4.2) 

 
This has already been shown in Fig. 4.2.  

The Cam-Clay yield surface can be expressed in the form 
 

 
0 0 0

'( ', ) ln
1 ' M(1 ) '

p
v

p qf p q
e p e p

λ κ λ κε − −
= = +

+ +

   
 

 
 (4.3) 

 
0'p   has already been shown in Figs. 4.1 and 4.2. Substituting 

Equation (4.1) in Equation (4.3), the superloading yield surface 
can be expressed as: 
 

 

*

0

*

0 0 0 0

( ', ) ln
1

'ln ln
1 ' M(1 ) ' 1

p
v f p q R

e

p q R
e p e p e

λ κε

λ κ λ κ λ κ

−
= +

+

− − −
= + +

+ + +

 

    



 (4.4) 

 
By the same procedure, substituting Equation (4.2) in Equation 
(4.4) allows the subloading yield surface to be written as: 
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0
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( ', ) ln ln
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'ln ln ln
1 ' M(1 ) ' 1

( ') ln ln
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p
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e

p q R R
e p e p e

f R R
e

λ κε

λ κ λ κ λ κ

λ κ

−
= + −

+

− − −
= + + −

+ + +

−
= + −

+

 

    



 
σ σ

 

(4.5) 
Normality rule and consistency condition 
In the present research, as in the Cam-Clay model, the plastic 
response of the soil is assumed to follow the associated flow rule: 
 

 
'

p
v

f
p

ε λ ∂
=

∂
  (4.6) 

 p
s

f
q

ε λ ∂
=

∂
  (4.7) 

 
where λ   is the plastic multiplier. The size of the subsequent 
loading surface following the hardening or softening of the soil is 
calculated from the material time derivatives, or increment forms, 
 

 
*

*
01

p
v

R Rf
e R R

λ κε −
 −

= +  +  

    (4.8) 

 
from Equation (4.5) (Prager’s consistency condition). This 
equation shows the necessity of evolution laws that give the 
material time derivatives *R  and R  of *R  and R . 

Equation (4.8) further expresses the two facts that 
① the loss of overconsolidation ( 0R >  , 1R →  ) acts in the 

direction of the soil’s plastic volume expansion;  
② the decay or collapse of structure ( * 0R > , * 1R → ) acts in 

the direction of the soil’s plastic volume compression. 
Both of these two occurrences have hitherto been understood 

intuitively, ①  from the breakdown of the interlocking bonds 
between soil particles, and ② from the card house-like collapse 
of overall structure. 

Evolution laws for R and R*  
The evolution laws for R   and *R   express the fact that as 

plastic deformation proceeds both R   and *R   increase and 
approach a value of 1. Here, this is written as 
 
 
 p

sR Uε=   (4.9) 

 * * p
sR U ε=   (4.10) 

 
where U  and *U  are the positive definite scalar functions of 
R  and *R  respectively. It is to be noted in Equations (4.9) and 
(4.10) that the evolution in the plastic deformation is represented 
by the plastic shear strain rate p

sε , and that under conditions of 
loading this p

sε  is invariably positive. In place of plastic shear 
strain rate p

sε , it might also be possible to take the norm of the 
plastic strain rate tensor pε   (see APPENDIX A). The only 
reason for using the plastic shear strain rate in this chapter is in 
order to keep the subsequent computations as simple as possible. 

The following restrictions apply to U  , the positive definite 
scalar function of R : 
 
 ( 1) 0U R = =  (4.11) 
 ( 0)U R = = ∞  (4.12) 
 
Equation (4.11) expresses the fact that loss of overconsolidation 
ends once the soil reaches the normally consolidated state. 
Equation (4.12) signifies that as the overconsolidation ratio 
becomes infinitely large the elasto-plastic response of the soil 
approaches closer to a pure elastic response. The reason for this is 
because 
 

 p
s

RU
ε

= = ∞



 (4.13) 

 
which entails that 0p

sε → . The simplest function U  satisfying 
the two restrictions (4.11) and (4.12) is of the form 
 

 0M(1 ) lneU m R
λ κ

+
= −

− 
 (4.14) 

 
The larger the value of material constant m , the faster will be the 
rate of overconsolidation loss. For this reason, m  is called the 
degradation parameter of the overconsolidated state. The first 
researchers to present this line of argument from Equations (4.11) 
to (4.14) were Hashiguchi et al. (1989).  

Next, the following restrictions can similarly be presented for 
*U , the postive scalar function of *R :  

 
 * *( 1) 0U R = =  (4.15) 

 * *( 0) 0U R = =  (4.16) 
 
Equation (4.15) expresses the condition where the decay or 
collapse of structure is about to cease, and Equation (4.16) the 
point at which a saturated soil, maximally advanced in both its 
structural development and its void ratio, is said to “liquefy,” 
making an elasto-plastic response altogether unthinkable. The 
simplest function *U  satisfying the restrictions (4.15) and (4.16) 
is given by the beta function 
 

 * * *0M(1 ) (1 )b ceU aR R
λ κ

+
= −

− 
 (4.17) 

 
Three parameters are used in this, but generally it is taken that 
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1b =  , 1c =  . These are called the degradation parameters of 
structure. The argument from (4.15) to (4.17) was first presented 
by Asaoka et. al. (1988, 2000a, 2002). 

The curves for the functions U  in Equation (4.14) and *U  
in Equation (4.17) are shown in Fig. 4.3. 

Plastic multiplier λ in terms of stresses 
Recalling the rates of plastic volumetric strain and plastic shear 
strain shown in Equations (4.6) and (4.7), and substituting the two 
evolution laws, Equations (4.9) and (4.10), into the consistency 
condition given by Equation (4.8), we obtain 
 

 
*

*
0

'
' ' 1

p
v

f f f U f U fp q
p p q e R q R q

λ κε λ λ
 ∂ ∂ ∂ − ∂ ∂

= = + + − ∂ ∂ ∂ + ∂ ∂ 

 
    (4.18) 

 
Given the fact that 
 

 
0

1
M(1 ) '

f
q e p

λ κ∂ −
=

∂ +

 
 (4.19) 

 
the plastic multiplier λ   in Equation (4.18) can be calculated 
from the second and third parts of the equation as 
 
 
 

1
R

0

U

 
 
 

 
 
 
Fig. 4.3 U  and *U  functions. 
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 (4.20) 

Here, 

 

 
*

*
0 0

M M 1
M(1 ) M(1 )s

U U
e R e R

λ κ λ κ − −
= − + + + 

    (4.21) 

 
Comparing the plastic multiplier λ  in Equation (4.20) with the 
λ  in the Cam-Clay model (Equation (2.28) in Chapter 2), it can 
be seen that constant M  stands in place of variable Ms . 
From the loading condition, 
 
 0λ >  (4.22) 
 
we see that the loading state can be divided into the three following 
phases, exactly as was the case with the Cam-Clay model in 
Chapter 4: 
 

' 0 when M ' hardening     
'

' 0 when M ' softening          
'

' 0 when M ' perfectly plastic
'

s

s

s

f fp q q p
p q
f fp q q p
p q
f fp q q p
p q

 ∂ ∂
+ > <∂ ∂

 ∂ ∂ + < > ∂ ∂
 ∂ ∂

+ = =
∂ ∂

 

 

 

　 　 　　 　：   

　　 　　 　：

　 　 　　 　：

     

                                         (4.23) 
 
However, unlike the case of the Cam-Clay model, the slope Ms  
of the borderline 
 
 M 'sq p=  (4.24) 
 
between hardening and softening will increase and decrease 
considerably depending on the development of plastic 
deformation. This matter will be discussed in the next section. 

Constitutive equation and loading criterion 
The plastic multiplier λ  can be generally written in the form 
 

 
'

0

'
'

1 M
M(1 ) ' 's

f

q
e p p

λ
λ κ

∂ ⋅
∂=

 − − +  



 

σ σ
σ  (4.25) 

 
using the effective stress tensor and function 'fσ  from Equation 
(4.5). Substituting the elastic response of the soil 
 
 ' e= σ Eε  (4.26) 
 
in this equation gives 
 

 
'

0

'
1 M

' ' M(1 ) ' 's

f

f f q
e p p

λ
λ κ

∂ ⋅
∂Λ = =

 ∂ ∂ −⋅ + − ∂ ∂ +  



 

σ ε
σ

σ σ

E

E
 (4.27) 

 
just as in Chapter 2. Accordingly, this means that the elasto-plastic 
response 
 

 
'

' ( )

'

e p

f
= = −

∂
= − Λ

∂

  



ε ε ε

ε σ

σ E E

E E
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 (4.28) 

 
can also be written the same way as in the Cam-Clay model. Also, 

*U

*R0 1

*U

*R0 1
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the question of whether the soil shows an elastic or an elasto-
plastic response to the change in stress ― in other words, the use 
of the relation  
 

 ' 0
'

f∂
⋅ =

∂
 　　ε    σ Ε

σ
 (4.29) 

 
in selecting between the uses of Equations (4.26) and (4.28) ― is 
again precisely the same as for the Cam-Clay model.  
 
4.3 Model characteristics 

If Equations (4.14) and (4.17), for U  and *U  respectively, are 
substituted for Ms   in Equation (4.21) in conditions where 

1b = , 1c = , we obtain  
 

 ( )*M M 1 ln 1s
m R a R
R

 = − − − 
 

 (4.30) 

 
This equation shows, more distinctly than Equation (4.21), that 
① the loss of overconsolidation ( 1R → ) leads to a decrease in 
Ms ; 
② the decay or collapse of structure ( * 1R → ) leads to an increase 
in Ms . 

This is also shown in Figs. 4.4(a) and 4.4(b). The straight line 
M 'q p=   in these figures naturally marks the border between 

plastic compression and plastic expansion. This being so, Fig. 
4.4(a) indicates that the region in which hardening can occur 
together with plastic expansion will decrease and eventually 
disappear with a decrease in Ms  , while Fig. 4.4(b) similarly 
indicates that the region in which softening can occur together 
with plastic compression will decrease and eventually disappear 
with an increase in Ms .  

Let us now present two extreme examples that clearly illustrate 
these behaviors. These two examples have already been shown in 
Fig. 3.1 and Fig. 3.8 in Chapter 3, which showed the limitations of 
the Cam-Clay model. 

Fully remolded, but overconsolidated clay  
The elasto-plastic and evolution parameters of this clay material 
are as given below. 
 
 
Table 4.1 Material constants. 
 

Elasto-plastic parameters  

 Compression index λ    0.15 
 Swelling index κ~  0.035 
 Critical state constant M  1.43 

Void ratio at ' 98.1kPap = on NCL N   1.72 
 Poisson’s ratio ν  0.15 

Evolution parameters   
 Degradation parameter of overconsolidation state m  2.0 

Degradation parameter of structure a  ( 1.0b c= = ) 1.5 
 
 

The initial conditions of the material (subscript 0 indicates 
initial values) are: 
 
Table 4.2 Initial conditions. 
 

Initial conditions  

 Initial void ratio 0e     0.51 

 Initial mean effective stress 0 'p (kPa)   34.5 

 Initial value of 0
* *( )R R    1.00 

 Initial overconsolidation ratio 01/ R   24.0 

 
As *

0 1R =  , we may say that the clay has been completely 
remolded to leave no structure. Therefore the superloading yield 
surface already falls together with the Cam-Clay yield surface. 
However, since the current stress is situated on the subloading 
yield surface (overconsolidation ratio 24), the material’s elasto-
plastic response to reloading is also dominantly determined on this 
subloading surface. 

 
 
 
 

 
 

(a) 
 

 
 

(b) 
 

Fig. 4.4 Movement of Ms . 
 
Using the model presented in this chapter, let us now try to 

compute the mechanical behavior exhibited by this material in a 
drained triaxial compression test. The calculated results are shown 
in Figs. 4.5(a) and 4.5(b). The figures show that this soil material 
initially displays hardening together with elastic compression, but 

q 

Hardening with plastic volume expansion
0 'p

M 'q p=

M 'Sq p=

q 

Softening with plastic volume compression
0 'p

M 'q p=

M 'Sq p=
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that once the stress state crosses the line M 'q p= , beyond which 
 
 M ' M 'sp q p< <  (4.31) 
 
there is a resulting switch in behavior to hardening together with 
plastic expansion. However, as plastic deformation proceeds 
further, there is a progressive loss in overconsolidation ( 1R → ) 
and a consequent decrease in Ms  (Fig. 4.4(a)), until eventually 
 
 M 's p q<  (4.32) 
 
at which stage the clay undergoes another reversal in behavior, to 
softening together with plastic expansion. Finally, the material 
then reaches the state of normally consolidated clay, 
 
 M Ms =  (4.33) 
 
Here, the stress state also comes down from its previous higher 
position to overlie line M 'q p= , where it settles into a so-called 
residual state, with no volumetric change and an indefinite shear 
strain. Fig 4.5(a) also includes an indication of the variation in 
value of 1/ R  (overconsolidation ratio) in relation to shear strain 
deformation. In this way, it has now become possible to 
understand the mechanical behavior of an overconsolidated clay 
soil in all of its aspects. 
 
 
 
 

 
 
 

Fig. 4.5 Model responses of a drained triaxial compression test on 
a fully remolded but heavily overconsolidated clay (initial 
OCR=24). 

Normally consolidated, but highly structured clay 
Next let us consider the case of a normally consolidated but highly 
structured clay, which is of interest for its so-called “sensitivity 
ratio.” Let us assume that the elasto-plastic and evolution 
parameters for this material are exactly the same as for the 
overconsolidated clay just discussed. Furthermore, the initial void 

ratio is also the same. However, the other initial conditions for the 
material will be different. For the purposes of this example, we 
may give them as: 
 
Table 4.3 Initial conditions. 
 

Initial conditions  

 Initial void ratio 0e     0.51 

 Initial mean effective stress 0 'p (kPa) 1357 

 Initial value of 0
* *( )R R    0.2 

 Initial overconsolidation ratio 01/ R   1.0 
 

As 0 1R =   (normally consolidated state), the subloading and 
superloading yield surfaces can already be taken as falling together, 
but the Cam-Clay yield surface, for which *

0 0.2R =  , will be 
situated inside the superloading yield surface, with a similarity 
ratio of 5. The current stress is, of course, on the superloading 
surface. 

Let us use the model presented in this chapter to compute the 
mechanical behavior exhibited by this material, this time in an 
undrained triaxial compression test. The results can be seen in Figs. 
4.6(a) and 4.6(b). In Fig. 4.6(b), the *R  values show the state of 
structural decay in relation to the evolution of plastic deformation. 
At the initial stage of shear deformation, the material shows plastic 
compression accompanied by hardening. 

This is because the initial stress state is of the kind 
 
 <M ' M 'sq p p< . (4.34) 
 
However, the stress state later changes to 
 
 M ' M 's p q p< <  (4.35) 
 
and the material accordingly displays a behavior of plastic 
compression accompanied by softening. But as the plastic 
deformation evolves still further, bringing further decay in the soil 
structure ( * 1R →  ), Ms   steadily increases (Fig. 4.4(b)) until 
eventually 
 
 

 
 
Fig. 4.6 Model responses of an undrained triaxial compression test 
on a highly structured normally consolidated clay ( 0e =0.51). 
 
 M Ms =  (4.36) 
 
at which point the stress also comes to settle into a steady state on 
line M 'q p= , showing no more change in the excess pore water 
pressure and an indefinite shear strain. 

Let us now consider the case of an undrained triaxial 
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compression test on a normally consolidated soil, obtained by 
thoroughly remolding the same clay material so as to return it to 
the same void ratio as in the above example. Since we are dealing 
with the same clay, the elasto-plastic parameter will be the same 
as before. (The evolution parameter is no longer needed.) However, 
the initial conditions of the material are different. They can be 
given as: 
 
Table 4.4 Initial conditions. 
 

Initial conditions  

 Initial void ratio 0e     0.51 

 Initial mean effective stress 0 'p (kPa) 395.2 

 Initial value of 0
* *( )R R    1.0 

 Initial overconsolidation ratio 01/ R   1.0 
 
The results of an undrained triaxial compression test performed on 
this clay material are computed in Figs. 4.7(a) and 4.7(b). Of 
course, these Fig. 4.7 responses are precisely the ones indicated by 
the Cam-Clay model. The result of superimposing Fig. 4.7 on Fig. 
4.6 is shown in Fig. 4.8. Taking the sensitivity ratio as the ratio 
between the peak strength and the strength of the remolded clay, it 
can further be seen that this clay had a sensitivity ratio of about 2. 
In ways like this, it can be appreciated that the meaning  
 
 

 
 
Fig. 4.7 Model responses of an undrained triaxial compression test 
on a fully remolded normally consolidated clay with 0e =0.51. 
 

 
 
Fig. 4.8 Sensitivity ratio. 
of classical soil mechanics concepts such as “soil disturbance” and 
“sensitivity ratio” in terms of actual elasto-plastic mechanics is 
steadily becoming clearer. 
 

5  THE DIFFERENCE BETWEEN CLAY AND SAND  

5.1 Changes of overconsolidation and structure state 

In Chapter 4 it was mentioned that a soil always exists in one of 
the following four states: 
① overconsolidated structured state  ( 0 1R< < , *0 1R< < ) 
② normally consolidated structured state  ( 1R = , *0 1R< < ) 
③ overconsolidated non-structured state  ( 0 1R< < , * 1R = ) 
④ normally consolidated non-structured state  ( 1R = , * 1R = ) 
Soils in states ①, ② and ③ pass through a process of plastic 
deformation before ultimately arriving at state ④. 

Naturally sedimented soils, whether clays or sands, can 
generally be considered as occurring in state ①, that is to say, 
they have well developed structures and, while there may be 
differences of degree, basically exist in an overconsolidated state. 
In the process of plastic deformation by which soils of this kind 
evolve toward state ④, the two following routes may roughly be 
distinguished: 
Route C: ①  overconsolidated + structured → ②  normally 

consolidated + structured → ④ normally consolidated 
+ non-structured 

Route S: ①  overconsolidated + structured → ③ 
overconsolidated + non-structured → ④  normally 
consolidated + non-structured 

In soils that move along route C, plastic deformation evolves in 
such a way that there is a more rapid progress in the loss of 
overconsolidation than in the decay of soil structure. Also, for the 
breakdown of structure, a greater plastic deformation is required. 
Conversely, in soils that move along route S, the soil structure 
collapses as soon as plastic deformation begins to develop, while 
the loss of overconsolidation makes no progress at all. 

Anticipating the conclusion of an argument to come, when a soil 
undergoes loading, a typical clay soil will follow route C, whereas 
a typical sand soil will follow route S. For this, see Fig. 5.1. 

The reasoning from which this Fig. 5.1 conclusion is drawn will 
be made clear in the latter half of this chapter and in Chapters 6 
and 7 to follow, but first let us explain the details of the conclusion 
itself, in five principal points. 

 
 
 

 
 
Fig. 5.1 Route S and route C (after Asaoka et. al., 2002). 
(1)  A major claim made in this paper is that the ways a soil has 
of changing its state with regard to overconsolidation and soil 
structure, and more particularly the different ways different soils 
proceed with their changes of state, provide us with a means for 
distinguishing between sand and clay. Suppose we are given a 
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sample of soil, and also told that it is currently in state ①. Since 
that information alone is not enough to tell us how its state will 
change under loading, we are not yet in a position to tell whether 
the soil is a sand or a clay. A similar point can be made regarding 
a soil in state ④. Once we have been told that its present state is 
④, there is no further need to draw the distinction between sand 
and clay, because, either way, no amount of additional loading will 
bring about any further change of state. Be it sand or clay, when a 
soil has reached state ④  its elasto-plastic response can be 
described in terms of the Cam-Clay model, so that there is no 
difference as far as that is concerned. However, there are 
differences regarding the elasto-plastic parameter values. For 
example, clay is soft and sand is hard. Differences of that sort still 
remain. 
(2)  In the model presented above, involving the introduction of 
super/subloading yield surfaces, the degradation rate of 
overconsolidation is dominated by a parameter m   in the 
evolution law for R , while the structure decay (or collapse) rate 
is dominated by the parameters a  , b   and c   (of which b  
and c   generally have a value 1) in the evolution law for *R  . 
Depending on the value differences on these parameters, the 
model is therefore capable of describing a development either on 
route C or on route S. In other words, there is no need to provide 
separate models for clay and for sand. In fact: 
(3)  It is not impossible to conceive of a soil in which loss of 
overconsolidation and decay of structure might proceed together 
at the same rate, with the result that the state of the soil would 
change directly from ① to ④, without passing through either 
state ② or state ③. A clayey sand or a sandy clay might perhaps 
fit this description. That is why the adjective ‘typical’ was attached 
to “clay” and “sand” in the above conclusion statement. It is both 
difficult and unnecessary to draw an absolutely precise dividing 
line between clay and sand.  
(4)  Let us next think back to the two examples calculated in 
Chapter 4. The first calculation was for a remolded, but 
overconsolidated clay. The soil material was obtained by 
unloading a soil in state ④ so as to return it to state ③. (It should 
be noted with regard to route C above that no claim was made that 
a clay soil can never exist in state ③. One reason for adding the 
restriction “when a soil undergoes loading” to the conclusion 
statement was to allow for such special cases.) Now as this 
material was converted from state ③ to state ④ in the course of 
the drained shear test, it might seem possible, in terms of the routes 
as summarized above, to identify it as a sand. But as the rate of 
structure decay or collapse was not measured in the test, that is to 
say, no observation was made of the route of change from state ①, 
we cannot judge on the basis of this test alone whether the soil in 
question was a sand or a clay. The same point can be made about 
the second calculation, concerning the results of an undrained 
shear test for a normally consolidated but highly structured clay. 
In this case, too, there was no observation of the route of change 
from state ①, and therefore there can be no way of judging from 
the test alone whether the material was a sand or a clay.  
(5)  Since any soil in state ④ will shift into state ③ under 
unloading, an occurrence in state ③ is clearly conceivable for 
both sands and clays. The problem here is rather state ② . 
Structure cannot be recovered (revived) by unloading. 
Hypothesizing from the above conclusion only, therefore, it might 
seem impossible for a typical sand to occur in state ②. But that 
would be a false conclusion. If a loose sand is formed by a “water 
sedimentation method” in a cylinder, it will be at a consolidation 
level very close to normal, and also possess a high degree of 
structure. If this sand then shears repeatedly at a very low stress 
level, it will immediately enter into state ①. In other words, this 

sand has been in state ②  prior to arriving in state ① . The 
repeated shearing is equivalent to a repeated succession of 
loadings and unloadings, but since there is no chance in the 
loading phases for any loss of overconsolidation to get underway, 
the increases in overconsolidation that occur in the unloading 
phases can go on accumulating with each repetition cycle. 
Meanwhile, as the shearing takes place at such a low stress level, 
the structure remains intact. In this way, state ① conditions are 
generated in this sand, which was originally in state ②. If the 
same material is then subjected to loading only (without any 
unloading), it follows a route of ①  → ③  → ④ . More 
explanations will be needed concerning this particular topic, to 
which we shall be returning in Chapter 6. 
 
5.2 Medium dense sand and structured overconsolidated clay 

In this section we consider the undrained shear behavior of two 
soils, one of them a sand and the other one a clay. 

Undrained shear behavior of medium dense sand 
The elasto-plastic and evolution parameters for the medium dense 
sand on which the following calculation is based are set out in 
Table 5.1. Using these evolution law parameters, it can be seen 
that while a rapid collapse in structure occurs per unit plastic 
deformation, there is next to no loss in overconsolidation. This will 
also be evident from the calculation. The parameters in Table 5.1 
are thus indicative of a typical sand. 

The initial conditions of this sand, prior to its investigation in 
an undrained triaxial compression test, are shown in Table 5.2. The 
overconsolidation ratio, 01/ R  , is 3.5, the state of the structure 

*
0 0.26R = . 

 
 
Table 5.1 Material constants. 
 

Elasto-plastic parameters  

 Compression index λ    0.05 
 Swelling index κ~  0.012 
 Critical state constant M  1.00 

Void ratio at ' 98.1kPap = on NCL N   0.97 
 Poisson’s ratio ν  0.3 

Evolution parameters   
 Degradation parameter of overconsolidation state m  0.08 

Degradation parameter of structure a  ( 1.0b c= = ) 2.3 

 
 
Table 5.2 Initial conditions. 
 

Initial conditions  

 Initial void ratio 0e     0.92 

 Initial mean effective stress 0 'p (kPa) 294.3 

 Initial value of 0
* *( )R R    0.26 

 Initial overconsolidation ratio 01/ R   3.5 
 
The grounds for calling this material “a medium dense sand” will 
be explained presently, in Chapter 6. 

Figs. 5.2(a), 5.2(b), 5.2(c) and 5.2(d) show calculated results 
obtained from the Super/subloading Yield Surface model, for the 
response behaviors of the material during the test. From Figs. 
5.2(c) and 5.2(d), showing the changes in R  and *R , it is clear 
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that this is a typical sand. 
The change in Ms  in the course of the test is shown in Fig. 

5.3. Given that initially M Ms < , at a point where the stress state 
reaches 
 
 M ' M 's p q p< < , (5.1) 
 
the sand exhibits a softening behavior, together with plastic 
compression. However, the breakdown of the soil structure is then 
rapid, and as Ms  very quickly increases straight up to M >Ms , 
the stress reaches a state 
 

 
 
Fig. 5.2 Model responses of the undrained triaxial compression 
test on a medium dense sand. 
 

 
 

Fig. 5.3 Movement of Ms . 
 
 M ' M 'sp q p< < , (5.2) 
 
where the behavior switches to hardening, together with plastic 
expansion. If the plastic deformation is allowed to proceed further, 
Ms   will of course settle at M Ms =  , and the material will 

ultimately attain a steady state on M 'q p= . In other words, stress, 
volume and excess pore water pressure will all cease to vary in 
response to the ongoing development of shear strain on M 'q p= . 

Undrained shear behavior of structured overconsolidated clay 
The elasto-plastic and evolution parameters for the clay on which 
the calculation is performed are given in Table 5.3. Using these 
evolution parameters, while a rapid loss in overconsolidation per 
unit plastic deformation can be seen, there is virtually no decay in 
soil structure. The same is also evident from the calculation. Thus, 
the parameters in Table 5.3 are indicative of a typical clay.  

The initial conditions of this clay material, prior to subjecting it 
to an undrained triaxial compression test, are as shown in Table 
5.4. The overconsolidation ratio, 01/ R , is 4.5, and the state of the 
structure is *

0 0.46R = . 
Figs. 5.4(a), 5.4(b), 5.4(c) and 5.4(d) show calculated results, 

obtained using the Super/subloading Yield Surface model, for the 
response behaviors of the material during the compression test. 
From Figs. 5.4(c) and 5.4(d), which show the changes in R  and 

*R , it is clear that this is a typical clay. 
The changes in Ms   during the test are shown in Fig. 5.5. 

Given that initially M >Ms , even at a point where 
 
 M ' M 'sp q p< <  (5.3) 
 
the clay will still go on exhibiting hardening, in spite of the plastic 
expansion that accompanies this. However, the loss of 
overconsolidation in the clay then proceeds rapidly, and as Ms  
steeply decreases to a level where M>Ms , the stress eventually 
comes to a state 
 
 
Table 5.3 Material constants. 
 

Elasto-plastic parameters  

 Compression index λ    0.25 
 Swelling index κ~  0.045 
 Critical state constant M  1.25 

Void ratio at ' 98.1kPap = on NCL N   1.73 
 Poisson’s ratio ν  0.3 

Evolution parameters   
 Degradation parameter of overconsolidation state m  10.0 

Degradation parameter of structure a  ( 1.0b c= = ) 0.5 

 
Table 5.4 Initial conditions. 
 

Initial conditions  

 Initial void ratio 0e     1.58 

 Initial mean effective stress 0 'p (kPa) 98.1 

 Initial value of 0
* *( )R R    0.46 

 Initial overconsolidation ratio 01/ R   4.5 
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Fig. 5.4 Model responses of the undrained triaxial compression 
test on a structured heavily overconsolidated clay. 
 
 

 
 

Fig. 5.5 Movement of Ms . 
 
 

 
 

Fig. 5.6 “Rewinding” observed in laboratory (after Asaoka A., 
2000). 

 
 M ' M 's p q p< <  (5.4) 
 
where the behavior switches to softening, together with plastic 
compression. If the plastic deformation is allowed to proceed 
further, Ms  will of course settle at M Ms = , and the material 
will attain a steady state of M 'q p=  . In other words, stress, 
volume and excess pore pressure will all cease to vary in response 
to the ongoing development of shear strain at M 'q p= .  

Another important point is that because of the residual structure 
that remains even after the loss of overconsolidation, the clay 
material in the latter half of the test displays a softening behavior, 
together with plastic compression. This is called “rewinding” 
(Tatsuoka F. and Kohata Y., 1995). An example of an experiment 
in which rewinding is observed is given in Fig. 5.6. 
 
6.  COMPACTION/DENSIFICATION OF SAND 

As clearly represented in Equation (4.8) in Chapter 4 
 

 
*

*
01

p
v

R Rf
e R R

λ κε
 −

= + − +  

    (6.1) (bis (4.8)) 

 
a decay or collapse of the soil structure ( * 0R > ), whether in clay 
or in sand, is conducive to plastic volume compression. However, 
in the case of sand, while the structure is quick to collapse, loss of 
overconsolidation hardly makes any progress at all. What results 
from the combination of these two causes is the classical sand 
phenomenon of large volume compression under repeated loading, 
or in other words, the “compaction” of sand. 
 
6.1 Densification of loose sand under repeated drained shear 
stress application 

As the phenomenon of the densification of drained loose sand 
under repeated shear stress is a complicated thing to grasp, let us 
explain it here with the aid of numerically computed examples 
obtained from the Super/subloading Yield Surface model. 

The sand used is the same as in Table 5.1 in Chapter 5. But since 
we are now taking account of the evolution law for anisotropy, it 
is necessary to present the elasto-plastic and evolution parameters 
again, in a new Table 6.1. The details concerning anisotropy are 
given in APPENDIX A, but for the understanding of the present 
chapter they are not of great importance. It will be recalled that the 
sand in Chapter 5 was initially in a medium dense state (①), and 
that the investigation concerned the undrained application of shear 
stress. The sand under consideration here is the same as in Chapter 
5, but its initial state is different, in that before undergoing 
repeated shear stress under drained conditions it is as indicated in 
Table 6.2. The significance of this is that, in the terms of Chapter 
5, the sand in the present test begins in the “normally consolidated 
structured state” ②. It will be easy to see that the values in Table 
6.2 correspond to the classic initial conditions for loose sand. 

A triaxial repeated compression/extension test was performed 
on this material, under drained conditions, at a constant lateral 
pressure 2 3σ σ=  and a relatively low shear stress amplitude q . 
The deviator stress amplitude was 60kPa. The elasto-plastic 
response to this, according to the Super/subloading Yield Surface 
model, can be seen in Figs. 6.1(a) to 6.1(d). Fig. 6.1(a) shows the 
effective stress path for the test, Fig. 6.1(c) the nature of the 
volume compression undergone by the sand specimen under the 
repeated shear stress, and Figs. 6.1(b) and 6.1(d) the variations of 
R   and *R   under the same repeated shear stress, taking shear 
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strain sε , as the horizontal axis scale. 
 
 

Table 6.1 Material constants. 
 

Elasto-plastic parameters  

 Compression index λ    0.05 
 Swelling index κ~  0.012 
 Critical state constant M  1.00 

Void ratio at ' 98.1kPap = on NCL N   0.97 
 Poisson’s ratio ν  0.3 

Evolution parameters   
 Degradation parameter of overconsolidation state m  0.08 

Degradation parameter of structure a  ( 1.0b c= = ) 2.3 

Evolution parameter of β  rb  (see APPENDIX A) 200.0 

Limit of rotation bm        (see APPENDIX A) 0.7 

 
 
Table 6.2 Initial conditions. 
 

Initial conditions  

 Initial void ratio 0e     1.09 

 Initial mean effective stress 0 'p (kPa) 294.3 

 Initial value of 0
* *( )R R    0.01 

 Initial overconsolidation ratio 01/ R   1.00 

Initial anisotropy 0 3/ 2ζ 0 0= ⋅β β  (see APPENDIX A) 0.00 

 
 

 
 
 
Fig. 6.1 Overall behavior of “compaction” of a loose sand under 
repeated shear stress application. 
Fig. 6.1(c) shows the extreme degree of volume compression 
undergone by this sand. The two lines drawn in the figure 
represent the normal consolidation and critical state lines from the 

modified Cam-Clay model, using the elasto-plastic parameters for 
this sand: ,  ,  N,  ( N ( )ln 2)λ κ λ κΓ = − −    . Looking at these 
results, it can be seen that the soil compression theory of classical 
soil mechanics, based on the log 'e p   relation and dilatancy 
N λ κ− Γ ∝ −   , is powerless to deal with the 
compaction/densification of sand. 

Fig. 6.2 is an enlargement of Fig. 6.1(c). This illustrates vividly 
the impossibility of trying to compact loose sand under monotonic 
loading. At a pressure above 2000kPa, the sand particles are 
finally crushed to destruction.  

Fig. 6.2 is also important for showing that no concept of 
“maximal past loading” is needed for a definition of the 
overconsolidation ratio. Let us next look more closely at that 
aspect. 

The changes in the void ratio and in R  and *R  are shown 
enlarged in Figs. 6.3(a) to 6.3(d), for the third cycle of the repeated 
shear stress. Although these figures are simply a blowing up of 
Figs. 6.1(a) to 6.1(d), the larger scale does aid comprehension. 
How large a compression occurs in the loading stages (a)–(b) and 
(c)–(d) can be appreciated from Equation (6.1) as well as from the 
increase of *R   in Fig. 6.3(d). However, the loss of 
overconsolidation accompanying the loading process is extremely 
small (Fig. 6.3(c)). By contrast, the increase in overconsolidation 
that occurs in the unloading stages (b)–(c) and (d)–(e) of the 
repeated loading is highly conspicuous. In this way, while the 
structure is destroyed early on by the repeated loading, 
overconsolidation goes on accumulating, leading to a diminution 
in R . The same story can be gleaned from Figs. 6.1(b) and 6.1(d). 

The fact that there is so little loss of overconsolidation in the 
loading stage implies that the increases in size of the subloading 
and superloading yield surfaces under loading must be comparable, 
so that there is almost no change in the ratio between them. 
However, whereas the superloading surface, after increasing in 
size under loading, hardly alters its position in response to the 
subsequent unloading, the subloading surface follows the response 
of diminution in the current stress and reduces its shape in turn. 
Since the overconsolidation ratio is determined as the size ratio 
between the superloading and subloading yield surfaces, and since 
e v e r y  r e p e a t e d  c y c l e  o f 

 
 

 
 
 
Fig 6.2 “Compaction” and isotropic compression of a loose sand. 
 
 
loading means that the superloading surface will increase in size 
while the size of the subloading surface will remain tied to the 
position of current stress, the overconsolidation ratio, in a case of 

0 200 400
–200

0

200

–2 0 2
0.0

0.5

1.0

0 200 400

0.8

1.0

–2 0 2
0.0

0.5

1.0

     

 

 
P

   

     

 

  

   

 

0 1000 2000

0.8

1.0

Mean effective stress  p' (kPa)

V
oi

d 
ra

tio
  e

1.2

Isotropic

Compaction
 behavior

 compression

NCL

CSL



12th Asian Regional Conference on SMGE, August 2003, Singapore 
Keynote Lecture 

21 

sand like this, will go on and on rising. 
In the contrary case of clay, it is the loss of overconsolidation 

under loading that is conspicuous, so that the superloading and 
subloading yield surfaces very soon come to fall together. For this 
reason, there is no rapid accumulation of overconsolidation for 
clay under repeated loading, as there is for sand. 
 
6.2 Variation in shear behavior of sand with decrease in void 
ratio and increase in overconsolidation 

Let us now return to Fig. 6.1(b), relabeled here as Fig. 6.4. Fig. 6.4 
shows five states of the sand, [1]-[5], as indicated by void ratio e , 
R  and *R , obtained in the course of compaction at five stages 
of repeated loading, beginning at initial state [1]. (n indicates the 
number of each shear cycle.) Looking at the five states, we 
recognize them as: 
 

 
 
Fig. 6.3 Detailed behavior during “compaction” procedure.  
 

 
 
Fig. 6.4 Five different sand specimens as distinguished by 
“compaction” procedure. 
[1] :  loose sand 
[2] :  medium loose sand 
[3] :  medium dense sand 

[4] :  dense sand 
[5] :  very dense sand 
These five states of sand are all occur in the same sand material. 
That is to say, the five states [1]-[5]of this sand have all been 
generated spontaneously by assigning the elasto-plastic and 
evolution parameters of Table 6.1 to the Super/subloading Yield 
Surface model and then computing the responses to repeated shear 
stresses on the basis of the initial conditions shown in Table 6.2. It 
is to be stressed that they are not simply five states that the author 
invented arbitrarily and assigned to suit his own needs. 

Let us next use the model to compute how these five different 
kinds of sand will respond to undrained and drained triaxial tests. 
Figs. 6.5(a) to 6.5(e) show the elasto-plastic responses obtained 
from the Super/subloading Yield Surface model for an undrained 
triaxial compression test with constant lateral cell pressure. All of 
these sand responses are derived from the same elasto-plastic and 
evolution parameters (Table 6.1). Moreover, as was stressed above, 
the initial conditions of the specimen in each of the five cases were 
obtained by successive calculations from the original loose state 
of the same sand. It will therefore be evident that the undrained 
shear responses in Fig. 6.5 are all the results of a variation of void 
ratio, overconsolidation ratio and degree of structure in the same 
sand specimen. 

What happens when the test is actually performed in a 
laboratory is shown in Figs. 6.6(a) to 6.6(c). These test results 
come from work by Nakano and Nakai (2003a). The physical 
specifications of the sand used are given in Table 6.3, and the grain 
size distribution in Fig. 6.7. It is important to notice the good 
qualitative and quantitative match between Figs. 6.5 and 6.6. The 
qualitative tendencies of the test findings in Fig. 6.6 have long 
been familiar in experimental soil mechanics. Experiments by 
Castro (1969) are referred to in the REFERENCES at the end. 

As was mentioned in the INTRODUCTION to this paper, there 
have been attempts by some researchers and research groups to 
explain the experimental findings of Fig. 6.6 by setting up separate 
models, or separate elasto-plastic parameters. It was also remarked 
that such approaches are hard to accept as constitutive formula 
research. This is because of the shared shortcoming found in them 
all, of offering no concepts for “structure” or a “superloading yield 
surface.” 

Another common shortcoming of all these researchers and 
groups who construct separate models or parameters is that they 
have virtually nothing to say on the subject of the drained shearing 
of sand. This is because, in drained conditions, both loose and 
dense sand undergo very noticeable changes in sedimentation 
through shearing. 

The responses calculated in accordance with the 
Super/subloading Yield Surface model for the five kinds of sand 
in triaxial drained compression tests under constant cell pressure 
(results as in Fig. 6.4) are set out in Fig. 6.8. The qualitative 
tendencies appearing in this figure are already well-known in 
experimental soil mechanics.  

Figs. 6.5(c) and 6.5(e), and Figs. 6.8(c) and 6.8(f), show the 
variations in R  and *R  in relation to the development of axial 
strain. We can confirm, yet again, that the decay of structure is 
rapid in sand, while the loss of overconsolidation is very slow. 
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Fig. 6.6 Experimental results corresponding to Fig. 6.5 (after 
Nakano and Nakai, 2003a). 
 
 
 

 

 
 
 
Table 6.3 Physical properties of the sand tested in laboratory. 
 

Specific gravity of grains sG   2.65 

Maximum void ratio maxe    1.06 

Minimum void ratio mine     0.64 
 
 
 

 
 
Fig. 6.7 Grain size distribution. 
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Fig. 6.5 Undrained triaxial compression behaviors of the five sand specimens of different densities. 
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Concerning the characteristics of shear behavior in sand, it is 

difficult to comment in any greater detail without bringing in some 
discussion of 
①  grain size distribution, and 
②  anisotropy. 
In the case of ①, if the grain size distribution is not gently graded 
but abrupt in contour, it will be difficult for the sand to exhibit a 
medium loose or medium dense state, for the grain size 
distribution is closely related to the evolution parameters for the 
structure and overconsolidation. As for ② , sand is very 
conspicuous for induced anisotropy, i.e. changes in anisotropy co-
occurring with changes in current stress states. This induced 
anisotropy has a considerable effect on shear behavior 
characteristics, especially for a sand existing in a loose condition. 

There are various further things we might say about these topics 
① and ②. But as they lie too far out outside the main scope of 
our paper, they are best omitted. 
 
7.  “SECONDARY CONSOLIDATION” OF STRUCTURED 
CLAY 

As a phenomenon, the secondary consolidation of clay was long 
regarded as being due to the intrinsic viscosity characteristic of the 
clay soil skeleton itself, and from Suklje to the present day, visco-
plasticity theory has been taken as the theoretical statement of this 
outlook. The main steps of this theory, if we sum them up, are that, 
first, “clay skeleton elements are intrinsic to a visco-plastic 
material,” and second, “if the question of the clay mass is 
accordingly approached as a boundary value problem, the creep - 
i.e. secondary consolidation/delayed compression - can be 
“calculated.” However, seeing that the “viscosity” of the soil 

skeleton elements and the “creep” of the clay mass are originally 
two synonyms for the same concept, the fact that one can be 
“calculated” from the other is trivial. For all the theory says is that 
creep (secondary consolidation) occurs in a clay ground as a result 
of creep (secondary consolidation) occurring in the clay of which 
that ground is composed.” What is not explained by this kind of 
theorizing is the reason why secondary consolidation should occur 
in the first place. 

Let us think back to the investigative attitudes with which our 
predecessors in soil mechanics approached their research. They 
were well aware that the visco-elasticity theory could deliver the 
same solutions as Terzaghi’s one-dimensional consolidation 
settlement, but nonetheless continued to take Terzaghi’s 
consolidation theory, grounded in the concept of “effective stress,” 
as their theoretical basis in soil mechanics. This was because 
Terzaghi’s account, with its layered structural presentation of 
concept and theory, was able to offer explanations for why 
consolidation settlement occurred. 

What is needed in soil mechanics is a theory that can answer 
questions of the sort: “What mechanisms are secondary 
consolidation, or delayed compression, caused by?”, “What are 
the conditions in which they do not occur?”, and “Why does 
secondary consolidation occur in clay, but not in sand?” If it is 
granted that the present paper has given “a successful description 
of the difference between sand and clay,” then the 
Super/subloading Yield Surface model, by means of which this has 
been achieved, must also be the source from which this theory can 
best be deduced (Asaoka et al., 2000b). 
 
 

 
 
Fig. 6.8 Drained triaxial compression behaviors of the five sand specimens of different densities. 

10 20

500

1000

1500

500 1000 1500

500

1000

1500

10 20

0.5

1.0

0 10 20
10

5

0

–5

0 500 1000 1500

0.8

1.0

10 20

0.5

1.0

Axial strain ε1 (%)

D
ev

ia
to

r s
tr

es
s  

q 
(k

Pa
)

Mean effective stress  p' (kPa)

D
ev

ia
to

r s
tr

es
s  

q 
(k

Pa
)

Shear strain εs (%)

R

Axial strain ε1 (%)

V
ol

um
et

ri
c 

st
ra

in
 ε

v (
%

)

Mean effective stress  p' (kPa)

V
oi

d 
ra

tio
  e

Shear strain εs (%)

R*

1.2

[1]

[2]

[3]
[4]

[5]
[1]

[1]

[1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

[5]

[5]

[2]

[3]
[4]

(a) (b) (c)

(d) (e) (f)

q=Mp'

NCL

CSL

0

000



12th Asian Regional Conference on SMGE, August 2003, Singapore 
Keynote Lecture 

24 

7.1 Terminology  

In this chapter we shall be investigating the progressive 
consolidation phenomenon that appears in a structured clay as its 
structure decays. No term yet exists in soil mechanics to express 
this “progressive consolidation with decay of structure.” Terms 
existing hitherto, such as “secondary consolidation” and “delayed 
compression,” are the names given to particular phenomena 
displayed in extreme cases of “progressive consolidation with 
decay of structure.” Certainly, in extreme cases it may take an 
inordinate length of time for progressive consolidation of this kind 
to arrive at its end stage, and large-scale occurrences of delayed 
compression are always possible. But it is not the case that all 
instances of “progressive consolidation with decay of structure” 
require this inordinate length of time, or result in delayed 
compression on a large scale. Therefore it is not appropriate to 
assign automatic equivalence labels like “secondary consolidation” 
etc. to this term.  

It is difficult to give strict mechanical definitions for terms like 
“secondary consolidation” and “delayed compression,” the uses of 
which have been based on experience. Nor, mechanically speaking, 
is there any need to. It will be sufficient if we are able to analyze 
and investigate “progressive consolidation with decay of structure” 
as a phenomenon. For reasons of this kind, when we have occasion 
to use these terms “secondary consolidation” and “delayed 
compression” in what follows, we shall always put them in 
quotation marks. 
 
7.2 A possible mechanism of “secondary consolidation” and/or 
“delayed compression”  

This section opens with an explanation of how, in a highly 
structured clay, a progressive consolidation with decay of structure 
may lead to plastic compression accompanied by softening, which 
then considerably delays consolidation/ compression. The co-
occurrence of softening with compression may be an “extreme 
case” among the mechanical behaviors of clay, but sometimes the 
consideration of “extreme cases” proves helpful for the thorough 
understanding of a mechanism. 

The argument in both this section and the one that follows will 
confine itself to conditions of one-dimensional consolidation. Also, 
in order to keep things easily understandable, the explanation will 
at times make use of one-dimensional mechanics (Figs. 7.2 and 
7.3). It may be that these expedients lead to further “extreme cases,” 
for in real problems of engineering conditions of one-dimensional 
consolidation deformation are very rare and one-dimensional 
mechanics, as an apparatus, represents an extreme simplification. 
But, as said above, the consideration of simple, stark cases can 
sometimes prove helpful for the understanding. Problems of 
multidimensional consolidation will be dealt with in Section 7.4. 

We look first at the example of a clay which is already in a 
heavily overconsolidated state initially. Therefore, even assuming 
a starting state in which M >Ms  , considering that the loss of 
overconsolidation in clay generally proceeds faster than the 
degradation of structure, Ms   will decrease as a result of the 
plastic deformation process accompanying the loading until it 
eventually becomes smaller than M , arriving at the kind of stress 
state shown in Fig. 7.1, where 
 
 M ' M 's p q p< < . (7.1) 
 
In this state, as already explained in Chapters 4 and 5, there will 
be an occurrence of softening together with plastic compression. 
If this phenomenon continues in the same clay, delayed 

consolidation settlement is bound to result. Let us first explain why. 
Even if compression goes on, the continuing softening will 

eventually bring down effective stress, leading to a new rise in 
pore water pressure in the clay, assuming that the applied load 
remains constant. This is shown in Fig. 7.2, in terms of one-
dimensional mechanics. Assuming the pore pressure is not 
dissipated, this is what causes the delayed consolidation. Naturally, 
if the loading continues, the further evolution of the plastic 
deformation will sooner or later lead to the development of decay 
in the structure, causing Ms  to increase and approach closer to 
M , which means that the state of M ' M 's p q p< <  in Equation 
(7.1) will not last indefinitely, but eventually give way to the 
relation 
 
 M ' M 'sq p p< < , (7.2) 
 
whereupon the soil will revert to hardening. Once this state in 
Equation (7.2) is reached, the clay returns to the usual kind of 
consolidation state for clay, familiar from textbooks, in which 
“stiffness/Young’s modulus are positive.” Therefore if we do  
 

 
 
Fig. 7.1 Softening with plastic compression. 
 

 
 
Fig.7.2 'v eσ 　   relation with 'v criticalσ 　   in “one-dimensional 
mechanics.” 
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Fig.7.3 Generation of pore pressure due to softening during one-
dimensional consolidation. 
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Fig. 7.4 Finite element array for one dimensional 
consolidation/compression. 
 
Table 7.1 Material constants, initial conditions and permeability 
constant. 
 

Elasto-plastic parameters  

 Compression index λ    0.13 
 Swelling index κ~  0.075 
 Critical state constant M  1.53 

Void ratio at ' 98.1kPap = on NCL N   1.97 
 Poisson’s ratio ν  0.3 

Evolution parameters   
 Degradation parameter of overconsolidation state 
m  10.0 

Degradation parameter of structure a  ( 1.0b c= = ) 0.59 

Initial conditions  

 Initial void ratio 0e     1.19 

 Initial mean effective stress 0 'p (kPa)  9.8 

 Initial value of 0
* *( )R R    0.05 

 Initial overconsolidation ratio 01/ R   100.0 

Permeability k (cm/sec) 7.8×10-9 

decide to apply the name of “secondary consolidation” to the state 
represented in Equation (7.1), we can say that secondary 
consolidation leads up to a primary consolidation state to follow. 

As the time variation in the pore pressure at some material point 
in a clay deposit will depend on the gradient of the excess water 
pressure field at that point, consolidation is a concept that 
essentially has to be treated as a boundary value problem. Thus, 
even in a problem of one-dimensional mechanics, the 
representation of the material point’s behavior in Fig. 7.2 is, if 
taken alone, insufficient for explaining aspects such as the 
regeneration and dissipation of pore pressure. For this reason, Fig. 
7.3, using Terzaghi’s one-dimensional consolidation equation 
(here again, in terms of one-dimensional mechanics), serves to 
explain the effect of softening on consolidation. As seen in the 
figure, a negative value of the coefficient of consolidation vc  
corresponds, in one-dimensional mechanics, to softening. If 
softening were to go on exclusively, localization of the sort shown 
in Fig. 7.3 would run on too far, and the calculation would explode 
exponentially. But fortunately, as Equation (7.2) and Fig. 7.2 
indicate, there is no real fear of that happening, since at some point 
the clay’s behavior is bound to revert to hardening. 

Let us say a little more about this need to treat consolidation as 
a boundary value problem. 

Once softening has set in at a certain depth in the clay deposit 
so that the pore water pressure there begins to increase, since the 
pressure in the clay is continuously distributed there will be a 
corresponding increase in the soil elements on all adjoining sides, 
as well as above and below, leading to unloading in those elements. 
In this kind of way, even if deformation occurs in a one-
dimensional state, the clay in the ground undergoing the 
consolidation pressure will be subject, as Fig. 7.2 shows, not just 
to hardening, softening and re-hardening, but also to incidental 
unloading along the way. The resulting stress state will be three-
dimensionally highly complex, and the loading history and 
effective stress paths will be of extreme complexity, too. 
Furthermore, since these effective stress paths will all differ from 
the top of the clay to the bottom, the elasto-plastic mass of the 
whole, once consolidation is complete, will become quite 
heterogeneous in the depth direction, reflecting the differences in 
loading history. The variable void ratios and other heterogeneities 
that our researchers regularly find in naturally deposited clay strata 
do in fact show, according to the ways described above, whether 
or not a given clay deposit has undergone co-occurrences of 
compression and softening in the course of its deposition process. 
There is no hiding these geological footprints. 

We now confirm the above account by means of a numerically 
computed example of one-dimensional consolidation. The 
computation itself, of course, makes use of three-dimensional 
componential rules to calculate the one-dimensional deformation 
according to a multidimensional consolidation theory. It simulates 
an oedometer test on a clay specimen of thickness 2cm. Fig. 7.4 
shows the various conditions assumed for the finite element 
calculation, and Table 7.1 the parameter and other initial values 
used. The specimen was a structured clay, but the initial 
overconsolidation ratio of 100 is intended to simulate its state 
when brought into the laboratory after being sampled. Fig. 7.5 
shows the relation between the void ratio and load, for the 
specimen as a whole, when consolidated under gradual loading at 
a constant incremental rate. “Void ratio,” here, means the average 
of the void ratio values occurring from top to bottom in the 
specimen. In other words, in a case where compression is 
advanced at the drained end, but not so advanced at the undrained 
end of the sample, it is the average value that is taken. 
  In Fig. 7.5, the compression curves extend further to the right 
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for the faster rates of loading. When the loading rate is rapid the 
draining is unable to keep pace, and this causes a rise in pore water 
pressure. Or conversely, for the same void ratio the clay specimen 
is able to withstand higher loads if these are applied at a slower 
rate. On first sight, the figure appears to show a difference in 
loading rate leading to a different shape in the compression curve 
for the same soil. However, this can be recognized as only 
apparent when we take into account the increase in pore drainage 
resistance, that is to say, the rise in the pressure on the pore water. 
By working out the coupled soil-water relation in which the rate 
of volume change in the soil skeleton is governed by Darcy’s law, 
the problem of calculating this behavior takes care of itself. It 
should be noted that it has nothing to do with, and does not depend 
upon, Suklje’s “isotache hypothesis” (Suklje L., 1957) concerning 
the small element of the soil skeleton. 

As seen in Fig. 7.5, loading is first applied at a rapid rate at one 
of three levels, A (392kPa), B (833kPa) or C (1179kPa). The load 
is then kept constant, and the procedure changes to that of a usual 
consolidation test. The settlement observed at the top end of the 
specimen after the change to constant loading is shown  
 

 
 

Fig. 7.5 Apparent v eσ 　  curves with different loading rates. 
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Fig. 7.6 Delayed compression/consolidation due to softening with 
volume compression (bold lines indicate the occurrence of 
softening). 
plotted against time in Fig. 7.6. In this example, a remarkable 
delay in consolidation settlement is observed at loading level B. 
Fig. 7.7 shows the isochrones for the excess pore pressure at this 

level, from top to bottom inside the specimen. From this we can 
make out a gradual shift with time in the portion exhibiting a rise 
in pore pressure due to softening, from the top end (drained) to the 
bottom (undrained). The delay in the dissipation of excess pore 
pressure is also evident. Fig. 7.8 shows the heterogeneous 
condition of the clay specimen after consolidation is complete, by 
depth, in comparison with the reference configuration observed 
prior to the test. 
 

 
 
Fig. 7.7 Isochrones (kPa) (arrows indicate the generation of pore 
pressure). 
 

 
 
Fig. 7.8 Heterogeneity of the clay specimen with depth after 
completion of consolidation. 
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the present calculation). The nearer loading level B approaches to 
this 'v criticalσ 　 , the greater the consolidation delay becomes. This 
can be seen from Fig. 7.9, where loading level B is at 785kPa. For 
the isochrones, see Fig. 7.10. For a loading level as high as C, 
softening begins at the very onset of compression, as shown in Fig. 
7.6. A large compression due to the decay or collapse of the soil 
structure is inevitable, but the consolidation delay is small. 

In Fig. 7.5, loading levels A and B both appear to be close to the 
“consolidation yield stress.” It has long been said that 
consolidation pressures in the area straddling this consolidation 
yield stress lead to “secondary consolidation” and/or “delayed 
compression.” This can be regarded as a rule of experience, based 
on the fact that the kind of loading level that destroys the soil 
skeleton and leads to the softening phenomenon lies close to the 
consolidation yield stress observed in consolidation tests for 
structured overconsolidated clays. Since the soil is in fact always 
yielding (the current stress is always on the subloading yield 
surface), this name “consolidation yield stress” refers only to an 
apparent yield stress, and is not a strictly defined mechanical term. 
Further details in this connection are given for Figs. 7.16 and 7.17 
below. 

The phenomenon evident from Fig. 7.9, that consolidation 
settlement can accelerate while underway, and the fact that a 
vertical consolidation pressure occurs in the vicinity of the 
“consolidation yield stress,” have both been reported previously. 
Observations by the Laval University Geotechnical Group 
(Leroueil et al., 1985), are presented in Fig. 7.11. These indicate 
that a sudden rise in the settlement rate occurs around a certain 
particular loading level. Similar observations have been reported 
from alluvial clay deposits in land reclamation sites in Japan.  

It was said above that Fig. 7.5 “shows the relation between the 
void ratio and load for the specimen as a whole when consolidated 
under gradual loading at a constant rate.” In such a case, what kind 
of compression curve will result from taking this 2cm thick 
specimen as a single soil element, compressing the clay soil at an 
infinitely slow rate while no load is supported from the pore 
water? This is the situation shown in Fig. 7.12, overlaid on Fig. 
7.5. As can be seen from this figure, a 'v criticalσ 　   level occurs 
between loading levels A (392kPa) and B (833kPa), leading to 
softening within the specimen. 

Let us note that the softening that occurs with compression in 
the stress state of Equation (7.1) (Fig. 7.2) is a special phenomenon, 
appearing in the most extreme cases of delayed 
consolidation/compression. So far we have explained the time-lag 
effect exerted on consolidation by “softening with plastic 
compression.” But it needs to be pointed out that this kind of 
softening is not necessarily a precondition for delayed 
consolidation. Even in a highly structured clay soil, there is no 
automatic guarantee that softening and a 'v criticalσ 　  phenomenon 
of the type seen in Fig. 7.2 will be observable in a one-dimensional 
compression process. This is shown clearly in Fig. 7.13. 
Nevertheless, even in a case like this it remains true that where the 
clay in the deposit finds itself on the loading path X → Y there 
will be a delay in consolidation and a considerable degree of 
compression as a result of  the coefficient of consolidation vc  
approaching close to zero. The “consolidation yield stress” is also 
situated very close to this X → Y load level, which explains, again, 
why it has long been said that “secondary consolidation” and/or 
“delayed compression” occurs at loads straddling the 
“consolidation yield stress.” This is evident both from Fig. 7.13 
and from Fig. 7.2, and further remarks regarding the same point 
will made in connection with Figs. 7.16 and 7.17 in the next 
section. 

 

 

 
 
Fig.7.9 Suddenly accelerated consolidation settlement. 
 
 

 
 
Fig. 7.10 Isochrones of excess pore pressure (kPa). 
 
 

 
 
Fig. 7.11 Field observation of the rate of consolidation settlement 
(after Leroueil et al., 1985). 
 
7.3 Limitations of the laboratory oedometer test  

Taking a sample of a highly structured naturally deposited clay 
without disturbing its structure is far from easy. Its transfer from 
its initial location in the clay deposit to the laboratory involves 
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inevitable unloading, so that the specimen ends up in a heavily 
overconsolidated condition. In consequence, the effective stress 
path during the laboratory reloading turns out quite differently 
from the effective stress path of its original loading in situ. For all 
these reasons, it is exceedingly difficult in the laboratory 
environment to recreate the loading process at the natural 
deposition site. All of these problems have always been well 
known, but nowadays it is possible to factor most of them into the 
computation in detail, including the problem of the “disturbance 
o f  t h e  s o i l  s p e c i m e n . ”  I n  t h i s  s e c t i o n ,  u s i n g 
 

 
 
Fig. 7.12 Compression behavior of the clay material, by elements. 
 

 
 
Fig. 7.13 'v eσ 　  relation without peak. 
computed results from a numerical experiment, we shall be 
looking at the limitations of laboratory consolidation tests, taking 
the main problem points in order. 

Overconsolidated state of laboratory clay specimen 
We shall here be considering briefly a numerical simulation of in-

situ soil sampling, the mounting of the clay material on the test 
apparatus, and the subsequent one-dimensional consolidation test. 
For the details, see Noda et al., 2003a and Nakano et al.,2003b. 

The initial conditions at the in-situ sampling location of Fig. 
7.14 (depth 20m) are set out in Table 7.2. The assumed material is 
a structured clay with an overconsolidation ratio of 2.5. The elasto-
plastic and evolution parameters of this clay are given in Table 7.3. 
They are typical clay parameters, in that the loss of 
overconsolidation proceeds more rapidly than the decay of the soil 
structure. This set of conditions is the general departure point for 
the numerical simulation.  

The sample, still in a strictly maintained undrained condition, is 
next brought into an isotropic stress state. The effective stress path 
for this process is marked A  A'→  in Fig. 7.15. The subloading 
yield surface shown in the figure for the in-situ sampling position 
follows the form of the yield function in the modified Cam-Clay 
model, for which anisotropy is taken into account. The details of 
this are as explained in APPENDIX A. Effective stress path 
A  A'→  (undrained path) leads outside of this subloading yield 
surface, and is thus a loading, not an unloading path. This means 
that plastic deformation has been occurring along this path 
A  A'→ , causing a slight but real change in both the structural 
state and the overconsolidation ratio of the clay, as compared with 
the original in-situ state. The state of the clay at point A'   is 
calculated to be as in Table 7.4. Comparing this with Table 7.2, it 
is evident that a small amount of disturbance has crept in during 
the process of sampling. 
 

 
 
Fig. 7.14 Soil sampling. 
 

 
 

Fig. 7.15 Sampling and isotropic unloading. 
Table 7.2 Initial soil sates in-situ, lightly overconsolidated clay. 
 

Vertical effective stress 'vσ (kPa) 153.7 

Coefficient of lateral pressure ' / 'h vσ σ  0.7 

Overconsolidation ratio 01/ R  2.5 
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Value of *
0R  0.1 

Anisotropy 0 3/ 2ζ 0 0= ⋅β β  (see APPENDIX A) 0.7 

 
 
Table 7.3 Material constants and permeability constant. 
 

Elasto-plastic parameters  

 Compression index λ    0.131 
 Swelling index κ~  0.06 
 Critical state constant M  1.2 

Void ratio at ' 98.1kPap = on NCL N   1.97 
 Poisson’s ratio ν  0.1 

Evolution parameters   
 Degradation parameter of overconsolidation state 
m  5.0 
Degradation parameter of structure a  

( 1.0b c= = ) 1.73 

Evolution parameter of β  rb  (see APPENDIX A) 0.0001 

Limit of rotation bm        (see APPENDIX A) 1.0 

Permeability k (cm/sec) 7.8×10-9 

 
 
Table 7.4 State of a lightly overconsolidated clay specimen of 
point A'  in Fig. 7.15 after sampling. 
 

Vertical effective stress 'vσ (kPa) 121.4 

Coefficient of lateral pressure ' / 'h vσ σ  1.07 

Overconsolidation ratio 1/ R  2.3 

Value of *R  0.1 

Anisotropy 3/ 2ζ = ⋅β β  (see APPENDIX A) 0.7 

 
 
Table 7.5 Initial conditions for laboratory oedometer test. 
 

Four different 
unloading stages B C D E 

Initial vertical load 
(kPa) 78.5 39.2 19.6 9.8 

Vertical effective 
stress 'vσ (kPa) 78.5 39.2 19.6 9.8 

Coefficient of 
lateral pressure 

' / 'h vσ σ  
1.0 1.0 1.0 1.0 

Overconsolidation 
ratio 1/ R  3.58 7.16 14.3 28.6 

Value of 
*R  0.10 0.10 0.10 0.10 

Anisotropy 
2 /3ζ = ⋅β β  

(see APPENDIX A) 
0.7 0.7 0.7 0.7 

The sample is next mounted on the one-dimensional 
consolidation test apparatus, and subjected to unloading with 
swelling down to the first stage vertical loading level. The process 
varies depending on the magnitude of the first stage loading, as 
shown in Table 7.5. 

Taking the conditions in Table 7.5 as initial values, the soil 
element response to the one-dimensional compression can be 

calculated right away from the constitutive equation of the 
Super/subloading Yield Surface model. The result is seen in Fig. 
7.16. Examining this in alignment with the earlier Figs. 7.2 and 
7.13, the following three points emerge. 
①  None of the four clay specimens represented in Table 7.5 
displays a one-dimensional compression response at the point of 
in-situ sampling (A in Fig.7.16). 
②Even supposing the clay specimens were exposed to one-
dimensional compression from the in-situ sampling state on, the 
shapes in Fig. 7.13 indicate that there was no co-occurrence of 
softening and compression. 
③ But in the laboratory one-dimensional consolidation test, a 
clay specimen unloaded with swelling down to 9.81kPa does 
invariably display this behavior of softening with compression. 
Looking at the enlargement in Fig. 7.16, the material unloaded 
with swelling shows plain evidence of softening in the vicinity of 

' 230kPav criticalσ =　  . The same phenomenon is seen with the 
specimen unloaded down to 19.62kPa, again with swelling. In 
both cases, the shapes displayed are the same as in Fig. 7.2. 

It can be seen from this that a clay specimen overconsolidated 
through the sampling process, as well as through unloading and 
swelling, displays “secondary consolidation” and/or “delayed 
compression” phenomena in this laboratory test at a lower 
consolidation load than would be the case with clay left in situ. 
Whatever the precise details, it is important to be aware that a 
laboratory one-dimensional consolidation test does not provide 
assured information about the one-dimensional compression 
response of clay in its natural deposition environment. 

Fig. 7.16, as we said, is calculated from the constitutive 
equation, but let us now examine how reliably results like these 
can be observed in laboratory consolidation tests using staged 
loading of the conventional kind. Fig. 7.17 shows the results of a 
standard consolidation test for a specimen (of a typical kind for 
this sort of test) unloaded with swelling down to 9.81kPa. The line 
of black points in the figure shows the results obtained by 
maintaining the specimen under a staged load for 24 hours. (Of 
 

 
 
Fig. 7.16 One-dimensional compression behaviors of the five clay 
elements, A to E, in Fig. 7.15. 
 
course, these are numerically simulated results, not real test 
values; the assumptions for the staged loading simulation were 
loading for one second, followed by 24 hours under constant load.) 
The “consolidation yield load” for Fig. 7.17 was sought by means 
of the Casagrande method, giving a result of 230kPa, a value 
extremely close to 'v criticalσ 　  . A comparison of this standard 
consolidation test result with the stress response behavior in Fig. 
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7.16, above, is presented in Fig. 7.18. With the exception of the 
portion just before and after the “consolidation yield load,” the 
accuracy of the oedometer test is very good. But the most 
important thing to remark is that Figs. 7.17 and 7.18, with the 
laboratory test findings, fail to supply any information at all about 
the soil response at the original sampling site (the heavy black line 
A in Fig. 7.16). Of this, we have already said something above. 
 

 
 
Fig. 7.17 Oedometer test results obtained from the clay specimen 
E in Fig. 7.15. 

Effect of soil disturbance during sampling and testing 
Just what the effects are of conducting a laboratory test on 
disturbed soil materials was next investigated using numerical 
simulations. The disturbance in the soil was simulated by bringing 
materials into an undrained isotropic stress state, and then 
subjecting them to repeated undrained shearing before any 
unloading and swelling took place (material at point A'  in Fig. 

7.15). This procedure is summarized in Fig. 7.19. Table 7.6 
presents the computed states of the material after disturbance in 
this manner. Three degrees of disturbance were simulated, by 
varying the number of undrained shear load cycles. Results of 
unconfined compression tests for four such materials before and 
after disturbance are shown in Fig. 7.20. It will be seen that the 
observations center on the clay with a sensitivity ratio of around 
2.5. 
 
 

 
 
Fig. 7.18 Comparison between fully drained compression 

behavior and oedometer test results. 
Table 7.6 State of clay specimens after repeated undrained shear 
stress application. 
 

Number of cycles 0 5 10 15 
Vertical effective 
stress 'vσ (kPa) 121 91.5 69.7 51.7 
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Fig. 7.19 Artificial soil disturbance by repeated undrained shear stress application. 
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Coefficient of 
lateral pressure 

' / 'h vσ σ  
1.0 1.0 1.0 1.0 

Overconsolidation 
ratio 1/ R  2.32 2.96 3.48 3.36 

Value of *R  0.10 0.14 0.19 0.34 

Anisotropy 
3/ 2ζ = ⋅β β  

(see APPENDIX A) 
0.7 0.7 0.7 0.7 

 
 
 

 
 
Fig. 7.20 Sensitivity ratio. 
 
 

 
 
 
Fig. 7.21 Change of compression behavior due to different degrees 
of soil disturbance. 

Performing oedometer tests on the above four clay materials for 
unloading with swelling down to 9.81kPa gives the kind of results 
presented in Fig. 7.21. These show a close resemblance to the 
imaginary curves formerly drawn by Schmertmann, J. H. (1953) 
(Fig. 7.22). The disturbance leads to a diminution in the 
“consolidation yield stress,” reflected in the reduced slope of the 

log 've σ  compression curve. Recalling the earlier explanations 
for Figs. 7.2 and 7.13, it will be apparent here that Fig. 7.21 shows 
that: 
①  so long as the material is subjected to a small amount of 
disturbance only, there is a drop in the load level at which 
“secondary consolidation”/“delayed compression” occurs, but  
②  if the applied disturbance is sufficient, and the material 
remolded, the occurrence of “secondary consolidation” and 
“delayed compression” is thereby impeded. 
 
7.4 Long-term settlement of a multi-layered system under 
embankment loading  

Fig. 7.23 shows an example of long-term settlement due to 
embankment loading on an alluvial clay foundation at the Kanda 
site on the Joban Expressway. The soil profile in the lower part  
 
 

 
 
Fig. 7.22 Imaginary curves drawn by Schmertmann (after 
Schmertmann, J. H., 1953). 
 
 

 
 
Fig. 7.23 Long-time settlement at the Kanda site on the Joban 
Expressway. 
of the embankment foundation can be seen in Fig. 7.24. An 8m 
thick layer of sand rests on top of a 15m thick base of alluvial soft 
clay. Consolidation settlement has been occurring continuously 
over the 20 years since the embankment’s completion, and has not 
yet come to a stop. 

In fact, the settlement problem at this site has been so serious as 

5 10 15

100

200

0
Shear strain εs

D
ev

ia
to

r s
tre

ss
  q

 (k
Pa

)

Number of cycles
      0
      1
      3
      5
      10

101 102 1030.6

0.8

1

1.2

Vertical stress σv (kPa)

V
oi

d 
ra

tio
  e

Number of cycles
      0
      5
      10
      15

 　 

101 102 1030.6

0.8

1

1.2

Vertical stress σv (kPa)

V
oi

d 
ra

tio
  e

Number of cycles
      0
      5
      10
      15

 　 

2.0

1.2

0.8

0.4

1.6

1.0 10 1000.1

V
oi

d 
ra

tio
  e

Pressure   p (kgf/cm2) 

pce0
① Non-disturbance

②

③

④

⑤

Medium
disturbance

Full disturbance

3

2

1

0 10 20

End of construction

Time（years）

Se
ttl

em
en

t（
m
）

Delayed settlement

(1993) (2003)



12th Asian Regional Conference on SMGE, August 2003, Singapore 
Keynote Lecture 

32 

to require repeated overlays of asphalt since completion, as a result 
of which the load on the embankment is now some 20% larger 
than at the time of its construction.  

The time-settlement curve is not smooth, but, as indicated by 
the arrows in Fig. 7.23, shows repeated bouts of accelerated 
settlement, followed by intervals of slower change. However, the 
intervals are steadily increasing in time length. Fig. 7.24 shows an 
example of rising pore pressure observed when one of the bouts of 
consolidation settlement was in progress. The cause lies in the 
softening that co-occurs with the plastic compression of the soil 
skeleton. In other words, we can consider the consolidation 
settlement in Fig. 7.23 as an example of “progressive 
consolidation with decay of structure.”  

In this section we compute the “progressive two-dimensional 
plane strain consolidation with decay of structure” at this site, and 
examine the typical characteristics of “secondary consolidation” 
and/or “delayed compression” that are observed along with it.  

Fig. 7.25 shows the finite element array of the foundations, and 
the shape of the embankment load. Fig. 7.26 shows the 
 
 

 
 
Fig. 7.24 Field observation of the increase in pore pressure. 
 

 
 
Fig. 7.25 Boundary conditions, loading conditions and finite 
element array used in the numerical analysis. 
time-load relations used in the computation. The 10m high 
embankment was built over a 120-day period, and the load on it 
has since been kept constant. The unit weight of the embankment 
materials is taken as 17kN/m3. These figures both match with the 
embankment and the foundations as shown in Fig. 7.23. 
Additional load increments due to repeated overlays of asphalt are 
not taken into account in the computation. 

Table 7.7 displays the material constants used in the 
computation. Fig. 7.27 shows the initial conditions in the 
foundation. The sand is taken to be of the typical medium dense 
type with an initial overconsolidation ratio of 5, and the clay of a 
highly structured natural alluvial type, with an initial 
overconsolidation ratio of 3. The values in Table 7.7 and Fig. 7.27 
are imaginary ones assigned by the author, however, and do not 
necessarily match the actual state of the foundation or the initial 
conditions in Fig. 7.23, as might be obtained from strict survey 
measurements.  

Results of the two-dimensional plane strain consolidation 
computation can be seen in Figs. 7.28 and 7.29. Consolidation 
settlement is computed 100 years into the future. Fig. 7.29 shows 
the same contents as Fig. 7.28, but with time represented on a log 
scale. The pattern of sudden change in the rate of settlement 
whenever a bout of settlement is in progress shows an extremely 
close match to the observed changes in Fig. 7.23. Rises in pore 
pressure, apparent at times when consolidation settlement is in 
progress, are indicated by the arrows in Figs. 7.28 and 7.29. 
 

 
 
Fig. 7.26 Loading history. 
 
 
Table 7.7 Material constants and permeability constants. 
 

Elasto-plastic parameters Clay Sand 

 Compression index λ
~  0.25 0.042 

 Swelling index κ~  0.13 0.012 

 Critical state constant M  1.20 1.08 

Void ratio at ' 98.1kPap = on NCL N  1.97 1.99 

 Poisson’s ratio ν  0.2 0.3 

Evolution parameters    

 Degradation parameter of overconsolidation 
state m  7.0 0.04 

Degradation parameter of structure a  
( 1.0b c= = ) 1.25 1.5 

Evolution parameter of β  rb   
(see APPENDIX A) 

10-3 0.51 

Limit of rotation bm  (see APPENDIX A) 1.0 0.5 

Permeability k (cm/sec) 7.4×10-8 4.1×10-2 
Density of soils sρ  (t/m3) 2.60 2.65 

The consolidation settlement of highly structured natural 
alluvial clay does not proceed with anything like the smoothness 
of an exponential curve. Structural decay spreads through the clay 
foundation in the manner of a progressive failure, as seen in Fig. 
7.30. That is what makes the settlement curve so jerky. 

In Figs. 7.28 and 7.29, complete consolidation settlement takes 
upward of 100 years. From the results for the actual clay 
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foundation in Fig. 7.23, too, settlement would seem to have a long 
way still to run. 

Even from the remarks made about one-dimensional 
consolidation up to Section 7.3, it is easy to imagine that 
“secondary consolidation” and/or “delayed compression” are 
outcomes that occur when the size of the load on an embankment 
exceeds a certain threshold value. The broken lines in Figs. 7.28 
and 7.29 show patterns for consolidation settlement in an 
embankment of height 6m. The “secondary consolidation” and/or 
“delayed compression” is not observed when the lightweight 
embankment load is applied. It is clear that a lightweight 
embankment material such as EPS (polystyrene foam) would be 
highly effective as a precaution against “secondary consolidation” 
and/or “delayed compression.” 

Another cause of the thoroughly bad settlement behavior in Fig. 
7.23 is the thick layer of sand laid on top of the clay layer, as 
shown in Fig. 7.24. This sand layer acts as a counterweight, 
keeping the soft clay from slipping away in spite of the enormous 
load of the 10m embankment. If the sand layer had been thinner, 
allowing destructive slippages to occur, another mode of 
engineering might well have been adopted, and the kind of 
settlement seen in Fig. 7.23 might never have happened. All of the 
above points were verified through the numerical computation, but 
for reasons of space the details are omitted here (for these, see 
Noda et al., 2003b). 
 
 

 

 
 
 
Fig. 7.27 Initial conditions for computation. 
 

 
 
Fig. 7.28 Settlement - time curve and isochrones of the center of 
foundation. 
 
 
 
 

 
 
Fig. 7.29 Settlement - time curve on log scale. 
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Fig. 7.30 Progressive failure of soil skeleton structure. 
 
 
8.  CONCLUSIONS 

(1) In order to give an elasto-plastic theoretical account of actions 
or processes behind the “structure” and “overconsolidation” of 
naturally deposited clay and of sand, a superloading yield surface 
and (Hashiguchi’s) subloading yield surface were introduced as 
additions to the Cam-Clay model. In the new model thus 
constituted, these two yield surfaces are taken as similar in shape 
to the yield surface of the Cam-Clay model, as viewed in relation 
to the origin point of the stress space. In terms of this 
Super/subloading Yield Surface model, the state of the soil 
structure is expressed through the degree of similarity between the 
superloading and the Cam-Clay yield surfaces, while the state of 
overconsolidation (“overconsolidation ratio”, OCR) is expressed 
through the degree of similarity between the superloading and 
subloading yield surfaces.  

Structure and overconsolidation are both ‘mechanical states’ of 
soils, and changes of state may occur from one to the other in the 
same soil depending on conditions of loading and unloading.  
This new model is capable, first, of describing the following two 
kinds of mechanical behavior. ① In any kind of soil, with the 
development of plastic deformation, there is a collapse or 
progressive decay of structure until finally the soil reaches a state 
of complete disturbance. ②  In any kind of soil, with the 
development of plastic deformation, there is also a progressive 
loss of overconsolidation until finally the soil reaches a state of 
normal consolidation. Further, the model also accounts for the 
facts that ③ collapse or decay of structure acts in the direction of 

an increase in plastic volume compression, while ④  loss of 
consolidation acts in the direction of an increase in plastic volume 
expansion. 

Additionally, in the new model, the coefficient Ms   of the 
threshold line =M 'sq p  which divides the 'p q  stress space 
into regions of hardening and softening is a variable which 
changes with plastic deformation, showing that it is possible for a 
soil to soften and be compressed, or harden and expand, at the 
same time.  

By using these features of the new model it becomes possible 
to describe almost all of the mechanical properties of clay and sand 
known hitherto from compression and shear tests.  
(2) For the same amount of plastic deformation, the loss of 
overconsolidation outruns the decay in structure in clay, whereas 
in sand the opposite is true: the decay or collapse of structure 
proceeds faster than the loss of overconsolidation. By 
manipulating the parameters for the rates of evolution of these two 
states of structure and overconsolidation, it becomes possible to 
control both processes. Distinguishing between sand and clay in 
this way also makes it possible to account almost perfectly for 
virtually all the known differences in mechanical response 
between the two materials.  
(3) The abrupt compression and densification that occurs in loose 
sand upon the repeated application of a shear load can be 
explained as a result of the rapid collapse in structure that proceeds 
from even a minimal amount of plastic deformation. The 
accumulation of overconsolidation in loose sand repeatedly 
subjected to the same kind of shear load is explained by the fact 
that small amounts of plastic deformation lead to almost no loss of 
overconsolidation.  
(4) The “secondary consolidation” and/or “delayed compression” 
of structured clay is explained by the decay that goes on occurring 
in the remaining soil structure after the near-total loss of the 
overconsolidation state. Because the loss of overconsolidation is 
so nearly complete, the high degree of remaining structure causes 
Ms   to become very small, which means that even at the low 
stress ratios found in states of one-dimensional compression, 
plastic compression accompanied by softening becomes a 
possibility. As a result, there is also a notable delay in the 
dissipation of pore water pressure, which causes consolidation 
settlement to persist for a great length of time. 

Further details of the new model, making it possible to take 
account of the evolution of induced anisotropy and thus deal with 
finite deformations in ways that satisfy objectivity, are given in 
APPENDICES A－D.    
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APPENDIX A  

A-1 Modified Cam-Clay model with *η   

In conventional critical state soil mechanics, the stress ratio η  is 
generally defined as: 
 

 ηη ⋅=
2
3η , (A-1) 

 
However, Sekiguchi and Ohta (1977) introduced the following 
stress invariant, instead of conventional η , in order to express the 
rotation of the plastic potential: 
 

 ηη ˆˆ
2
3

* ⋅=η . (A-2) 

 
In Equations (A-1) and (A-2) 
 

βηη −=ˆ , 
'p
Sη = , ITS '' p+=  and 'tr

3
1' T−=p ,  (A-3) 

 
where I   is the identity tensor and 'T   denotes the Cauchy 
effective stress tensor, and β  is the axis of rotation tensor. The 
shape of the plastic potential of the modified Cam-Clay is then 
expressed, when *η  is introduced, as follows: 
 

 p
vp

ppf εηη =
+

+=
2

22

0 M
*Mln MD

'~
'lnMD*),'(  (A-4) 

 
in which D is a material constant. The 0'

~p  in Equation (A-4) is 
found to be the mean effective stress on the modified Cam-Clay 
yield surface that coincides with the initial mean effective stress 

0'p  of the soil in the reference state. Note that D is expressed in 
terms of λ

~ , κ~  and Μ  in the following equation: 
 

 
)e1(M

~~
D

0+
−

=
κλ . (A-5) 
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Note also that  
 
 2ln)~~

( κλ −=Γ−Ν  (A-6) 
 
which is because the interpolation between Ν   and Γ  is 
somewhat different from the original Cam-Clay model. Essentials 
of the modified Cam-Clay model can be found in Muir Wood 
(1995). 

The objective of the use of *η , instead of η , is to express 
anisotropic plastic behavior of soils. Evolution of anisotropy, in 
soils, naturally proceeds as plastic deformation proceeds (i.e., 
stress induced anisotropy). Therefore the β  in Equation (A-3) is 
generally the variable of plastic stretching, as discussed later in 
this study and also by Hashiguchi and Chen (1998). 

A-2 Model formulation 

In this main text, formulations are made using a finite deformation 
scheme satisfying objectivity. 

Super-subloading concepts are introduced to Equation (A-4). 
The current stresses are generally considered on the subloading 
surface: 
 

 

0
2 2

2
0

0

( ', *) MDln * MDln tr

' M *     MDln MD ln
' M

     MDln * MDln tr 0

t p

t p

f p R R J d

p
p

R R J d

η τ

η

τ

+ − +

+
= +

+ − + =

∫

∫



D

D

 (A-7) 

 

where pD denotes the plastic components of the stretching tensor 
D . Both D  and pD  are defined as positive in extension. The 

J in the above equation is the Jacobian determinant of the 
deformation gradient tensor F , which is expressed in terms of 
specific volume as follows: 
 

 
0

1det
1

eJ
e

+
= =

+
F  (A-8) 

 
where e+1   and 01 e+  are the specific volumes at the current 
(time t) and the reference (time t = 0) state, respectively.  

R denotes the state of overconsolidation and R* denotes the 
structured state. Both R and R* take their values between zero and 
one. Mathematically, R is the “surface size ratio” of the 
subloading surface to the superloading surface: 
 

 
q
q

p
pR ==

'
' , 10 ≤< R  and ηη == )

'
(

p
q . (A-9) 

 
Note here that 
1/R gives the 

overconsolidation ratio. Similarly, R* defines the surface size ratio 
of the plastic potential of normally consolidated and least 
structured soil (R* = 1) to the superloading surface: 
 

 
q
q

p
pR

~

'
'~
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p
q . (A-10) 

The superloading surface and the normal surface are obtained 
as follows: 
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(the normal plastic potential surface)  (A-12) 
 

The super/subloading surfaces together with the normal surface 
are illustrated in 'p q−  stress space when an axisymmetric stress 
state is considered (Fig.A-1). 

A-3 Normality rule and consistency condition 

Plastic behavior of soil is assumed to follow the associated flow 
rule, 
 

 )0(   
'

>
∂
∂

= λλ
T

D fp  (A-13) 

 
in which λ   denotes the plastic multiplier. On the basis of the 
theory of plasticity, Prager’s consistency condition 
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should determine the size of the subsequent plastic potential 
surface. Note here that corotational rate tensors for 'T  and β , 
 

 
 

Fig. A-1 Three loading surfaces. 
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 ΩββΩβ β −+= 


  (A-15) 
 
and 
 

 '''' ΩTΩTT T −+= 


 (A-16) 
 
lead from Equation (A-14) to  
 

 0MD
*
*MDtr'

'
=−++⋅

∂
∂

+⋅
∂
∂

R
R

R
RJff p



D β
β

T
T

 (A-17) 

 
(see details in APPENDIX B). '



T   and 


β   are both objective 
rate tensors (Green and Naghdi (1965)), in which  TRRΩ =  
and R   represents the rotation tensor. The superscript “T” 
denotes the transpose operation. 

A-4 Evolution laws for R, R* and β  

Evolution laws for R and R* define the material time derivatives 
of these variable as positive scalar functions relating to plastic 
stretching. As a measure of ongoing plastic deformation, the norm 
of plastic stretching pD  is adopted. 

The material time derivative of R  is assumed to follow: 
 
 pJUR D=  (A-18) 
 
where positive scalar function U is a function of R that satisfies 
 
 0)1(   and   )0( =∞= UU  (A-19) 
 
In the present study, 
 

 RmU ln
D

−=  (A-20) 

 
is assumed for simplicity (Hashiguchi, 1989), in which m is a 
positive material constant. 

On the other hand, in the numerical examples of the paper, the 
measure of plastic deformation of clay is given in a different form 
from that of sand. That is, for clay 
 
 pJUR D** =  (A-21) 

 

is assumed for the evolution law of  R*, while for sand 
 

 p

sJUR D
3
2** =  (A-22) 

 
using 3/tr IDDD ppp

s −= . In Equations (A-21) and (A-22), U* 
is a positive scalar function of R*. Asaoka, Nakano and Noda 
(2000a) derived the following constraints on U*,  
 
 0)1(*   and   0)0(* == UU  (A-23) 
 
from which the beta function 
 

 cb RRaU *)1(*
D

* −=  (A-24) 

 

is assumed for generality. The parameters a, b and c are positive 
material constants. The first two constants b and c are set at a value 
of one for simplicity throughout the present study.  

For the evolution law of β , objective material time derivative 


β   is formulated through the following four steps (Hashiguchi 
and Chen, 1998): 
1) Evolution of anisotropy is assumed to proceed with p

sD ,  

2) The rotation of the current plastic potential is limited to  
 
 b m=β  (A-25) 
 

which is called, by Hashiguchi and Chen (1998), the “limit 
surface for rotational hardening” or the “rotational limit 
surface”. 

3) Rotational variable rate 


β   is assumed to have the same 
direction as that of 
 

 β
η
ηη −=
ˆ
ˆ

bb m  (A-26) 

 
4) For the monotonic proportional loading with η = const., i.e. 
the so-called anisotropic consolidation,  β  is then naturally 
considered to reach η  gradually, which leads to 0ˆ = η . 



β is then given in the following form. 
 

 b

p

s

brJ ηηD β  ˆ 
3
2

D
 =


 (A-27) 

 
in which a material constant br determines the rate of the 
evolution of anisotropy. 

A-5 Plastic multiplier λ  in terms of stresses 

Substituting the evolution laws given in Equations (A-18), (A-
21) or (A-22), and (A-27) into Equation (A-17) and applying the 
normality rule, Equation (A-13), one gets λ  as follows: 
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in which, for clay 
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and, for sand 
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 2 2 2M Ma ζ= +  (A-31) 
 
and 
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 βββ
2
3

2
3

=⋅=ζ . (A-32) 

 
The new parameter Ms  for structured and overconsolidated 

soil with induced anisotropy varies with the evolution of both the 
soil structure and overconsolidation and also with the evolution of 
anisotropy, in which the “critical state parameter” M  is constant 
throughout. 
 

A-6 The threshold stress ratio between softening and hardening 
of soils 

Based on the theory of plasticity, when soil is under loading, it 
holds that 
 
 0>λ  (A-33) 
 

Given that λ  is positive, Equation (A-28) suggests that there 
exist following three cases for loading: 
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Since η   is positive by definition, Msη =   is thus found to 

give the threshold stress ratio between hardening and softening. 

A-7 Constitutive equation and loading criterion 

Substituting an elastic response, 
 

 eEDT ='


 (A-35) 

 

into Equation (A-28), and solving it with respect to λ , one gets 
the plastic multiplier in terms of stretching: 
 

 
2 2

2 2

'
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f

f f J
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η

η

∂
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ED
T

E
T T
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In Equation (A-35), eD   denotes the elastic components of 

stretching and E   the elastic modulus tensor. Employing the 
plastic multiplier Λ  in terms of stretching, and taking Equation 
(A-17) into consideration, one gets the linear rate type constitutive 
equation from Equation (A-35): 
 

 
'

'
T

EEDT
∂
∂

Λ−=
f

. (A-37) 

 
The detailed form of Equation (A-37) is given in APPENDIX C. 

Note here that, when soil parameters satisfy the condition of the 
denominator of Λ  being positive, the loading criterion 
 
 0>Λ  (A-38) 

 
can be rewritten simply in terms of the numerator of Λ  as 
follows: 
 

 0
'

>⋅
∂
∂ ED
T
f . (A-39) 

 
These parameters are taken to be the soil parameters throughout 

this study. 

A-8 Plastic volume compression and plastic volume expansion 

Since the plastic potential surface rotates with ongoing plastic 
deformation, the watershed between plastic volume compression 
and plastic volume expansion naturally also moves with ongoing 
plastic deformation. 

Note here that  
 

 2 2
2 2

MD-tr tr (M )
' '(M * )

p
a

f
p

λ λ η
η

∂
= − = −

∂ +
D

T
. (A-40) 

 
Then, the watershed between plastic volume compression and 

plastic volume expansion in terms of the stress ratio is given by 
2 2Maη =  , which classifies the volume change behavior as 

follows: 
 

 

2 2

2 2

2 2

-tr 0   when   M

-tr 0   when   M

-tr 0   when   M

p

p

p

a

a

a

η

η

η

> <

= =

< >

D

D

D
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The existence of “the limit surface for rotational hardening” 

gives the following constraint to Ma :  
 

 2 2 23M M
2 ba m≤ + . (A-42) 

A-9 Model characteristics 

In conventional critical state soil mechanics, the critical state 
stress ratio, M, is the threshold both for hardening and softening 
and for plastic volume compression and plastic volume expansion. 
Therefore, hardening is always associated with plastic volume 
compression and softening is always associated with plastic 
volume expansion. Furthermore, the threshold value M  is 
constant throughout the loading procedure. However, when the 
evolution laws of the soil structure and overconsolidation are 
considered, the threshold between hardening and softening given 
by Ms  is a variable of ongoing plastic deformation. The same is 
true for the threshold between plastic volume compression and 
plastic volume expansion. When the rotational hardening rule is 
considered, the evolution of anisotropy gives the threshold Ma  
also as a variable of ongoing plastic deformation. Furthermore, 
Equation (A-29) or (A-30) suggests that it is not always trivial 
whether Ms  is larger than Ma , or not. In other words, 
hardening is possible even with plastic volume expansion and 
softening is also possible during plastic volume compression. 

The general tendency of the movement of Ms  is summarized 
as follows. In Equation (A-24), consider the case of b=1 for 
simplicity, as assumed throughout this study. The substitution of 
Equation (A-20) and (A-24) with b=1 into U*/R* - U/R yields 
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 * 1 ln{ * (1 *) }
* D

cU U m RaR R
R R R

− = − −  (A-43) 

 
which increases when R*→1 and decreases when R→1. Equation 
(A-29) or (A-30) indicates that the decay of the structure (i.e., R*
→1) raises the value of Ms , while the loss of overconsolidation 
(i.e., R→1) lowers it. 

The effect of the evolution of anisotropy upon Ms and Ma is 
clearly observed when a soil in the fully remolded and normally 
consolidated state (i.e., R*=1, and R=1) is considered. In this case, 
since Equation (A-29) or (A-30) simply becomes 
 

 
2

2 2
2 2

4M * 3 ˆM M ( * )
M * 2bs a br mη η

η
= + − ⋅

+
η β  (A-44) 

 
then, based on Equation (D-1) in APPENDIX D, one has 
 
 2 2M Ma s≤   (A-45) 

 

which indicates that hardening is still possible during plastic 
volume expansion when the stress ratio satisfies 
 
 2 2 2M Ma sη< < . (A-46) 
 

Since hardening during plastic volume expansion at high stress 
ratios is a typical behavior of overconsolidated soils, it is called 
the “quasi-overconsolidation effect” in this study. In other words, 
when high levels of stress-induced anisotropy develop, normally 
consolidated soil still exhibits overconsolidation-like behavior at 
high stress ratios. 

Here, the important thing to appreciate is that all the effects on 
the movements of Ms  and Ma  are the combined effects of the 
following three factors: decay of the structure, loss of 
overconsolidation and evolution of anisotropy, that occur as 
plastic deformation proceeds. 
 
APPENDIX B 

USE OF COROTATIONAL RATE TENSOR 
 
For the scalar function *),'( ηpf  as defined in Equation (A-4), 
since 
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then, employing '


T  (Equation (A-15)) and 


β   (Equation (A-
16)), it follows simply that 
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Equation (B-4) can be used to make the constitutive equation 
linear with respect to D. 
 

APPENDIX C  

CONCRETE FORM OF CONSTITUTIVE MODEL 

The rate type constitutive equation (Equation (A-37)) for the 
modified Cam-Clay model with rotational hardening and Super-
subloading surfaces can be written as follows: 
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where 
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APPENDIX D 

PROOF OF THE INEQUALITY (A-45) 
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