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ABSTRACT 

In this study, we investigate the diversity of the bifurcations and deformations during 

evolution of periodic patterns on compressed films bonded to compliant substrates. 

Three-dimensional finite element analysis is performed assuming that the first 

bifurcation has either the hexagonal or square (i.e., checkerboard) dimple mode. 

Step-by-step eigenvalue buckling analysis is performed to explore sequential 

bifurcations on the bifurcated paths. It is found that at the second bifurcation, a 

rectangular checkerboard or stripe mode occurs depending not only on the Young’s 

modulus ratio of the film and substrate, but also on the magnitude of the imperfection 

prescribed by the first bifurcation mode. Different bifurcation modes give a family of 

herringbone deformation patterns with different dimensions, i.e., the evolutional process 

is multiple and robust. Further, superposition of the identical modes in symmetric 

directions elucidates the existence of distinctive patterns cognate with the herringbone 

pattern, including a variety of experimentally observed patterns.  
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1. Introduction 

Surface instability is one of the classical but challengeable research problems in 

solid mechanics (Biot, 1963, 1965; Gent and Cho, 1999; Allen, 1969) because most 

scientists recognize the importance of a basic understanding of evolution and 

morphogenesis of living systems, such as cortical folding in mammalian brains 

(Richman et al., 1975; Budday et al., 2014; Tallinen et al., 2014:2016; Kuhl, 2016; 

Goriely, 2016; Campos et al., 2021). Because brains consist of two layers of gray and 

white matter, the most elementary model is a compressed film bonded to a compliant 

substrate (Huang et al., 2005; Kang and Huang, 2010a). The emerging surface patterns 

gradually evolve as the compressive stress in the film increases beyond a critical 

buckling stress (Allen, 1969), i.e., as the overstress increases. A small degree of 

overstress induces hexagonal and square (i.e., checkerboard) dimple patterns (Fig. 1), 

whereas a large degree of overstress causes the occurrence of herringbone (Fig. 2a) and 

labyrinth (i.e., disordered herringbone) patterns (Chen and Hutchinson, 2004; Audoly 

and Boudaoud, 2008a–c; Cai et al., 2011). In contrast, Breid and Crosby (2009, 2011) 

experimentally observed coexistence of distinctive patterns, such as zipper, peanut, and 

weave patterns (Fig. 2b,d–f) at large states of overstress, whereas cage-, brick-, and 

peanut- like patterns have been observed for the intermediate states (Guvendiren et al., 

2009). Further, Tallinen and Biggins (2015) found a triple-junction pattern (Fig. 2c), 

which was energetically comparable with the herringbone pattern. Thus, an open 

question is: what causes coexistence of diverse and distinctive patterns depending on 

the degree of overstress? 

 

Chen and Hutchinson (2004) first investigated the occurrence and evolution of 

herringbone patterns. They performed postbuckling finite element analysis using a small 

initial imperfection prescribed by the surface deflection of herringbone patterns with 

different characteristic dimensions, demonstrating that herringbone patterns are 

dominant at large overstress. They also raised an essential and complicated question, 

how does the herringbone pattern emerge at large overstress, because the hexagonal and 

square dimple patterns at small overstress are reproduced by superposing sinusoidal 

wrinkle modes with a critical wavelength predicted by classical buckling theory (Cai et 

al., 2011).  
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Fig. 1.  Surface patterns at small overstress: (a) hexagonal dimple pattern and (b) square 
dimple (i.e., checkerboard) pattern depicted using 4×4 unit cells (Section 3). These patterns are 
caused by superposition of sinusoidal wrinkle modes in the symmetric directions assumed at the 
first bifurcation. The critical bucking stress and wavelength are predicted by classical buckling 
theory (Allen, 1969). The deformation patterns are essentially the same as the corresponding 
buckling modes (Fig. 6).  

 

To address the above question, Audoly and Boudaoud (2008a–c) performed linear 

stability analysis of the straight-stripe buckling mode. They found that second 

bifurcations lead to the occurrence of undulating-stripe, varicose, checkerboard, and 

hexagonal buckling modes. The occurrence of the undulating-stripe buckling mode at 

the second bifurcation can be connected with evolution of a herringbone deformation 

pattern (not a buckling mode). They highlighted the great importance of exploring not 

only the first bifurcation, but also sequential bifurcations occurring on bifurcated paths. 

Thus, step-by-step eigenvalue buckling and postbuckling analyses (Okumura et al., 

2018) were conducted to detect the bifurcation points on the bifurcated paths during 

evolution of the periodic patterns on a gel film bonded to a soft substrate (Miyoshi et al., 

2021). When the hexagonal dimple mode occurred at the first bifurcation, the second 

bifurcation consisted of rectangular checkerboard modes in three symmetric directions. 

They revealed that the resulting deformation patterns successfully reproduced the cage- 

and brick- like patterns at intermediate overstress (Breid and Crosby, 2011), and the 

third and fourth bifurcations resulted in the occurrence of herringbone patterns. 
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Fig. 2.  Diverse and distinctive surface patterns in the range of moderate to large overstress: (a) 
herringbone pattern, (b) zipper pattern, (c) triple-junction pattern, (d) peanut pattern, (e) plane 
weave pattern and (f) basket weave pattern depicted using 4×4 unit cells. These images are 
visualized from the results obtained in the present study (Sections 4–6). The herringbone pattern 
is well-known to be the representative deformation pattern (not the buckling mode; Chen and 
Hutchinson, 2004; Miyoshi et al., 2021) at large overstress. In contrast, the zipper, plane weave 
and peanut patterns have been observed in experiments (Breid and Crosby, 2011; Guvendiren et 
al., 2009), and the triple-junction pattern has been demonstrated to be energetically comparable 
with the herringbone pattern by simulations (Tallinen and Biggins, 2015). The question is, what 
makes these patterns coexist when the overstress increases? 

 

Although the herringbone pattern has been focused on as the representative pattern 

at large overstress, Tallinen and Biggins (2015) numerically found that the 

triple-junction pattern can coexist when the film and substrate are of comparable 

softness. They emphasized that a disordered mixture of herringbone and triple-junction 

patterns is reminiscent of the folded cerebral cortex, i.e., coexistence of the two patterns 
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is important for cortical folding. However, the discovery of the triple-junction pattern as 

the counterpart of the herringbone pattern was heuristic (or intuitive) because their finite 

element analysis introduced point forces in selected locations of a periodic cell to 

initiate formation of the patterns. Thus, the mechanisms of the coexistence and the 

existence of other patterns are still not clear. The approach of Miyoshi et al. (2021) is 

considered to be a powerful tool for investigating the coexistence of the diverse and 

distinctive deformation patterns, such as the triple-junction pattern, as well as the 

experimentally observed zipper and weave patterns (Breid and Crosby, 2011). 

 

In finite element analysis, Miyoshi et al. (2021) considered a specific gel film 

bonded to a specific soft substrate, i.e., the Flory–Rehner model was used to simulate 

the inhomogeneous swelling in the gel film (Hong et al., 2009; Kang and Huang, 

2010b) and a fixed value of the Young’s modulus ratio of the film and substrate was 

assumed. Further, a fixed magnitude was used as a small scaling factor of the initial 

imperfection prescribed by the dominant buckling modes needed to trace the 

corresponding bifurcated path. As suggested by Healey (1989), detection of the second 

bifurcation can also qualitatively depend on the selected magnitude of the small scaling 

factor at the first bifurcation. This feature is considered to be an intrinsic problem of the 

imperfection methods regardless of how the imperfections are prepared (Chen and 

Hutchinson, 2004; Cai et al., 2011; Tallinen and Biggins, 2015; Miyoshi et al., 2021). 

However, the approach of Miyoshi et al. (2021) uses superposition of the dominant 

buckling modes as the initial imperfection so that the value of the imperfection 

magnitude can be simply parameterized as an additional parameter to investigate the 

influence. Thus, if the approach of Miyoshi et al. (2021) is extended by parametrizing 

the two parameters of the Young’s modulus ratio and imperfection magnitude, it is 

expected to obtain more detailed and unified results to understand the mechanisms of 

the robustness of the herringbone patterns at large overstress and the occurrence of the 

patterns that can coexist with the herringbone patterns. 

 

In this study, we investigate the diversity of the bifurcations and deformations 

during evolution of periodic patterns on compressed films bonded to compliant 

substrates. Section 2 briefly describes the procedures of the eigenvalue buckling and 
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postbuckling analyses (i.e., step-by-step eigenvalue buckling analysis, Okumura et al., 

2018; Miyoshi et al., 2021). The initial imperfections are prepared by superposition of 

the dominant bifurcation modes obtained on the first and sequential bifurcated paths. 

Section 3 is devoted to numerical modeling. We focus on both the hexagonal and square 

dimple modes at the first bifurcation (Fig. 1, Chen and Hutchinson, 2004; Cai et al., 

2011) to capture the potential bifurcations and bifurcated paths. Section 4 presents the 

results obtained from analysis of the second bifurcation point. We find that the second 

bifurcation has the rectangular checkerboard or stripe mode depending on the Young’s 

modulus ratio of the film and substrate, as well as on the magnitude of the imperfection 

prescribed by the first bifurcation modes. Further, superposition of the identical 

bifurcation modes in symmetric directions gives diverse and distinctive modes cognate 

with the identical mode. Section 5 presents the results of deformation pattern evolution 

on the second bifurcated path. We find that the herringbone pattern (Fig. 2a) is robust 

because the different bifurcation modes give a family of herringbone patterns with 

different characteristic lengths, whereas the occurrence of diverse and distinctive 

patterns, including the zipper, peanut, weave and triple-junction patterns (Fig. 2b–f), is 

caused by the modes cognate with the modes leading to the herringbone patterns. 

Finally, discussion and conclusions are given in Sections 6 and 7, respectively. 

 

 

2. Procedures of the eigenvalue buckling and postbuckling analyses 

This section briefly describes the procedures of the eigenvalue buckling and 

postbuckling analyses. As explained below, step-by-step eigenvalue buckling analysis is 

conducted using the BUCKLE option in Abaqus (Abaqus 6.14 User Documentation) to 

detect the dominant bifurcation point on the bifurcated paths (Okumura et al., 2018; 

Miyoshi et al., 2021), whereas postbuckling analysis is performed by introducing the 

corresponding bifurcation modes using the IMPERFECTION option. Although Miyoshi 

et al. (2021) considered the gel film to obey the Flory–Rehner model to introduce 

inhomogeneous swelling owing to the increase of the chemical potential (the UHYPER 

option is needed, Hong et al., 2009), the present study simply considers that both the 

film and substrate obey the incompressible neo-Hookean solid model. The compressive 

stress in the film is caused by isotropic thermal expansion. Thus, the increase of the 
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temperature is used as both a preload and an incremental load in eigenvalue buckling 

analysis without introducing a dummy loading parameter (Okumura et al., 2018; 

Miyoshi et al., 2021).  

 

First, for eigenvalue buckling analysis using the BUCKLE option in Abaqus 

(Abaqus 6.14 User Documentation, 2014; Bertoldi et al., 2008; Miyoshi et al., 2021), 

the finite element equations are  

{K0(P)+i K(P,Q)}i     (i=1, 2, 3,…).  (1) 

Here, K0(P) is the stiffness matrix of the base state, where P is the vector of the nodal 

forces caused by preloads acting in the base state, while K(P,Q) is the differential 

stiffness matrix resulting from the incremental loading pattern Q, which is the vector of 

nodal forces caused by incremental loads added to the base state. Thus, K0(P) includes 

the effects of the geometric and material nonlinearities caused by the preloads (i.e., P) 

(as well as the influence of bifurcations if the base state is on a bifurcated path), 

whereas K(P,Q) is obtained by linear perturbation analysis when the incremental loads 

(i.e., Q) are considered in the base state. Further, i and i are the eigenvalues (i.e., the 

multipliers of Q) and the corresponding eigenvectors (i.e., the corresponding buckling 

modes), where i indicates the i-th buckling mode (i.e., 1 ≤ 2 ≤ 3,…) and i are 

normalized such that the maximum displacement component is 1. 

 

Eq. (1) shows that the critical buckling loads are approximately estimated by 

extrapolation using Q from the base state prescribed by P (i.e., P+iQ). Because the 

dominant bifurcation points are analyzed not only on the primary path, but also on the 

bifurcated paths, P is not always zero, and K0(P) is not unique depending on the 

individual bifurcated paths. In other words, the base state is not unique as a function of 

the magnitude of P=rP0. Further, when strong geometric and material nonlinearities 

appear during i Q, the predictions become less accurate as the value of i increases 

from 0 to a large value. Thus, step-by-step eigenvalue buckling analysis considers that 

the dominant bifurcation point is detected by the increase of the magnitude of P, which 

causes a decrease of the values of i. When at least the minimum eigenvalue, 1, is zero, 

the corresponding magnitude of P is the critical magnitude of Pc=rcP0 in the critical 

base state. When multiple bifurcations are assumed as i =0 (i=1, 2, 3,…, k), Eq. (1) 
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simply reduces to  

K0(Pc)i 0    when i =0 (i=1, 2, 3,…, k),   (2) 

where k is the multiplicity of the bifurcations. Eq. (2) is equivalent to det K0(Pc) =0, 

which is the typical equation used to find the bifurcation points (Hill, 1958; Ohno et al., 

2002; Okumura et al., 2004).  

 

The present study considers isotropic thermal expansion to generate the compressive 

stress in the film bonded to the substrate, i.e., the increase of the temperature is the 

unique loading parameter that prescribes the preload and incremental load. The critical 

buckling loads are expressed as P(T)+Ti Q(T,), where  is the thermal expansion 

coefficient, T is the temperature in the base state (i.e., T is the thermal expansion), and 

Ti is the incremental temperature from the base state. Eqs. (1) and (2) are rewritten as  

{K0(T)+Ti K(T,)}i     (i=1, 2, 3,…),  (3) 

K0(Tc)i     when Ti =0 (i=1, 2, 3,…, k).   (4) 

Although Eq. (3) shows that T+Ti are the critical buckling temperatures, Eq. (4) shows 

that the dominant bifurcation point is accurately estimated by the critical value of Tc 

with Ti =0(i=1, 2, 3,…, k). Note that although the two values of T+Ti (i=1, 2, 3,…, 

k) and Tc may be close, the corresponding buckling modes are not necessarily the same. 

To decrease the lowest eigenvalue (T1) to 0, Eq. (3) is analyzed using individual base 

states by the step-by-step increase of T. The base state with T1=0 (in reality, it 

approximates zero) is regarded as the dominant bifurcation point described by Eq. (4), 

i.e., if T1 remains positive (T1>0), the base state is stable whereas if not, that is 

unstable. The multiplicity of bifurcations (k) is estimated by comparing Ti (i=2, 3, 

4,…) with T1 at the critical base state. Because multiple bifurcations cause loss of 

symmetry of the base state, the value of k can also be determined by checking the 

bifurcation modes i (i=1, 2, 3,…, k). The dominant bifurcation point on the bifurcated 

paths is analyzed by repeating postbuckling analysis to trace the corresponding 

bifurcated path (Fig. 3).  
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Fig. 3.  Schematic illustration of pattern evolution caused by multiple and sequential 
bifurcations. Evolution of the deformation patterns leads to relative decreases of the normalized 
elastic energy (U/U0) as the normalized overstress ( c

0 0/  ) increases (Section 3.3). The 
dominant bifurcation points on the primary and bifurcated paths are detected by step-by-step 
eigenvalue buckling analysis (Eqs. (3) and (4)), and pattern evolution is traced by postbuckling 
analysis using the bifurcation modes as imperfections. The imperfection magnitude (d(1), Eq. 
(6)) is parameterized because the second and sequential bifurcation points depend on the value 
(Section 4). 

 

Postbuckling analysis is performed by introducing the dominant bifurcation modes 

as a geometric imperfection (the IMPERFECTION option in Abaqus). When multiple 

bifurcations are considered (Eq. (4)), the imperfection () introduced as initial 

geometric imperfections is expressed as  

1

k

i i
i

d r


    ,     (5) 

where d is an imperfection magnitude and ri are the coefficients that control and 

normalize the contributions of i (i=1, 2, 3,…, k). The present study focuses on analysis 

of the nth bifurcation on the (n1)th bifurcated path (see Fig. 3, the 0-th bifurcated path 

is the primary path). When d(j), k(j), ( )j
ir , and ( )j

i  (i=1, 2, 3,…, k(j)) are assigned as the 

extended values of d, k, ri, and i (i=1, 2, 3,…, k) for the jth bifurcation point on the 

(j1)th bifurcated path, the initial geometric imperfections needed to trace the nth 

bifurcated path are  
( )

( ) ( ) ( ) ( )

1 1

jn k
n j j j

i i
j i

d r
 

 
   

 
   . (6) 

The bifurcations and deformations during pattern evolution are investigated by 
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repeating the eigenvalue buckling and postbuckling analyses on the bifurcated paths 

(Fig. 3). Hence, the dominant bifurcation point detected on a bifurcated path estimates a 

base state to be stable before the point and unstable after the point. 

 

According to Healey (1989), imperfection methods, including the present approach 

(Eq. (6)), can fail to trace the bifurcated path related to the corresponding buckling 

mode. The justification of the bifurcated path should be confirmed by comparing pattern 

evolution in postbuckling with the imperfection generated by Eq. (6). Although as 

shown and described in Sections 4–6, most of the bifurcated paths did not cause 

accidental path switching, this feature is considered to be an intrinsic problem of 

imperfection methods. In contrast, this feature raises an open and interesting question: 

does the dominant bifurcation mode at the second bifurcation (or the jth bifurcation) 

depend on the imperfection magnitudes, d(1) (and d(l), l=1,2,…, j1), used to trace the 

first bifurcated path (and the (l1)th bifurcated paths, l=2,3,…, j1)? To address this 

question, in the present study, we analyze the second bifurcation by considering the 

imperfection magnitude of d(1) as an additional parameter (Section 4). 

 

 

3. Numerical modeling 

3.1. Material properties 

To reproduce compressed films bonded to compliant substrates, both of the film and 

substrate are considered to obey the incompressible neo-Hookean solid model, i.e., the 

substrate is modeled using the Young’s modulus Es, whereas the film is modeled using 

the Young’s modulus Ef and isotropic thermal expansion . An increase of the 

temperature T causes an increase of the in-plane compressive stresses in the film, which 

are equibiaxial at least on the primary path. The ratio of the Young’s moduli (Ef/Es) is 

parameterized in the range 2–20 (Breid and Crosby, 2011; Tallinen and Biggins, 2015; 

Campos et al., 2021).  

 

3.2. Boundary conditions 

Fig. 4 shows the periodic cells used in three-dimensional (3D) finite element 

analysis, which are commonly defined as rectangular parallelepiped with individual 

lengths of L1, L2, h, and H. The lengths normalized using h (i.e., L1/h, L2/h, and H/h) are 
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specified in Section 3.4. The film is perfectly bonded on the substrate (x3=H). The 

bottom face of the substrate (x3=0) has zero displacement, i.e., ui (x1, x2, 0)=0, while the 

top face of the film (x3=h+H) is stress free. Periodic boundary conditions are imposed 

on the side faces (the combination of x1=(0 or L1) or x2=(0 or L2)), and they are 

expressed as  

2 3 1 2 3

1 3 1 2 3

(0, , ) ( , , )

( ,0, ) ( , , )
i i

i i

u x x u L x x

u x x u x L x


 

,  (7) 

where ui(x1, x2, x3) is the displacement at a nodal point. From the repulsive forces acting 

on the side faces, the in-plane components of the macroscopic nominal stress (S11 and 

S22) can be calculated (Miyoshi et al., 2021).  

 

 
Fig. 4.  Initial dimensions of the compressed films bonded to soft substrates. The individual 
lengths are normalized with respect to h (i.e., L1/h, L2/h, and H/h). The value of H/h is selected 
to be sufficiently large to avoid having to consider the effects of the constraint at the bottom 
face (Huang et al., 2005). The compressive stress is given by the isotropic thermal expansion in 
the film and the increase of the temperature. 

 

3.3. Normalization of the overstress and elastic energy 

Although calculation of S11 and S22 is convenient to estimate the critical values on 

bifurcated paths, the present study simply uses the concept of the overstress (Chen and 

Hutchinson, 2004; Cai et al., 2011). The overstress (0(T)) is a function of T, and it is 

defined as the homogenous stress in the film on the primary path. When the first 

bifurcation has the critical value c
0 1( )T  (T1 is the critical temperature for the first 

bifurcation), the critical values of the temperature for sequential bifurcations (Ti, i=2, 

3,…) are transformed and estimated as the critical ratios of the corresponding overstress, 
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i.e., c
0 0 1( ) / ( )iT T  . Thus, c

0 0 1( ) / ( )iT T  =1 at the first bifurcation and it 

monotonically increases, which is used to estimate the sequential bifurcation points and 

bifurcated paths. In the same manner, the elastic energy per unit area of the 

film/substrate system is defined as U(T) as a function of temperature T. This value can 

be calculated regardless of the primary and bifurcated paths. Thus, the normalized 

elastic energy per unit volume is estimated by U(T)/U0(T), where U0(T) is the elastic 

energy per unit volume on the primary path. U(T)/U0(T)=1 on the primary path and 

decreases with the occurrence of bifurcations. To avoid redundancy, c
0 0 1( ) / ( )iT T   

and U(T)/U0(T) are expressed as c
0 0/   and U/U0, respectively. The occurrence of 

bifurcations causes a decrease of U/U0 with an increase of c
0 0/   (Fig. 3). Hereafter, 

because there is no reason to consider a specific value of , we arbitrarily set  =0.01 

and do not show and discuss the individual values of T. 

 

3.4. Dimensions of the unit and periodic cells 

The present study considers the occurrence of hexagonal and square (i.e., 

checkerboard) dimple modes (Fig. 1) at the first bifurcation point on the primary path 

(Chen and Hutchinson, 2004; Cai et al., 2011). Because the first bifurcation consists of 

superposing sinusoidal wrinkle modes in all directions in the plane with a critical 

wavelength (Allen, 1969), a specific ratio of L2/L1 is used to give the hexagonal or 

square dimple mode as the dominant bifurcation mode. According to the appendix B in 

Miyoshi et al. (2021), the specific value of L2/L1= 3  generates the hexagonal dimple 

mode consisting of the combination of the sinusoidal wrinkle modes categorized by (m, 

n)=(0, 2) and (m, n)=(1, 1), where m and n are the wavenumbers in the x1 and x2 

directions. The angles between the individual wave directions are 60  (Fig. 1a) and 

the wavelength is =0.5L2. In contrast, the square dimple mode is obtained by using 

L2/L1=1 and the present study considers the combination of the sinusoidal wrinkle 

modes categorized by (m, n)=(1, 1). Thus, the angles between the two wave directions 

are 45+ 45= 90 (Fig. 1b) and the wavelength is =0.71(≈1/ 2 )L2. Note that the 

set of (m, n)=(1, 0) and (m, n)=(0, 1) can be used to give the square dimple mode with 

=L2(=L1) but using (m, n)=(1, 1) facilitates comparison of the hexagonal and square 

dimple modes because the number of dimples are the same in the unit cells (Fig. 1). 
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Because the ratio of L2/L1 is fixed to consider the hexagonal or square dimple mode, 

the critical value of L2c/h is detected by finding c
0 1( )T  as the minimum value among 

the values calculated by changing the value of L2/h (Miyoshi et al., 2021). Thus, the 

critical wavelength is expressed as c/h=0.5L2c/h for the hexagonal dimple mode and 

c/h=0.71L2c/h for the square dimple mode (see Appendix A).  

 

Fig. 5 shows the unit cells and finite element meshes used to detect L2c/h. 3D finite 

element analysis is performed using the eight-node linear brick element with the 

element type C3D8RH. The numbers of nodes and elements are 31,226 and 28,800 for 

L2/L1= 3 , and 24,986 and 22,500 for L2/L1=1, respectively. The same meshes are used 

for different values of L2/h. The value of H/h=95 is selected to be sufficiently large to 

avoid having to consider the effects of the constraint at the bottom face (Huang et al., 

2005). Note that to visualize the finite element meshes of the film, Fig. 5 does not show 

the entire length of H/h. The mesh resolution and H/h value were determined by 

trial-and-error analysis to decrease computational cost. The element type C3D8RH falls 

into first-order, reduced-integration elements. Thus, hourglass control is enhanced in 

Abaqus analysis, resulting in yielding artificial strain energy associated with the 

constraints used to remove singular modes. The present study estimates the value of 

U/U0 by removing this artificial contribution from the total strain energy in the system 

(i.e., the ALLSE identifier is used in Abaqus). The artificial contribution was confirmed 

to be negligible (less than 4%) of the total strain energy and have no qualitative 

influence on the results in Sections 4–6. 

 

When the critical values of L2c/h for L2/L1=1 and 3  are detected depending on 

the value of Ef/Es (Appendix A), the large periodic cell consisting of 2×2 unit cells (not 

the 1×1 unit cells in Fig. 5) is analyzed to investigate the evolution of the periodic 

pattern from the hexagonal and square dimple modes. If necessary, 4×4 unit cells are 

also assumed (Appendix B). These periodic cells are referred to as 2×2 and 4×4 unit 

cells to distinguish them from the 1×1 unit cell. Each unit cell is discretized using the 

same finite element meshes as the unit cell (Fig. 5). The present study mainly uses the 2

×2 unit cell. This restriction on periodic cells was considered to avoid a tremendous 

increase of computational cost. Note that the possibility of the occurrence of longer 
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wavelength bifurcations (Geymonat et al., 1993; Okumura et al., 2004; Ohno et al., 

2004) is excluded in the present study.  

 

 

Fig. 5.  Finite element meshes of the unit cells for the (a) hexagonal dimple mode with L2/L1=
3  and (b) square dimple mode with L2/L1=1. Different values of L2/h are considered to detect 

the dominant wavelength, which depends on the Young’s modulus ratio, Ef/Es. The 
trial-and-error analysis determined the use of H/h=95 as an approximation of H/h→∞. Note that 
to visualize the finite element meshes of the film, the figures do not include the entire length of 
H/h. The unit cells are called the 1×1 unit cell to distinguish them from the periodic cells 
consisting of n×n unit cells. 

 

The expression {L2/L1, Ef/Es, d(1)/h} is used to indicate the parameter set used in the 

analysis, i.e., L2/L1= 3  for the hexagonal dimple mode and L2/L1=1 for the square 

dimple mode, Ef/Es is parameterized as the Young’s modulus ratio, and d(1)/h is 

parameterized as the imperfection magnitude introduced at the first bifurcation to trace 

the first bifurcated path (Eq. (6)). 

 

Fig. 6 shows the responses of the first bifurcated paths obtained using the 2×2 unit cell. 

The parameter sets of {L2/L1, Ef/Es, d(1)/h}={ 3 or 1, 15, 0.01} were used as an 

example. The critical wavelength is c/h=12.4 (Appendix A). An increase of c
0 0/   

from 1 causes a decrease of U/U0 from 1 (Fig. 6a), i.e., pattern evolution occurs. The 

hexagonal and square dimple modes ( (1)
HEX  and (1)

SQU ) at the first bifurcation (Fig. 6b,d) 

lead to evolution of the deformation patterns on the first bifurcated path (Fig. 6c,e). The 

bifurcation modes just correspond to the deformation patterns on the first bifurcated 

path (Fig. 6b–e). As described by Cai et al. (2011), the square dimple (i.e., 

checkerboard) pattern is superior to the hexagonal dimple pattern (Fig. 6a). However, 
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the energy difference is very small and can be considered to be negligible in the case 

where the film and substrate are assumed to be incompressible (Section 3.1) with a 

small Young’s modulus ratio in the range 2–20 (cf. Chen and Hutchinson, 2004; Cai et 

al., 2011). Thus, both the hexagonal and square dimple patterns are considered to 

investigate the pattern evolutions on the second and sequential bifurcated paths 

(Sections 4–6). In addition, the second bifurcation points are detected at small 

overstresses of c
0 0/  <1.8. 

 

 
Fig. 6.  Responses of the first bifurcated paths obtained using the 2×2 unit cell with {L2/L1, 
Ef/Es, d(1)/h}={(1, 3 ), 15, 0.01} as an example. (a) U/U0 as a function of c

0 0/  , (b) (1)
HEX , 

(c) the hexagonal dimple pattern induced by (1)
HEX , (d) (1)

SQU , and (e) the square dimple pattern 
induced by (1)

SQU . It is clear that the bifurcation modes correspond to the deformation patterns 
on the first bifurcated path. The energy difference between the two patterns is very small and 
can be considered to be negligible because the present study assumes that the film and substrate 
are incompressible with a small Young’s modulus ratio in the range 2 – 20 (cf. Cai et al., 2011). 
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4. Results from analysis of the second bifurcation point 

4.1. Bifurcation modes at the second bifurcations 

Fig. 7 shows the second bifurcation points on the first bifurcated paths. Using {L2/L1, 

Ef/Es, d(1)/h}={(1, 3 ), (3,6,20), 0.01} (Fig. 7a), the effects of L2/L1 and Ef/Es on the 

first bifurcated path are almost invisible, especially in the range c
0 0/   < 2. Similarly, 

using {L2/L1, Ef/Es, d(1)/h}={ 3 , 9, (0.001, 0.05, 0.1)} (Fig. 7b), the energy difference 

is hardly visible, except for the case of d(1)/h=0.1 (i.e., this is the largest value of the 

imperfection magnitude). However, appearance of the second bifurcation points in the 

early stage of overstress ( c
0 0/  =1–1.8) strongly depends on the variation of these 

parameter sets. The hexagonal dimple pattern (L2/L1= 3 ) has four types of second 

bifurcations, whereas the square dimple pattern (L2/L1=1) has three types. The 

bifurcation modes are different (Figs. 8 and 9), which are categorized as Fields HA, HB, 

HC, and HD for the hexagonal dimple pattern (Fig. 10) and Fields SA, SB, and SC for 

the square dimple pattern (Fig. 11). The second bifurcation modes are detected as a 

function of not only Ef/Es (Fig. 7a), but also d(1)/h (Fig. 7b). 

 

Fig. 8 shows the second bifurcation modes occurring during evolution of the 

hexagonal dimple pattern. The second bifurcation included in Field HA has k(2)=2 (i.e., 

it is a double bifurcation). Fig. 8a,b shows the two basic bifurcation modes, (2)
HA0a  and 

(2)
HA0b , which are recognized as an identical rectangular checkerboard mode with 

translational symmetry in the x2 direction. In contrast, Fields HB and HC have k(2)=3 

(i.e., they are triplet bifurcations). The basic bifurcation modes of Field HB ( (2)
HB0 , (2)

HB60 , 

and (2)
HB60* , Fig. 8c–e) are an identical stripe mode occurring in three symmetric 

directions because of the hexagonal dimple pattern (Fig. 1a), whereas the bifurcation 

modes of Field HC ( (2)
HC0 , (2)

HC60 , and (2)
HC60* , Fig. 8f–h) are an identical rectangular 

checkerboard mode occurring in the symmetric directions. Although Miyoshi et al. 

(2021) discovered the importance of (2)
HC0 , (2)

HC60 , and (2)
HC60*  as the second bifurcation 

modes for surface pattern evolution of a gel film bonded to a substrate, the present study 

elucidates that the second bifurcations detected during evolution of the hexagonal 

dimple pattern are not unique and the sets of the dominant bifurcation modes are 

categorized in Fields HA, HB, HC, and HD (Fig. 10). 

 



18 
 

 

Fig. 7.  Second bifurcation points on the first bifurcated paths using the parameter sets of (a) 
{L2/L1, Ef/Es, d(1)/h}={(1, 3 ), (3,6,20), 0.01} and (b) {L2/L1, Ef/Es, d(1)/h}={ 3 , 9, (0.001, 
0.05, 0.1)}. The present study analyzes the second bifurcation point on the first bifurcated path 
for individual parameter sets. The hexagonal dimple pattern (L2/L1= 3 ) has four types of 
second bifurcations, which consist of different sets of bifurcation modes (Fig. 8), and belong to 
Fields HA, HB, HC, and HD (Fig. 10), whereas the square dimple pattern (L2/L1=1) has three 
types of second bifurcations, which also consist of different sets of bifurcation modes (Fig. 9), 
and belong to Fields SA, SB, and SC (Fig. 11). Thus, the bifurcation modes are detected as a 
function of not only Ef/Es, but also d(1)/h in the early stages of overstress ( c

0 0/  =1–1.8).  
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Fig. 8.  Bifurcation modes at the second bifurcation occurring during evolution of the 
hexagonal dimple pattern analyzed using the parameter sets of {L2/L1, Ef/Es, d(1)/h}. (a) and (b) 

(2)
HA0a,b  for { 3 , 20, 0.01} (k(2)=2), (c)–(e) (2)

HB0,60,60*  for { 3 , 9, 0.01} (k(2)=3), and (f)–(h) 
(2)

HC0,60,60*  for { 3 , 6, 0.01} (k(2)=3). The subscripts HA, HB, and HC indicate that the 
bifurcation modes represent the modes obtained in Fields HA, HB, and HC, respectively (Fig. 
10). Modes (2)

HC0,60,60*  are the rectangular checkerboard modes in the three symmetric directions 
reported by Miyoshi et al. (2021). Modes (2)

HA0a,b  are the same rectangular checkerboard mode 
with a phase shift in the x2 direction because of the translational symmetry. In contrast, Modes 

(2)
HB0,60,60*  are the stripe modes in the three symmetric directions.  

 

The second bifurcation modes occurring during evolution of the square dimple 

pattern are shown in Fig. 9. Fields SA and SB have k(2)=4 and k(2)=2, respectively, so 

Fig. 9a–d show (2)
SA0a , (2)

SA0b , (2)
SA90a , and (2)

SA90b  for Field SA, whereas Fig. 9e,f show 
(2)

SB45  and (2)
SB45*  for Field SB. For Field SA, k(2)=4 results from the identical 

rectangular checkerboard modes extended by the rotational symmetry between the x1 

and x2 directions and the translational symmetry in the x1 or x2 direction. For Field SB, 

k(2)=2 means the identical rectangular checkerboard mode in the 45   directions to the 

x1 or x2 direction (Fig. 1b). It is interesting that Fields HA, HC, SA and SB consist of a 

series of analogous rectangular checkerboard modes and only Field HB consists of the 

stripe modes (Figs. 8 and 9). Fields HA, HB, HC, HD, SA, SB, and SC are found by 
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parameterizing not only Ef/Es but also d(1)/h. The bifurcation modes in Fields HD and 

SC are not shown here. The reason for this will be given in Section 4.2. 

 

 

Fig. 9.  Bifurcation modes at the second bifurcation occurring during evolution of the square 
dimple pattern analyzed using the parameter sets of {L2/L1, Ef/Es, d(1)/h}. (a)–(d) (2)

SA0a,b,90a,b  for 
{1, 15, 0.01} (k(2)=4), and (e) and (f) (2)

SB45,45*  for {1, 5, 0.01} (k(2)=2). The subscripts SA and 
SB indicate that the bifurcation modes represent the modes obtained in Fields SA and SB (Fig. 
11). They belong to the rectangular checkerboard modes. Multiplicity of the bifurcations occurs 
owing to the translational and/or rotational symmetries. 

 

4.2. Bifurcation mode diagrams of the second bifurcation 

As shown in Section 4.1, the dominant bifurcation modes depend on not only Ef/Es, 

but also d(1)/h. To elucidate the interactions between the two parameters, Figs. 10 and 11 

show that the bifurcation mode diagrams of the second bifurcation occurring during the 

evolution of the hexagonal and square dimple patterns, respectively. First, the 

bifurcation mode diagrams are depicted as a function of Ef/Es and the value of c
0 0/   

detected at the second bifurcation point (i.e., ( 2 ) c
0 0/  ) (Figs. 10a and 11a). In these 

graphs, the points obtained by the same value of d(1)/h are connected by individual lines. 

The value of d(1)/h affects not only the value of ( 2 ) c
0 0/  , but also the dominant 

bifurcation mode. Thus, if imperfection methods are used such as in the present study 

(Section 2), a fixed value of the imperfection magnitude can fail to obtain the 

comprehensive responses that depend on the imperfection magnitude in analysis of the 
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second and sequential bifurcations. This leads to the need to show the bifurcation mode 

diagram as a function of not only Ef/Es, but also d(1)/h. (Figs. 10b and 11b). Figs. 10 and 

11 clearly demonstrate the existence of Fields HA, HB, HC, and HD for the hexagonal 

dimple pattern and Fields SA, SB, and SC for the square dimple pattern. The individual 

fields are confirmed to include the parameter sets of the specific values used to show 

Figs. 8 and 9. 

 

 
Fig. 10.  Bifurcation mode diagrams of the second bifurcation occurring during evolution of 
the hexagonal dimple pattern as a function of (a) Ef/Es and (2) c

0 0/   and (b) Ef/Es and d(1)/h. 
The diagrams show Fields HA, HB, and HC in which the bifurcation modes are (2)

HA0a,b , 
(2)

HB0,60,60*  and (2)
HC0,60,60* , respectively (Fig. 8). The bifurcation modes belong to either Field HA, 

HB, HC, or HD. Field HD consists of a subset of the sinusoidal wrinkle modes at the first 
bifurcation, so the present study considers Field HD to be a meaningless field.  

 

Note that the present study considers Fields HD and SC to be meaningless fields of 

the second bifurcation because the bifurcation modes are a subset of the sinusoidal 

wrinkle modes obtained at the first bifurcation, i.e., the parameter sets distributed in the 

two fields (Figs. 10 and 11) fail to detect the second bifurcation. This tendency is 

reasonably understood by the first bifurcation point being multiple (k(1)≠1) and the 

potential bifurcation modes, except for the hexagonal and square dimple modes still 

being available at low overstress (i.e., at ( 2 ) c
0 0/  =1–1.4 in Figs 10a and 11a). Because 

Fields HD and SC also depend on the value of Ef/Es, the imperfection magnitude should 

be parameterized to recognize and avoid the fields. For instance, using d(1)/h=0.01 (a 

popular value used in imperfection methods, Chen and Hutchinson, 2004; Cai et al., 

2011; Miyoshi et al., 2021) fails to detect the second bifurcation point when the value of 
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Ef/Es is smaller than 5 for the hexagonal dimple pattern. Perfect nonlinear bifurcation 

analysis (not imperfection methods, e.g., Healey, 1988; Ohno et al., 2002; Okumura et 

al., 2004; Pandurangi et al., 2020) solves this intrinsic problem, but, unfortunately, the 

finite element packages, including Abaqus, do not have this option (Healey, 1989).  

 

 
Fig. 11.  Bifurcation mode diagrams of the second bifurcation occurring during evolution of 
the square dimple pattern as a function of (a) Ef/Es and (2) c

0 0/   and (b) Ef/Es and d(1)/h. The 
diagrams show Fields SA and SB in which the bifurcation modes are (2)

SA0,90  and (2)
SB45,45*  (Fig. 

9). The bifurcation modes belong to either Field SA, SB, or SC. Field SC consists of a subset of 
the sinusoidal wrinkle modes at the first bifurcation, so the present study considers Field SC to 
be a meaningless field. 

 

4.3. Cognate bifurcation modes obtained by superposition  

The second bifurcation is multiple such as k(2)=2 for Fields HA and SB, k(2)=3 for 

Fields HB and HC, and k(2)=4 for Field SA, because the obtained bifurcation modes 

(Figs. 8 and 9) consist of the sets of the identical bifurcation modes extended by the 

translational and/or rotational symmetries (Section 4.1). Thus, combination of the 

subsets of the identical bifurcation modes gives the variation of distinctive bifurcation 

modes. These modes are defined as the cognate modes with the basic mode. For 

simplicity, the present study considers the cognate modes obtained as below: the modes 

included in each subset have the same magnitude (i.e., (2) (2)| | | |i jr r  in Eq. (6)) 

whereas the modes excluded from the subset have (2) 0mr  . The cognate bifurcation 

modes obtained in the individual fields are shown in Figs. 12 and 13.  
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Fig. 12.  Cognate bifurcation modes occurring in Fields HA, HB and HC. (a) Mode HAI+ (e.g.,
(2) (2) (2)

HAI+ HA0a HA0b    ), (b) Mode HBII (e.g., (2) (2) (2)
HBII HB60 HB60*    ), (c) Mode HBIII (e.g., 

(2) (2) (2) (2)
HBIII HB0 HB60 HB60*      ), (d) Mode HCII (e.g., (2) (2) (2)

HCII HC60 HC60*    ), and (e) Mode HCIII 
(e.g., (2) (2) (2) (2)

HCIII HC0 HC60 HC60*       ). Modes HAI, HBI and HCI are depicted as (2) (2)
HAI HA0a   

(Fig. 8a), (2) (2)
HBI HB0   (Fig. 8c), and (2) (2)

HCI HC0   (Fig. 8f). Although the basic bifurcation modes 
are wavelike and occur in the symmetric directions (Fig. 8), superposition allows the cognate 
modes to become distinctive and diverse. Note that (2) (2) (2)

HAI+ HA0a HA0b     is different from (2)
HAI . 

In addition, 4×4 unit cell analysis is needed to obtain (2)
HA60a,b,60*a,b , which are used to describe 

Modes HA(II, II+, III, III+,…) (Appendix B). 

 

Fig. 12 shows the cognate bifurcation modes obtained for Fields H(A–C). First, 

when the combination of (2) (2) (2)
1 HB0 2 HB60 3 HB60*c c c     as ci=(1 or 0 or 1) is analyzed, Field 

HB is found to have the three symmetrically different modes, Modes HB(I, II, and III). 

This means that the cognate modes with (2) (2)
HBI HB0   (Mode HBI, Fig. 8c) are 

(2) (2) (2)
HBII HB60 HB60*     (Mode HBII, Fig. 12b) and (2) (2) (2) (2)

HBIII HB0 HB60 HB60*       (Mode HBIII, 

Fig. 12c). Note that different signs of the coefficients do not generate different modes 

because the generated modes are periodically identical. The signs have been selected to 

make the cognate modes easier to recognize (Fig. 12). As a matter of course, Modes 

HB(I, II, and III) ( (2)
HB(I,II,III) ) are different so that evolution of different deformation 

patterns occurs on the different bifurcated paths regarded as the second bifurcated path. 

In the same way, Fig. 12d,e shows that Field HC has Modes HC(I, II, and III) so that  
(2) (2) (2)

HCII HC60 HC60*     and (2) (2) (2) (2)
HCIII HC0 HC60 HC60*        are cognate with (2) (2)

HCI HC0   (Fig. 

8f). These cognate modes (Fig. 12b–e) appear because of the rotational symmetry of the 

hexagonal dimple pattern.  

 

In contrast, Field HA has k(2)=2 and two identical modes with a rectangular 
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checkerboard extended by the translational symmetry in the x2 direction (Fig. 8a,b). 

Surprisingly, superposition of the two identical modes generates a different bifurcation 

mode ( (2) (2)
HA0a HA0b  , Fig. 12a) that is cognate with the individual modes ( (2)

HA0a,b , Fig. 

8a,b). Thus, the cognate mode (2) (2)
HA0a HA0b   is categorized as Mode HAI+, which is 

different from (2)
HA0a,b  as Mode HAI. In the case of Field HA, the 4×4 unit cell is 

needed to obtain the identical modes occurring in the symmetric directions because of 

the rotational symmetry (Appendix B). The combination of the obtained identical modes, 
(2)

HA60a,b,60*a,b , generates the cognate modes as Modes HA(II, II+, III, and III+). Although 

other combinations, except for Modes HA(I, I+, II, II+, III, and III+), are also obtainable 

(Appendix B), the present study mainly focuses on analyzing pattern evolution from 

Modes HA(I and I+) because the 4×4 unit cell requires tremendous computational cost 

to consider many cognate modes. Comparison of Figs. 8 and 12 shows that 

superposition allows the cognate modes to become diverse and distinctive. The second 

bifurcation is found to promise evolution from the hexagonal dimple pattern to a 

variation of the deformation patterns caused by Modes HA(I and I+,…), HB(I, II, and 

III) and HC(I, II, and III) (Section 5).  

 

Fig. 13 shows the cognate bifurcation modes obtained by considering Fields SA and 

SB. When the cognate modes in Field SA (k(2)=4) are also systematically considered by 

investigating the combination of (2) (2) (2) (2)
1 SA0a 2 SA0b 3 SA90a 4 SA90bc c c c       as ci=(1 or 0 or 1), 

Modes SA(I, I+, II, II+, III, and IV) (Fig. 13a–e) are recognized as the different modes 

in Field SA (i.e., six different modes). Modes SA(I, I+, II, II+, III, and IV) are obtained, 

for instance, by (2) (2)
SAI SA0a  (Fig. 9a), (2) (2) (2)

SAI+ SA0a SA0b    (Fig. 13a), (2) (2) (2)
SAII SA0b SA90b   

(Fig. 13b), (2) (2) (2)
SAII+ SA0a SA90b    (Fig. 13c), (2) (2) (2) (2)

SAIII SA0a SA0b SA90a      (Fig. 13d), and 
(2) (2) (2) (2) (2)

SAIV SA0a SA0b SA90a SA90b        (Fig. 13e). In contrast, Field SB simply produces the 

cognate bifurcation mode as (2) (2)
SB45 SB45*   because k(2)=2. Modes SB(I and II) are 

expressed as (2) (2)
SBI SB45   (Fig. 9e) and (2) (2) (2)

SBII SB45 SB45*     (Fig. 13f). Evolution from 

the square dimple pattern is also expected to generate the complex and diverse 

deformation patterns caused by Modes SA(I, I+, II, II+, III, and IV) and SB(I and II) 

(Section 5).  
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Fig. 13.  Cognate bifurcation modes occurring in Fields SA and SB. (a) Mode SAI+ (e.g.,
(2) (2) (2)

SAI+ SA0a SA0b    ), (b) Mode SAII (e.g., (2) (2) (2)
SAII SA0b SA90b    ), (c) Mode SAII+ (e.g.,

(2) (2) (2)
SAII+ SA0a SA90b    ), (d) Mode SAIII (e.g., (2) (2) (2) (2)

SAIII SA0a SA0b SA90a      ), (e) Mode SAIV (e.g.,
(2) (2) (2) (2) (2)

SAIV SA0a SA0b SA90a SA90b        ), and (f) Mode SBII (e.g., (2) (2) (2)
SBII SB45 SB45*    ). Modes SAI 

and SBI are depicted as (2) (2)
SAI SA0a   (Fig. 9a) and (2) (2)

SBI SB45   (Fig. 9e). Note that (2)
SAII  and 

(2)
SAII+  are periodically identical but recognized as different modes because different 

imperfections are generated by superposition of the modes at the first and second bifurcations 
(Fig. 17).  

 

 

5. Evolution of deformation patterns on the second bifurcated path 

Figs. 14–18 show pattern evolution on the second bifurcated path for Fields HA, HB, 

HC, SA and SB, respectively. The individual figures compare the imperfection 

consisting of the first and second bifurcation modes, such as (1) (2)
HEX HAI   (Eq. (6)), with 

deformation pattern evolution as a function of c
0 0/  . Although the basic modes at the 

second bifurcations are basically wavelike, such as the stripe and rectangular 

checkerboard modes (Section 4.1), when the cognate modes (Section 4.3) interact with 

the first bifurcation (i.e., with the hexagonal and square dimples, Section 3.4), the 

deformation patterns successfully reproduce herringbone patterns as well as diverse and 

distinctive patterns, including the experimentally observed patterns (Breid and Crosby, 

2011; Guvendiren et al., 2009). In addition, each bifurcation mode obtained at the 

second bifurcation point (Figs. 8, 9, 12 and 13) does not seem to be responsible to 
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pattern evolution on the second bifurcated path (Healey, 1989), the imperfection 

obtained from superposition of the dominant modes at the first and second bifurcation 

points (Eq. (6)) successfully explains pattern evolution on the second bifurcated path 

(Miyoshi et al., 2021), i.e., accidental path switching does not occur in these case. 

 

 
Fig. 14.  Initial imperfection and evolution of the deformation pattern from Modes HA(I and 
I+). (a) Initial imperfection ( (1) (2)

HEX HAI  ) and (b) the corresponding deformation pattern. (c) 
Initial imperfection ( (1) (2)

HEX HAI+  ) and (d) the corresponding deformation pattern. The parameter 
set of {L2/L1, Ef/Es, d(1)/h}={ 3 , 20, 0.01(=d(2)/h)} is used as the representative in Field HA. 
Modes HA(I and I+) cause coalescence of dimples, evolving from the hexagonal dimples to 
herringbone and peanut patterns on the second bifurcated path. These patterns are the cognate 
patterns caused by the second bifurcation in Field HA.  
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Fig. 15.  Initial imperfection and evolution of the deformation pattern from Modes HB(I, II, 
and III). (a) Initial imperfection ( (1) (2)

HEX HBI  ) and (b) the corresponding deformation pattern. (c) 
Initial imperfection ( (1) (2)

HEX HBII  ) and (d) the corresponding deformation pattern. (e) Initial 
imperfection ( (1) (2)

HEX HBIII  ) and (f) the corresponding deformation pattern. The parameter set of 
{L2/L1, Ef/Es, d(1)/h}={ 3 , 9, 0.01(=d(2)/h)} is used as the representative in Field HB. Modes 
HB(I, II, and III) cause coalescence of dimples, evolving from the hexagonal dimples to 
herringbone, zipper and triple-junction patterns on the second bifurcated path (Breid and Crosby, 
2011; Tallinen and Biggins, 2015). Remarkably, these patterns are the cognate patterns caused 
by the second bifurcation in Field HB. 
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Fig. 16.  Initial imperfection and evolution of the deformation pattern from Modes HC(I, II, 
and III). (a) Initial imperfection ( (1) (2)

HEX HCI  ) and (b) the corresponding deformation pattern. (c) 
Initial imperfection ( (1) (2)

HEX HCII  ) and (d) the corresponding deformation pattern. (e) Initial 
imperfection ( (1) (2)

HEX HCIII  ) and (f) the corresponding deformation pattern. The parameter set of 
{L2/L1, Ef/Es, d(1)/h}={ 3 , 6, 0.01(=d(2)/h)} is used as the representative in Field HC. As 
elucidated by Miyoshi et al. (2021), Modes HC(I, II, and III) give distorted dimples (not 
coalescence), evolving from the hexagonal dimples to brick- and cage- like patterns on the 
second bifurcated path. Further, when focusing on the periodic arrangement of the distorted 
dimples, the periodic arrangement has an analogy with the in-plane buckling behavior of 
hexagonal honeycombs (Ohno et al., 2002; Okumura et al., 2002). Note that further bifurcations 
are needed for occurrence of herringbone and labyrinth patterns (Miyoshi et al., 2021). 
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Fig. 17.  Initial imperfection and evolution of the deformation pattern from Modes SA(I, I+, II, 
and II+). (a) Initial imperfection ( (1) (2)

SQU SAI  ) and (b) the corresponding deformation pattern. (c) 
Initial imperfection ( (1) (2)

SQU SAI+  ) and (d) the corresponding deformation pattern. (e) Initial 
imperfection ( (1) (2)

SQU SAII  ) and (f) the corresponding deformation pattern. (g) Initial imperfection 
( (1) (2)

SQU SAII+  ) and (h) the corresponding deformation pattern. The parameter set of {L2/L1, Ef/Es, 
d(1)/h}={1, 15, 0.01(=d(2)/h)} is used as the representative in Field SA. Modes SA(I, I+, II, and 
II+) cause coalescence of dimples depending on the individual modes. Modes SA(I and I+) 
result in herringbone and peanut patterns, which are similar to the response of Modes HA(I and 
I+), whereas Modes SA(II and II+) result in two types of weave patterns (i.e., plane and basket 
weave patterns, Fig. 2e,f), which can also be viewed as diamond plate patterns (Okumura et al., 
2015). The plane weave pattern caused by Mode SAII corresponds to the pattern observed in the 
experiments of Breid and Crosby (2011). The diversity of the obtained patterns is understood as 
a result of the cognate patterns caused by the second bifurcation in Field SA.  
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Fig. 18.  Initial imperfection and evolution of deformation pattern from Modes SB(I and II). 
(a) Initial imperfection ( (1) (2)

SQU SBI  ) and (b) the corresponding deformation pattern. (c) Initial 
imperfection ( (1) (2)

SQU SBII  ) and (d) the corresponding deformation pattern. The parameter set of 
{L2/L1, Ef/Es, d(1)/h}={1, 5, 0.01(=d(2)/h)} is used as the representative in Field SB. Modes SB(I 
and II) distort the circular dimples to triangular dimples. When focusing on the shape and 
periodic arrangement of the bumps instead of the dimples, the morphology has an analogy with 
the in-plane buckling behavior of square honeycombs (Ohno et al., 2004). 

 

A variety of herringbone patterns with different dimensions appear on the second 

bifurcated paths induced by Modes HAI (Fig. 14a,b), HBI(Fig. 15a,b), and SAI (Fig. 

17a,b). The second bifurcations play a role in causing coalescence of the selected 

combination of dimples. Sequential combination of the first and second bifurcations 

evolves from the dimple patterns to the herringbone patterns with different dimensions 

(cf. Chen and Hutchinson, 2004; Miyoshi et al., 2021). Occurrence and evolution of the 

herringbone patterns occur in the broad range of Fields HA, HB, and SA. Fields HC and 

SB also give a herringbone pattern on the third bifurcated path (not on the second 

bifurcated path) (see Section 6). Further, surprisingly, the experimentally and 

numerically observed distinctive patterns appear from Modes HAI+, HB(II and III), and 

SA(I+, II, and II+), which are generated as the cognate modes of Modes HAI, HBI, and 

SAI (these modes lead to the herringbone patterns), respectively. The peanut patterns 

(Breid and Crosby, 2011; Guvendiren et al., 2009) occur from Modes HAI+ and SAI+ 

(Figs. 14c,d and 17c,d). The triple-junction pattern (Tallinen and Biggins, 2015) appears 
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from Mode HBIII (Fig. 15e,f), whereas the zipper pattern (Breid and Crosby, 2011) 

appears from Mode HBII (Fig. 15c,d). Further, the plane and basket weave patterns 

(Breid and Crosby, 2011) occur from Modes SA(II and II+) (Fig. 17e–h). Because the 

cognate bifurcation modes (Figs. 12 and 13) are generated by superposition of the basic 

bifurcation modes in the symmetric directions (Figs. 8 and 9), these diverse and 

distinctive patterns are understood as cognate patterns with the herringbone pattern. 

This unbelievable but reasonable interpretation is one of the key findings of the present 

study.  

 

Although Fields HA, HB, and SA give the herringbone pattern and its cognate 

patterns, such as the peanut, triple-junction, weave and zipper patterns, on the second 

bifurcated path, Fields HC and SB show different responses (Figs. 16 and 18). As 

reported by Miyoshi et al. (2021), Modes HC(I, II, and III) have an analogy with the 

in-plane buckling behavior of hexagonal honeycombs, i.e., the first bifurcation yields a 

hexagonal dimple structure, whereas the second bifurcation produces the periodic 

arrangement of the distorted dimples (not coalescence of dimples), which have an 

analogy with the uniaxial, biaxial, and equibiaxial (flower-like) patterns (Gibson and 

Ashby, 1997; Papka and Kyriakides, 1999; Ohno et al., 2002; Combescure et al., 2020). 

The resulting deformation patterns are recognized as the brick- and cage-like patterns 

experimentally reported by Breid and Crosby (2011). The third and/or fourth 

bifurcations need to evolve from these intermediate patterns (Fig. 16) to the herringbone 

and labyrinth patterns (Miyoshi et al., 2021, Section 6). In the same way, the 

deformation patterns caused by Modes SB(I and II) (Fig. 18) do not include the 

herringbone pattern, and they are also understood to be intermediate patterns, which 

affect evolution of the deformation patterns on the third bifurcated path (Section 6). In 

addition, Modes SB(I and II) distort the circular dimples to triangular dimples. When 

focusing on the shape and periodic arrangement of the bumps instead of the triangular 

dimples, the morphology has an analogy with the in-plane buckling behavior of square 

honeycombs (Ohno et al., 2004). Pattern evolution from the intermediate patterns of 

Modes HC(I, II, and III) and SB(I and II) will be discussed in Section 6. 

 

It is additionally noted that analysis of pattern evolution from Modes SA(III and IV) 
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caused accidental path switching (Healey, 1989), leading to the herringbone and plane 

weave patterns obtained by Modes SA(I and II), respectively (Fig. 17b,f). Although the 

imperfections generated from Modes SA(III and IV) are not shown here to avoid 

redundancy, the imperfection from Mode SAIII seems to evolve to an extended 

herringbone pattern whereas the imperfection from Mode SAIV seems to evolve to a 

mixed pattern of the plane and basket weave patterns. This implies that the bifurcated 

paths from Modes SA(III and IV) are similar to those from Modes SA(I and II), 

respectively, as well as that Modes SA(III and IV) are energetically inferior to Modes 

SA(I and II), respectively. The postbuckling analysis using Modes SA(III and IV) may 

be achieved by introducing additional constraints (Okumura et al., 2002). In addition, as 

demonstrated by Pandurangi et al. (2020), all the bifurcated paths regardless of the 

lowest and higher-order bifurcation points can be traced by analysis of the perfect 

system using group-theoretic methods (Sattinger, 1979; Golubitsky et al., 1988; Healey, 

1988). However, we consider such analysis to be out of the scope in the present study.  

 

 

6. Discussion 

6.1. Decrease of the elastic energy from on the first bifurcated path 

Fig. 19 shows the decrease of U/U0 from on the first bifurcated path when Modes 

HA(I and I+), HB(I, II, and III), HC(I, II, and III), SA(I, I+, II, and II+), and SB(I and 

II) are used to obtain the corresponding second bifurcated paths. A clear decrease of 

U/U0 occurs for Modes HA(I and I+), HB(I, II, and III) and SA(I, I+, II, and II+) (Fig. 

19a,b,d), while a slight decrease is caused by Modes HC(I, II, and III) and SB(I and II) 

(Fig. 19c,e). The former group includes the herringbone and cognate patterns, which 

play a considerable role in releasing the elastic energy stored on the first bifurcated path. 

In addition, the energy decreases of the herringbone and cognate patterns are almost the 

same (although the herringbone patterns are slightly superior to the cognate patterns), 

i.e., the cognate patterns are also dominant on the second bifurcated path. This result 

gives a reasonable explanation for the analysis of the triple-junction pattern by Tallinen 

and Biggins (2015) and the experimental observation by Breid and Crosby (2009, 2011). 

In contrast, the latter group (Modes HC(I, II, and III) and SB(I and II)) is considered as 

intermediate patterns that do not include the herringbone pattern (Figs. 16 and 18), i.e., 

further bifurcations can cause a further decrease of the elastic energy with pattern 
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evolution. These possibilities will be shown in Section 6.2. 

 

 

Fig. 19.  Decrease of U/U0 as a function of c
0 0/   from on the first bifurcated path for (a) 

Modes HA(I and I+), (b) Modes HB(I, II, and III), (c) Modes HC(I, II, and III), (d) Modes SA(I, 
I+, II, and II+), and (e) Modes SB(I and II). Modes HAI, HB(I, II, and III), and Modes SA(I, I+, 
II, and II+) include the herringbone pattern and its cognate patterns (Figs. 14, 15 and 17). The 
energy decreases of the herringbone and cognate patterns are almost the same, i.e., the cognate 
patterns are also dominant compared with the herringbone pattern. There is a clear energy 
decrease in these cases. In contrast, Modes HC(I, II, and III) and SB(I and II) do not include the 
herringbone pattern and give intermediate patterns (Figs. 16 and 18), leading to a slight decrease 
of the elastic energy. Further bifurcations may cause a further decrease of the elastic energy with 
pattern evolution. 

 

6.2. Third bifurcation analysis from Modes HC(I, II, and III) and SB(I and II) 

The bifurcation mode, the imperfection, and the deformation pattern obtained by 

analysis of the third bifurcation on the second bifurcated paths obtained by Modes HC(I, 
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II, and III) are shown in Fig. 20. The multiplicity of the bifurcations is k(3)=1 for the 

three cases. The bifurcation modes ( (3)
HCI , (3)

HCII , and (3)
HCIII , Fig. 20a,d,g) can be 

understood as Modes HB(I, II, and III) (Figs. 8c and 12b,c) being distorted by the 

deformation pattern of Modes HC(I, II, and III), respectively. Fig. 20 indicates that 

evolution of the intermediate patterns by Modes HC(I and III) does not prevent 

occurrence of the herringbone and triple-junction patterns, but Mode HCII loses the 

chance of occurrence of the zipper pattern (cf. Fig. 15). Especially, Fig. 20i is viewed as 

the asymmetric triple-junction pattern reported by Tallinen and Biggins (2015). These 

responses support the robustness of the herringbone pattern and the diversity of the 

cognate patterns. According to Miyoshi et al. (2021), the occurrence of the fourth 

bifurcation allows the cognate patterns (Fig. 20f,i) to become the periodical labyrinth 

pattern.  
 

The responses of the third bifurcation from Modes SB(I and II) are shown in Fig. 21. 

Both cases have k(3)=2 with (3)
SBIa  and (3)

SBIb  (Fig. 21a,b) for Mode SBI and (3)
SBII0a  and 

(3)
SBII90b  (Fig. 21h,i) for Mode SBII. Thus, the cognate modes are expressed as 
(3) (3)

SBIa SBIb   (Fig. 21e) and (3) (3)
SBII0a SBII90b  (Fig. 21l), respectively. When these modes are 

compared with Modes SA(I, I+, II, II+, III, and IV) (Figs. 9a–d and 13a–e), the third 

bifurcation modes are found to be subsets of Modes SA(I, I+, II, II+, III, and IV), 

although the obtained modes are slightly distorted by evolution of the deformation 

patterns caused by Modes SB(I and II). This is the reason why k(2)=4 for Field SA 

reduces to k(3)=2 at the third bifurcation from Modes SB(I and II). The third bifurcation 

from Mode SBI results in evolution of a plane weave pattern (Fig. 21c,d, see Fig. 2e), 

which is caused by (3)
SBIa  or (3)

SBIb  (cf. Mode SAII for Field SA), whereas the cognate 

pattern caused by (3) (3)
SBIa SBIb   (cf. Mode SAIV for Field SA) is a mixed (i.e., plane and 

basket) weave pattern (Fig. 21f,g). Further, the third bifurcation from Mode SBII leads 

to evolution of the herringbone pattern (Fig. 21j,k) caused by (3)
SBII0a  or (3)

SBII90b , because 

these modes correspond to Mode SAI for Field SA, whereas (3) (3)
SBII0a SBII90b   (Mode 

SAII+ for Field SA) causes evolution of a basket weave pattern (Fig. 21m,n, see Fig. 2f). 

Field SB also has a herringbone pattern (Fig. 21k), as well as three types of distorted 

weave patterns (Fig. 21d,g,n).  

 

 



35 
 

 

Fig. 20.  Responses of the third bifurcation analyzed on the second bifurcated paths obtained 
by Modes HC(I, II, and III). (a) (3)

HCI , (b) (1) (2) (3)
HEX HCI HCI    , and (c) the corresponding 

deformation pattern. (d) (3)
HCII , (e) (1) (2) (3)

HEX HCII HCII    , and (f) the corresponding deformation 
pattern. (g) (3)

HCIII , (h) (1) (2) (3)
HEX HCIII HCIII    , and (i) the corresponding deformation pattern. The 

parameter set of {L2/L1, Ef/Es, d(1)/h}={ 3 , 6, 0.01(=d(2)/h=d(3)/h)} is used. The individual 
modes (k(3)=1) correspond to Modes HB(I, II, and III), but they are distorted by the deformation 
patterns on the second bifurcated path induced by Modes HC(I, II, and III). Pattern evolution by 
Modes HC(I and III) does not prevent occurrence of the herringbone and triple-junction patterns, 
but Mode HCII loses the chance of occurrence of the zipper pattern. This supports the 
robustness of the herringbone pattern and the diversity of the cognate patterns. 
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Fig. 21.  Responses of the third bifurcation analyzed on the second bifurcated paths obtained 
by Modes SB(I and II). (a) (3)

SBIa , (b) (3)
SBIb , (c) (1) (2) (3)

SQU SBI SBIa    , and (d) the corresponding 
deformation pattern. (e) (3) (3)

SBIa SBIb  , (f) (1) (2) (3) (3)
SQU SBI SBIa SBIb      , and (g) the corresponding 

deformation pattern. (h) (3)
SBII0a , (i) (3)

SBII90b , (j) (1) (2) (3)
SQU SBII SBII0a    , and (k) the corresponding 

deformation pattern. (l) (3) (3)
SBII0a SBII90b  , (m) (1) (2) (3) (3)

SQU SBII SBII0a SBII90b      , and (n) the 
corresponding deformation pattern. The parameter set of {L2/L1, Ef/Es, d(1)/h}={1, 5, 
0.05(=d(2)/h=d(3)/h)} is used. The bifurcation modes ( (3)

SBIa , (3) (3)
SBIa SBIb  , (3)

SBII0a , and 
(3) (3)

SBII0a SBII90b  ) are slightly distorted modes of Modes SA(II, IV, I, and II+), evolving to 
distorted weave and herringbone patterns. In field SB, the herringbone pattern can also appear 
and the plane, basket, and mixed weave patterns appear as the cognate patterns. 

 

It is finally noted that clear energy differences between the herringbone and cognate 

patterns are not recognized for all cases. This could be because the present study 

considers the film and substrate to be incompressible with a relatively small Young’s 
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modulus ratio in the range 2–20. As pointed out by Chen and Hutchinson (2004) and 

Cai et al. (2011), a very large Young’s modulus ratio (approximately 1000–3000) gives 

a considerable difference in the energy decrease between the herringbone and other 

wavelike patterns. In contrast, as pointed out by Breid and Crosby (2011), Tallinen and 

Biggins (2015), and Campos et al. (2021), a small Young’s modulus ratio (including that 

used in the present study) gives a variety of coexistence patterns because the energy 

differences are almost negligible and comparable. The present study elucidates that the 

herringbone patterns have the potential to occur in all of Fields HA, HB, HC, SA, and 

SB, and the triple-junction, weave, peanut, and zipper patterns also appear as cognate 

patterns with the herringbone pattern. Note that the analyzed weave patterns can be 

divided into the plane weave pattern (from Mode SAII, Figs. 2e, 17f, and 21d), the 

basket weave pattern (from Mode SAII+, Figs. 2f, 17h, and 21n), and the mixed weave 

pattern (from Mode SAIV, Fig. 21g). The plane weave pattern perfectly corresponds to 

the pattern observed by Breid and Crosby (2011).  

 

 

7. Conclusions 

We have investigated the diversity of the bifurcations and deformations during 

evolution of periodic patterns on compressed films bonded to compliant substrates. 

Step-by-step eigenvalue buckling analysis was performed to detect the dominant 

bifurcation points on the bifurcated paths whereas postbuckling analysis was performed 

using the imperfection prescribed by the set of dominant bifurcation modes. The second 

bifurcation was investigated as a function of the Young’s modulus ratio, as well as the 

imperfection magnitude, elucidating the robustness of the herringbone pattern and the 

diversity of the distinctive patterns cognate with the herringbone pattern. The new 

findings are described below.  

 

When the Young’s modulus ratio was considered in the range 2–20, the second 

bifurcation was divided into Fields H(A–D) and S(A–C) for the hexagonal and square 

dimple patterns, respectively. To visualize the fields, the bifurcation mode diagrams 

were shown as a function of the Young’s modulus ratio, as well as the imperfection 

magnitude (Figs. 10 and 11). The imperfection magnitude should be parameterized 

when imperfection methods are used to analyze the second and sequent bifurcations. 
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Fields HD and SC were regarded as the meaningless fields caused by the multiplicity of 

bifurcations at the first bifurcation point. The basic bifurcation modes were the 

rectangular checkerboard modes for Fields H(A and C) and S(A and B) and the stripe 

modes for Field HB (Figs. 8 and 9). The different basic modes in the individual fields 

gave a family of herringbone deformation patterns with different dimensions. The 

multiplicity of bifurcations was explained by the translational and rotational symmetries 

because of the hexagonal and square dimples patterns. Superposition of the identical 

modes in symmetric directions (i.e., the cognate modes, Figs. 12 and 13) demonstrated 

the existence of the distinctive patterns cognate with the herringbone patterns, i.e., the 

triple-junction, peanut, zipper and weave patterns were cognate with the herringbone 

pattern (Figs. 14–18, 20, and 21). The energy differences between the herringbone and 

cognate patterns were almost negligible and comparable (Fig. 19), so coexistence of 

diverse and distinctive patterns occurs. These impactful and sophisticated findings 

provide a deep understanding of the robustness of the herringbone patterns and the 

diversity of the distinctive patterns cognate with the herringbone patterns.  

 

Note that the present study used the same imperfection magnitude of 

d(1)/h=d(2)/h=d(3)/h to analyze the second and third bifurcated paths (see Sections 5 and 

6), i.e., the first bifurcated paths were investigated using the variables of d(1)/h as an 

additional parameter. If the values of d(2)/h and d(3)/h are also parameterized, 

computational cost can increase highly although the imperfection approach using Eq. 

(6) is a simple and convenient approach. Further, accidental path switching can occur as 

described in the last paragraph of Section 5. In contrast, the perfection approach without 

imperfections can be performed using group-theoretic methods (Sattinger, 1979; 

Golubitsky et al., 1988; Healey ,1988). As demonstrated by Pandurangi et al. (2020), 

this approach has the ability to trace all the bifurcated paths regardless of the lowest and 

higher-order bifurcations. The analysis using the perfection approach can provide a 

reasonable explanation for the dependence of the second bifurcation on the imperfection 

magnitudes (Section 4). We believe that in the near future, the interactive understanding 

using the perfection and imperfection approaches is needed to accelerate the advances in 

the research field of complex pattern evolution caused by surface instabilities.  
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Finally, the present study did not focus on estimating crease nucleation as one of 

instabilities because the instability criterion seems to be different with Eqs. (1)–(4) 

(Yang et al., 2021). However, when cortical folding in mammalian brains is analyzed, it 

is important to investigate the interactions of wrinkling and creasing (Tallinen et al., 

2014; Campos et al., 2021). In this case, the finite element meshes must be considerably 

finer and a smaller value of the Young’s modulus ratio (Ef/Es≈1) may be assumed. An 

exciting and challenging future research direction would be to trace the bifurcated paths 

considering the instability criteria of both wrinkling and creasing.  
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Appendix A. Detection of the critical values of L2c/h 

The critical values at the first bifurcation point on the primary path from finite 

element analysis of the 1×1 unit cell are shown in Fig. A.1. As shown in Fig. A.1a, 

when the specific values of Ef/Es are considered in each analysis, the hexagonal or 

square dimple mode occurs at the critical value of L2c/h, which is detected by a bisection 

method using the discretized values of L2/h in the case of L2/L1= 3 . Thus, the critical 
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value of L2c/h in the case of L2/L1=1 is obtained by reducing them for L2/L1= 3 . Thus, 

the dimensions of the unit cells are fixed depending on the value of Ef/Es. 

 

As shown in Fig. A.1c,b, the critical stress and wavelength are in good agreement 

with the theoretical values, th/Ef=(1/3)(3Es/Ef)2/3 and th/h=2(Ef/3Es)1/3 (Allen, 1969). 

Note that these theoretical values are derived assuming that the thickness of the 

substrate is infinite (i.e., H/h→∞) and the Poisson’s ratios of the film and substrate are 

0.5 (i.e., incompressible). In contrast, the present study uses isotropic thermal expansion 

to cause compressive stress in the film so that the thickness of the film at the first 

bifurcation is estimated to be h*=(1+T1)3h, where T1 is the critical temperature for the 

first bifurcation. Thus, the critical values of c
0 1( )T  and c/h are reduced using h* (e.g., 

DuPont et al., 2010),  

c*
0 /Ef =(1+T1)-3 c

0 1( )T /Ef,  (A.1) 

c/h*=(1+T1)-3c/h. (A.2) 

Eq. (A.1) simply expresses the transformation from the nominal stress to the true stress 

because the cross-sectional area of the film at the first bifurcation is estimated to be 

A*=(1+T1)3A, where A is the nominal value. The use of Eqs. (A.1) and (A.2) is needed 

to verify the results obtained from 3D finite element analysis. 

 

Fig. A.2 shows the hexagonal and square dimple modes, (1)
HEX  and (1)

SQU , which are 

obtained by superposing the sinusoidal wrinkle modes in the three and two symmetric 

directions (Fig. 1), respectively. The hexagonal and square dimple modes occur with 

k(1)=6 and 4 (i.e., they are sextuple and quadruple bifurcations), respectively, because 

the sinusoidal wrinkle modes in the individual directions have arbitrary phase shifts 

(Miyoshi et al., 2021). Both of the modes shown in Fig. A.2 are uniquely obtained by 

controlling the individual phase shifts to assign one dimple at the center of the unit cell. 

In the same way, 2×2 unit cell analysis obtains the hexagonal and square dimple modes 

(Fig. 6b,d). 
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Fig. A.1.  Critical values at the first bifurcation as a function of the Young’s modulus ratio, 
Ef/Es. (a) Critical value of L2c/h for the hexagonal and square dimple modes (i.e., for L2/L1= 3  
and =1) and comparison of the (b) critical wavelength and (c) critical stress with the theoretical 
values. The figures show that the critical wavelength and stress obtained using Eqs. (A.1) and 
(A.2) are in good agreement with the theoretical values. 

 

 

Fig. A.2.  Dominant bifurcation modes at the first bifurcation obtained by analyzing the 1×1 
unit cell. (a) Hexagonal dimple mode (1)

HEX  and (b) square dimple mode (1)
SQU . Although the 

multiplicity of the bifurcations for (1)
HEX  and (1)

SQU  is k(1)=6 and 4, respectively, these dimple 
modes are uniquely obtained by controlling the individual phase shifts of the sinusoidal wrinkle 
modes to assign one dimple at the center of the unit cell (Miyoshi et al., 2021).  

 

 

Appendix B. Potential modes in Field HA predicted from the 4×4 unit cell 

When the symmetry of the hexagonal dimple pattern is considered, Field HA should 
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have the same modes in the three symmetric directions (Fig. 1a). Because the 2×2 unit 

cell produces the rectangular checkerboard mode ( (2)
HA0a,b ) with a phase shift in the x2 

direction (k(2)=2) (Fig. 8a,b), a larger periodic unit cell (in this case, the 4×4 unit cell) 

is needed to obtain the identical modes ( (2)
HA60a,b  and (2)

HA60*a,b ) in the other two directions, 

i.e., k(2)=6 using the 4×4 unit cell. Fig. B.1 shows (2)
HA0a,b , (2)

HA60a,b  and (2)
HA60*a,b , 

respectively. These figures were obtained by analyzing (2)
HA0a,b  (Fig. 8a,b) using a 

Fourier transformation. The 4×4 unit cell was not directly analyzed in Abaqus to avoid 

high computational cost.  

 

 

Fig. B.1.  Basic bifurcation modes at the second bifurcation point in Field HA analyzed by the 
4×4 unit cell. (a) (2)

HA0a , (b) (2)
HA0b , (c) (2)

HA60a , (d) (2)
HA60b , (e) (2)

HA60*a , and (f) (2)
HA60*b . The 4×4 

unit cell is needed to obtain (2)
HA60a,b,60*a,b , i.e., k(2)=6 for Field HA although 2×2 unit cell analysis 

predicts k(2)=2. The same rectangular checkerboard mode occurs in the three symmetric 
directions with the phase shifts caused by the translational symmetry in the individual 
directions. 

 

When the cognate modes in Field HA (k(2)=6) are analyzed by investigating the 

combination of (2) (2) (2) (2) (2) (2)
1 HA0a 2 HA0b 3 HA60a 4 HA60b 5 HA60*a 6 HA60*bc c c c c c           as ci=(1 or 0 

or 1), a large number of cognate modes are expected because the total number of 

combinations is 36=729. The categorization seems to generate 11 different modes, 

including Modes HA(I and I+), but this investigation is already out of the scope of the 

present study, so the typical modes defined as Modes HA(I, I+, II, II+, III, III+, and X) 

are shown here to support the diversity of the bifurcations and deformations occurring 

on the surface of the films bonded to substrates. Modes HA(I, I+, II, II+, III, and III+) 

are obtained by analogizing the case of Modes SA(I, I+, II, and II+), which are 

described as (2) (2)
HAI HA0a  (Fig. 8a), (2) (2) (2)

HAI+ HA0a HA0b    (Fig. 12a), (2) (2) (2)
HAII HA60a HA60*a     
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(Fig. B.2a), (2) (2) (2) (2) (2)
HAII+ HA60a HA60b HA60*a HA60*b         (Fig. B.2b), 

(2) (2) (2) (2)
HAIII HA0a HA60a HA60*a       (Fig. B.2c), and (2) (2) (2) (2)

HAIII+ HA0a HA0b HA60a     
(2) (2) (2)

HA60b HA60*a HA60*b      (Fig. B.2d). Further, Mode HAX is described as 
(2) (2) (2) (2)

HAX HA0a HA60a HA60*b       (Fig. B.2e).  

 

 

Fig. B.2.  Cognate bifurcation modes at the second bifurcation point in Field HA analyzed by 
the 4×4 unit cell. (a) Mode HAII (e.g., (2) (2) (2)

HAII HA60a HA60*a    ), (b) Mode HAII+ (e.g., 
(2) (2) (2) (2) (2)

HAII+ HA60a HA60b HA60*a HA60*b        ), (c) Mode HAIII (e.g., (2) (2) (2) (2)
HAIII HA0a HA60a HA60*a      ), 

(d) Mode HAIII+ (e.g., (2) (2) (2) (2) (2) (2) (2)
HAIII+ HA0a HA0b HA60a HA60b HA60*a HA60*b            ), and (e) Mode 

HAX (e.g., (2) (2) (2) (2)
HAX HA0a HA60a HA60*b      ). Modes HA(I and I+) are expressed as (2) (2)

HAI HA0a 
(Fig. 8a) and (2) (2) (2)

HAI+ HA0a HA0b    (Fig. 12a). Note that these are the typical cognate modes 
obtained by analogizing the case of Modes SA(I, I+, II, and II+) so Mode HAX is recognized as 
a higher mode similar to Modes SA(III and IV).  

 

Although Modes HA(II, II+, III, III+, and X) are simply obtained by Fourier 

transformation (not Abaqus), the imperfections (Fig. B.3) obtained by superposition of 

the first and second bifurcation modes (Figs. 1a and B.2) are useful to determine the 

deformations on the bifurcated path, as discussed in Sections 5 and 6. The resulting 

deformation patterns seem to be unique patterns, and Modes HA(II, II+, III, and III+) 

(Fig. B.3a–d) are expected to trigger evolution of periodical labyrinth or disordered 

herringbone patterns, whereas Mode HAX (Fig. B.3e) looks like a satellite image of a 

typhoon (a typhoon pattern seems to be produced by the periodic arrangement of the 

grooves formed by coalescence of selected dimples). Although the 4×4 unit cell (the 2

×2 unit cell was used in the present study) requires high computational cost in finite 

element analysis, the present study successfully provides the imperfections consisting of 

the first and second bifurcation modes in Field HA. This indicates that because the 

potential imperfections are already prepared, an analytical approach (e.g., an analytical 
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upper bound method, Cai et al., 2011) may be able to estimate the energy difference 

among the corresponding deformation patterns.  

 

 

Fig. B.3.  Initial imperfections generated by Modes HA(II, II+, III, III+, and X). (a) 
(1) (2)

HEX HAII  , (b) (1) (2)
HEX HAII+  , (c) (1) (2)

HEX HAIII  , (d) (1) (2)
HEX HAIII+  , and (e) (1) (2)

HEX HAX  . 
Although postbuckling analysis was not performed in the present study, these imperfections are 
expected to trigger evolution of periodical labyrinth or disordered herringbone patterns. 
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