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ABSTRACT 

Translational diffusion of nonpolar monoatomic solutes in a room-temperature ionic 

liquid and 1-octanol was studied by molecular dynamics simulation. The diffusion 

coefficient was evaluated in two different ways: (1) from the mean-square displacement 

of a freely diffusing solute; and (2) from the time correlation function of force acting on 

a fixed solute. The diffusion of free solute is much greater than the prediction of the 

Stokes–Einstein (SE) relation when the size of the solute is small, as has been reported 

by many experimental works. By contrast, the friction on fixed small solutes follows the 

SE relation. The mechanism of the solute diffusion in both solvents was then analyzed 

based on the coupling between the translational motion of the solute and the collective 

dynamics of the heterogeneous intermediate-range structure characteristic to these 

solvents. Analysis revealed that the coupling is present in all systems, but the relaxation 

is fast in the cases of free and small solutes. This suggests that the coupling can relax 

through the motion of the solute when the solute is free and small, while the relaxation of 

the heterogeneous structure itself is required for large or fixed solutes. The difference in 

the relaxation dynamics of the friction on the solute and the shear viscosity is explained 

as the coupling with different dynamic modes of the solvent. Therefore, the validity of 

the SE relation may not be a good criterion to judge whether the mechanisms of the 

diffusion and the viscosity are the same or not. 
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1. INTRODUCTION 

Translational diffusion is one of the fundamental processes in solution chemistryit 

directly governs the rates of diffusion-limited reactions, solvent extraction, and so on. In 

addition, it has been regarded as a microscopic probe to study solute–solvent interaction. 

The Stokes–Einstein (SE) relation, 

𝐷𝐷 = 𝑘𝑘B𝑇𝑇
3𝜋𝜋𝜋𝜋𝜋𝜋

,     (1) 

works as a first approximation for the translational diffusion coefficient, D, of an ordinary 

solute molecule, where D is reciprocally proportional to the diameter of the solute, σ, and 

the shear viscosity of the solvent, η. The symbols in the numerator, kB and T, denote the 

Boltzmann constant and the absolute temperature, respectively. The SE relation was 

derived by hydrodynamic theory, in which a spherical solute is placed in a viscous 

continuum fluid. The coefficient 3π stems from the stick boundary condition at the 

surface of the solute, and it is replaced with 2π for the slip case. 

The SE relation states that the diffusion coefficient is governed by the shear viscosity 

of bulk solvent. Considering that the shear viscosity is determined by the collective 

dynamics of neat solvent, the SE relation can be interpreted as that the translational 

motion is coupled to the collective solvent dynamics in some ways. 

There are many dynamic modes in molecular liquids, and the collective mode that 

governs the viscosity varies among liquids. For example, the relaxation of the 

intermediate scattering function at the main peak of the static structure factor gives the 

viscoelastic relaxation of model liquids composed of monoatomic molecules;1, 2 a similar 

relation is often found for many molecular liquids.3 The collective reorientational 

relaxation plays an important role in the viscosity of liquids composed of molecules of 
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highly anisotropic shape.4, 5 The dynamics of the intermediate-range structure gives the 

slowest mode of the viscoelastic relaxation of liquid higher alcohols.4, 6 Therefore, one 

may consider that the validity of the SE relation depends on whether the shear viscosity 

and the solute diffusion are coupled to the same collective mode or not. 

In recent work, we performed molecular dynamics (MD) simulation on a monoatomic 

solute in 1-octanol, where we changed the diameter of the solute from 2 to 12 Å.7 The 

diffusion of the largest solute was comparable to the SE relation, while that of the smallest 

solute was about an order of magnitude faster than the SE relation, as has been reported 

experimentally by Evans and coworkers.8, 9 The memory function was then calculated 

from the mean-square displacement based on the generalized Langevin equation (GLE) 

formalism. The relaxation rate of the memory function of the largest solute was 

comparable to that of the viscoelastic relaxation, while the memory function of the 

smallest solute relaxed much faster than the viscoelastic relaxation. The change in the 

relaxation rate of the memory function with the solute size was thus in harmony with the 

validity of the SE relation. 

Another interesting finding of our previous work was the effect of the spatial fixing of 

the solutes. The calculation of the time correlation function of the total force acting on a 

fixed solute is one of the representative methods to estimate the position-dependent 

diffusion coefficient in heterogeneous media such as membranes and polymer gels,10 

although it tends to underestimate the absolute value of the diffusion coefficient.11-13 The 

fundamental approximation there is the replacement of the random force on a free solute 

with the total force on a fixed solute, as is described in detail in the next section. In 1-

octanol, fixing the small solute causes strong retardation of its diffusion. The ratio of the 

diffusion coefficients obtained in the two different ways is >10 when the solute is as small 
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as 2 Å. On the other hand, the two diffusion coefficients are close to each other for the 

large solute of 12 Å. A surprising point is that the diffusion coefficients of the fixed 

solutes appear to follow the SE relation even when the solute size is as small as 2 Å. 

In this work, we now apply the same methodology to the diffusion of monoatomic 

nonpolar solutes in a room-temperature ionic liquid (RTIL) with a long alkyl chain, 1-

methyl-3-octylimidazolium bis(trifluoromethanesulfonyl) amide ([omim][TFSA]). The 

translational diffusion of a small nonpolar solute in RTILs has been intensively studied, 

out of both scientific and industrial interests, because it is directly involved in gas 

absorption and separation by RTIL. Experimental results show that the friction on a small 

nonpolar solute in RTILs is more than an order of magnitude smaller than the SE 

relation,14-17 as reported by Evans and coworkers on higher alcohols.8, 9 

Both RTILs with a long alkyl chain and higher alcohols possess a similarity in their 

liquid structures in that they exhibit heterogeneous structures composed of polar and 

nonpolar domains.18 The presence of the heterogeneous structure has been observed as 

the presence of a pre-peak in X-ray or neutron scattering experiments.19-21 The polar 

domain is composed of anions and the charged head groups of cations in RTILs, while 

the hydroxyl group constitutes the polar domain of higher alcohols. The alkyl chains 

expelled from the polar domain constitute the nonpolar domain in both liquids. Since 

small nonpolar solutes favor the nonpolar domain, the formation of the heterogeneous 

structure is expected to strongly affect their diffusion. 

Although the heterogeneous structure in the intermediate spatial scale is common to 

both [omim][TFSA] and 1-octanol, it plays different roles in determining the shear 

viscosity of these liquids. In the case of 1-octanol, the slowest mode of the viscoelastic 

relaxation, which contributes to about half of the total shear viscosity, is assigned to the 
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dynamics of the heterogeneous structure.4 By contrast, the coupling between the shear 

stress and the dynamics of the heterogeneous structure is rather weak, and the shear 

viscosity of [omim][TFSA] is dominated by the ionic dynamics within the polar 

domain.22 Therefore, it is expected that the coupling between the translational diffusion 

of a solute and the dynamics of the heterogeneous structure will differ in terms of the 

validity of the SE relation. 

The coupling between the translational motion of a solute and the dynamics of the 

heterogeneous structure was discussed in our previous work solely based on the time 

profile of the memory function.7 In the present work, the coupling is analyzed in detail 

by evaluating the cross-correlation between the random or the total forces on the solute 

and the transient solvation structure. The analysis is applied to our previous MD 

simulation on a solute in 1-octanol in addition to solutions of the RTIL for the purpose of 

comparison between diffusion in these two solvents. 

This paper comprises four sections. After this introductory section, theoretical 

formalisms and the computational methods used in this work are summarized in Sec. 2. 

The results are reported in the subsequent section, Sec. 3, together with discussion of the 

results. The paper concludes with a summary in Sec. 4. 

 

 

2. THEORETICAL AND COMPUTATIONAL METHODS 

2.1. Generalized Lanvegin equation for solute diffusion 

In MD simulation, the translational diffusion coefficient of a solute is usually evaluated 

from the mean-square displacement as23 



 7 

𝐷𝐷 = 1
6

lim
𝑡𝑡→∞

𝑑𝑑
𝑑𝑑𝑑𝑑
〈|𝒓𝒓𝑋𝑋(𝑡𝑡) − 𝒓𝒓𝑋𝑋(0)|2〉,   (2) 

or from the velocity autocorrelation function as 

𝐷𝐷 = 1
3 ∫ 𝑑𝑑𝑑𝑑 〈𝒓̇𝒓𝑋𝑋(0) ⋅ 𝒓̇𝒓𝑋𝑋(𝑡𝑡)〉∞

0 .    (3) 

Here, the position of the solute at time t is denoted as 𝒓𝒓𝑋𝑋(𝑡𝑡). These two representations 

are equivalent to each other. 

In statistical mechanics, on the other hand, the motion of the solute is often described 

by GLE as follows:1, 24 

𝑚𝑚𝒓̈𝒓𝑋𝑋(𝑡𝑡) = −∫ 𝑑𝑑𝑑𝑑γ𝑅𝑅(𝑡𝑡 − 𝜏𝜏)𝒓̇𝒓𝑋𝑋(𝜏𝜏)𝑡𝑡
0 + 𝑹𝑹(𝑡𝑡),   (4) 

where m stands for the mass of the solute. The memory function, γ𝑅𝑅(𝑡𝑡), is related to the 

time correlation function of the random force, 𝑹𝑹(𝑡𝑡) , by the fluctuation–dissipation 

theorem as 

γR(𝑡𝑡) = 1
3𝑘𝑘𝐵𝐵𝑇𝑇

〈𝑹𝑹(0) ⋅ 𝑹𝑹(𝑡𝑡)〉.    (5) 

The diffusion coefficient can be described in terms of the time integral of the memory 

function as 

ΓR,0 ≡ ∫ 𝑑𝑑𝑑𝑑 γ𝑅𝑅(𝑡𝑡)∞
0 ,     (6) 

𝐷𝐷 = (𝑘𝑘𝐵𝐵𝑇𝑇)/ΓR,0,     (7) 

which is also equivalent to eqs. (2) and (3). 

Instead of following the trajectory of a freely diffusing solute, Marrink and Berendsen 

proposed to estimate the position-dependent diffusion coefficient of a solute in 

heterogeneous media from the time correlation function of the total force on a spatially 

fixed solute (the MB method).10 In their method, the random force 𝑹𝑹(𝑡𝑡) is replaced with 

the total force, 𝑭𝑭(𝑡𝑡), as 
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γF(𝑡𝑡) = 1
3𝑘𝑘𝐵𝐵𝑇𝑇

〈𝑭𝑭(0) ⋅ 𝑭𝑭(𝑡𝑡)〉    (8) 

and the diffusion coefficient is obtained through the modification of eqs. (6) and (7) as 

ΓF,0 ≡ ∫ 𝑑𝑑𝑑𝑑 γ𝐹𝐹(𝑡𝑡)∞
0 ,     (9) 

𝐷𝐷 = (𝑘𝑘𝐵𝐵𝑇𝑇)/ΓF,0.     (10) 

The comparison of eqs. (7) and (10) with the SE relation, eq. (1), shows that ΓR,0 and 

ΓF,0 are equal to 3π𝜎𝜎𝜎𝜎 in the SE theory. By contrast, the Kubo–Green theory gives the 

shear viscosity in terms of the shear stress, 𝑃𝑃𝑥𝑥𝑥𝑥, as24, 25 

𝜂𝜂 = 𝑉𝑉
𝑘𝑘B𝑇𝑇

∫ 𝑑𝑑𝑑𝑑 〈𝑃𝑃𝑥𝑥𝑥𝑥(0)𝑃𝑃𝑥𝑥𝑥𝑥(𝑡𝑡)〉∞
0 ,   (11) 

where V denotes the volume of the system. Therefore, both the friction coefficient and 

the shear viscosity are given by the time integrals of the random force and the shear stress, 

respectively. 

 

2.2. Coupling between the translational motion of a solute and the solvation 

structure 

The frictional force on a solute is a response of the solvent to the motion of the solute, 

which is caused by the distortion of the solvation structure around the diffusing solute. It 

is thus important to realize how the solvation structure is distorted in order to obtain a 

microscopic picture of solute diffusion. 

The equilibrium solvation structure around a spherical solute of infinite dilution is 

characterized by the radial distribution function, 𝑔𝑔𝛼𝛼(𝑟𝑟), defined as 

𝑔𝑔α(|𝒓𝒓|) ≡ 1
ρα
〈𝜌𝜌𝛼𝛼

(2𝑠𝑠)(𝒓𝒓)〉,    (12) 

𝜌𝜌𝛼𝛼
(2𝑠𝑠)(𝒓𝒓) ≡ ∑ 𝛿𝛿(𝒓𝒓𝑖𝑖 − 𝒓𝒓𝑋𝑋 − 𝒓𝒓)𝑖𝑖∈𝛼𝛼 ,   (13) 
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where ρα stands for the number density of the site α of bulk solvent. The superscript 

“(2s)” means that it involves the positions of two sites, one of which belongs to the solute. 

According to eq. (12), 𝜌𝜌𝛼𝛼
(2𝑠𝑠)(𝒓𝒓)  gives the instantaneous solvation structure, whose 

statistical average yields the equilibrium solvation structure. 

The coupling between the translational diffusion of a free solute and the dynamics of 

its solvation structure is analyzed using the cross-correlation function between 𝑹𝑹(𝑡𝑡) and 

𝜌𝜌𝛼𝛼
(2𝑠𝑠)(𝒓𝒓), defined as26 

𝑧𝑧
|𝒓𝒓|𝜌𝜌𝑅𝑅,𝛼𝛼

(2𝑠𝑠)(|𝒓𝒓|, 𝑡𝑡) ≡ 〈𝑅𝑅𝑧𝑧(𝑡𝑡)𝜌𝜌𝛼𝛼
(2𝑠𝑠)(𝒓𝒓)〉.   (14) 

Inheriting the symmetry of 𝑅𝑅𝑧𝑧(𝑡𝑡), the right-hand side of eq. (14) possesses the p-type 

angular symmetry. The factor 𝑧𝑧
|𝒓𝒓| on the left-hand side is thus introduced to factor out the 

trivial angular dependence. Although the time correlation function including the random 

force cannot be evaluated directly in MD simulation, it can be calculated from the cross-

correlation function between 𝜌𝜌𝛼𝛼
(2𝑠𝑠)(𝒓𝒓)  and the displacement of the solute, 〈{𝒓𝒓(𝑡𝑡) −

𝒓𝒓(0)}𝜌𝜌𝛼𝛼
(2𝑠𝑠)(𝒓𝒓)〉, using GLE, eq. (4), as 

� 𝑑𝑑𝑑𝑑 〈𝑅𝑅𝑧𝑧(𝜏𝜏)𝜌𝜌𝛼𝛼
(2𝑠𝑠)(𝒓𝒓)〉

𝑡𝑡

0
= 𝑚𝑚𝑋𝑋

𝑑𝑑
𝑑𝑑𝑑𝑑
〈{𝒓𝒓𝑧𝑧(𝑡𝑡) − 𝒓𝒓𝑧𝑧(0)}𝜌𝜌𝛼𝛼

(2𝑠𝑠)(𝒓𝒓)〉 

+∫ 𝑑𝑑𝑑𝑑𝛾𝛾𝑅𝑅(𝑡𝑡 − 𝜏𝜏)〈{𝒓𝒓𝑧𝑧(𝜏𝜏) − 𝒓𝒓𝑧𝑧(0)}𝜌𝜌𝛼𝛼
(2𝑠𝑠)(𝒓𝒓)〉𝑡𝑡

0 .   (15) 

The counterpart of eq. (14) for a fixed solute is given by replacing 𝑹𝑹(𝑡𝑡) with 𝑭𝑭(𝑡𝑡) as 

follows: 

𝑧𝑧
|𝒓𝒓|𝜌𝜌𝐹𝐹,𝛼𝛼

(2𝑠𝑠)(|𝒓𝒓|, 𝑡𝑡) ≡ 〈𝐹𝐹𝑧𝑧(𝑡𝑡)𝜌𝜌𝛼𝛼
(2𝑠𝑠)(𝒓𝒓)〉,   (16) 

Direct evaluation is possible in MD simulation. 

 

2.3. Linear response picture for the calculation schemes of diffusion coefficient 
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In this subsection, we present physical pictures for the two different methods to 

calculate the diffusion coefficients based on the linear response theory in order to discuss 

the origin of their differences. 

The friction coefficient on a solute is defined as the proportionality coefficient between 

the velocity of the solute and the force acting on it. There are two different ways to obtain 

the proportionality coefficient in nonequilibrium MD simulation. The first is to calculate 

the average velocity by dragging the solute with a constant force, and the second is to 

calculate the average force by dragging the solute at a constant velocity. Hereinafter, we 

show that, in the linear response limit, the first one reduces to the calculation from the 

mean-square displacement of a free solute, while the second one is to that from the force–

force correlation function of a fixed solute. 

In the linear response theory, the perturbation on the system is described as the 

additional term in the Hamiltonian, ϵ𝐻𝐻′, where ϵ is a small real constant, and 𝐻𝐻′ is 

assumed to be time-independent, for simplicity. After the perturbation is turned on at t = 

0, the average of the physical quantity A at 𝑡𝑡 = τ is given by 

〈𝐴𝐴(𝜏𝜏)〉𝑛𝑛𝑛𝑛 = − 𝜖𝜖
𝑘𝑘𝐵𝐵𝑇𝑇

∫ 𝑑𝑑𝑑𝑑 〈𝐴𝐴(0)𝐻̇𝐻′(𝑡𝑡)〉𝑒𝑒𝑒𝑒
𝜏𝜏
0 ,   (17) 

where the angular brackets with the suffixes “ne” and “eq” stand for the ensemble 

averages with and without the perturbation, respectively. Here, the equilibrium averages 

of A and 𝐻𝐻′ in the absence of the perturbation are assumed to be zero, for simplicity. 

In the first case, where the solute is dragged in the z-direction with a constant force Fz, 

the observed quantity is 𝐴𝐴 = 𝑟̇𝑟𝑋𝑋,𝑧𝑧  and the perturbation Hamiltonian is 𝐻𝐻′ = −𝐹𝐹𝑧𝑧𝑟𝑟𝑋𝑋,𝑧𝑧 . 

Their substitution into eq. (17) gives 

〈𝑟̇𝑟𝑋𝑋,𝑧𝑧(∞)〉𝑛𝑛𝑛𝑛 = 𝐹𝐹𝑧𝑧
𝑘𝑘𝐵𝐵𝑇𝑇

∫ 𝑑𝑑𝑑𝑑 〈𝑟̇𝑟𝑋𝑋,𝑧𝑧(0)𝑟̇𝑟𝑋𝑋,𝑧𝑧(𝑡𝑡)〉∞
0 ,   (18) 
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which results in the expression of D in terms of the velocity autocorrelation function, eq. 

(3). 

Next, we consider the second case in which the solute is dragged in the z-direction at 

the constant velocity, 𝑟̇𝑟𝑋𝑋,𝑧𝑧 ≡ 𝑣𝑣0. Within the linear response scheme, the response to the 

constant velocity at t > 0 is equal to the response integrated over the whole time to the 

solute velocity whose time profile is the δ-function at t = 0, 𝑟̇𝑟𝑋𝑋,𝑧𝑧(𝑡𝑡) ≡ 𝑣𝑣0𝛿𝛿(𝑡𝑡). Such a 

time profile of the solute velocity is actually equivalent to the infinitesimal 𝑣𝑣0 

displacement of the solute in the z-direction at t = 0. 

The spatially fixed solute can be regarded as an external potential on the solvent, 

𝑈𝑈uv({𝒓𝒓𝑖𝑖};𝒓𝒓𝑋𝑋), where Uuv stands for the solute–solvent interaction. The displacement of 

the solute thus results in the perturbation as  

𝑈𝑈uv({𝒓𝒓𝑖𝑖};𝒓𝒓𝑋𝑋 + 𝑣𝑣0𝒛𝒛�) − 𝑈𝑈uv({𝒓𝒓𝑖𝑖};𝒓𝒓𝑋𝑋) ≃ 𝑣𝑣0
𝜕𝜕

𝜕𝜕𝑟𝑟𝑋𝑋,𝑧𝑧
𝑈𝑈uv({𝒓𝒓𝑖𝑖}; 𝒓𝒓𝑋𝑋) = −𝑣𝑣0𝐹𝐹𝑋𝑋,𝑧𝑧, (19) 

which works as the perturbation Hamiltonian. Therefore, the response of 𝐹𝐹𝑋𝑋,𝑧𝑧  to 

𝑟̇𝑟𝑋𝑋,𝑧𝑧(𝑡𝑡) ≡ 𝑣𝑣0𝛿𝛿(𝑡𝑡) is given by 

〈𝐹𝐹𝑋𝑋,𝑧𝑧(𝑡𝑡)〉𝑛𝑛𝑛𝑛,𝛿𝛿 = − 𝑣𝑣0
𝑘𝑘𝐵𝐵𝑇𝑇

〈𝐹𝐹𝑋𝑋,𝑧𝑧(0)𝐹𝐹𝑋𝑋,𝑧𝑧(𝑡𝑡)〉𝑒𝑒𝑒𝑒,   (20) 

where δ in the suffix means the response to 𝑟̇𝑟𝑋𝑋,𝑧𝑧(𝑡𝑡) ≡ 𝑣𝑣0𝛿𝛿(𝑡𝑡) . The response to the 

constant velocity, 〈𝐹𝐹𝑋𝑋,𝑧𝑧(𝑡𝑡)〉𝑛𝑛𝑛𝑛,𝑣𝑣0, is obtained by integrating eq. (20) over t as 

〈𝐹𝐹𝑋𝑋,𝑧𝑧(𝑡𝑡)〉𝑛𝑛𝑛𝑛,𝑣𝑣0 = − 𝑣𝑣0
𝑘𝑘𝐵𝐵𝑇𝑇

∫ 𝑑𝑑𝑑𝑑 〈𝐹𝐹𝑋𝑋,𝑧𝑧(0)𝐹𝐹𝑋𝑋,𝑧𝑧(𝑡𝑡)〉𝑒𝑒𝑒𝑒
∞
0 .   (21) 

The expression of the diffusion coefficient in the MB method, eqs. (8)–(10), is obtained 

from eq. (21). 

The replacement of 𝐹𝐹𝑋𝑋,𝑧𝑧(𝑡𝑡) in eq. (20) with 𝜌𝜌𝛼𝛼
(2𝑠𝑠)(𝒓𝒓, 𝑡𝑡) gives 

〈𝜌𝜌𝛼𝛼
(2𝑠𝑠)(𝒓𝒓, 𝑡𝑡)〉𝑛𝑛𝑛𝑛,𝛿𝛿 − 〈𝜌𝜌𝛼𝛼

(2𝑠𝑠)(𝒓𝒓, 𝑡𝑡)〉𝑒𝑒𝑒𝑒 = − 𝑣𝑣0
𝑘𝑘𝐵𝐵𝑇𝑇

〈𝐹𝐹𝑋𝑋,𝑧𝑧(0)𝜌𝜌𝛼𝛼
(2𝑠𝑠)(𝒓𝒓, 𝑡𝑡)〉𝑒𝑒𝑒𝑒,  (22) 
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which means that 𝜌𝜌𝐹𝐹,𝛼𝛼
(2𝑠𝑠)(𝑟𝑟, 𝑡𝑡) defined by eq. (16) describes the anisotropic change in the 

solvation structure after the infinitesimal displacement of the fixed solute. Its integration 

over the whole time thus describes the distortion of the solvation structure around the 

solute moving in a constant velocity. In a similar way, it can be shown that 𝜌𝜌𝑅𝑅,𝛼𝛼
(2𝑠𝑠)(𝑟𝑟, 𝑡𝑡) is 

related to the anisotropic change in the solvation structure around a free solute after the 

application of an infinitesimal impulsive force, although the derivation is not shown here 

for brevity. 

 

2.4. Computational details 

The MD simulation was performed on systems composed of a nonpolar solute and 1000 

ion pairs of [omim][TFSA]. The molecules are confined within a cubic cell with periodic 

boundary conditions. The temperature and the pressure of the system are 353 K and 1 bar, 

respectively, controlled using the Nosé–Hoover and the Parrinello–Rahman methods. The 

united atom model proposed by Zhong and coworkers was employed for [omim][TFSA], 

in which the total charges of the ions are scaled to be ±0.8e.27 The solute is a Lennard–

Jones (LJ) sphere, whose parameters (except for the diameter) are equal to those of 

argon.28 The LJ diameter of the solute, σLJ, was changed as follows: 2, 3.4, 6, 8, and 12 

Å. 

The equation of motion was integrated using the leapfrog algorithm with a time step of 

1 fs. The systems were equilibrated for 100 ns prior to the production run of 1 µs length. 

The production runs were performed twice for each condition, and their averages are 

presented as the final results. The bond lengths involving a hydrogen atom were fixed 

using the LINCS algorithm;29 other bond lengths, bond angles, and dihedral angles were 
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treated as flexible. The long-range part of the Coulombic interaction was handled using 

the particle mesh Ewald (PME) method, and the short-range parts were cut off at 1.2 nm. 

The center-of-mass velocity of the whole system was shifted to be zero at each 100 fs in 

the cases of both free and fixed solutes. The roles of the center-of-mass velocity shift are 

different in the systems of free and fixed solutes.13 It is introduced to compensate the 

incomplete momentum conservation in the PME calculation in the former, whereas it 

works as a momentum sink at the infinite distance in the latter. The shift interval for the 

fixed-solute system was confirmed to be small enough according to the criteria we have 

proposed in our previous work.13 All the MD simulation runs were performed using the 

GROMACS software package,30 and homemade programs were used for the analysis of 

the trajectories. 

The MD simulations on the solutions of an LJ solute in 1-octanol were performed in 

our previous work,7 and their trajectories were further analyzed in this work. The 

simulation conditions were similar to those for [omim][TFSA] solutions in this work, 

with details described in our previous paper.7 Briefly, the systems were composed of an 

LJ solute and 1000 solvent molecules. The temperature and the pressure were 298 K and 

1 bar, respectively. The TraPPE-UA model was used for 1-octanol,31, 32 and all the bond 

lengths were fixed using the LINCS algorithm. The diameter of the solute was changed 

as follows: 2, 3.4, 6, 8, and 12 Å. Other parameters for the solutes were the same as those 

for argon. The production runs of 1 µs were performed twice for each set of conditions. 

The shear viscosity and the viscoelastic relaxation of neat solvents were also taken from 

our previous MD simulation works.4, 22 

 

3. RESULTS AND DISCUSSION 
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3.1. Equilibrium structure 

Prior to addressing the dynamics of the solutes and the solvation structure, we show the 

radial distribution functions of the solvent sites around the solutes in Fig. 1 in order to 

provide pictures of the equilibrium solvation structure. The radial distribution functions 

in [omim][TFSA] and 1-octanol are shown in Fig. 1a and 1b, respectively. In both figures, 

the functions of both the smallest and the largest solutes in this work, σLJ = 2 and 12 Å, 

respectively, are plotted. The averages of the distributions around the free and the fixed 

solutes are plotted in Fig. 1. There are no meaningful differences between the results with 

and without the positional constraint. 

 

Figure 1. The radial distribution functions, g(r), of the solvent sites around a solute in (a) 

[omim][TFSA] and (b) 1-octanol. Distribution functions around the solutes of σLJ = 2 and 

12 Å are shown by the solid and the dotted curves, respectively. In (a), the distributions 

of the algebraic center of the five atoms of the imidazolium ring of the omim cation, the 

nitrogen site of the TFSA anion, and the terminal methyl site of the octyl chain of the 
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omim cation are shown by the red, blue, and green curves, respectively. In (b), the 

distributions of the methyl and the oxygen sites are shown by the red and blue curves, 

respectively. 

The molecular structure of RTIL with a long alkyl chain is composed of three groups, 

namely, the anion, the charged head group of the cation, and the nonpolar alkyl chain of 

the cation. In this work, the position of the anion is represented by the central nitrogen 

atom of the TFSA anion, that of the charged head group of the omim cation by the 

algebraic center of the five atoms of the imidazolium ring, and that of the alkyl chain by 

its terminal methyl group. 

In Fig. 1a, the large distributions of the methyl group are found at the contact distances 

of both the small and the large solutes, indicating that the nonpolar solutes favor the 

nonpolar domain. The situation is similar in 1-octanol, as the large distribution of the 

methyl group is also observed in Fig. 1b. 

The characteristics of the solvation structures exhibited in Fig. 1 are related to the 

structure of the respective neat solvents. Their X-ray static structure factors were 

calculated in our previous works,4, 22 and plotted together in Fig. 2. Both solvents show 

peaks at 3~4 nm-1 and ~14 nm-1. The former, called “pre-peak”, originates in the 

characteristic heterogeneous structure composed of polar and nonpolar domains, and the 

latter describes the molecular packing common to other molecular liquids. In addition, 

[omim][TFSA] exhibits a peak at 8 nm-1, which is assigned to the charge-alternation 

structure made by the anion and the head group of the cation. 33 
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Figure 2. The X-ray static structure factors of neat 1-octanol (red) and [omim][TFSA] 

(blue) calculated in our previous MD simulation studies.4, 22 Their amplitudes are scaled 

by arbitrary factors to improve the visibility. 

In both solvents and around both solutes, the depletion of the methyl groups and the 

excess distribution of the polar groups are found in their solvation structures in Fig. 1 at 

about 0.8 nm distant from the first contact peaks of the methyl groups. Around the largest 

solute, for example, the first peak of the methyl group exists at r = 0.8 nm. At r = 1.5~1.6 

nm, the distribution of the methyl group exhibits shallow basin in both solvents, and the 

broad peaks of the charged groups and oxygen atom lie at the same position. The long-

range alternating structure of the contrast between the polar and the nonpolar groups 

around the solutes thus means that the solvation of the nonpolar solutes is coupled to the 

heterogeneous structures characteristic to these solvents represented by the pre-peaks 

shown in Fig. 2. 

In [omim][TFSA], the anion distributes closer to the solute than the cation head group, 

as is shown in Fig. 1a, probably because of the smaller size of the former. The antiphase 

oscillations of the anion and the cationic head group are imposed on the distribution 

functions of these sites at larger distances, and the period of the oscillation is shorter than 
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that of the methyl group. This means that the solvation of the nonpolar solutes is also 

coupled to the charge-alternation structure, which is also characteristic to the structure of 

RTIL.33 

 

3.2. Diffusion coefficient and validity of SE relation 

The SE relation, eq. (1), defines the hydrodynamic diameter of the solute, σH, from its 

diffusion coefficient as 

𝜎𝜎𝐻𝐻 = 𝑘𝑘B𝑇𝑇
3𝜋𝜋𝜋𝜋𝜋𝜋

,     (23) 

which describes the effective diameter of the solute in terms of its mobility. The values 

of σH for the solutes in [omim][TFSA] are plotted in Fig. 3 as the function of σLJ. These 

two diameters are equal to each other when the SE relation with the stick boundary 

condition holds, whereas 𝜎𝜎𝐻𝐻 = 2
3
𝜎𝜎𝐿𝐿𝐿𝐿 is expected for the slip boundary condition. These 

two relationships are also shown in Fig. 3, as the solid and the dashed lines, respectively. 

The effects of the finite system size on the diffusion coefficient were corrected using the 

formula proposed by Yeh and Hummer as34 

𝐷𝐷∞ = 𝐷𝐷𝑀𝑀𝑀𝑀 + 2.837 297
6𝜋𝜋𝜋𝜋𝜋𝜋

,    (24) 

where the diffusion coefficients before and after the correction are denoted as D∞ and 

DMD, respectively, and L stands for the size of the cubic simulation cell. The values of σH 

before and after the correction are plotted with the filled and the open symbols, 

respectively, indicating that the system size effect is negligible for our present discussion. 

The results obtained with 1-octanol have been published in our previous paper, in the 

same format.7 
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Figure 3. The hydrodynamic diameters of the solutes, σH, plotted against the LJ diameter, 

σLJ. Results of the free and the fixed solutes are shown by the red circles and the blue 

squares, respectively, and the values before and after the system size correction are shown 

by the corresponding filled and open symbols, respectively. The black solid line indicates 

the SE relation with the stick boundary condition, 𝜎𝜎𝐻𝐻 = 𝜎𝜎𝐿𝐿𝐽𝐽, and the black dashed line 

does likewise with the slip boundary, 𝜎𝜎𝐻𝐻 = 2
3
𝜎𝜎𝐿𝐿𝐿𝐿 . The green dotted curve shows an 

empirical equation that correlates various experimental results in RTILs.15 

According to Fig. 3, the application of the MB method has little effect on the diffusion 

coefficient of the largest solute, σLJ = 12 Å. The difference between these two methods, 

that is, free and fixed solutes, increases with decreasing solute size, and the friction 

coefficient of the free solute becomes nearly two orders of magnitude larger than that of 

the fixed one in the case of σLJ = 2 Å. The free and small solutes diffuse much faster than 

the prediction of the SE relation, whereas the fixed solutes approximately follow the 

hydrodynamic SE relation. All these trends are in common with those of solute diffusion 

in 1-octanol, as reported in our previous paper.7 Upon comparing the results in 

[omim][TFSA] and 1-octanol, we note that the deviation of the diffusion of free solutes 

from the SE relation is more significant in the case of the former. 
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Kaintz and coworkers proposed an empirical equation that describes the deviation of 

the experimental diffusion coefficients of small nonpolar solutes in RTIL from the SE 

relation.15 This is also plotted in Fig. 3, with the green dotted curve, to compare our MD 

simulation with experiments. Their empirical equation contains the molecular volumes of 

both solute and solvent. The volume of [omim][TFSA] was taken from their work, and 

the volume of the sphere of σLJ diameter was used for the solute. As is demonstrated in 

Fig. 3, the agreement between the MD simulation of free solute and the empirical equation 

is almost quantitative, though the simulation underestimates the deviation from the SE 

relation for smaller solutes. Therefore, we consider that our MD simulation with free 

solutes describes the experimental results of translational diffusion of nonpolar solutes in 

RTILs at least qualitatively. 

 

3.3. Memory function and viscoelastic relaxation 

The running integral of the memory functions, defined as 

Γ𝑋𝑋(𝑡𝑡) ≡ ∫ 𝑑𝑑𝑑𝑑 𝛾𝛾𝑋𝑋(𝜏𝜏) 𝑡𝑡
0  (X = R, F),    (25) 

of solutes in [omim][TFSA] are normalized to the values at 𝑡𝑡 → ∞, ΓR,0 and ΓF,0, and 

shown in Fig. 4 for the analysis of dynamics coupled to the diffusion of the solute. The 

results of the free and the fixed solutes are exhibited in Fig. 4a and 4b, respectively. In 

both figures, the running integral of the time correlation function of the shear stress, 

𝜂𝜂(𝑡𝑡) = 𝑉𝑉
𝑘𝑘B𝑇𝑇

∫ 𝑑𝑑𝑑𝑑 〈𝑃𝑃𝑥𝑥𝑥𝑥(0)𝑃𝑃𝑥𝑥𝑥𝑥(𝜏𝜏)〉𝑡𝑡
0 ,    (26) 

is also plotted, for comparison. The corresponding plots for the solutes in 1-octanol are 

not shown here; they are included in our previous paper.7 
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Figure 4. The normalized running integral of (a) free solutes and (b) fixed solutes in 

[omim][TFSA]. The sizes of the solutes are 2 (purple), 3.4 (blue), 6 (green), 8 (orange), 

and 12 Å (red). The normalized running integral of the time correlation function of shear 

stress, η(t), defined by eq. (26), is also plotted by black curve in both panels, for 

comparison. 

The relaxation of the memory function of the free solutes strongly depends on the solute 

size, as is demonstrated in Fig. 4a. The relaxation is almost complete within 50 ps in the 

case of the smallest solute (2 Å), whereas in the case of the largest solute (12 Å) it takes 

about 5 ns. The fast relaxation of the small solute is consistent with the large diffusion 

coefficient, because the fast relaxation means a small integrated friction. Although the 

dependence of the relaxation rate on the solute size is also observed in the fixed-solute 

case (Fig. 4b), the variation of the relaxation rate is much smaller. Since the initial values 

of the memory functions of the free and the fixed solutes are equal to each other, their 
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differences in the time-integrated friction should be ascribed to that in the relaxation time. 

Upon comparing the memory functions of the free and the fixed solutes of the same size, 

we note that they are close to each other for the largest solute, which is in harmony with 

their similar diffusion coefficients, shown in Fig. 3. On the other hand, fixing the solute 

significantly retards the relaxation of the memory function of the smallest solute, which 

is the reason for the large change in the diffusion coefficient. All the properties above are 

common to the results already published for the solute diffusion in 1-octanol.7 

A large difference is found, however, between [omim][TFSA] and 1-octanol solutions 

in terms of the relationship between the relaxations of the random force on the solute and 

the shear stress. In 1-octanol, the relaxation of the memory function of the largest solute 

is as slow as the viscoelastic relaxation. On the other hand, the memory function of the 

largest solute in [omim][TFSA] relaxes more slowly than the viscoelastic relaxation of 

the solvent, as is exhibited in Fig. 4a and 4b. 

 

3.4. Coupling between random force and solvation structure 

The cross-correlation functions between the random force and the transient solvation 

structure, defined by eqs. (14) and (15), are now analyzed to obtain a detailed picture on 

the frictional force felt by the solutes. The cross-correlation functions are plotted in the 

time-integrated form, because the integration over the whole time describes the 

anisotropy of the solvation structure around a solute dragged by a constant force or in a 

constant velocity according to the linear response picture given in Sec. 2.3. The negative 

sign in Eq. (22) means that the positive cross correlation describes the depletion of the 

distribution in the direction of the motion of the solute. Reciprocal relation also states that 

the solute is dragged toward the sites of positive cross correlation. 
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First, the results on the time integrals of the cross-correlation functions in 1-octanol are 

shown in Fig. 5, at various times. The sizes of the solutes are 2 and 12 Å. The results of 

both the free and the fixed solutes are plotted. 

 

Figure 5. The cross-correlation functions between the random force and the transient 

solvation structure in 1-octanol integrated over time from 0 to t. The correspondence 

between the colors of the curves and the values of the upper limits of the time integral is 

shown in each panel. The solutes are (a) free, σLJ = 2 Å, (b) free, σLJ = 12 Å, (c) fixed, 

σLJ = 2 Å, and (d) fixed, σLJ = 12 Å. The distributions of the methyl group and the oxygen 

atom are shown by the solid and the dotted curves, respectively. 

In all the panels of Fig. 5, irrespective of the solute size and whether the solute is free 

or fixed, a positive distribution of the methyl group and a negative one of the oxygen 

atom are observed around the solutes. The positive and the negative distributions of the 

methyl group and the oxygen atom mean that the solute is dragged toward the methyl 

group and expelled from the oxygen atom, which is consistent with the equilibrium radial 

distribution functions in Fig. 1a. The distributions of the methyl group and the oxygen 
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atom exhibit long-range oscillations, whose phases are opposite to each other. The 

wavelength of the oscillation is close to the size of the heterogeneous domain structure of 

the neat solvent. Therefore, Fig. 5 clearly indicates that the translational diffusion of the 

nonpolar solutes in 1-octanol are coupled to the characteristic polar–nonpolar 

heterogeneous structure. 

The time-integrated distributions of both sites increase with time, and the increasing 

rate appears independent of sites. Compared with the memory functions reported in our 

previous paper,7 the increasing rates are close to the relaxation rates of the memory 

functions of the corresponding solutes. In particular, the fast relaxation of the memory 

function of the free solute of σLJ = 2 Å is ascribed to the fast dynamics of its solvation 

structure. 

Calculations of the cross-correlation functions were also performed for solutes in 

[omim][TFSA]. The time-integrated functions for σLJ = 2 and 12 Å in the free and fixed 

cases are shown in Fig. 6. The upper limits of the time integral were determined to be 

sufficiently large so that the integrals are converged. 
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Figure 6. The cross-correlation functions between the random force and the transient 

solvation structure in [omim][TFSA] integrated over time. The solutes are (a) free, σLJ = 

2 Å, (b) free, σLJ = 12 Å, (c) fixed, σLJ = 2 Å, and (d) fixed, σLJ = 12 Å. The distributions 

of the cation head group, the anion, and the methyl group of the octyl chain of the cation 

are shown by the red, blue, and green curves, respectively. The values of the upper limits 

of the time integrals are 200 ps for panel (a) and 5 ns for the other panels. 

The characteristics of the time-integrated distributions in [omim][TFSA] shown in Fig. 

6 are similar to those in 1-octanol shown in Fig. 5, in terms of the large positive 

distribution of the nonpolar site and the negative distribution of the polar sites in the 

vicinity of the solute. Both distributions show long-range oscillations, and the phases of 

the polar and nonpolar sites are opposite to each other. The wavelength of the antiphase 

oscillation of the polar and nonpolar groups corresponds to the scale of the heterogeneous 

structure of the neat solvent. Therefore, the diffusion of the nonpolar solute in 

[omim][TFSA] is also coupled to the heterogeneous structure of the solvent. Although 

the results are not shown here (for brevity), the relaxation of the distribution of the methyl 

group follows that of the corresponding memory function. 

Here, a difference from the results in 1-octanol is that a small and shorter-range 

oscillation is imposed on the distributions of the polar groups, namely, the anion and the 

head group of the cation. The phases of the cation and the anion are opposite to each other, 

indicating that the diffusion of the solute is also coupled to the charge-alternation mode. 

Since the coupling with the charge-alternation mode is present even in the equilibrium 

structure (Fig. 1a), it is natural that the coupling is present in the translational diffusion. 
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Analysis of the cross-correlation between the random force and the transient solvation 

structure clearly demonstrates that the translational diffusion of nonpolar solutes is 

coupled to the intermediate-range heterogeneous structure in both 1-octanol and 

[omim][TFSA]. The coupling itself is easily understood in terms of the selective solvation 

of the solute by the nonpolar group, as demonstrated in Fig. 1. When the polar–nonpolar 

heterogeneous structure is present in the solvent, the mean force works on the nonpolar 

solute toward the nonpolar domain because the solute favors the nonpolar domain over 

the polar one. The relaxation of the mean force then follows that of the heterogeneous 

solvation structure around the solute. Therefore, the mean force on the fixed solute relaxes 

following the dynamics of the solvent around the solute. In the case of free solutes, the 

relaxation of the heterogeneous structure around the solute occurs through the relative 

motion between the solute and the solvents. Since small solutes can diffuse rapidly 

through the nonpolar domain, the solvation structure around the solute can relax through 

the motion of the solute itself, even though the heterogeneous structure of the solvent is 

frozen. This explains the fast relaxation of the memory function and the solvation 

structure around the small solute. The contribution of the solute motion decreases with 

increasing solute size. The dynamics of the solvation structure around the large solute is 

determined by the motion of the solvent, irrespective of the spatial constraint on the solute. 

In our previous paper, we found that the relaxation time of the memory function of free 

solutes in octanol is comparable to the time required for the solute to diffuse the distance 

corresponding to the wavenumber of the pre-peak,7 which supports our idea described 

above. 

The difference between the free and the fixed solutes can also be understood in terms 

of the linear response picture described in Sec. 2.3. Given that the nonpolar solute 
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disfavors the polar domain in both solvents, the polar domains can be regarded as 

randomly placed obstacles for the motion of the solute. The idea that regards the polar 

domains as an obstacle for the diffusion of nonpolar solutes is in harmony with the 

computational study of Araque and Margulis, i.e., that a nonpolar solute feels strong 

friction in the vicinity of the polar domain.35 When a small solute is dragged by a constant 

force, it can avoid the obstacle and proceed forward even though the positions of the 

obstacles are fixed. By contrast, the solute moving with a constant velocity should feel 

strong resisting force upon encountering the obstacle when the obstacle is in its way. For 

large solutes, the voids between the obstacles are not large enough for the solute to move 

through, and the time required for the obstacles to avoid the solute to make way is 

important for the motions of solutes dragged by either constant force or by velocity. 

Since the couplings between the diffusion of the solute and the dynamics of the 

heterogeneous structures are similar in both solvents considered here, the difference in 

the relationship between the memory function and the viscoelastic relaxation could be 

ascribed to the different origins of the latter. Experimental and computational studies have 

revealed that the slowest mode of the viscoelastic relaxation of higher alcohols, including 

1-octanol, is ascribed to the dynamics of the heterogeneous structure.4, 6 Since the same 

dynamics governs both the viscoelastic relaxation and the solute diffusion, it is natural 

for them to exhibit similar dynamics, as reported by us in our previous paper.7 On the 

other hand, although the dynamics of the heterogeneous structure is also coupled to the 

viscoelastic relaxation of RTILs, its contribution to their steady-state shear viscosity is 

rather minor, and the main part of the viscoelastic relaxation is ascribed to the dynamics 

of the charge-alternation mode.22 Then, the faster relaxation of the charge-alternation 
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mode compared with that of the intermediate-range heterogeneous structure explains why 

the memory function relaxes more slowly than the viscoelastic relaxation. 

The remaining question is the validity of the SE relation in these two solvents. In 1-

octanol, both the shear viscosity and the solute diffusion are coupled to the same dynamic 

mode of the solvent, namely, the dynamics of the heterogeneous structure, when the 

solute is large or fixed. Therefore, it is natural that the diffusion coefficient follows the 

shear viscosity as is presented by the SE relation under these conditions. In 

[omim][TFSA], however, the dynamic mode of the solvent coupled to the solute diffusion 

is different from that of the shear viscosity even though the solute is large or fixed. Hence, 

there seems to be no reason for the SE relation to hold, contrary to the results in Fig. 3 

that support the validity of the SE relation. There must be a reason for the SE relation in 

[omim][TFSA] other than that both the diffusion and the shear viscosity are governed by 

the same microscopic dynamics. In other words, a mere comparison between the zero-

frequency values of the shear viscosity and the diffusion coefficient alone cannot reveal 

whether these two dynamic quantities are determined by the same microscopic dynamics 

or notthe time or frequency dependence of these quantities gives valuable information 

on their microscopic origin. 

Another issue to be treated in a future work is the extension of our analysis based on 

the cross correlation to other systems. The diffusion of small solutes in n-tetradecane 

shows similar decoupling from viscosity,8, 9 although the degree of the decoupling is 

smaller than those in 1-octanol and [omim][TFSA], and we have succeeded in 

reproducing the decoupling in our previous work by MD simulation.7 Since shear 

viscosity of liquid n-tetradecane is strongly coupled to the collective orientation, the 

analysis used in this work is not applicable directly to n-tetradecane.4 We guess that the 
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function to be analyzed would be the cross correlation between the random force on a 

solute and the distribution of the chain orientation around the solute. The microscopic 

modes that govern the shear viscosity varies among liquids, and we need to define proper 

variables to be correlated with the random force on a solute depending on the mechanism 

of the shear viscosity of the solvent under consideration. 

 

4. SUMMARY 

The diffusion of a nonpolar monoatomic solute in an ionic liquid, [omim][TFSA], was 

studied by means of MD simulation as a function of both the LJ diameter and the 

positional constraint. The positional constraint enhances the friction on small solutes 

significantly, whereas its influence to large solutes is small. The diffusion of free and 

small solutes is much faster than the prediction of the SE relation, as has been reported 

experimentally, whereas the fixed solute follows the SE relation even if its size is much 

smaller than that of solvent ions. These trends are similar to those of solute diffusion in 

1-octanol, reported in our previous paper.7  

The memory function for the solute diffusion, i.e., the time-dependent friction 

coefficient, was also calculated from the MD simulation. The relaxation of the memory 

function of free solute becomes remarkably faster with decreasing solute size, whereas 

the change in the relaxation of the memory function of fixed solute with the solute size is 

relatively small. The variation of the relaxation rate is in harmony with that of the 

hydrodynamic diameter determined by the diffusion coefficient. This trend in 

[omim][TFSA] is common to that in 1-octanol. However, the relationship between the 

memory function and the viscoelastic relaxation in [omim][TFSA] is different from that 

in 1-octanol. The relaxation of the memory function of the solute of 12 Å diameter, 
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irrespective of the positional constraint, is several times slower than that of the 

viscoelastic relaxation in [omim][TFSA], whereas their relaxations are comparable to 

each other in 1-octanol. 

The cross-correlation functions between the random force on the solute and the 

transient solvation structure were calculated in both solvents in order to analyze the 

coupling between the solute diffusion and the solvent dynamics. The analysis clearly 

demonstrates that the solute diffusion is coupled to the heterogeneous structure around 

the solute in both solvents, irrespective of the solute size and the positional constraint. 

The relaxation of the solvation structure around the free and small solutes occurs through 

the solute motion, whereas the motion of solvent molecules is required for fixed or large 

solutes. 

The memory functions of the fixed or large solutes relax as slowly as the shear stress 

in 1-octanol because they are coupled to a similar dynamic mode of the solvent. The 

former is slower than the latter in [omim][TFSA] because the latter is governed by the 

charge-alternation mode whose relaxation is faster than that of the heterogeneous 

structure. The correspondence between the relaxation dynamics is thus easily understood 

in terms of the microscopic dynamic modes coupled to the diffusion and viscosity. 

However, the difference in the microscopic mechanism is not evident in the zero-

frequency values of these two transport coefficients. The diffusion coefficients of fixed 

or large solutes follow the SE relation in both solvents in a similar way. This means that 

mere examination of the validity of the SE relation does not provide sufficient information 

on the microscopic mechanism of diffusion, whereas the time or frequency dependence 

of the diffusion coefficient and the shear viscosity, if available, offers a powerful probe 

into the microscopic mechanism. 
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