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Abstract

Small particle trajectories are visualized in thermal counterflow using
the particle tracking velocimetry technique, and the curvature of two
dimensional Lagrangian trajectories are studied. It is found that the
probability density function of the curvature demonstrates a power-law
tail similar to that of classical turbulence. The curvature distribution is
classified into three regions with high, medium, and low values, and the
particle velocity is averaged in each region. Furthermore, the particle
velocity in the low curvature region clearly shows a bimodal distribution
and agrees with the two-fluid model in the case of low heat flux. How-
ever, in the high curvature region, the particle velocity deviates from
the theoretical value and exhibits a Gaussian distribution. We under-
stand from the visualized particle trajectories that the high curvature
region corresponds to a complex trajectory that interacts with a quantum
vortex, but the low curvature region indicates an almost straight line.
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1 Introduction

Quantum turbulence is one of the most important research fields. Thermal
counterflow is a simple example of quantum turbulence. In thermal counter-
flow, the two-fluid velocity of helium4 demonstrates the following relation,
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when considering mass conservation, ρsvs + ρnvn = 0, where ρ and v are fluid
density and velocity, respectively. Moreover, the lower subscript n and s rep-
resent the superfluid and normal fluid components, respectively. The normal
fluid velocity is given by Eq. (1) with a total density of ρ = ρs + ρn, entropy
S, temperature T , and heat flux q.

vn = q/ρST (1)

When the relative velocity (V = vn − vs) exceeds a specific value, quantum
vortices with constant circulation and a very small core of 0.1 nm are generated.
Additionally, the quantum vortices are tangled in turbulence flow.

In recent years, visualization of thermal counterflow has been conducted
by several researchers. Particle tracking velocimetry(PTV) or particle image
velocimetry are typically adopted to calculate particle velocity. The solid
hydrogen particles were used as tracer particles by Bewley et al. [1] to visualize
the quantum vortices. Paoletti et al. [2] reported the probability density func-
tion (PDF) of the vertical velocity component in thermal counterflow, which
has a bimodal distribution, but the horizontal component has a single peak.
They are well approximated by the Gaussian distribution. Mantia et al. [3][4]
pointed out that the PDF of velocity and acceleration have different shapes
depending on the length scale, ℓexp, which is the experimental probe length
or the distance between the particles along the trajectories. For example, the
PDF shape exhibits an unclassical power-law tail or classical Gaussian form
as the length scale increases for the horizontal velocity in thermal counter-
flow. In addition, the PDF tails of the horizontal acceleration, a, approach a
scale of a−5/3 as length scales decrease. Mastracci and Guo [5] developed a
separation scheme for visualized particle motion. They defined three groups,
namely, G1, G2, and G3. G1 group represents particles entrapped on vor-
tices, G2 group represents untrapped particles that move relatively straight,
and G3 group shows a single peak in the vertical velocity PDF. Applying
this scheme shows that the PDF of transverse velocity in G1 has nonclassical
features and corresponds to that of G2 shows Gaussian features. Tang et al.
[6] proposed power-law scaling of horizontal mean-square displacement for G1
particles. It has two distinct regimes which are superdiffusion in small regions
and nearly normal diffusion in large regions. According to Kubo and Tsuji [7],
both regimes intersect at the transient point, which reasonably agrees to the
mean intervortex distance. Švančara et al. [8] proposed a separation scheme
of visualized particle trajectories by dividing velocity-acceleration phase space
into four subspaces. They are labeled as slow (S), fast (F ), acceleration, and
deceleration, respectively, where S and F are related to G1 and G2, respec-
tively. They studied the horizontal velocity PDF of S and F . Furthermore,
they investigated not only PDF of S but also F having clear power-law tails
as opposed to Mastracci and Guo [5]. Therefore, they concluded that not only
slow particles but also fast particles are influenced by the quantum vortices
when the normal velocity is large (vn ≥ 10 mm/s).
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As noted above, previous research on thermal counterflow visualization
mainly focuses on the velocity and acceleration of the tracer particles in
Lagrangian properties. The curvature of tracer trajectories has not been
studied in detail in thermal counterflow. In classical turbulence, particle
acceleration and the curvature of Lagrangian trajectory are analyzed [9]. In
magnetic turbulence, the curvature of the magnetic field line is analyzed [10]
in a two-dimensional (2D) magneto hydro dynamic (MHD) turbulence. These
investigations revealed that the PDF of curvature has an apparent power-law
tail shape.

The thermal counterflow characteristics for helium are different from clas-
sical turbulence and MHD turbulence. In particular, the PDF varies and often
exhibits a bimodal distribution, but the PDF of classical turbulence in homo-
geneous isotropic turbulence (HIT) closely resembles a Gaussian distribution.
It is also assumed that the Lagrangian trajectories of small particles show dif-
ferent characteristics in quantum and classical turbulence. However, the PDF
of the curvature has the same power-law tails in the thermal counterflow [11].
Moreover, trajectory of the particle can rapidly change before and after the
particles are trapped by the quantum vortex. Therefore, characterizing this
process by geometrical information of curvature is interesting. In addition,
other physical quantities, such as velocity can be investigated in the region
where the curvature is high for further analysis.

In this study, we analyzed the motion of solid hydrogen particles in thermal
counterflow using the PTV algorithm. Here, we do not classify the particle
size because the curvature PDF does not depend on the particle size [11],
although the PDF of vertical velocity depends on the particle size [7]. The
relation between the particle velocity and curvature of trajectories is studied
by conditional sampling. Moreover, the particle velocity conditioned by high
and low curvature regions is compared with the velocity of the two-fluid model.
Finally, the interaction between the quantum vortex and the tracer particles
is discussed.

2 Experiments

Figure 1 shows a schematic of the experimental setup. The acrylic rectangular
channel is set inside the cryostat [11]. The channel cross-section has an area
of A = 20 × 20 mm2 and a height of H = 260 mm. The bath temperature T
varies from 1.9 to 2.1 K. Furthermore, the plate heater is located at the bot-
tom, and the heat flux q is varied in the range of 300−800 W/m2. The thermal
counterflow is generated inside the channel, and the experimental conditions
are listed in Table 1. Bath temperature and heat current are included in the
range of [2] and [12]. A high-speed camera (1024× 1024 pixels, 8 bit) is used
for visualizing the area of 8.7× 8.7 mm2 at 250 fps. A continuous laser (wave-
length 532 nm, diode-pumped solid-state laser and 4 W at maximum power)
is adopted to make the laser sheet with a thickness of about 1 mm. A helium
and hydrogen mixing chamber is designed to vary the mixing ratio and the
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Table 1: Experimental parameters; temperature T , heat current q, number
of datasets, theoretical normal fluid velocity vn, and theoretical superfluid
velocity vs.

T q Number of datasets vn vs

1.9 K ≈ 800 W/m2 11 3.99 mm/s −2.88 mm/s
2.0 K ≈ 300 W/m2 3 1.07 mm/s −1.32 mm/s
2.0 K ≈ 400 W/m2 5 1.43 mm/s −1.77 mm/s
2.0 K ≈ 800 W/m2 13 2.86 mm/s −3.53 mm/s
2.1 K ≈ 800 W/m2 3 2.07 mm/s −5.91 mm/s

Fig. 1: Schematic view of experimental settings [11].

spouting pressure. The hydrogen particles are generated in the liquid helium.
We adopted a mixing ratio of He:H2 = 40:1 and a spouting pressure 20 kPa.
Additionally, the injection is carried out just above the λ point, and then the
bath temperature is decreased. In this study, we adopted the particle tracking
algorithm developed by Crocker et al. [13]. The particle size, d, ranges from
5 to 40 µm [11]. We do not classify the size of the particles but analyze the
motion of all particles.

3 Analysis Method

In principle, the curvature κ is a purely geometrical quantity and contains no
dynamical information about the trajectory. However, the curvature can be
written in terms of the temporal derivatives of the positions along the trajec-
tory. The instantaneous curvature can be expressed as κ = an/u

2 [14] utilizing
the Frenet formulas, where an is the magnitude of the normal acceleration,
and u is the velocity, as shown in Fig. 2.

Also, the curvature is represented by κ = |u×u̇|/|u|3, where u is the vector
of the velocity u. We use the PTV algorithm [13] to calculate the velocity and
acceleration of the particles. The velocity and acceleration are calculated by
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Fig. 2: Example of particle trajectory (solid line), Lagrangian velocity, and
normal acceleration.

the numerical derivative with the central difference method. The uncertainly
is O(∆t) for velocity and O(∆t2) for acceleration.

The distribution of κ has been studied in classical turbulence [9][14]. The
PDF of κ (P (κ)) demonstrates the two power-law regions where the high and
low curvature regions have corresponding PDFs of P (κ) ∝ κ−5/2 and P (κ) ∝
κ, respectively. Xu et al. [9] reported that this feature could be understood
by the Gaussian property of random variables but not turbulent small-scale
statistics. As is well known, the velocity fluctuation in classical turbulence
closely mimics the Gaussian property. In addition, the velocity fluctuations
(ux, uy, uz) in HIT are independent of one another, then the magnitude u2 =
u2
x + u2

y + u2
z should follow a chi-squared distribution with degree of freedom

three. When κ → ∞, or u → 0, the PDF of κ follows the distribution of u−2

with the assumption of finite an in this limit, suggesting a power-law with an
exponent of −5/2. Similarly, the power-law scaling of κ → 0 is derived. The
PDF of curvature scales like the PDF of an as an → 0 with the assumption
that the components of an are independent Gaussian random variables. It is
a reasonable approximation for small values of an, and the PDF of a2n then
follows a chi-squared distribution with a degree of freedom of two because the
normal acceleration is confined to the plane orthogonal to the velocity vector.
In the case of κ → 0, the PDF of κ follows the distribution of an as an → 0,
then the power-law with an exponent of one is derived [9].

Moreover, the PDF of curvature in 2D case is also discussed. Since the
PDF of velocity fluctuations and an near zero can be approximated as a quasi-
Gaussian distribution, then the power-law of PDFs are derived as P (κ) ≈ κ−2

and P (κ) ≈ κ0 in κ → ∞ and κ → 0, respectively, using Taylor’s expan-
sion. The following equation approximates the PDF of curvature with the
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Fig. 3: PDF of curvature. The solid red line is Eq. (2), and the red squares
are the asymptotic value of z → 0. Solid and dotted black lines are z−2 and
z0, respectively.

dimensionless parameter z = κσ2
u/σa.

P (z) =

∫ ∞

0

u2 exp

(
−a2n

2

)
exp

(
−u2

2

)
du2

=
1√
2πz2

(
1−

√
π

2

1

2z
exp

(
1

8z2

)
erfc

(
1

2
√
2z

))
(2)

where σu and σa are the standard deviations of velocity and the acceleration,
respectively: erfc is the complementary error function.
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(
1
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√
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)
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π

∫ ∞

1/2
√
2z

exp (−t2)dt (3)

The PDF of curvature in two dimensions has been reported by Yang et al. [10].
They evaluated the distribution of magnetic field line curvature by numerical
simulation. The analytical solution of the PDF is derived for the first time in
this paper.

Equation (2) is plotted as a red line in Fig. 3. The solid and dotted black
lines represent the power-law relation of z−2 and z0, respectively. Due to the
numerical convergence, the PDF can be calculated by Eq. (2) in the range of
10−2 < z. The red square dots denote the value of 1.6, which is the asymptotic
value of Eq. (2) as z → 0.
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Fig. 4: Example of the trajectories in the case of T = 2 K with q = 310 W/m2.
Red circles represent the trajectories having positive averaged velocity. Blue
circles represent the trajectories having negative averaged velocity.

4 Resuls and Discussiton

A typical example of particle trajectories is plotted in Fig. 4. They are colored
in blue and red according to the criteria mentioned below. A Lagrange tra-
jectory has a finite length or steps n counted in the discrete time interval ∆t.
It is given by 3 ≤ n ≤ nmax. The maximum of nmax is O(103) in the present
experiment. Along each Lagrange trajectory, the mean vertical velocity ⟨vy⟩L
is calculated by

⟨vy⟩L =
1

nmax

nmax∑
i=1

vy(i∆t) (4)

where vy(t) is the instantaneous velocity at time t. When ⟨vy⟩L is positive,
the trajectory is colored in red, and it is colored blue for negative ⟨vy⟩L. It is
noted that the particle velocity is not always positive inside the red trajectory
nor negative in the blue trajectory. In Fig. 4, where the temperature is 2K,
the red trajectories tend to be long, but the blue trajectories are short. Fur-
thermore, the red trajectories correspond to straight lines but blue trajectories
are complicated. These features are consistent with the observation in previ-
ous research [5][15]. It should be emphasized that our defined red and blue
trajectories do not always represent the particles carried by the normal and
superfluid (or quantum vortex). Along one red trajectory, some parts interact
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Fig. 5: PDF of vertical velocity component for the case of T = 2 K with
q = 470 W/m2. The bimodal PDF is approximated by two Gaussian profiles
denoted by two dashed lines. The solid red line is the mean value vy, the mean
of the positive Gaussian fitting. The solid black line is the normal fluid velocity
calculated by the two-fluid model.

with the quantum vortex, and blue trajectory contains the interaction with
normal fluid partially. In principle, it is impossible to separate the particle
trajectory carried by normal fluid perfectly. In Fig. 5, the PDF of the vertical
velocity vy is calculated for the case of T = 2 K with q = 470 W/m2, in which
the vertical velocity is normalized by its standard deviation σ. The PDF has a
bimodal distribution similar to previous studies [2][5]. This bimodal distribu-
tion is confirmed in almost all cases. The bimodal distribution is approximated
by two Gaussian distributions denoted by the blue and red dashed lines in Fig.
5. Their mean values are expressed as vgauss,s and vgauss,n, respectively. The
red line is the positive mean value vgauss,n, and the velocity vn is calculated
by the two-fluid model (Eq. (1)), which is indicated by the solid black line.

The bimodal distribution was not observed for T = 2.1 K; however, the
positive peak always appears. This was also confirmed by previous study [16]
for similar heat flux q ≈ 900 W/m2. The mean velocity vgauss,n was plotted
against vn as shown in Fig 6. Different colors represent various experimental
conditions. Moreover, the solid line is given by vgauss,n = vn, and the dotted
line is denoted by vgauss,n = vn/2. There have been discussions on the particle
velocity in counterflow [2][12]: the previous studies are summarized in [5]. In the
previous studies [2][5][8][12], the vgauss,n agrees with vn. In this measurement,
vgauss,n and vn increase as the heat power becomes large, and vgauss,n locates
between vn and vn/2.
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Fig. 6: Comparison of mean vertical velocity in experiments and the two-fluid
model. The red color is T = 1.9 K with q ≈ 800 W/m2, blue is T = 2.0 K with
q ≈ 300 W/m2, green is T = 2.0 K with q ≈ 400 W/m2, black is T = 2.0 K
with q ≈ 800 W/m2, and magenta is T = 2.1 K with q ≈ 800 W/m2. The
vertical error bar is the standard deviation in the each data sets. The horizontal
error bar is the range of the theoretical normal fluid in the each data sets. The
solid line represents vgauss,n = vn. The dotted line denotes vgauss,n = vn/2.

The PDFs of curvature normalized by the standard deviation σκ are plotted
in Fig. 7. Different color symbols indicate the experimental conditions. They
are T = 1.9 K with q ≈ 800 W/m2, T = 2.0 K with q ≈ 300 W/m2,T = 2.0 K
with q ≈ 400 W/m2, T = 2.0 K with q ≈ 800 W/m2, and T = 2.1 K with
q ≈ 800 W/m2 from the top, and each graph is shifted vertically not to avoid
overlap. In the larger curvature region, the power-law is represented by the
solid line with κ−2. In the smaller curvature region, the power-law is given by
the dashed line with κ0. PDFs of curvature contain no signs of nonclassical
behavior attributed to the quantum vortex in superfluid. When the curvature
is normalized as z = κσ2

u/σa, the PDF is plotted in Fig. 8a. The gray squares
are the asymptotic value of z → 0, and the solid line is given by Eq. (2).
The theoretical PDF of the curvature does not completely agree with the
experimental results. They slightly deviate from Eq. (2) because it is derived
under the assumption that the components of velocity and acceleration are
independent Gaussian random variables and acceleration is noncorrelated with
velocity. However, the acceleration usually has a large intermittent value, and
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Fig. 7: PDF of curvature normalized by the standard deviation. The graphs
of T = 1.9 K with q ≈ 800 W/m2, T = 2.0 K with q ≈ 300 W/m2, T = 2.0 K
with q ≈ 400 W/m2, T = 2.0 K with q ≈ 800 W/m2, and T = 2.1 K with
q ≈ 800 W/m2 (from the top) are shifted vertically to avoid overlap. The
dotted black line represents the κ0. The solid black line is given by the κ−2.

its PDF indicates a long tail. In addition, the acceleration, and velocity can
be correlated. Therefore, this assumption is not completely satisfied for the
motion of particles in thermal counterflow.

For further analysis, the curvature PDF is divided into three regions: low,
medium, and high curvature regions as described in Fig. 8b. This classification
does not contain any physical meaning but is defined as the probability that
each region is equal for convenience. In the low curvature region, the PDF is
almost constant, or the power law is κ0, and in the high curvature region, the
PDF corresponds to the relation κ−2. The medium region is located between
these two power-law regions. A typical example of the PDF is plotted in Fig.
8b, where the low and the high curvature PDFs are given by κ/σκ < 1.5×10−3

and 6.0× 10−3 < κ/σκ, respectively.
The histogram of particles is plotted in Fig. 9 as a function of curvature and

vertical velocity. Following the definition, as described in Fig. 8b, the curvature
is divided into three regions. The histogram indicates the high probability in
the medium curvature region where the positive vertical velocity is dominant.
Around a small vertical velocity of vy ≃ 0, the particle motion indicates the
high curvature. From these observations, we understand that the vertical veloc-
ity has different characteristics depending on the curvature. Then the vertical
velocity is averaged in each region. In other words, the vertical velocity is
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(a)

(b)

Fig. 8: (a)PDF of normalized curvature z = κσ2
u/σa. Gray solid line represents

Eq. (2), and the gray square line signifies the value when the z → 0. The color
symbols are the same as in Fig. 7. (b) PDF of curvature is divided into the
high, medium, and low regions for the T = 2.0 K with q = 310 W/m2. Blue
circles denote the PDF of curvature, the left solid line is the threshold between
the low and medium region, and the right solid line is the threshold between
the high and medium region.
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Fig. 9: Histogram of particles as a function of y direction velocity and cur-
vature in the case of T = 2.0 K with q = 310 W/m2. The lower solid line
represents the threshold between the low and medium regions, and the solid
upper line signifies the threshold between the high and medium regions. The
left dotted line denotes the theoretical superfluid velocity divided by the stan-
dard deviation of the vertical velocity and the right solid line is the theoretical
normal fluid velocity divided by the standard deviation of the vertical velocity.

conditioned by the intensity of curvature, and it is usually called conditional
sampling.

The vertical velocity is divided into high, medium, and low curvature
regions, and their PDF is plotted in Fig. 10 for the case of T = 2 K with
q = 310 W/m2. The original PDF shows the bimodal distribution, but the
positive and negative peaks are located close to each other. However, in the
velocity conditioned by the low curvature region, there are two clearly sepa-
rated peaks. The positive peak is given by vgauss,n/σ ≃ 1.5, and the negative
peak is denoted by vgauss,s/σ ≃ −1.0. In the high curvature region, the pro-
file is approximated by the Gaussian distribution. The PDFs of the horizontal
velocity vx normalized by the mean and standard deviation σx are plotted
in Fig. 11. Moreover, the original velocity distribution near the core is fitted
well using the Gaussian distribution. This feature has been observed in other
research [3][17]. In addition, we found that the velocity in high curvature region
is also approximated by the Gaussian distribution.

The particle velocities of vx and vy in the high curvature region are
approximated by Gaussian distribution, and they are independent. Then the
magnitude of the velocity v2x + v2y follows a chi-squared distribution with a
degree of freedom two. When κ → ∞ or (v2x + v2y) → 0, the PDF of κ follows
the distribution of (v2x + v2y)

−2 with the assumption of finite an in this limit.
Therefore, the PDF of curvature has a power-law tail of −2 as expressed in
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Fig. 10: PDF of vertical velocity divided by its standard deviation in high (top
left), medium (top right), low (bottom left), and all (bottom right) curvature
regions at T = 2.0 K with q = 310 W/m2. In the high region, the dotted
orange line represents the Gaussian fit.

Eq. (2). Similarly, the power-law of κ0 is assumed because the normal accel-
eration could be thought of as Gaussian, and the velocity is finite in the limit
of κ → 0 or an → 0, as expressed in Eq. (2).

The vertical velocity conditioned by the medium curvature region has a
clear bimodal distribution even though the original PDF doesn’t have a clear
bimodal distribution in the case of T = 2 K with q = 310 W/m2. The positive
velocity peak is attributed to the conditional velocity in the medium curvature
region but is only slightly affected by high curvature regions. The negative
peak vgaussu,s also shows the different values depending on the curvature. In
addition, negative and positive distributions are enhanced compared with the
original PDF because, in the low heat flux, particles that feel stokes drag do
not interact with vortices frequently and sometimes go down with quantum
vortices. In the high heat flux, the vertical velocity PDF conditioned by the
low curvature region does not have clear bimodal distribution, whereas the
original PDF has a bimodal distribution. The tracer particles tend to move fast
enough to detrap from the quantum vortices. Thus, the lower peak is located
around the small positive value, and the vertical velocity PDF conditioned by
the low curvature region does not have clear bimodal distribution for the high
heat flux.

The vertical velocity calculated by the two-fluid model is plotted in Fig.
10. Additionally, the normal fluid velocity vgaussu,n agrees with vn. Then the
low curvature region along the Lagrange trajectory represents the laminar flow
region where the particles are carried by Stokes drag. The negative particle
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Fig. 11: PDF of horizontal velocity divided by the standard deviation in the
high (top left), medium (top right), low (bottom left), and all (bottom right)
curvature regions at T = 2.0 K with q = 310 W/m2. In the high region, the
dotted orange line represents the Gaussian fit.

velocity vgaussu,s does not agree with the two-fluid model but is close to vs
compared with original PDF.

The vertical velocity (vgaussu,n)Low conditioned by the low curvature region
is plotted against the normal velocity vn using the ∗ symbol, as shown in Fig.
12a. Furthermore, conditional normal fluid velocities are shown to be close to
those of the two-fluid model, especially when the range vn is below 2 mm/s.
However, the conditional velocity still deviates from the original vn in high-
velocity regions. Next, we calculate the velocity difference (vgaussu,n)Low −
vgauss,n in Fig. 12b. Note that the data at T = 2.1 K with q ≈ 800 W/m2 is
not included here because the vertical velocity shows no bimodal distribution.
In addition, one of the samples in q = 470 W/m2 is excluded since the original
PDF does not have a clear bimodal distribution. It is found that the difference
is large in vn < 2 mm/s but small for vn > 2 mm/s. Since the quantum vortex
density L increases as the heat flux increases, the interaction between the tracer
particles and quantum vortices frequently occurs. Thus, the particles move up
in a zigzag pattern. Moreover, the vertical velocity PDF conditioned by the
low curvature region tends to include these velocity components. Therefore,
the difference between the original and conditional PDFs is small in the high
heat flux.

We plot the examples of the high curvature points on the trajectories for
T = 2.0 K with q = 310 W/m2. The trajectories are extracted from Fig. 13,
where the red points represent the upward motion. Along the trajectory, the
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(a)

(b)

Fig. 12: (a) Gaussian fit value to the larger velocity peak in the low curvature
region. The color and the error bar are the same with those of the Fig. 6. (b)
Each squares represent difference between the mean value of Fig. 12a and Fig.
6. The color is the same with that of Fig. 6.
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Fig. 13: An example of high curvature points on the trajectories for the case
of T = 2.0 K with q = 310 W/m2. Red trajectories are extracted from Fig. 4.
Black points indicate the high curvature region, 7.0× 10−2 < κ/σκ.

high curvature region (7.0 × 10−2 < κ/σκ) is colored in black. As expected,
the high curvature region indicates nonstraight motion or the point where
the particle motion suddenly changes its direction, which could be due to the
quantum vortex interaction.

5 Conclusion

In this study, we calculate the curvature of the 2D-Lagrangian trajectory in
thermal counterflow using PTV. The Lagrange velocities (vertical component
vy and horizontal component vx) are conditionally averaged by curvature val-
ues. Furthermore, results show that the trajectory exhibits a complex shape or
a sudden change in the direction of the particle in the high curvature region.
In addition, by removing the high curvature region from the trajectory and
conditioning the vertical velocity in the low curvature region, we achieve a
bimodal velocity distribution, thereby making the normal fluid velocity close to
the value of the two-fluid model. Therefore, the quantum vortex tangled com-
plex interactions are sufficiently separated based on the curvature in the low
heat flux case. However, in the high heat flux condition, bimodal distribution
does not tend to appear in the low curvature region although it is seen in the
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original distribution. Both vy and vx have a Gaussian distribution with a zero-
mean value in the high curvature region. Based on this experimental evidence,
the PDF of curvature in the 2D case is analytically derived as a function of
the dimensionless parameter z = κσ2

u/σa. It has the power-law scaling ≈ κ−2

in the high curvature region, and is confirmed in the present experiment.
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