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Abstract

Numerical simulations of quantum fluid turbulence obeying the Gross-
Pitaevskii equation are performed with the simulation sizes as large
as the weak-wave-turbulence and the strong-turbulence wavenumber
ranges coexist in one simulation. The energy cascade is observed within
the simulated wavenumber range. The spectrum F (k) in the weak-
wave-turbulence range agrees with the k−1 scaling without logarithmic
correction suggested by a closure approximation (Yoshida and Arim-
itsu in J Phys A Math Theor 46(33):335501, 2013) and the slope of
F (k) in the strong-turbulence range is steeper than that suggested in
the same closure approximation. The energy flow from the interaction
energy to the kinetic energy during the cascade is also observed.
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1 Introduction

Quantum fluids such as Bose-Einstein condensates (BECs) of ultracold atoms
and the superfluid component in the superfluid phase of 4He may become
turbulence when they are accompanied by external pumping and dissipation.
There have been many experimental and numerical studies on the turbulence
of quantum fluids. See, e.g., the reviews Refs. [1, 2] and the references cited
therein.

The dynamics of quantum fluids are approximately described by the Gross-
Pitaevskii (GP) equation , which is a partial differential equation of the order
parameter field ψ(x, t)(∈ C), under certain conditions[3–5]. Then, the GP
equation equipped with external pumping and dissipation may be one of the
models to analyze the turbulence of quantum fluids. The spectrum F (k), where
k is the wavenumber, is the basic quantity of interest. The definition of F (k)
will be given later in Eq.(3). There is a typical wavenumber k∗ in the GP
turbulence and the whole wavenumber range may be divided into two ranges,
the weak wave turbulence (WWT) range, k > k∗, and the strong turbulence
(ST) range, k < k∗.

In the WWT range, the contribution of the nonlinear term in the GP
equation is small and the WWT theory[6, 7] can be used. Dyachenko, Newell,
Pushkarev, and Zakharov[8] (hereafter, referred to as DNPZ) applied the
WWT theory to the GP turbulence and obtained F (k) ∝ k−1(ln(k/kb))

−1/3

for the energy cascade range, where kb is the bottom wavenumber of the
cascade range, and F (k) ∝ k−1/3 for the particle-number cascade range.

Yoshida and Arimitsu[9] (hereafter, referred to as YA) analyzed the both
WWT and ST range using a closure approximation. Naturally, they obtained
the same results as DNPZ for the WWT range with an addition of F (k) ∝ k−1

without logarithmic correction under the situation that there is a sufficient
amount of F (k) in k < kb. Regarding the ST range, YA obtained F (k) ∝ k−2

for the energy cascade range and F (k) ∝ k−1 with a possible logarithmic cor-
rection for the particle-number cascade range. It should be noted that the
closure approximations are, in general, empirical methods to analyze the sys-
tem with strong nonlinearity and that they are not mathematically rigorous.
(See Ref.[10] for a comprehensive review of the closure approximations in tur-
bulence.) Furthermore, the existence of the energy or particle cascade is an
assumption to obtain F (k) both in the WWT theory and the closure approx-
imation and the detailed condition for the emergence of the cascades is not
evident. Therefore, F (k) obtained from DNPZ or YA should be verified by
numerical simulations or experiments.

The GP turbulence has been numerically studied from many aspects. See,
e.g., Refs. [11–13]. Some studies are more oriented to the analysis of the veloc-
ity field, v = ∇θ with ψ =

√
ρeiθ, rather than the order parameter field ψ

itself, or to analysis some finite temperature effects. Here, we are focusing on
the statistics of ψ at the zero-temperature limit with minimum pumping and
dissipation. The numerical study most relevant to the present study is that by
Proment, Nazarenko, and Onorato[14] (hereafter, referred to as PNO). They
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performed numerical simulations of GP turbulence to obtain both F (k) ∝ k−1

and F (k) ∝ k−2 by changing the parameter ξ. They may correspond to the
energy cascade range of WWT and ST. The particle cascade with F (k) con-
sistent with YA is observed in the numerical simulation for far ST range
k ≪ k∗[15]. Despite these studies, it may be said that a comprehensive under-
standing of the spectrum F (k) of the GP turbulence has not been achieved
yet.

To add to the understanding, we performed the numerical simulations of
GP turbulence focusing on the connection between the WWT range and the
ST range around the wavenumber k∗. Although the WWT and ST ranges
were simulated in NPO, the size of the simulations was limited so that the
two ranges are realized separately in different simulations. We set the size of
the numerical simulations to be so large that both WWT in the wavenumber
range k > k∗ and ST in the wavenumber range k < k∗ exist in one simulation.
We are especially interested in the energy transfer in the wavespace as well as
the spectrum F (k).

2 Set up of Numerical Simulations

We performed simulations of the GP equation with external pumping and
dissipation of the mass. Regarding the basic setting, we follow those of Ref. [15,
16]. The domain of the fluid is a three-dimensional cube with the side length 2π
and the periodic boundary condition is applied to each direction of the sides.
Hence, the wavevector is discretized with the unit ∆k = 1 in each direction.

The GP equation in wavevector space is given by

∂

∂t
ψk = −iξ2k2ψk + iψk − i

∑
k+p−q−r=0

ψ∗
pψqψr +Dk + Pk, (1)

where k = |k|, ψk(t) (the time index t is omitted) is the Fourier transform of
the order parameter field ψ(x, t) ∈ C, ξ := ℏ/

√
2mgn is the healing length, m

is the mass of the particle, g(> 0) is the coupling constant, n is the average
particle number density, Dk and Pk represent the dissipation and pumping
of mass, respectively, the chemical potential is set to µ = gn, and the unit
system such that ℏ = g = n = 1 is used. An alias-free spectral method is used
for the cubic term in ψ so that the maximum resolved wavenumber kmax is
N/4 where N is the number of grid points along each direction. A fourth-order
Runge-Kutta method is used for the time evolution.

We apply dissipation and pumping mainly acting on large and small
wavenumber modes, respectively, in order to investigate the general property
of energy transfer in the inertial range that locates in the intermediate range.
Expecting that the details of dissipation and pumping have little effect on the
inertial range when the dissipation and pumping wavenumber ranges are well
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Table 1 Parameters in the simulations.

ξ ν4 γ kp N kmax ∆t ϵK

RUN1 0.064 0.25× 10−13 1.0 2.5 1024 256 0.00125 0.000031
RUN2 0.032 0.32× 10−11 4.0 2.5 1024 256 0.005 0.0024
RUN3 0.016 0.125× 10−10 4.0 2.5 1024 256 0.01 0.0017

ξ: the healing length, ν: the coefficient of the dissipation term, kp: the
top wavenumber of the pumping range, N : number of grid points along
a coordinate direction, kmax: maximum wavenumber resolved, ∆t: the
time increment, ϵK: kinetic energy dissipation rate at the final state of
the simulation. All the values are given in the unit system such that
ℏ = g = n = 1 and ∆k = 1.

separated, we employ simple models of dissipation and pumping as

Dk = −ν4kℓψk − γδk,0, Pk =

{
αψk (0 < k ≤ kp)

0 otherwise
. (2)

Here, ℓ = 4, ν4, γ, kd > 0 and δk,k′ is the Kronecker delta. The value of ℓ is
replaced from ℓ = 2 in the previous work [15] in order to confine the dissipation
in a narrower range and to broaden the inertial range. An additional damping
is applied to the mode k = 0 in order to avoid the uniform accumulation of
the mass. The parameter α is determined at every time step so that n = 1 is
almost satisfied.

The parameters of the simulations are summarized in Table 1. In the
present study, we aim to realize two wavenumber range, that is, the WWT
range (k > k∗) and the ST range (k < k∗) in one simulation, where k∗ := ξ−1.
To this end, the number of grid points along a coordinate direction is set to
as large as N = 1024. The pumping of the mass is located in the wavenumber
range k ≤ kp = 2.5 and ν4 is so chosen that the dissipation mainly acts in the
large wavenumber range k > 100. We set ξ = 0.064, 0.032 and 0.016 so that
k∗ = 15.625, 31.25 and 62.5, respectively, are located between the pumping
and dissipation wavenumber ranges.

In general, the energy transfer due to nonlinear interactions is suppressed
for large ξ and excitation of large wavenumber modes are suppressed for large
ν4. We first performed preliminary simulations with some small ξ and large
ν4 to obtain a developed state within a small wavenumber range efficiently.
Then ξ was increased and ν4 was decreased gradually to those values given
in Table 1. No less than 7 × 105 time steps are computed after the values
of ξ and ν4 reached those in Table 1 in order to obtain a statistically quasi-
stationary state. At a statistically quasi-stationary state, the energy balance
relation Π(k) ≈ ϵ should be satisfied for k in the inertial range where Π(k)
is the total energy flux through the wavenumber k and ϵ is the total energy
dissipation. As we will see in Sec.4, the most of the energy dissipation rate ϵ
is the kinetic energy dissipation rate ϵK. The value of ϵK at the final state of
RUNs are also given in Table 1. The explicit definition of Π(k) and ϵK will
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be given later in Sec. 3. The energy balance relation was not achieved within
the simulated time interval of RUN1. This is because the typical time scale of
the energy transfer in the WWT range scales as ∝ k2 and the time evolution
of F (k) in the deep WWT range k ≫ k∗ is so slow that the sytem has not
reached a quasi-stationary state within the simulated time period. Therefore,
we mainly analyze the quasi-stationary states obtained in RUN2 and RUN3
in the following.

3 Spectrum and Flux

The spectrum F (k) in the present simulations is defined by

F (k) :=
∑

k′∈Sh(k)

|ψk′ |2, (3)

where Sh(k) = {k′|k − 1/2 ≤ k′ < k + 1/2}. The kinetic energy EK and the
interaction energy EI are given by

EK :=
∑
k

ξ2k2|ψk|2, EI :=
g

2

∑
k,p,q,r

δk+p−q−r,0ψ
∗
kψ

∗
pψqψr =

g

2

∑
k

|nk|2,

(4)
where nk is the Fourier transform of the particle number field n(x) = |ψ(x)|2.
Since the interaction energy is a summation of the fourth-order moments
ψ∗
kψ

∗
pψqψr involving various wavevector modes k,p,q, and r, the definiton

of the interaction energy density in wavevector space is not unique. However,
note that the interaction energy may be written as a summation of second
order terms in nk. Here, we choose to define the interaction energy density at
k by using nk, that is, (g/2)|nk|2. Note that the total energy E = EK +EI is
conserved by the nonlinear interactions.

The kinetic and interaction energy transfers at wavenumber k can be
defined as

TK(k) :=
∑

k′∈Sh(k)

ξ2k′
2 ∂

∂t

∣∣∣∣
D,P=0

|ψk′ |2, TI(k) :=
∑

k′∈Sh(k)

g

2

∂

∂t

∣∣∣∣
D,P=0

|nk′ |2,

(5)
where (∂/∂t)|D,P=0 denotes the time derivative without dissipation and
pumping. The total energy flux

Π(k) :=
∑
k′≥k

(TE(k
′) + TI(k

′)) = −
∑
k′<k

(TE(k
′) + TI(k

′)) , (6)

is the total energy flowing from the modes with wavenumber smaller than
k − 1/2 to the modes with wavenumber equal or larger than k − 1/2 per unit
time.
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Fig. 1 (a) The density plot of the frequency spectrum G(k, ω) of k = (±k, 0, 0) (averaged
over ±k) for RUN2 (k∗ = 31.25). The bright region corresponds to large G(k, ω) and the
brightness scales logarithmically with G(k, ω). Solid line indicates the dispersion relation
ω∗(k) = ξ2k2 + 1. (b) The same frequency spectrum G(k, ω) for fixed wavenumbers k =
11(< k∗), k = 33(∼ k∗) and k = 99(> k∗) in solid lines. The dashed lines indicate ω∗(k).

The kinetic energy dissipation rate ϵK is given by

ϵK =
∑
k

ν4ξ
2k2+ℓ|ψk|2. (7)

4 Results of the simulations

Before the analysis of the spectrum F (k) and the flux Π(k), we first verify the
frequency spectrum G(k, ω) = |ϕk(ω)|2 where ϕk(ω) is the Fourier transform
of ψk(t) with respect to t. For the Fourier transform, 1024 time-series data of
ψk(t) were taken at the time interval 10∆t after F (k) reached quasi-stationary
states in RUN2 and RUN3, where ∆t is the time increment of the simulation.
For saving the computational resources, we computed G(k, ω) only for the
wavevector modes on the x-axis, that is, k = (k, 0, 0). The obtained frequency
spectrum G(k, ω) is given in Fig.1 for RUN2. Figures for RUN3 are omitted.

In the wavenumber region k > k∗, an apparent peak of G(k, ω) along the
dispersion relation ω∗(k) = ξ2k2+1 is observed. The sharp peak indicates that
the effects of the nonlinearity and the dissipation are small in the region. The
width of the peak broadens in the wavenumber region k < k∗. This implies that
the nonlinearity dominates over the linear wave motion in the wavenumber
region. Thus, we confirmed that the frequency spectrum G(k, ω) is consistent
with the picture that k > k∗ is the weak wave turbulence range and that
k < k∗ is the strong turbulence range.

The kinetic and interaction energy transfers TK(k) and TI(k), respec-
tively, and the total energy flux Π(k) of the quasi-stationary states in RUN2,
RUN3 are given in Figs.2 (a) and (b). They are the averages over 81 snap-
shots at the time interval 5, 000∆t. We observe a negative peak of TI(k) in a
small-wavenumber region and a positive peak of TK(k) in a large-wavenumber
region in both RUN2 and RUN3. These imply that the interaction energy
in the small-wavenumber region is transferred to the kinetic energy in the
large-wavenumber region by the nonlinear interactions as a whole. Since the
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Fig. 2 The kinetic energy transfer TK(k), interaction energy transfer TI(k), total energy
flux Π(k) and spectrum F (k) in RUN2(ξ = 0.032) and RUN3(ξ = 0.016). The wavenumber
k∗(= ξ−1) indicates the boundary between the weak wave turbulence (WWT) range and
the strong turbulence (ST) range. Spectra suggested in Ref.[9] , C2Π1/3k−1(ln(k/kb))

−1/3,
C′

2Π
1/2k−1 for WWT range and ∝ k−2 for ST range, are plotted in dashed lines together

with F (k) of RUN2 and RUN3. The kinetic energy dissipation rate ϵK is used for the
normalization of the transfers and flux.

statistical quasi-stationarity is attained, the energy is externally supplied in the
small wavenumber region in the form of the interaction energy and the kinetic
energy in the large-wavenumber region is dissipated by the hyper-viscosity.
Absence of a negative peak of TK(k) and a positive peak of TI(k) suggest
that there are little external injection of kinetic energy and little dissipation
of interaction energy, respectively. Let kin be the negative peak wavenumber
of TI(k) and kdis be the positive peak wavenumber of TK(k) Then, we have

ϵ
(in)
I ≈ Π(k) ≈ ϵK for kin ≲ k ≲ kdis and ϵ

(in)
K ≈ ϵI ≈ 0, where ϵ

(in)
K and ϵ

(in)
I

are the kinetic and ineteraction energy injection rates, respectively, ϵK and ϵI
are the kinetic and interaction energy dissipation rates, respectively. Since the
interaction energy around kin is transferred to the kinetic energy around kdis,
the energy must be transformed from the interaction energy to the kinetic
energy during the energy cascade process from kin to kdis.

We can see in Fig. 2(a) that the constant total energy flux Π(k) ≈ ϵK,
where ϵK is the kinetic energy dissipation rate, is approximately satisfied in
a wavenumber range around 10 < k < 100 of RUN2. Since k∗ = 31.25 is
the typical wavenumber that separates the WWT range and the ST range,
we may consider k∗ < k < 100 to be the energy cascade range of WWT and
10 < k < k∗ to be that of ST.

Although the external pumping of mass is applied in a wavenumber range
0 < k ≤ kp = 2.5, the external injection of interaction energy is located at
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larger wavenumbers around kin. This may happen since nk is nonlinear in ψk

and an external excitation of ψk has an effect on nk′ with k′ ̸= k. Moreover,
the wavenumber kin increases with k∗ so that the energy transfer range do not
broaden far into the ST range k ≪ k∗ in RUN3. See Fig. 2(b).

It is pointed out in YA that there can be two types of spectrum F (k) for
the energy cascade range of WWT, that is,

F (k) = C2Π
1/3k−1

(
ln

k

kb

)− 1
3

and F (k) = C ′
2Π

1/2k−1, (8)

in the present unit system, where kb is the bottom wavenumber of the scaling

range, C2 = (4π4(3/2)I2)
−1/3 and C ′

2 = I
−1/2
2 /2π2 with I2 ≃ 0.00298. (The

factor (3/2) is missing in YA.) The former is identical to the one given in
DNPZ. The former(latter) form is for the case that the amplitude of F (k) is
small(large) in the range k < kb. Two types of spectrum F (k), Eq.(8), are
also plotted in Figs. 2(c) and (d), where kb is set to the peak wavenumber
of F (k). The spectrum F (k) of RUN2 agrees with the latter spectrum rather
than the former in the energy cascade range of WWT. Although the scaling
range is quite narrow, the agreement is not only for the scaling k−1 but also
up to the constant C ′

2. Since a considerable amount of F (k) is present in
k < k∗, the agreement with the latter spectrum in (8) is plausible. By letting
k∗ to a smaller value, we may broaden the WWT range. RUN1 corresponds
to such parametrization and the k−1-scaling range broadens indeed. However,
since the statistical stationarity is not achieved in RUN1, we omit to show the
figure and the qualitative analysis. Conversely, the WWT range shrinks and
the k−1-scaling is hardly observed in RUN3.

It is suggested in YA that

F (k) = C1ξ
−1/2Π1/2k−2, (9)

where the constant C1 is not fixed, in the energy transfer range of ST. The
slope of F (k) in the ST range is steeper than that in the WWT range for both
RUN2 and RUN3. Regarding RUN2, the slope of F (k) seems to be consistent
with k−2 in the energy cascade range of the ST. However, the verification
of (9) is not definitive since the scaling range is quite narrow and C1 is not
determined from the theory. The value of C1 ≈ 6 may be a possible estimate
from RUN2. The dashed line with slope ∝ k−2 in Fig. 2 (c) corresponds to
C1 = 6. Despite the ST range being broader in RUN3 than in RUN2, the
energy cascade range, where the total energy flux is approximately constant,
within the ST range do not broaden so much in RUN3. Furthermore, the slope
of F (k) seems to be steeper that k−2 in this narrow range.
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5 Discussion

In the present simulations, both WWT and ST ranges are realized in one
simulation by taking a sufficient simulation size (10243 grid points) and setting
parameters, especially ξ, to suitable values. In previous studies (e.g., Ref. [14]),
the WWT and ST ranges were simulated separately in simulations with a
smaller size. To our best knowledge, the clear change of the slope of F (k)
around k∗ = ξ−1 is observed for the first time in the present simulations.

Although two types of spectrum, Eq.(8), for WWT are theoretically sug-
gested, that the distinction between the two spectra in numerical simulations
is difficult since a wide scaling range is required to verify the logarithmic cor-
rection in general. In the present study, we noticed not only the scaling of
F (k) but also the coefficients C2 and C ′

2 to analyze the data from numerical
simulations. It is confirmed that F (k) ∝ k−1 without logarithmic correction
emerges under the condition that the WWT and ST ranges coexist.

It is difficult to derive a definite conclusion on the scaling of the spectrum
F (k) in the energy cascade range of ST from the present numerical simulations.
The main reason for the difficulty comes from the narrowness of the energy
cascade range in ST. The scaling F (k) ∝ k−2 in YA is based on the assumption
that there is a broad energy cascade range and the assumption is not fulfilled
in the simulations. It is not clear whether the narrowness of the energy cascade
range is a universal feature or it is due to the specific form of the pumping
Pk in Eq. (2). The numerical simulations with a different type of pumping are
ongoing and the results would be reported elsewhere.

It is suggested in YA that there is an energy flow from the interaction
energy to the kinetic energy in the ST range. The results from the present
simulations are consistent with the suggestion. If the energy flow is strong
in the deep ST wavenumber range k ≪ k∗, it may violate the stationary of
the spectrum F (k) ∝ k−2, modify the form of F (k) and weaken the energy
cascade process. This is a possible reason of the spectrum F (k) in the ST
range of RUN3 is steeper than k−2-scaling and the energy transfer is somewhat
suppressed in ST in the sense that the energy transfer range does not broaden
with the increase of k∗. It is a future study to analyze these results in terms
of the closure approximation developed in YA.

The wavenumber range of the present simulation, that is, the wavenumber
range around k∗ is relevant to the experimental studies of BEC turbulence
(e.g., Refs. [17, 18]). However, the settings of the pumping, dissipation, and
boundary conditions in those experiments are different from the present sim-
ulation. Therefore, the comparison between the present simulations and those
experiments is not straightforward. The detailed discussion on the comparison
may be left for a future study.
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