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Chapter 1 Introduction

1.1 Background

1.1.1 Structure of the aortic wall

Blood vessels are the channels of blood flow, which are divided into arteries, veins

and capillaries. The arteries start from the heart and continue to branch. The caliber

gradually becomes smaller, and the pipe wall gradually becomes thinner. Finally, it is

divided into many capillaries, which are distributed among the tissues and cells of the

whole body. The capillaries gradually converge into veins and finally return to the

heart. Arteries and veins are the pipes for transporting blood, while capillaries are the

places for material exchange between blood and tissues.

The aortic wall consists of three layers: intima, media, and adventitia, as shown in

Fig. 1.1.

The intima is mainly a monolayer of endothelial cells that contacts with blood, and

it senses shear stress produced by the blood flow. In response to low shear stress,

endothelial cells make vascular smooth muscle cells (SMCs) in the media contract to

increase the wall shear stress back to normal level by releasing endothelin (Ohlstein

and Douglas 1993). In response to high shear stress, they make SMCs relaxed to

restore the wall shear stress by generating nitric oxide (Ohlstein and Douglas 1993;

Douglas et al. 1994; Uematsu et al. 1995; Di et al. 2000). Any imbalance between

these two counter-regulatory systems causes pathological consequences within the
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cardiovascular system (Ohlstein and Douglas 1993).

The adventitia is mainly made up by loosely connective tissues. The complex

vascular adventitia acts as a biological processing center for the retrieval, integration,

storage, and release of key regulators of vessel wall function (Stenmark et al. 2011).

The resident cells (fibroblasts, dendritic cells, progenitor cells) in the adventitia are

the first vascular cells that react biochemically and physiologically to the external

stimulation, such as hormonal, inflammatory, and environmental stresses. Such

reaction is denoted as an increase in cell proliferation, the expression of contractile

and extracellular matrix (ECM) proteins, which in return, affect vascular tone and

wall structure. Thus, the adventitia is regarded as “injury-sensing tissue” from

“outside” of the vascular wall (Michel et al. 2007; Hu and Xu 2011; Stenmark et al.

2011).

The media is located between the intima and adventitia. The media mainly

consists of “sandwiched” structures in which the collagen, elastin fibers and SMCs

intervene between every two elastic laminae, i.e, lamellar unit (Wolinsky and Glagov

1967).

The elastic lamella and adjacent interlamellar zone denote the function unit of the

structure of the aortic media． These lamellar units of the media are oriented as

concentric layers, and the number of lamellar units is proportional to the aortic wall

thickness. Smooth muscle protein occupies 20% of the media weight while the elastin

and collagen occupy 60%. The three components form well-defined elastic layers.

Their close association results in viscoelastic properties that account for many of its
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static and dynamic mechanical features (Wolinsky and Glagov 1964).

This work concentrates on the media because it occupies the most thickness and

weight of the aorta, its weight proportion is even as high as 80% in rat aorta

(Matsumoto and Hayashi 1996), and it occupies most of the elastin and collagen of

the vessel, which dominate the aortic anisotropic and hyperelastic passive mechanical

behaviors (Dobrin 1978; Zhang 2005; Fonck et al. 2007; Zou and Zhang 2009, 2012;

Chow et al. 2014).

The most important three structural components of the artery wall, i.e., smooth

muscle cells, collagen and elastin have extremely different Young’s modulus. It is

about 0.01–0.1 MPa for smooth muscle cells, 1000 MPa for collagen and 0.6 MPa for

the elastin (Matsumoto and Nagayama 2012). Such difference makes the complex

mechanical property of the media (Valdez et al. 2011; Matsumoto and Nagayama

2012) and may cause a heterogeneous distribution of intramural stress in the loaded

wall (Matsumoto et al. 2008) and a complicated distribution of residual stress

(Matsumoto et al. 2004). The stress and strain distributions in the artery wall are

highly complicated at the microscopic level.

The hypertension results wall stiffening, this disease is often associated with ECM

changes including the collagen/elastin ratio, increased media thickness, and reduced

fenestration of the elastic lamina (Chow et al. 2014). Hypertension increase the

deformation of the vessel, i.e., circumferential stress, which may induce large losses

of elastin content along with the fragmentation of the elastic laminae/fibers

(Humphrey 2008; Boumaza et al. 2001). During this process, the collagen begins to
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be recruited to bear the major load applied on the artery, and as the collagen fibers are

almost three orders of magnitude stiffer than elastic fibers, the collagen recruitment

increase the stiffness of the arteries (Chow et al. 2014).

Figure 1.2 shows the structure of the elastic artery. A layer of endothelial cells

orderly arranged in the intima. The concentric elastic lamellas occupy the main

thickness of the media, with SMCs, collagen fibers and collagen fibrils sandwiched

among them. Other tissues or cells like fibroblast, unmyelinated nerves and

macrophages distribute in the adventitia.
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Fig. 1.1 The structure of blood vessels showing three layers (A). The distribution of

elastin within the vessel wall is shown for a muscular artery (left) and elastic artery

(right) (B) (Junqueira and Carneiro 2005).

Fig. 1.2 The composite structure of elastic artery (Michael and Wojciech 2011).

1.1.2 Mechanical response of the artery wall to hypertension

Hypertension causes severe cardiovascular, neurovascular, and renovascular

diseases, including heart attacks, stroke, and end-stage kidney failure (Humphrey et al.

2009). While it is well known that biological tissues change their dimensions and

mechanical properties adaptively in response to mechanical stimulation, the aortic

walls also alter their dimensions and mechanical properties in response to mechanical

stimulation under the hypertension (Wolinsky and Glagov 1964; Wolinsky 1971, 1972;

Vaishnav et al. 1990, Matsumoto and Hayashi 1994, 1996; Folkow 1987). For

example, the vessel increases its wall thickness i.e., hypertrophy as a response to

hypertension (Wolinsky 1971, 1972; Folkow 1987; Matsumoto and Hayashi 1994;
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Vaishnav et al. 1990) as represented in Fig. 1.3. The images show the normotensive

and hypertensive thoracic aorta of rats, we can see obvious wall thickening caused by

hypertrophy of the lamellar units instead of increase in the number of the lamellar

units.

The hypertrophy of the media occurs because of the increase of extracellular matrix

(ECM) (Wiener et al. 1977; Owens and Schwartz 1983; Matsumoto et al. 1999) and

the increase in SMC volume. With the development of the hypertension, the

hypertrophic SMCs produce more ground substances of ECM such as elastin,

collagen and glycosaminoglycan (Ito 1989; O’Callaghan and Williams 2000; Stanley

et al. 2000; Haga et al. 2007). Particularly, the hypertrophy of the lamellar units

occurs in the sub-intimal region (Matsumoto and Hayashi 1996). The nonuniform

hypertrophy in the radial direction, i.e., gradual decrease from the inner wall toward

the outer wall may be caused by the nonuniformity of the intramural mechanical

environment: the magnitudes of the strain and stress are larger in the inner wall than

in the outer wall, especially in the circumferential direction (Matsumoto and Hayashi

1996), which means larger mechanical stimuli to the nucleus near the inner wall. Fig.

1.4 represents such hypertrophy of the lamellar units especially near the subintimal

space. Selective thickening near the inner wall is evident in the severely hypertensive

case (Fig.1.4 (c)).

One of the main causes of the media hypertrophy is the volume increase of SMC

(Owens 1989). It has been reported that hypertrophy of SMCs occurs in the

direction perpendicular to their axial direction but not in their axial direction
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(Matsumoto et al. 2011). As the spindle-shaped SMCs show a helical pattern along a

predominantly vascular circumferential direction (Takamizawa et al. 1992;

Matsumoto et al. 1999; Valdez et al. 2011), they may become hypertrophied in the

vascular radial and axial directions equibiaxially in response to hypertension. If this

is the case, the radial hypertrophy of the SMC may cause the wall thickening, and the

axial hypertrophy of the SMC may cause increased axial length of the artery at

no-load state.

In fact, Matsumoto and Hayashi (1996) reported that axial stress decreased

significantly in response to hypertension, while circumferential stress remained

unchanged. The hypertrophic mechanism of the wall remains unclear, so does the

reason for the unchanged circumferential and the decreased axial stress. When the

vessel is removed from the body, i.e., from physiological state to no-load state, the

axial length will decrease, as shown in Fig.1.5. Other studies pointed out that the

mechanical response of the vessels is not isotropic. The wall thickening in response to

the hypertension is thought to occur to maintain the circumferential stress developed

under normal in vivo condition (Wolinsky 1971, 1972; Matsumoto and Hayashi 1994,

1996; Folkow 1987; Vaishnav et al. 1990; Berry and Greenwald 1976). In contrast,

the wall thickening does not maintain the stress in the longitudinal direction as

concisely illustrated in Fig. 1.5. It has been reported that no load length of the aorta

increases in response to the hypertension (Vaishnav et al. 1990, Matsumoto and

Hayashi 1994), as shown in Fig.1.5 lower left, thus the longitudinal stress in the

hypertensive aorta decreases significantly (Matsumoto and Hayashi 1996).
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(a) Normotension (Psys = 140 mmHg) (b) Hypertension (Psys = 255 mmHg)

Fig. 1.3 Hypertrophy of rat thoracic aortas caused by hypertension. Normotensive (a)

and hypertensive (b) aortas were stretched and pressurized to restore in vivo

dimensions, fixed with formalin, and stained with Azan-Mallory (red, smooth muscle

cells; blue, collagen; pale brown, elastic lamina) (Matsumoto and Hayashi 1996).

Psys, systolic pressure.

(a) Psys = 145 mmHg (b) Psys = 200 mmHg (c) Psys = 240 mmHg

Fig. 1.4 Thickening of the lamellar units of the media in three aortas fixed under the

in vivo loading condition and stained with Azan-Mallory. In case of normotensive rat

(a), the thickness of the lamellar unit is almost uniform along the wall thickness,

while in case of severely hypertensive animal (c), the thickening of the inner units are

remarkable. The length marker (50 µm) in (c) applies to all (Matsumoto and Hayashi

1996).
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Fig. 1.5 The circumferential stress remains unchanged when the hypertension occurs,

but not for the axial stress. H and h represent no-load wall thickness of normotensive

and hypertensive vessel; H’ and h’ represent normotensive and hypertensive wall

thickness of the vessel at physiological load state; l and L represent no-load lengths of

normotensive and hypertensive vessel; Lp represent the length of the vessel at

physiological load state.

1.1.3 Structure of the animal cell and mechanotransduction

In biological systems, cell is the smallest unit that can live on its own and that

makes up all living organisms and the tissues of the body. An animal cell is mainly

composed of the cell membrane, the cytoskeleton, the nucleus and other cell

organelles like endoplasmic reticulum, Golgi body, lysosome, mitochondria and

peroxisome, etc.

The cell membrane

The cell membrane is mainly an elastic semi-permeable membrane composed of

phospholipid bilayer. For animal cells, the outside of the membrane is in contact with
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the external environment. Its main function is to selectively exchange substances,

absorb nutrients, discharge metabolic wastes, secrete and transport proteins. Fig. 1.6

shows immunofluorescently stained plasma membrane in the human cell line U-2 OS.

The cytoskeleton

There are three kinds of cytoskeletons: microtubule, intermediate filament and

microfilament (Fig. 1.7). They are important in maintaining cell shape and generating

force for the intracellular and extracellular movements. The microtubules are

polymers of tubulin that form part of the cytoskeleton, and it provides structure and

shape to animal cells, and plays an important role in intracellular material transport.

The intermediate filaments are ropelike fibers that extend across the cytoplasm,

giving cells mechanical strength and carrying the mechanical stresses in a epithelial

tissue by spanning the cytoplasm from one cell-cell junction to another (Bruce et

al.1994). The microfilament is made up of actin, so it is also called actin filament

(AF). Bundles of actin filaments constitute the main body of the stress fiber (SF) (Fig.

1.8 lower), whose ends are connected to the extracellular matrix (ECM) or substrate

via focal adhesions, which is responsible for the perception of extracellular

mechanical signals and exchange of intracellular biochemical signals (Fig. 1.8 upper).

The nucleus

The nucleus is the site for the storage, replication, and transcription of genetic

material, which is known for deoxyribo nucleic acid (DNA). The nucleus is
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separated from the cytoplasm by a double-layer porous nuclear membrane. Nuclear

pores distributed on the nuclear membrane act as the channels for macromolecular

substances to pass through under the help of carrier proteins. Chromatin is a

complex structure composed of DNA chain, histone, non-histone, and a small amount

of ribonucleic acid (RNA).

Nagayama et al. (2011) observed marked local deformation of the nucleus as well

as disappearance or re-distribution of the intranuclear DNA after dissecting the SFs in

rat embryonic aortic SMCs (A7r5 cells). After dissecting the stress fibers, they

found that the nucleus moved toward the AF retraction and dissecting the stress fibers

also deformed the nucleus and eventually induced conformational changes of

chromatin (Fig. 1.9).

Other cellular organelles

Some other cellular organelles also exist in the cytoplasm, where most

biochemical reactions and transformation of biochemical signals occur. The

endoplasmic reticulum acts as the transportation system, and it has functions such as

protein folding. The Golgi body, as a part of the endomembrane system, packages

proteins into membrane-bound vesicles inside and send the vesicles to their

destination. The lysosomes act as the waste disposal system of the cell; the

mitochondria generate most of the cell's supply of adenosine triphosphate (ATP)

through aerobic respiration, which is subsequently used as a source of chemical

energy for the cell. The peroxisome plays a key role in lipid metabolism and the
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conversion of reactive oxygen species.

About the mechanotransduction

The process that individual cells sense mechanical signals and transduce them into

changes in intracellular biochemistry and gene expression is called

mechanotransduction (Wang et al., 2009). Some examples of mechanotransduction

will be introduced here.

The ends of the SFs are connected to the extracellular matrix (ECM) via the focal

adhesions, by which the extracellular mechanical signals are transferred to

biochemical signals and transmitted to the inside of the cell through the SF (Figs. 1.8

and 1.10). The SF also links the nucleus via the linker of nucleoskeleton and

cytoskeleton (LINC) proteins (Wang et al. 2009; Wang et al. 2018; Davidson et al.

2021). LINC complex is a generic term of nesprin, protein UNC-83 homolog A (it is

often called SUN1), protein UNC-84 homolog B (it is often called SUN2), and other

nuclear components that are distributed in the envelope of the nucleus. The LINC

complex exchanges and transmits mechanical or biochemical signals between the

ECM and the nucleus. Fig. 1.11 simply shows how the SF of cytoskeleton link the

plasma membrane and the nucleus (Wang et al. 2009, Wang et al. 2018).

Generally, the focal adhesion is physically coupled to cytoskeletal filament

networks that, in turn, link to the nucleus (nuclear scaffolds of lamin, nucleolus,

chromatin, etc.) via LINC complex. When an extracellular physical force is applied to

the cell surface, it distorts the membrane in the cell surface then it is transmitted
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through the AF to the nucleus by promoting deep structural rearrangements in the

cytoplasm and nucleus (Wang et al. 2009), then, induce the conformational chromatic

changes (Nagayama et al. 2011).

The stress transmitted through the SF to the nucleus is thought to cause a

dispersion of the chromatin, enhancing the protein synthesis. Tajik’s group controlled

magnetic beads to apply the mechanical stress on the cellular surface to deform the

nucleus (Tajik et al. 2016). By stimulating the nucleus, the local surface force is

propagated via integrins, tensed actin myosin and LINC to the nucleus. Then, the

transmitted force stretched the flanking chromatin to induce its dispersion. By

quantitatively detecting the amount of protein expressed by the dihydrofolate

reductase (DHFR) gene, they found the significant enhancement of protein expression

along with increased duration of stress as shown in Fig. 1.12.

Fig. 1.6 Staining of plasma membrane in human cell line U-2 OS. Scale bar

represents 10µm. Green, cell membrane; blue, nucleus; red, microtubules.

(https://v15.proteinatlas.org/learn/dictionary/cell/plasma+membrane+2).
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(a) (b)

(c)

Fig. 1.7 The three types of protein filaments that form the cytoskeleton. Actin

filaments (a), microtubules (b), and intermediate filaments (c) (Bruce et al. 1994).

Fig. 1.8 Scheme of stress fiber structure. Rho-signal is a kind of biochemical signals.

The mechanical stimuli triggers Rho-signal that originate from focal adhesions and

propagate into the cytoplasm, altering in turn myosin activity thus regulate and

modify the cell migration (Besser et al. 2007).
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(a) (b)

(c) (d) (e)

Fig. 1.9 The nucleus moves along the direction of AF stress fibers retraction. SFs and

nucleus before (a, c) and after (b, d) dissection of a single SF. The nuclear moved after

the dissection (e). The arrowheads in (a, b) indicate the dissection point (Nagayama et

al. 2011). A white bar indicates 10 μm.

Fig. 1.10 A simplified illustration of cytoskeletal AF stress fibers. The SFs are

distributed around the nucleus, the focal adhesion perceive the extracellular

mechanical stimuli, then the SFs contract to generate tension stress to stimulate the

nucleus i.e. stress transmitted through the SF to the nucleus (Wang 2016).
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Fig. 1.11 A simplified illustration showing the AF link between the nucleus and the

cytoplasm (Wang et al. 2018).
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(a)

(b)

(c)

Fig. 1.12 The stress applied on the cellular surface stretched the chromatin and induce

protein expression enhancement. Applying stress on the cellular surface to deform the

nucleus by magnetic beads (a). The local force is transmitted to the nucleus (b).

DHFR gene expression was significantly enhanced (c) (Tajik et al. 2016).
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1.2 Hypothesis and Purpose

1.2.1 Possible mechanotransduction mechanism of the wall thickening

Among many possible mechanisms explaining the wall thickening, this

dissertation focuses on the nucleus deformation against the mechanical stimulations.

Taking all those background into consideration, it is hypothesized that an increased

deformation of the artery wall due to hypertension causes an increase in the nuclear

deformation. Then, the increased nuclear deformation elicits a dispersion of chromatin

which is normally densely packed in the SMC nuclei and eventually enhances

transcription, translation, and protein expression. Fig. 1.13 represents the hypothesis

in this dissertation explained above. In this work, it is assumed that the wall

thickening is induced by the stimuli transmitted to the nucleus. Hence, it is thus

essential to explore the nuclear deformation behavior of the SMC when the vessel is

subjected to the mechanical stimuli.

Fig. 1.13 Hypothesis of possible hypertension mechanism in this dissertation.
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1.2.2 Conceivable reason for the directional difference in mechanical response

of the wall

Why does the vessel exert the anisotropic response to the mechanical stimulation?

Based on all the knowledge above, this work proposes a possible

mechanotransduction mechanism of the wall thickening. The directional difference in

the nuclear deformation in response to the stretch may explain the directional

difference in the mechanical response of the aorta to the hypertension.

As the SFs aligned mainly along the nuclear longitudinal direction

(circumferential direction of the vessel), when the cell is stretched, the mechanical

stimuli are more easily and effectively transmitted to the nucleus in its longitudinal

direction (circumferential direction of the vessel) than other directions (transversal

direction of the nucleus i.e. axial direction of the vessel), which explains the greater

deformation in the nuclear longitudinal direction.

Or we can explain the anisotropic response of the vessel like this: Let us assume

first that the hypertrophy of the SMC as well as the excretion of the ECM proteins

occurs equibiaxially in the plane perpendicular to the stretched direction of a cell. If

the nucleus is more sensitive to the circumferential stretch of the vessel, it is mainly

the circumferential stimuli that induce hypertrophy of the SMC in its radial and axial

directions of the vessel. The radial hypertrophy of the cell and the increased ECM

make the media hypertrophy to maintain the circumferential stress unchanged; the

axial hypertrophy of the cell induced the decreased stress of the vessel.
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1.2.3 Purpose and outline

To answer this, this work aims to explore the SMC nuclear deformation against

the mechanical stretch in the circumferential and axial directions. Since the

hypertrophy develops gradually from the normal state of blood vessels. In the present

experiment, the specimens cut from the normotensive vessel tissue were used to

perform tensile tests to explore the underlying mechanism.

Additionally, since the nuclei are surrounded and sustained by the cytoskeleton

inside the cell, the AF is thought to play a significant role in the deformation of the

nucleus while the stress applied to the aortic wall is transmitted to the chromatin

inside the nuclei through the cytoskeleton (Crisp et al. 2006; Davidson and Cadot

2021). Hence, this dissertation aims to measure the deformation of the AF network.

This dissertation consists of seven chapters. In Chapter 1, the background of the

research and describe my research aims will be introduced. In Chapter 2, the

procedures of the tensile experiments, methods for processing the images obtained

from the experiment, analyzing methods for the macroscopic deformation of the

specimens, the heterogeneous deformation of the media, and the microscopic

deformation of the nucleus and the microscopic deformation of AF network will be

introduced. In Chapter 3, the heterogeneous deformation of the media against

circumferential stretch is evaluated. The shear deformation between the laminas of the

media is calculated by using the results of circumferential stretch. Then, the

heterogeneous deformation by calculating the Green strain distribution of the media
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during stretch was evaluated. In Chapter 4, the 2D deformation of the AF network

against stretch was evaluated and it was compared to the deformation depending on

the homogeneous assumption. In Chapter 5, the 2D and 3D deformations of the

SMC nuclei against stretch were evaluated and they were compared to the AF and to

the deformation of the nuclear peripheral cell body depending on the homogeneous

assumption. In Chapter 6, the results will be discussed regarding following points: 1)

the different deformation between the nucleus and the surrounding cell body, and 2)

the anisotropic nuclear deformation to the stretch. And finally in Chapter 7, the

conclusions of the thesis will be summarized.
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Chapter 2 Experiment and analysis

2.1 Summary of this chapter

This research aims at exploring the nuclear anisotropic deformation against the

tissue stretch in different directions. In this chapter, the details of the stretching

experiment, including detailed procedures of preparing for three types of sliced

specimens, staining the specimen, and performing tensile test in the circumferential

and axial directions will be introduced.

The thoracic aorta was harvested from Japanese White rabbit, and they were cut

into 0.2-mm-thick ring-like segments in the direction perpendicular to the aortic axial

axis (for type 1 specimen), or 0.2-mm-thick strip-like segments in the direction

perpendicular to the circumferential direction (for type 2 and 3 specimen). Then, the

SMC and AF were stained and the tensile tests with the three types of sliced

specimens were performed.

Then, the process of image analysis will be introduced. Those processed images

will be used for measuring and calculating for the following: 1) the macroscopic

stretch of the specimen in the horizontal and vertical directions of the image in the 2D

analysis; 2) heterogeneous strain of the specimen; 3) nuclear stretch ratio in 2D and

3D view; 4) AF deformation in 2D view.

Distinct methods were used to measure the stretch ratios of the nucleus and AF in

the stretched specimen because the nucleus and AF have different morphological

shapes. ImageJ was employed to measure the nuclear deformation while a modified
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“Image correlation method” was utilized for the AF deformation measurement.

2.2 Specimen preparation

2.2.1 Test model

All animal experiments were approved by the institutional review board for animal

care at the Faculty of Engineering, Nagoya University (approval #18-8) and were

performed under the Guide for Animal Experimentation, Nagoya University.

The experiment aims at observing the SMC nucleus and AF with sliced samples of

the vessel tissue. To get the sliced samples, thoracic aortas were harvested from ten 17

to 19-week-old male Japanese White rabbits weighing 3.1–3.5 kg, sacrificed with an

overdose of sodium pentobarbital. Fig. 2.1 concisely shows the descending thoracic

aortas of Japanese White rabbit. The harvested vessels were immersed in the PBS(-)

(phosphate-buffered saline without calcium and magnesium, Nissui Pharmaceutical,

Japan) at 4℃. Then, the loose-connective tissues were removed from the adventitia by

tweezers slightly for subsequent experimental steps. The removing process was

performed in the PBS(-) and takes about 10 min–0.5 h. The descending thoracic

aortas were used to slice the specimen because it has a straight cylindrical shape,

which is long enough and has no large branches for the ease of handling with a

micro-slicer.
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Fig. 2.1 The descending thoracic aorta of Japanese White rabbit.

2.2.2 Preparation of the aortic slice

After loose-connecting tissues were removed from the adventitia, a cotton stick

was used to sweep the intima surface gently and slowly in circumferential direction to

remove the endothelial cell layer. By doing this, the AF in SMCs could be stained

more clearly.

The aortic samples were then embedded in an agar (Nacalai Tesque, Japan) and

they were cut into 0.2-mm-thick ring-like segments in the direction perpendicular to

the aortic axial axis, or 0.2-mm-thick strip-like segments in the direction

perpendicular to the circumferential direction using a micro-slicer (DTK-1000,

Dosaka EM, Japan).

Three types of the sliced specimen were prepared to perform tensile experiments

and also to explore the anisotropic properties of SMC in the media. Three types of

specimens were prepared as illustrated in Fig. 2.2. For type 1, the ring-like segments

were cut into arc specimens with the size of approximately 0.3 mm in the radial
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direction (wall thickness) × 6 mm in the circumferential × 0.2 mm in the axial

direction for a circumferential stretch test and photographed in the

circumferential-radial plane during stretch for 2D and 3D analyses. For type 2, the

strip-like segments were cut into rectangular specimens with the size of

approximately 0.2 mm in the circumferential direction × 6 mm in the axial × 0.3 mm

in the radial direction (wall thickness). The samples were then photographed in the

circumferential-axial plane during an axial stretch test for 2D analysis. For type 3, the

specimens with the same dimensions to the type 2 were photographed in the

radial-axial plane during the axial stretch for 3D analysis. All the cutting procedures

above were finished within 3–6 h after the animal was sacrificed.

Fig. 2.2 Three types of the specimens for stretching.
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2.3 Staining of the smooth muscle cell nucleus and the actin

filaments

All of the three types of specimens were immersed in PBS(-) containing Hoechst

33342 (10 mg/mL, Molecular Probes, USA) at 1:500 for 1 h at room temperate to

stain the nuclei. During the staining process, the sliced specimens were incubated in

the shade. After incubation, the specimens were washed with PBS(-) solution 3 times

for 5 minutes.

After staining the SMC nuclei, the slices were immersed in Alexa Fluor 546

phalloidin (Thermo Fisher Scientific Inc, USA) diluted in PBS(-) at 1:400 for 2–3 h

on a shaker at room temperate to stain the AFs in the tissue. After that, the specimens

were washed with PBS(-) solution 3 times for 5 minutes.

All the staining procedures were performed within 5 hours after trimming the

tissue.
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2.4 Stretch test

2.4.1 Stretch device and experimental setup

The experiment was performed on a tensile tester (STB-150W-NK, Strex, Japan)

under a confocal laser scanning microscope (FV1200, Olympus, Japan) with a 100×

oil immersion objective (NA = 1.4) at room temperature.

The tester was originally used for stretching cells on an elastic membrane and was

modified to stretch thin-sliced tissue specimens. Fig. 2.3 concisely shows the diagram

of the tensile tester. Both ends of the rectangular strip-like specimen were attached to

two 0.1-mm-thick OHP sheets of 6 mm × 3 mm with cyanoacrylate adhesive. The

OHP sheet was attached on a pair of custom-made stainless-steel pieces with the same

cyanoacrylate adhesive. Next, the pieces with the specimen were mounted to the arms

of the tensile tester with silicone jigs. Finally, the tester was mounted to the

microscope. On the two sides of the tensile tester, equispaced colorful tape markers

were prepared for the 33 teeth in each gear to rotate the gears quantitatively. One

round for one gear makes 1 mm movement in the stretch direction of the arm of the

tensile tester. By counting the number of teeth being rotated, the strain was obtained.

Both ends of the specimens were attached to the arms of the tensile tester leaving

about 3 mm space for observation of the deformation. An initial distance between the

arms was shorter than 3 mm so that the arc specimens can be regarded as a

rectangular shape. For the stretching experiment, the initial position of the specimen was

determined as the no load state that should satisfy the following two conditions: First, a
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clear fiducial nucleus is located in the center of the field of view, and both the nuclei and

ELs can be observed clearly. Second, the wavy morphology of the ELs begins to be

straightened as the gears of the tester are imposed a small rotation as shown in Fig. 2.4.

The tensile strain was then applied to the specimen with a stepwise increment

(6–8%). The stepwise stretch step was repeated 5–6 times so that the sliced specimen

was stretched about 1.4 times greater than the initial length. At the end of each step

(including the initial no-load state), Z-stack images were obtained. The nuclei

(Hoechst 33342) were visualized with 405-nm excitation and 430–470-nm emission

while the F-actin (Alexa Fluor 546 phalloidin) with 543-nm excitation and 560–660

nm-emission. The 100× lens (NA=1.4) was used for observing and taking photos

during the test.

Three series of Z-stack images were taken at each steps; 1) a series of about 40

image slices with an interval of 0.4 µm for SMC nucleus which was used to calculate

macroscopic stretch ratio, 2) a series taken in twice magnification of about 50–90

image slices with an interval of 0.2–0.4 µm for a nucleus with typical ellipsoid shape,

in Fig. 2.5 (a), and 3) a series taken in twice magnification of about 50–90 image

slices with an interval of 0.2–0.4 µm for the surrounding AF network of that nucleus

in Fig. 2.5 (b). PBS was intermittently dripped onto the specimen to prevent the

dehydration during the stretch. The tensile experiment for each sample was performed

for 2–3 h after staining. Four to six slices were obtained from each rabbit and the total

of 29 slices were stretched successfully. The nucleus and perinuclear AFs whose

images were most clearly seen in each slice were used for the analysis. The tensile
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process for every slice was finished within 2 hours.

(a) Outline

(b) Details of the chucking part

Fig. 2.3 Diagram of the tensile tester. Schematic diagram of the tensile tester on the
microscope (a). The specimen was set to the custom-made jig (b).
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(a) Just before initial position (b) Initial position

Fig. 2.4 Determination of the initial position for the stretch test.

(a) SMC nuclei

(b) Actin filaments

Fig. 2.5 Staining images of the twice magnification image taken at the same

position.
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2.4.2 Type-1 slice: Circumferential stretch for 2D and 3D analyses

The type-1 slice was stretched in the vascular circumferential direction and was

observed in the circumferential-radial plane as shown in Fig. 2.6 (a). The laser of the

microscope scanned the specimen in the vertical (vascular axial in the figure)

direction form the bottom to the top. Fig. 2.6 (a) shows the type-1 case in which the

nucleus oriented in the circumferential direction while one transverse axis of the

ellipsoidal nuclei oriented in the vertical direction. A series of 70–90 stack images of

the nucleus and AF were taken in the vertical direction with the interval distance of

0.2–0.3 µm, which altogether observed about 20 µm of the specimen thickness in its

axial direction. The type-1 slice was stretched to 1.4 times greater to the initial length

in the circumferential direction, which is close to the physiological state (Matsumoto

et al. 2002). Data obtained for type-1 slices were used for 2D and 3D analyses for the

deformation of the SMC and AF.

2.4.3 Type-2 slice: Axial stretch for 2D analysis

The type-2 slice was stretched in the vascular axial direction and was observed in

the circumferential-axial plane as shown in Fig. 2.6 (b). Here, the nuclear transverse

axis elongates, whereas its longitudinal axis contracts. Like type-1 slices, one of the

ellipsoidal nuclear transverse axes oriented in the vertical direction (vascular radial in

the figure), i.e., the direction of the laser irradiation. A series of 70–90 stack images of

the nucleus and AF were taken in the spatial vertical direction with the interval

distance of 0.2–0.3 µm, which altogether observed about 20 µm of the specimen
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thickness in its radial direction. The type-2 slice was stretched to 1.4 times greater the

initial length in the axial direction, which is close to the physiological state

(Matsumoto et al. 2002). Data obtained for type-2 slices were used for 2D analyses

for the deformation of the SMC and AF

2.4.4 Type-3 slice: Axial stretch for 3D analysis

The type-3 slices were also stretched in the vascular axial direction, but they were

observed in the radial-axial plane as described in Fig. 2.6 (c). This type of slice was

used to evaluate the 3D motion of the nucleus, i.e., whether the nucleus will rotate

from an “upright” posture when the stretching in the axial direction was applied. For

this type of specimen, a series of 50–70 stack images of the nucleus were taken in the

spatial vertical direction with the interval distance of 0.3–0.4 µm because the nucleus

in this case oriented with its longitudinal axis in the vertical direction which might

take longer time to take the photos. Hence, fewer images were taken compared to

type-1 and 2 slices, but the interval distance was set larger to ensure that about 20 µm

of the specimen thickness was observed in its circumferential direction.
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(a) Type 1 slice

(b) Type 2 slice

(c) Type 3 slice

Fig. 2.6 Three types of specimen used in the tensile test.
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2.5 Image processing

2.5.1 Image processing in 2D

The images obtained from 8 slices in the circumferential stretch and 5 slices in the

axial stretch were stacked and used for the 2D analysis. All the images taken during

the experiment were processed for deconvolution with cellSens (ver.1.18, Olympus,

Japan) 10 times to reduce the noise. Then, the 40 image stacks of the nucleus taken at

each step of the tensile test were projected onto a single image with a ‘standard

deviation intensity’ of ImageJ (Fiji, version 1.53g, NIH, USA), as described in Fig.

2.7. The standard deviation intensity was used to make a projected image because for

black and white images, this projected method makes an image relatively closer to its

real state without too high/low saturation.

Fig. 2.7 Projection of the stack images for every stretch step.
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2.5.2 Image processing in 3D

To evaluate the orientation and rotation of the nuclei three-dimensionally, the 3D

nuclei were reconstructed with an image processing software Imaris (Version 9,

Bitplane, Switzerland) from the 2D stack images of type-1 and type-3 specimens. As

the same laser intensity condition was kept for every step so that the 3D nucleus body

was reconstructed through the Imaris automatically.

2.6 Deformation analysis

2.6.1 Macroscopic deformation of the specimen

Macroscopic stretch ratio of the tissue in the stretch direction (horizontal direction

in the images) was calculated by selecting three pairs of characteristic points in the

image of the initial position as fiducial markers. Fig. 2.8 (a) shows the process of

calculating the macroscopic stretch ratio in horizontal (stretch) direction. One point in

a pair located near the left edge and the other located near the right edge of the images,

and the positions of each pair perpendicular to the stretch direction were set to

become almost equal. The distance between each pair was then measured at each step.

The macroscopic stretch ratio between two stretch steps was calculated for the stretch

direction as:

��(� − 1, �) = 1
3

⋅ �=1
3 ��(�)

��(�−1)
� , (2.1)

where Λx(i-1,i) is the stretch ratio between stretch steps i-1 and i, and lp(i) is the

distance between pair p in step i. The macroscopic stretch ratio of the tissue at the n-th
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stretch step from the initial position was calculated as:

�� � = �=1
� �� � − 1, �� , (2.2)

where Λx(n) is the macroscopic stretch ratio of the specimen at step n.

The macroscopic stretch ratio of the tissue in the direction perpendicular to the

stretch direction (vertical direction in the images) Λy(n) was also calculated with a

similar method by choosing pairs of points near the top and bottom edges of the

images and measuring their interval changes, as shown in Fig. 2.8 (b).

(a) Macroscopic stretch ratio parallel to the stretch direction

(b) Macroscopic stretch ratio perpendicular to the stretch direction

Fig. 2.8 Calculation of macroscopic stretch ratios of the specimen in the stretch

direction (a) and in the direction perpendicular to the stretch direction (b) for the first

three steps in the test.
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2.6.2 Heterogeneous deformation of the media

For the images obtained from the tensile test in the circumferential direction, the

SMLs in the images were selected according to the morphology of the ELs and they

were numbered (Fig. 2.9). Similarly, a pair of characteristic points or the centroids of

two nuclei with almost equal radial position on the left and right sides was chosen in

each SML. The change in the circumferential distance between these two points was

measured to obtain the stretch ratio in each SML as

��� = �=1
� ���

���−1
� , (2.3)

where λmn indicates the stretch ratio of the SML m at the nth strain step, i the stretch

step, and L the distance between the two chosen points in each SML.

For calculating the shear deformation between two SMLs, the coordinates of the

central point between the two side points in each SML selected as described above

were calculated first. Subsequently, the below equation was obtained:

�(�)(�+1) =
�(�+1)�+1 − �(�+1)� − ���+1 − ���

�(�+1)�−���
, (2.4)

where τ(m)(m+1) is the shear deformation between the SML m and m+1; dmi and d(m+1)i are

the radial coordinates of the central point of SML m and m+1, respectively; X is the

mean value of the two chosen points in each SML.

For calculating the local Green strain, triangles were set in the image of the initial

position. Then the three vertices of every small triangle were traced in every stretch

step. Fig. 2.10 (a) and (b) show a case of these small triangles used for calculating the

strain before and after stretch, respectively. By doing that, each line of the triangles is

always connected to the same characteristic points in the images obtained under tensile



43

strain. The local Green strain relative to the initial step 0 was calculated as

��(1,2,3)
'2 − ��(1,2,3)

2 = �=2
2

�=1
2 2��� ∙ ��� ∙ ����� (2.5)

where ds’2 is the line length of the triangle at the present strain step, ds2 the line length

at the initial step, E11 the local Green strain along the circumferential direction, E22 the

local Green strain along the radial direction, and E12 (=E21) the shear strain. Further, daj

and dak are the components of ds in the circumferential and radial directions,

respectively. The calculation was performed using a custom-made MATLAB code

(Appendix 1) (Ver. 2016a, Mathworks, USA).

Fig. 2.9 Example of fluorescent image of a specimen in the circumferential stretch

case. Capital letters (A – G) indicate the corresponding boundary points with different

colors.
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(a) Before stretch (b) After stretch

Fig. 2.10 A case showing the small triangles used for calculating the Green strain. A

type-1 specimen. Red points indicate the vertex of the triangles with blue lines while

the triangles are marked with small letters.

2.6.3 Microscopic deformation of the nucleus in 2D

All the 50–80 image stacks of the nucleus taken during the tensile test were

projected onto a single image as in the previous section. Deformation of the nucleus

in response to the stretch was evaluated by calculating changes in the lengths of its

longitudinal and transverse axes as well as its rotation angle. In each stretch step i, the

nuclear outlines were manually depicted by a ‘Freehand Selections’ tool in ImageJ.

Then, each outline was fitted to an ellipse to measure its length of the longitudinal

axis lN(i), area AN(i), and oriented angle θN(i) to the horizontal direction. The

longitudinal axis length lN(i) was termed as nuclear length. According to the previous

study, the length of the transverse axis of the nucleus (nuclear width), wN(i), was

obtained as:
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�� � = �� �
�� �

. (2.6)

The stretch ratio of the nuclear length in step i was calculated as:

�Nl � = �N �
�N 0

, (2.7)

where lN(0) and lN(i) are the nuclear lengths in step 0 and i, respectively. The stretch

ratio of the nuclear width in step i was calculated as:

�Nt � = �N �
�N 0

, (2.8)

where wN(0) and wN(i) are the nuclear widths in step 0 and i, respectively.

The rotation of the nuclear major axis from the initial state to step i was measured

and indicated as ΔθN(i).

��N � = �N 0 − �N � , (2.9)

where θN(0) is the initial oriented angle of the nucleus, and θN(i) is the oriented angle

at stretch step i. Fig. 2.11 (a) shows the longitudinal axis, transverse axis and the

oriented angles of the nucleus fitted to ellipsoid for a type-1 slice. Fig. 2.11 (b) shows

those parameters for a type-2 slice.

For comparison, the stretch ratios and the change in the orientation angles were

calculated from the macroscopic stretch ratios obtained in Section 2.6.1 assuming

homogeneous deformation of the tissue. The horizontal and the vertical macroscopic

stretch ratios from stretch step i to i+1 were calculated and denoted as Λx(i, i+1) and

Λy(i, i+1), respectively as shown in Eq. 2.1 for Λx. For the nucleus deformation, the

nucleus was stretched from step i to i+1 in a homogeneous body as shown in Fig. 2.12,

its orientation angles at step i+1 was marked with ��
ℎ (� + 1) and calculated as:

tan �N
h � + 1 = �N � ⋅sin�N

h � ⋅�� �,�+1
�N � ⋅cos�N

h � ⋅�� �,�+1
= tan �N

h � ⋅ �� �,�+1
�� �,�+1

, (2.10)
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where ��
ℎ (�) represents the hypothetical oriented angles in step i, and ��

ℎ (0) = θN(0).

The hypothetical length was calculated as:

�Nh � + 1 = �Nh � ⋅ cos �N
h � ⋅ �� �, � + 1

2
+ �Nh � ⋅ sin �N

h � ⋅ �� �, � + 1
2, (2.11)

where ��ℎ (�) and ��
ℎ (� + 1) represent the hypothetical length of the nucleus in step i and

i+1, respectively, and ��
ℎ (0) = lN(0).

The hypothetical stretch ratio of the nuclear length in a homogeneous tissue from step

i to i+1, �Nl
h �, � + 1 was calculated as:

�Nl
h �, � + 1 = �N

h �+1
�N
h �

= cos �N
h � ⋅ �� �, � + 1 2

+ sin �N
h � ⋅ �� �, � + 1 2 (2.12)

Thus, the hypothetical stretch ratio of the nuclear length at the n-th stretch step from

the initial position �Nl
h � was calculated as:

�Nl
h � = �=0

� �Nl
h �, � + 1� . (2.13)

Similarly, the hypothetical width of the nucleus was calculated as:

�N
h � + 1 = �N

h � ⋅ sin �N
h � ⋅ �� �, � + 1

2
+ �N

h � ⋅ sos �N
h � ⋅ �� �, � + 1

2, (2.14)

where �N
h � and �N

h � + 1 represent the hypothetical widths of the nucleus in step

i and i+1, respectively, and �N
h 0 = wN(0).

The hypothetical stretch ratio of the nuclear width from i to i+1 steps, �Nt
h �, � + 1 ,

was calculated as:

�Nt
h �, � + 1 = �N

h �+1
�N

h �
= sin �N

h � ⋅ �� �, � + 1 2 + cos �N
h � ⋅ �� �, � + 1 2, (2.15)

and the hypothetical stretch ratio of the nuclear width at the n-th stretch step from the

initial position �Nt
h � was calculated as:

�Nt
h � = �=0

� �Nt
h �, � + 1� . (2.16)

Eqs. 2.10-2.16 were utilized to calculate the hypothetical deformations of all the
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nuclei in the circumferential and axial stretch cases.

(a) Type 1 slice

(b) Type 2 slice

Fig. 2.11 Some parameters used for measurement of the ellipsoid-fitted nuclei (blue

dash lines) for a type-1 slice (a) and a type-2 slice (b). LN, Longitudinal axis; w,

transverse axis of the ellipsoid-fitted nucleus; θN, Nuclear oriented angle.

Fig. 2.12 Two-dimensional homogeneous deformation of the nucleus stretched from

step i to i+1.
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2.6.4 Microscopic deformation of the nucleus in 3D

To evaluate the orientation and rotation of the nuclei three-dimensionally, the 3D

nuclei were reconstructed with an image processing software Imaris (Version 9,

Bitplane, Switzerland) from their 2D stack images. The 3D nucleus body was

reconstructed through the Imaris automatically. The reconstructed 3D nuclei were

fitted with ellipsoids to obtain the lengths of their three axes a, b, c (a < b < c), as well

as their three vector components projected in the Cartesian coordinates, i.e., direction

cosines. The lengths of the three axes were calculated for each step i and denoted as

M(i) (M = a, b, or c). The stretch ratios of the ellipsoid axes in stretch step i were thus

calculated as:

�� � = � �
� 0

. (2.17)

The orientation angles of the nuclei were described as the angles of the nuclear

longitudinal axis C to the three axes of Cartesian coordinate corresponding to the

aortic circumferential, radial, and axial direction. The angles between the longitudinal

axis C and the circumferential, axial, and radial directions of the aorta were marked as

φCθ, φCZ, and φCR, respectively. They were calculated through the direction cosine by

using the three vector components of the C axis projected in the Cartesian coordinates.

Fig. 2.13 shows a case of the 3D model of a nucleus.
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Fig. 2.13 Three-dimensional reconstructed nucleus and its longitudinal axis (LN),

transversal axis axis (WN). The angles between its longitudinal axis and the three axes

of the Cartesian coordinate of the aortic wall are marked with α, β, and γ, respectively.

2.6.5 Microscopic deformation of actin filament network in 2D

As the AF has a much more complex structure than the nucleus, its deformation

cannot be calculated in the same way as the nucleus. The image correlation method

(Pan et al. 2009; Zhao et al. 2012) was modified to calculate the stretch ratios of the

AF network around each nucleus. For the deformation analysis, the AF network in a

rectangular area of lN wN was used in the step 0 image, where lN and wN are the

length and width of the hypothetical ellipsoid nucleus obtained in the previous section

2.6.3, respectively. Then, the stretch ratios in the filament orientation direction and in

the direction perpendicular to it between every two stretch steps i and i+1 were
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calculated, and they were denoted as λAl(i, i+1) and λAt(i, i+1), respectively.

Here is an example showing the processing methods for the AF network images.

Fig. 2.14 shows the nucleus and the AF network in the first stretch step numbered 0–1.

The periphery of the nucleus was identified manually by using a ‘Freehand Selection’

tool in Image J as shown in yellow in Fig. 2.14 (a), then it was automatically fitted to

an ellipse as shown in dashed blue line to obtain the length of the fitted ellipse L. A

rectangular frame with the size of 2LN  LN where the nucleus is located centrally for

each of the AF images was drawn as shown in Fig. 2.14(b)–(c). The mean oriented

direction of the AF network in each rectangular frame was measured with the Image J

through the 2D FFT method automatically and then marked with θA(i) where i is the

step number.

Deformation of the AF images from stretch step 0 to 1 was characterized with the

stretch ratio in the direction of AF orientation Al(0,1) and that in the direction

perpendicular to it At(0,1) as the following steps:

1. The AF images in each stretch step were rotated by θA(i) so that the mean direction

of the AF orientation within the rectangular frame corresponds to the horizontal axis

(Fig. 2.14(d)).

2. The length and width of the ellipsoid fitted to the nucleus were denoted as lN and

wN, respectively. The length lN was measured automatically and wN was obtained as

follows:

N

N
N l

Aw  , (2.18)

where AN is the area of the ellipsoid.
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The area of the AF network surrounding the nucleus was defined as a rectangular

region of lN  3wN with the nucleus at its center in the step 0 image (red frame in Fig.

2.14(e)). This smaller frame was used as the region of interest (ROI) for calculation.

The size of the rectangular region was defined freely, and the difference in the mean

orientation angle of the AF in the different rectangular regions was smaller than 1°,

which can be neglected.

3. To calculate the stretch ratio in the ROI from Step 0 to 1, the area with the size of

ROI in Step 1 image that corresponds to the ROI in the Step 0 image (termed as

matched region, MR) was defined. To do this, the region of search (ROS) was defined,

and it is shown in red in Fig. 2.14(f). The ROS in the Step 1 image was drawn to

involve the ROI in the Step 0 image.

4. The MR was identified in ROS with Matlab (Ver.12, MathWorks, USA) using an

image correlation method. Process to define the ROI, ROS, and MR was described in

Fig. 2.15.

5. Fig. 2.16 describes the process to obtain the stretch ratios x and y between the two

stretch steps. As the AF network extends along its orientation direction and shrinks

perpendicular to the orientation during the tensile test in the circumferential direction,

the ROI image was extended by x in the horizontal direction, i.e., the direction of AF

orientation, and compressed it by y in the direction perpendicular to AF orientation to

find the best combination of extension and compression to fit in the MR. The size of

the ROI was changed by 0.5% from 100% to 120% in the extension direction and

from 100% to 80% in the compression direction independently and repeatedly to get
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resized images of ROI (one case shown in Fig. 2.16, Process 2).

6. For each resized image of ROI, its central part with the same horizontal length as

the MR (Process 3) was cut out. Then the central part of the MR with the same

vertical length as the resized ROI (Process 3) was also cut out. Thus, two central parts

with the same size form the resized ROI and MR were obtained. Then the image

correlation coefficient r between these two central parts (Process 4) was calculated.

These processes were repeated to find the combination of x and y that maximizes r

(Process 5). Thus obtained x and y were used as the stretch ratios of the AF

network in the fiber direction Al(0,1) and in the direction perpendicular to the fiber

At(0,1), respectively, from stretch step 0 to 1.

7. After repeating procedures 1–6 by increasing the step number, the stretch ratios

between every two stretch steps of the AF network were obtained to the

circumferential stretch.

8. For the slices stretched in the axial direction, the similar methods were used as the

circumferential stretch case shown above in 1–4 and eventually a MR image of the

AF from step i to i+1 was obtained as shown in Fig. 2.17. By using the similar resize

methods to the circumferential stretch case to resize the ROI images, it was compared

to MR images by calculating the image correlation coefficient r. Eventually, the

extension and compression values were obtained, and they were used as the stretch

ratios of the AF network in the direction perpendicular to the fiber At and in the fiber

direction Al, respectively. The ROI region for axial stretch case is also defined freely.

By performing procedures 1–8, the stepwise stretch ratio of the AF against both
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circumferential and axial stretch cases were gotten. Next, the stretch ratio from step 0

to i was calculated. For both stretch cases, the stretch ratios of the AF network in the

filament orientation direction ΛAl(i) and in the direction perpendicular to it ΛAt(i) from

step 0 to i were calculated as follows:

�Al � = �=0
� �Al� � − 1, � , (2.19)

�At � = �=0
� �At � − 1, �� . (2.20)

Orientation of AF network was characterized by the mean network orientation angle

θA, which is calculated automatically from the twice magnified actin images with

ImageJ using the 2D FFT method. Change in the orientation angle of the AF network

was obtained as:

��A � = �A 0 − �A � , (2.21)

where θA(0) and θA(i) represent the network orientation angle in steps 0 and i.

Then, the hypothetical deformations of the AF network assuming homogeneous

deformation of the wall were calculated. The hypothetical stretch ratios of the AF

network in its oriented direction and in the direction perpendicular to its orientation

were denoted as �Al
h � and �At

h � , respectively. They were calculated as:

�Al
h � = �=0

� �Al
h �, � + 1� , (2.22)

and

�At
h � = �=0

� �At
h �, � + 1� , (2.23)

where �Al
h �, � + 1 and �At

h �, � + 1 represent the stepwise stretch ratio of the AF in

the oriented direction and the direction perpendicular to its orientation respectively.

�Al
h �, � + 1 and �At

h �, � + 1 were calculated by substituting hypothetical nuclear
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orientation angle �N
ℎ � with hypothetical AF orientation angle �A

ℎ � in the Eqs. 2.12

and 2.15, respectively. The �A
ℎ � was calculated from Eq. 2.10, and �A

ℎ(0) = θA(0)

referring to the step 0 image.

(a) Nuclei at Step 0 (no load)

(b) Actin filament at Step 0 (no load)

(c) Actin filament at Step 1
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(d) Rotation of the actin image (Step 0)

(e) Definition of the ROI (Step 0)
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(f) Definition of the ROS (Step 1)

Fig. 2.14 The image processing procedure to obtain the region of interest (ROI) in

Step i and corresponding region of search (ROS) in Step i+1 in the circumferential

stretch case.

Fig. 2.15 The schema of searching for the MR area with the most similar region of

interest (ROI), i.e., matched region (MR) within the region of search (ROS).



57

Fig. 2.16 The image processing procedure to obtain the stretch ratios between the

two stretch steps.

(a) Nuclei at Step 0 (no load) in axial stretch

(b) Actin filament at Step 0 (no load), yellow frame is 3LN  1.5LN
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(c) Rotation of the actin image (Step 0) in the axial stretch

(d) Definition of the ROI (Step 0) in the axial stretch, the size of the ROI is lN  6wN

(e) Definition of the ROS (Step 1)

Fig. 2.17 The image processing procedure to obtain the region of interest (ROI) in

Step i and corresponding region of search (ROS) in Step i+1 in the axial stretch case.
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2.7 Statistical analyses

All the data were expressed as mean ± SD. Differences in the data between

nucleus and actin were analyzed with paired Student’s t-test, whereas the differences

in the data between circumferential stretch and axial stretch of nucleus or actin were

analyzed with unpaired Student’s t-test.
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2.8 Discussion

This chapter introduces the method of experiment and analysis. To improve the

reproducibility of the experiment and to reduce the variation of the data obtained in

the experiment, the discussion will concentrate on several points in the experiment

and analysis.

First, all tensile tests were performed within 24 hours after the rabbit was

sacrificed. The tissue can be preserved for long times at low temperate, it can be

preserved for up to 7 days within stabilization solutions and even longer time when it

is frozen (Lou et al. 2014). To minimize the effect of photo bleaching caused by laser

irradiation during the observation, the tensile process for every slice was finished

within 2 hours. To assess the deviations effect of the photobleaching, a time-lapse

observation experiment was performed for the sample slices, the length change of the

nuclei major axis was less than 0.5% (n = 4, P < 0.05).

To measure the length of the longitudinal and transverse axes of the nucleus,

ImageJ was utilized to match the nuclear outline to the ellipsoid automatically.

Although the longitudinal axis can be obviously determined after fitting to the

ellipsoid, the transverse axis of the ellipsoid might be different from the original

nucleus because some nuclei bend along the transverse direction. To uniformly and

conveniently evaluate, the length of the transverse axis was defined as that it is equal

to the area of the ellipsoid divided by its longitudinal axis.

Some other research measured the number of the stress fibers within a cell, for
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example, Nagayama et al. 2010 measured the number of stress fibers with a single

SMC by using the fluorescent intensity distribution of SFs in a direction

perpendicular to the cell major axis. The number of peaks of the intensity

distributions was regarded as the number of SFs. Theoretically speaking, by

measuring the interval distance change between two peaks of the intensity

distributions, the stretch ratio of the AF network can be measured, while this method

requires an extremely clear image of the AF network where every single stress fiber

can be recognized. Obviously, that is impossible in this experiment, so the present

method was developed, by which the stretch ratio of the AF can be measured with an

image of any sharpness. This method can be used to measure any tissue deformation

in theory.

To test if the method being used to measure AF deformation was correct, an

artificial image was used for verification. The image has a size of 565 × 555 pixels

(Fig. 2.18(a)), its size was modified to 679 × 500 pixel (Fig. 2.18(b)), so the stretch

ratios are about 1.2 and 0.9 in the vertical and horizontal directions, respectively, i.e.,

the absolute strains are 0.2 and 0.1, respectively. An ROI was defined in the image

before modification (red square in Fig. 2.18(a)). Then, a best-matched MR (matched

region, defined in step 3 of Section 2.6.5) image (Fig. 2.18(d)) using MATLAB (see

Appendix 2 for the codes used in the analysis) was found within the defined ROS in

the image after modification (Fig. 2.18(b)). Then MATLAB was used to find the

strain in the vertical and horizontal directions to match Fig. 2.18(c) and (d), the

procedure of the image analysis has already been explained in Section 2.6.5. The
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strains were calculated by using the MATLAB. The absolute vertical and horizontal

strains are about 0.195 and 0.105, which are very close to the strains given for Fig.

2.18(b). Thus, it can be concluded that the code works well on calculation.

(a) (b)

(c) (d)

Fig. 2.18 Artificial images used to check the MATLAB code I wrote for the image

analysis of the AF. The original image (a) was stretched 20% in the horizontal

direction and compressed 10% in the vertical direction (b). The best matched image

(d) of the ROI in the original image (c) was searched within the ROS in (b).
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Chapter 3 Heterogeneous deformation of the media

3.1 Summary of this chapter

There is growing evidence that the aortic wall does not deform uniformly during

pressurization. It has been reported that the aortic wall shows not only heterogeneous

deformation at a microscopic level (Matsumoto et al. 2013) but also shear

deformation (Sugita et al. 2020) in response to circumferential stretch. This chapter

will show the measurement and calculation results of the heterogeneous deformation

of the media against the mechanical stretch.

The result of type-1 slices was used, i.e., deformation measured in the section

perpendicular to the vessel axis for the calculation. Firstly, the media was divided into

several layers referring to the elastic laminas. The stretch ratio of each layer was

calculated as well as the shear deformation between every two adjacent layers. Then,

the heterogeneous deformation was observed between the elastic laminas.

Then, the distribution of horizontal, vertical and shear components of Green strain

along with the stretch process were calculated for type-1 slice. They were calculated

by plotting the nuclei in the image to draw triangles and then by tracing the movement

of the vertex of every triangle during the stretch. More obvious heterogeneity of the

media was observed using this method compared to that at the lamina level.
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3.2 Macroscopic shear deformation between the laminas of the

media

Fig. 3.1 shows a case of how I divided the laminas, it can be seen that these lamina

layers contract in the vertical direction and elongated in the stretch direction obviously

along with the stretch process. The shear deformation between the laminas was

calculated at a macroscopic viewpoint (Section 2.6.2) i.e., on a scale of about 200 µm,

as shown in Fig.3.1.

The representative data of the macroscopic elongation of the specimen, and the

microscopic elongation of the SMLs are shown in Fig. 3.2. As shown in Fig. 3.2(a), the

elongation of each layer is relatively close to the homogeneous body line where both

macroscopic and microscopic stretch ratios are the same. In terms of strain (= stretch

ratio – 1), the maximum deviation of the absolute difference between the value of the

individual layer and the homogeneous body line, is 20% at Λx = 1.45. It is also evident

that the elongation rate of the SMLs is inconsistent among the seven layers examined

up to Λx = 1.16; the rate is almost consistent in the seven layers thereafter. This may

indicate that the wavy ELs became almost straight and the rotation of most of the

nucleus ceased over this point, causing homogeneous deformation. With regard to

shear strain between two adjacent laminas, it changes primarily in the low-strain range

(Λx < 1.16) and appeared to become stabilized over this point except at Λx = 1.46 (Fig.

3.2(b)). This may indicate that heterogeneous deformation occurs primarily in the

low-strain region, as shown in (a). The maximum shear strain is as large as 10%.
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Considering that the shear strain in the homogeneous body is zero, such 10% strain is

not negligible. The results of another specimen show the maximum deviation of 6% for

the stretch ratio, and a shear strain of within 12%. The mean maximum deviation for

the laminas stretch ratio of the two samples was 13%, and the mean maximum

deviation for the shear strain was 11%.

(a) No load (b) Λx = 1.45
Fig. 3.1 Fluorescent images of a media of type-1 slice. Smooth muscle nuclei and

elastic laminas are shown in white. Capital and small alphabet letters (A-G and a-g)

indicate different layers (Fan et al. 2019)
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(a) Elongation of each SML

(b) Shear deformation between SMLs

Fig. 3.2 Relationship between the stretch ratio of elastic layers and the ratio of the

macroscopic stretch (a). Relationship between shear deformation between two adjacent

laminas and the macroscopic stretch ratio (b). (Fan et al. 2019).
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3.3 Microscopic heterogeneous deformation of the media

The heterogeneous deformation of the media was calculated at a microscopic

viewpoint i.e., on a scale of the nucleus of about 20 um (shown in Fig. 3.3). A

representative example of the Green strain distribution at Λx = 1.45 is shown in Fig.

3.3. When each Green strain component, namely, E11, E22, and E12 according to the

formula 2.5 is plotted against the macroscopic stretch ratio Λx as shown in Fig. 3.4,

the deviation from the homogeneous body line was as high as 117% in E11. The E11

values were varied in the same SML as well as between different SMLs (Fig. 3.3(a)).

For example, it varied from 0.413 to 0.831 in the regions e, f, g, h that constitute one

layer of SM. Regions d, h, k, s with similar circumferential position but from different

layer of lamina have various strain from 0.370 to 0.637. Contrary to the shear strain

between adjacent layers, it continues to increase with the circumferential stretch, as

shown in Fig. 3.4(a). The E22 also varies in the same or different SMLs, as shown in

Fig. 3.3(b) like E11. And E22 decreased as the sample was stretched (Fig. 3.4(b)). In

some locations, the shear strain of a triangle was even twice as large as that between

the adjacent layers (Fig. 3.3(c)). For example, the strain at region f and l was twice as

large as those in region e and h, respectively. These results indicate that the

heterogeneity observed at the lamellar level becomes larger when observed at the

cellular level.



69

(a) Horizontal (b) Vertical

(c) Shear
Fig. 3.3 Example of Green strain distributions for a type-1 slice after circumferential

stretch (Λx = 1.45). Green strains in the horizontal (a) and vertical (b) directions, and

the shear component (c) are shown in each triangle. (Fan et al. 2019).
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(a) Circumferential strain E11

(b) Radial strain E22
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(c) Shear strain E12 (=E21 )

Fig. 3.4 The change in strain in each triangle against circumferential stretch.

Characters a to x corresponds to individual triangles in the Fig. 3.3. (Fan et al. 2019).
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3.4 Discussion

The media of the aorta primarily consist of SMCs, and elastin and collagen fibers.

The mechanical heterogeneity of the media is caused by the difference in Young’s

modulus of the elastin, collagen and SMC. The aorta has been demonstrated to show

complex mechanical behaviors when it is subjected to physiological loading from the

unloaded state in vivo (Matsumoto et al. 2004). These complex mechanical

phenomena are caused by the intricate structure of the three components (Chow et al.

2013). The intricate structure also causes the heterogeneity of stress distribution in the

media (Nagayama and Matsumoto 2004). Furthermore, it has been suggested that the

protein synthesis in SMCs is closely correlated with the heterogeneity of the vessel

wall (Matsumoto et al. 2015). In addition, the deformation of the aorta due to

pressurization is complicated because of the structural heterogeneity of tissue layers

and the differences in the elastic properties of elastin layers (ELs), smooth muscle

layers (SMLs), and the surrounding collagen and elastin (Sugita and Matsumoto

2017). Nonetheless, the details of heterogeneous deformation and strain field within

the media remain to be studied.

This study focused on the mechanical heterogeneity of the rabbit thoracic aortic

walls by measuring their deformations of SMLs, as well as the nuclei of SMCs during

the tensile test in the circumferential and longitudinal directions. The elongation of

each SML showed weak heterogeneity in response to circumferential stretch (Fig. 3.2),

and this heterogeneity became more remarkable when the deformation was evaluated
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with the local Green strain (Figs. 3.3 and 3.4). These results may indicate that the

heterogeneity increases more as at smaller scales of at least the cellular level.

According to Figs. 3.2(b), 3.3(c) and 3.4(c), the aortic wall shows shear

deformation during circumferential stretch. This clearly indicated that the aortic wall

was deformed with the combination of stretch and shear deformations during the

tensile test, which coincided with the findings of a past study (Matsumoto et al. 2004).

Although the amount of shear deformation was not large (<0.1) in most cases, this

might exhibit profound effects on the physiological functions of the SMCs.

The precise mechanism causing such heterogeneities is still unclear at this stage.

However, the apparent structural heterogeneity in the wall may account for the

observed heterogeneity. This includes the varied thickness and structure of the SMLs

and ELs, and the connections of ELs to the collagen fiber networks. Since the ELs

and the nuclei can be visualized only in a superficial region (~20 µm from the surface

at the maximum) of the 200-µm-thick specimens, a new method that can visualize the

specimen in the whole thickness is awaited.

It also shows that the corrugated elastin layers became straight after stretching, as

shown in Fig. 3.1. The different waviness of different lamellar units in Fig.3.1 at

no-load state may be evidence of the heterogeneous distribution of the circumferential

residual stress along the vascular radial direction at physiological state (Matsumoto et

al. 1996).

In conclusion, the SMLs in rabbit thoracic aorta exhibited heterogeneous

deformation in response to circumferential tensile stretch at both the macroscopic and
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microscopic levels, and the heterogeneity was more prominent at the microscopic

level. At macroscopic viewpoint, the difference between the largest and smallest

strain is about 1.4 times at Λx = 1.45, as shown in Fig.3.2 (a), while at a microscopic

viewpoint, the largest strain is about 2.4 times smallest at Λx = 1.45, which means that

if we consider the nucleus together with the elastic laminas, the heterogeneity of the

tissue will be greater. From a macroscopic view, the heterogeneity changes primarily

in the low-strain range (Λx < 1.16, the slopes of lines are quite different) and appeared

to become stabilized over this point except at Λx = 1.46 (Fig. 3.2(a)). However, this

kind trend has not been shown in Fig.3.4 from a microscopic viewpoint.
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Chapter 4 Deformation of the actin filament (AF) network

against stretch

4.1 Summary of this chapter

AF plays an important role in transmitting the extracellular force to the nucleus.

Their deformation induces local deformation of the nucleus, which might enhance

protein synthesis. Will AF show anisotropic deformation? What is the difference

between the deformation of AF and the cell body? This chapter will show the results

of AF deformation against circumferential and axial stretches.

All the slices were stretched to about 1.40 times greater than that of lengths under

no-load state within 5–6 stretch steps with 6–8% stepwise strain. Since the series of

the macroscopic stretch ratios applied to each slice is different among slices, to

compare the results of different slices, I calculated the stretch ratios for all slices with

linear interpolations at every 0.05 from x = 1 to 1.35 in the 2D analysis. The AF

deformation was analyzed at the 2D view because the 3D analysis of the AF could not

be performed due to its complex structure. There was no significant difference in the

deformation between AF and the entire cell for both stretch cases.
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4.2 Deformation of the AF

4.2.1 Circumferential stretch

Figs. 4.1 and 4.2 show the AF around a nucleus before and after applying a

circumferential stretch, respectively. The interval of the AF became smaller along

with the stretch process. While the AF network elongated in its orientation direction,

it did not exactly align along the horizontal direction. The AF network was slightly

inclined with a small angle so that this was taken into consideration in the calculation

of the hypothetical deformation in Eqs. 2.10–2.12, 2.14–2.15 by adding the parameter

of orientation angles of nucleus and AF network. For example, in the SMC case, by

taking the hypothetical orientation angle ��
ℎ (�) into Eq.2.10, we got ��

ℎ (� + 1) , and by

taking ��
ℎ (�) into Eqs.2.12–16, we got hypothetical stretch ratio of the SMC for every

stretch step.

Fig. 4.3 (a) and (b) represent the stretch ratios of the AF networks in their

oriented direction and the direction perpendicular to their orientation against the

circumferential stretch. The AF network elongated in its oriented direction, whereas it

shrank in the direction perpendicular to its orientation against the circumferential

stretch. Fig. 4.3 (a) and (b) represent that the mean stretch rations of l and t at x

= 1.35 were 1.40 ± 0.20 (n = 8) and 0.76 ± 0.10 with a large variability from 1.08 to

1.71 and 0.61 to 0.92, respectively. εt/εl at x = 1.35 does not meet the Possion’ s

number, the reason may be that the AF is not orientated aligned in the horizontal

direction completely when the stretch process begins, although that orientation angle
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is small.

(a) Merged image of the nucleus and AF before stretch

(b) Black and white image of the AF before stretch

Fig. 4.1 Staining images of the AF and nucleus at a no-load state (Λx = 1.00) before

the circumferential stretch. Blue and red color in (a) indicate SMC nuclei and AF

network, respectively.

(a) Merged image of the nucleus and AF after stretch

(b) Black and white image of the AF after stretch

Fig. 4.2 Staining images of the AF and nucleus after stretch (Λx = 1.45) against the

circumferential stretch. Blue and red color in (a) indicate SMC nuclei and AF network,

respectively.
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(a) AF deformation ΛAl in circumferential stretch

(b) AF deformation ΛAt in circumferential stretch

Fig. 4.3 Two-dimensional deformations of the AF network in the oriented direction (a)

and the direction perpendicular to its orientation (b) against the circumferential

stretch.
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4.2.2 Axial stretch

Fig. 4.4 and 4.5 show the AF before and after applying an axial stretch,

respectively. The AF shrank in its oriented direction, whereas it elongated in the

direction perpendicular to the orientation direction against the axial stretch.

Fig.4.6 (a) and (b) represent the stretch ratios of the AF networks in their oriented

direction and the direction perpendicular to their orientation against the axial stretch,

respectively. The mean stretch ratios of l andt at x = 1.35 were 0.90 ± 0.07 (n =

5) and 1.26 ± 0.11, ranging from 0.81 to 0.98 and 1.14 to 1.40, respectively.

(a) Merged image of the nucleus and AF before stretch

(b) Black and white image of the AF before stretch

Fig. 4.4 Staining images of the AF and nucleus at no-load state (Λx = 1.0) against the

axial stretch. Merge image of the nucleus and AF (a). Blue and red color indicate

SMC nuclei and AF network. Black and white image of the AF (b).
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(a) Merged image of the nucleus and AF after stretch

(b) Black and white image of the AF after stretch
Fig. 4.5 Staining images of the AF and nucleus at Λx = 1.39 against the

circumferential stretch. Merge image of the nucleus and AF (a). Blue and red color

indicate SMC nuclei and AF network. Black and white image of the AF (b).



83

(a) AF deformation ΛAl in axial stretch

(b) AF deformation ΛAt in axial stretch

Fig. 4.6 Two-dimensional deformations of the AF network in the oriented direction (a)

and in the direction perpendicular to its orientation (b) against the axial stretch.
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4.3 Comparison with the deformation of the homogeneous body

In the circumferential stretch, the homogeneous stretch ratios �Al
h and �At

h were

1.33 ± 0.02 and 0.78 ± 0.04 (n = 8) at x = 1.35, respectively (black solid lines in

Fig.4.3). In the axial stretch, the mean homogeneous stretch ratios of �Al
h and �At

h at

x = 1.35 were 0.93 ± 0.06 and 1.34 ± 0.01 (n = 5), respectively (black solid lines in

Fig.4.6).

For AF network deformation, no significant difference was observed in any cases

between the measurement and the homogeneous deformation, indicating that the AF

network deforms similarly to the tissue although the SD was relatively large in some

cases. The large SD value may be because 1) those sliced samples are harvested from

different rabbits that their stretch ratios are not the same, 2) as the AF stretch ratios

were measured using the twice magnified images, SD value reveals that heterogeneity

is more obvious at a microscopic view point of the cell scale, 3) for comparing all the

stretch ratios of all sliced samples uniformly, the stretch ratio of each sliced sample to

x = 1.35 was the estimated value calculated by linear interpolation depending on the

values around x = 1.35, which may affect the SD value a little.
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4.4 Discussion

In this chapter, the deformation of the AF network against the circumferential and

axial stretches was shown. The AF network tended to elongate more in the

circumferential stretch than the axial one although there was no significant difference.

In both types of stretch, there were no significant differences between the deformation

of the AF network (black solid lines in Figs. 4.3(a) and 4.6(b)) and the homogeneous

assumption that corresponds to the deformation of the entire cell (black dash lines).

As the cytoskeleton, actin filaments are connected to the cell membrane via focal

adhesions. They thus deform together with the cell membrane during stretch. So, there

might be no significant difference between the deformation of AF and cell body.

The mechanical stability of the nucleus is important for maintaining nuclear shape

by minimizing nuclear deformation and strain when deformed (Wang et al. 2018). It is

proposed that the cytoskeleton enhances nuclear mechanical stability by lowering the

effective deformability of the nucleus while maintaining nuclear sensitivity to

mechanical stimuli (Wang et al. 2018) i.e., the AFs act as an “energy buffer” to the

nucleus for minimizing the strain energy change when the cell is subjected to stimuli.

So, except the larger stiffness of the nucleus than the AF, another possible reason why

the deformation of the nucleus is smaller than the AF network when the cell is under

stimuli is that: the strain has not yet been transferred to the nucleus through the AF.
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Chapter 5 Deformation of the nucleus against stretch

5.1 Summary of this chapter

In this chapter, the results of the nuclear deformation against circumferential and

axial stretches will be shown.

The results will show obvious different nuclear deformation behaviors depending

on two stretches. To compare the deformation of AF and nucleus in the same

framework, 2D analysis for the nucleus was performed first. Then, to consider the

rotation of the nucleus to the direction perpendicular to the 2D plane, 3D analysis was

performed. Both 2D and 3D analyses show qualitatively similar results that the

nucleus deforms smaller in the axial stretch than the circumferential stretch. But the

elongation of both the nuclear longitudinal and transverse axes was smaller in 3D

analysis than those in 2D. The difference may be due to the rotation of the nucleus to

out of the 2D plane. The physiological significance of the heterogeneous deformation

properties the nucleus will be discussed in Chapter 6.

Different from the AF, this chapter will show that the nucleus deformed

significantly less than cell body and the AF network for both circumferential and axial

stretches. There are two major possible reasons for explaining this: 1) the nucleus is

stiffer than the cell body; 2) the nucleus is connected to the cell body through weak

and sparse link of AF. The details will also be discussed in Chapter 6.
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5.2 Deformation and rotation in 2D

5.2.1 Circumferential stretch

Fig. 5.1 shows a type-1 slice at a macroscopic view. The macroscopic images

were used to calculate the macroscopic stretch ratio x. Fig. 5.2 shows a type-1 slice

at a microscopic view. The images at microscopic view were used to calculate the

deformation of the nucleus.

Fig. 5.3 (a) and (b) show the changes in the nuclear length and width during the

circumferential stretch, respectively. The nuclei elongated in their longitudinal

direction during circumferential stretch (Fig. 5.3(a)), and their stretch ratios Nl

ranged from 1.05 to 1.24 with a mean value of 1.14 ± 0.07 (n = 8) at x= 1.35. On the

other hand, Fig. 5.3(b) represents that the widths of the nuclei became smaller during

the circumferential stretch. The transversal stretch ratios ranged from 0.67 to 0.91

with a mean value of Nt= 0.85 ± 0.08.
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(a) Before stretch (b) After stretch

Fig. 5.1 Fluorescent images of smooth muscle cell nuclei in aortic tissue slice

stretched in θ direction and observed in θ-R plane (Type 1 slice).

(a) Before stretch

(b) After stretch

Fig. 5.2 Enlarged fluorescent images of smooth muscle cell nuclei in aortic tissue

slice stretched in the circumferential direction.
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(a) Nuclear length change in circumferential stretch

(b) Nuclear width changes in circumferential stretch

Fig. 5.3 Two-dimensional deformations of the nuclear length (a) and width (b) against

the circumferential stretch. The stretch ratios were measured in one nucleus per slice.
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5.2.2 Axial stretch

Typical axial stretching results of the nucleus for type-2 and 3 slices at

macroscopic view are shown in Fig. 5.4 and 5.5. The nuclear width did not change so

much in the stretch direction. Fig. 5.6 shows the nucleus of the type 2 slice at a

microscopic view.

Fig. 5.7(a) and (b) represent the stretch ratios of the length and width of the nuclei

against the axial stretch. As shown in Fig. 5.7(a), the nuclear longitudinal axis became

slightly shorter during the axial stretch due to the Poisson effect. The stretch ratio of

Nl ranged from 0.95 to 1.01 with a mean value of 0.98 ± 0.03 (n = 5). Fig. 5.7(b)

shows that the nuclear width increased slightly during the axial stretch. The Nt

ranged from 1.02 to 1.1 with a mean value 1.06 ± 0.03.
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(a) Before stretch (b) After stretch

Fig. 5.4 Fluorescent images of smooth muscle cell nuclei in aortic tissue slice

stretched in axial direction and observed in Z-θ plane (Type 2 specimen).

(a) Before stretch (b) After stretch

Fig. 5.5 Fluorescent images of smooth muscle cell nuclei in aortic tissue slice

stretched in axial direction and observed in Z-R plane (Type 3 specimen).
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(a) Before stretch

(b) After stretch

Fig. 5.6 Enlarged fluorescent images of smooth muscle cell nuclei in aortic tissue

slice stretched in the axial direction (Type 2 specimen).
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(a) Nuclear length change in axial stretch

(b) Nuclear width change in axial stretch

Fig. 5.7 Two-dimensional deformations of the nuclear length (a) and width (b) against

the circumferential stretch. The stretch ratios were measured in one nucleus per slice.
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5.2.3 Measurement of deformation of multiple nuclei in each sample slice

The deformation of multiple nuclei in 6 slices were also measured additionally (3

for the circumferential stretch and 3 for the axial) to evaluate its variability. For

each slice, 8–10 nuclei were chosen and their length and width before and after

stretching at Λx = 1.37 were measured (Tables 5.1 and 5.2). The chosen nuclei for

each chosen slice are shown in Figs. 5.8 and 5.9. There was no significant

difference among the slices #1–3 and among the slices #4–6. Stretch ratio of the

nuclear length in the circumferential stretch (1.097 ± 0.058, n=27 in slices #1–3) was

significantly larger than that of the nuclear width in the axial stretch (1.039 ± 0.048,

n=30 for slices #4–6) (P < 0.001), supporting my conclusion, i.e., SMC nucleus is

more deformable when the artery wall is stretched in the circumferential direction.

Table 5.1 Stretch ratio of the nuclear length at Λx = 1.37 (circumferential stretch)
Nuc.#1 Nuc.#2 Nuc.#3 Nuc.#4 Nuc.#5 Nuc.#6 Nuc #7 Nuc #8 Nuc.#9 Nuc #10 Mean±SD

Slice #1 1.070 1.047 1.212 1.020 1.041 1.032 1.065 1.078 1.118 / 1.076 ± 0.060

Slice #2 1.126 1.110 1.120 1.117 1.045 1.135 1.181 1.119 1.190 1.071 1.122 ± 0.043

Slice #3 1.006 1.064 1.062 1.091 1.208 1.045 1.070 1.185 / / 1.091 ± 0.070

Table 5.2 Stretch ratio of the nuclear width at Λx = 1.37 (axial stretch)
Nuc.#1 Nuc.#2 Nuc.#3 Nuc #4 Nuc.#5 Nuc.#6 Nuc.#7 Nuc #8 Nuc.#9 Nuc.#10 Mean±SD

Slice #4 0.933 1.110 0.900 1.116 1.037 1.041 1.111 1.019 1.054 1.015 1.031 ± 0.074

Slice #5 1.018 1.118 1.053 1.010 1.020 1.020 1.014 1.082 1.012 1.002 1.035 ± 0.038

Slice #6 1.055 1.049 1.033 1.044 1.049 1.058 1.030 1.045 1.042 1.090 1.050 ± 0.017
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(a) Slice #1 for circumferential stretch, left(before), right (after)

(b) Slice #2 for circumferential stretch, left (before), right (after)

(c) Slice #3 for circumferential stretch, left(before), right (after)

Fig. 5.8 Slices in circumferential stretch for additional measurement.
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(a) Slice #4 for axial stretch, left(before), right (after)

(b) Slice #5 for axial stretch, left(before), right (after)

(c) Slice #6 for axial stretch, left(before), right (after)

Fig. 5.9 Slices in axial stretch for additional measurement.
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5.2.4 Comparison with the deformation of the homogeneous body

In the circumferential stretch, at x = 1.35, the homogeneous deformation �Nl
h

was 1.33 ± 0.02. All the longitudinal stretch ratios were smaller than the mean stretch

ratio assuming homogeneous deformation (black broken line in Fig. 5.3(a)), and Nl

was significantly smaller than �Nl
h (P < 0.001). The homogeneous deformation �Nt

h

was 0.77 ± 0.03 at x = 1.35. On the other hand, all the transversal stretch ratios

except for Slice 6 were larger, i.e., smaller compression, than the mean stretch ratio

assuming homogeneous deformation (id.), and their difference was close to being

statistically significant (P = 0.057).

In the axial stretch, the stretch ratio assuming homogeneous deformation �Nl
h was

0.93 ± 0.06. While the Nt is 1.06 ± 0.03 x = 1.35, the homogeneous stretch ratio �Nt
h

was much greater (P < 0.001) and is1.34 ± 0.01 at x = 1.35.

5.2.5 Comparison with the deformation of the AF network

Fig. 5.10(a) and (b) summarize the stretch ratios of the nucleus and the AF

network in the circumferential and axial stretch cases, respectively, at x = 1.35 for

measurements and theoretical values assuming homogeneous deformation. Although

there was no significant difference between the measurement and homogeneous

deformation of the AF, regarding the nucleus, Nl was smaller than both Al (P < 0.01)

and �Nl
h (P < 0.001) in the circumferential stretch case (a) and Nt was also smaller

than At (P < 0.02) and �Nt
h (P < 0.001) in the axial stretch case (b), indicating that

the nucleus was less deformable than the surrounding tissues. In addition, the nuclear
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length increased by 14.2%, which is 42.6% of the homogeneous strain in the

circumferential stretch, while nuclear width increased only 5.8%, which is 17.3% of

the homogeneous strain in the axial stretch, indicating that the nucleus was hardly

stretched in its transversal (width) direction compared to its longitudinal (length)

direction.

Fig. 5.10(c) summarizes the mean rotation angles of the nuclei and the AF

network against the two stretch cases. For the rotational angle analysis, an absolute

value of the ΔθN(i) or ΔθA(i) was utilized in Fig. 5.10(c). In the circumferential stretch,

the value of ΔθA was significantly greater than that of ΔθN (P < 0.02) in the

circumferential stretch case, whereas there was no significant change between ΔθA

and ΔθN (P = 0.34) in the axial stretch case. The results indicated that the AF network

exhibited a larger rotation than the nucleus against the circumferential stretch,

whereas they showed similar rotational angles against the axial stretch. No significant

differences were observed between the measurement and homogeneous values for

both the nuclei and the AF in both stretch cases, possibly for large SD values.
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(a) Stretch ratios in circumferential stretch

(b) Stretch ratios in axial stretch

Fig. 5.10 Summary of deformations of the nuclei and AF network against

circumferential and axial stretches. Difference between the nucleus and AF network

as well as actual deformations measured in the experiment and deformations

calculated from homogeneous assumption are compared. Statistical difference was

evaluated using paired Student’s t-test in the left four data and the right four data

separately.
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(c) Rotation angles in circumferential and axial stretches

Fig. 5.10 (Continued).
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5.3 Deformation and rotation in 3D

5.3.1 Nuclear deformation in the circumferential and axial stretch

Examples of 3D reconstruction of the nuclei are shown in Fig. 5.11. Using Imaris

software, the 3D nuclei was reconstructed by stacking 2D images of the nuclei at

every stretch step under the circumferential and axial stretches.

Fig. 5.12(a) and (b) show the stretch ratios of the nuclear longitudinal axis l in

the circumferential stretch and those in the nuclear transverse axis t in the axial

stretch, respectively. Nucleus d in (a) and nucleus l in (b) showed an irregular length

change. Detailed observation result revealed that these nuclei bent during the stretch

process for unknown reasons, and it was omitted from the further analysis. In 3D

analysis, Nl at x = 1.35 in the circumferential stretch was 1.088 ± 0.070 (n = 7)

while t at x = 1.35 in axial stretch was 1.005 ± 0.032 (n = 7). Ntwas significantly

smaller than l (P < 0.05), indicating that the nucleus was deformed less in the axial

stretch as in the 2D analysis. To compare 2D and 3D analyses, the average stretch

ratio lines in Figs. 5.3, 5.7 and 5.12 were fitted to the straight lines. Against the

circumferential stretch, the slope of the fitted line of nuclear length for the 3D

analysis in Fig. 5.12(a) was 0.242, i.e., the deformation of the nucleus was 24.2% of

the homogeneous deformation. The deformation of the nucleus in 3D analysis was

58.6% of the nuclear deformation in 2D analysis as the slope of the fitted line of

nuclear length was 0.414 in Fig. 5.3(a). On the other hand, against the axial stretch,

the slope of the fitted line of the nuclear width was 0.055 for the 3D analysis (Fig.
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5.12 (b)), i.e., the deformation of the nucleus was 5.5% of the homogeneous

deformation for the 3D analysis (Fig. 5.12(b)). The deformation of the nucleus in 3D

analysis was 39.2% of the nuclear deformation in 2D analysis as the slope of the fitted

line of nuclear length was 0.139 in Fig. 5.7(b). The nuclear deformation was smaller

in the 3D analysis than in the 2D analysis.

(a) Projected image inType1 specimen (b) 3Dmodeling result for the circumferential stretch

(c)Projected image inType3 specimen (d) 3D modeling result for the axial stretch

Fig. 5.11 Three-dimensional modeling of the smooth muscle cell nuclei reconstructed

from a stack of images. Stack of 2D images taken in Type 1 specimen (a) was used

for 3D reconstruction (b) for circumferential stretch. Stack of 2D images taken in

Type 3 specimen (c) was used for 3D reconstruction (d) for axial stretch.
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(a) Elongation of the longitudinal axis in response to circumferential stretch

(b) Elongation of the transversal axis in response to axial stretch

Fig. 5.12 Three-dimensional deformation of the smooth muscle nuclei in the

circumferential (a) and axial (b) stretches. Elongation of the longitudinal axis of the

nucleus was measured against the circumferential stretch (a) while that of the

transversal axes was measured against the axial stretch (b). Nuclei d and l were

omitted from the analysis because they were bent during stretch.
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5.3.2 Orientation angle change of the nucleus

Fig. 5.13 shows the 3D nuclear orientation against circumferential and axial

stretch cases. It described the angles between the nuclear longitudinal axis C and the

three axes (θ, R, Z) of Cartesian coordinates. In the circumferential stretch, φCθ

decreased from 15.4 ± 9.0° to 7.1 ± 3.3°, with a decrease of 8.2 ± 6.1° (n = 8) (P <

0.01) (a). On the other hand, φCR increased from 75.5 ± 9.1° to 84.0 ± 2.8°, with a

decrease of 9.0 ± 6.5° (P < 0.01) (c). Although both φCθ and φCR altered significantly,

φCZ did not exhibit the significant change in response to the circumferential stretch at

Λx = 1.35 (e). The results indicate that the nuclei with various orientation angles at no

load state rotated mostly in the θ–R plane to align in a uniform direction close to the

circumferential axis. The change in nuclear orientation was not significant in the axial

stretch when all the data were considered. Since the nucleus m tended to exhibit the

reverse change and the data was partly missing for the nucleus l, the analysis was

continued without considering these two cases for Λx = 1.35. φCZ decreased slightly

from 86.8 ± 2.3° to 81.7 ± 2.8°, with a decrease of 5.1 ± 0.5° (n = 6) (P < 0.05) (b),

and φCR from 82.3 ± 5.3° to 79.2 ± 7.5°, with a decrease of 3.1 ± 2.2° (P < 0.05) (d).

φCθ increased from 9.0 ± 4.7° to 15.9 ± 6.7°, with an increase of 6.9 ± 2.0° (P < 0.01)

(f). Although most of the nuclei rotate similarly in each axis, no alignment to a

uniform direction was observed in the axial stretch.
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(a) To stretch direction (θ) (b) To stretch direction (Z)

(c) To perpendicular-to-stretch direction (R) (d) To perpendicular-to-stretch direction (R)

(e) To another perpendicular-to-stretch direction (Z) (f) To another perpendicular-to-stretch direction (θ)

Fig. 5.13 Rotations of the smooth muscle cell nucleus in the circumferential (a), (c), (e) and axial (b), (d),

(f) stretches. Angles between the longitudinal axis of the nucleus C and the circumferential , radial R, or

axial Z directions are depicted.
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5.3.3 Comparison between 3D and 2D results

The nucleus was found to be elongated more when stretched in its longitudinal

direction than in its transverse direction in the 2D analysis. The elongation of nuclear

longitudinal axis in the circumferential stretch was 14.2 ± 7.3% which was 2.4 times

higher than that of nuclear transversal axis in the axial stretch (5.8 ± 3.4%) at x

Fig. 5.10). It indicates that nucleus is more elongated and sensitive to the

circumferential stimulation as it is reported in the previous study (Fan et al., 2019).

Similar results were obtained from the 3D analysis (Fig. 5.12), but the deformations

as well as their variations were much smaller than the 2D analysis. As described in

Section 5.3.1, the elongation of the nuclear length in the 3D analysis was 58.6 % of

the 2D analysis, while the broadening of the nuclear width in the 3D analysis was

39.2 % of the 2D analysis. Larger values were obtained in the 2D analysis than 3D

analysis.
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5.4 Discussion

The morphology of the SMC nucleus changed differently against the

circumferential and axial stretches. The nuclei became longer against the

circumferential stretch, whereas they became wider in the axial stretch.

In either circumferential or axial stretch case, the stretch ratio of the AF is larger

than the nuclei. Deformation of the AF network was not significantly different from

the theoretical deformation of the homogeneous materials in any deformation

conditions shown in Figs. 4.3 and 4.6, although the variations among the slices were

large. This may indicate that the AF network deforms similarly to the whole tissue.

In contrast, the deformation of the nucleus was generally smaller than the

homogeneous deformation as shown in Figs. 5.3 and 5.7. The average of the

measured strain, i.e.,  – 1, was about 43%, 68%, 33%, and 17% of the homogeneous

strain for Figs. 5.3(a), 5.3(b), 5.7(a), and 5.7(d), respectively. These results may

indicate that the nucleus is stiffer than its peripheral tissue or that the connection

between the nucleus and the peripheral tissue is weak.

When a material is stretched in one direction, it shrinks in the direction

perpendicular to the stretch direction due to the Poisson effect. This happened both in

the nucleus and AF network. When stretched in the circumferential direction, the

nuclei (Fig. 5.3(b)) and AF network (Fig. 4.3(b)) shrunk almost similarly to that of

homogeneous body, and there was no significant difference among t, t, �Nt
h , and

�At
h at x = 1.35 (Fig. 5.10(a)). While in the axial stretch, the AF network shrunk

almost similarly to the homogeneous body (Fig. 4.6(a)), but the nuclei shrunk much
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less than that of the homogeneous body (Fig. 5.7(a)). As a result, lwas significantly

larger (P < 0.05) than l at x = 1.35 (Fig. 5.10(b)). This may indicate that the

nucleus is not subjected to the compressive force in the longitudinal direction of the

cell.

Larger values obtained in the 2D analysis may be caused by the rotation of the

nucleus during stretch (Fig. 5.13). For example, the longitudinal axis of the nucleus

rotated mostly in the θ-R plane. Rotation was larger in the nucleus with higher φCθ,

and the largest rotation was obtained in the nucleus b which rotated from φCθ = 27° to

10° (a). This rotation corresponds to 10% elongation in the 2D analysis. The wide

variation of the elongation is caused by the variation of φCθ before stretch. Thus, the

difference between 2D and 3D results can be explained by the rotation of the nucleus.

It also implies that 3D analysis is necessary to understand the deformation of the

nucleus in response to the mechanical stretch. The 3D analysis showed that the

longitudinal deformation of the nucleus against the circumferential stretch of the

tissue was 18 times higher than its transversal deformation against the axial stretch,

indicating that the relative insensitivity of the nucleus in the axial stretch is much

higher than one estimated from the 2D analysis.

The relatively small deformation of the nuclei might also be caused by shrinking

of their image due to photobleaching. The time lapse photobleach test was performed

to simulate the stretch test, and found that the deviation caused by the photobleach

was less than 0.5% (n = 4, P < 0.05) within 1.5 h. Hence, the effect of photobleach

is thought to be minimal.
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Chapter 6 Discussion

6.1 Possible causes of the difference in the strain between the

nucleus and entire cell

According to the results, in both stretch cases, deformation of AF was not

significantly different from the entire cell, while nuclear deformation was smaller than

AF or the cell body. Why is the nuclear deformation smaller than the tissue

deformation? One of the possible reasons might be that the nucleus is stiffer than the

rest of the cell. In 2002, Caille et al. reported that the elastic modulus of the nucleus is

10 times higher than that of the cytoplasm (Caille et al. 2002). Since then, there have

been many studies on the mechanical properties of the nucleus, and it has been

reported that the Young’s modulus of the nucleus varies with conditions such as cell

types (Li et al. 2015; Zhou et al. 2018), pathological states (Li et al. 2015; Wang et al.

2018; Fischer et al. 2020), activity of the myosin (Martens et al. 2008), and the

experiment conditions (Rowat et al. 2006; Zhou et al. 2018). However, no conclusive

results have been obtained especially for the nucleus of the cells in the tissues.

In addition to their difference in Young’s modulus, another possible explanation

might be that the connection between the nucleus and cell body is sparse and weak,

which may cause smaller deformation of the nucleus than the cell body.
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6.2 Difference in the mechanical properties of the nucleus and cell

body cannot explain the difference in strain

To evaluate the effects of higher stiffness of the nucleus, deformations of the cell

and the nucleus were estimated with a simple cylindrical model (Fig.6.1).

Let us assume that the cell body is a cylinder with the length L0, radius R0, and

Young’s modulus EC, and the nucleus a cylinder with the length l0, radius r0, and

Young’s modulus EN, located at the center of the cell body (Fig.6.1), the cell consists

of three parts marked with I, II, and III, and the partsⅠ andⅢ are symmetrical to the

part Ⅱ. When the cell is stretched by the force F, the lengths of the cell and the

nucleus become L and l, respectively, the nucleus and the cell body in the part II bear

force FN and FC, respectively, and no shear deformation occurs during stretch and

stresses are nominal for simplicity.

For the cell body partⅠ (= partⅢ):

� = � ∙ �0
2∙ �CⅠ (6.1)

�CⅠ = �C ∙ �CⅠ, (6.2)

�CⅠ = �−� /2− �0−�0 /2
�0−�0 /2

, (6.3)

where �C and �CⅠ represent the stress and strain of the cell body, respectively.

For the nucleus in partⅡ:

�N = � ∙ �0
2∙ �N (6.4)

�N = �N ∙ �N (6.5)

�N = �−�0
�0

(6.6)
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where �N and �N represent the stress and strain of the nucleus, respectively.

For the cell body in partⅡ:

�C = � ∙ (�0
2− �0

2) ∙ �CⅡ (6.7)

�CⅡ = �C ∙ �CⅡ (6.8)

�CⅡ = �−�0
�0

(6.9)

where �CⅡ and �CⅡ represent the stress and strain of the cell body in part Ⅱ,

respectively.

From the balance of forces, I obtain

� = �C + �N. (6.10)

From Eqs.6.1–6.10, I obtain

�0
2 ∙ �C ∙ (�−�)−(�0−�0)

(�0−�0)
= �0

2 ∙ �N ∙ �N + (�0
2 − �0

2) ∙ �C ∙ �N. (6.11)

Strain of the whole cell is expressed as

�all = �−�0
�0

. (6.12)

If we assume the Young’s modulus of the nucleus is k times higher than that of the cell

body,

�N = � ∙ �c (k > 1). (6.13)

Relative strain of the nucleus to the whole cell is obtained by taking Eqs.6.6, 6.13 into

Eq.6.11 to eliminate L and l, respectively, and by using Eq.6.13,

�N
�all

= �0 �0
2

�0 �0
2∙+ �0−�0 �0

2(�−1)
(6.14)

Roughly speaking,

r0 = 0.3 R0 and l0 = 0.3 L0. (6.15)

We thus obtain
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�N
�all

= 1
1+0.063(�−1)

. (6.16)

This equation indicates the relative strain of the nucleus decrease only slightly with an

increase in the Young’s modulus of the nucleus. This equation indicates the relative

strain of the nucleus decrease only slightly with an increase in the Young’s modulus of

the nucleus. For example, the nuclear strain is 94%, 80%, and 64% of the whole cell

strain even if the nucleus is stiffer than the rest of the cell by 2, 5, and 10 times,

respectively.

In the 3D analysis, the deformation of the nucleus was only 24.2% and 5.5% of

the homogeneous deformation in the circumferential and axial stretch, respectively, as

described in the section 5.3. To attain such small deformations ( �N
�all

= 24.2% and

5.5%), the nucleus needs to be extraordinary stiffer (k = 51 and 274, respectively)

than the rest of the cell according to Eq.6.16, which is hard to imagine. Thus, it is

difficult to explain the very small deformation of the nucleus when the artery wall is

stretched in the axial direction with the difference in the elastic modulus of the

nucleus and the whole cell. It is difficult to explain the anisotropic response of the

nucleus with this model, either.
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Fig. 6.1 A simple cylindrical cell model estimating the difference in strain between

the cell body and the nucleus. Force applied to the cell body in the part II is FC in total,

but was divided into two FC/2s for 2D drawing.
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6.3 Anisotropic nuclear deformation against different stretches:

Qualitative explanation

The anisotropic deformation of the nucleus might because the nucleus is

connected to the outside of the cell anisotropically. According to my observation

results in chapter 4 and 5, the nuclei are aligned in the vascular circumferential

direction, the AFs align mostly in the longitudinal direction of the cells. A simple and

novel cell model of the nucleus and the AFs (Fig.6.2) is proposed, which enables to

explain the anisotropic response of the nuclear deformation. When the cell is stretched

in its longitudinal direction, the nucleus is also easily stretched via the AFs (Fig.6.2

lower half). On the other hand, while the cell is stretched in its transversal direction,

the nucleus is not stretched efficiently because the stretch direction is perpendicular to

the direction of the AFs (Fig.6.2 upper half).

To estimate the connection between the AF network and nucleus, changes in the

width of the actin bundles adjacent to the nucleus was measured at three positions

along the nucleus in specimen type 2 as shown in Fig.6.3. Actin bundle boundaries

(orange lines) were identified manually and the distance between the boundaries was

measured at three positions. Stretch ratios in response to the axial stretch as

summarized in Table 6.1. The stretch ratio measured at the center of the nucleus was

significantly smaller than the average measured at both sides, indicating the lateral

connection between the nucleus and the actin filament bundle. The result revealed that

the distance between the AFs increased more in the region where the nucleus is absent
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than at the central region attached to the nucleus. This may also support the model in

Fig.6.2.

Anisotropic nuclear deformation against different stretches may also raise an

important issue in the measurement of the mechanical properties of the nucleus. The

present results indicate that nuclear deformation is highly dependent on the alignment

of the actin filaments. Thus, it is necessary to reevaluate the reported elastic modulus

of the nucleus considering the alignment of actin filament.

Fig. 6.2 A novel simplified model of a cell explaining anisotropic response of the

nuclear deformation against mechanical stretching.
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(a) x = 1.0

(b) x = 1.39

Fig. 6.3 Change in the width of actin bundles at the upper, central and lower

positions of the nucleus before (a) and after stretch (b) in the axial direction.

Table 6.1 Stretch ratios measured at the blue lines in Fig.6.3.

Sample (�1
' /�1) (�2

' /�2) (�3
' /�3) [(�1

' /�1) + (�3
' /�3)]/2

A 1.144 1.051 1.406 1.275
B 1.206 1.130 1.390 1.298
C 1.441 1.191 1.209 1.325
D 1.155 1.084 1.229 1.192

Mean ± SD 1.237 ± 0.139 1.114 ± 0.061 1.309 ± 0.104 1.273 ± 0.06*

*P < 0.01 vs (�2
' /�2).
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6.4 Anisotropic nuclear deformation against different stretches:

Quantitative analysis

Next, the issue focuses on quantitatively illustrating the smaller deformation of the

nucleus in the axial stretch with a model. Although the model in Fig.6.2 can illustrate

the circumferential and axial stretch cases separately and qualitatively, it is still a

two-dimensional model without considering the initial orientation angle of the nucleus

and AF in the θ-R plane.

Based on the observation, a simple three-dimensional model of a smooth muscle

cell sandwiched with a pair of elastic lamellas, i.e., lamellar unit (Fig. 6.4) has been

proposed, and the deformation of the nucleus in response to stretch in the

circumferential, θ, and the axial, Z, directions have been calculated. This model can

explain the difference between the circumferential and axial stretch cases at the same

time.

The model consists of a cuboid cell body in which a cuboid nucleus is placed

obliquely with an angle 0 at its center. The nucleus is connected to the cell

membrane with four identical AFs aligned in parallel to the nucleus. The cell body

as well as the nucleus are assumed to be incompressible, homogenous, and isotropic.

The no-load length, width, and height are LN0, WN0, and WN0 , respectively, for the

nucleus, and LC0, 3WN0, and 3WN0, respectively for the cell body. The length of the

actin filaments was LA0 for the no-load state. The stiffness of the nucleus and each

actin filament was assumed to be KN and KA, respectively.
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Circumferential stretch case

In the circumferential stretch case, the model was projected to the R-θ plane (Fig.

6.5). The nucleus is connected to the cell body with two AFs for each side.

Subscripts of dimensions change from 0 to 1 in response to the circumferential stretch.

To meet the condition of my experiment, the cell body was assumed to be stretched

1.35 times the original length in the longitudinal direction. So, the stretch ratio of

the cell body in the circumferential stretch �Cl is

�Cl = �C1
�C0

= 1.35. (6.17)

Because the cell body is incompressible and isotropic,

�C1= �C0 �ct = �C0
1

�cl
, (6.18)

where �ct is the stretch ratio of the width of the cell body.

Tension applied to the nucleus, FN1, is obtained as

�N1 = �N1
�N0

− 1 �N = �Nl − 1 �N , (6.19)

where �Nl is the stretch ratio of nuclear longitudinal length, i.e.,

�N1 = �N0 ∙ �Nl (6.20)

Tension applied to the actin filament, FA, is

�A1 = �A1
�A0

− 1 �A = �Al − 1 �A , (6.21)

where �Al is the stretch ratio of each AF, i.e.,

�A1 = �A0 ∙ �Al , (6.22)

From the balance of forces,

2�A1 =FN1. (6.23)

From Eqs. 6.19–6.21, we obtain
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�Nl−1
2 �Al−1

= �A
�N

. (6.24)

Assume the nucleus is k times stiffer than the surrounding cytoskeleton, then

�Nl−1
2 �Al−1

= �A
�N

= 1
�
, i.e., �Al = �Nl − 1 �

2
+ 1. (6.25)

For simplicity, let us assume that the AFs have the same length with the nucleus at

no-load state:

�A0=�N0. (6.26)

From the geometrical relationship in Fig. 6.5,

2�A0 + �N0
2 = �C0

2 + �C0
2 (6.27)

�C0= �C0 ∙ tan �0, (6.28)

2�A1 + �N1
2 = �C1

2 + �C1
2 (6.29)

By taking Eqs. 6.17, 6.18, 6.20, 6.22, 6.25, 6.26, 6.27, 6.28 into Eq. 6.29, we obtain

(1 + tan2 �0 ) 2�Al + �Nl
2 = 9 �Cl

2 + tan2 �0 ∙ 1
�cl

. (6.30)

By taking (6.25) into (6.30), a quadratic equation for �Nl is obtained. By solving it,

we get

�Nl =

9
1+tan2 �0

�cl
2 + tan2 �0

�cl
+� – 2

�+1
. (6.31)

Alignment angle of the nucleus α0 is around 15° in my study (Fig. 5.3(a) in Section

5.2.1) and it has been reported that the nucleus is approximately 5 to 10 times stiffer

than the surrounding cytoskeleton (Lammerding 2011). By taking α0= 15° and k =

8 into Eq. 6.31. Then the following equation is obtained

�Nl = 1.108 (6.32)

which is very close to the value obtained in the present study (�Nl = 1.088 for 3D,

1.14 for 2D).
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Axial stretch case

In the axial stretch case, the model (Fig.6.6) projected to the plane containing the

four actin filaments in Fig.6.4 was used for simplicity. It might be better to use a

model projected to the z- plane, but because the angle  seldom change in response

to the axial stretch and the cos 0 is close to unity (0.966), so this model was used.

Subscripts of dimensions change from 0 to 2 in response to the circumferential stretch.

The AF aligns in the longitudinal direction of the cell at no-load state and rotates β2 in

response to the axial stretch. To meet the condition of my experiment, the cell body

was assumed to be stretched 1.35 times the original length in the transversal direction.

So, the stretch ratio of the cell body in the axial stretch �Ct is

�Ct = �C2
�C0

= 1.35, (6.33)

and because the cell body is incompressible,

�'C2= �'C0 �Cl = �'C0
1

�Ct
. (6.34)

In the axial stretch, the nucleus is stretched both in the axial and circumferential

directions by the four actin filaments. Considering stress-strain relationship in 2D,

the deformation of the nucleus would be

��� = (��� − 1) = 1
�N

(�Nx − ��Ny) = �N0
2

�N
∙ ( 2�A2cos�2

�N0
2 − � 2�A2sin�2

�N0∙�N0
), (6.35)

��� = (λ�� − 1) = 1
�N

(�Ny − ��Nx) = �N0
2

�N
∙ ( 2�A2sin�2

�N0∙�N0
− � ∙ 2�A2cos�2

�N0
2 ), (6.36)

where   and  are nominal strain, stretch ratio, and nominal stress, respectively,

of the nucleus with the subscript l and t for the longitudinal and transversal directions,

respectively, KN and �N are the stiffness and the Young’s modulus of the nucleus,

respectively,  is the Poisson’s ratio and taken as 0.5, and FA2 is the tension in each
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AF applied to the nucleus which is defined as

��2 = λ�� − 1 ∙ �A, (6.37)

where λ�� is the stretch ratio of the actin filament and �A is its stiffness.

From Fig. 6.4, it is known that

n = tanα0 =WC0 /LC0 = WN0 /LN0 (6.38)

By taking Eqs.6.37, 6.38, and ν = 0.5 into Eqs.6.35 and 6.36, we obtain:

(��� − 1) = �A �Al−1
�N

(2cos�2 − � sin �2), (6.39)

(��� − 1) = �A �Al−1
�N

(2� sin�2 − cos �2). (6.40)

From Eqs. 6.25, 6.39 and 6.40,

sin �2 = � (���−1)+2(���−1)
3∙�∙ �Al−1

(6.41)

cos �2 = � 2(���−1)+(���−1)
3∙ �Al−1

(6.42)

From the geometrical relationship in Fig. 6.13,

sin �2 = �N0 �Ct−�N0 �Nt
2��0 �Al

= �N0
��0

�Ct−�Nt
2�Al

(6.43)

cos �2 =
�C0

1
�Ct

– �N0�Nl

2��0 �Al
= �N0

��0
∙

3 1
�Ct

– �Nl

2�Al
. (6.44)

From another geometrical relationship in Fig. 6.6,

��0∙�Ct−��2
2

2
+ ��2−��2

2

2
= (�A2)2 = (�A0 �Al)2, i.e., (6.45)

�2 �Ct − �Nt
2 + 3 1

�Ct
–�Nl

2

= 4 ∙ (�Al)2 (6.46)

From Eqs. 6.41 and 6.43,

�Al−1
�Al

= 2� (�Nl−1)+2(�Nt−1)
3�2 �Ct−�Nt

. (6.47)

From Eqs. 6.42 and 6.44, we obtain

�Al−1
�Al

= 2� 2(�Nl−1)+(�Nt−1)

3 3 1
�Ct

∙− �Nl
. (6.48)
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Eqs. 6.46-6.48 are three independent equations for three variables �Al , �Nl , and �Nt ,

and we can solve these equations numerically. By taking n = tan15°, k = 8 and �Ct =

1.35 into them, we obtain

�Nt≈1.020, (6.49)

which is much smaller than the Nl in the circumferential stretch (1.108) and almost

similar to the present results (Nt = 1.005 for 3D study and 1.06 for 2D study). This

model explains the deformation behavior of the nucleus not only qualitatively but also

quantitatively and supports the hypothesis on anisotropic deformation of the nucleus.
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Fig. 6.4 Simple model of a lamellar unit at no-load state.

Fig. 6.5 The cell and the nucleus subjected to the circumferential stretch.

Fig. 6.6 The cell and the nucleus subjected to the axial stretch.
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6.5 Comparison of the present results with biaxial stretch case

In this study, no constraint was applied to the specimen in the axial directions for

the circumferential stretch, and no constraint was applied to the specimen in the

circumferential directions for the axial stretch case. But in a physiological state, the

aortic wall is stretched in both circumferential and axial directions, and the

intraluminal pressure is also applied. What happens in such a case? Let us assume

that a thick section of the aorta is being stretched biaxially as shown in Fig.6.7, and

this section including the nucleus can be regarded as an isotropic material. According

to the inverted form of the Hooke’s law for an isotropic elastic solid (Fung 1993):

�� = 1
�

�� − �(�� + ��) , (6.50)

�� = 1
�

�� − �(�� + ��) , (6.51)

�� = 1
�

�� − �(�� + ��) , (6.52)

where the �� ,�� and �� indicate the strain of the specimen in circumferential, axial

and radial directions; the �� ,�� and �� indicate the stress in circumferential, axial

and radial directions; � refers the Poisson’s ratio; E is the Young’s modulus of the

specimen.

In this study, for example, �� =�� = 0 in the case of circumferential stretch and

thus  = 0.40. While in the physiological state, �� is positive and has a value of

about 127 kPa, �� is negative and has a value about 70 kPa (Matsumoto and Hayashi,

1996), and the �� ≈ 0.61. Thus, circumferential strain used in this study was 34.4%

smaller than the value expected in a physiological state. So, the future experiment may
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concentrate on the biaxial stretch case, which mimics the physiological state more

closely.

Fig. 6.7 Hypothetical biaxial stretch of a type 2 slice. Z, vascular axial direction; θ,

vascular circumferential direction; R, vascular radial direction.
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6.6 Deformation of the nucleus and the cell body under

physiological condition.

To examine whether the cell viability affects the results obtained in the present

study, an additional experiment in which living cultured cells were stretched was

performed in their longitudinal and transversal directions.

In short, smooth muscle cells obtained from genetically engineered mice whose

actin filaments were combined with a green-fluorescent protein (GFP) were plated in

a PDMS chamber (STB-CH-0.2-H4, STREX, Japan) and cultured for 24 hours. Cell

nuclei were stained with DRAQ5 (Thermo Fisher Scientific Inc., USA). Then the

cells on the chamber were deformed under a microscope maintained at 38°C by

stretching the chamber by 20-25%. Elliptical cells with elongated nucleus (ratio of

major axis to minor axis is larger than 1.5) and aligned in the stretch direction or

perpendicular to the stretch direction were selected and the deformation of the cell

body and the nucleus were measured as shown in Fig. 6.8. Results were summarized

in Tables 6.2 and 6.3, in which the strain applied to the nuclei in the stretch direction

was normalized with the strain applied to the cell body, (ΛN-1)/(ΛC-1). The

normalized deformation of the nucleus was smaller than 1 for both cell types,

indicating that the nucleus is less deformable than the cell body, which corresponds to

my conclusion in chapters 3-5. And also, it was significantly smaller in the cells

aligned perpendicular to the stretch direction than in the cells aligned in the stretch

direction (P < 0.001), indicating that even in cultured alive cells, the nucleus is less
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deformable in its transversal direction (vascular axial direction) than its longitudinal

direction (vascular circumferential direction), which corresponds to my conclusion.

Table 6.2 Relative deformation of the nucleus to the cell body in the cells aligned in
the stretch direction.

Cell #1 Cell #2 Cell #3 Cell #4 Cell #5 mean ± SD
(ΛNl -1)/(ΛCl -1) 0.873 0.535 0.562 0.822 0.823 0.723 ± 0.161

Table 6.3 Relative deformation of the nucleus to the cell body in the cells aligned
perpendicular to the stretch direction.

Cell #6 Cell #7 Cell #8 Cell #9 Cell #10 mean ± SD
(ΛNt-1)/(ΛCt-1) 0.195 0.158 0.135 0.206 0.230 0.185 ± 0.038

(a) A typical cell aligned in the stretch direction (circled)

(b) A typical cell aligned perpendicular to the stretch direction (circled)

Fig. 6.8 Example of cells whose deformation in the stretch direction was measured
for the nucleus and cell body. z indicates the deformation of the membrane.
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6.7 Physiological implications: Anisotropic nuclear deformation

causes the anisotropic response of aortic media to hypertension

When the arterial hypertension occurs, the stress decreases in the axial direction

while it remains unchanged in the circumferential direction of the aortic wall

compared to the normotensive aorta at a macroscopic viewpoint (Matsumoto et al.

1996). Vaishnav et al (1990) reported a reduced axial extension ratio of the

hypertensive aortic segment compared to the normotensive one. They concluded that

the tissue growth in the axial direction tends to increase the vessel wall thickness

which eventually reduces the axial and circumferential stress. Similar mechanism was

also pointed out by Matsumoto et al. (1996) but neither of them discussed the

underlying mechanism explaining the difference in the directions. Taking the

mechanotransduction via the nucleus (Janota et al., 2000) into account, it is

hypothesized in this dissertation that such anisotropic response is caused by

anisotropic deformation of the nucleus.

As it has been proposed in chapter 1, it can be reasonably assumed that the

deformation of the nucleus causes the enhancement of protein synthesis when

hypertension occurs. According to the obtained results in this dissertation, the nucleus

is sensitive to the circumferential stimuli but not the axial stimuli. Hence, it is the

circumferential stimulation that deforms the nucleus to enhance the protein synthesis,

further inducing the vessel hypertrophy.
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6.8 Limitations and future works

In this work, the normotensive rabbit aortas were used to perform the tensile tests

because according to my hypothesis in Chapter 1, the hypertrophy starts from the

normal state of the vessel via the enhanced stimulation of normal SMC.

The experiment was performed at room temperature within 24h after the tissue

was harvested. Although the sliced specimens were immersed in PBS solution, the

experimental condition was different from in vivo state. Besides, any SMC activities

were not detected. Thus, the behavior of the SM nuclei obtained in the present study

might be different from that obtained in a physiological condition. However, in

Section 6.6, an additional stretch experiment with living cultured cells in a

physiological condition was performed. The nuclear behavior obtained in the

present study was similar to that obtained in Chapters 3–5. Thus, it is reasonable to

conclude that the anisotropic behavior of the SM nucleus may occur in the

physiological condition.

In the physiological state, the thoracic aorta is stretched in both the axial and

circumferential direction to about 1.4 times to the no-load length and blood pressure is

applied as a compressive stress in the radial direction. These multiple axis loading

conditions were discussed in Section 6.4 and that the nuclear deformation in the

physiological state should be smaller than that obtained in this study. Therefore, the

conclusion may not be completely recapitulating the actual situation. As the biaxial

experiment was very difficult to conduct according to the existing conditions, it has

not been performed.
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Chapter 7 Conclusions

As it has been pointed out in Chapter 1, soft biological tissues consist of various

materials with a wide variety of Young’s modulus and they have microscopic residual

stress caused by such heterogeneity. Thus, deformation of tissues is highly

complicated at the cell level, and it is important to measure the microscopic

deformation of real tissues directly.

In this work, tensile tests of the aortic slices were performed in the circumferential

and axial directions while observing the nuclear deformation both in 2D and 3D as

well as the deformation of the AF network. The results showed that 1) the

deformation of the nucleus is smaller than the macroscopic deformation of the tissue;

2) the deformation of the actin filaments was almost similar to that of the tissue; 3) the

deformation of the nucleus is especially small when the cell is stretched in the

direction perpendicular to its longitudinal (transversal) direction. Based on the

deformations observed in the present study and the nanostructures of the cell reported

in the literature, a novel cell model that explains the smaller nuclear deformation in

the axial stretch was proposed. The deformation of this model corresponded well to

the real deformation of the actin filament network. The minute deformation of the

nucleus in response to the transversal stretch indicates the nucleus is insensitive to the

deformation of the tissue in this direction. These findings might lead to a better

understanding of that the artery walls do not maintain the axial stress unchanged

while they maintain the circumferential stress in response to hypertension.
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In this work, the normotensive rabbit aorta was used. Future work contains the

stretching experiment with specimens obtained from hypertensive animals.

Hypertrophy causes the increase in SMC volume and extracellular matrix (ECM)

(Wiener et al. 1977; Owens and Schwartz 1983; Matsumoto et al. 1999), and such

volume increase happens in radial and axial directions concomitantly (Matsumoto and

Hayashi 1996). So, exploring the difference in the deformability of the nuclei of

normotensive and hypertensive SMC will be meaningful to elucidate the

mechanotransduction pathway to anisotropic response of aortic media to

hypertension.

The spatial deformation of the AF network in a 3D view may also become a

meaningful issue. One can use more advanced microscope, for example ZEISS LSM

880 confocal microscope (Carl Zeiss Corporation, Germany) to get stack images of

the actin filaments during tensile test, then, input the images into Imaris to build the

3D model of the AF. Then, one can measure the spatial length and orientation angle

change of the AF during stretch.
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Appendix

Appendix 1
%%Matlab code for calculating Green strain of the smooth muscle layers.

function X = Calculation(p)

XO0=p(1);

YO0=p(2);

XP0=p(3);

YP0=p(4);

XQ0=p(5);

YQ0=p(6);

XO1=p(7);

YO1=p(8);

XP1=p(9);

YP1=p(10);

XQ1=p(11);

YQ1=p(12);

LOP0=sqrt((XP0-XO0)^2+(YP0-YO0)^2);

LOP1=sqrt((XP1-XO1)^2+(YP1-YO1)^2);

LPQ0=sqrt((XQ0-XP0)^2+(YQ0-YP0)^2);

LPQ1=sqrt((XQ1-XP1)^2+(YQ1-YP1)^2);

LOQ0=sqrt((XQ0-XO0)^2+(YQ0-YO0)^2);

LOQ1=sqrt((XQ1-XO1)^2+(YQ1-YO1)^2);

dOPX=abs(XO0-XP0);
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dOPY=abs(YO0-YP0);

dPQX=abs(XP0-XQ0);

dPQY=abs(YP0-YQ0);

dOQX=abs(XO0-XQ0);

dOQY=abs(YO0-YQ0);

A=[2*dOPX^2 2*dOPX*dOPY 2*dOPY^2;2*dPQX^2 2*dPQX*dPQY

2*dPQY^2;2*dOQX^2 2*dOQX*dOQY 2*dOQY^2];

B=[LOP1^2-LOP0^2;LPQ1^2-LPQ0^2;LOQ1^2-LOQ0^2];

C=horzcat(A,B);

if rank(A)==3&&rank(C)==3

disp('one solution.')

syms x1 x2 x3;

f1=2*x1*dOPX^2+2*x2*dOPX*dOPY+2*x3*dOPY^2-(LOP1^2-LOP0^2);

f2=2*x1*dPQX^2+2*x2*dPQX*dPQY+2*x3*dPQY^2-(LPQ1^2-LPQ0^2);

f3=2*x1*dOQX^2+2*x2*dOQX*dOQY+2*x3*dOQY^2-(LOQ1^2-LOQ0^2);

[x1,x2,x3]=solve(f1,f2,f3)

a=x1;

b=x3;

I(1)=sqrt(2*a+1);

I(2)=sqrt(2*b+1)

else if rank(A)==rank(C)&&rank(C)<3

disp('Endless solution.')

a=x1;

b=x3;

I(1)=sqrt(2*a+1);

I(2)=sqrt(2*b+1)
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else

rank(A)~=rank(C)

disp('No solution.')

end

end

Appendix 2

%%Matlab code for calculating AF stepwise deformation.

%% Part one: Searching;

P=[];

A=0; %%for recording the biggest value of the corrcoef;

for idx=1:size(searchregion,1)-size(example,1)+1 %%search in line;

for idy=1:size(searchregion,2)-size(example,2)+1 %%control the volume;

S=imread('searchregion.tif','PixelRegion',{[idx,(idx+(size(example,1)-1))],[idy,(idy+(

size(example,2)-1))]});

unfold1=double(example(:));

unfold2=double(S(:));

R=corrcoef(unfold1,unfold2)

R(1,2);

var(unfold1);

var(unfold2);

A=R(1,2)/(var(unfold1)*var(unfold2)); ;

P=[P,A];

end
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end

Position = find(P==max(max(P)))

a = rem(Position,(size(searchregion,2)-size(example,2))+1);

b = (Position-a)/(size(searchregion,2)-size(example,2)+1);

Objectimage

=

imread('searchregion.tif','PixelRegion',{[b+1,b+1+size(example,1)-1],[a,a+size(exam

ple,2)-1]});

%% show the photo depend on the coordinates got;

imshow(Objectimage);

%%Part two: Matching;

A= before[-(size(before,2)/2),(size(before,2)/2];

B= after[-(size(after,2)/2),(size(after,2)/2];; %% input the two photo been

searched and named A and B;

C = 0;

P=0;

I=0;

J=0; %% C is used for saving value of P, I and J used for saving the maxi and j;

interval=0.005;

a=0.005;

b=0.2; %% the upper and bottom value for;

for i = a:interval:b

for j = a:interval:b

translate_m = affine2d([1+i 0 0;0 1-j 0;0 0 1]); %% make a trasnform
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matrix;

before_t = imwarp(A,translate_m);

if rem(size(before_t,2)-size(before,2),2)==0

cut_before_t = imcrop(before_t,[((size(before_t,2)-size(before,2))/2+1)

1 (size(before,2)-1) (size(before_t,1)-1)]);

if rem(size(before,1)-size(before_t,1),2)==0

cut_after = imcrop(after,[1 (size(after,1)-size(before_t,1))/2+1

size(after,2)-1 size(before_t,1)-1]);

else

cut_after = imcrop(after,[1 ((size(after,1)-size(before_t,1))-1)/2+1

size(after,2)-1 size(before_t,1)-1]);

end

else

cut_before_t = imcrop(before_t,[((size(before_t,2)-size(before,2))+1)/2+1

1 size(before,2)-1 size(before_t,1)-1]);

if rem(size(before,1)-size(before_t,1),2)==0

cut_after = imcrop(after, [1 (size(after,1)-size(before_t,1))/2+1

size(after,2)-1 size(before_t,1)-1]);

else

cut_after = imcrop(after, [1 ((size(after,1)-size(before_t,1))-1)/2+1

size(after,2)-1 size(before_t,1)-1]);

end

end

%% next, calculating correlation coeff.;

unfold1 = double(cut_before_t(:));

unfold2 = double(cut_after(:));
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R = corrcoef(unfold1,unfold2);

R(1,2);

var(unfold1);

var(unfold2);

P=R(1,2)/(var(unfold1)*var(unfold2));

if P>C

C = P;

I=i;

J=j;

end

end

end

disp(I)

disp(J)
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