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Abstract 
SiC grown by solution growth method has proven superior in crystal quality, but the 

mass production is still hindered by relatively low yield. The accurate description, 

understanding, and control of the unsteady phenomena in the growth system are 

essential to achieving a longer stable growth time and larger crystal thickness. This 

dissertation aims to numerically investigate the instabilities during long-term growth 

and provide engineering solutions.  

Firstly, a 2D global CFD model was built to simulate the evolution of crucible 

configuration due to crystal growth, crucible dissolution, and polycrystal precipitation. 

This model could estimate the maximum available growth time for a given control recipe. 

A machine learning-based optimization system was subsequently constructed to 

optimize an adaptive control recipe, which corresponds to a thicker crystal with flatter 

growth front and longer available growth time. 

Secondly, the evaporation and reaction of aluminum were simulated to study the 

instability of solution chemical composition during long-term growth. The detailed 

transport path of aluminum in the growth system was determined by thermodynamic 

calculation. The constructed model could predict the evolution of aluminum 

concentration inside the solution. Moreover, an improved geometric design was 

proposed to suppress evaporation and better preserve the aluminum in the solution 

during growth. The effect of the improved design was demonstrated both numerically 

and experimentally. 

Finally, a simulation model was built that can predict the evolution of macrostep 

morphology on the entire crystal surface under the given control parameters. This model 

could be applied to investigate the effect of macroscopic control parameters on the step 

morphology, and the simulation results were validated by the experiments. Most 

importantly, through this model, a more sophisticated control pattern was designed and 

improved. The improved control pattern could result in uniform step morphology on the 

entire crystal surface, as well as freely-controlled step bunching level during the long-

term growth process. 
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1. Introduction 

1.1 Background 

Today, global warming is an approaching threat to human society and global ecology, 

and is considered related to the greenhouse gases emitted from human activities. To 

reduce CO2 emission and save energy, one of the most important tasks is to increase the 

utilization efficiency of electric power, or in the other words, reduce electricity waste.   

From the electric power generation to end users’ utilization, the electric power is 

undertaken regulation and conversions, including AC-DC, voltage, current, and 

frequency conversion, to better fit the load requirement of various electronic devices. 

However, about 26% of energy is lost in this delivery and conversion process [1]. The 

devices that achieve these conversions are called power devices. Silicon (Si), known as 

the most famous semiconductor material owing to its high crystal quality and economic 

efficiency, has acted as the main material for power devices ever since first being applied 

in thyristors in 1956. In the 1980s, the rapid progress of Si-based power devices, namely, 

GTOs (Gate Turn-off Thyristor), light-triggered thyristors, MOSFETs (Metal-Oxide 

Semiconductor Effect Transistor), IGBTs (Insulated Gate Bipolar Transistor), etc. enabled 

to meet various conversion power needs from small to large capacity. Since the 1990s, 

the research on power devices has focused on improving performance by introducing 

the LSI (Large-Scale Integration) microfabrication technology. However, the conventional 

Si-based power devices are gradually reaching their ultimate in low-loss and high-speed 

performance, limited by the physical properties and fabrication technologies. Since the 

Si technology is too mature for any potential revolutionary improvement, a new 

semiconductor material might be the solution to satisfy the increasing needs of high-

temperature, high-power, and high-frequency application in a harsh environment.  

Among the candidates, Silicon Carbide (SiC) is considered the most promising 

material for next-generation power devices due to its outstanding material properties. 

Compared with Si, 4H-SiC (one of the SiC polytypes) exhibits approximately 3 times 

higher bandgap, 10 times higher breakdown field, 2.7 times higher electron saturated 

drift velocity, and 3 times higher thermal conductivity [2], which enable SiC-based power 

devices to work under high temperature, high voltage, and high frequency with better 

conversion efficiency, smaller size, and simpler cooling system. 

In 2015, a SiC-based inverter was installed in a 1000 series Odakyu electric train and 

was verified to achieve an 80% reduction in size and weight of the power module as well 

as a 40% reduction in power consumption compared with the conventional train 
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equipped with Si-based power devices [3]. In 2018, Tesla Corporation applied SiC-based 

inverter in their Model3 series electric vehicles, as the first high-lass automobile 

manufacturer to integrate a full SiC power module in the product, and this innovation 

led to less inverter weight and size, more space for streamlining design and more 

available range [4]. Moreover, the superiority of SiC devices was reported in other 

application fields like power distribution network [5], electric aircraft [6], wireless power 

transfer [7], and solar power system [8]. Due to these remarkable performances and the 

development of relevant technology, the power SiC market grew rapidly, which was 541 

million dollars in 2019, and is expected to reach more than 2.5 billion dollars in 2025 [9]. 

However, regardless of the strong market demand and outstanding performance, 

two factors are limiting the competitiveness of the SiC industry. The first is the cost, 

where one 6-inch SiC wafer costs about 1000 dollars, while it costs less than 40 dollars 

for an 8-inch Si wafer. The other factor is the relatively low yield of the SiC crystal: only 

40-50% of the grown SiC crystal can be utilized for further processing due to the quality 

problem, while it is about 85% for Si crystal. To address these two issues, the SiC crystal 

growth method should be focused on and improved. 

1.2 Growth methods of SiC crystal 

The history that humans knew, understood, and grew SiC crystal is not short. In 1824, 

Bertelius [10] firstly proposed that a silicon-carbon bond might in fact exist in nature. In 

1892, Acheson invented a method to mass-produce SiC powder by heating the mixture 

of silica and coke to more than 2500 °C [11]. This so-called “the Acheson method” is the 

basis of SiC powder manufacturing nowadays, which is widely utilized for grinding 

abrasives. However, the SiC crystal yielded through this method cannot be applied in 

electronic fields due to impurity contamination, poor crystallinity, and small size. In 1955, 

a sublimation method, also known as the “Lely method” [12], was proposed and could 

produce SiC crystal with relatively high purity for the electronic application. However, 

this method was still limited by the crystal size and difficulty of controlling the polytype 

due to the nature of spontaneous nucleation. Although dramatic progress has been 

made in growth method and process ever since, nowadays quality and production 

efficiency are still two factors that hinder the mass-production of SiC crystal. To address 

these two problems, three mainstream growth techniques are under discussion, namely, 

the physical vapor transport (PVT) method, the hot temperature chemical vapor 

deposition (HTCVD) method, and the top-seeded solution growth (TSSG). 

1.2.1 PVT method 

Improved based on the Lely method, the PVT method is also known as the seeded 

sublimation method, and has been investigated since 1978 [13]. The schematic diagram 
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of this growth method is shown in Fig. 1.1. The polycrystalline SiC powder placed at the 

bottom of the crucible is heated up to around 2500 °C, and will decompose into vapor 

components (including Si, Si2C, Si2C, etc.) under the high temperature and low pressure. 

These vapors are then transported upward to the seed crystal under the effects of both 

diffusion and convection. To guarantee the convection, the growth system is normally 

filled with an inert gas like Ar with 50-5000 Pa in pressure. At the surface of seed crystal, 

which is manually controlled as 50-100 °C cooler than the bottom, the vapors re-

crystallize into SiC following the crystal orientation and polytype of the seed crystal. The 

typical growth rate is 0.1-2 mm/h [14-17]. Compared with the Lely method, the 

application of the seed crystal can suppress spontaneous nucleation and significantly 

improve the crystal size. 

 
Figure 1.1 Schematic of growing SiC by the PVT method. 

Owing to its relatively low cost and simple growth process, the PVT method has 

attracted remarkable research efforts and is the only method achieving commercial 

production of SiC crystal so far. Nowadays the diameter of commercial SiC wafers from 

the PVT method is 6-inch, while the 8-inch wafer sample has been developed and 

exhibited. Nevertheless, the drawbacks of PVT methods are non-neglectable. 

1. Since the growth furnace is a close system, several unstable factors including 

deposition on the area other than the seed crystal and changing of C/Si ratio in the 

source material may influence the growth condition and crystal quality during long-term 

growth; 

2. Due to the high growth temperature and the growth condition away from 

thermodynamic equilibrium, the defects densities including threading screw dislocation 

(TSD), thread edge dislocation (TED), basal plane dislocation (BPD), and micropipe in SiC 

crystal yielded by the PVT method are still at a high level, which significantly deteriorate 

the performance of power devices; 
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3. The diameter enlargement is difficult since the crystal mainly grows in the vertical 

direction. The development of larger-diameter crystals usually takes numerous efforts in 

both time and money; 

4. The growth of the p-type crystals is difficult since the normal p-type dopants like 

aluminum (Al) and boron (B) are volatile under high temperature and low pressure 

required by the PVT method. Therefore, the current commercial SiC products are mainly 

in n-type or semi-insulated type. 

1.2.2 HTCVD method 

As a potential alternative of the PVT method, the HTCVD method was proposed 

resembling the chemical vapor deposition (CVD) technique, the schematic of which is 

shown in Fig. 1.2. Unlike the PVT method, the growth system is open where SiH4 and 

C3H8 are streamed into the chamber as Si source and C source, respectively. By precisely 

controlling the vertical temperature distribution (normally more than 2000 °C) in the 

chamber, the two gases react with each other and form a “SiC cluster cloud” which will 

further decompose into the same gaseous species as the PVT method and transport 

upward for crystallization. Compared with the PVT method, this method can 

continuously feed the source material, precisely control the C/Si ratio, and achieve p-

type doping. Through HTCVD method, a growth rate of 0.3-0.6 mm/h was reported along 

with a high purity level [18-20]. However, the high cost for source gases and high 

requirement of control techniques are the two limitations of this method. 

 
Figure 1.2 Schematic of growing SiC by HTCVD method. 

1.2.3 TSSG method 

Growing directly from the liquid phase of the crystal is the most common and 

mature route to obtaining high-quality crystal because the growth condition is close to 

the thermodynamic equilibrium [21]. Unfortunately, this concept is not feasible for SiC 

since the stoichiometric SiC melt only exists, theoretically, at more than 3200 °C and 
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105 bar. Even if this extreme condition can be realized somedays, this high temperature 

will greatly narrow the differences in formation enthalpy of different polytypes, and 

therefore make it impossible to control the polytype stability during growth. To use a 

non-stoichiometric Si-C solution is not a good idea either, since the C solubility in pure 

Si melt is low (0.17 at% at 1800 °C) and will result in a low growth rate (less than 10 

𝜇m/h). Therefore, although being investigated as early as the 1960s, the route of 

growing SiC crystal from the liquid phase was gradually surpassed by the PVT method. 

Since the 21st century, this route has again attracted attention, owing to the 

advance in material science research. Although the growth rate of up to 200 𝜇m/h was 

reported using pure Si as the solvent under 2000 °C and 150 bar [22], it is the discovery 

of several additives in the solution that with no doubt enhanced the feasibility of 

growing SiC crystal from the liquid in a reasonable condition. These additives 

significantly increase the C solubility in solution, including Fe, Cr, Sc, Tb, Ti, etc. [23-27]. 

 
Figure 1.3 Schematic of growing SiC by TSSG method. 

Among the several liquid phase SiC crystal growth methods [22, 28, 29], the top-

seeded solution growth (TSSG) method, adapted from Czochralski (Cz) method, is 

especially suitable for obtaining large-size SiC bulk crystals and being applied in mass-

production. The schematic of the TSSG reactor is illustrated in Fig. 1.3. The graphite 

crucible acts not only as the container, but also as the heat and carbon source for the 

solution. The crucible wall is directly heated to about 1800 °C by the induction coil, 

where the carbon dissolves into the solvent due to high temperature and local 

undersaturation. The carbon is then transported under both convection and diffusion 

effects to the seed crystal in the center, where the temperature is designed relatively 

low and the carbon becomes supersaturated. This supersaturation provides the driven 

force for the crystallization of SiC at the surface of the seed crystal. 

Compared with other methods, the TSSG method has the following advantages. 
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1. TSSG method can yield SiC crystals with high quality due to two aspects. On one 

hand, fewer defects are generated during the process. This can be attributed to: I. the 

growth condition is closer to the thermodynamic equilibrium [22] owing to lower 

crystallization latent heat and lower supersaturation; II. the growth temperature is low, 

which avoids the occurrence of high thermal stress while cooling to room temperature. 

Furthermore, the intrinsic defects in the seed crystal can even be reduced or removed 

during the solution growth. TSDs and TEDs were reported to be converted into BPDs 

during growth and finally extruded outside the crystal [30-34]. Likewise, micropipe, 

which is a killer defect, can also be filled and become completely invisible [35, 36]; 

2. The cost of the TSSG method is low owing to the lower requirement of the growth 

system and lower cost of high-purity raw material (mainly Si); 

3. Diameter enlargement can be easily achieved by controlling the height of the 

meniscus [27, 37, 38], resembling the shoulder process in the Cz method. Recently, our 

group reported the diameter expansion from 6-inch to 6.5-inch [39], which is the largest 

SiC crystal grown from the TSSG method up to date; 

4. TSSG method can yield p-type SiC crystal by adding Al into the solution [40, 41], 

since the evaporation of Al is not so strong under relatively low temperature and high 

pressure, unlike the PVT method. 

Despite these advantages, the TSSG method is still not preferred by the industry due 

to relatively low production efficiency, namely the crystal thickness. For the PVT method, 

the average thickness is about 30 mm for the 6-inch crystal. The same value was achieved 

only by a 1-inch crystal grown from the TSSG method [42], while the maximum thickness 

reported for the 6-inch crystal was only 4 mm [39], which indicates a very low yield ratio 

between the product and raw materials. To enhance the competitiveness of the TSSG 

method and make it prevalent, increasing the crystal thickness is the critical target. The 

crystal thickness is determined by two factors: growth rate and available growth time. 

For the former one, numerous efforts have been made in the last decade to increase the 

growth rate to up to 2 mm/h by improving the solution composition [23-27, 43], system 

configuration [44-47], and controlling method [48-50]. However, too high growth rate 

corresponds to large supersaturation and is far from thermodynamic equilibrium, which 

may negatively influence the polytype stability and step stability. Therefore, the ideal 

growth mode is to maintain a stable growth condition for as long time as possible, which 

defines the “available growth time”. Unfortunately, increasing the available growth time 

has rarely been discussed in previous studies, due to the incapability to in-situ monitor 

the ongoing growth process and thusly lack of understanding of the long-term 

instabilities which directly limit the available growth time. 
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1.3 Long-term instabilities in TSSG method 

The growth furnace for the TSSG method is a closed system, and therefore it is 

intrinsically unstable where the physical and chemical reactions proceed unidirectionally 

and the growth condition evolves irreversibly. Among the several unstable factors, 

crucible configuration change, solute/solvent evaporation, and step morphology 

evolution directly affect the growth condition and deviate it from the well-designed 

initial condition. 

1.3.1 Configuration change of crucible 

Fig. 1.4 (a) shows the schematic of the carbon transport path inside the solution, 

which is initiated by the dissolution of carbon from the graphite crucible wall due to the 

undersaturated condition. The dissolved carbon is transported to the surface of the seed 

crystal and the bottom of the crucible via convection and diffusion effects. The single 

crystal grows on the seed crystal with the same orientation, while polycrystals freely 

precipitate at the crucible bottom through spontaneous nucleation. These factors result 

in unsteady changes in the configuration inside the crucible, a practical example of which 

can be found in fig. 1.4 (b).  

 
(a)                                                                          (b) 

Figure 1.4 (a) Schematic of carbon transport in crucible, and (b) crucible 

configuration after 30 h growth. 

The relevant studies are few but insightful. Liu et al. conducted a numerical 

simulation and reported that the uneven shape change of the single crystal affected the 

local flow pattern, which altered the growth rate distribution on the crystal surface and 

made the fluctuation of the crystal front more and more evident as the growth 

proceeded [51]. Mukaiyama et al. also conducted the numerical simulation and 

demonstrated that the shape change of the crucible significantly influenced the flow 

pattern, temperature, and growth rate [52]. According to their result, the maximum 

temperature inside the solution increased by more than 100 °C and the growth rate 

doubled over merely 6 hours of growth. These large variations make the growth deviate 
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from the merit of the TSSG method, which is close to equilibrium, and may result in low 

crystal quality. Besides the quality problem, these unsteady changes in crucible 

configuration may cause safety problems as well. The over-dissolution of the crucible 

wall may lead to an increasing risk of cracking under high-speed rotation of the crucible, 

and the consequent leakage of high-temperature solution would be disastrous. 

Moreover, the heavy precipitation of polycrystals can lead to a collision with the growing 

and rotating single crystal and cause mechanical damage. Therefore, controlling and 

suppressing the crucible configuration change is vital for increasing available growth 

time. 

1.3.2 Composition change of solution 

Besides the physical effects caused by the crucible configuration change, the 

chemical effects caused by solution composition change limit the available growth time 

as well. Along with the long-term growth in the closed TSSG system, the solution tends 

inevitably towards the drought of Si due to the continuous consumption but lack of 

supply, while the C ceaselessly dissolves from the graphite crucible. This composition 

change will consequently lead to the termination of SiC growth once the solution 

composition departs from SiC saturation to carbide or graphite saturation [53]. To deal 

with this potential problem, several methods have been proposed to compensate for the 

Si loss when precipitating into SiC crystal, such as using SiC included crucible or directly 

using SiC ceramics as a source material [53, 54]. However, these methods will increase 

the cost of source material, and more importantly, they could not compensate for the 

loss of Si through evaporation. Since the growth temperature is about 500 °C higher than 

the melting point of Si and normally the chamber is with atmosphere pressure, the 

evaporation effect becomes non-negligible, especially for long-term growth. 

In addition, some materials other than Si are added to the solution for purposes 

including increasing C solubility for higher growth rate, decreasing interface energy for 

lower 2D nucleation possibility, enhancing repulsive interaction between steps for less 

step bunching, etc. Among them, some additives are volatile, especially in the extremely 

high-temperature environment, and the continuous evaporation or reaction loss of a 

certain solute during long-term growth may make the solution deviate from its 

predetermined and well-designed composition. Despite the small amount of these 

volatile additives, the subtle change in their concentration inside the solution may 

significantly alter the chemical environment for the growth interface. For example, it has 

been reported that 1% more Al in the solution could significantly improve the crystal 

surface morphology and polytype stability [40]. Al in solution acts as both surface 

stabilizer and p-type dopant, but is easy to evaporate and react with graphite 

components. It can be imagined that the continuous loss of additives like Al may degrade 
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the crystal quality and result in inhomogeneous doping. Moreover, the large amount of 

evaporation may contaminate the furnace chamber and reduce the lifetime of 

components made from carbon like the thermal insulator. 

Therefore, the solution composition change during long-term growth is worth 

investigating, and the possible methods to suppress this unsteady change are crucial to 

prolonging the available growth time. Unfortunately, relevant study regarding the 

solution growth of SiC crystal has never been reported in literature, to the best of our 

knowledge. 

1.3.3 Morphology change of macrosteps 

Unlike the previous two factors, which are affected by the physical and chemical 

environment in the macroscopic growth system, the third unsteady factor occurs on a 

smaller scale and involves the essence of crystal growth. 

   
(a)                                                    (b)                                             (c) 

Figure 1.5 Schematic of dislocation conversion process. (a) The native TDs in the 

substrate; (b) Deflection of TDs’ propagation direction due to macrostep advancing; (c) 

Formation of TD-free layer. 

As introduced in section 1.2, one of the advantages of the TSSG method is the 

capability to convert and eliminate the native dislocations inside the seed crystal and 

yield grown crystal with high quality. The mechanism of this dislocation conversion is 

depicted in Fig. 1.5. Threading dislocations (TDs), common dislocations in SiC crystal, 

propagate along the c-axis, which is also the crystal growth direction in most cases. 

Therefore, these dislocations would permanently reside and propagate in the grown 

crystal if not interfered with (Fig. 1.5 (a)). A method named “repeated a-face” (RAF) was 

once proposed by repeatedly switching the growth orientation in a-face using the seed 

crystals sliced in the perpendicular direction of the previous grown crystals [55]. This 

method was examined through the PVT method to effectively reduce the dislocations in 

the SiC single crystal by 2 to 3 orders of magnitude. However, since the new seed is sliced 

perpendicularly from the grown crystal, this method requires the grown layer thickness 

to be with the same scale as the seed crystal diameter, which is almost impossible for 

large size crystal like 6-inch. Fortunately, in recent studies of SiC solution growth it was 

uncovered that by applying growth slightly deviated from the [0001] direction, also 
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known as off-axis growth, macrosteps formed on the crystal surface could convert TDs 

into defects on the basal planes (Fig. 1.5 (b)) owing to the image force from macrostep 

edge [33, 56]. These defects propagate no longer into the subsequent grown layer, and 

will finally be extruded outside of the crystal (Fig. 1.5 (c)). Once all the native dislocations 

are converted, an ultra-high-quality crystal can be obtained [34]. Compared with the RAF 

method, this approach is more feasible for large-size crystals, where the formation of 

macrosteps is the key to achieving the conversion of TDs during growth. Moreover, 

higher and steeper macrosteps were reported to be preferable for higher conversion rate 

[32, 57, 58]. 

           
(a)                                                                              (b) 

Figure 1.6 (a) Equally spaced elemental step train; (b) Macrostep caused by step 

bunching 

The formation of macrosteps is one of the unique features of the TSSG method, and 

the schematic is plotted in Fig. 1.6. Since the diffusion coefficient of the growth unit, 

namely C, in the TSSG method is about 106 times lower than that in the PVT method [22], 

the growth is a transport-limited process and is therefore unstable. In the initial stage of 

growth, the elemental steps are equally spaced and move forward with the same 

velocity (Fig. 1.6 (a)). If the position of one elemental step N is advanced a little more by 

some perturbation, the velocities of both step N and its front neighbor N+1 decrease 

due to the competition for the growth unit, while the behind neighbor N-1 accelerates. 

The behind step will then join the plodding pair of N and N+1, and further decrease their 

velocities by intensifying the local competition of the growth unit. This initial 

perturbation will set off a chain reaction and finally, a huge step bunch appears and 

slowly advances (Fig. 1.6 (b)). This step bunch is also known as the foregoing “macrostep”. 

Like the two sides of the same coin, macrosteps with a reasonable height bring the 

benefit of defects conversion, but over-developed macrosteps may cause mainly 3 

troubles. 
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1. In the case of impurity doping, the impurity-incorporation rate differs between 

step and terrace (the distance between two neighbor steps). If the step is too high and 

turns into a macrostep, the difference in impurity incorporation may be amplified to a 

macro-scale level. This was confirmed by the observation of growth striations in the 

cross-section view, following the moving traces of macrosteps [59-61]. The growth 

striations with different colors imply inhomogeneous impurity distribution, which 

negatively affects the crystal quality; 

2. The generation of macrostep normally leaves a wide terrace behind (as shown in 

Fig. 1.6(b)), where the local supersaturation is high due to a lack of competition for 

growth units. Once the supersaturation exceeds a critical value, step-flow-growth mode 

no longer dominates and 2D nucleation occurs on the terrace. The 2D nucleation will 

collide with the following steps causing new step bunching, and may alter the poly-type 

inherited from the seed; 

3. Most importantly, the over-developed macrosteps can result in the inclusion of 

solvent into the crystal, which is one of the most intractable problems for solution 

growth of SiC crystal. Fig. 1.7 illustrates the formation of two types of inclusion caused 

by macrostep. In the first case, the advance velocity becomes height-dependent on one 

macrostep due to the difficulty of the solute reaching the bottom area when the 

macrostep is too high.  As the growth proceeds, the macrostep will form an overhanging 

structure (Fig. 1.7 (a)), and eventually include the solvent inside. In the second case, 

when the macrostep becomes too high, the Thomson-Gibbs effect is no longer able to 

keep the straightness of the step edge, which will lose stability and bend into cellular 

structure due to some tiny perturbation (Fig. 1.7 (b)). Likewise, the solute cannot be 

transported into the deep of the valley, resulting in the stagnation of growth and the 

inclusion of the solvent. The formation of inclusion significantly deteriorates the crystal 

quality by not only reducing the available area on the wafer, but also generating new 

dislocations when the included Si solvent solidifies and expands in a closed volume. 

     
(a)                                                                                 (b) 

Figure 1.7 Two types of inclusion caused by (a) overhanging of macrostep, and (b) 

wandering of macrostep [62] 
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In summary, the development of macrosteps is the third unsteady factor during long-

term growth. To achieve the crystal with a high defect conversion rate but low inclusion 

density and high poly-type stability, the macrosteps on the whole crystal surface should 

be controlled to achieve a certain height but further bunching should be suppressed. 

Previous studies have demonstrated that the macrostep behavior is sensitive to the local 

flow direction, where the flow opposite to the step advancing direction suppresses the 

step-bunching, and vice versa [63-66]. However, how to apply this theory to practical 

crystal growth and freely control the step morphology on the entire crystal surface 

remains unexplored. 

1.4 Numerical modeling and relevant studies 

According to the foregoing description, the unsteady behaviors of the crucible 

configuration, solution composition, and crystal surface morphology should be well 

understood, to better control the crystal growth process for a more stable growth 

condition and longer available growth time. However, since the TSSG furnace is a 

closed system under extremely high temperature, it is almost impossible to directly 

access these information without disturbing the ongoing experiment. Furthermore, the 

information provided by the ex-situ observation after the experiment is very limited, 

which may only reflect the final state and hinder us from obtaining the mapping 

relationship between the crystal quality and multiple controlling parameters. 

Therefore, numerical methods are preferable in the present dissertation to investigate 

the long-term instabilities in SiC solution growth. Although the experimental studies 

are indispensable and their contribution can never be overlooked, numerical models 

reveal more details from various perspectives regarding the spatial distribution and 

temporal evolution of the physicochemical parameters. Besides, numerical models are 

normally more time-saving and economical than experiments, and therefore are more 

suitable to be applied for engineering purposes like parameter study and new design 

verification.  Moreover, some up-to-date numerical models involving machine learning 

present superiority in instant data prediction and show promise for real-time 

optimization of crystal growth. The numerical models utilized in this dissertation and 

their relevant studies in crystal growth are introduced in the following sections. 

1.4.1 Modeling of flow, heat, and mass transfer 

Crystal growth is a phase change process, driven by the chemical potential difference 

between the fluid (ambient) phase and solid (crystal) phase. This chemical potential 

difference can be expressed as the vapor pressure difference of source gas for growth 

from the gas phase, while it is the concentration difference of solute for growth from 

solution, and the temperature difference for growth from melt. Therefore, transport of 
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heat or species from source to growth interface is the key element of the crystal growth 

process, where fluid flow plays a dominant role and has been the continuous focus in 

the growth of large and high-quality single crystals [67-71].  

The mechanism of fluid flows is not complicated, following the basic rules of 

Newton’s law of motion, which can be written as: 

𝑚�⃗� = �⃗�                                                                 (Eq. 1-1) 

where 𝑚  denotes the mass of a rigid body, �⃗�  the acceleration, �⃗�  the net force being 

applied on the body. If we replace the rigid body with an infinitesimal-size fluid dollop, 

the equation above can be re-expressed as: 

𝜌
𝐷�⃗⃗�

𝐷𝑡
= −𝛻𝑃 + 𝜇𝛻2�⃗� + �⃗�𝑏                                                 (Eq. 1-2) 

where 𝜌 is the density of the fluid,  
𝐷�⃗⃗�

𝐷𝑡
 is the total derivative of velocity with respect to 

time, and the terms on the right-hand side are pressure force, viscous force, and body 

forces, per unit volume respectively. Since 𝜌  and 𝜇  (viscosity) are material properties, 

and 𝑃 (pressure) is interrelated with �⃗� (velocity), this equation indicates that when the 

given external body forces are applied to the bulk fluid, the velocity distribution can be 

accordingly derived. 

Once the velocity is known, the transport of both heat and species can be described 

and solved in resembling forms: 

𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
+ 𝜌𝐶𝑝�⃗� ∙ 𝛻𝑇 = 𝑘𝛻2𝜙 + 𝑆ℎ                                   (Eq. 1-3) 

𝜕𝐶

𝜕𝑡
+ �⃗� ∙ 𝛻𝐶 = 𝐷𝛻2𝐶 + 𝑆𝑠                                         (Eq. 1-4) 

where 𝐶𝑝 denotes the heat capacity,  𝑇 the temperature, 𝑘 the thermal conductivity, 𝑆ℎ 

the heat source, 𝐶 the concentration of a certain species, 𝐷 the diffusion coefficient, and 

𝑆𝑠 the species source, respectively. 

With the equations above, it seems that the crystal growth furnace is now an open 

book, where one can capture every detail, both spatially and temporally. However, this 

dream has not been realized yet, due to the following three reasons: 1. Regardless of 

their seemingly compact appearance, these partial differential equations can hardly be 

solved mathematically and the exact solutions only exist in some oversimplified 

situations; 2. The inner structures of the furnace are normally complex, consisting of 

various components with non-regular shapes and different material properties, which 

further adds difficulty in solving the equations; 3. The flows in most crystal growth 

systems, especially the TSSG system, are governed by various forces whose interaction 

and cooperation are complicated to predict. Fig. 1.8 illustrates the four typical 

convection patterns in the crystal growth system, governed respectively by buoyancy, 
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centrifugal force, Marangoni force, and electromagnetic force. Details of these forces 

and their effects on crystal growth can be accessed in literature [72, 73]. 

           

(a)                                                        (b) 

    

(c)                                                              (d) 

Figure 1.8 Four typical convection patterns contributed by (a) buoyancy force, (b) 

centrifugal force, (c) Marangoni force, and (d) electromagnetic force. 

Thanks to the development of the computational fluid dynamics (CFD) technique, 

the potential and advantages of computer simulation have been widely discussed in 

the field of crystal growth in the past several decades, and nowadays it has already 

become the best complement to experimental crystal growth research. The computer 

simulation numerically solves the governing equations shown in Eq. 1-2~1-4. By 

separating the continuous domain into sufficiently small discrete sub-domains (also 

known as “mesh” or “grid”), the partial differential equations can be approximately 

discretized into linear forms, and the accurate solution will be approached through the 

computer iterations. The CFD modeling can deal with complex geometric shapes and 

multi-physics processes including fluid flow, heat transfer, mass transfer, 

electromagnetic induction, and chemical reactions in the crystal growth system, which 

provides a more straightforward perspective on macroscopic crystal growth 
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phenomena. 

In the field of SiC solution growth, numerical studies utilizing CFD modeling have 

contributed considerably to enriching people’s understanding of flow, heat, and mass 

transfer in the growth system. Through the comprehensive studies regarding the 

multiple forces in the solution, it was illuminated that buoyancy and Lorentz force are 

the two dominant factors that define the global flow pattern, whereas the Marangoni 

force causes instability locally near the crystal edge [47, 72, 74-78]. To achieve ideal 

temperature distribution near the crystal, the effects of system configuration were 

investigated, including hot zone [79-81], crucible [51, 72, 82], shafts [83], and meniscus 

height [37]. To enhance C transport in solution, which directly determines the growth 

rate and interface uniformity, numerous approaches were proposed via numerical 

investigation including high-speed rotation of the seed crystal [50], accelerated crucible 

rotation technique (ACRT) [84], advanced magnetic fields [85, 86], and some subtle but 

sophisticated apparatus which can freely manipulate the convective flow [44, 47, 87]. 

Most of these proposals were examined in experiments, and the results further proved 

the effectiveness of CFD modeling. 

1.4.2 Modeling of step motion 

Although the CFD modeling can provide comprehensive information regarding the 

distribution of macroscopic physical quantities in the system, it might be incapable if one 

investigates closer to the crystal surface. In conventional CFD modeling, the boundary 

condition for C transport on the crystal surface is normally simplified as the value of 

equilibrium C concentration, which assumes a “normal growth mode” as shown in Fig. 

1.9(a), where the crystal surface is rough and offers kink sites with sufficient density, and 

therefore the C incorporation into the crystal is position-independent. This growth mode 

occurs usually in the cases like metals growing from their liquid phase where the 

temperature is higher than the roughness transition temperature [88]. In the case of 

solution growth of SiC, however, it normally follows the “step-flow growth mode” shown 

in Fig. 1.9(b), where the solute atoms may preferentially be incorporated at the kink sites 

on the steps, other than the terrace. These steps are provided by either the native steps 

on the seed crystal due to the off-axis cutting or the spiral growth center. The continuous 

C incorporation into the step results in the advance of the step front, which is also 

referred to as “step motion”. 
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(a)                                                                     (b) 

Figure 1.9 Schematics of (a) normal growth, and (b) step-flow growth. The arrow 

indicates the growth unit stacking direction.  

Chernov introduced a volume diffusion model to describe this phenomenon in 

solution growth [89], assuming that the incorporated adatoms directly diffuse from the 

ambient phase. The step advancing velocity in this model can be expressed as 

𝑣𝑠𝑡 = 𝐾𝑠𝑡(𝐶 − 𝐶𝑒𝑞)𝑉                                                 (Eq. 1-5) 

where  𝐾𝑠𝑡  is the step kinetic coefficient defined by the incorporation rate of growth 

units near the step. 𝐶 is the growth unit concentration near the step, while 𝐶𝑒𝑞 is the 

equilibrium (saturated) concentration of the growth unit determined by the local 

temperature. 𝑉 denotes the volume of a growth unit. This surface kinetic model can be 

utilized to depict the motion of a single step and the interaction among multiple steps. 

Lin et al., who firstly coupled this model with bulk transportation (Eq. 1-4) to study the 

dynamic behavior of steps in solution growth, demonstrated that step density and 

terrace width could change in response to nutrient concentration on a large scale [90]. 

Vekilov et al. addressed the instability of dynamical interaction of transport and kinetics, 

where a step bunch triggers a cascade of new step bunches through the microscopic 

interfacial supersaturation distribution [91]. Kwon et al. included also the surface 

diffusion phenomenon into the surface kinetic model, which extended the applicability 

of the model in various solution growth systems [92]. Inaba et al. reported the effects of 

several parameters on the formation of step bunching, including solution flow direction, 

solution flow rate, and repulsion strength between steps [93, 94]. Regarding the solution 

growth of SiC, Liu et al. recently employed this model to study the instability of steps 

motion under different solution properties, and accordingly proposed a criterion for 

designing the solution composition [95]. 

Since the elemental step is on atom-scale and separately tracing each step on the 

whole crystal surface is computationally unaffordable, the previous studies focused 

mainly on 2D, local and transitory simulation. Although they uncovered important and 

general features of step development, further improvement is required to connect the 
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3D step morphology on the whole surface with macroscopic controlling parameters, to 

provide a more direct guide to the practical crystal growth experiment.  

1.4.3 Machine learning models 

The foregoing two numerical models can, to some extent, precisely describe the 

transport phenomena in bulk solution and the step kinetics on the crystal surface, and 

therefore enrich the understanding of the growth process. Nevertheless, in an 

engineering context, the rich understanding is only a necessary but not sufficient 

condition to yield an ideal crystal, since there is a tradeoff between the high crystal 

quality and high growth rate. A suitable growth condition is required to achieve a 

balance. The growth condition is determined by various controlling parameters that 

interact and cooperate non-linearly, making it complicated to analyze the tendency and 

discover the optimal combination. In the past, industrial development and optimization 

were mainly based on experience and trial experiments, which were time-consuming 

and the process was therefore slow. For reference, it took about 40 years to enlarge 

the diameter of an industrial mono-crystal silicon ingot from 1 to 12-inch. Although the 

emerging CFD simulation can act as a powerful and time-saving alternative to 

experiment, the data acquisition time is still considerable, especially in cases with 

complex geometric structures and harsh situations. The former factor results in a larger 

number of meshes to capture the configurational features, while the latter requires 

more elaborate mathematic models to describe the turbulence or radiation. Therefore, 

high-speed acquisition of accurate data is essential to accelerate crystal growth 

development.  

The advent of the machine learning technique has brought this goal closer to 

fruition. Machine learning, a subarea of artificial intelligence (AI), is a mathematic tool 

to obtain knowledge regarding the mapping relationship directly between the inputs 

and outputs, and is particularly suitable for complex and non-linear situations like 

process parameters optimization and automation of manufacturing. 
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(a)                                                                               (b) 

Figure 1.10 (a) Typical architecture of a neural network, and (b) schematic of a 

neuron. 

The artificial neural network (ANN) and its derivatives are by far the most 

widespread machine learning techniques. The artificial neural network is a computing 

system inspired by the biological neural networks that constitute animal brains, and is 

likewise powerful in correlating multiple variables and detecting non-linear 

dependence [96]. As shown in Fig. 1.10(a), a typical ANN consists of three layers, 

namely the input layer, hidden layer, and output layer. The whole network receives 

external inputs in the first (input) layer, processes the data in the intermediate (hidden) 

layer, and provides corresponding output in the last (output) layer. Every layer is an 

organization of artificial neurons, each of which acts as an independent computation 

unit to process the inputs and give the output (Fig. 1.10(b)). The most common output 

operation for the j-th neuron in the hidden or output layer can be expressed as 

𝑂𝑗 = 𝑓(∑ 𝜔𝑗𝑖
𝑛
𝑖=0 ∙ 𝑥𝑖 + 𝑏𝑗)                                      (Eq. 1-6) 

where 𝑂𝑗 denotes the output of this neuron, 𝑥𝑖  the input received from the output of 

the i-th neuron in the preceding layer, 𝜔𝑗𝑖  the weight of this connection, 𝑏𝑗 the bias, 

and 𝑓 the activation function to strengthen the capability to detect non-linear 

relationships. The most common activation function is the so-called “logistic sigmoidal 

function”, which has the form as 

𝑓(𝑎) =
1

1−𝑒−𝑎                                                    (Eq. 1-7) 

Sets of prepared external data including inputs and outputs are used to “train” the 

ANN, according to which the ANN adjusts the weight 𝜔𝑗𝑖  and bias 𝑏𝑗 of each neuron, to 

minimize the error between the outputs given by ANN and the actual outputs. Through 

sufficient iterations, a well-trained ANN can learn the features of the data sets and 

instantly predict the output of a given input in the same feature domain. 

In the field of SiC solution growth, the application of machine learning models has 

received increasing attention since 2018. Due to the lack of sufficient data directly from 

crystal growth experiments, machine learning models learned from the pre-calculated 

CFD results and then act as an alternative to instantly yield the prediction. Tsunooka et 

al. developed an ANN using 800 data samples prepared by CFD simulation [97]. In this 

model, the inputs were the controlling and configurational parameters, while the 

outputs were the velocity, temperature, and supersaturation distribution in the whole 

solution domain. It was demonstrated that the machine learning model could achieve 

high accuracy (correlation coefficient higher than 0.95) and extremely high-speed 

prediction (107 times faster than CFD simulation). Yu et al. subsequently applied this 
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model to design the hot zone configuration inside the chamber for a 6-inch growth 

system, and various possible solutions were yielded which led to the optimal growth 

condition [98]. Wang et al. adapted a reinforcement learning model to dynamically 

exchange data with CFD, to control the electromagnetic field and achieve a higher and 

more uniform growth rate [99]. Horiuchi et al. and Takehara et al. respectively 

combined the machine learning models with the adjoint method and Bayesian 

optimization to predict a preferred melt flow pattern which would lead to uniform 

growth rate distribution [100, 101]. Moreover, by using a convolutional neural network 

(CNN), the regional sensitivity of the flow pattern to the controlling parameter was 

analyzed and consequently a special focus could be implemented on the most sensitive 

area [102]. 

Although being proven to be efficient and effective in predicting the SiC solution 

growth, it should be noted that machine learning models do not replace the CFD 

simulation. Instead, they act as the extension of CFD simulation to accelerate the 

optimization process. Therefore, constructing an accurate CFD model to provide 

reliable training data is the premise of the application of machine learning. 

1.5 Objective and contents of this thesis 

As described above, the TSSG method exhibited great potential to yield high-quality 

SiC bulk crystals, which is essential for the next-generation semiconductor devices being 

applied in high-power, high-frequency, and high-temperature conditions. To achieve 

commercialization of this method, the production efficiency, determined by growth rate 

and available growth time, should be further improved. The growth rate is influenced by 

the growth condition such as temperature, solution composition, and solution flow field, 

while the available growth time is mainly limited by the unsteady factors during the long-

term growth which make the growth deviate from the initially well-designed condition. 

The previous studies have addressed considerable discussion on increasing the growth 

rate, but the exploration regarding the unsteady factors and how to prolong the available 

growth time remains rare.  

The previous studies suggested numerical simulation as a powerful tool to 

investigate the temporal and spatial details in the growth system, which is almost 

impossible to be experimentally observed due to the hostile environment. Therefore, 

the objective of the present dissertation is to numerically model the long-term solution 

growth of SiC, reproduce the multiple unsteady phenomena in virtual space, and 

accordingly conduct further improvement or optimization for a longer and more stable 

growth process. 

The structure and detailed contents are as follows: 
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1. In chapter 1, the background, related studies, and the objective of this dissertation 

are introduced. 

2. In chapter 2, a global numerical model is built to simulate the configurational 

change of the crucible during the long-term solution growth. The evolution of thermal, 

flow, and chemical fields under an original fixed controlling recipe is investigated, and 

the maximum available growth time is accordingly estimated. Then, machine learning-

based optimization is conducted to yield a time-dependent recipe that is expected to 

consistently maintain the optimal growth condition. Moreover, the effectiveness of 

transfer learning is examined to further improve optimization efficiency. 

3. In chapter 3, a global numerical model is built to simulate the change of solution 

composition, especially the Al concentration, due to chemical reaction and evaporation. 

The transport path of Al in the growth system is studied, and a structural design is 

proposed to suppress the Al loss in solution during long-term growth. 

4. In chapter 4, a numerical model is built to simulate the evolution of macrosteps 

morphology on the entire crystal surface. The effects of several macroscopic controlling 

parameters on the crystal surface morphology are investigated. Improved control 

patterns are proposed to reduce local step-bunching and achieve homogeneous surface 

morphology. The simulated results are validated by experiments. 

5. In chapter 5, the results of this dissertation are concluded. 

Furthermore, in Appendix A, the training process, performance, and limitation of 

transfer learning in predicting the unsteady growth process are introduced. In Appendix 

B, a tentative discussion is made to investigate the role of turbulence in the solution 

growth of SiC, from two aspects. 
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2. Configurational instability of crucible 

and machine learning-based 

optimization 

2.1 Introduction 

In solution growth of SiC, the graphite crucible is employed as the container, heat 

source, and carbon source. This ingenious multi-function design greatly simplifies the 

system structure, and brings the TSSG method advantage in cost. On the other hand, 

however, the local dissolution and precipitation of carbon slowly but continuously alter 

the crucible shape, and make the growth deviate from the initially designed condition 

on a long-term scale. A method that can predict the dynamic changes of the growing 

system and adjust the control parameters accordingly is therefore required to 

consistently maintain the most suitable growth conditions. A dynamic controlling 

method like this is also desired for the growth of other crystals. Previous studies on 

growth recipe design and optimization have investigated inverse modeling algorithms to 

optimize the control parameters for a multi-timestep process [1-5]. Although successful 

in some specific cases, inverse modeling is not suitable for non-linear and multi-objective 

problems, thereby limiting its more general application. A few studies have also applied 

a genetic algorithm (GA) combined with CFD simulation for multi-variable process 

optimization [6, 7], but the whole growth process was divided into a very small number 

of timesteps (∼3) due to the difficulties in obtaining large amounts of data to support the 

stochastic search of the GA. Generally speaking, recipes with a small number of 

timesteps may not adequately capture the dynamic characteristics of long-term growth, 

and consequently may not yield the “most optimal” result. Therefore, real-time 

prediction and optimization with a shorter timestep length are preferred, but this will 

greatly increase the required amount of data for the optimization algorithm. 

Computational fluid dynamics (CFD) simulation is a powerful research tool for exploring 

the extreme environment inside the crystal growth system through virtual space. 

However, crystal growth is a complex multi-physics process that requires time-

consuming coupled calculations of fluid flow, heat transfer, mass transport, and 

magnetic field. Despite the advantages of modern computational power, the time cost 

of CFD simulations to provide sufficient data for the optimization algorithm remains too 
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high. Therefore, a method that offers high-speed data acquisition, for multi-timestep and 

even real-time optimization, is essential for crystal growth processing in both research 

and industry. The advent of machine learning technology has brought this goal closer to 

fruition. A well-trained machine learning model can learn the direct non-linear mapping 

relationship between specific input and output parameters for instant predictions. 

Machine learning has already been employed widely in the field of crystal growth as an 

alternative to CFD simulations, particularly for the optimization of growth conditions [7-

11]. The solution growth of SiC crystals is a suitable example to discuss the effect of 

dynamic optimization and control because unsteady changes in the shape of the crystal 

and crucible surfaces during long-term growth affect the thermal, flow, and carbon 

concentration fields inside the solution. Numerous studies have been conducted over 

the last decade to increase the size and growth rate of SiC crystals in solution growth, 

but all of them have focused on improving or optimizing the initial steady state alone. 

The importance of long-term dynamic control has not yet been discussed in previous 

reports. It is considered that, even though a growth recipe with fixed control parameters 

is well-designed for the initial state, it may become non-optimal for the conditions after 

tens of hours, due to the unsteady changes. Instead, adaptive control for long-term SiC 

solution growth should be implemented to always maintain optimal growth conditions. 

To address the problem and fulfill the requirement above, this chapter consists of 

the following contents. 

1. A two-dimensional (2D) global numerical model is developed to investigate the 

evolution of unsteady factors during long-term solution growth of SiC crystal, and an 

original recipe with fixed control parameters is examined and the maximum available 

growth time is estimated; 

2. A machine learning-based optimization is coupled with the simulation model to 

design a time-dependent recipe with a 100-timestep sequence to facilitate the growth 

of larger and flatter single crystals and to prolong available growth time; 

3. A transfer learning method is applied to further improve the optimization 

efficiency and achieve real-time optimization. 

2.2 Description of the numerical model 

The configuration of the solution growth system for a 3-inch SiC crystal is shown in 

Fig. 2.1. Radiofrequency (RF) heating coils with a frequency of 3 kHz are used to heat and 

stir the solution. The temperature at the monitoring point is measured using a 

thermocouple and the heating power is adjusted to achieve the desired temperature. 

The furnace is filled with helium gas at a fixed pressure of 1 atm. The initial diameter and 

height of the solution are 120 and 30 mm, respectively, while the thickness of the 
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crucible side wall is 15 mm. The rod and crucible are able to move rotationally and 

vertically in an independent manner. The vertical distance between the crucible bottom 

and coil bottom is referred to as “the crucible position (∆𝐻)”. 

 
Fig. 2.1. Simplified configuration of a SiC crystal solution growth system 

2.2.1 Assumptions and governing equations 

A 2D global model is built to simulate the heat transfer and mass transport 

throughout the crystal growth process. For simplicity, several assumptions are made, 

namely, (1) the furnace is axisymmetric; (2) all radiative surfaces are diffuse gray; (3) the 

solution is incompressible and the Boussinesq approximation is obeyed; (4) the helium 

gas in the furnace is ideal and transparent, and it meets the low Mach number 

approximation; (5) the carbon concentration inside the solution is low enough to neglect 

solute convection; and (6) the SiC crystal growth is a slow and nearly thermodynamic 

equilibrium process, where each timestep can be considered as a steady state. Under 

these assumptions, the differential equations governing the fluid flow, heat transfer, and 

mass transport in the solution are given as follows: 

𝛻 ∙ (𝜌�⃗⃗�) = 0                                                       (Eq. 2-1) 

𝜌�⃗⃗� ∙ 𝛻�⃗⃗� = −𝛻𝑃 + 𝜇𝛻2�⃗⃗� + (𝜌 − 𝜌0)�⃗� + �⃗�𝐸                        (Eq. 2-2) 

𝐶𝑝𝜌�⃗⃗� ∙ 𝛻𝑇 = 𝛻 ∙ (𝜆𝛻𝑇) + 𝑆𝑅𝐹                                      (Eq. 2-3) 

𝜌�⃗⃗� ∙ 𝛻𝜔 = 𝐷𝛻2𝜔                                                  (Eq. 2-4) 

where 𝜌  is the density, �⃗⃗�  is the velocity, 𝑃  is the pressure, 𝜇  is the viscosity, 𝜌0  is the 

reference density, �⃗� is the gravitational acceleration,  �⃗�𝐸 is the Lorentz force, 𝐶𝑝 is the 

specific heat capacity, 𝑇  is the temperature, 𝜆  is the thermal conductivity, 𝑆𝑅𝐹  is the 

inducted heat source, 𝜔 is the mass fraction of carbon, and 𝐷 is the diffusivity of carbon 
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in solution. �⃗�𝐸 and 𝑆𝑅𝐹 are determined by the electromagnetic field, which is calculated 

by: 
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where 𝐶𝑒 is the in-phase and 𝑆𝑒 is the out-of-phase amplitudes of the magnetic stream 

function, 𝑟  is the radial coordinate, 𝑧  is the axial coordinate, 𝜇𝑒  is the magnetic 

permeability, 𝐽0 is the peak value of electric current, and 𝜎𝑒 is the electrical conductivity. 

Accordingly, �⃗�𝐸 and 𝑆𝑅𝐹 can be expressed as: 
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𝑆𝑅𝐹 =
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2)                         (Eq. 2-8) 

where 𝐽 is the current density and �⃗⃗� is the static magnetic field. 

 The differential equations above are solved numerically using the FVM (finite 

volume method) in CGSim commercial software [12]. The latent heat generated on the 

crystallization front is neglected because the growth rate is low (~0.1 mm/h). The 

physical properties of the Si-Cr solvent used in calculating the electric, thermal, flow, 

mass fields, as well as the free surface shape [13], are listed below. 

Table 2.1 Physical properties of solvent used in the modeling [14-16] 

Property Value Unit 

Thermal conductivity (𝜆) −68.28 + 5.40 × 10−2𝑇 𝑊/(𝑚 ∙ 𝐾) 

Density (𝜌) 5199 − 0.55𝑇 𝑘𝑔/𝑚3 

Heat capacity (𝐶𝑝) 1196 𝐽/(𝑘𝑔 ∙ 𝐾) 

Viscosity (𝜇) 1.27 × 10−3exp (1982/𝑇) 𝑃𝑎 ∙ 𝑠 

Surface tension (𝜎) 1.20 − 1.23 × 10−4𝑇 𝑁/𝑚 

Electrical conductivity (𝜎𝑒) 2.21 × 106 − 2.80 × 109/𝑇 𝑆/𝑚 

Diffusion coefficient (𝐷) 7.55 × 10−8exp (−1100/𝑇) 𝑚2/𝑠 

Contact angle (𝜃𝑠) 18 ° 
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2.2.2 Boundary conditions for unsteady factors 

The transport path of carbon in solution is initiated by the dissolution of carbon from 

the graphite crucible wall due to the undersaturated conditions as shown in Fig. 1.4(a). 

The dissolved carbon is transported to the surface of the seed crystal and the bottom of 

the crucible via the effects of both convection and diffusion. A single crystal grows on 

the seed crystal with the same orientation, while polycrystals freely form at the crucible 

bottom. These factors resulted in unsteady changes in the configuration inside the 

crucible. 

SiC crystal growth.  

The equilibrium mass fraction of carbon, 𝜔𝑒𝑞, is set as the boundary condition for 

carbon transport at the crystal–solution interface. The value of 𝜔𝑒𝑞  is positively 

associated with the temperature. By elaborately controlling a relatively lower 

temperature at the single crystal surface, the carbon mass fraction at this interface is 

higher than the local 𝜔𝑒𝑞. This supersaturated carbon provides the driven force for single 

SiC crystallization, guided by the seed crystal. The temperature dependence of carbon 

solubility in the Si–Cr-based solution was determined by data assimilation using machine 

learning from a previous study [15]: 

𝜔𝑒𝑞 = 𝑒𝑥𝑝(3.924 − 19255/𝑇)                                  (Eq. 2-9) 

The growth rate of the SiC crystal is determined by considering the carbon flux 

normal to the crystal surface. The carbon flux 𝐽 can be calculated as 

𝐽 = 𝐷𝛻𝜔 ∙ �⃗⃗�                                                      (Eq. 2-10) 

where �⃗⃗� is the unit normal vector of the local crystal surface. Consequently, the growth 

rate 𝑉𝑔 is obtained as 

𝑉𝑔 = 𝐽
𝑀𝑆𝑖𝐶

𝑀𝐶𝜌𝑆𝑖𝐶
                                                     (Eq. 2-11) 

and the displacement of the crystal ∆𝑙𝑐𝑟𝑦𝑠𝑡𝑎𝑙, can be expressed as 

∆𝑙𝑐𝑟𝑦𝑠𝑡𝑎𝑙 = 𝑉𝑔∆𝑡                                                (Eq. 2-12) 

where 𝑀𝑆𝑖𝐶  is the molecular weight of SiC, 𝑀𝐶  is the molecular weight of carbon, 𝜌𝑆𝑖𝐶  is 

the density of the SiC single crystal, and ∆𝑡 is the assumed timestep length for unsteady 

changes. The displacement obtained from Eq. 2-12 for a specific timestep is used to 

update the geometrical shape of the crystal surface for the subsequent time step. 

Graphite crucible dissolution.  

Same as the crystal–solution interface, 𝜔𝑒𝑞 is set as the boundary condition at the 

crucible–solution interface. The solution–crucible interface typically exhibits the highest 
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temperature in the solution domain, as well as an undersaturated condition where the 

local carbon mass fraction is below the local 𝜔𝑒𝑞 . The undersaturation results in the 

dissolution of graphite crucible with a dissolution rate 𝑉𝑑 , expressed based on the 

carbon flux normal to the crucible–solution interface, 𝐽, as 

𝑉𝑑 = 𝐽/𝜌𝐶                                                     (Eq. 2-13) 

Similarly, the displacement of the crucible wall, ∆𝑙𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒, can be obtained as 

∆𝑙𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒 = 𝑉𝑑∆𝑡                                             (Eq. 2-14) 

The shape change of the crucible wall strongly influences the temperature 

distribution and convection pattern inside the solution, thereby affecting the stability. 

Moreover, the dissolution of the crucible wall leads to an increasing risk of cracking 

under high-speed rotation of the crucible, thereby limiting the maximum available 

growth time. Therefore, the crucible dissolution must be controlled. 

SiC polycrystal precipitation.  

Polycrystals often precipitate within the solution in high supersaturation areas other 

than the seed crystal [17, 18], such as at the crucible bottom (see Fig. 1.4(b)). Polycrystals 

grow from spontaneous nucleation and do not follow a specific crystal orientation. 

Therefore, the movement of polycrystals surface is faster than that of the single crystal 

[19]. Moreover, polycrystals comprise many solvent inclusions that also accelerate the 

precipitation but make it difficult to simulate. The exact composition and precipitation 

process of SiC polycrystals have not been previously reported. Therefore, this study 

makes two assumptions, namely (1) the polycrystals and the single crystal have the same 

material properties in CFD simulation, and (2) the precipitation rate of the polycrystals, 

𝑉ℎ, is proportional to the growth rate of the single crystal. 𝑉ℎ is assumed to be expressed 

as 

𝑉ℎ = 𝛼𝐽
𝑀𝑆𝑖𝐶

𝑀𝐶𝜌𝑆𝑖𝐶
                                                     (Eq. 2-15) 

where 𝛼 is a constant with a value of 1.9 based on the fitting of experimental data. 

The formation of polycrystals enhances the downward heat dissipation due to their 

higher thermal conductivity than graphite crucible and will influence the thermal field. 

Moreover, the heavy precipitation of polycrystals during long-term growth can lead to 

the collision with the growing single crystal and cause severe damage. Therefore, the 

precipitation of polycrystals limits the maximum available growth time and should be 

suppressed. 
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2.3 Simulation of the long-term growth with a fixed recipe 

An original recipe with fixed parameters has been used in previous experiments, and 

successfully yielded a 3-inch SiC crystal with 1.5 mm thickness after 15 h growth. As 

shown in Fig. 2.2, the smooth surface morphology suggests a suitable growth condition 

achieved by the original recipe, at least in the first 15 h. This recipe involved heating of 

the monitoring point to 2213 K at the beginning of the crystal growth process. Once this 

temperature was achieved, the heating power and other control parameters were fixed 

until the end of growth. The detailed values of the controlling parameters can be found 

in Table 2.2.  

 
Fig. 2.2 Crystal grown under the original fixed recipe 

Table 2.2 Control parameters in the original recipe 

Parameters Value 

Heating power, 𝑃 (kW) 7.5 

Crucible position, ∆𝐻 (mm) 70 

Rod rotation speed, 𝜔𝑟𝑜𝑑 (rpm) 50 

Crucible rotation speed, 𝜔𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒 (rpm) 0 

 

 
(a) Mesh structure at 0 h 
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(b) Thermal and flow fields at 0 h 

   
(c) Thermal and flow fields at 10 h 

   
(d) Thermal and flow fields at 20 h 

   
(e) Thermal and flow fields at 30 h 

   
(f) Thermal and flow fields at 40 h 

 
(g) Mesh structure at 40 h 

Fig. 2.3 Evolution of thermal and flow fields inside the crucible (b-f), as well as the 

mesh structure (a,g). Red, light green, dark green, and dark gray represent the solution, 

single crystal, polycrystals, and crucible, respectively. 
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The numerical model introduced in the last section is then conducted to investigate 

the capability of this original fixed recipe for long-term growth. The evolution of the 

temperature and velocity fields inside the solution domain in a total 50 h growth process 

is shown in Fig. 2.3, which revealed three trends. Firstly, the maximum temperature 

inside the solution increases with time. This can be explained that a thinner crucible wall 

due to dissolution has weaker electromagnetic shielding effect on the solution, and 

therefore more Joule heat is inducted inside the solution. Consequently, the maximum 

temperature of the solution increased by 26 K after 50 h. Secondly, although the 

maximum temperature inside the solution increases, the single crystal surface becomes 

colder relative to the crucible wall. This is attributed to the enhanced downward heat 

dissipation due to the polycrystals precipitating at the bottom of the crucible. This 

increases the supersaturation near the crystal surface, thereby accelerating the crystal 

growth. Thirdly, the convection in the solution is strong at the beginning of the crystal 

growth process, which plays an important role in heat transfer and carbon transport. 

However, the convection is weakened due to the decrease in the solution volume as the 

growth proceeded, which hinders heat and carbon transport to the center of the crystal 

surface. This may cause non-uniformity in the growth rate on the crystal surface. These 

trends indicate the instability caused by configuration change inside the solution during 

long-term growth. 

 
(a)                                                                        (b) 
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(c) 

Fig. 2.4 Evolution of the (a) crystal growth rate, (b) maximum crucible dissolution 

depth, and (c) maximum height of the polycrystals under the fixed recipe. 

The time variation is evaluated on the three most important surfaces, namely the 

single crystal growth front, crucible wall, and polycrystal surface (Fig. 2.4). At the 

beginning of the growth process, the growth rate is relatively uniform across the crystal 

surface (Fig. 2.4(a)). However, both the maximum value and non-uniformity of the 

growth rate increase as the growth proceeds, where the highest growth rate area 

gradually moves towards the edge. After 50 h growth, the growth rate becomes very 

non-uniform, where the maximum value is more than triple the minimum value. As for 

the maximum dissolution depth of the crucible wall (Fig. 2.4(b)) and the maximum height 

of polycrystals (Fig. 2.4(c)), they both linearly correlate to the growth time, and 

correspond well with the experimental data, which proves the reliability of the numerical 

model. After 50 h growth (will be shown later in Fig. 2.11), the average thickness of the 

single crystal is 7.23 mm, but quality issues (e.g., polytypes and inclusions) may arise 

locally due to the high and non-uniform growth rate in the late period. The maximum 

dissolution depth of the crucible wall reaches ∼9 mm after 50 h, which is 60% of the 

original thickness and indicates a high risk to crack. The maximum height of the 

polycrystals is ∼17 mm after 50 h, where the distance between the single crystal and 

polycrystals is only ∼5 mm. Continuing the growth will lead to collision between the 

rotating rod and the polycrystals in the next 10 h. Therefore, the maximum available 

growth time for this recipe is limited to ∼50 h. 

Overall, the original recipe with fixed control parameters is not capable of long-term 

solution growth due to instability issues and will limit the available growth time. 

Although higher initial solution height and thicker crucible wall may prolong the available 

growth time, they will increase the cost and cause other problems (e.g., turbulent flow). 

Therefore, the recipe should be adaptively and time-dependently designed to maintain 

suitable growth conditions and prolong the available growth time. 

2.4 Optimization of a time-dependent recipe 

The target of this section is to yield a time-dependent control recipe with a 100-time 

step sequence for the 50 h (∆𝑡 = 0.5 ℎ) growth process, to compare with the result in 

sec. 2.3. The whole optimization system consists of 3 parts: the CFD model to provide 

reliable training data, a machine learning model to fast predict the unsteady changes, 

and an optimization algorithm to locate the optimal condition. Details of the operation 

are introduced as follows. 
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2.4.1 Construction of machine learning model 

As described in sec. 2.1, the main difficulty of process optimization is the high-speed 

acquisition of enough data to support the stochastic search of the optimization 

algorithm. Due to its superior ability in feature detection and fast response, the machine 

learning prediction model is employed in this study, to serve as an extension of CFD 

simulation and supply data to the optimization algorithm. 

 
Fig. 2.5 Structure of the neural network for predicting the single crystal growth rate 

In the present study, there are four main control parameters in the SiC solution 

growth system, namely the temperature at the monitoring point, the crucible position, 

the rotation speed of the crucible, and the rotation speed of the seed crystal. Here we 

dynamically control the temperature instead of the heating power to obtain a more 

stable thermal condition during the growth process. To explore the direct relationship 

between these control parameters and the three unsteady changes, three machine 

learning prediction models based on neural networks are independently constructed in 

each timestep. The input data for the neural networks includes the values of the four 

control parameters, as well as the coordinates of each grid point on the single crystal 

(150 points), crucible (60 points), or polycrystal surface (120 points) expressed as r in the 

radial direction or z in the vertical direction. The output is the growth rate or dissolution 

rate or precipitation rate at each point on each surface. The architecture of the neural 

network that predicts the single crystal growth rate is shown in Fig. 2.5 as an example. 

The network has 3 hidden layers and 128 neurons in each layer, determined by Optuna 

[20], a hyperparameter optimization framework. A sigmoid activation function is used, 

and the weights and bias are optimized using Adam [21], a method for stochastic 

optimization. The training data ranges for all timesteps are listed in Table 3.2. In each 

timestep, 120 steady-state CFD simulations with random control parameter 

combinations are conducted, and the relevant information for all points on the three 
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surfaces is extracted and prepared as training data. An additional 20 CFD simulations are 

prepared as test data to validate the prediction models.  

Table 3.2 Training data ranges for machine learning 

Parameters Lower limit Upper limit 

Temperature, 𝑇 (K) 2073 2273 

Crucible position, ∆𝐻 (mm) 50 150 

Rod rotation speed, 𝜔𝑟𝑜𝑑 (rpm) -50 50 

Crucible rotation speed, 𝜔𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒 (rpm) -20 20 

 

 
(a)                                                                       (b) 

 
(c) 

Fig. 2.6 Distribution of the (a) growth rate on the crystal surface, (b) dissolution rate 

on the crucible wall, and (c) precipitation rate of the polycrystals on the bottom of the 

crucible based on the CFD simulation and machine learning models, respectively. Note 

that the y-axis in (b) represents the vertical position on the crucible wall. 

The performance of machine learning models in timestep 1 is shown in Fig. 2.6, as 

an example to illustrate the effectiveness of machine learning. For the crystal growth 

rate, crucible dissolution rate, and polycrystal precipitation rate, the machine learning 

prediction results match well with the simulation results. The correlation coefficients for 
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the test datasets are higher than 0.95 for all machine learning models across all 100 

timesteps, thereby demonstrating their accuracy. 

2.4.2 Optimization process 

The operational flow of the adaptive control method is shown in Fig. 2.7. The well-

trained machine learning models serve as data suppliers for the optimization algorithm 

to determine the most suitable combination of control parameters for the environment 

for each timestep. Non-dominated sorting genetic algorithm II (NSGA-II) is selected as 

the optimization algorithm in this study, due to its superior ability to solve multi-

objective problems [22]. The objectives representing the optimal growth conditions are 

(1) maximizing the average crystal growth rate to enhance the production efficiency; (2) 

minimizing the standard deviation of the crystal growth rate to obtain a uniform crystal 

surface; and (3 & 4) minimizing the maximum crucible dissolution rate and polycrystal 

precipitation rate for a longer growth time and more stable growth conditions. Among 

all candidates suggested by NSGA-II, the individual with the best performance for all four 

objectives is selected as the optimal conditions for each timestep. The geometric model 

is then updated according to the unsteady changes under this optimal condition, and the 

above process is repeated for the subsequent timestep until the end of the process. 

 
Fig. 2.7 Operation flow of the optimization process 

It is worth mentioning that for the whole 100 timestep process, approximately 4 × 

106 sets of inputs and outputs are required by NSGA-II due to the stochastic nature of 

the algorithm. It takes more than 1600 years to generate this dataset by experiments 

through one TSSG furnace. By CFD simulations alone, it still requires approximately four 
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years of CPU time with the state-of-art computational power used in this study. However, 

this value is only ∼100 h to prepare all the training data to construct the machine learning 

models in 100 timesteps with acceptable accuracy, while the well-trained machine 

learning models cost almost no time to do the prediction and supply data to NSGA-II. 

This demonstrates the high efficiency of the utilization of machine learning models, and 

the potential for real-time optimization in the future. 

2.4.3 Optimized time-dependent recipe 

The times-dependent control parameters for the 100 timestep process suggested by 

the optimization algorithm are compared to the original fixed control parameters (Fig. 

2.8). Several trends can be observed, namely, (1) the crucible position initially increases, 

and then remains high; (2) the temperature at the monitoring point remains at the lower 

limit of the data range during the entire growth process; (3) the seed crystal initially 

rotates at a high speed, and gradually slows down; and (4) the rotation speed of the 

crucible increases, especially in the late period. These trends indicate the dynamic 

feature of the optimized control recipe. 

 

(a)                                                      (b) 

  
(c)                                                       (d) 

Fig. 2.8 Comparison of the control parameters in the fixed recipe and the adaptive 

recipe, namely the (a) crucible position, (b) temperature of the monitoring point, (c) 

rotation speed of the seed crystal, and (d) rotation speed of the crucible. 
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The evolution of the temperature and flow fields under the optimized recipe is 

plotted in Fig. 2.9, where the effective suppression of both crucible dissolution and 

polycrystal precipitation is achieved owing to the dynamic and adaptive control. 

Specifically, there is a smaller change in the maximum temperature of the solution 

(𝑇𝑚𝑎𝑥_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛). Moreover, the values of the maximum temperature difference between 

the single crystal and crucible wall (𝛥𝑇𝑐𝑟𝑦/𝑐𝑟𝑢), the temperature difference between the 

center and edge of the crystal surface ( 𝛥𝑇𝑐𝑟𝑦𝑠𝑡𝑎𝑙 ), and the carbon mass fraction 

difference between the center and edge of the crystal surface (𝛥𝜔𝑐𝑟𝑦𝑠𝑡𝑎𝑙) are smaller 

compared with those of the fixed control growth process. This is indicative of more stable 

and preferable growth conditions. Detailed values of these parameters are listed in Table 

2.3.  

   

(a) Thermal and flow fields at 0 h 

   
(b) Thermal and flow fields at 10 h 

   
(c) Thermal and flow fields at 20 h 

   
(d) Thermal and flow fields at 30 h 
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(e) Thermal and flow fields at 40 h 

Fig. 2.9 Evolution of the thermal and velocity field in the solution domain under the 

adaptive recipe. 

Table 2.3 Parameters during 50 h growth under the fixed and adaptive recipes 

Time 
Tmax_solution (K) ∆Tcry/cru (K) ∆Tcrystal (K) ∆ωcrystal (×10−5) 

Fixed Adaptive Fixed Adaptive Fixed Adaptive Fixed Adaptive 

0 h 2212.2 2077.3 4.4 3.2 0.5 0.3 1.2 0.8 

10 h 2218.2 2078.4 5.4 3.6 0.6 0.4 1.9 1.0 

20 h 2224.2 2081.6 6.6 4.4 0.7 0.6 2.3 1.3 

30 h 2227.8 2081.0 7.6 5.6 0.8 0.8 2.8 1.7 

40 h 2238.1 2082.7 9.2 6.8 0.9 0.9 3.0 1.9 

 

 
Fig. 2.10 (a) Average single crystal growth rate, (b) standard deviation of the single 

crystal growth rate, (c) maximum crucible dissolution rate, and (d) maximum 

polycrystals precipitation rate during the 50 h growth process. 

To further illustrate the effectiveness of the optimization, the evolution of the four 

objectives, namely, average crystal growth rate, standard deviation of the crystal growth 
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rate, maximum crucible dissolution rate, and polycrystals precipitation rate during the 

entire growth process is evaluated in Fig. 2.10. For the growth under the fixed recipe, 

the average crystal growth rate increases with time, but is accompanied by an almost 

exponential increase in standard deviation. This represents that the growth is out of 

control in the late period. Conversely, the crystal growth rate under the adaptive recipe 

exhibits a high average value at the beginning and a low standard deviation in the later 

periods. Besides, the adaptive recipe also allows for a much lower crucible dissolution 

rate and polycrystals precipitation rate. 

Finally, the solution domain configurations of the two recipes are compared after 50 

h in Fig. 2.11. The adaptive recipe can yield a ∼30% thicker crystal (average thickness = 

9.27 mm) with a flatter surface compared to the fixed recipe, as well as ∼50% less 

crucible dissolution (maximum depth = 4.82 mm) and ∼50% less polycrystal precipitation 

(maximum height = 8.28 mm). It is estimated that 50% more growth time (25 h) with 

stable and safe growth conditions is available. Overall, adjusting the growth recipe to 

adapt to the unsteady environmental changes during long-term growth offers superior 

control of the growth process and allows for higher production efficiency, better surface 

flatness, and longer available growth time. 

 
Fig. 2.11 Solution domain configuration after 50 h under the fixed (left) and 

adaptive (right) recipes. Red, light green, dark green, and dark gray represent the 

solution, single crystal, polycrystals, and crucible, respectively. 

2.5 Discussion on improving optimization efficiency 

Although the optimization system proposed in the last section has proven its 

effectiveness in yielding a time-dependent control recipe, the time-consuming process 

of making enough training data for machine learning still limits the optimization 

efficiency and its wider application. It takes about 100 h CPU time for the whole process 

to prepare sufficient training data for the optimization of a 50-hour growth sequence. 

Since the ultimate target of this study is to construct a “digital twin” of the practical 

experiment and achieve real-time control and optimization, the efficiency of the 

foregoing system should be further improved by reducing the training data number, but 

meanwhile keep the high accuracy of machine learning. However, there seems to be a 

tradeoff between the training data size and model accuracy, because previous material 
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informatics studies have unambiguously demonstrated that with less training data set it 

will be more difficult for the machine learning model to detect the pattern and make 

accurate prediction [23-25]. 

Thanks to the development of machine learning technology, a method named 

transfer learning might be the solution to this dilemma. As the last part of this chapter, 

the present section examines the feasibility of applying transfer learning to the 

established system to further improve the optimization efficiency. Detailed performance 

regarding the effects of training data number and multi-step stability is discussed as 

follows. The determination of transfer method, training process, and the limit of transfer 

learning are introduced in Appendix A. 

2.5.1 Transfer learning 

As introduced previously, the artificial neural network detects the features of the 

dataset by adjusting the weights and bias between neurons in the network. Normally, a 

neural network is trained from an initial condition with given or random values of 

weights and bias (also referred to as “training from scratch”), and the required training 

data amount is positively correlated to the complexity of the dataset and the total 

number of neurons. For the datasets from two problems sharing sufficient similarities, 

their respective well-trained neural networks also have similar weights and bias 

distribution. Based on these facts, the concept of transfer learning was proposed [26, 

27], which is to deploy the information from a well-trained network (source model) into 

a new one (transferred model) dealing with the similar problem, to offset the decrease 

of training data amount.  

This approach works by firstly training a neural network model on the source domain 

with sufficient training data size and then, as the name suggests, transferring the 

architecture and parameters of the source model into a related target domain and 

slightly adjusting the model with the new training data set. If the two domains share 

sufficiently similar features, this transfer can simplify the pattern detection process in 

the target domain and keep the high accuracy even with small data set. Two commonly 

applied procedures for neural transfer learning, namely the frozen featurizer and fine 

tuning, were considered [28, 29]. The source neural network with L layers can be 

represented as an Lth-order composite function tandemly arranged from input 𝑔1  to 

output layer 𝑔𝐿:  

𝑌𝑠 = 𝑓𝑠(𝑋) = (𝑔𝐿 ∘ 𝑔𝐿−1 … ∘ 𝑔1)(𝑋)                                (Eq. 2-16) 

where Y and X are respectively the output and input of the model. It is generally 

considered that the shallow layers in the network tend to capture more general features, 

whereas the deep layers are more likely to capture specific features. Therefore, instead 
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of training the neural network from a random initial condition (training from scratch), 

the frozen featurizer method freezes the network variables in the shallower layers as a 

feature extractor, 𝜙(𝑋) = (𝑔𝐾 ∘ 𝑔𝐾−1 … ∘ 𝑔1)(𝑋) with 𝐾 < 𝐿, and conducts supervised 

learning on only the remaining layers to obtain a transferred model 𝑌𝑡 = 𝑓𝑡(𝜙(𝑋)). The 

fine tuning approach does not fix any layers from the source model, but instead treats 

the source model as the initial condition and then fine tunes the network variables at a 

small learning rate. This method updates the model to better fit the new task while 

preserving domain-invariant knowledge. 

 
Fig. 2.12. Process flow of transfer learning and optimization of unsteady growth 

sequence 

The strategy of transfer learning has been recently applied in the field of material 

informatics and has proven its effectiveness in predicting material properties [28, 30, 31], 

microstructure [32-34], and solar cell efficiency [35] from a small number of high-quality 

data. Therefore, it might be possible that transfer learning can be employed in our 

process design of unsteady crystal growth to save training data since the geometric 

evolutions between two consecutive timesteps are not significant and may not change 

the major features of input data representation. In the following sections, fine-tuning is 

selected as the only transfer method. The comparison between the performance of fine-

tuning and frozen featurizer is described in detail in Appendix A.  For fine-tuning, the 

learning rate is set as 0.0001, which is 100 times smaller than that when the source 

model is trained. “Early stopping” with patience of 10 iterations is used to avoid the 

influence of epoch number on different training cases, which will stop the training if the 
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validation error does not decrease in consecutive 10 iterations. The process flow of 

transfer learning and optimization of the unsteady growth sequence is shown in Fig. 2.12. 

In each timestep, instead of being constructed independently, the static neural networks 

inherit knowledge from the previous timestep, which enables the reduction of required 

training data from CFD simulation.  

2.5.2 Performance of transfer learning on saving training data 

The performances of the training-from-scratch model and the transferred model are 

then investigated under different training data amounts to further illustrate the 

superiority of the transfer learning model. The mean absolute error (MAE) of the output 

on the test set is selected to represent the performance of the model because it has the 

same unit as the output and can be evaluated more directly (the average growth rate in 

all data set is 206.0 μm/h, for reference). The data amount is expressed in a percentage 

form, which is the ratio of the number of training data cases to 140, the total number of 

data used to train the source model in timestep 1. As shown in Fig. 2.13, when using 

100% amount of data, the new model and the transferred model both show relatively 

high accuracy and almost no difference in predicting the growth rate on the single crystal 

surface in the new timestep. However, when gradually decreasing the data amount, the 

trained-from-scratch model shows high sensitivity to the data amount and MAE 

increases almost exponentially along with the decrease of data. When the data size is 

less than 40%, the accuracy of the new model is already lower than directly using the 

source model from the initial timestep. The transferred model, in the contrast, remains 

high accuracy even with 20% amount of training data.  

 
Fig. 2.13. Performance of transfer model and new model trained with different data 

amount. The solid black line is the MAE of directly applying the source model, as 

reference. 

To further illustrate the effectiveness of transfer learning, the transferred models 

trained with only 20% amount of data are applied to predict the unsteady changes on 
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the three boundaries with a certain combination of control parameters. Note that this 

combination is not included in the training data set. The prediction results are compared 

with the performance of the new model trained with the same data amount. As shown 

in Fig. 2.14, for the growth rate of single crystal (Fig. 2.14(a)) and the precipitation rate 

of polycrystal at crucible bottom (Fig. 2.14(c)), the distributions predicted by transferred 

models show good agreements with the simulation result, while the predictions given 

by the new model can barely reproduce the approximate tendency, and cannot be used 

to supply data to the optimization algorithm in the subsequent process. In addition to 

proving the superiority of transferred models, an interesting result is observed when 

predicting the dissolution rate on the crucible wall (Fig. 2.14(b)). Beyond our expectation, 

the results given by the new model and the transferred model do not present as big a 

difference as shown on the other two boundaries. This can be explained that for the 

growth of the single crystal and the precipitation of polycrystal, they depend on the co-

effect of both local temperature and overall solution flow pattern for carbon transport, 

while for the dissolution of crucible wall, it depends mainly on the local temperature, 

which may reduce the difficulty of feature detection.  

 
Fig. 2.14. Distribution of (a) growth rate on the crystal surface, (b) dissolution rate 

on the crucible wall, and (c) precipitation rate of polycrystals on the crucible bottom in 

the new timestep given by simulation, new model, and transfer model, respectively. (d) 

schematic diagram of the three boundaries. 

To better understand why transfer learning can achieve high accuracy with a small 

amount of training data, the weight values of fully connected layers in the network are 

extracted. The difference in weights between the models trained with 100% data and 
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20% data is plotted in Fig. 2.15, for the cases of transfer learning and training-from-

scratch, respectively. Here the difference is defined as 𝑑𝑖,𝑗 = 𝑎𝑏𝑠(
𝑤𝑖,𝑗

100%−𝑤𝑖,𝑗
20%

𝑤𝑖,𝑗
100% ), where 

𝑤𝑖,𝑗 denotes the weight of the node (i, j) in the layer, and the superscript tells whether 

the model is trained with 100% or 20% data. For transfer learning in Fig. 2.15 (a), the 

models trained with 20% and 100% have little difference in the first 3 layers, and the 

difference becomes non-negligible in the last layer. This indicates that the more general 

features stored in the shallower layers are successfully inherited from the source model 

without much modification, therefore the small amount of data can be utilized more 

efficiently to rectify almost only the last layer which stored more specific features of the 

new timestep and has simpler structure (128×1). On the contrary, the difference is 

considerable for every layer in the case of training a new model (Fig. 2.15(b)), indicating 

the incapability of using small data to train the whole model. This result explains the 

different performance between the transferred model and the new model in Fig. 2.13. 

 
(a) 

 
(b) 

Fig. 2.15. Difference of weights in 4 fully connected layers between the models 

trained with 100% and 20% data: (a) transfer modes; (b) new models. The layers have 5

×128, 128×128, 128×128, and 128×1 weights, respectively. 



52 

 

2.5.3 Stability of transfer learning through multiple timesteps 

Sec. 2.5.2 has demonstrated that transfer learning can maintain high accuracy even 

with a small amount of data when predicting the unsteady changes in a new timestep. 

For practical application of adaptive process design, it is necessary to test the 

sustainability of this high accuracy in a multi-timestep sequence. For this purpose, 4 

successive timesteps with ∆t=1 h are proceeded and transferred models are trained with 

different data amounts in each timestep. For the transferred model trained with n% data 

in timestep i, it acts as the source model for the transfer training with n% data in timestep 

i+1. The timestep i+1 is updated based on the optimal condition in timestep i yielded by 

the optimization algorithm. As shown in Fig. 2.16, the transferred model trained with 

20% amount of data can maintain a relatively low MAE value regardless of the time 

evolution. This result implies that the high data efficiency can be stably transmitted 

through multiple timesteps, which proves the feasibility of the application of transfer 

learning in long-term adaptive process design. Interestingly, the values of MAE of the 

models trained with relatively more data (100% and 60%) can even gradually decrease. 

It can be explained that transfer learning inherits not only the knowledge learned in the 

previous time step, but also the inaccuracy, and is capable of further decreasing this 

inaccuracy when fed with relatively large amount of data. This result expands the 

application scope of transfer learning: when being applied with small amount of data, it 

can improve the efficiency and meanwhile keep the accuracy; when being applied with 

large amount of data (still no more than 100%), it can further improve the accuracy for 

the long-term prediction. 

 
Fig. 2.16. Evolution of the performance of transfer models in multiple timesteps 
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2.6 Conclusions 

In this study, the instability caused by configuration changes during long-term SiC 

solution growth was investigated. A quasi-unsteady 2D simulation model was 

constructed to depict the evolution of single SiC crystal growth, carbon crucible 

dissolution, and SiC polycrystal precipitation during long-term growth under a certain 

combination of controlling parameters. This model was initially applied to investigate the 

unsteady feature of an original recipe with fixed parameters. The maximum available 

growth time of this fixed recipe was limited to ∼50 h due to the high polycrystal height, 

deep crucible dissolution, and non-uniform single crystal surface. Accordingly, a machine 

learning-based optimization system was proposed to design an optimal recipe with time-

dependent parameters in a 100-timestep sequence. Machine learning models were 

trained by simulation data to instantly provide an accurate prediction of unsteady 

changes and were combined with an NSGA-II optimization algorithm to determine the 

optimal control parameters to maintain a high and uniform growth rate, low crucible 

dissolution rate, and low polycrystal precipitation rate in each timestep. Machine 

learning allowed for a 300-fold reduction in calculation time. The adaptive recipe yielded 

by optimization effectively suppressed crucible dissolution and polycrystal precipitation 

compared to the fixed recipe, thereby extending the available growth time by 50%. In 

addition, the adaptive recipe facilitated the growth of a 30% thicker single crystal with a 

flatter surface. These findings demonstrate the importance of dynamic adaptive control 

for long-term SiC solution growth and provide qualitative guidance for further practical 

experiments and production. Moreover, to further improve the optimization efficiency, 

a transfer learning strategy was introduced into the optimization system as a feasibility 

study. It was found that compared with the original training strategy, which is to train 

the machine learning model from scratch, the transferred model could achieve the 

same-level prediction accuracy, but with 80% less training data amount. The stability of 

this high efficiency was also examined in successive multiple timesteps, which 

demonstrated the capability of transfer learning in the optimization of the long-term SiC 

solution growth process.  
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3. Compositional instability of solution 

and improved design 

3.1 Introduction 

For TSSG of SiC crystal, several elements besides silicon (Si) are added to the solution 

to increase carbon solubility or improve crystal surface morphology. Among them, 

aluminum (Al) plays an important role, not only to serve as the dopant for p-type crystals, 

but also to increase the interfacial energy on the crystal/solution surface and thusly 

reduce the frequency of two-dimensional nucleation [1, 2]. It was reported that even 1% 

more Al concentration in solution may significantly improve the crystal surface 

morphology and polytype stability [3]. However, besides being incorporated into the 

grown crystal, Al may also be consumed by the evaporation during growth due to its high 

volatility or the reaction with the graphite crucible wall. It can be imagined that the 

continuous Al loss may increase the instability of the growth process and negatively 

affect the crystal quality. Excessive Al addition in the initial solution might be a 

compensation for this loss, but it will impede the growth of N-type SiC crystal and result 

in other problems like inhomogeneous doping or degradation of system components 

made from carbon. Therefore, the evaporation of Al and the subsequent reactions 

should be investigated and further suppressed to enhance the composition stability of 

the solution during long-term growth. 

Not only in solution growth of SiC, the evaporation loss of the liquid phase is a 

common problem in crystal growth fields. For the growth of most compound 

semiconductor crystals, suitable chemical stoichiometry in the melt is one of the crucial 

factors to achieve a preferable growth condition [4]. In the liquid phase, some solutes 

are relatively more volatile than others, especially under the extremely high-

temperature environment, and the continuous evaporation of a certain solute during the 

long-term growth may make the solution deviate from its predetermined and well-

designed composition. It has been widely reported in literature that the evaporation of 

volatile solutes may result in problems like defects formation, inhomogeneous doping, 

and limited growth time [5-11]. Aiming at suppressing the evaporation and maintaining 

the stable solution composition, several methods have been proposed and proven to be 

effective, including increasing the vapor pressure of the volatile material in the gas phase 

via intentionally evaporation [12], sealing the crucible with encapsulant [13], elevating 

the atmosphere pressure [14, 15], changing the atmosphere composition [15-17], 

lowering down the growth temperature [18, 19], and continually feeding the volatile 
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material [19]. However, most of these methods cannot be generally applied due to the 

particularity of different growth systems, and some may increase the cost of the growth 

process. Moreover, almost all the previous studies focused on the effectiveness of 

suppression methods experimentally and qualitatively, while their quantitative effects 

on evaporation behavior remain unknown, which restricts further optimization. 

To better understand the compositional instability of solution during long-term 

crystal growth of SiC, the present study proposes a numerical model of computational 

fluid dynamics (CFD) that simulates the detailed transport paths of a certain solute, and 

can therefore predict the concentration evolution over time. This model is employed to 

simulate the unsteady Al transport in a 3-inch SiC solution growth system. Accordingly, a 

facile and economical geometric structure design is proposed aiming at suppressing Al 

loss, and its effectiveness is examined both numerically and experimentally. 

3.2 Description of the numerical model 

3.2.1 Experimental setup 

The solution growth experiment of a 3-inch SiC crystal is performed in a 

radiofrequency (RF) heating system with a frequency of 3 kHz (Fig. 3.1 (a)). A graphite 

crucible surrounded by thermal insulator acts as both container and carbon source of 

the solution with chemical compositions of Si0.58Cr0.4Al0.02. The diameter and height of 

the solution are 60 mm and 30 mm, respectively. A 1◦ off-axis 4H-SiC seed with Si polarity 

is mounted on the tip of a graphite shaft and is dipped in the solution with a meniscus 

height of about 0.5 mm. The temperature near the center of the seed crystal is measured 

by a thermocouple inserted inside the graphite shaft, and is controlled and kept at 2173 

K (1900 ◦C) during the growth process. The furnace is filled with helium gas and the 

pressure is maintained at 1 atm. The rotation pattern of seed and crucible is the same as 

the original fixed recipe in Chapter 2. 

To suppress the Al evaporation loss, we propose a new structure with a graphite disk 

placed 60 mm above the solution, which is referred to as the “fin” (Fig. 3.1(b)). The 

thickness of the fin is 1 cm, while there is a 5 mm gap between the inner and outer fin 

for security consideration because the shaft and the crucible rotate independently. Two 

growth experiments, with and without fin structure, are conducted using the same 

growth condition. The step morphology and step height of grown crystals are observed 

and measured using 3CCD real color confocal microscope (Lasertec, OPTELICS H1200). 
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(a)                                                                (b) 

Fig. 3.1. (a) Configuration of the original solution growth system and (b) schematic 

view inside the crucible (left: original structure; right: with fin structure). 

3.2.2 CFD simulation 

The numerical simulation of the mass transport of Al is performed in 2 sequential 

steps: (i) simulation of the global temperature and velocity field throughout the solution 

growth system; (ii) calculation of the transient mass concentration of Al under the effects 

of diffusion and convection in both liquid and gas phases, and constrained by the physical 

and chemical equilibriums at the reaction boundaries. The models used in the simulation 

are described below.  

Model of fluid flow and heat transfer 

The 2D steady global model built in the foregoing chapter is employed to simulate 

the fluid flow, and heat transfer inside the crystal growth system. Magnetic, flow and 

thermal fields are coupled and solved numerically by the finite volume method via 

CGSim commercial software. The structural layout and controlling parameters are the 

same as those in the experiments introduced previously. In this chapter, we mainly focus 

on the evolution of Al concentration, and thusly the unsteady changes of the crucible 

shape are not considered to simplify the problem. 

Model of mass transport of Al 

Based on the flow and thermal fields obtained above, the governing equation of Al 

transport in fluids can be expressed as: 

𝜕(𝜌𝑙,𝑔𝐶𝑙,𝑔)

𝜕𝑡
+ 𝛻 ∙ (𝜌𝑙,𝑔𝐶𝑙,𝑔�⃗⃗�) = 𝛻 ∙ (𝜌𝑙,𝑔𝐷𝑙,𝑔𝛻𝐶𝑙,𝑔)                   (Eq. 3-1) 

where 𝜌  denotes the density, 𝐶  the mole concentration of Al (mol/m3), �⃗⃗�  the velocity 

and 𝐷 the diffusion coefficient (m2/s). The subscripts 𝑙 and 𝑔 represent the liquid and 

gas phases, respectively. The diffusion coefficient of Al in the solvent ( 𝐷𝑙  ) can be 

obtained through the Stokes-Einstein equation: 
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𝐷𝑙 =
𝑘𝐵𝑇

6𝜋𝜂𝑟
                                                        (Eq. 3-2) 

where 𝑘𝐵, 𝑇, 𝜂 and 𝑟 are Boltzmann’s constant, temperature (K), dynamic viscosity (Pa⋅

s), and radius of Al atom. 

Similarly, the diffusion coefficient of Al in helium gas can be obtained through the 

Chapman-Enskog theory [20]: 

𝐷𝑔 =
1.859×10−7𝑇3/2√

1

𝑀𝐻𝑒
+

1

𝑀𝐴𝑙

𝑃(
𝜎𝐻𝑒+𝜎𝐴𝑙

2
)2

                                   (Eq. 3-3) 

where 𝑀 denotes the molar mass (g/mol), 𝑃 the atmosphere pressure (atm), and 𝜎 the 

particle diameter (Å). Values of parameters used in the calculation are listed in Table 3.1 

[21]. 

Table 3.1 Parameters used in the calculation 

Parameter Value Unit 

Dynamic viscosity of solution, 𝜂 1.266 × 10−3𝑒𝑥𝑝(1982/𝑇) Pa s 

Molar mass of He, 𝑀𝐻𝑒 4 g/mol 

Molar mass of Al, 𝑀𝐴𝑙  27 g/mol 

Molecular diameter of He, 𝜎𝐻𝑒  2.6 Å 

Atomic diameter of Al, 𝜎𝐴𝑙  2.8 Å 

 

The chemical and physical reactions are considered to probably occur on the three 

categories of surfaces, namely solution-crucible interface, solution free surface, and the 

gas-solid interface. Details of the boundary conditions are given below: 

(i) At the interface between the solution and graphite crucible, the possibility exists 

that Al in the liquid phase reacts with carbon to form aluminum carbide. The equation 

of this reaction and the Gibbs free energy change at 1 atm can be expressed as [22]: 

4𝐴𝑙 (𝑙) + 3𝐶 (𝑠)  ↔  𝐴𝑙4𝐶3 (𝑠), ∆𝐺0 ≈ −2.42 × 105 + 94.9𝑇 𝐽/𝑚𝑜𝑙      (Eq. 3-4) 

The equilibrium constant of the reaction can therefore be found from the free energy 

change in Eq. 3-4 as: 

𝐾 =
1

𝑎𝐴𝑙
4

= 𝑒−∆𝐺0/𝑅𝑇                                         (Eq. 3-5) 

where 𝑎𝐴𝑙 is the atom fraction of Al in solution, and 𝑅 is the ideal gas constant. 

According to Eq. 3-4 and Eq. 3-5, the equilibrium mole fraction of Al at 2173 K is 

about 0.61, much larger than the real mole fraction of Al in our solution, which is 0.02. 

A similar conclusion was obtained in literature [23], where graphite crucible was capable 
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to hold Si-Al solution when the mole fraction of Al is below 0.12% at 1500 °C. Note that 

this critical concentration increases with temperature, as suggested by Eq. 3-4. Therefore, 

at the interface of solution and crucible, the forward reaction that consumes Al does not 

happen, and the Al flux on this boundary is accordingly considered as 0. 

(ii) Along the solution-gas free surface, Al evaporates into the gas phase in the form 

of Al vapor. It is assumed that this reaction reaches an equilibrium state instantly and 

thusly the partial pressure of Al at the gas side of this boundary equals the saturated 

vapor pressure of Al on the liquid side. Given that Al concentration inside the solution is 

low enough to follow Henry’s law, the evaporation process can be expressed as: 

𝑃𝑝 = 𝑃0′
                                                     (Eq. 3-6 a) 

𝑃𝑝 = 𝐶𝑔𝑅𝑇                                                    (Eq. 3-6 b) 

𝑃0′
=

𝐶𝑙

𝐶𝑡𝑜𝑡𝑎𝑙
𝑃0𝛾                                                (Eq. 3-6 c) 

and thusly the relationship between 𝐶𝑔 and 𝐶𝑙 can be expressed as: 

𝐶𝑔 = 𝐶𝑙
𝑃0𝛾

𝐶𝑡𝑜𝑡𝑎𝑙𝑅𝑇
                                                 (Eq. 3-6 d) 

where 𝑃𝑝 denotes the partial pressure of Al in the gas phase, 𝑃0′
 the saturated vapor 

pressure of the Al in solution, 𝐶𝑡𝑜𝑡𝑎𝑙   the total mole concentration of all solution 

compositions and is assumed as a constant, 𝑃0 the saturated vapor pressure (Pa) of pure 

Al, and γ the activity coefficient of Al, the value of which can be found as [24]: 

𝑙𝑜𝑔𝑃0 = −
16380

𝑇
− 𝑙𝑜𝑔𝑇 + 14.445                               (Eq. 3-7) 

𝑙𝑜𝑔𝛾 = −
1570

𝑇
+ 0.236                                        (Eq. 3-8) 

To complete Eq. 3-6 d which has 2 unknowns, the conservation equation of mass flux 

of Al through the boundary is added: 

𝐷𝑔𝛻𝐶𝑔 = 𝐷𝑙𝛻𝐶𝑙                                              (Eq. 3-9) 

(iii) At the solid-gas interface away from the solution area, vapor Al may deposit due 

to the oversaturated state, which is the main consumption of Al in this system. The 

boundary condition is given as a conditional form that whether the saturated state is 

achieved: 

{
𝐶𝑔 =

𝑃𝑒𝑞

𝑅𝑇
, 𝐶𝑔 >

𝑃𝑒𝑞

𝑅𝑇

𝛻𝐶𝑔 = 0, 𝐶𝑔 ≤
𝑃𝑒𝑞

𝑅𝑇

                                            (Eq. 3-10) 
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where 𝑃𝑒𝑞  is the equilibrium pressure of Al vapor, and 
𝑃𝑒𝑞

𝑅𝑇
  denotes the equilibrium 

concentration at the boundary.  

There are two possibilities for this deposition: 1. the physical condensation of Al 

vapor turning into Al liquid on the cold solid surface, and 2. the chemical reaction of Al 

vapor with carbon on the graphite or carbon insulator surfaces, whose equation can be 

written as: 

4𝐴𝑙(𝑔) + 3𝐶(𝑠) ↔ 𝐴𝑙4𝐶3(𝑠)                                 (Eq. 3-11) 

To determine which reaction is easier to happen, the equilibrium pressures of both 

reactions are compared in Fig. 3.2. For the physical condensation, the equilibrium 

pressure of Al vapor is the same as the saturated vapor pressure of pure Al liquid (𝑃0), 

while the equilibrium pressure (Pa) of Eq. 3-11 was measured in literature [25]: 

𝑙𝑜𝑔10𝑃 ≈ −18000/𝑇 + 11.412                               (Eq. 3-12) 

 
Fig. 3.2. Comparison of equilibrium vapor pressures of Al in the chemical reaction 

and the physical condensation. 

According to Fig. 3.2, the chemical reaction in Eq. 3-11 has lower equilibrium vapor 

pressure and is therefore predominant compared with the condensation. The deposition 

material on the graphite surface after the experiment is collected and tested by x-ray 

Diffraction (XRD). The result shows that Al appeared only as the formation of aluminum 

carbide instead of elemental Al, which also validates this conclusion. Therefore, on the 

boundaries of graphite or insulator surfaces, 𝑃𝑒𝑞  in Eq. 3-10 is set as the equilibrium 

pressure of the chemical reaction instead of that of condensation. 

The initial value of Al concentration in the solution (𝐶𝑙) is given as 2026.98 mol/m3 

with a uniform distribution, while the initial value of Al concentration in gas (𝐶𝑔) was 0. 

The evaporation loss of Si and Cr is not considered here because: 1. the saturated vapor 

pressures of Si and Cr are much lower compared with Al [24, 26], 2. the activity 

coefficients of Si and Cr are low in the Si-Cr based solution [27], 3. the reactions and 
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consumptions of Cr and Si vapors on solid graphite surface are weak, and 4. the crystal 

growth condition is less sensitive to the slight change of Si or Cr concentration. The 

incorporation of Al into the grown crystal is also neglected due to the low growth rate 

(~100 μm/h). 

3.3 Results and discussion  

3.3.1 Comparison of simulation results between the original and 

improved designs 

When Al evaporates from the solution and reacts with the solid surfaces, the 

following steps may determine the overall loss rate of Al:  

(i) transport of Al atoms in bulk solution to liquid/gas interface; 

(ii) Evaporation of Al atoms through the liquid/gas interface into the gas phase; 

(iii) Transport of Al atoms in the gas phase to the solid surface. 

Among them, step (i) is not considered to be the rate-determining step for the overall 

Al loss, because the distribution of Al in the liquid phase is relatively uniform due to the 

strong stirring caused by electromagnetic force. For step (ii), the Al loss rate can be 

reduced by the strategies like decreasing the free surface area or the growth 

temperature. However, both two strategies may change the growth environment of SiC 

crystal and make it away from the initially designed growth condition. Therefore, 

improving step (iii) is the most effective and promising way to reduce the overall Al loss. 

In the present study, a “fin” structure is proposed, which is expected to suppress the 

transport of Al vapor in the gas phase and consequently decrease the amount of Al vapor 

that reaches the potential reacting solid surfaces. Meanwhile, because this “fin” 

structure is away from the solution domain, it is believed not to disturb the original 

thermal environment inside the solution. 

To examine the effectiveness of this “fin” structure, steady state simulations of fluid 

flow and heat transfer are conducted for both the original and the improved cases. As 

shown in Fig. 3.3(a), the existence of the fin structure above the solution has little effect 

on the temperature distribution and flow pattern inside the solution domain, because 

the system is temperature-controlled and the solution is heated directly by the induction 

heat in the crucible wall and the solution itself. The maximum difference in temperature 

inside the solution between the two cases is less than 0.5 K, while the maximum 

difference in temperature on the crystal surface is about 0.2 K. These results indicate 

that the existence of fin structure has almost no influence on the growth environment 

of SiC crystal.  
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For the temperature distribution in the gas phase above the solution (Fig. 3.3(b)), the 

solid surfaces in the improved case with the fin structure (right) are slightly colder than 

those in the original case without the fin structure (left), especially for the graphite 

surfaces at the outlet of insulator where the temperature is about 40 K lower than those 

in the original case. It can be explained that the fin structure blocks the radiation path 

from the hot solution area to the cold surfaces away from the solution. An advantage 

brought by this effect is that the heating power consumed in the improved case (5.2 kW) 

is ~20% lower than that in the original case without the fin structure (6.7 kW). On the 

other hand, according to Eq. 3-12, lower temperature may decrease the equilibrium 

vapor pressure and reaction criterion, and consequently increase the Al consumption. In 

this aspect, it seems that the fin structure has a negative effect on preserving the Al and 

enhancing the composition stability of the solution. 

 
(a) 

 
(b) 
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Fig. 3.3. Temperature distribution in (a) solution area and (b) gas area above the 

solution (left: without fin structure; right: with fin structure). 

 
Fig. 3.4. Al vapor distribution in the gas area above the solution after 1 h growth 

(left: without fin structure; right: with fin structure). 

However, for the distribution of Al concentration in the gas phase after 1 h growth 

(Fig. 3.4), the fin structure shows its superiority that most Al vapor is restricted inside 

the hot and narrow space between the solution surface and fins, while in the original 

case Al vapor with relatively high concentration can freely reach the cold graphite 

surfaces above. This can be explained that in the original case, a large vortex (with a 

velocity magnitude of 1 × 10-3 m/s) driven by the thermal buoyancy directly and 

continuously transports the Al vapor from the hot solution surface to the cold graphite 

surfaces. In the improved case, the fin structure breaks the large vortex into two 

independent vortexes with similar velocity magnitude, and this significantly reduces the 

transport of Al from the hot solution to the cold area above. To quantitatively describe 

the effect of the fin structure, temperature, equilibrium Al concentration, and Al 

concentration at one monitoring point (shown in Fig. 3.4) near the graphite surface after 

1 h unsteady simulation are recorded and shown in Table 3.2. For the improved case with 

fin structure, although the equilibrium value is about 1.5 times lower than that in the 

original case due to lower temperature, the concentration of Al vapor is about 10 times 

lower. For the original case, the concentration of Al vapor at the monitoring point is 

higher than the equilibrium value at the corresponding temperature, and therefore the 

consumption of Al consistently occurred, which corresponded with the experiment 
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result that a large amount of Al4C3 deposits were observed at the same area. However, 

in the improved case with the fin structure, the reaction criterion is not reached at the 

monitoring point due to the low value of actual concentration, and deposits were seldom 

observed in practical experiments. 

Table 3.2 Temperature, equilibrium concentration and concentration of Al at the 

monitoring point. 

 Temperature (K) 𝐶𝐴𝑙
𝑒𝑞 (mol/m3) 𝐶𝐴𝑙 (mol/m3) 

Without fin 1587.8 9.0 × 10−5 1.2 × 10−4 

With fin 1564.8 6.2 × 10−5 1.2 × 10−5 

 

 
Fig. 3.5. Evolution of Al concentration at monitoring point in solution during 20 h 

growth. 

Long-term unsteady simulations for the Al mass transport process are conducted and 

the evolutions of Al concentration at another monitoring point inside the solution (10 

mm underneath the free surface) in 20 h are recorded as shown in Fig. 3.5. The 

evolutions of Al concentration in both cases exhibit an exponential decay pattern, but 

with different decay constants, which indicates the difference in Al consumption ability. 

After 20 h growth time, the Al concentration at the monitoring point in the improved 

case with the fin structure is about 1.7 times higher than that in the original case without 

the fin structure, while more than 70% Al loss is suppressed, which proves the 

effectiveness of the fin structure to preserve the composition in solution for long-term 

growth. If neglecting the loss of Si and Cr, after 20 h growth the Al mole fraction in 

solution in the improved case is about 1.7%, while it is about 1.0% in the original case. 

According to the previous study [2, 3], even 0.5% lower Al mole fraction in solution may 

influence the step morphology and poly-types stability on the crystal surface. Therefore, 

the addition of the fin structure is expected to improve the SiC crystal quality after a 
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long-time growth. It is worth mentioning that the fin structure has little effect on Al 

concentration uniformity along the crystal/liquid interface, which is uniform (relative 

difference between the center and edge is less than 0.1% regardless of the existence of 

the fin) due to strong stirring. 

3.3.2 Comparison of experimental results between the original and 

improved design 

Crystal growth experiments are conducted to validify the effect of the fin structure 

on the grown crystal. The growth time is 20 h, while the growth conditions in the two 

experiments are the same except for the existence of the fin structure. For the original 

case without the fin structure (Fig. 3.6(a)), several particles can be observed on the 

crystal surface. These particles are considered to adhere to the grown crystal surface 

after 3D spontaneous nucleation in the solvent due to high supersaturation [27]. The 

existence of these particles will result in quality problems like trench defects, poly-types 

and inclusions, and significantly interrupt the growth pattern of step-flow. However, for 

the improved case with the fin structure (Fig. 3.6(b)), the crystal surface is clear without 

the spontaneous nucleation particles, which indicates that step flow growth is dominant 

on the whole surface. It is worth mentioning that the gray circle area at the center of Fig. 

3.6(b) is not a defect but the residual solution attached at the end of crystal growth when 

pulling the crystal up from the solution. Previous studies have proven that the addition 

of Al in the solution can increase the liquid/solid interfacial energy (𝜎𝑆𝑜𝑙𝑖𝑑−𝐿𝑖𝑞𝑢𝑖𝑑), and 

thusly suppress the frequency of spontaneous nucleation [1, 3]. Therefore, the 

difference in surface morphology shown in Fig. 3.6 is attributed to the difference in Al 

concentration in the solution after long-term growth. 

 
Fig. 3.6. Image of surface morphology of the grown crystals (left: without fin; right: 

with fin). 
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Fig. 3.7. Step morphology (left) and step height profiles (right) of the grown crystal 

in the original case without fin ((a), (b): upstream; (c), (d): downstream). 

 
Fig. 3.8. Step morphology (left) and step height profile (right) of the grown crystal in 

the improved case with fin ((a), (b): upstream; (c), (d): downstream). 

According to the previous study [28], the addition of Al in the solution can also 

enlarge the step height on the (0001) plane of SiC, and consequently enhance the TSD 

and TED conversion. In the original case without the fin structure (Fig. 3.7), the steps are 

relatively low with the average step height of around 2.4 μm in the upstream area and 

2.2 μm in the downstream area. For the improved case with the fin structure (Fig. 3.8), 
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the crystal exhibits higher steps, with the average step height of around 5.3 μm in the 

upstream area and 7.3 μm in the downstream area, which are more than 2 times those 

in the original case. Since no significant change in growth rate is observed, the variation 

of Al concentration is believed as the only factor that causes this large difference in step 

height between the two crystals, which further proves the effectiveness of the fin 

structure to preserve Al in the solution. 

According to the experiment results, the effect of the fin structure on preserving Al 

in solution and enhancing the composition stability can be validated, which is in accord 

with the simulation results shown in Section 3.3.1. By suppressing the Al loss, the crystal 

shows better surface morphology without spontaneous nucleation particles and higher 

steps which indicates higher crystal quality and higher defects conversion rate. 

3.4 Conclusion 

To investigate the long-term composition stability in solution growth of SiC, a 

numerical model is built to simulate the evaporation, transportation, and reaction of Al 

during the crystal growth process. By comparing the thermodynamic conditions, the 

chemical reaction of Al vapor on graphite surfaces is considered to be prior to the 

condensation of Al vapor, as the main consumption of the Al. To better preserve the Al 

in solution during long-term growth and enhance the composition stability, a so-called 

“fin” structure is proposed to suppress the evaporation. The simulation result shows that 

the existence of the fin structure has a slight effect on the thermal and flow condition 

for SiC crystal growth in the solution, but could significantly suppress the transport and 

consumption of Al vapor in the gas phase. By applying the fin structure, after 20 h growth, 

the Al concentration left in the solution is about 1.7 times higher than that in the original 

case without the fin structure. A bonus of this improved structure is that it can reduce 

the power consumption of the system by 20% due to the suppression of radiation heat 

dissipation. 

The effect of the fin structure is subsequently validated in SiC solution growth 

experiments. Compared with the original case, the improved case with the fin structure 

can effectively eliminate the spontaneous nucleation particles and yield higher steps on 

the crystal surface, which is preferable for defects conversion and matched well with 

high-Al-addition features. The experimental results are in good accord with the 

simulation results and further prove the effectiveness of the fin structure. 

The fin structure proposed in the present study provides a concept to suppress the 

evaporation from the solution and keep the composition stable, but is merely one of the 

potential strategies. A better approach and further optimization can be conducted in the 

future based on the numerical approach presented in this study.  
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4. Morphology instability of macrosteps 

and improved control pattern 

4.1 Introduction 

As introduced in Chapter 1, the industrial mass production of large-size SiC crystals 

via the TSSG method is hindered mainly due to the high instability of steps on the growth 

front. During solution growth, the elemental steps on seed crystal normally bunch and 

form macrosteps with hundreds of nanometers or even several micrometers in height, 

due to 1. weak transport of solute in the solution and 2. inhomogeneous supersaturation 

distribution. The latter effect is especially significant when the size of the crystal 

increases. Although high and steep macrosteps are required to facilitate the threading 

dislocations (TDs) conversion and therefore eliminate the native microscopic defects 

from the seed crystal [1, 2], the over-developed macrosteps may introduce macroscopic 

defects like the inclusion of solvent and two-dimensional (2D) nucleation of polycrystals 

[3]. Therefore, an ideal condition, where the macrosteps are neither too low to fail the 

TDs conversion nor too high to induce inclusion and 2D nucleation, is required for 

solution growth of SiC. In other words, the process of step bunching is expected to be 

controllable. Aiming at this target, some researchers added additives into the solution 

which can alter the property of the crystal-liquid interface and therefore suppress step 

bunching. Among the various candidates, Al is the most famous which was proven to 

reduce macrostep height, maintain smooth step morphology and eliminate 2D 

nucleation. However, the added additives may be incorporated into the grown crystal, 

affecting the doping and purity level, or resulting in impurity-induced step bunching [4]. 

The other way of attempting tried to control the flow field inside the solution. It was 

demonstrated both experimentally and theoretically that the solution flow parallel to 

the step advancing direction enhances step bunching, while the anti-parallel one relieves 

step bunching [3, 5]. Based on this concept, Daikoku et al. achieved long-term stable 

growth using a concave on-axis seed crystal along with a solution flow pattern flowing 

from the center to the periphery of the crystal [6]. Nevertheless, the off-axis crystal is 

more favored because of its better performance in TDs conversion and higher utilization 

ratio in the later process [7], but is more difficult to be compatible with the flow pattern 

due to the nonaxisymmetric distribution of steps. Using a similar flow pattern to that in 

Daikoku’s study, Liu et al. conducted growth on an off-axis seed crystal and obtained 
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inhomogeneous distribution of step morphology: low and smooth steps in the upstream 

area, accompanied by high and rough steps in the downstream area [8]. Therefore, a 

better flow pattern in the solution should be designed to achieve homogeneous 

macrosteps distribution with moderate height. The prerequisite of this is a more 

comprehensive understanding of the relationship between the macrosteps 

development on the whole crystal surface and the growth condition. 

Due to the high cost and extreme environment of the real experiment, simulation 

has been employed as a powerful alternative to understand the solution growth process 

of SiC. According to their focuses, previous numerical investigations can be divided into 

two groups: thermal, flow and mass fields in the solution domain on the macroscale, and 

step kinetics on the crystal surface on micro- or mesoscale. The former provides 

exhaustive information in the environmental phase, but is too large-scale to reveal the 

step-related phenomena on the growth front. The latter one, in contrast, depicts the 

movement of elemental steps within a local area, but is too small-scale to connect with 

the real growth condition for a large-size crystal. Although both of them significantly 

enriched our understanding, a more direct simulation method that can predict the global 

step morphology on the crystal surface with a given experimental condition remains 

unexplored. This chapter marks a tentative step toward this simulation method, by 

combining the numerical models on different scales together. This simulation method 

can be applied to design and optimize a sophisticated control recipe, which corresponds 

to ideal step morphology after long-term growth. The effectiveness of this simulation 

method is examined by experimental results in various cases. 

4.2 Method Description 

The simulation method compromises three parts, namely: 1. a global 2D 

computational fluid dynamic (CFD) model to simulate the temperature, flow, and mass 

concentration fields in the entire growth system, 2. a local 3D CFD model to reveal the 

carbon transport in the thin layer near the crystal surface, and 3. a kinetic model to 

describe the movement of macrosteps coupled with the local carbon transport. Each 

part will be introduced in detail as follows. 

4.2.1 Global 2D CFD simulation 

A 2D global steady model is firstly built to calculate the distribution of flow velocity 

(�⃗⃗�), temperature (𝑇), and carbon concentration (𝐶) inside the furnace responding to the 

variation of controlling parameters. Magnetic, flow, thermal, and concentration fields in 

macroscope are coupled and calculated numerically by the finite volume method via 

CGSim commercial software. 



73 

 

The numerical model is constructed based on another growth system different from 

that used in the previous two chapters. Radiofrequency (RF) heating coils with a 

frequency of 30k Hz are used to heat up and stir the solution. The temperature at the 

back of the seed crystal is measured by a thermocouple and the heating power is 

accordingly adjusted to achieve the desired temperature. The furnace is filled with argon 

gas at a fixed pressure of 1 atm. The solution domain is 80 mm in diameter and 27 mm 

in height, with chemical compositions of Si0.95Ti0.05. The seed crystal, which is 40 mm in 

diameter (1.6-inch), is mounted on the upper graphite shaft. The crystal and crucible are 

able to move rotationally and vertically in an independent manner. There are mainly 4 

operation parameters to control the growth condition, namely: growth temperature (at 

the monitoring point), crucible position, and rotation speeds for both crystal and crucible. 

Note that the crucible configuration and solution composition changes discussed in 

previous chapters are not considered here, due to: 1. shorter growth time and lower 

growth rate, and 2. lower volatility of Ti compared with Al. 

In the CFD simulation, the material properties of pure silicon are employed instead 

of the Si0.95Ti0.05 solution, due to a lack of knowledge of the property of the latter one. It 

is believed that 5% titanium did not significantly change the property in bulk solution. 

Therefore, the equilibrium carbon concentration (mol/m3) in pure silicon is set as the 

Dirichlet boundary condition for both the crystal-solution and crucible-solution interface, 

which can be expressed as [9]: 

𝐶𝑒𝑞 =
𝜌𝑆𝑖

𝑀𝑆𝑖

𝑥𝐶𝑒𝑞

1−𝑥𝐶𝑒𝑞

                                                    (Eq. 4-1) 

𝑥𝐶𝑒𝑞
= 𝑒𝑥𝑝(6.249 − 24460/𝑇)                                     (Eq. 4-2) 

where 𝜌𝑆𝑖 denotes the density of liquid pure silicon, 𝑀𝑆𝑖 the molar weight of silicon, and 

𝑥𝐶𝑒𝑞
 the saturated carbon molar fraction in the solution, 𝑇 the temperature. 

4.2.2 Local 3D CFD simulation 

When investigating the step behavior on the crystal surface, the foregoing 2D global 

model becomes incapable due to 1. the step development on an off-axis crystal surface 

is not axisymmetric and shows strong three-dimensional feature; and 2. the meshes in 

the global model are coarse to precisely describe the solute transport near the crystal 

surface since the solute is preferentially absorbed by the steps rather than the terrace. 

Therefore, a local 3D CFD model is constructed as a transition between the 2D global 

simulation and the step kinetics, by simulating the carbon transport inside the boundary 

layer. The mesh number is approximately one million with 25 grids in Z direction (Fig. 4.1 

(a)). Within the boundary layer, the flow velocity normal to the crystal surface can be 

neglected, and diffusion becomes the dominant form of carbon transport.  
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(a)                                                                  (b) 

Fig. 4.1. (a) Geometry and mesh of local simulation. Note that z and x&y directions 

are plotted in different scales; (2) Schematic of local simulation 

For the 3D local model, the diameter of the calculation domain is in accordance with 

the crystal diameter, while the height is the thickness of the diffusion boundary layer. 

According to the Burton-Prim-Slichter equation [10], the boundary layer thickness δ is 

independent of radial position and can be determined by: 

𝛿 = 1.6𝐷1/3𝜈1/6𝜔−1/2                                              (Eq. 4-3) 

where 𝐷 is the diffusion coefficient, 𝜈 the kinematic viscosity, and 𝜔 the angular velocity 

of crystal rotation. Unlike the global 2D CFD model, only the unsteady diffusion equation 

(Eq. 4-4) is solved inside the boundary layer to save calculation resource. 

𝜕𝐶

𝜕𝑡
+ �⃗⃗� ∙ 𝛻𝐶 = 𝐷𝛻2𝐶                                                (Eq. 4-4) 

With the flow velocity in the normal direction being 0, the flow velocity parallel to 

the crystal surface is given by [5]: 

�⃗⃗�(𝑧) = �⃗⃗�0[1 − exp(−
4.6𝑧

𝛿
)]                                       (Eq. 4-5) 

where 𝑧 denotes the verticle distance from the crystal surface, and �⃗⃗�0 is the flow velocity 

in bulk solution, the distribution of which can be obtained from the global CFD 

simulation. When 𝑧 equals 𝛿, 𝑉(𝑧) equals 0.99𝑉0, which matches with the definition of 

the boundary layer. The schematic is shown in Fig. 4.1(b).  

For the boundary away from the crystal surface (lower boundary in Fig. 4.1(b)), the 

distribution of carbon concentration (𝐶0) is extracted from the global CFD model at the 

corresponding position, and is set as the Dirichlet boundary condition. For the crystal 

surface (upper boundary in Fig. 4.1(b)), the carbon concentration is given in the form of 
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the Robin boundary condition, which is coupled with the step kinetics and will be 

introduced in the following section. 

4.2.3 Surface kinetics model 

Given that the height of an elemental 4H-SiC step (h) is 0.3 nm, the width of the 

terrace between two neighbor steps for a 1°off vicinal surface is approximately 17 nm. 

Therefore, more than 2 million elemental steps exist on the initial vicinal face for a 1.6-

inch seed crystal. The required computation resource is unaffordable when one tries to 

trace the behavior of each step responding to the carbon transport in the boundary layer. 

Since the focus of this study is the distribution of macrostep morphology on the whole 

crystal surface, it is assumed that in the observation scale (~1 mm), 𝑁  neighbor 

elemental steps move in the same manner and can be considered as an aggregation 

(macrostep). Therefore, the problem could be simplified and in the present study 100 

equidistant macrosteps are aligned as the initial condition (𝑁 ≈ 20,000). The distance ∆𝑥 

between two neighbor steps is 0.4 mm. Each step is discretized into equidistant nodes 

with the interval ∆𝑦 =0.4 mm, and each node represents a step section (Fig. 4.2). 

 
Fig. 4.2. Schematic of the surface kinetics model 

A step flow growth mode is assumed in this calculation, indicating the solute would 

be incorporated into the crystal only through the step other than the terrace. The step 

distribution on the crystal surface therefore determines the boundary condition of the 

local CFD model [5]: 

{
𝑂𝑛 𝑠𝑡𝑒𝑝: 𝐷

𝜕𝐶

𝜕𝑧
= 𝑁𝐾𝑠𝑡(𝐶 − 𝐶𝑒𝑞)    

𝑂𝑛 𝑡𝑒𝑟𝑟𝑎𝑐𝑒: 𝐷
𝜕𝐶

𝜕𝑧
= 0                        

                                  (Eq. 4-6) 

where 𝐾𝑠𝑡 is the step kinetic coefficient, which is the crucial parameter in this calculation. 

Since 𝐾𝑠𝑡  can hardly be measured directly, the value used in this study is roughly 
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estimated according to the vertical growth rate, off-axis angle, and simulated 

supersaturation [11]. Eq. 4-6 can be interpreted as that the amount of solute absorbed 

by the steps is proportional to the local supersaturation, while no solute is consumed by 

the terrace. 

Once the carbon distribution is determined, a step’s velocity (𝑉𝑠𝑡) can be calculated 

from the local carbon concentration, with 𝜐𝑐 being the molar volume of the crystal [12]: 

𝑉𝑠𝑡 = 𝐾𝑠𝑡𝜐𝑐(𝐶 − 𝐶𝑒𝑞)                                           (Eq. 4-7) 

The direction of the step velocity is assumed to be perpendicular to the step 

segments. The value of 𝐶𝑒𝑞 is not only temperature-dependent, but also determined by 

both the effects of local curvature and the distance from neighbor steps. The former can 

be found in the famous equation of Thomson-Gibbs, describing a natural straightening 

effect of a curved step due to surface tension [12]: 

𝐶𝑒𝑞(𝑟) = 𝐶𝑒𝑞
0 exp(

𝜘𝑁ℎ2

𝑟𝑘𝑇
)                                          (Eq. 4-8) 

where 𝑟  is the local radius of curvature of a step, 𝐶𝑒𝑞
0   the original equilibrium 

concentration (shown in Eq. 4-1), 𝜘  the specific edge energy of the step, and 𝑘  the 

Boltzmann constant. Likewise, if two steps are close enough, the repulsive force will 

prevent the rear step from passing over (overhang). This effect can be expressed as [13, 

14]: 

𝐶𝑒𝑞(𝑑) ≈ 𝐶𝑒𝑞
0 (1 −

𝜕𝑈(𝑑)

𝜕𝑑

𝑁ℎ2

𝑘𝑇
)                                  (Eq. 4-9 a) 

𝑈(𝑑) =
2(1−𝜎2)

𝜋𝐸
𝑁(𝛽ℎ)2 1

𝑑2                                     (Eq. 4-9 b) 

where 𝑑  is the distance between two neighbor steps, 𝑈  the potential energy on the 

vicinal face, 𝜎 the Poisson’s ratio, 𝐸 Young’s modulus, and 𝛽 the step stiffness. Here the 

value of 𝛽 is assumed to be the same as step energy.  

In the practical off-axis crystal growth, new steps are controlled to originate from 

TSDs at the very upstream area, and the generation rate is positively associated with the 

local supersaturation. To reproduce this phenomenon in the simulation, the position of 

the upmost step is monitored. If it moves too far and leaves the terrace behind it (the 

distance to the upstream edge) wider than a critical value, the increasing local 

supersaturation will trigger the origination of a new straight step at the initial position. 

Likewise, if a step segment passes over the downstream edge, it will be treated as 

“vanished” from the calculation. At the end of every timestep, the operations of 

displacement (∆𝑙 = 𝑉𝑠𝑡∆𝑡), origination, and vanishment together determine the updated 

step distribution, which reversely alter the carbon concentration field inside the 
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boundary layer in the new timestep. The detailed values of the parameters used in the 

calculation are listed in Table 4.1. 

Table 4.1 Parameters used in the simulation 

Parameter Symbol Value Unit 

Solution density 𝜌𝑆𝑖 2.55 × 103 kg/m3 

Molecular weight 𝑀𝑆𝑖 2.8 × 10−2 kg/mol 

Diffusion coefficient 𝐷 1.7 × 10−8 [15] m2/s 

Step height ℎ 3 × 10−10 m 

Step kinetics coefficient 𝐾𝑆𝑡 0.384 m/s 

Volume of 4H-SiC primitive cell 𝑣𝑐 2.06 × 10−29 m3 

Specific edge energy 𝜘 1.7 × 10−9 [16] J/m 

Poisson’s ratio 𝜎 0.142 [17] No unit 

Young’s modulus 𝐸 430 [17] GPa 

Step stiffness 𝛽 5.8 [16] N/m 

4.3 Results and discussion 

4.3.1 Effect of crystal rotation speed 

The simulation model is first applied to investigate the effect of crystal rotation, the 

most conveniently and frequently adjusted controlling parameter, on macrostep 

morphology. Two cases with the same growth condition except for different rotation 

speeds of crystal, which are 50 and 100 rpm respectively, are studied. The growth 

temperature is 2173 K, while there is no rotation for the crucible. Fig. 4.3 shows the 

temperature and flow fields inside the solution domain under both cases, calculated by 

the global CFD simulation described in Sec. 4.2.1. It can be observed that higher crystal 

rotation speed enhances the convection inside the solution, which results in more 

uniform temperature distribution. Especially near the center of the seed crystal, the 

stronger upward flow owing to higher crystal rotation speed is expected to facilitate the 

carbon transport to the center area. Temperature, carbon concentration, and velocity at 

the boundary layer surface are then extracted from the global CFD simulation, as the 

boundary condition for the local CFD simulation. For the case with 50 rpm crystal 

rotation, the boundary layer thickness is 0.565 mm, while it is 0.400 mm for the case 

with 100 rpm crystal rotation. The distribution of velocity and supersaturated carbon 

concentration (∆𝐶 = 𝐶 − 𝐶𝑒𝑞)  at the boundary layer surface is shown in Fig. 4.4. By 

including the azimuthal velocity, the planar flow field near the crystal surface shows a 

rotational pattern, indicating the dominance of azimuthal velocity, whose effect is often 

neglected in 2D simulation. Besides the stronger solution flow, faster crystal rotation also 
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results in higher supersaturation with more uniform distribution, which is preferable for 

a higher growth rate and flatter interface. 

 

(a) 

 

(b) 

Fig. 4.3. Temperature and flow fields in the solution domain with different crystal 

rotation speed: (a) 50 rpm and (b) 100 rpm. 

 
Fig. 4.4. Supersaturated carbon concentration and velocity distribution at the 

boundary layer surface with different crystal rotation speed: 50 rpm (left) and 100 rpm 

(right). 

The local CFD simulation is then coupled with the surface kinetics model to describe 

the macrosteps movement under the respective circumstances. The evolutions of 
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macrostep morphologies during 80 timesteps (∆𝑡 =1000 s) are presented and compared 

in Fig. 4.5. It can be observed that in both cases, step bunching occurs and accumulates 

at the upper right area on the crystal surface, where the local solution flow direction is 

parallel to the step advancing direction. This parallel flow hindered the supplement of 

the carbon atom to the step, and the local carbon depletion induced step bunching. The 

bunched macrosteps move slower than the elemental steps, which further facilitates the 

step bunching and causes the instability of step morphology. At the lower left area of the 

crystal surface, where the solution flow is anti-parallel to the step advancing direction, 

the steps are smooth and almost no step bunching is observed. Moreover, compared 

with the case with relatively slow rotation (Fig. 4.5(a)), less step bunching and instability 

were observed when a higher crystal rotation speed was applied (Fig. 4.5(b)). It can be 

explained by two factors: 1. Higher crystal rotation better stirred the solution and 

resulted in more uniform carbon distribution near the crystal surface, which avoided the 

step bunching caused by supersaturation gradient; 2. The thinner boundary layer caused 

by higher crystal rotation enabled the solute to diffuse more easily from the bulk solution 

to the crystal surface, which avoided the step bunching induced by local solute depletion. 

 
(a) 

 
(b) 

Fig. 4.5. Evolution of macrostep morphology during 80 timesteps with different 

crystal rotation speed: (a) 50 rpm and (b) 100 rpm. The step advancing direction is from 

left to right. 
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The simulated results were then examined in experiments with 3 hours of growth 

time. Fig. 4.6(a) presented the crystal grown with 50 rpm crystal rotation. The steps in 

the lower left area are extremely smooth, which can be barely recognized by the 

microscope. However, these steps are considered too low to effectively convert the 

defects from the seed crystal [8]. In contrast, the upper right area exhibits heavy step 

bunching with wide terraces, indicating the existence of high and steep macrosteps. 

These macrosteps are capable to achieve defects conversion, but may easily induce the 

formation of new defects like 2D polytype nucleation and inclusion. For the case with 

100 rpm rotation speed (Fig. 4.6(b)), a similar step distribution pattern can be observed 

but the bunching intensity in the upper right area is lower without extremely wide 

terrace. Moreover, the high-speed crystal rotation yields larger smooth area on the 

crystal surface. These tendencies in the experiment match well with those in simulation, 

validating the effectiveness of the numerical model. 

 
(a) 

 
(b) 

Fig. 4.6. Step morphology in experiment after 3 hours growth with (a) 50 rpm and 

(b) 100 rpm crystal rotation speed. 

4.3.2 Effect of rotation pattern 

Although increasing the crystal rotation speed results in relatively smoother step 

morphology, the macrostep distribution on the whole surface is still not homogeneous, 
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resulting in low TSDs conversion efficiency in the lower left area, as well as high inclusion 

density in the upper right area. This inhomogeneity can be attributed to the 

incompatibility between the unidirectional step advancing and axisymmetric solution 

flow. To yield crystal with uniformly distributed macrosteps, a more sophisticated control 

pattern should be designed, where the proposed simulation method can serve as a 

powerful tool to connect the experimental controlling parameters and the 

corresponding step morphology. Firstly, instead of constantly rotating the crystal in one 

direction, a new rotation pattern is proposed with periodically altering the rotation 

direction of the crystal (Fig. 4.7(a)). The crystal rotation speed is 50 rpm, while the period 

for keeping a rotation direction in the simulation is 20 timesteps, and the other growth 

parameters are the same as those in the previous section. The concept of this rotation 

pattern is to avoid consistent “parallel flow” underneath a certain area of the crystal 

surface. Moreover, it has been demonstrated that “anti-parallel flow” can reduce the 

macrostep height and relieve the local roughness caused by the previous non-ideal 

condition [11]. This new rotation pattern is tested in the simulation model and the result 

is shown in Fig. 4.7(b). Compared with constantly rotating the crystal in one direction 

(Fig. 4.5(a)), rotating in double directions yields relatively more uniform step morphology, 

without extremely strong bunching and wide terrace in the upper right area. This can be 

explained that the negative effect of the azimuthal flow in the counter-clockwise (CCW) 

direction can be offset by the frequent switching to the clockwise (CW) direction. 

However, the difference in step morphology still exists between the upstream and 

downstream areas of the crystal, due to the effect of radial flow underneath the crystal 

which is always from the center to the edge when rotating the crystal (see Fig. 4.3). 

Therefore the upstream area undergoes consistent anti-parallel flow, while the 

downstream area undergoes consistent parallel flow, although the intensity of radial 

flow is lower than that of azimuthal flow.  

 
(a) 
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(b) 

Fig. 4.7. (a) Rotation pattern 1: periodically switching crystal rotation direction. 

Note that the crucible was kept stationary; (b) Simulated evolution of step morphology 

in 80 timesteps. 

To further improve the uniformity of step morphology on the whole crystal surface, 

a more complicated rotation pattern is proposed. This time besides crystal rotation, 40 

rpm crucible rotation in double directions is also included in the period (Fig. 4.8(a)). 

When rotating the crucible, the solution at the bottom will be sent outwards due to the 

centrifugal force and consequently generate an inward radial flow from the edge to the 

center underneath the crystal. By frequently switching between the crystal and crucible 

rotation, it is expected capable to avoid the consistent parallel flow at the downstream 

area as shown in Fig. 4.7. This rotation pattern is named “switching flow” [18]. Likewise, 

the simulation model is applied to predict the step morphology under the “switching 

flow” pattern and the result is shown in Fig. 4.8(b). The switching between crystal 

rotation and crucible rotation happens every 20 timesteps. After the first 20 timesteps 

with crystal rotation, the downstream area shows relatively more step bunching, the 

same as that shown in Fig. 4.7(b). However, in the following 20 timesteps, inward flow 

caused by crucible rotation makes the situation reversed and results in an equal 

bunching level between the up and downstream area at the end of the 40th timestep. 

Finally, by applying the “switching flow” pattern, the uniformity of step morphology on 

the whole crystal surface was significantly improved where no heavy bunching and wide 

terrace can be observed. This morphology is expected to achieve both high TDs 

conversion rate, and low inclusion density. The crystal grown under the same condition 

in the experiment shows the same tendency (Fig. 4.8(c)), where the macrosteps with 

medium height are ordered straightly and smoothly on the whole crystal surface. This 

can be explained that for a local giant macrostep formed during parallel flow, it will be 

decomposed into small macrosteps in the subsequent anti-parallel flow period. 

Therefore, frequent switching of flow direction (both azimuthal and radial) underneath 

the crystal yields steps with ideal bunching level and high uniformity, which is a 
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promising method to grow high-quality SiC crystal on the off-axis substrate. Moreover, 

the effectiveness of the simulation model is further validated. 

 
(a) 

 
(b) 

 
(c) 

Fig. 4.8. (a) Rotation pattern 2: periodically switching crystal and crucible rotation. 

Note that the crucible was kept stationary during crystal rotation, and vice versa; (b) 

Simulated evolution of step morphology in 80 timesteps; (c) Step morphology after 3 h 

growth. 
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4.3.3 Effect of switching pattern 

Based on the results in the previous section, a uniform step morphology with ideal 

macrostep height on the entire off-axis crystal surface could be achieved by frequently 

switching the flow, both in azimuthal and radial directions. However, unlike constantly 

rotating the crystal in one direction, the control pattern of “switching flow” is 

sophisticated with at least 4 independent control parameters, namely, rotation speeds 

of crystal and crucible, and time for rotating crystal and crucible, respectively (shown in 

Fig. 4.9). To further optimize the step morphology, the effect of these parameters should 

be understood. 

 
Fig. 4.9 Schematic of control pattern of “switching flow”. Note that crystal or 

crucible rotates only in the corresponding period. 

Rotation speed matching 

Firstly, three simulation cases, with the same crystal rotation speed but different 

crucible rotation speeds, are conducted to investigate the effect of rotation speed 

matching in the switching flow pattern shown in Fig. 4.9. The crystal rotation speed is 50 

rpm for the crystal rotation period, while the crucible rotation speeds are 20, 40 and 60 

rpm, respectively, for the crucible rotation period. Fig. 4.10 shows the effect of crucible 

rotation on the flow field inside the solution domain. With faster crucible rotation, the 

radial flow from the edge to the center of the crystal is significantly intensified, which 

will affect the carbon transport behavior in the solution and consequently the step 

morphology. To further illustrate the matching between crystal and crucible rotation, the 

radial velocity of solution at the boundary layer surface is extracted from the 2D global 

simulation for each case. As can be seen from Fig. 4.11, when rotating the crucible at 20 

or 60 rpm, the inward flow (from edge to center) is either too weak or too strong 

compared with the outward flow (from center to edge) generated by rotating the crystal 

with 50 rpm. This unbalance is expected to cause morphology difference between 

upstream and downstream areas. 
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(a) 

                
(b) 

 
(c) 

Fig. 4.10 Thermal and flow fields in solution with different crucible rotation speed: 

(a) 20 rpm; (b) 40 rpm; (c) 60 rpm. Note that the crystal was kept stationary. 

 
Fig. 4.11 Comparison of radial velocities with different conditions: (a) 50 rpm crystal 

rotation; (b) 20 rpm crucible rotation; (c) 40 rpm crucible rotation; (d) 60 rpm crucible 

rotation. 

The three “switching flow” patterns are then simulated to compare the step 

development. As seen in Fig. 4.12(a), the combination of strong outward flow and weak 
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inward flow yields unbalanced step distribution, where the upstream area is smoother 

than the downstream area. The distribution is exactly the opposite in the case where 

inward flow is dominant (Fig. 4.12(c)). Only the combination of 50 rpm crystal rotation 

and 40 rpm crucible rotation results in a uniform step distribution with a medium 

bunching level all over the crystal surface (Fig. 4.12(b)). This indicates that a good 

matching between inward and outward flow is required when designing the “switching 

flow” pattern. 

     
(a)                                                  (b)                                                  (c) 

Fig. 4.12 Step morphology after 80 timesteps with different “switching 

flow” pattern: (a) 𝛺𝑐𝑟𝑦𝑠𝑡𝑎𝑙=50 rpm, 𝛺𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒=20 rpm; (b) 𝛺𝑐𝑟𝑦𝑠𝑡𝑎𝑙=50 rpm, 

𝛺𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒=40 rpm; (c) 𝛺𝑐𝑟𝑦𝑠𝑡𝑎𝑙=50 rpm, 𝛺𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒=60 rpm 

Switching frequency 

Another parameter that determines the “switching flow” pattern is the switching 

frequency between inward and outward flow, in other words, the duration of rotating 

crystal and crucible. To investigate the effect of this factor on step morphology evolution, 

two cases are compared with the same rotation speeds (𝛺𝑐𝑟𝑦𝑠𝑡𝑎𝑙=50 rpm, 𝛺𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒=40 

rpm) but different switching frequencies. In the slow-switching case, 

𝑡𝑐𝑟𝑦𝑠𝑡𝑎𝑙 =𝑡𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒 =20 timesteps, while in the fast-switching case, 𝑡𝑐𝑟𝑦𝑠𝑡𝑎𝑙 =𝑡𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒 =4 

timesteps. The step morphologies after 80 timesteps for both cases are shown in Fig. 

4.13. The fast-switching case yields smoother surface morphology and lower step 

bunching level. This can be explained that the surface roughness caused by step 

bunching increases almost exponentially under the consistent parallel flow condition 

(see in Fig. 4.5(a) and Fig. 4.7(b)). Through fast switching the flow direction, the slightly 

bunched macrosteps can be frequently de-bunched to a relatively low level. However, in 

the case of slow switching, the macrosteps may be over-developed during the local 

parallel flow period and the de-bunching effect in the following anti-parallel period is 

therefore limited. This result indicates that the step bunching level can be freely 
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controlled by adjusting the switching frequency between different solution flow 

directions underneath the crystal. 

     
(a)                                                     (b) 

Fig. 4.13 Step morphology after 80 timesteps with (a) slow switching and (b) fast 

switching. 

4.4 Conclusion 

In this chapter, a simulation method is proposed, which can predict and visualize the 

evolution of macrosteps morphology on the entire crystal surface during solution growth 

of SiC.  The simulation method consists of three parts, namely 1. a 2D global CFD model 

to predict the thermal, flow, and mass fields in the system under certain control 

parameters; 2. a 3D local CFD model to simulate the carbon transport inside the 

boundary layer underneath the crystal; 3. a kinetics model to calculate the step 

advancing velocity coupling with the carbon concentration near the surface. 

The simulation method is firstly applied to investigate the effect of crystal rotation 

speed on step morphology. The result shows that with consistently rotating the crystal 

in one direction, the step morphology in the upper right area of the crystal is rough, 

while that in the lower right area is smooth, due to the co-effect of radial and azimuthal 

flow underneath the crystal surface. Moreover, higher rotation speed yields better 

surface morphology with less bunching at upper right area, owing to the thinner 

boundary layer and more uniform carbon distribution near the crystal. The tendencies 

shown in the simulation results match well with those in experiments. 

The simulation method is then utilized to design a more sophisticated control pattern, 

corresponding to uniform step morphology and medium step height on the entire crystal 

surface. The result shows that by frequently switching the flow direction in both 

azimuthal and radial directions, the severe step bunching at a certain location can be 

avoided. A so-called “switching flow” pattern, including periodically rotating the crystal 

or crucible, is regarded as the promising method to achieve ideal step morphology. The 
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simulation results suggest that a good matching between crystal and crucible rotation 

speed yields a more homogeneous step distribution, while high-frequency switching 

results in smoother morphology with lower bunching level.  

The above results indicate that the step morphology on an off-axis crystal is 

controllable. The proposed simulation method can serve as a powerful tool for designing 

the sophisticated control pattern, and explaining the phenomena of step behavior in a 

macroscope. This method can also be applied to other crystal growth from solution. 
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5. Conclusion 

This study aimed to improve the solution growth method for producing high-quality 

4H-SiC crystals with large thickness. We focused on the three unstable phenomena that 

make the growth deviate from the well-designed initial condition during long-term 

growth. These phenomena hinder the crystal from growing larger. Three numerical 

models were constructed to investigate the instabilities of crucible configuration, 

solution composition, and step morphology, respectively. Accordingly, optimized or 

improved approaches were proposed to enable longer growth time with better crystal 

quality. Here, the knowledge obtained in each chapter is summarized below. 

Chapter 1 introduced the basic background of this study, including the superiority of 

SiC, the advantage of the solution growth method to produce SiC crystals, and the 

current problems limiting the competitivity and prevalence of the solution growth 

method. Moreover, the basic concepts of the numerical models utilized in the following 

chapters were introduced. 

In chapter 2, the instability of crucible configuration due to single crystal growth, 

crucible dissolution, and polycrystals precipitation was investigated. A global 2D CFD 

model was built to simulate these unsteady factors in the solution growth system of SiC. 

It was found that the original control recipe with fixed parameters was incapable of 

growth over 50 h, due to both quality and safety problems. To overcome this, a machine 

learning-based optimization approach was established to design a time-dependent 

recipe with a 100-timestep sequence. In each timestep, machine learning models were 

trained to instantly provide an accurate prediction of the unsteady changes and were 

combined with the optimization algorithm to determine the most suitable control 

parameters adaptive to the environment. Compared with the original recipe, the 

optimized dynamic recipe achieved 30% thicker single crystal, flatter crystal surface, and 

50% longer available growth time. This discovery demonstrated the importance of 

dynamic adaptive control for long-term SiC solution growth and other material 

fabrication process with unsteady features. Furthermore, the application of transfer 

learning was discussed to further enhance the efficiency of the optimization approach. 

In chapter 3, the instability of solution composition due to the evaporation of Al was 

investigated, since Al plays an important role as both p-type dopant and surface stabilizer 

in solution growth of SiC. A 2D global CFD model was built to simulate the evaporation, 

transportation, and reaction of Al during the long-term growth process, with the solution 

composition of Si0.58Cr0.4Al0.02. The detailed transport path of Al was determined through 
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thermodynamics analysis. To better preserve the Al in solution during long-term growth 

and enhance the composition stability, a so-called “fin” structure was proposed. The 

simulation result showed that the existence of the fin structure had little effect on the 

thermal and flow condition for SiC crystal growth in the solution, but could significantly 

suppress the transport and consumption of Al vapor in the gas phase. By applying the 

fin structure, after 20 h growth, the Al concentration left in the solution was about 1.7 

times higher than that in the original case. The simulated result was subsequently 

validated by experiments. Compared with the original case, the improved case with the 

fin structure could effectively eliminate the spontaneous nucleation particles and yield 

higher steps on the crystal surface. The result indicates the importance of evaporation 

suppression during long-term growth.  

In chapter 4, the instability of step morphology due to step bunching was 

investigated. Since solution growth is a diffusion-limiting process, and the step behavior 

depends largely on solution flow near the crystal surface, a simulation method was 

constructed to predict and visualize the evolution of macrosteps morphology on the 

entire crystal surface coupled with mass and flow field in the solution domain. The 

simulation method consists of three parts, namely a 2D global CFD model of the entire 

growth system, a 3D local CFD model of the boundary layer, and a kinetics model of the 

steps on the surface. The simulation method was first applied to investigate the effect of 

crystal rotation speed on step morphology. The result shows that consistently crystal 

rotating in a single direction yields non-uniform distribution of step morphology, and 

higher rotation speed results in relatively smooth surface morphology with less bunching. 

The tendencies shown in the simulation results match well with those in experiments. 

The simulation method is then utilized to design a more sophisticated control pattern, 

corresponding to uniform step morphology and medium step height. By frequently 

switching the flow direction in both azimuthal and radial directions, the severe step 

bunching at a certain location can be avoided. The results indicate that the step 

morphology on an off-axis crystal is controllable during long-term growth, while the 

simulation method proposed can serve as a powerful tool to design the control pattern.  

 Above all, the three factors enabling long-term stable solution growth of SiC are, 

dynamic thermal and flow control, less mass exchange between the liquid and gas phase, 

and avoiding consistent local solution flow direction parallel to the step movement. 
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Appendix A: Training process and 

performance of transfer learning 

In section 2.4, a transfer learning approach was introduced to accelerate the 

optimization of the time-dependent control recipe. In this appendix, the training process, 

transfer method determination, and the performance of transfer learning are introduced 

in detail for a better understanding of transfer learning. 

A.1 Training process 

Table A1 shows the lower and upper limits of each control parameter when preparing 

the training data. 𝑇 is the temperature at the monitoring point, according to which the 

heating power is adjusted. Higher 𝑇 results in more carbon dissolving from the crucible 

and consequently accelerates crystal growth. ∆𝐻 is the crucible position relative to the 

induction coil, which determines the distribution of Lorentz force and induction heating 

in the solution domain. The centrifugal force caused by the rotation of crystal (𝜔𝑐𝑟𝑦𝑠𝑡𝑎𝑙) 

and crucible ( 𝜔𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒 ) influences the flow pattern, and consequently the carbon 

transport path. The representative plots of raw data are plotted to characterize the 

crystal growth process. The model predicting the growth rate of the single crystal is taken 

as an example. Fig. A1 (a-e) shows the relationships between the inputs of the model 

(control parameters as well as the radial coordinate) and the output (single crystal 

growth rate) in timestep 1. It should be noted that the interval of the crucible position 

value is 10 mm when preparing training data, because the spatial discretization of the 

geometric model is time-consuming for CFD simulation. It can be concluded that the 

growth rate increases with growth temperature, the absolute value of crystal rotation 

speed, and crucible position. Moreover, the edge of the crystal tends to grow faster than 

the center area. 

Fig. A1 (f-j) show the same representative plots in timestep 2. The relationships 

between the inputs and output are similar to those in time step 1. This indicates the 

existence of similar features between the source domain (timestep 1) and the target 

domain (timestep 2), which is the prerequisite to applying transfer learning. 

Table A1. Training data range 

Parameter Lower limit Upper limit 
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Temperature, 𝑇 (𝐾) 2073 2273 

Crucible position, ∆𝐻 (𝑚𝑚) 50 150 

Crystal rotation speed, 𝜔𝑐𝑟𝑦𝑠𝑡𝑎𝑙 (𝑟𝑝𝑚) -50 50 

Crucible rotation speed, 𝜔𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒 (𝑟𝑝𝑚) 0 20 

 

 

(a)                                                 (b)                                               (c) 

 

(d)                                                 (e) 

 

(f)                                                  (g)                                               (h) 

 

(i)                                                  (j) 

Fig. A1. (a-e) Relationships between the inputs and output of the neural network in 

timestep 1; (f-j) Relationships between the inputs and output of the neural network in 

timestep 2. The neural network that predicts the single crystal growth rate is taken as 

an example. 

Fig. A2(a) shows the learning curve of the source neural network in timestep 1 

using sufficient data (100%). The model is trained from scratch and the learning 

process converges after more than 400 epochs. The learning curve of the transferred 
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model with 20% amount of data is shown in Fig. A2(b). Here “fine tuning” is selected as 

the transfer method. The initial value of the mean average error is relatively small, 

indicating the successful inheritance of knowledge from the source model. The training 

is quickly stopped after about 25 epochs since the concept of transfer learning is to 

slightly adjust the weights and bias based on the source model and further training will 

result in overfitting due to lack of data. The transferred model shows good 

performance in predicting the growth rate (Fig. A2(d)). 

 

(a)                                                                (b) 

 

(c)                                                                 (d) 

Fig. A2. The learning curves and training results of (a, c) the source model in 

timestep 1, and (b, d) the transferred model trained with 20% data in timestep 2. The 

neural network predicting the seed growth rate is taken as an example. 

A.2 Determination of transfer learning method 

To investigate the effect of the transfer learning method on model performance, six 

different models are constructed and trained with different strategies, including all 

possibilities of “frozen featurizer” and “fine tuning”, to predict the growth rate (𝑉𝑔) on 

the single-crystal surface in the second timestep (timestep length Δt =1 h). 90 simulation 

cases (60%) are prepared and split into training and test sets in a ratio of 9:1. Due to the 
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relatively small amount of training data, 10-fold cross-validation is applied. The values of 

the MAE for all 10 folds are shown in Fig. A3. 

 

Fig. A3. Performance of various models trained with 60% of data in the updated 

timestep. “Source” refers to direct application of the source model without updating, 

“Sc” refers to training from scratch without any transfer, “FF n” refers to freezing the 

first n shallower layers using the frozen-featurizer method, and “FT” refers to fine 

tuning. The black dashed line shows the performance of the source model in the initial 

timestep for reference. 

According to Fig. A3, although the geometric difference between the initial timestep 

and the updated timestep is quite small (~0.1 mm), the source model is not capable of 

directly predicting the new growth rate. Moreover, all of the transfer learning methods 

effectively improve the model performance compared with the trained-from-scratch 

model. Among them, fine tuning shows the best performance, which is at the same level 

as that for the source model trained with the whole dataset in the initial timestep. In the 

cases of crucible dissolution rate (𝑉𝑑) and polycrystal precipitation rate (𝑉𝑝), fine tuning 

also presents better performance than other transfer learning methods. Therefore, fine 

tuning is selected as the only transfer learning method in the rest part of the discussion. 

A.3 Effect of time step length 

In the current simulation, the evolution of the geometric model is governed by 

∆𝑙 = 𝑉∆𝑡                                                        (Eq. A-1) 

where ∆𝑙  is the displacement of the interface, 𝑉  is the growth, dissolution, or 

precipitation rate, and ∆𝑡  is the time step length, which directly determines the 

geometric difference in the solution domain between the initial time step and the 

updated time step. We previously discussed the high data efficiency of transfer learning 
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when the geometric difference between two timesteps is not large (∆𝑡 =1 h). To test the 

sensitivity of the transferred model to timestep length and find the criterion where the 

transferred model may fail to inherit the features, transfer learning is applied in different 

cases with ∆𝑡 values of 1, 5, 10, 20, and 50 h. The performance of the transferred models 

is plotted in Fig. A4(a). For the models trained with 100% and 60% of the data, accuracy 

is mostly independent of ∆𝑡, and the MAE values are relatively low, even for a large ∆𝑡 

(50 h). The model trained with 20% of the data has low MAE values when ∆𝑡 is not large, 

but loses accuracy when ∆𝑡 =50 h. To explain this result, the geometries of the solution 

domain as well as the thermal distribution and flow pattern under the same control 

parameters after 1, 20, and 50 h are shown in Fig. A4(b-d). Compared with the other two 

cases, the flow pattern and thermal distribution change significantly for ∆𝑡 =50 h due to 

the large displacement of boundaries, which is considered to have greatly affected the 

corresponding features between inputs and outputs. For transferred models trained 

with relatively more data, this large change can be adjusted and rectified to fit the new 

feature space. However, the model trained with only 20% of the data might be incapable 

of adjusting for this large change. Note that time step lengths of 20 and 50 h are too long 

for practical unsteady simulation; they are applied here only for testing the limitation of 

transfer learning. The results therefore show that the transferred model trained with 

20% of the data is capable of predicting the unsteady changes in practical applications. 

 

(a) 

(b)   

(c)   

(d)  

Fig. A4. (a) Effect of time step length 

on performance of transferred models 

trained with various amounts of data. (b-

d) Temperature and velocity fields in 

updated solution domain with time step 

length of 1, 20, and 50 h, respectively. 
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Appendix B: Turbulence, devil or angel? 

In the main body of this dissertation, when conducting the 2D global or 3D local CFD 

simulation, the flow inside the solution domain was always assumed as steady state. 

Therefore, the Reynolds-averaged approach was employed to represent the transport 

equation for the mean flow quantities, and to save computation resource. However, 

when expanding the system for growing 6-inch crystal, the effect of turbulence becomes 

nonnegligible, because of the relatively low-frequency magnetic field applied (3k Hz), 

the large size of the crucible (over 200 mm in diameter), and the high rotation speed of 

both crystal and crucible (up to 100 rpm). For example, when rotating both the crystal 

and crucible at 50 rpm in the 6-inch growth system, the dimensionless numbers 

representing the effect of Lorentz force, Marangoni force, buoyancy force, and the 

centrifugal force caused by crystal and crucible rotation are listed in Table B1. The 

dimensionless numbers indicate the existence of turbulence, dominated by the inducted 

Lorentz force. 

Table B1. Dimensionless numbers describing the effects of different forces in a 6-inch 

growth system (values of parameters are listed in Table B2) 

Force Expression [1, 2] Value 

Lorentz force 𝐸𝑀 = 𝐹𝐸,𝑚𝑎𝑥𝑅𝑐𝑟𝑢
3 /(𝜌𝜐2) 6.7 × 1010 

Marangoni force 𝑅𝑒𝜎 = 𝜎𝑇∆𝑇𝑠𝑢𝑟𝑅𝑐𝑟𝑢/(𝜌𝜐2) 8.9 × 105 

Buoyancy force 𝐺𝑟 = 𝑔𝛽∆𝑇𝑠𝑜𝑙𝑅𝑐𝑟𝑢
3 /𝜐2 8.9 × 107 

Centrifugal force by crystal rotation 𝑅𝑒𝑐𝑟𝑦 = 2𝜋Ω𝑐𝑟𝑦𝑅𝑐𝑟𝑢𝑅𝑐𝑟𝑦/60𝜐 1.2 × 105 

Centrifugal force by crucible rotation 𝑅𝑒𝑐𝑟𝑢 = 2𝜋Ω𝑐𝑟𝑢𝑅𝑐𝑟𝑢
2 /60𝜐 1.7 × 105 

Table B2. Values of parameters used for calculating the non-dimensional numbers 

Parameter Symbol Value Unit 

Max Lorentz force 𝐹𝐸,𝑚𝑎𝑥 1.5 × 105 N m-2 

Radius of crystal 𝑅𝑐𝑟𝑦 7.5 × 10−2 m 

Radius of crucible 𝑅𝑐𝑟𝑢 1.1 × 10−1 m 

Solution density 𝜌 2.6 × 103 kg m-3 

Viscosity 𝜐 3.3 × 10−7 m2 s-2 

Surface tension coefficient 𝜎𝑇 2.5 × 10−4 N m-1 K-1 

Temperature difference at free surface ∆𝑇𝑠𝑢𝑟 2.3 K 

Temperature difference in solution ∆𝑇𝑠𝑜𝑙 6 K 

Thermal expansion coefficient 𝛽 1.4 × 10−4 K-1 
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Turbulence has been discussed in the melt growth of crystalline silicon as an 

important research topic for decades [3]. In most cases, it was considered to be unstable 

and harmful since the strong fluctuation caused by turbulence results in undesirable 

growth interface and compositional striations in grown crystal, which lead to 

inhomogeneous material and electronic properties. Therefore, several approaches were 

proposed to suppress the turbulence and fluctuation in the melt, including 

crystal/crucible rotation [1], magnetic fields [4], and additional electric currents [5]. 

Nevertheless, the effect of turbulence is not this intuitive when talking about crystal 

growth from solution. On one hand, similar to that in melt growth, the fluctuation of 

temperature and supersaturation may disturb the crystallization front and cause 

uncontrolled nucleation. On the other hand, the turbulent flow may enhance the 

momentum, heat and mass transport. The enhanced transport is expected to improve 

the homogeneity of solute distribution and thusly benefit the step development on the 

crystal surface. In this appendix, the effect of turbulence is discussed from these two 

aspects. 

B.1 Disadvantage 

To study the unsteady features caused by turbulence, the large eddy simulation 

(LES) technique is used. Details of this method can be found somewhere else [6]. A 

local 3D geometric model is constructed to simulate the momentum, heat and mass 

transport only in the solution domain. The boundary conditions of temperature at the 

crystal surface, solution free surface and crucible wall, as well as the source terms for 

Lorentz force (FE) and Joule heat are extracted from the 2D global simulation result. 

The timestep is 0.1 s. The schematic of the calculation configuration and grids are 

shown in Fig. B1. 

   
(a)                                                                            (b) 

Fig. B1. The schematic of (a) model configuration, and (b) spatial discrete grids for 

calculation. The total grids number is ~0.9 million. 
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To investigate the effect of turbulence intensity on the  grown crystal, two cases with 

the same condition except for the rotation speeds are conducted. In case 1, the rotation 

rate of the crystal and crucible are 0 and 20 rpm, while in case 2 they are 50 and 50 rpm. 

Here the rotation speed is selected as the variable because it is the most convenient 

parameter to modify in the practical growth system and the previous study 

demonstrated that faster crucible rotation could suppress the temperature fluctuation 

caused by turbulence [7]. 

The transient temperature distributions of the two cases are compared in the cross-

section of the solution domain (Fig. B2) and horizontal plane 0.3 mm underneath the 

crystal surface (Fig. B3). For case 1, the temperature and flow fields exhibit an obvious 

asymmetric feature, indicating the existence of strong fluctuation in the liquid phase. In 

contrast, this asymmetric feature is eliminated by the high rotation rate of the crucible 

in case 2, where the growth condition is relatively steadier. 

 
Fig. B2. Transient temperature and flow fields in the cross section of solution 

domain. 

 
Fig. B3. Transient temperature and flow fields in the XY direction near the crystal 

surface. 



99 

 

To further evaluate the effect of crucible rotation on suppressing the fluctuation, the 

supersaturation at a monitoring point (0.6 mm away from the center, 0.3 mm under the 

crystal surface) is recorded within 100 s calculation. As shown in Fig. B4, due to the fast 

rotation of the crucible, the strong supersaturation fluctuation can be converted into 

relatively weak fluctuation but with a higher frequency. 

    
(a)                                                                       (b) 

Fig. B4. Time-dependent supersaturation recorded at the monitoring point in 100 s 

for (a) case 1, and (b) case 2. 

The crystals grown under the two conditions are presented in Fig. B5. The crystal 

grown in case 1 has several spontaneous nucleation particles attached to the surface, 

which is normally attributed to disturbing the step flow and introducing new 

dislocations. The particles are of various sizes, and are therefore considered to 

consistently originate from the 3D nucleation in solution during the growth process. In 

contrast, the crystal grown in case 2 shows a clean surface without the particles. Note 

that the gray circle on the surface is the residual solution left when pulling up the 

crystal from the solution after growth, other than the particle. This difference can be 

explained by the classic nucleation theory, where the 3D nucleation rate 𝐽  in the 

solution can be expressed as [8]: 

𝐽 = 𝑁𝑒−Δ𝐺∗/𝑘𝑇                                                   (Eq. B-1 a) 

Δ𝐺∗ =
𝑓𝑣2𝛾3

(Δ𝜇)2                                                       (Eq. B-1 b) 

where 𝑁 represents the collision frequency of the molecules, Δ𝐺∗ the variation of 

Gibbs free energy, 𝑓 the morphological factor, 𝑣 the molecular volume, 𝛾 the interfacial 

energy, and Δ𝜇 the driven force of crystallization. In the case with strong turbulence 

(case 1), the value of 𝑁 is larger due to the stirring and collision between eddies. 

Moreover, the supersaturation can reach a higher value owing to the strong fluctuation 

(Fig. B4(a)), providing large driven force. Therefore, the large 𝑁 and Δ𝜇 result in 

frequent 3D nucleation inside the solution. These nucleated particles are transported 
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by convection and consequently attached to the crystal surface. In case 2, the 3D 

nucleation in solution is suppressed by relatively weak turbulence. 

 
Fig. B5. Crystals grown under the conditions of case 1 (left) and case 2 (right). 

B.2 Advantage 

The analysis in the previous section suggested that the crystal grown under weak 

turbulence condition is better with less 3D spontaneous nucleation. However, when 

having a closer look at the crystal surface, the tendency is the opposite (Fig. B6). On the 

surface of the crystal in case 1, arrayed macrosteps can be observed, indicating a step 

flow growth mode. In contrast, on the crystal in case 2, step flow can barely be 

observed. Instead, dendritic growth is dominant with clear boundaries between 

growth domains. This morphology is normally caused by severe step instability, and will 

result in inclusion, polytype and other quality problems. This comparison suggests that 

besides 3D nucleation in solution, turbulence may also positively influence the step 

morphology on the crystal surface. 

 
Fig. B6. Crystals grown under the conditions of case 1 (left) and 2 (right). 

The simulation method proposed in Chapter 4 is utilized to investigate the effect of 

turbulence on step morphology. The time-dependent fluctuation of temperature, 

velocity and carbon concentration near the crystal surface are extracted from the LES 
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simulation of case 1 shown in the previous section, and set as the boundary condition 

for the local simulation inside the stagnant layer. In the comparison case, the time-

averaged value without fluctuation is set as the boundary condition. Fig. B7 shows the 

step development for both cases. The result illustrates that the fluctuation of 

supersaturation caused by turbulence does not affect the overall step morphology 

distribution, but will lead to local zig-zag-shaped steps especially at the edge of the 

crystal, where the fluctuation is stronger. This zig-zag shape is considered harmful for the 

crystal quality since it will result in further instability of steps, and consequently the 

inclusion [9, 10]. 

 
Fig. B7. Step development after 500 timestep (∆𝑡 = 1000 𝑠) under the time-

averaged (without fluctuation) and the time-dependent (with fluctuation) boundary 

condition. 

However, besides fluctuation, another feature of turbulence should also be involved 

into consideration, which is the enhancement of mass transport. The eddies change the 

transport mechanism from the molecular to convective even within the stagnant layer, 

and this transport is much faster than that by molecular collisions [11]. Due to the 

interaction of eddies of various sizes, the original molecular diffusion coefficient can be 

rectified as an effective diffusion coefficient [12]: 

𝐷𝑒𝑓𝑓 = 𝐷 + 𝐷𝑡𝑢𝑟𝑏                                               (Eq. B-2 a) 

𝐷𝑡𝑢𝑟𝑏 =
𝜇𝑡𝑢𝑟𝑏

0.9
                                                    (Eq. B-2 b) 

where 𝜇𝑡𝑢𝑟𝑏 is the turbulent viscosity, the value of which can be obtained from the LES. 

The effective diffusion coefficient at the boundary layer surface is plotted in Fig. B8(a). 

Compared with the constant molecular diffusion coefficient, the effective diffusion 

coefficient is much larger, especially at the edge area of the crystal, where turbulence is 

stronger. Liu et al. have demonstrated in numerical simulation that a small ratio between 
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step kinetics coefficient (Kst) and solute diffusion coefficient (D) is preferable for a stable 

step development for solution growth of SiC [13]. Therefore, this turbulence-facilitated 

solute transport is expected to have an essential impact on the morphological stability 

on the growth front. The simulation of step development is again conducted with this 

enhanced diffusion coefficient, and the result exhibits more uniform step distribution on 

the entire crystal surface as well as less step bunching (Fig. B8(b)). 

            
(a)                                                                        (b) 

Fig. B8. (a) Comparison of the original and effective diffusion coefficient; (b) Step 

morphology after 500 timesteps under the enhanced diffusion. 

B.3 Discussion and conclusion 

The above result can be explained that solution growth of SiC is a diffusion-limiting 

process, where a sufficient and fast carbon supply is necessary to eliminate the instability 

caused by steps interaction. Chernov et al. reported in solution growth of KDP crystal 

that an increasing turbulent flow rate, even in a parallel direction with step advancing, 

resulted in flatter and smoother height profile of the crystal surface, corresponding to 

less step bunching level [11]. These tendencies match well with that shown in Fig. B8(b).  

Above all, a tentative conclusion regarding the effect of turbulence on solution 

growth of SiC can be made: the fluctuation of supersaturation leads to the occurrence 

of 3D nucleation particles and perturbation of step shape, while the enhanced diffusion 

enables more stable step development. Therefore, in practical growth experiment, a 

lower supersaturation value (to avoid frequent spontaneous nucleation and step zig-zag 

amplitude), and turbulence with sufficient intensity are recommended. 
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