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Abstract

Topology optimization together with additive manufacturing is now broadly used

to design and prototype high-temperature structures. In such a situation, many new

challenges are opening up due to their advantages, e.g. free-form design, tailored

shapes, and rapid fabrication. This allows for innovative and advanced designs that

are complicated but promise high performance. For example, lattice and porous

structures have originally good performance to dissipate heat from the structure

and this attractive feature is significant in the design procedure.

To tackle these design problems, single-scale design approach may not be effi-

cient for the full capability of this kind of structures. Alternatively, the multi-scale

analysis, which includes heat characteristics from the microscopic lattice and porous

structures, plays a significant role in the advanced design. In fact, a few studies have

investigated multi-scale topology optimization with transient heat conditions.

In the first part, a two-scale topology optimization framework for determining

the optimal microstructure in porous material under transient heat conduction and

transfer has been developed. The new optimization model, which can consider the

surface area directly from microstructure topology as the size-dependent term, is

introduced to enhance the heat transfer performance. In more detail, a homoge-

nization method capable of considering the size-dependent microscopic heat trans-

fer effect is adopted to express the microscopic material responses. A well-known

material interpolation, referred to as the SIMP approach, and the linear function

are used for interpolating intermediate material properties. The minimal transient

heat compliance is chosen as an objective function in this optimization problem.

For the sensitivity analysis, a coupled-adjoint variable method is adopted to derive

transient sensitivity formulation. The analysis shows that the proposed topology

optimization model captures not only the transient heat but also the size effect of

the microstructure in a transient heat analysis in porous material.

Then, the second part presents the extended framework for the concurrent two-

scale topology optimization. Both macro- and microstructures are simultaneously

optimized under transient heat conditions for minimization of transient heat compli-

ance. In the numerical results, the optimized macrostructures show good agreement

with the benchmark of the relevant works, while the optimized microstructure relates

to the design obtained from the first part. In addition, the results also emphasize the
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significance of transient and size-dependent effects on both macro-and microstruc-

tures, showing a better performance when considering transient and size-dependent

effects in the design method of topology optimization.

Regarding the results, the proposed topology optimization framework shows

the attractive performance to enhance transient heat dissipation using the size-

dependent effect of microstructure in the porous material. Furthermore, as a power-

ful feature, it is capable to design optimal macro and microstructures together with

the multiple design domains that enable extreme performance to be extracted.
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Chapter 1

Introduction

1.1 Research background

Porous media have long been applied in the heat management systems in various

equipment. Since they are lightweight and have excellent heat transfer qualities,

porous media are attractive materials for use in many applications, including heat

exchangers, heat sinks, in energy storage and in cooling systems. Their properties

have been well-researched over a period extending more than 50 years by Woodside

and Messmer 1961, Kaviany 1999, Sopian et al. 1999, Mohamad 2003, Bejan et

al. 2004, Clyne et al. 2006, and Singh et al. 2008. For further information,

we refer to a comprehensive review of using porous material for heat exchangers

and electronic devices by Rashidi et al. 2019, Li et al. 2021, and Jiaqiang et al.

2022, respectively. Some examples of its application are illustrated in Fig.1.1. In

the past, the equipment has utilized a simplified layout with roughly approximate

material properties in heat management industries. However, over the last decade,

an attractive design method, known as topology optimization, has become widely

adopted. Topology optimization is a powerful and robust tool for structural design,

well-suited for use along with additive manufacturing (AM). New challenges are

widely opening up for innovation thanks to such advantages as the flexible design

of topology and fabrication in various fields (Khatir et al. 2020; Khatir et al. 2021;

Tran-Ngoc et al. 2021). Topology optimization is considered a promising tool with

potential to enhance both the performance and appearance of thermal devices made

of porous material by fully utilizing its capabilities (Takezawa and Kobashi 2017;

Jia et al. 2018; Liu et al. 2018; Das and Sutradhar 2020; Ozguc et al. 2021).
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Feng et al. 2018

Bilen et al. 2017 Li et al. 2020

Sertkaya et al. 2018

Figure 1.1: The application of porous material for heat devices such as heat sink and
exchanger from the various works (Bilen et al. 2017; Sertkaya et al. 2018; Feng et al.
2018; Li et al. 2020)

1.2 Topology optimization for heat transfer

Topology optimization with macroscopic heat analysis problems has been exten-

sively investigated (Gersborg-Hansen et al. 2006; Gao et al. 2008; Li et al. 2004;

Zhuang et al. 2007; Dbouk 2017; Lohan et al. 2017; Subramaniam et al. 2018;

Fawaz et al. 2022). The focus of most of these studies, however, has been on

steady-state problems. In heat transfer problems, it is well-known that the optimal

structure strongly depends on the heat-conducting path on the structure (Zhang

and Liu 2008; Manuel and Lin 2017; Li et al. 2018). In many real circumstances,

the heat-conducting path distributed on the structure is known to be significantly

dependent on the function of time. In studies by Zhuang and Xiong (2014, 2015),

the adjoint variable method was used in the topology optimization for 2D tran-

sient heat transfer to minimize global heat compliance under a temperature con-

straint. In a study by Long et al. (2018), a multi-material topology optimization

framework was introduced employing sequential quadratic programming. Topology
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optimization was also adopted to design metadevices under the transient condition

of heat flux by Hostos et al. (2019). Their results show a significant performance

improvement compared to the steady-state framework. Zhuang et al. (2020) pre-

sented topology optimization for transient nonlinear heat conduction problem using

level-set method. The dynamic volume constraint and adaptive coefficients of ra-

dial basis functions were implemented to update the geometry. Recently, Wu et

al. (2019, 2021a) proposed two new objective functions for transient heat conduc-

tion: the regional temperature control function (RTCF) and the transient thermal

dissipation efficiency (TTDE). The performance of the proposed objective functions

is better than that of thermal heat compliance (THC), according to Zhuang and

Xiong (2014), due to the different optimal layouts shown at each different time until

convergence to steady-state heat conduction. More recently, Hyun and Kim (2021)

reported level-set topology optimization along with a thermal eigenvalue analysis

for transient heat conduction, and showed that the setting of the target period of

time can provide different topologies. These studies confirm the significance of the

transient effect and its potential effect on the optimal structure layout of the tran-

sient heat problem at the macroscopic level. However, in nature, material is not

simply smooth. The heterogeneous nature of materials means that the arrangement

and property of the structure at a smaller scale level can significantly control ther-

mal performance. In particular, porous material has a certain surface area that is

directly related to its ability to dissipate heat.

1.3 Multi-scale topology optimization for heat trans-

fer

Topology optimization which deals with different scales can be referred to as multi-

scale topology optimization. After original works by Suzuki and Kikuchi (1991),

Diaaz and and Kikuchi (1992), and Bendsøe and Kikuchi (1998), the homogeniza-

tion method has been successfully applied to the development of multi-scale topology

optimization in a number of studies (Hassani and Hinton 1998; Buehler et al. 2004;

Nakshatrala et al. 2013; Sivapuram et al. 2016; Xia and Breitkopf 2017; Fan et

al. 2020). In addition, a comprehensive review of multi-scale topology optimization

techniques was done by Wu et al. (2021b). The transient heat problem was ap-

proached recently by Pizzolato et al. (2019), who proposed a multi-scale topology

optimization framework for transient heat conduction using a level-set method at

the macroscopic level. At the microstructure level, they proposed a framework for

reduction of the geometric complexity and for homogenization to evaluate repre-

sentative material properties. Recently, Al Ali and Shimoda (2022) investigated a

3



concurrent multi-scale topology optimization framework for steady-state heat con-

duction problems with homogenization method. Minimization of heat compliance

was chosen to be objective function. Three optimization schemes, i.e., solid isotropic

material with penalization, level set, and evolutionary structural optimization, are

implemented and compared to study the performance. It reveals that solid isotropic

material with penalization performed the best among the others. Here, it should

be noted that homogenization can represent a microstructure under certain specific

conditions, such as in a periodic unit cell or for the infinitely small ratio of scales

between the micro- and macroscopic levels. Therefore, this framework does not

typically consider the finite size of the microstructure in the optimization process.

However, in practical applications, it is necessary to consider the exact size of the

unit cell (Zhang and Sun 2006; Cheng et al. 2018; Cheng et al. 2019; Elkholy and

Kempers 2020), especially for fabrication.

1.4 Topology optimization for heat transfer with

size-dependent effect

Nowadays, topology optimization and additive manufacturing are widely used to

create innovative structures for heat devices (see Fig.1.2, as the examples) due to

their efficient design and speedy production advantages. However, since it is neces-

sary to set the specific size for printing the structure, attention has been given to

considering the size of the unit cell (Liu and Su 2010; Li and Khandelwal 2015; Gan

and Wang 2021; Gan and Wang 2022; Jung et al. 2022; Wang et al. 2022). However,

only a few works investigate heat problems. For example, Liu et al. (2021) recently

proposed a multi-domain topology optimization for architecture designed structures

with the exact size of the unit cell by using the homogenization method. Cheng

et al. (2018) presented a variable-density lattice structure topology optimization

framework for heat conduction design under the parametric level set functions. In

their work, they also conducted the numerical tests to determine the minimum size

of lattice structures which can be printed by an additive manufacturing machine. In

addition to the manufacturing point of view, the behavior of the material strongly

depends on the size of the microstructure, especially for a porous material which has

high porosity and a large surface area. These properties are closely related with the

heat transfer performance of the material (Lee and Cunnington 2000; Lafdi et al.

2007; Michna et al. 2011; Fugmann et al. 2018). However, from extensive reviews,

topology optimization for transient heat transfer in porous material considering the

surface area and finite size of the microstructure is still limited and requires further

investigation.
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Lange et al. 2018
https://www.comsol.com/blogs/comparing-optimization-methods-for-a-heat-
sink-design-for-3d-printing/

Subramaniam et al. 2018

3D printingParametric optimum Topological optimum

Figure 1.2: Topology optimization and additive manufacturing for heat devices by Lange
et al. 2018 and Subramaniam et al. 2018
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1.5 Research purpose

The objective and novelty of the present study is to develop a method consider-

ing surface area of porosity in microstructures based on the density-based SIMP

approach to reflect a physical thermal behavior between two phases at the micro-

level. This concept makes it possible to consider the size effect of microstructures

indirectly in an easy way combined with the transient framework.

The study is divided into two parts: firstly, topology optimization for designing

microstructure under transient heat analysis subjected to a given macrostructure

is developed, and minimizing thermal compliance is established as the objective

function along with analytical sensitivity expression. Then, the design framework

is extended to be capable of designing both macro-and microstructures. Numerical

examples are presented to demonstrate reliability and performance of developed

design scheme.
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Chapter 2

The brief review on two-scale

transient heat analysis

2.1 Problem statement

Consider a three-dimensional porous solid material Ω with a smooth boundary ∂Ω.

The boundary conditions are classified into the two types shown in Fig. 2.1: heat

flux Q on the Neumann boundary ΓQ and temperature constraint T0 on the Dirich-

let boundary ΓT. At the micro-scale level, porous material consists of periodic

microstructures with perfect connectivity. The microstructure itself consists of two

materials: one is a high thermal conductivity material (ΩI) and the other is a low

thermal conductivity material (ΩII), e.g. solid-void and solid-fluid, respectively.

In this study, the following assumptions were made for the distribution of heat in

porous material:

• Heat transfer occurs from high to low thermal conductivity materials only.

• The temperature in high thermal conductivity material is higher than that in

lower material.

• The macroscopic material parameters of high and low conductivity materials

are independently determined by the microstructure of the material following

the homogenization theory.

• It is assumed that the boundary conditions (Neumann and Dirichlet) apply to

high thermal conductivity material while the adiabatic condition is assumed

for low thermal conductivity material.

These concepts were firstly introduced by Terada et al. (2010) to model thermal be-

havior in porous media with fluid and solid phases. The framework is mathematically

developed using a two-scale asymptotic expansion and shows good computational

7



Figure 2.1: Sketch of heat transfer analysis in porous material by the homogenization
method
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performance and accuracy compared with the benchmark. It should be noted that,

although this proposed method lies on some assumptions, it is still applicable in

practice, especially when the different temperature of two phases is the large value.

For instance, in the case of the solid porous material subjected to high thermal

conditions and thus the temperature on solid medium mainly dissipates to the air

through the interface of pores.

Regarding the attractive advantages, the present study follows their concept and

framework, however, we replace the words “fluid and solid phases” with more general

expression “high (ΩI) and low thermal (ΩII) conductivity materials” for flexibility

of the proposed framework.

To avoid confusion, we define the heat conduction and heat transfer used in this

study as the heat distribution at macro-and micro-scale, respectively.

2.2 Governing equation

According to Terada et al. (2010), the heat transfer parameter relates to material

ΩII only. However, in fact, this parameter affects the temperature distribution in

both materials ΩI and ΩII (Kaviany 1999; Forooghi et al. 2011; Ouyang et al. 2013).

Therefore, to enhance the model without loss of the advantages of computational

performance from the original work, the heat transfer term is directly added to

the governing equation of the material ΩI while the rest of the governing equation

remains unchanged. The two-scale transient governing equation for heat conduction

and transfer in porous material can be expressed as follows:

CHṪ (x, t) +∇ · q(x, t) + Ψ(x, t) = 0 in Ω (2.1)

with

q(x, t) = −kH
c ∇T (x, t) in Ω, (2.2)

Ψ(x, t) =

kH
t TI(x, t) if x ∈ ΩI

kH
t (TII(x, t)− TI(x, t)) if x ∈ ΩII

. (2.3)

Also, the following boundary conditions are imposed:

T (x, t) = T0 on ΓT, (2.4)

q(x, t) · n = Q on ΓQ, (2.5)

9



and the initial condition:

T (x, 0) = T0 in Ω, (2.6)

where T (x, t) is the temperature field defined in domain Ω and depends on the po-

sition x in macro-scale and time t. Ṫ (x, t) stands for the time derivative of the

temperature field. ∇ refers to the gradient operator, and n is the outward unit

normal vector. CH, kH
c and kH

t are macroscopic coefficients of the heat capacity,

heat conduction and heat transfer, respectively. These macroscopic material pa-

rameters are computed from the homogenization analysis and are commonly known

as homogenized coefficients. The weak formulation is expressed as∫
ΓQ

δT (x)Q dΓ =

∫
Ω

δT (x)CHṪ (x, t) dΩ +

∫
Ω

∇δT (x)kH
c ∇T (x, t) dΩ

+

∫
Ω

δT (x)Ψ(x, t) dΩ, (2.7)

where δT (x) is the virtual temperature field. To solve for T (x, t), Eq. (2.7) is dis-

cretized following the Galerkin finite element method. Finally, the one-way coupling

equation system can be established as follows

CIṪ I +KIT I = F I, (2.8)

CIIṪ II +KIIT II = F II(T I), (2.9)

where T I and T II are the global nodal temperature vectors of materials ΩI and ΩII,

respectively. The expressions of CI,CII,KI and KII, and global force vectors F I

and F II, can be written as follows:

CI =

∫
ΩI

NTCH
I N dΩ, (2.10)

CII =

∫
ΩII

NTCH
IIN dΩ, (2.11)

KI =

∫
ΩI

BTkH
c B dΩ +

∫
ΩI

NTkH
t N dΩ, (2.12)

KII =

∫
ΩII

BTkH
c B dΩ +

∫
ΩII

NTkH
t N dΩ, (2.13)

F I =

∫
ΓQ

NTQ dΓ, (2.14)
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F II =

∫
ΩI

NTkH
t T̂I dΩ, (2.15)

where T̂I = NT I and N is the standard shape function together with its derivative

matrix B. In addition, the temporal discretization technique, called the Crank-

Nicolson method, is adopted in this study to solve the time evolution in Eqs. (2.8)

and (2.9). Furthermore, to deal with transient analysis, Crank-Nicloson method is

adopted for obtaining Ṫ , T and F from the time ti to ti+1 as

Ṫ =
T i+1 − T i

△t
, (2.16)

T =
T i+1 + T i

2△t
, (2.17)

F =
F i+1 + F i

2△t
, (2.18)

where △t denotes the time step size, ()i+1 and ()i are the current and previous time

steps, respectively. Thus, Eqs.(2.8) and (2.9) can be similarly expressed in the time

discretization form as

(
1

△t
C +

1

2
K)T i+1 =

1

2
(F i+1 + F i) + (

1

△t
C − 1

2
K)T i. (2.19)
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Chapter 3

The development of topology

optimization framework for

designing microstructure

In this chapter, the topology optimization framework for designing microstructure

under transient heat transfer is developed based on the analysis model presented in

the previous chapter. The objective function and analytical sensitivity expression are

presented to achieve the optimal design. Finally, the numerical results are selected

to demonstrate the reliability and robustness of the developed design framework.

3.1 Optimization framework

In this section, the design variable and the concept of material interpolation are in-

troduced to deal with the intermediate value during the optimization process. Then,

the expression of each macroscopic material parameter is addressed following the ho-

mogenization method. Finally, the objective function and constraint are introduced

to define the optimization problem.

3.1.1 Material interpolation

Firstly, the microscopic design variable si is defined as a volume fraction of a high

thermal conductivity material ΩI in a finite element of a unit cell and is assumed

to be continuous in 0 ≤ si ≤ 1. Hence, it represents the high thermal conductivity

material ΩI when si = 1 and the low thermal conductivity material ΩII when si = 0.

The intermediate value represents the mixture of the two materials, which is an

artificial material.

Then, the density-based concept, namely SIMP—Solid Isotropic Material with

Penalization (Bensøe and Sigmund 2003), is applied to interpolate material proper-

12



Figure 3.1: Sketch of material interpolation function for (a) specific heat, material
density and heat conduction and (b) heat transfer

ties for specific heat c, material density ρ and heat conduction kc. The formulation

can be described based on the power-law as

Φ =

Φmin + sηi ΦI for ΩI

Φmin + (1− si)
η ΦII for ΩII

, (3.1)

where Φ represents the effective material parameter for specific heat c, material

density ρ and heat conduction kc as shown in Fig. 3.1(a). Φmin is the minimum

value of the effective material parameter to avoid singularity during optimization,

ΦI and ΦII are the material properties of the high thermal conductivity material ΩI

and the low thermal conductivity one ΩII, respectively. η denotes the power factor

and η = 3 is selected in this study. Note that the effective material parameters

shown in Eq. (3.1) are separately computed for materials ΩI and ΩII which are indi-

vidually used for homogenization and then for calculating the macroscopic material

parameters in Eqs. (2.8) and (2.9).

3.1.2 The proposed scheme for interpolating microscopic

heat transfer

Unlike the previous interpolation concept for specific heat c, material density ρ and

heat conduction kc in Eq. (3.1), microscopic heat transfer occurs at the surface

between two materials in the microstructure. Thus, with the finite element method,

interpolation of the element face connected with other element faces is required for

the intermediate value of the design variables. To deal with this, we adopt the

13



concept of the difference of adjacent design variables to interpolate the effective

heat transfer parameter from the surface area of each corresponding element in the

microstructure. This concept is inspired by the interpolation scheme for the heat

convection term in Bruns (2007). However, in the present study, it is adopted for

evaluating the heat transfer parameter from each interface (surface area) in the

microstructure. Finally, it can be formulated in the following form:

kt = Θ(si, sJ) kt, (3.2)

with Θ(si, sJ) = |si − sJ |, (3.3)

where si is the design variable of the considered element, and sJ stands for the

design variable of the adjacent element. kt denotes the heat transfer coefficient, and

kt is the coefficient of effective heat transfer for each of the surfaces between the

materials ΩI and ΩII in the microstructure. As shown in Eqs. (3.2) and (3.3), kt

depends on the relative difference function of the design variable Θ(si, sJ) in each

neighboring element of the microstructure as demonstrated in Figs. 3.1(b) and 3.2.

This means that it is valid if Θ(si, sJ) ̸= 0. Note here that linear interpolation is

Figure 3.2: The proposed heat transfer model in microstructure for optimization
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chosen for the function Θ(si, sJ), based on the result of our preliminary investigation

that the penalization underestimates the heat transfer effect significantly.

3.1.3 Macroscopic material parameters

In homogenization theory, the size of the microstructure is assumed to be infinitesi-

mally small (Hassani and Hinton 1998; Terada et al. 2000; Bensoussan et al. 2011):

this assumption makes it difficult to consider the size dependency of microstructure

on the macroscopic response for realistic design applications. In our proposed frame-

work, however, the homogenization method incorporated with the size-dependent

term is addressed to represent the behavior of heat transfer in a porous mate-

rial. These formulations have been mathematically derived in Terada et al. (2010).

Firstly, we denote micro-scale parameters of the unit cell (microstructure) domain,

its boundary and spatial position by Y , ∂Y and y, respectively. Then, homogenized

heat capacity CH and heat conduction kH
c coefficients can be expressed as

CH =
1

|Y |

∫
Y

c ρ dy, (3.4)

kH
c =

1

|Y |

∫
Y

kc(I −∇ξ) dy, (3.5)

where |Y | is the volume of a unit cell. I is the identity matrix, and ξ is the

characteristic functions {ξ1, ξ2, ξ3} obtained by solving the microscopic boundary

value problem presented in the next section.

For the size-dependent term, the homogenized heat transfer coefficient kH
t is

expressed by the surface integral as

kH
t =

1

|Y |

∫
∂Y

kt dS. (3.6)

Here, it should be noted that Eq. (3.6) expresses kH
t in terms of kt and the ratio of

total surface area to the volume of the microstructure (S/|Y |). Changing the size

of the microstructure has a direct effect on this ratio, which is different from the

volume average formulations presented in Eqs. (3.4) and (3.5).

3.1.4 Microscopic boundary value problem

In order to determine the homogenized heat conduction coefficient in Eq. (3.5), all

the characteristic functions {ξ1, ξ2, ξ3} must be obtained. Following the homoge-

nization method, each of the characteristic functions represents the response to one
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Figure 3.3: Periodic boundary condition in a unit cell and three sets of unit vectors

of the three components of the macroscopic temperature gradient as

T (mi) = −ξj
∂T (ma)

∂xj

for j = 1, 2, 3, (3.7)

where T (mi) and T (ma) are the micro-scale and macro-scale temperature fields, re-

spectively. The reader may refer to Terada et al. (2010) and Kato et al. (2018) for

further details. As a result, the equations for obtaining the characteristic functions

can be expressed as follows:

Hξj = W , (3.8)

H =

∫
Y

BTkcB dy, (3.9)
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W =

∫
∂Y

BTkci
j dy, (3.10)

where ij represents the three sets of unit vectors (j = 1, 2, 3) corresponding to

the macroscopic temperature gradient whose j-th component equals 1 while the

remaining components are zero.

In addition, the periodic boundary condition is imposed to microscopic fields on

the boundary ∂Y in Eqs. (3.2) and (3.8) for the interpolation function Θ and the

characteristic function ξ, respectively. These can be written as

Θ[k] +Θ[−k] = 0 on ∂Y, (3.11)

ξ[k] + ξ[−k] = 0 on ∂Y, (3.12)

where [±k] represent the boundary surface positions, with the normal vectors (k =

1, 2, 3) parallel to the coordinate axis in the (+) same or (−) opposite directions as

shown in Fig.3.3.

3.1.5 Setting of optimization problem

To efficiently control the heat dissipation in a porous material, we aim to design an

optimal microstructure which minimizes the remaining heat energy in the considered

porous structure. To achieve this, heat compliance is chosen as an objective function.

This type of objective function is usually formulated with the inner product of

force vector and temperature field of the structure. Similarly, the heat compliance

from two materials inside the porous material is considered to represent the heat

dissipative performance of the structure; here, the force vector for the high thermal

conductivity material ΩI is the external heat flux applied at the boundary of the

structure, while the force vector for the low thermal conductivity material ΩII is the

heat load which is transferred from the high thermal conductivity material ΩI as an

internal heat source.

As a transient problem, the time integration of heat compliance is established for

the minimization problem along with the inequality volume constraint and boundary

conditions as

min f(s, t) =

∫ t

0

F T
I T I dt+

∫ t

0

F T
IIT II dt,

s.t. g(s) =

nele∑
e=1

Ve(s)− Vmax ≤ 0,

T (x, 0) = Ṫ (x, 0) = T0, (3.13)

17



where f(s, t) stands for the transient objective function, which consists of high

and low thermal conductive heat compliances, g(s) is the inequality constraint for

material volume of microstructure and nele is the total number of elements in the

microstructure. Ve(s) refers to the elemental volume of the material ΩI, and Vmax is

the maximum volume of allowable material ΩI in the microstructure.

In addition, the method of moving asymptotes (MMA) by Svanberg (1987) is

adopted in this study to solve the optimization problem along with the analyti-

cal sensitivity formulation. As is generally known, MMA is an optimizer that uses

gradients to solve a convex subproblem iteratively as part of a global optimization

problem. We refer to the original paper for more detail, along with the open source

code which is easily accessible in a number of programming languages. The flow of

the proposed optimization process is illustrated in Fig. 3.4.

3.2 Sensitivity analysis

In this section, the formulation for analytical transient sensitivity is presented based

on the transient adjoint variable method (Tortorelli and Haber 1989; Yoon et al.

2020; Wu et al. 2021a; Yoon 2022) together with the analytical expressions of

the derivatives of the homogenized coefficients. Then, the result from the derived

sensitivity is compared with that of the finite difference method (FDM) for the

purpose of accuracy verification.

3.2.1 Sensitivity of objective function

In this study, we adopt two adjoint variables λ and γ for the low and high thermal

conductivity materials, respectively. Firstly, we provide the following alternative

form of objective function:

f̃ = f −
∫ t

0

γT(CIṪ I +KIT I − F I) dt︸ ︷︷ ︸
RI

−
∫ t

0

λT(CIIṪ II +KIIT II − F II) dt︸ ︷︷ ︸
RII

. (3.14)

Note that this alternative form f̃ is identical to the original objective function if

Eqs. (2.8) and (2.9) are satisfied. For the sake of brevity, we define RI and RII as

the second and third terms on the right-hand side of Eq. (3.14). Then, taking the
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Figure 3.4: A diagram of optimization scheme adopted in present study
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derivative with respect to the design variable yields

∂f̃

∂si
=

∂f

∂si
− ∂RI

∂si
− ∂RII

∂si
. (3.15)

The derivative of the original objective function, the first term on the right-hand

side, can be written as

∂f

∂si
=

∫ t

0

F T
I

∂T I

∂si
dt+

∫ t

0

(F T
II

∂T II

∂si
+

∂F T
II

∂si
T II) dt. (3.16)

It is worth noting that F I is the external heat flux which is independent of the

design variable, hence ∂F I/∂si is zero. On the contrary, F II depends on the heat

transfer from the material ΩI as described in Eq. (2.15). As a result, the implicit

term ∂F II/∂si appears in the last term of Eq. (3.16). Then, ∂RII/∂si in Eq. (3.15)

can be expressed as

−∂RII

∂si
= −

∫ t

0

(λT∂CII

∂si
Ṫ II + λTCII

∂Ṫ II

∂si
) dt

−
∫ t

0

(λT∂KII

∂si
T II + λTKII

∂T II

∂si
) dt+

∫ t

0

λT∂F II

∂si
dt. (3.17)

Here, to eliminate Ṫ II, we adopt the following operation:

−
∫ t

0

λTCII
∂Ṫ II

∂si
dt = −

[
λTCII

∂T II

∂si

]t
0

+

∫ t

0

λ̇
T
CII

∂T II

∂si
dt. (3.18)

Substituting Eq. (3.18) into Eq. (3.17) along with boundary condition ∂TII(x, 0)/∂si =

0 yields

−∂RII

∂si
=

∫ t

0

(λ̇
T
CII − λTKII)

∂T II

∂si
dt+

∫ t

0

−λT

(
∂CII

∂si
Ṫ II +

∂KII

∂si
T II

)
dt

− λTCII
∂T II

∂si

∣∣∣∣
t=tf

+

∫ t

0

λT∂F II

∂si
dt. (3.19)

Similarly, we can derive ∂RI/∂si using the operation defined in Eq. (3.18) and the

boundary condition ∂TI(x, 0)/∂si = 0, so that

−∂RI

∂si
=

∫ t

0

(γ̇TCI − γTKI)
∂T I

∂si
dt+

∫ t

0

−γT

(
∂CI

∂si
Ṫ I +

∂KI

∂si
T I

)
dt

− γTCI
∂T I

∂si

∣∣∣∣
t=tf

. (3.20)
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Substituting Eqs. (3.16), (3.19) and (3.20) into Eq. (3.15) as

∂f̃

∂si
=

∫ t

0

F T
I

∂T I

∂si
dt+

∫ t

0

(F T
II

∂T II

∂si
+

∂F T
II

∂si
T II) dt+

∫ t

0

(γ̇TCI − γTKI)
∂T I

∂si
dt

+

∫ t

0

−γT

(
∂CI

∂si
Ṫ I +

∂KI

∂si
T I

)
dt+

∫ t

0

(λ̇
T
CII − λTKII)

∂T II

∂si
dt

+

∫ t

0

−λT

(
∂CII

∂si
Ṫ II +

∂KII

∂si
T II

)
dt+

∫ t

0

λT∂F II

∂si
dt− γTCI

∂T I

∂si

∣∣∣∣
t=tf

−λTCII
∂T II

∂si

∣∣∣∣
t=tf

. (3.21)

By grouping the implicit term ∂T /∂si and ∂F II/∂si for each material ΩI and ΩII,

it can be rearranged as follows

∂f̃

∂si
=

∫ t

0

(
F T

I + γ̇TCI − γTKI

) ∂T I

∂si
dt+

∫ t

0

(
F T

II + λ̇
T
CII − λTKII

) ∂T II

∂si
dt

+

∫ t

0

(
∂F T

II

∂si
T II + λT∂F II

∂si

)
dt+

∫ t

0

−γT

(
∂CI

∂si
Ṫ I +

∂KI

∂si
T I

)
dt

+

∫ t

0

−λT

(
∂CII

∂si
Ṫ II +

∂KII

∂si
T II

)
dt− γTCI

∂T I

∂si

∣∣∣∣
t=tf

− λTCII
∂T II

∂si

∣∣∣∣
t=tf

.

(3.22)

The implicit term F II and its derivative ∂F II/∂si can be written as

F II = KtT I, (3.23)

∂F II

∂si
=

∂Kt

∂si
T I +Kt

∂T I

∂si
, (3.24)

where

Kt =

∫
Ω

NTkH
t N dΩ. (3.25)

Substitute Eqs. (3.23) and (3.24) into Eq. (3.22) using the symmetry of Kt and

combining the implicit term, finally, it can be expressed as

∂f̃

∂si
=

∫ t

0

(F T
I + λTKt + T T

IIKt + γ̇TCI − γTKI)
∂T I

∂si
dt

+

∫ t

0

(
T T

I Kt + λ̇
T
CII − λTKII

) ∂T II

∂si
dt+

∫ t

0

(
T T

I

∂Kt

∂si
T II + λT∂Kt

∂si
T I

)
dt
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+

∫ t

0

−γT

(
∂CI

∂si
Ṫ I +

∂KI

∂si
T I

)
dt+

∫ t

0

−λT

(
∂CII

∂si
Ṫ II +

∂KII

∂si
T II

)
dt

−γTCI
∂T I

∂si

∣∣∣∣
t=tf

− λTCII
∂T II

∂si

∣∣∣∣
t=tf

. (3.26)

Here, by the mean of the adjoint variable method, the arbitrariness of admissible

γ and λ is applied to eliminate implicit terms of ∂T I/∂si and ∂T II/∂si by solving

adjoint equations along with the boundary conditions shown in the last line of

Eq. (3.26). Then manipulating the terms and eliminating the implicit terms ∂T /∂si

by arbitrarily selecting an admissible adjoint variable, we obtain the final expression

of the transient sensitivity analysis as

∂f̃

∂si
=

∫ t

0

−λT(
∂CII

∂si
Ṫ II +

∂KII

∂si
T II) dt+

∫ t

0

−γT(
∂CI

∂si
Ṫ I +

∂KI

∂si
T I) dt

+

∫ t

0

(T T
I

∂Kt

∂si
T II + λT∂Kt

∂si
T I) dt, (3.27)

where Kt is the heat transfer matrix that has been defined as the second terms

on the right-hand side of Eqs. (2.12) and (2.13). In addition, the coupling adjoint

variable equation for determining γ and λ corresponding to materials ΩI and ΩII at

each time step can be expressed as follows:

F T
I + γ̇TCI − γTKI + (T T

II + λT)Kt = 0 in ΩI, (3.28)

λ̇
T
CII − λTKII + T T

I Kt = 0 in ΩII, (3.29)

with

λ(tf) = 0 and γ(tf) = 0, (3.30)

where tf denotes the final time step. Here, the adjoint variable λ in Eq. (3.29) is

solved first and then substituted in Eq. (3.28) for computing γ as a one-way coupling

problem similar to the governing equation in Eqs. (2.8) and (2.9). However, these

adjoint equations are solved backward, namely from the final to initial time steps

as the process of incremental formulation of the sensitivity analysis.

3.2.2 Derivative of homogenized coefficients

In this section, the derivatives of the homogenized coefficient terms in Eq. (3.27)

with respect to the design variable are derived. Firstly, the derivative of the heat
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capacity and heat transfer terms are given as

∂C

∂si
=

∫
Ω

NT∂C
H

∂si
N dΩ, (3.31)

∂Kt

∂si
=

∫
Ω

NT∂k
H
t

∂si
N dΩ. (3.32)

The derivative of these homogenized coefficients can be obtained in the following

straightforward manner:

∂CH

∂si
=

1

|Y |

∫
Y

2 ηsi
2η−1c ρ dy, (3.33)

∂kH
t

∂si
=

1

|Y |

∫
∂Y

∂Θ(si, sJ)

∂si
kt dS, (3.34)

with

∂Θ(si, sJ)

∂si
=

−1 if si< sJ

1 if si> sJ
. (3.35)

Next, the derivative of the heat conduction Kc contained in the stiffness matrices

KI and KII can be obtained from the first term of Eqs. (2.12) and (2.13) as

∂Kc

∂si
=

∫
Ω

BT∂k
H
c

∂si
B dΩ. (3.36)

However, the analytical expression of Eq. (3.36) is more difficult to derive due to the

implicit term of ∂ξ/∂si. To overcome this difficulty, we adopt the derived strategy

using the adjoint method, similar to the work by Zhou and Li (2008). After some

manipulations, we have

∂kH
c

∂si
=

1

|Y |

∫
Y

(I −∇ξ) η si
η−1kc(I −∇ξ) dy. (3.37)

3.2.3 Verification of analytical sensitivity formulation

Here, a sensitivity analysis is conducted to verify the proposed formulation, and the

results are compared with those of the numerical analysis by the finite difference

method. The geometries and boundary conditions of the two macrostructures, A

and B, with a given unit cell, are shown in Fig. 3.5, and the material properties used

in this verification are shown in Table 4.1. The unit cell is discretized by 5× 5× 5
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Figure 3.5: Model for sensitivity verification

eight-noded hexahedral elements and the design variable is set to 0.6 (in blue) and

0.4 (in gray) for model A, 0.8 (in blue) and 0.2 (in gray) for model B with the time

0.4 s. As shown in Fig. 3.6, the sensitivities of the two cases obtained from the

proposed formulation and finite difference method are in good agreement, with an

error of less than 1%. The results are evidence of the reliability and accuracy of the

derived sensitivity.

3.3 Numerical examples

In this section, the numerical examples are presented to demonstrate the capability

of the proposed topology optimization scheme. In addition, the transient effect and

the influence of the size of the designed microstructures are investigated in each

example.
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Figure 3.6: Sensitivity of (a) macrostructure A and (b) macrostructure B using the
proposed analytical formulation and finite difference method (FDM)

Table 3.1: Material properties of fluid (ΩI) and solid phases (ΩII)

fluid (ΩI) solid (ΩII)

specific heat, c 40 10
[J/(kg・K)]
density, ρ 1000 2000
[kg/m3]
heat conduction, kc 0.04 0.001
[W/(mm・K)]
heat transfer, kt - 0.000001
[W/(mm2・K)]
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3.3.1 Calculation conditions

We consider a three-dimensional heat-conductive porous medium consisting of two

materials at the microscopic level. For the sake of simplicity, we apply our proposed

design framework to a porous material composed of fluid (high conductivity) and

solid (low conductivity) materials, ΩI and ΩII, respectively, similar to those utilized

in the study by Terada et al. (2010). In addition, we assume that the fluid in the

pores is under the steady-state condition and that the fluid does not flow inside

the porous media. Although it is possible that these assumptions introduced by

Terada et al. (2010) do not represent the actual situation, we simply follow their

lines. The material properties used in this study are shown in Table 1, and three

macrostructures are used for the numerical analyses. The macro-and microstruc-

tures are discretized by eight-noded hexahedral elements for all the examples, but

the number of total elements is varied depending on the problem. The material

volume of a unit cell is constrained. The initial volume fraction is set for each nu-

merical example. Of course, different fractions may lead to a different optimization

result as the underlying characteristics of gradient-based optimization. To avoid

numerical instability during the optimization process, such as checkerboard and

mesh-dependent problems, we utilize the sensitivity filtering formulation (Bensøe

and Sigmund 2003) as

∂f

∂si
=

1

si
∑N

j=1Hj

N∑
j=1

Hjsj
∂f̃

∂si
, (3.38)

where Hj = rmin − x̄(i, j) and rmin is the radius of the filter. Here, x̄(i, j) is the

distance between two considered i and j elements. In this study, the filter radius is

set to 4 times the element size of the microstructure. Note that grayscale elements

on the interface between different materials (or phases) at the final topology may not

be vanished just by using a constant filter radius. They may be avoided by changing

the filter radius during optimization or by using an alternative filtering scheme, such

as a projection scheme (e.g., Kawamoto et al. 2011; Wang et al. 2011), which is a

potential method to enforce the sharp interface. However, it has not been employed

in this study in order to avoid perturbation on the actual behavior of our final

topology. As the initial design conditions, all design variables in the unit cell are

set to the same value of volume constraint, except for the center position, where we

set the larger value of 0.1 than the others to excitation and stability, as suggested

by Kato et al. 2018a. Furthermore, it should be noted that the time step and

element size in the transient analysis should be carefully chosen to avoid a spurious

oscillation. It has been reported that this type of oscillation occurs as a result of

an abrupt change of temperature in the transition region (Gresho and Lee 1981;
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Pizzolato et al. 2017). To deal with this problem in a different way, many stabilized

finite element techniques have been proposed (e.g., Ilinca and Hetu 2002; Bochev

et al. 2004). However, in order to avoid further complexity in the mathematical

formulations, those specific stabilization schemes are not implemented in this study.

3.3.2 Numerical example 1

In the first example, we consider the macrostructure subjected to three different

loading conditions with heat fluxQ = 0.05 W/mm2 and temperature constraint T0 =

0 K. Details of the boundary condition are shown in Fig. 3.7. These configurations

are set to be simple enough that the obtained optimal microstructure can be easily

Figure 3.7: The rectangular macrostructure subjected to three loading conditions
with temperature constraint, and its microstructure design
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Figure 3.8: Optimization results under loading case-1

understood and to allow for preliminary verification. The macroscopic structure is

discretized by eight-noded hexahedral elements and the total number of elements is

20 × 20 × 5 elements. In this example, the objective is to determine the optimal

layout in a microstructure which is periodically distributed throughout the entire

macrostructure. In other words, the macroscopic heat dissipative performance is

maximized by designing its microstructure layout. The constraint of the microscopic

material volume is assumed to be less than 30 % of the fluid. The microstructure

is discretized by 20 × 20 × 20 elements and the size of the microstructure is set at

1 mm. In this investigation, we set the target period of time at 0.5 s with a total

number of 100 time steps.

Figure 3.8 illustrates the optimization results for loading case-1. Also, the tem-
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Figure 3.9: Optimization results under loading case-2
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Figure 3.10: Optimization results under loading case-3
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Figure 3.11: History of objective function value during optimization
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Figure 3.12: History of microstructural volume constraint
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perature distributions on the solid and fluid materials are shown in Figs. 3.8(a) and

(b) and the optimized microstructure and its assembly are shown in Figs. 3.8(c) and

(d), respectively. It can be seen that the fluid (high thermal conductivity material)

appears in the direction of the temperature distribution path, which mainly occurs

along the x1-axis. This implies that the high thermal conductivity material in the

microstructure plays a major role in the thermal dissipation of the macrostructure.

This tendency can be found in many works of topology optimization for the heat

conduction problem (e.g., Kato et al. 2018; Pizzolato et al. 2019; Seo et al. 2020).

The results under loading case-2 are shown in Fig. 3.9. The results are similar to

those of the previous loading case with the only change being that the loading direc-

tion becomes the x3-axis. The same topology, except for the direction, can be clearly

seen in Figs. 3.9(c) and (d). This confirms that there is a strong relationship between

the optimized microstructure, especially in the case of the high thermal conductivity

material, and the pattern of temperature distribution in the macrostructure.

Figure 3.10 shows the optimization results for loading case-3. Obviously, this

is a simple diagonal loading pattern, as shown in the temperature distribution of

Figs. 3.10(a) and (b). The optimized microstructure is presented in Figs. 3.10(d)

and (e). As we can see, the fluid is diagonally formed in the y1y3-plane to dissipate

temperature following the temperature path in the macrostructure (in the x1x3-

plane). Again, these results are in good agreement with the tendency discussed

earlier.

Figure 3.11 and Figure 3.12 indicate the history of the objective function and

microstructural volume constraint during the optimization process for the three

loading cases. It can be clearly seen that all cases show good convergence trends to

the optimal results within 100 steps.

These results indicate that the proposed two-scale optimization framework pro-

vides a reasonable optimized microstructure based on the mechanism of heat dissi-

pation in the macrostructure under consideration.

3.3.3 Numerical example 2

Next, we focus on the plate-like macrostructure subjected to a heat flux Q =

0.05 W/mm2 at the center of the top surface and the temperature constraint T0 =

0 K at the four edge lines. The dimension and boundary condition are shown

in Fig. 3.13. The number of elements is 20 × 20 × 5 for the macrostructure and

20× 20× 20 for the microstructure. The volume constraint of the fluid is set at less

than 50 %. In the first investigation, we use the microstructure with a side length of

L= 0.5 mm and set the target periods of time at 0.05 s and 0.5 s, representing short

and long periods, to determine the influence of time on the optimal microstructure.

33



Figure 3.13: Plate-like macrostructure subject to heat flux at center and its mi-
crostructure

Figure 3.14 shows the optimization results for the 0.05 s period of time. Fig. 3.14(a)

explains the temperature distribution in the macrostructure, and Fig. 3.14b displays

the topologies of the fluid regions at several optimization steps. It can be seen that

the fluid is first formed near the center of the unit cell and then continuously extends

in the y1-, y2- and y3 axial directions. The layout of this high thermal conductivity

material corresponds well with the temperature distribution in the macrostructure.

Next, Fig. 3.15 shows the optimization results for the 0.5 s period of time. As a

longer time period, the temperature is distributed over the entire macrostructure, as

shown in Fig. 3.15(a). From the investigation of each time step, we observe that the

temperature distribution is dominant in the x1x2-plane in the macrostructure and

in the x3-direction, respectively. This behavior affects the optimized microstructure

during optimization, as shown in Fig. 3.15(b). In addition, the microstructural

volume constraint is plotted in Fig. 3.16.

To validate the optimized microstructure obtained above, a heat analysis was

conducted for the two optimized microstructures shown in Fig. 3.14(c) and Fig. 3.15(c),

and the responses were compared at certain times. As mentioned earlier, the mi-

crostructure in Fig. 3.14(c) is designed for the 0.05 s period of time, and that in

Fig. 3.15(c) is t = 0.5 s. Fig. 3.17 shows the results of the heat conduction analysis.

The vertical axis shows the maximum temperature in the macrostructure and the

horizontal axis represents time. It can be seen that, at the early stage, the maxi-

mum temperature of the optimized microstructure for 0.05 s is lower than that of
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optimized microstructure for 0.5 s while at the final time step, the result for the 0.5

s period of time is lower.

Furthermore, to confirm the performance of these two topologies, the same

boundary conditions were used with different target times (0.05 s and 0.5 s). The

objective function values are plotted in Fig. 3.18. Obviously, for the 0.05 s period

of time, the optimized topology gives a lower value, while the heat dissipative per-

formance of the 0.5 s period of time is better. Here, these results highlight the

significant effect that transient conditions can have on the layout of optimal mi-

crostructure.

Apart from this capability, another attractive feature of the proposed optimiza-

tion framework is that the effect of the microstructure size (side length L of unit

cell) on the homogenized heat transfer coefficient kH
t can be considered in the op-

timization process. In order to demonstrate the details of this feature, two further

investigations were carried out to determine the relationship between the objective

function and the heat transfer coefficient kt used in Table 4.1 and the microstructure

size under the same configurations adopted earlier.

Firstly, optimization is performed using four different heat transfer coefficients

kt. The corresponding objective function values and each optimized microstructure

for the target periods of time, 0.05 s and 0.5 s, are plotted in Figs. 3.19 (top)(a)-

(d) and 3.20 (top)(a)-(d), respectively. It can be seen that the objective function

value decreases when the heat transfer coefficient kt increases. This implies that

more heat is transferred from fluid to solid through the heat transfer effect, in effect

reducing the heat compliance (objective function) of the designed structure shown

in Eq. (3.13). Obviously, the proposed optimization method can enhance the design

of heat dissipation in a porous material by considering the macroscopic heat trans-

fer coefficient kt. Meanwhile, it can be observed that the optimized microstructure

becomes asymmetric when a large value of kt is used. This is caused by the flex-

ible design of the fluid-solid interface to achieve the minimization of the objective

function. These results are evidence that we successfully incorporated two crucial

characteristics of a porous material, heat conduction and transfer, into the proposed

optimization method.

Using similar configurations, the effect of the size of the microstructure (side

length L of unit cell) is determined for the target periods of time of 0.05 s and 0.5

s, as shown in Figs. 3.19 (bottom)(a)-(d) and 3.20 (bottom)(a)-(d). The objective

function value is decreased when the side length L is small. In addition, the topolo-

gies similar to those in Figs. 3.19 (top)(a)-(d) and 3.20 (top)(a)-(d) are likely due

to the size-dependent term that is introduced in Eq. (3.6), which reduces the size of

the microstructure (side length L of unit cell) and therefore increases the value of

the homogenized heat transfer coefficient kH
t in a manner akin to increasing the heat
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Figure 3.14: Optimization results of plate-like structure for the 0.05 s period of time
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Figure 3.15: Optimization results of the plate-like structure for the 0.5 s period of
time
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Figure 3.16: History of microstructural volume constraint
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Figure 3.17: Maximum temperature on the plate-like macrostructure for the 0.5 s
period of time for the two optimized microstructures

Figure 3.18: Comparison of objective function values for the case of two optimized
microstructures for the 0.05 s and 0.5 s periods of time
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Figure 3.19: Relationship between objective function and (top) heat transfer coeffi-
cient, (bottom) size of the microstructure for the 0.05 s period of time
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Figure 3.20: Relationship between the objective function and (top) heat transfer
coefficient, (bottom) size of the microstructure for the 0.5 s period of time
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transfer coefficient kt directly. A detailed explanation of this relation can be found

in Terada et al. (2010). Besides, to confirm the relationship between the side length

L and the heat transfer coefficient kt, the side length L for use in the numerical

investigation is set such that it is large enough to reproduce the non-heat transfer

condition. The results are shown in Figs. 3.19 (bottom)(e) and 3.20 (bottom)(e).

It can be clearly seen that layout of the obtained microstructures is symmetric and

that the topology is almost the same as that shown in Figs. 3.19 (top)(a) and 3.20

(top)(a).

3.3.4 Numerical example 3

The beam-like macrostructure above was subjected to heat flux Q = 0.05 W/mm2

on the top surface, and the temperature constraint T0 = 0 K on the surface of the

other end side. Details of the geometry are shown in Fig. 3.21. 10×10×30 elements

are used for the macrostructure and 20 × 20 × 20 elements for the microstructure.

The volume constraint of the microstructure for the fluid region is set at less than

30 % and the size of the microstructure is set at 1 mm.

Firstly, Figs. 3.22 and 3.23 illustrate the obtained temperature distributions in

Figure 3.21: A beam-like macrostructure along with boundary condition, and its
microstructure design
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the fluid together with its optimized microstructure for the two sets of the target

periods of time, 0.05 s and 0.5 s. The topologies of the obtained microstructures

clearly differ for different temperature distributions in the macrostructure. As can

be seen for the 0.05 s period of time, the temperature is mainly distributed along the

diagonal direction (x1x3-plane) in the vicinity of the heat flux applied. Therefore,

the fluid in the optimized microstructure is mainly formed in the y1y3-plane follow-

ing the temperature distribution, as indicated in Fig. 3.22. For the 0.5 s period of

time, the temperature is distributed vertically and horizontally in the vicinity of the

Neumann boundary, while it is distributed horizontally for the other regions. As a

result, a combined topology with both diagonal and horizontal directions appears,

as shown in Fig. 3.23. Again, this is evidence that the temperature distribution in

the macrostructure strongly affects the layout of high conductive material ΩI in the

optimized microstructure.

Next, we investigate the performance of the obtained microstructures shown

above by a transient heat analysis under the same analysis conditions as the previous

investigation. Both analyses are conducted for the 0.5 s period of time. In Fig. 3.24,

it can be seen that the maximum temperature for the 0.05 s period of time is lower

at the early stage, and thereafter the maximum temperature for the target time of

0.5 s becomes lower. In addition, we compared the objective function values for

the two cases with the optimized microstructure for the 0.05 s and 0.5 s periods

of time. The results are presented in Fig. 3.25. As we can see, the performance

of each topology for each optimal microstructure is better for the corresponding

period of time. These results clearly show that the implementation of the transient

heat analysis for topology optimization enhances the performance of the optimal

microstructure to that of the steady-state framework.

While enjoying the transient effect on the two-scale analysis, we notice from this

example that the temperature distribution pattern differs significantly in each region

of the macrostructure. Therefore, using the microstructure to design the entire

macrostructure may not provide the best performance in such circumstances. To

overcome this, the proposed optimization framework is extended to design multiple

microstructures simultaneously. Note here that we do not consider the connectivity

of each design region at this stage to simplify and direct investigate the transient

and size-dependent effects in multiple design regions scheme. However, if necessary,

we can adopt these proposed schemes (Sivapuram et al. 2016; Du et al. 2018; Liu

et al. 2020) to connect each design region.

To investigate the performance, we optimized the topology of a microstructure

under the same condition as that shown in Fig. 3.23 (for the 0.5 s period of time

) by assigning three designed domains: 1, 2 and 3. Fig. 3.26 shows the optimized

microstructure for each designed domain. In design domain 1, as discussed earlier,

43



Figure 3.22: Optimization results of beam-like structure for the 0.05 s period of time
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Figure 3.23: Optimization results of beam-like structure for the 0.5 s period of time
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Figure 3.24: Maximum temperature on a beam-like macrostructure for the 0.5 s
period of time for the two optimized microstructures

Figure 3.25: Comparison of objective function values for two optimized microstruc-
tures for the 0.05 s and 0.5 s periods of time
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because the temperature is mainly distributed in the vertical and horizontal direc-

tions (x1x3-plane), the fluid in the microstructure is formed in accordance with the

temperature distribution, similar to that shown in Fig. 3.23. For design domains 2

and 3, the temperature distribution is mainly along the x1-axis. Thus, the fluid is

mainly formed in the x1-axis like the previous example. However, because design

domain 3 is far from the Neumann boundary, the temperature gradient is relatively

small. As a result, in design domain 3, the heat transfer term kH
t strongly affects the

layout of the fluid region in the optimized microstructure: this explains the different

topologies of design domains 2 and 3.

To investigate in greater detail, the same optimization problem is used with

a small enough heat transfer kH
t that the on-heat transfer condition from fluid to

solid is reproduced. Fig. 3.27 illustrates the optimized microstructures for each

domain. As can be seen, the optimized microstructures for the design domains

1 and 3 are significantly different from those of Fig. 3.26. Despite the different

topologies of Fig. 3.26 and Fig. 3.27, the fluid layout in the optimized microstructures

is still generated according to the temperature distribution in the macrostructure in

a manner consistent with that discussed earlier. To be specific, in the case of design

domain 1, the fluid is mainly formed in the horizontal direction (x1-axis), and then

in the diagonal direction (x1x3-plane) while in design domians 2 and 3, the fluid

mainly forms in the horizontal direction (x1-axis). In addition, the design domain 3

shown in Fig. 3.26 has a larger interface area than that of Fig. 3.27 to transfer heat

from fluid to solid. This highlights the influence of the heat transfer term kH
t on the

layout of the optimization.

Table 3.2 illustrates the objective function value and maximum temperature

for the above cases: (i) a unique microstructure (Fig. 3.23), (ii) 3 microstructures

with the heat transfer effect kH
t (Fig. 3.26) and (iii) with no heat transfer effect kH

t

(Fig. 3.27). As can be seen, case (ii) shows the best performance with the lowest

objective function value and maximum temperature, and case (iii) is next, followed

by case (i). This suggests that increasing the number of microstructures improves

the material design for heat dissipative performance, especially when combined with

the heat transfer effect.

Finally, we investigate the influence of the size of the microstructures on the

objective function value again using the microstructures of cases (i) and (ii).

Figure 3.28 shows the results obtained from the transient heat analysis with

various sizes of the microstructures where the same topologies as case (i) and (ii)

are applied. It can be clearly seen that case (ii) exhibits a lower objective function

than that of case (i). In addition, the objective function value sharply decreases as

the microstructures become smaller. It can be observed that when a microstructure

is sufficiently large, the value of the objective function tends to stay at a constant
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Figure 3.26: Three optimized microstructures for the 0.5 s period of time

Figure 3.27: Three optimized microstructures for the 0.5 s period of time without
the heat transfer effect
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Figure 3.28: Comparison of the objective function and the size of the microstructures
in cases (i) and (ii)
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Table 3.2: Comparison of single and three design microstructures

objective function max fluid temp max solid temp

[J ・K/s] [K] [K]

(i) a unique microstructure 78.8 89.36 5.32

(ii) 3 microstructures with 77.1 86.44 5.27
heat transfer effect, kHt

(iii) 3 microstructures 78.1 88.74 -
without heat transfer effect, kHt

value. This can be attributed to the disappearance of the heat transfer effect from

the relation in Eq. (3.6) when the ratio of the interface area to |Y | is small enough.

From the manufacturing perspective, this result stresses the importance of specifying

the maximum size for which the heat transfer term is still active.

3.4 Summary

A two-scale topology optimization framework for a transient heat analysis in porous

material has been successfully developed based on homogenization theory which is

capable of considering the size effect of the micro-scale heat transfer. Heat com-

pliance was selected to be an objective function of our framework. To efficiently

achieve the optimal result, we employed the analytical adjoint variable formula-

tion for a sensitivity analysis. The results of this analysis were compared to those

obtained by the finite difference method to verify the accuracy of the method.

In the first example, a rectangular domain was subjected to three simple loading

conditions to confirm the obtained results were reasonable. An excellent conver-

gence to the optimal solution was obtained to show the efficiency and reliability

of the proposed method. Then, in the second and third examples, the remarkable

transient effect on the optimal microstructure was observed for each target time.

Furthermore, it was found that the smaller microstructure size can improve the

heat transfer capability while causing an asymmetrical shape of the microstructure.

This phenomenon was explained by the size-dependent term, namely the heat trans-

fer coefficient, which can greatly enhance the heat dissipation performance of the

structure.

Finally, the proposed method was extended to demonstrate its performance by

simultaneously optimizing multiple microstructures. The results showed that the

concept of multiple microstructures with the size effect gives the superiority of heat

dissipation performance compared to the general two-scale topology optimization

with a unique microstructure.
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Chapter 4

The development of topology

optimization framework for

designing micro-and

macrostructures

In this chapter, topology optimization framework for designing micro and macrostruc-

tures recognized as concurrent topology optimization of multi-scale structures (Deng

et al. 2013; Yan et al. 2014; Liu et al. 2016; Wang et al. 2018; Gao et al. 2019; Kato

et al. 2018a; Al Ali and Shimoda 2022) is developed by extending the optimiza-

tion framework proposed in the previous chapter. The optimization model, which

consists of micro-level and macro-level optimization problems, is established with

the heat compliance objective function and the analytical sensitivity formulations.

Finally, two numerical examples are selected to demonstrate the performance of the

proposed optimization framework.

4.1 Formulation

Before establishing the optimization framework, let us recall the governing equations

(2.8) and (2.9) to redefine material parameters, which is suitable for the development

in the later section. The expressions can be rewritten as follows:

CI =

∫
ΩI

NTCM
I N dΩ, (4.1)

CII =

∫
ΩII

NTCM
II N dΩ, (4.2)
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KI =

∫
ΩI

BTkM
cI
B dΩ +

∫
ΩI

NTkM
t N dΩ, (4.3)

KII =

∫
ΩII

BTkM
cII
B dΩ +

∫
ΩII

NTkM
t N dΩ, (4.4)

F I =

∫
ΓQ

NTQ dΓ, (4.5)

F I =

∫
ΩII

NTkM
t T̂ I dΩ, (4.6)

where kM
c , C

M and kM
t are macroscopic coefficients of heat conduction, heat capacity

and heat transfer, respectively.

4.1.1 Definition of two-scale design variables

Firstly, ϕm and ϕM are defined as the elemental continuous design variables at micro

and macro levels, respectively. For simplicity, the indices, m and M, on ϕ identify

micro- and macro-scale, respectively. The values 0 and 1 can be represented as

follow:

ϕm =

 1 phase I

0 phase II
, (4.7)

ϕM =

 1 macro-material

0 void
. (4.8)

For the intermediate value 0 < ϕm < 1 and 0 < ϕM < 1, they represent the mixture

of the above materials.

4.1.2 Material interpolation

To smoothly update each parameter during the optimization, the well-known inter-

polation scheme, SIMP, is applied to obtain material parameters for both scales.

Firstly, for micro-scale, the effective material parameters can be expressed as

cmI = ϕη
mcI, cmII = (1− ϕm)

ηcII, (4.9)

ρmI = ϕη
mρI, ρmII = (1− ϕm)

ηρII, (4.10)

km
cI
= ϕη

mkcI , km
cII

= (1− ϕm)
ηkcII , (4.11)
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Figure 4.1: The interpolation function for heat transfer in the microstructure

km
t = ϕ̄kt, (4.12)

where c, ρ, kcI , kcII , and kt are the specific heat coefficient, material density, heat

conduction coefficients of phases I and II, and heat transfer coefficient, respectively.

η is the power factor and η = 3 is used in this study. ϕ̄ is the linear function between

the considered (ϕc) and adjacent (ϕa) design variables in a unit cell as

ϕ̄ = |ϕc − ϕa|. (4.13)

For macro-level, the effective material parameters can be expressed as

CM = ϕη
MC

H, (4.14)

kM
c = ϕη

Mk
H
c , (4.15)

kM
t = ϕη

Mk
H
t . (4.16)

4.1.3 Homogenized material coefficients

As shown in Eqs. (4.14)-(4.16), prior to determining CM, kM
c and kM

t , homogenized

material coefficients CH, kH
c and kH

t need to be obtained. The formulations can be
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expressed with micro-level material parameters as

CH =
1

|Y |

∫
Y

cmρm dy, (4.17)

kH
t =

1

|Y |

∫
∂Y

km
t dS, (4.18)

kH
c =

1

|Y |

∫
Y

km
c (I −∇ξ) dy. (4.19)

As mentioned earlier, to obtain kH
c in Eq. (4.19), the microscopic response are re-

quired. Therefore, as a similar manner to Eqs. (3.8)-(3.10), the formulation which

describes the relationship of the characteristic functions can be written as

Hξj = W , (4.20)

H =

∫
Y

BTkm
c B dy, (4.21)

W =

∫
∂Y

BTkm
c i

j dy. (4.22)

Referring to Eqs. (3.11) and (3.12), the periodic boundary condition is imposed

to microscopic fields on the boundary ∂Y for the interpolation function ϕ̄ and the

characteristic function ξ, respectively. These can be written as

ϕ̄[k] + ϕ̄[−k] = 0 on ∂Y, (4.23)

ξ[k] + ξ[−k] = 0 on ∂Y. (4.24)

4.1.4 Objective function

In this study, two optimization problems regarding macro and micro design variables

are established, respectively. Note that whereas both design variables are coupled in

structural and sensitivities analysis, they are updated independently by optimizer.

This framework can be recognized as a practical scheme, the so-called decoupling

approach, to optimize micro- and macrostructures (Kato et al. 2018a). To formulate

optimization problem, macroscopic heat compliance is selected to be the objective

function along with the volume constraint, governing equation, and boundary con-

ditions in time integral form as
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For macro-scale:

min
ϕM

f(ϕM,ϕm, t) =

∫ t

0

F T
I T I dt+

∫ t

0

F T
IIT II dt, (4.25)

s.t. g(ϕM) =

Nel∑
e=1

Ve(ϕM)− VM ≤ 0, (4.26)

Eqs.(2.8) and (2.9),

T (x, 0) = Ṫ (x, 0) = T0, (4.27)

0 ≤ ϕM ≤ 1. (4.28)

For micro-scale:

min
ϕm

f(ϕm,ϕM, t) =

∫ t

0

F T
I T I dt+

∫ t

0

F T
IIT II dt, (4.29)

s.t. g(ϕm) =

nel∑
e=1

Ve(ϕm)− Vm ≤ 0, (4.30)

Eqs.(2.8) and (2.9),

T (x, 0) = Ṫ (x, 0) = T0, (4.31)

0 ≤ ϕm ≤ 1. (4.32)

where f is the objective function that contains solid and fluid heat compliances

during the specific time, and g is a constraint function. Nel and nel are the total

number of finite elements for macro and microstructures. VM and Vm are the volume

constraints for macro and microstructures, respectively. Lastly, ϕM and ϕm are the

vector of design variables for macro and micro levels.

To solve the optimization problem above, MMA optimizer is employed to seek

the optimal solution using the two-scale analytical sensitivity formulations. The

flow of the optimization process is illustrated in Fig. 4.2

4.1.5 Sensitivity analysis

In order to obtain analytical expression, two adjoint variables γ and λ are exploited

to Eqs. (2.8) and (2.9) again as follows

RI =

∫ t

0

γT(CIṪ I +KIT I − F I) dt, (4.33)

55



Start

Initialize FEM

Homogenization method

§ Solve for characteristic functions, Eq. (4.20)

§ Compute micro-scale material coefficients, Eqs. (4.9)-
(4.12) 

§ Calculate homogenized coefficients, Eqs. (4.17)-(4.19) 

Transient heat analysis

§ Solve macroscopic governing equation from 
homogenized material coefficients, Eqs. (2.8) and 
(2.9)

§ Calculate objective function, Eqs. (4.25) and (4.29)

Sensitivity analysis

§ Micro-level

Optimization by MMA

Convergence
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§ Calculate macro-scale coefficients, Eqs. (4.14)-(4.16) 

Figure 4.2: The optimization process of proposed concurrent two-scale topology opti-
mization
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RII =

∫ t

0

λT(CIIṪ II +KIIT II − F II) dt. (4.34)

Also, the alternative form of objective function f̃ is introduced as

f̃ = f −RI −RII. (4.35)

Note that RI and RII are disappeared when Eqs. (2.8) and (2.9) are in equilibrium

state, therefore, the alternative form f̃ is nothing but the original objective function

f . Then, taking the derivative with respect to the design variable yields

∂f̃

∂ϕi

=
∂f

∂ϕi

− ∂RI

∂ϕi

− ∂RII

∂ϕi

, (4.36)

where ϕi is the general expression of the design variable which can be either ϕM or

ϕm. However, the derivation method similar to that adopted in the previous chapter

can be applied here to obtain the analytical expression. Finally, we can write the

formulation as

∂f̃

∂ϕi

=

∫ t

0

−γT(
∂CI

∂ϕi

Ṫ I +
∂KI

∂ϕi

T I) dt+

∫ t

0

−λT(
∂CII

∂ϕi

Ṫ II +
∂KII

∂ϕi

T II) dt

+

∫ t

0

(T T
I

∂Kt

∂ϕi

T II + λT∂Kt

∂ϕi

T I) dt. (4.37)

Also, the adjoint variable equations for obtaining γ and λ can be formulated as

F T
I + γ̇TCI − γTKI + (T T

II + λT)Kt = 0, (4.38)

λ̇
T
CII − λTKII + T T

I Kt = 0. (4.39)

λ(tf) = 0 and γ(tf) = 0, (4.40)

where tf denotes the final time step. Note that the adjoint variable λ in Eq. (4.39)

is solved first and then Eq. (4.38), respectively. It can be seen that the sensitivity

formulation in Eq. (4.37) depends on whether ϕi is ϕM or ϕm; however, the derivatives

with respect to ϕM or ϕm are identical because it uses a same strategy to eliminate

the derivatives of implicit terms ∂T /∂ϕm and ∂T /∂ϕM. In other words, the adjoint

variables λ and γ are solved only once for implementation in micro and macro

sensitivity analyses.
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4.1.6 Derivative of macro-and micro- material parameters

As shown in Eq. (4.37), it requires evaluating the derivative of each stiffness matrix.

Firstly, consider heat capacity term C as follows:

∂C

∂ϕi

=

∫
Ω

NT∂C
M

∂ϕi

N dΩ, (4.41)

Also, stiffness K can be decomposed into heat conduction Kc and heat transfer Kt

as presented in Eq. (4.3) and Eq. (4.4), thus it can be expressed as

∂K

∂ϕi

=
∂Kc

∂ϕi

+
∂Kt

∂ϕi

, (4.42)

where

∂Kc

∂ϕi

=

∫
Ω

BT∂k
M
c

∂ϕi

B dΩ, (4.43)

∂Kt

∂ϕi

=

∫
Ωs

NT∂k
M
t

∂ϕi

N dΩ. (4.44)

Next, the derivative of Eq. (4.14) and Eq. (4.16) with respect to macro-level design

variable can be formulated as

∂CM

∂ϕM

= ηϕη−1
M CH, (4.45)

∂kM
c

∂ϕM

= ηϕη−1
M kH

c , (4.46)

∂kM
t

∂ϕM

= ηϕη−1
M kH

t . (4.47)

Similarly, the derivatives with respect to micro-level design variable can be taken.

∂CM

∂ϕm

= ϕη
M

∂CH

∂ϕm

=
ϕη
M

|Y |

∫
Y

2 ηϕ2η−1
m cm ρm dy, (4.48)

∂kM
t

∂ϕm

= ϕη
M

∂kH
t

∂ϕm

=
ϕη
M

|Y |

∫
∂Ωint

∂ϕ̄

∂ϕm

km
t dS, (4.49)
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Table 4.1: Material properties

Air Aluminum
(fluid) Alloy (solid)

specific heat [J/(kg K)], c 1006.43 900
density [kg/m3], ρ 1.226 2700
heat conduction [W/(m K)], kc 0.026 200
heat transfer [W/(mm2 K)], kt - 1×10−6

where

∂ϕ̄

∂ϕm

=


−1 if ϕc< ϕa

0 if ϕc= ϕa

1 if ϕc> ϕa

.

In contrast to Eqs. (4.48) and (4.49), it is not straightforward to obtain the deriva-

tive formulation for heat conduction ∂kM
c /∂ϕm because it includes the implicit

derivative term ∂ξ/∂ϕm. Therefore, the adjoint method is adopted to eliminate

this term, similar to that presented in Zhou and Li (2008). Finally, the formulation

can be written as

∂kM
c

∂ϕm

= ϕη
M

∂kH
c

∂ϕm

=
ϕη
M

|Y |

∫
Y

(I −∇ξ) η ϕη−1
m km

c (I −∇ξ) dy. (4.50)

To avoid numerical instability, we use the same sensitivity filtering as Eq. (3.38).

The filter radius is set to 4 times the element size of the microstructure as well

as the previous chapter. However, the optimized macrostructure shows excellent

convergent in our study; thus, we do not apply the filter to the macrostructure at

this stage to investigate actual behaviors.

4.2 Numerical Results

In this section, the developed design framework is applied to the porous material,

consisting of a solid phase as the higher conductivity (phase I) and a fluid phase as

the lower one (phase II). Remark that it is different from the previous chapter to

show the broad application of the developed optimization framework. In fact, the

material properties used in these numerical examples are adopted from the practices

available for additive manufacturing. The details of material properties used in this

study (Takarazawa et al. 2022) are presented in Table 4.1. In addition, the initial

condition of all design variables for the macrostructure is setting the same value in
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the entire domain, and for the microstructure is the same as in the previous chapter

by using excitation.

4.2.1 Example 1: a plate-like structure subject to heat flux

at center

In the first example, the rectangular macrostructure is adopted as illustrated in

Fig. 4.3, where heat fluxQ = 0.5 W/mm2 is applied at the center of top surface along

with the temperature constraint T = 0 K at the four edges. Also, the macrostructure

is discretized with 20× 20× 4 eight-node hexahedral elements, and the macroscopic

volume is constrained to be less than 40% of total volume.

For the microstructure, the size L is set to 0.1 mm along with the discretization

of 20× 20× 20 eight-node hexahedral elements. The microscopic solid volume is set

to less than 50% in proportion to the microstructure volume.

20 mm

4 mm

T0

20 mm

x3

x1 x2

y3

y1 y2
L

microstructure

T0

T0

T0

Figure 4.3: A plate-like macrostructure under single heat flux and its microstructure
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t = 0.5 s

(a)

t = 1.0 s

(b)

t = 1.8 s

(c)

t = 2.0 s

(d)

(e)

(f)

(g)

(h)

T1

T2

T3

T4

0 [K] 42 [K]
10 10.5

Figure 4.4: The optimization results at each target time of plate-like macrostructures
under single heat flux
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Figure 4.5: History of objective function values at different target times
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Figure 4.6: History of optimal topologies for macro-and microstructures at t = 0.5 s
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Figure 4.7: History of optimal topologies for macro-and microstructures at t = 2.0 s
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Firstly, to investigate the transient effect, we carry out the two-scale optimization

with different values of the target time: t = 0.5 s, 1.0 s, 1.8 s, and 2.0 s consider-

ing the situation from unsteady to steady-state conditions. The optimized macro-

and microstructures, together with the temperature distribution of solid phase, are

shown in Fig. 4.4. Note that the temperature in the fluid phase is relatively small,

so we omit to show it in this example. As shown in Figs. 4.4(a)-(d), the optimized

macrostructures are significantly different depending on the considered target time.

In more detail, when the target time t = 0.5 s, the optimal macrostructure is initially

placed at the center of the top surface, and then a topology is formed similar to a

rectangular structure from top to bottom (see Fig. 4.4(a)). It can be understood

that the temperature distribution is dominant along x3−axis. Therefore, the distri-

bution path directly from top to bottom (along x3−axis) is efficient for dissipating

the temperature. Next, when the longer target time is applied, the temperature can

now be distributed to the boundary in x1x2−plane as shown in Figs. 4.4(b)-(d). Re-

garding this conducting path, the optimal macrostructures are formed and expanded

to the boundary constraints at four edges. This tendency is well-known as the X-

type high conductivity path reported in topology optimization for steady-state heat

conduction (Wu et al. 2021; Zhao et al. 2021). Meanwhile, the time condition

also affects the optimized microstructures. Firstly, Fig. 4.4(h) shows the optimized

microstructure for the steady-state condition (t = 2.0 s). It can be seen that the

optimized topology of the solid phase is mainly formed in y1y2−plane along with the

reinforcement placed in y3−axis as shown in Fig. 4.4(h). Then, when the target time

is reduced, the y3 component becomes stronger and the solid phase is increasingly

formed along the vertical axis. When the target time is set to the unsteady-state,

the optimal solid phase structure is generated (Fig. 4.4(e)) parallel to the principal

axis (y1, y2, and y3). Fig. 4.5 shows the objective function histories for t = 0.5 s and

t = 2.0 s, respectively. As can be seen, the results are monotonically converged to

the optimal local values and can be confirmed the reliability of the proposed scheme.

In addition, Figs. 4.6 and 4.7 illustrate the history of optimized topologies for both

macro-and microstructures at t = 0.5 s and t = 2.0 s, respectively. Here, it can

be seen that the temperature distribution in the macrostructure also relates to the

optimal microstructure. Thus, the temperature distribution path at each specific

target time significantly affects the optimization results. In other words, it can be

said that the transient effect is essential for the design problem of heat conduction

for both macro-and microstructures.

In addition, we notice that topologies of the optimized microstructures in a

long period of target time are asymmetric (see Fig. 4.4(h)). This is the cause of

introducing the microscopic heat transfer effect as the size-dependent term presented

in Eq. (4.18). To investigate more in detail, we carry out the additional analysis with
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optimized microstructure 3   3   3  assembly 

optimized macrostructure

Figure 4.8: The result of optimization with an artificially large microstructure to eliminate
the effect of microscopic heat transfer: a symmetric microstructure is obtained

the same conditions as Fig. 4.4(h) except for the microstructure size L (200mm).

This size is, of course, extremely large for microstructure, but is chosen to artificially

eliminate the effect of microscopic heat transfer. As can be seen in Fig. 4.8, the

obtained result shows the symmetric microstructure. This tendency can often be

seen when we consider only heat conduction in multi-scale topology optimization

(Zhou and Li, 2008; Jia et al. 2018). This investigation led us to understand that,

by introducing the microscopic heat transfer effect, the surface area between solid
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Figure 4.9: Investigation of microstructure size on optimization results of Figs. 4(d) and
(h)

and fluid is also included to maximize heat dissipation as presented in Eq. (4.18).

When the microstructure size is reduced until the microscopic heat transfer effect is

more dominant than heat conduction, the complicated topology with a high surface

area can be obtained. This is evident to emphasize the influence on asymmetric

shape due to the size-dependent effect.

Furthermore, with the same analysis conditions, we conduct a parametric study

on the size of microstructure. The objective function is plotted against the side

length of microstructure (L) as shown in Fig. 4.9. As we can see, the objective

function decreases when the side length L becomes small. This tendency seems rea-

sonable according to the expression in Eq. (4.18): the heat transfer effect is stronger

when microstructure size is reduced (Terada et al. 2010). Consequently, the cumu-

lative heat in the structure can be more dissipated to reduce the objective function

value. In addition, it can be seen that the optimized microstructure topologies be-

come asymmetric and complicated when the microstructure size is small. This is

because the surface area is also one of the design parameters that appear in Eq. (4.18)

and is indirectly designed during the optimization. Finally, we pay attention to the
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optimized macrostructure topologies. It can be seen that reduced side length L

gradually changes the X-type structure to a central block-shape structure which is

similar topology as the unsteady-state problem shown in Fig. 4.4(a). This is un-

derstandable regarding the reason that when the microstructure size is small, heat

transfer performance is increased so that the heat condition of designed structure

does not reach the steady state. This finding is highlighted for the size-dependent

feature.

4.2.2 Example 2: a plate-like structure subject to four heat

fluxes

Next, let us consider a plate-like structure similar to the previous example but has

four heat fluxes applied as shown in Fig. 4.10. In addition, the macroscopic volume

is set not to exceed 30%, and the microscopic solid volume is supposed to be less

than 80%.

It can be seen that the optimal topologies of macrostructure at t = 1.0 s are

L

20 mm

microstructure

20 mm

T0

4 mm

x3

x1 x2

y3

y1 y2

T0

T0

T0

Figure 4.10: A plate-like macrostructure under four heat fluxes and its microstructure
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(f)
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(T3)

0 [K] 24 [K]10 10.5

Figure 4.11: The optimization results at each target time of plate-like macrostructures
under four heat fluxes
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Figure 4.12: History of objective function values at different target times
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Figure 4.13: History of optimal topologies for macro-and microstructures at t = 1.0 s
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Figure 4.14: History of optimal topologies for macro-and microstructures at t = 5.0 s
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Figure 4.15: The investigation of microscopic volume constraint values of the solid phase

formed surrounding the location of applied heat fluxes (see Fig. 4.11(a)). Then,

when the longer periods are applied at t = 2.0 s and 5.0 s, the solid phase is

located expanding toward four edge corners with temperature constraints as shown

in Fig. 4.11(b). This macrostructure pattern agrees with those presented in Xia

et al. (2018) and Zhao et al. (2021): this implies the reliability of the proposed

method. For the optimized microstructure, the solid phase is mainly formed along

the principal axis (y1, y2, y3) at unsteady-state t = 1.0 s, and distributes more in

y1y2− plane when it approaches to steady-state at t = 2.0 s and 5.0 s. Besides,

Fig. 4.12 confirms the robustness of the developed optimization framework, which
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is smoothly converged to the optimal design. Also, Figs. 4.13 and 4.14 present the

history of optimized topologies of optimal macro-and microstructures at t = 1.0 s

and 5.0 s, respectively. It is also observed that the microstructure results show a

similar trend to the previous example. This evidence verifies the high reproducibility

of the transient effect of the proposed concurrent two-scale topology optimization.

Note that the intermediate value of design variables is still remained in case of

Figs. 4.11(c) and (f) due to the setting of volume constraint. Thus, to observe the

influence of microscopic volume constraint, we conduct the optimization with the

same conditions as Figs. 4.11(c) and (f), but vary the volume constraint values of the

solid phase in the microstructure. Fig. 4.15 shows that the objective function value

decreases as the volume constraint of the solid phase increases. This is reasonable

because the total volume of design material (VM · Vm) increases to maximize heat

dissipative performance. However, it can be seen that the volume constraint of the

solid phase should be carefully set in order to avoid struggling with intermediate

value in the optimized structures.

4.3 Summary

Two-scale porous structures were simultaneously designed by the proposed design

framework based on concurrent topology optimization for micro- and macrostruc-

tures subject to transient heat transfer analysis. The homogenization method in-

corporated with the size-dependent term was employed to govern the two-scale heat

conduction in the porous material. The density-based interpolation scheme, SIMP

approach, and the design-dependent linear function were adopted to transit the de-

sign topology to the optimum smoothly. The analytical sensitivity formulation was

derived using the adjoint variable method and then implemented in the gradient-

based optimization problem.

The two numerical examples of the plate-like macrostructure under the single

and multiple heat fluxes were conducted, respectively. The results showed that the

time condition was the remarkable parameter that affected the optimized macro-

and microstructures as the transient effect. Then, the size-dependent effect was

investigated through the first example. It was revealed that the smaller microstruc-

ture size can reduce the objective function: this implies that the cumulative heat

effect that remains in the structure decreases. Furthermore, the small size was also

the cause of an asymmetrical topology of the microstructure. This is because the

surface area was included in the optimization indirectly through the size-dependent

term. Next, the influence of the microscopic volume constraint was presented in the

second example. A large number of intermediate values remain if the inappropriate

microscopic volume constraint is employed.
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Chapter 5

Conclusion

In this dissertation, multi-scale topology optimization for three-dimensional tran-

sient heat transfer analysis including the size-dependent effect of microstructure

from the porous material has been successfully developed. The robust and attrac-

tive performance of the proposed scheme was demonstrated through the design of

various macro-and microstructures under transient heat analysis. The contents and

achievements were listed as follows:

• In Chapter 1, the research background, motivation, and literature review were

presented to highlight the contribution of the current work. It can be seen

that topology optimization under transient heat transfer analysis has not been

extensively explored, especially for the multi-scale analysis, which is widely

applied for a porous material.

• In Chapter 2, the two-scale transient heat transfer analysis for porous solid

material was summarized and presented in a general framework that can be

applied for high and low thermal conductivity materials. Homogenization

and the highlight of this work, the size-dependent term, were introduced to

deal with the heterogeneous material and reflex the characteristic of porous

material.

• In Chapter 3, we developed a two-scale topology optimization framework for

designing the optimal microstructure in a porous material based on the analysis

model introduced in Chapter 2. The optimization model, which can consider

the surface area directly from microstructure topology as the size-dependent

term, was introduced to enhance the heat transfer performance. A well-known

material interpolation referred to as the SIMP approach and the linear function

were adopted for smoothly interpolating intermediate material properties. The

minimal transient heat compliance was established as an objective function,

and it was used to derive transient sensitivity formulation by a coupled-adjoint
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variable method. The results show that the proposed topology optimization

model performs better when considering the transient condition. Also, the

size-dependent effect of the microstructure shows a robust feature, which can

enhance the heat dissipation performance.

• In Chapter 4, we extended the design framework from Chapter 3 to be capable

of the concurrent two-scale topology optimization in which both macro-and mi-

crostructures were simultaneously optimized under macroscopic transient heat

conditions. Two design variables as the continuous function for both scales

were introduced to obtain optimal structures smoothly. The optimization

problems were established for macro-and microstructures, which were solved

sequentially to monotonically converged to optimal design. The analytical sen-

sitivity formulations for gradient-based optimization algorithms were derived

with the same strategy in Chapter 3. As a result, the design results demon-

strated powerful performance. Furthermore, the optimized macrostructures

show good agreement with the benchmark from the existing works, while the

optimized microstructure was a similar trend to the design results obtained

from Chapter 3. Remarkably, the design results also emphasize the significance

of transient and size-dependent effects on both macro and microstructures.

Consequently, the developed design framework has the attractive feature which

can be used for designing macro-microstructures along with size-dependent effects.

As can be seen from the result, it shows the advantages compared to the conven-

tional design framework. According to positive features, topology optimization for

multi-scale analysis considering the size-dependent effect of microstructure should

be extended to design the structure under multidisciplinary physics such as thermal-

fluid, thermal-mechanical-fluid, thermal-chemo-mechanical, etc.
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