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Abstract

We introduce the concept of v-palindromes and prove that the v-palindromicity of the terms of the
sequence of repeated concatenations of the digits of an arbitrary natural number is periodic. Then, we
examine this periodic phenomenon more closely, introducing concepts such as the indicator function of
a number and the type of a v-palindrome. Our subsequent main purposes are to

(i) provide a general procedure to express the indicator function of a number as a certain linear
combination,

(ii) prove an invariance property about the type of a v-palindrome,

(iii) prove the existence of v-palindromes in infinitely many bases.

However we also

(iv) provide a survey of past results on the usual palindromes and other palindromic objects,

(v) provide a treatment of periodic functions because of its relevance to (i) above,

(vi) consider repeated concatenations in residue classes.

In the conclusion, we collect some conjectures and problems and describe how the content of this
dissertation might be generalizable.
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Chapter 1

Introduction

Besides the Introduction and Conclusion, this dissertation consists of four parts as follows.

(I) A survey of past results on palindromes and other “palindromic objects” (Chapters 2 and 3),

(II) A treatment of periodic functions (Chapter 5),

(III) Presentation of results on v-palindromes (Chapters 4 and 6 to 8),

(IV) An algorithm to find repeated concatenations in residue classes (Chapter 9).

In (I), we state past results but only prove a few of them. As will be explained in Section 1.3.1, the
v-palindromes can be regarded as an analogy to the usual palindromes. This is why we include this
survey.

In (II), we start with the definition of periodic functions and then prove four formulae for their
fundamental periods. We include this treatment because of its relavance to Chapter 6. The content of
this part is from [46].

(III) is based on [48, 46, 47, 50].
(IV) is based on [49].
The logical dependency of these parts is that (I), (II), and (IV) are independent whereas (III) depends

on (II).
The rest of this Introduction is mostly an outline of most of the rest of this dissertation. In Section

1.1, we list some notation to be used in this dissertation. In Section 1.2, we describe the origin of the
concept of v-palindromes. In Section 1.3, we define v-palindromes rigorously.

In Section 1.4, we state [48, Theorem 1] as Theorem 1.2. This theorem says that the v-palindromicity
of the terms of the sequence of repeated concatenations of the decimal digits of an arbitrary natural
number is periodic. We also call this theorem the periodic phenomenon in this dissertation. When we have
a periodic phenomenon, there will be a smallest period, also called the fundamental period. We provide
a method to derive the fundamental period of Theorem 1.2. In fact, we provide a procedure to express
what we call the indicator function for a number (see Section 1.5) as a certain linear combination from
which the fundamental period can be easily derived as a least common multiple. We call this procedure
the general procedure in this dissertation and it is described in Section 6.6. We also define a concept of
the type of a v-palindrome (see Section 1.6). Although this concept is originally defined as a relative
concept, we prove that in fact it is absolute. We call this the invariance property in this dissertation and it
is stated rigorously as Theorem 7.1.

Section 1.7 provides a specific family of v-palindromes based on the smallest v-palindrome 18. Just
like usual palindromicity, the v-palindromicity of a number depends on the base used to represent it. In
Section 1.8, we provide a table of the smallest v-palindrome in base b, which we call (v, b)-palindrome,
for 2 ≤ b ≤ 19.

In Section 1.9, we describe our motivation for (IV), i.e., Chapter 9. In Section 1.10, we explain the
relation of the paper by Vaidyanathan [51] from signal processing to this dissertation. In Section 1.11,
we describe some connection of the concept of v-palindromes to works of others.

Our derivation of the fundamental period of Theorem 1.2 belongs naturally to the more general
derivation of the fundamental period of an arbitrary periodic function. It is surprising that there are
extensive investigations of functions Z → C in signal processing (cf. [39, 51, 52, 53]), where such
functions are called discrete signals or discrete-time signals.
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1.1 Notation

We list some notation to be used in this dissertation as follows.

• For an integer a, the set of integers ≥ a is denoted by Z≥a.

• For an integer a ≥ 1, the set of a-th roots of unity in C is denoted by R(a).

• For integers a , 0 and b, the notation a | b means that a divides b.

• For a prime p and integer n , 0, the exponent of p in the prime factorization of n is denoted by
ordp(n).

• For a prime p and integers α ≥ 0 and n , 0, the notation pα ‖ n means that ordp(n) = α.

• For integers a1, a2 . . . , an not all 0, their greatest common divisor is denoted by (a1, a2, . . . , an).

• For a statement P, the Iverson symbol [P] is defined by setting [P] = 1 if P is true and [P] = 0 if P is
false.

• The sign function is the function sgn: R \ {0} → {−1, 1} defined by setting sgn(x) = 1 if x > 0 and
sgn(x) = −1 if x < 0.

1.2 Origin of the concept

As I recall, it was some time in the first half of the year 2007 when I was 15 years old. My mother and
younger brother were in a video rental shop near our home in Taipei and my father and I were waiting
outside the shop, standing beside our parked car. I was a bored and glanced at the license plate of our
car, which was 0198-QB. For no clear reason, I took the number 198 and did the following. I factorized
198 = 2 · 32 · 11, reversed the digits of 198, and factorized 891 = 34 · 11. Then I summed the numbers
appearing in each factorization: 2+ 3+ 2+ 11 = 18 and 3+ 4+ 11 = 18 respectively. So surprisingly they
are equal! We illustrate this pictorially as follows.

198 = 2 · 32 · 11 7−−→ 2 + (3 + 2) + 11

↑ ‖
reverses 18 (1.1)

↓ ‖
891 = 34 · 11 7−−→ (3 + 4) + 11

Strictly speaking, the 2 and 11’s in the factorizations above have exponents being 1. However, because
they are usually not written, we do not sum them. We provide another example of such a number as
follows.

56056 = 23 · 72 · 11 · 13 7−−→ (2 + 3) + (7 + 2) + 11 + 13

↑ ‖
reverses 38 (1.2)

↓ ‖
65065 = 5 · 7 · 11 · 132 7−−→ 5 + 7 + 11 + (13 + 2)

After returning home from the video rental shop, I spent some time to try to show that there is an
infinitude of such numbers but could not show it. I did not develop this concept much further for the
next 11 years. Then in October 2018, I published a very short note [45] in the Sūgaku Seminar magazine.
In this note I merely defined such numbers and showed their infinitude, though I recall already knowing
how to show their infinitude as early as the summer of 2015.
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1.3 v-palindromes

In Subsection 1.3.1, we introduce the concept of v-palindromes rigorously by first defining the more
general concept of ( f , b)-palindromes and then singling out the case of v-palindromes. Then in Subsection
1.3.2, we mention the infinitude of v-palindromes.

1.3.1 ( f , b)-palindromes

Recall the base b representation of a number as follows.

Definition 1.1. For integers b ≥ 2, L ≥ 1, and 0 ≤ a0, a1, . . . , aL−1 < b, put

(aL−1 · · · a1a0)b =

L−1∑
i=0

aibi. (1.3)

Theorem 1.1 ([30, Theorem 4.7]). Let b ≥ 2 be an integer. Then for every integer n ≥ 1, there exist unique
integers L ≥ 1 and 0 ≤ a0, a1, . . . , aL−1 < b with aL−1 , 0 such that

n = (aL−1 · · · a1a0)b. (1.4)

Definition 1.2. With notation as in the above theorem, we say that (aL−1 · · · a1a0)b is the base b representation
of n, that aL−1, . . . , a1, a0 are the base b digits of n, and that n has L base b digits. We also say decimal in place
of base 10.

We next define reverses as follows.

Definition 1.3. Let n ≥ 1 be an integer with base b representation (aL−1 · · · a1a0)b. Then the b-reverse of
n is rb(n) = (a0a1 · · · aL−1)b. The 10-reverse of n will simply be called the reverse of n and r10(n) simply
denoted by r(n).

We next define b-palindromes as follows.

Definition 1.4. Let n ≥ 1 be an integer with base b representation (aL−1 · · · a1a0)b. Then n is a b-palindrome
if n = rb(n). We also consider 0 to be a b-palindrome for every b ≥ 2. A 10-palindrome will simply be
called a palindrome. The set of b-palindromes is denoted by Pb.

We can now define ( f , b)-palindromes as follows.

Definition 1.5. Let f : N→ C be a function and b ≥ 2 an integer. An integer n ≥ 1 is an ( f , b)-palindrome
if

(i) b ∤ n,

(ii) n , rb(n), and

(iii) f (n) = f (rb(n)).

In particular, an ( f , 10)-palindrome will simply be called an f -palindrome.

We illustrate the concept that n is an ( f , b)-palindrome pictorially as follows.

n 7−−→ f (n)

↑ ‖
b-reverses same number

↓ ‖
rb(n) 7−−→ f (rb(n))

It is clear that if n is an ( f , b)-palindrome then so is rb(n). We explain our naming of ( f , b)-palindrome.
An integer n ≥ 1 is a b-palindrome if and only if n = rb(n). Condition (iii) has f (n) = f (rb(n)) instead,
and hence ( f , b)-palindrome. Condition (i) is included so that n and rb(n) have the same number of
digits. Condition (ii) is included to exclude the uninteresting case n = rb(n), from which obviously
f (n) = f (rb(n)). We next define the function v as follows.
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Definition 1.6. The additive function v : N → Z is defined by setting v(p) = p for each prime p and
v(pα) = p + α for each prime power pα with α ≥ 2.

Remark 1.1. The “v” is for “value”. The quantity v(n) is thought of as the “value” of n. The quantities
v(n) have been created as sequence A338038 in the OEIS.

The concept of a v-palindrome now follows from Definitions 1.5 and 1.6, but because it is the most
important definition in this dissertation, we state it on its own as follows.

Definition 1.7. An integer n ≥ 1 is a v-palindrome if 10 ∤ n, n , r(n), and v(n) = v(r(n)). The set of
v-palindromes is denoted byV.

Remark 1.2. The sequence of v-palindromes has been created as A338039 in OEIS and we show the first
few terms as follows.

18, 81, 198, 576, 675, 819, 891, 918, 1131, 1304, 1311, 1818, 1998, 2262,
2622, 3393, 3933, 4031, 4154, 4514, 4636, 6364, 8181, 8749, 8991, 9478,
12441, 14269, 14344, 14421, 15167, 15602, 16237, 18018, 18449, 18977,
19998, 20651, 23843, 24882, 26677, 26892, 27225, . . . .

It is easily seen that Definition 1.7 suitably formalizes the concept of the previous section and so 198
and 56056 are v-palindromes. In particular, not summing exponents which are 1 leads to the unnatural
two-cases definition of v. If we do not impose 10 ∤ n, then 560 would be a v-palindrome. However
we impose 10 ∤ n so that n and r(n) have the same number of digits and so consider 560 as not a
v-palindrome. We can discard n , r(n) and regard the positive palindromes as trivial v-palindromes.
However we do not adopt this alternative viewpoint in this dissertation.

In this dissertation we will only be dealing with (v, b)-palindromes, but I have already started
collaborating with Professor Prapanpong Pongsriiam on more general ( f , b)-palindromes.

1.3.2 The infinitude of v-palindromes

The first natural question to ask about any kind of number after defining them is whether there are
infinitely many of them. As proved in [45], we have the sequence of v-palindromes

18, 198, 1998, 19998, . . . , (1.5)

where we simply continue to increase the number of 9’s in the middle. Also mentioned in [45] is the
sequence of v-palindromes

18, 1818, 181818, . . . , (1.6)

where we simply continue to concatenate another 18. This sequence was the original inspiration for the
periodic phenomenon (Theorem 1.2). We also have the sequences of v-palindromes

198, 198198, 198198198, . . . , (1.7)
576, 576576, 576576576, . . . . (1.8)

In fact (1.5), (1.6), and (1.7) are subfamilies of the more general family of v-palindromes of Theorem 1.8.

1.4 The periodic phenomenon

In Subsection 1.4.1, we state the periodic phenomenon and make some comments. Then in Subsection
1.4.2, we provide examples.

1.4.1 The statement

We give the following definition.
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Definition 1.8. Let n ≥ 1 be an integer with base b representation (aL−1aL−2 · · · a0)b. For integers k ≥ 1,
put

n(k)b = (aL−1 · · · a1a0 aL−1 · · · a1a0 · · · · · · aL−1 · · · a1a0︸                                                ︷︷                                                ︸
k copies of aL−1 · · · a1a0

)b

= n(1 + bL + · · · + b(k−1)L) = n · 1 − bkL

1 − bL . (1.9)

We say that n(k)b is the (b, k)-repeated concatenation of n. We denote n(k)10 simply by n(k) and call the
(10, k)-repeated concatenation of n simply the k-repeated concatenation of n. As a loose term, we call such
numbers defined here repeated concatenations.

For example, 18(3) = 181818 and 56056(2) = 5605656056. We can now state the periodic phenomenon,
which is one of the main results of this dissertation, as follows.

Theorem 1.2 ([48, Theorem 1]). Let n ≥ 1 be an integer with 10 ∤ n and n , r(n). There exists an integer
ω ≥ 1 such that for all integers k ≥ 1,

n(k) ∈ V if and only if n(k + ω) ∈ V. (1.10)

Let us make some comments on Theorem 1.2. We have the sequence

n(1),n(2),n(3), . . . . (1.11)

Now replace each term above by 1 if it is a v-palindrome and 0 otherwise. So for instance it might
become

1, 0, 0, 1, 1, 1, 0, 1, . . . . (1.12)

The theorem says that this sequence of 0’s and 1’s is periodic. We illustrate with n = 48 and n = 117 in
the next subsection. We also give the following definition.

Definition 1.9. Let n be as in Theorem 1.2. An integer ω ≥ 1 satisfying the condition of Theorem 1.2 is
called a period of n. The smallest period of n is called the fundamental period of n and denoted by ω0(n). If
there exists a k ≥ 1 such that n(k) is a v-palindrome, the least such integer is denoted by c(n); otherwise
we write c(n) = ∞. The integer (or∞) c(n) is called the order of n.

Remark 1.3. The sequence of n such that c(n) < ∞ has been created as sequence A338371 in OEIS.

Just like in the above definition, in this dissertation, we will often use the phrase “n be as in Theorem
1.2” to mean that n ≥ 1 is an integer with 10 ∤ n and n , r(n).

1.4.2 Examples

We illustrate Theorem 1.2 with n = 48 and n = 117, taken from two rows of Table 6.5. A full justification
of the following comments follows from Chapter 6.

For n = 48, the sequence (1.11) becomes

48, 4848, 484848, . . . . (1.13)

Replacing each term above by 1 if it is a v-palindrome and 0 otherwise, it becomes

0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, . . . . (1.14)

So it might look like 48(k) ∈ V if and only if 3 | k and so the smallest period is 3. However in fact
48(21) < V and the smallest period is 21. We have ω0(48) = 21 and c(48) = 3.

For n = 117, the sequence (1.11) becomes

117, 117117, 117117117, . . . . (1.15)

Here we do have the simple rule that 117(k) ∈ V if and only if 2054 | k. We have ω0(117) = c(117) = 2054.
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1.5 The indicator functions In

We define certain functions In as follows.

Definition 1.10. Let n be as in Theorem 1.2. The indicator function for n is the periodic function
In : Z→ {0, 1} such that

In(k) =

1 if n(k) ∈ V,
0 if n(k) < V,

for k ≥ 1. (1.16)

The superscript in In simply specifies n and does not denote function composition. The function In

is defined at the positive integers by (1.16) and then uniquely periodically extended to all integers in
view of Theorem 1.2. Then, the following follows from Theorem 5.1.

Theorem 1.3. The set of all periods of n is ω0(n)N.

We next define certain functions Ia as follows.

Definition 1.11. For integers a ≥ 1, we denote the indicator function of aZ ⊆ Z by Ia. That is, the
function Ia : Z→ {0, 1} is defined by letting

Ia(x) =

1 if a | x,
0 if a ∤ x,

for x ∈ Z. (1.17)

The general procedure of Section 6.6, which is one of the main contributions of this dissertation,
expresses In in the form

q∑
j=1

λ jIc j , (1.18)

where q ≥ 0, 1 ≤ c1 < · · · < cq, and λ1, . . . , λq , 0 are integers. According to Theorem 5.8 such an
expression is unique. Then according to Theorem 6.14 we will have

ω0(n) = lcm{c1, . . . , cq}, c(n) = inf{c1, . . . , cq}. (1.19)

The infimum is considered in the extended real number system, so that inf∅ = ∞. This matches the
notation of Definition 1.9.

1.6 The invariance property

The concept of the type of a v-palindrome is defined rigorously in Definition 6.6. In Subsection 1.6.1, we
give a rough description of this concept and the invariance property (Theorem 7.1), which is one of the
main results of this dissertation, about it. Then in Subsection 1.6.2, we illustrate the invariance property
with the v-palindrome 13(15).

1.6.1 Rough description

Let n be as in Theorem 1.2. We have the sequence

n(1),n(2),n(3), . . . , n(k), . . . . (1.20)

The v-palindromes in (1.20) are categorized into a finite number of “types” in a way depending on the
“starting number” n. The set of possible “types” is denoted by U∗(n). This notation U∗(n) actually
has the precise meaning as the set of nondegenerate characteristic solutions for n (Definition 6.6). For a
v-palindrome n(k) we denote its type with respect to n by Type(n(k),n), which is an element ofU∗(n).

Now let m be a v-palindrome and write m = n0(k0), where n0, k0 ≥ 1 are integers and n0 is minimal.
Then

{(n, k) ∈N2 : m = n(k)} = {(n0(d), k0/d) : d | k0}. (1.21)

Consequently, all the possible types of m are

Type(m,n0(d)) ∈ U∗(n0(d)), for d | k0. (1.22)
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In fact it will hold that
U∗(n0(1)),U∗(n0(2)),U∗(n0(3)), . . . ⊆ U(n0), (1.23)

whereU(n0) is the set of characteristic solutions for n0 (Definition 6.3). Therefore we have

Type(m,n0(d)) ∈ U(n0), for d | k0. (1.24)

The invariance property (Theorem 7.1) says that these types are all the same element ofU(n0). We illustrate
this property with the v-palindrome 13(15) in the next subsection.

1.6.2 The example of 13(15)

The number 13(15) is a v-palindrome and all of its possible types are

Type(13(15), 13), Type(13(15), 13(3)), Type(13(15), 13(5)), Type(13(15), 13(15)). (1.25)

It will hold that
U(13) = {(1)p∈{13,31}, (2)p∈{13,31}}. (1.26)

Here (1)p∈{13,31} is the family indexed by {13, 31} with all values being 1; similarly for (2)p∈{13,31}. The
following theorems can be derived using content of Chapter 6.

Theorem 1.4. Let k ≥ 1 be an integer. Then the repeated concatenation 13(k) is a v-palindrome if and only if

(i) 6045 | k, in which case Type(13(k), 13) = (1)p∈{13,31}, or

(ii) 15 | k but 13 ∤ k and 31 ∤ k, in which case Type(13(k), 13) = (2)p∈{13,31}.

Theorem 1.5. Let k ≥ 1 be an integer. Then the repeated concatenation 13(3)(k) is a v-palindrome if and only if

(i) 2015 | k, in which case Type(13(3)(k), 13(3)) = (1)p∈{13,31}, or

(ii) 5 | k but 13 ∤ k and 31 ∤ k, in which case Type(13(3)(k), 13(3)) = (2)p∈{13,31}.

Theorem 1.6. Let k ≥ 1 be an integer. Then the repeated concatenation 13(5)(k) is a v-palindrome if and only if

(i) 1209 | k, in which case Type(13(5)(k), 13(5)) = (1)p∈{13,31}, or

(ii) 3 | k but 13 ∤ k and 31 ∤ k, in which case Type(13(5)(k), 13(5)) = (2)p∈{13,31}.

Theorem 1.7. Let k ≥ 1 be an integer. Then the repeated concatenation 13(15)(k) is a v-palindrome if and only if

(i) 403 | k, in which case Type(13(15)(k), 13(15)) = (1)p∈{13,31}, or

(ii) 13 ∤ k and 31 ∤ k, in which case Type(13(15)(k), 13(15)) = (2)p∈{13,31}.

It is then easily checked that all of the types (1.25) are (2)p∈{13,31}.

1.7 A family of v-palindromes

We have the following family of v-palindromes based on 18.

Theorem 1.8 ([49, Theorem 3]). If ρ ≥ 1 is a palindrome all of whose digits are 0 or 1, then 18ρ is a v-palindrome.

Proof. When read from left to right, the decimal representation of ρ must be formed by a1 digits of 1’s,
followed by a2 digits of 0’s, followed by a3 digits of 1’s, and so on until lastly, a2r−1 digits of 1’s, where
r, a1, a2, . . . , a2r−1 ≥ 1 are integers such that ai = a2r−i for 1 ≤ i ≤ 2r − 1. Writing ρ out,

ρ = 1 · · · 1︸︷︷︸
a1

a2︷︸︸︷
0 · · · 0 1 · · · 1︸︷︷︸

a3

· · · · · · 1 · · · 1︸︷︷︸
a3

a2︷︸︸︷
0 · · · 0 1 · · · 1︸︷︷︸

a1

.
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Thus

18ρ = 1 9 · · · 9︸︷︷︸
a1 − 1

8

a2 − 1︷︸︸︷
0 · · · 0 1 9 · · · 9︸︷︷︸

a3 − 1

8 · · · · · · 1 9 · · · 9︸︷︷︸
a3 − 1

8

a2 − 1︷︸︸︷
0 · · · 0 1 9 · · · 9︸︷︷︸

a1 − 1

8,

81ρ = 8 9 · · · 9︸︷︷︸
a1 − 1

1

a2 − 1︷︸︸︷
0 · · · 0 8 9 · · · 9︸︷︷︸

a3 − 1

1 · · · · · · 8 9 · · · 9︸︷︷︸
a3 − 1

1

a2 − 1︷︸︸︷
0 · · · 0 8 9 · · · 9︸︷︷︸

a1 − 1

1,

and we see that r(18ρ) = 81ρ , 18ρ. Clearly 10 ∤ 18ρ. Now suppose that 3g ‖ ρ and write ρ = 3gb. Then

v(18ρ) = v(2 · 32 · 3gb) = v(2 · 32+gb) = v(2 · 32+g) + v(b),

v(81ρ) = v(34 · 3gb) = v(34+gb) = v(34+g) + v(b).

Since v(2 · 32+g) = v(34+g) = 7 + g, we see that v(18ρ) = v(81ρ). Therefore 18ρ is a v-palindrome. □

This theorem sort of relates the usual palindromes to v-palindromes. If we restrict ρ to

• be a repunit, then we recover (1.5),

• have alternating digits of 1 and 0, then we recover (1.6),

• have alternating strings of 11 and 0, then we recover (1.7).

1.8 (v, b)-palindromes

Instead of just the v-palindromes, we can also consider more general (v, b)-palindromes, giving the
following notation.

Notation 1.12. For integers b ≥ 2, the set of (v, b)-palindromes is denoted byVb.

The first natural consideration would be about their existence. We have the following theorem which
says that as long as one exists, then infinitely many exist.

Theorem 1.9 ([50, Theorem 5]). Let b ≥ 2 be an integer. If there exists a (v, b)-palindrome, then there exist
infinitely many (v, b)-palindromes.

On the other hand, the existence of a (v, b)-palindrome has been established for infinitely many bases
b as implied by the following.

Theorem 1.10 ([50, Corollary 12]). If b ≡ 120 (mod 330) is a positive integer, then there exists a (v, b)-
palindrome.

Theorems 1.9 and 1.10 are two of the main results of this dissertation. In fact, a (v, b)-palindrome is
found for each b in Theorem 1.10 in Theorem 8.9. The smallest (v, b)-palindrome in the bases b ≤ 19 are
tabulated as follows.
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Table 1.1: The smallest (v, b)-palindrome in the bases b ≤ 19.

b min(Vb) written in base 10 min(Vb) written in base b
2 175 1, 0, 1, 0, 1, 1, 1, 1
3 1280 1, 2, 0, 2, 1, 0, 2
4 6 1, 2
5 288 2, 1, 2, 3
6 10 1, 4
7 731 2, 0, 6, 3
8 14 1, 6
9 93 1, 1, 3
10 18 1, 8
11 135 1, 1, 3
12 22 1, 10
13 63 4, 11
14 26 1, 12
15 291 1, 4, 6
16 109 6, 13
17 581 2, 0, 3
18 34 1, 16
19 144 7, 11

It is still unsettled whether a (v, b)-palindrome exists in every base b.

1.9 Repeated concatenations in residue classes

We describe the motivation for (IV), i.e., Chapter 9. The following theorem was originally in the language
of arithmetic sequences, but we prefer to restate it in terms of residue classes.

Theorem 1.11 ([23, Theorem B]). Let a and m ≥ 1 be integers. Then the residue class a+mZ contains a positive
palindrome if and only if a +mZ ⊈ 10Z, in which case it will contain infinitely many palindromes.

Analogously, we can consider the following problem about v-palindromes.

Problem 1.12. Characterize those residue classes containing a v-palindrome.

Recall the sequence of v-palindromes

18, 1818, 181818, . . . . (1.27)

Hence to look for a v-palindrome in a residue class, we can first look for a number of the form 18(k).
This inspires an isolated problem, removed from the topic of v-palindromes, as follows.

Problem 1.13. Characterize those residue classes containing a number of the form 18(k).

The following theorems are partial answers to the above problem.

Theorem 1.14. For any integer α ≥ 0, the residue class 1 + 19αZ contains infinitely many numbers of the form
18(k).

Theorem 1.15. Let a and α ≥ 2 be integers. Then the residue class a + 7αZ contains a number of the form 18(k)
if and only if a ≡ 0, 4, 5 (mod 7), in which case it will contain infinitely many such numbers.

We can generalize Problem 1.13 into the following, however perhaps with a different logical feeling.

Problem 1.16. Let n ≥ 1, b ≥ 2, a, and m ≥ 1 be integers. How to determine whether in a+mZ there is a
number of the form n(k)b? Or even better, how to find the set of integers k ≥ 1 such that n(k)b ∈ a +mZ?

Algorithm 9.2 is given as an answer to the latter question in the above problem.
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1.10 The paper by Vaidyanathan [51]

We explain the relation of the paper by Vaidyanathan [51] from signal processing to this dissertation
first in words in Subsection 1.10.1, and then illustrate it pictorially in Subsection 1.10.2.

1.10.1 Formulae for the fundamental period of a periodic function

An arbitrary function f : Z→ C periodic modulo ω has the form

f (x) =
ω∑

k=1

hkζ
−xk
ω , for x ∈ Z, (1.28)

where the hk’s are complex numbers and ζω = exp(2πi/ω). Let the set of integers k with 1 ≤ k ≤ ω such
that hk , 0 be {k1, . . . , kl}. Then [51, Theorem 9] says that the fundamental period of f is

ω
(k1, . . . , kl, ω)

. (1.29)

On the other hand, I proved that the fundamental period of f is

lcm{δ(ζ−k1
ω ), . . . , δ(ζ−kl

ω )} (1.30)

(δ is defined in Notation 5.2). My formula above is Theorem 5.5 in this dissertation. Hence (1.29) and
(1.30) must be the same quantity because they are both the fundamental period of f ; a direct proof is
given in Section 5.2.

Another theorem from [51] is the following, where the Ramanujan spaces Sω are defined in Definition
5.3 and the 0 denotes the zero function Z→ {0}.

Theorem 1.17 ([51, Theorem12]). Let ω1, . . . , ωm ≥ 1 be distinct integers and let 0 , f j ∈ Sω j for each
1 ≤ j ≤ m. Then the fundamental period of the periodic function f1 + · · · + fm is lcm{ω1, . . . , ωm}.

The paper [51] contains proofs of both its Theorems 9 and 12, but its proof of its Theorem 12 is not
a simple application of its Theorem 9. In contrast, I proved Theorem 1.17 with a simple application of
Theorem 5.5. Subsequently, I used Theorem 1.17 to prove Theorem 5.9, which I used to derive Corollary
6.14.

1.10.2 The logical picture

We illustrate the logic described in the last subsection pictorially as follows.

Theorem 5.5 −→ Theorem 1.17 −→ Theorem 5.9 −→ Corollary 6.14
m ‖

[51,Theorem 9] 6−→ [51,Theorem 12]

The first row are statements in my dissertation whereas the second row that in [51], moreover the
notation have the following meanings.

• A −→ B means that A is used to prove B,

• A 6−→ B means that it is not true that A is used to prove B,

• ⇔ denotes logical equivalence,

• = denotes that they are the same theorem.

Motivated to compute the quantity ω0(n), I proved Theorem 5.5 independently, which turned out to
be logically equivalent to [51, Theorem 9]. It is surprising that motivation in signal processing and my
motivation to compute ω0(n) led to similar mathematical considerations.
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1.11 Connection to other work

In this section we describe some connection of the concept of v-palindromes to works of others. In
Subsection 1.11.1 we describe functions similar to v. In Subsection 1.11.2 we indicate that the reverse
r(n) has also been considered by others. In Subsection 1.11.3 we describe a connection to the paper by
Spiegelhofer [41].

1.11.1 Functions similar to v

Functions similar to v have been studied by others. Let the prime factorization of an integer n ≥ 1 be
written as

n = pα1
1 pα2

2 · · · p
αm
m , (1.31)

where m ≥ 0 and α1, . . . , αm ≥ 1 are integers and p1, . . . , pm distinct primes. Then

v(n) =
∑

1≤i≤m,αi=1

pi +
∑

1≤i≤m,αi≥2

(pi + αi). (1.32)

The entry A008474 is the function

v1(n) =
m∑

i=1

(pi + αi). (1.33)

The function

A(n) =
m∑

i=1

piαi (1.34)

is studied in [3]. Also, the entry A000026 is the function

a(n) =
m∏

i=1

piαi. (1.35)

1.11.2 The reverse r(n)

In [26], numbers n such that n divides r(n) are mentioned. In particular, all of the numbers in

2178, 21978, 219978, 2199978, . . . , (1.36)

i.e., the sequence of numbers 219 . . . 978, with any number of 9’s in between, satisfy 4n = r(n). The
resemblance of the sequences (1.5) and (1.36) is interesting. While the relation n | r(n) is studied in [26],
the relation v(n) = v(r(n)) is used in the definition of v-palindromes. In [19], non-palindromic prime
numbers p such that r(p) is also prime are called emirps.

An integer n ≥ 1 such that n = r(n), i.e., a positive palindrome (Definition 1.4), obviously satisfy
n | r(n) and also v(n) = v(r(n)). Therefore when considering such conditions, only the case n , r(n) is
interesting, as we have imposed in the definition of v-palindromes (Definition 1.7).

1.11.3 A connection to the paper by Spiegelhofer [41]

The equation
f (n) = f (rb(n)) (1.37)

is used in Definition 1.5. If (1.37) holds for all integers n ≥ 1, then an ( f , b)-palindrome would be
synonymous with an integer n ≥ 1 which is not a b-palindrome nor a multiple of b. Indeed, the
following result from [41] gives a sufficient condition for (1.37) to hold for all integers n ≥ 1.

Theorem 1.18 ([41, Theorem 2]). Let b ≥ 2 be an integer and let f : N→ C be a function such that

(i) There exist 2 × 2 matrices of complex numbers

A(i) =
(
a1(i) a2(i)
a3(i) a4(i)

)
for 0 ≤ i < b (1.38)
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and α, β ∈ C such that for all integers n ≥ 1, if n = (aL−1aL−2 · · · a0)b is the base b representation of n, then

f (n) =
(
1 0

)
A(a0)A(a1) · · ·A(aL−1)

(
α
β

)
, (1.39)

and

(ii) There exist b1, b2, b3, b4 ∈ C with b1, b2 , 0 and b1b4 − b2b3 = 1, such that

b1b2(a1(i)β − a3(i)α − a4(i)β) + a2(i)(β + 2b2b3β − b3b4α) = 0 for 0 ≤ i < b. (1.40)

Then f (n) = f (rb(n)) for all integers n ≥ 1.

In [41], Theorem 2 is used to derive a few corollaries. We mention two particularly interesting
consequences. The function b : N→ C is defined by letting b(1) = 1, b(2) =

√
2, and imposing that

b(3n) = b(n), (1.41)

b(3n + 1) =
√

2b(n) + b(n + 1), (1.42)

b(3n + 2) = b(n) +
√

2b(n + 1), (1.43)

for integers n ≥ 1. Then b(n) = b(r3(n)) for all integers n ≥ 1 [41, Theorem 1]. The function s : N→ C is
defined by letting s(1) = s(2) = 1 and imposing that

s(2n) = s(n), (1.44)
s(2n + 1) = s(n) + s(n + 1), (1.45)

for integers n ≥ 1. Then s(n) = s(r2(n)) for all integers n ≥ 1.
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Chapter 2

Palindromes

This chapter is a survey of past results on palindromes and more general b-palindromes, which are
defined in Definition 1.4. The b-palindromes have been researched with lots of theorems proved, mostly
by advanced analytical methods.

In Section 2.1 we first list some notation to be used in this chapter. For each of the remaining sections,
we state a result or multiple related results and also comment on them. The full proof is included only
for Theorem 2.17.

2.1 Notation

We list some notation to be used in this chapter as follows.

• The set of primes is denoted by P.

• For an integer k ≥ 1, the set of positive k-th powers of natural numbers is denoted byNk.

• For an integer n ≥ 1, the number of distinct prime divisors of n is denoted by ω(n).

• For a set A of integers bounded below, we put

A(x) = #{n ∈ Z : n ≤ x and n ∈ A}, for x ∈ R. (2.1)

2.2 An iteration

Iteration using the function defined below is described in [44, 18, 31].

Definition 2.1. Let b ≥ 2 be an integer. Define the function ιb : N→N by ιb(n) = n + rb(n).

Starting from an integer n ≥ 1, we can apply ιb repeatedly, yielding a sequence

n, ιb(n), ι2b(n), . . . . (2.2)

For (n, b) = (195, 10), the sequence (2.2) becomes

195, 786, 1473, 5214, 9339, 18678, 106359, . . . , (2.3)

where the fifth term is the first palindrome. In contrast, for (n, b) = (22, 2), the sequence (2.2) becomes

22, 35, 84, 105, 180, 225, 360, . . . , (2.4)

where it has been shown that no term is a 2-palindrome [2]. In view of this difference, the following
definition is given.

Definition 2.2. Let b ≥ 2 and n ≥ 1 be integers. Then n is a Lychrel number in base b if the sequence (2.2)
has no term which is a b-palindrome.
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Hence 195 is not a Lychrel number in decimal and 22 is a Lychrel number in binary. In decimal,
the smallest positive integer which has not yet been iterated to reach a palindrome is 196. In fact in
February 2015, the number 196 has been iterated using a computer to a billion digits without reaching
a palindrome [17]. Therefore the following is conjectured.

Conjecture 2.1. The number 196 is a Lychrel number in decimal.

Other numbers which are suspected to be Lychrel numbers in decimal are recorded in A023108. The
smallest positive integer which is suspected to be a Lychrel number in each base 2 ≤ b ≤ 47 are recorded
in A060382. A Lychrel number exists in every base which is a power of 2 [2]. Also, Lychrel numbers in
bases 4, 11, 17, 20, 26 have been found no later than January 1996 [1].

To gather the information presented in this section, the Wikipedia article [54] is used.

2.3 Number of palindromes up to a number x

Since Pb denotes the set of b-palindromes, Pb(x) denotes the number of b-palindromes no greater than
a real number x. The prime number theorem states an approximation to the number of primes π(x) no
greater than x. In contrast, there is actually an exact formula for Pb(x) [36]. The authors were surprised
that no such formula existed in the literature and so wanted to provide one. We give the following
definition before we state the formula.

Definition 2.3. Let b ≥ 2 and n ≥ 1 be integers. The smallest b-palindrome no less than n is denoted by
dneb. Moreover, if the base b representation of n is (aL−1 · · · a1a0)b, then we put

zb(n) = (aL−1aL−2 · · · aL−1−b(L−1)/2c00 · · · 0)b. (2.5)

So zb(n) is the number formed by changing all the digits of n on the right half, except the digit in the
very middle when L is odd, to 0.

Then the formula is as follows, where [·] is the Iverson symbol defined in Section 1.1.

Theorem 2.2 ([36, Theorem 2.2]). Let b ≥ 2 and n ≥ 1 be integers and let (aL−1 · · · a1a0)b be the base b
representation of n. Then

Pb(n) = bd(L−1)/2e +

b(L−1)/2c∑
i=0

aL−1−ibb(L−1)/2c−i + [n ≥ dzb(n)eb] − 1. (2.6)

The proof of Theorem 2.2 is elementary, done by dividing the positive integers ≤ n into a number of
cases, counting the number of b-palindromes in each case, and then summing. There are also formulae
counting only the even (or only the odd) b-palindromes [36, Theorems 2.3 and 2.4].

2.4 Palindromic terms in sequences

When we have a sequence (an)n≥0 of integers, we may consider the terms which are b-palindromes. In
Subsection 2.4.1 we first consider arithmetic sequences. In Subsection 2.4.2 we consider Lucas sequences.
Finally in Subsection 2.4.3 we consider linear recurrence sequences, which includes the Lucas sequences.

Essentially equivalently, when we have a function f : N → C, we may consider the integers n ≥ 1
such that f (n) is a b-palindrome. In this context the sum of proper divisors function s(n), the Euler
phi function φ(n), the sum of all divisors function σ(n), and the Carmichael λ-function λ(n) have been
studied [33].

2.4.1 Arithmetic sequences

We paraphrased [23, Theorem B] into the language of residue classes and stated it as Theorem 1.11, but
the original statement is more like the following.

Theorem 2.3 ([23, Theorem B]). Let (a + nd)n≥0 be an arithmetic sequence where a, d ≥ 1 are integers. Then
(a + nd)n≥0 contains infinitely many palindromic terms if and only if it is not the case that a ≡ d ≡ 0 (mod 10).
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Even if an arithmetic sequence contains infinitely many palindromic terms, it cannot be that all terms
are palindromic because of Theorem 2.9. Theorem 2.3 was proved constructively, by actually finding
infinitely many palindromic terms. In fact Theorem 2.3 generalizes straightforwardly as follows.

Theorem 2.4 ([23, Theorem C]). Let b ≥ 2 be an integer and let (a + nd)n≥0 be an arithmetic sequence where
a, d ≥ 1 are integers. Then (a + nd)n≥0 contains infinitely many b-palindromic terms if and only if it is not the
case that a ≡ d ≡ 0 (mod b).

For the analogous situation for prime numbers, we have the following famous theorem of Dirichlet.

Theorem 2.5 ([5, Section 7.1]). Let (a + nd)n≥0 be an arithmetic sequence where a, d ≥ 1 are integers. Then
(a + nd)n≥0 contains infinitely many prime terms if and only if (a, d) = 1.

Asking whether there is a term in an arithmetic sequence (a + nd)n≥0, where a, d ≥ 1 are integers,
belonging to a set S ⊆ Z is similar to asking whether S ∩ (a + dZ) , ∅. This was why we paraphrased
[23, Theorem B] into Theorem 1.11. Phrased in the language of residue classes, investigations have been
done for S being the set of Fibonacci or Lucas numbers [11, 10].

2.4.2 Lucas sequences

We define Lucas sequences following [29]. Let r, s ∈ Z with s, r2 + 4s , 0 and let w0,w1 ∈ Z. Define the
sequence (wn)n≥0 by imposing that wn+2 = rwn+1 + swn holds for n ≥ 0. Let α, β be the complex zeros of
x2 − rx − s. Then there exist algebraic numbers c, d such that wn = cαn + dβn for n ≥ 0. Assume further
that cdαβ , 0 and that α/β is not a root of unity. Then such a sequence (wn)n≥0 is called a binary recurrent
sequence.

Definition 2.4. A Lucas sequence of the first kind is a binary recurrent sequence (wn)n≥0 with w0 = 0 and
w1 = 1. A Lucas sequence of the second kind is a binary recurrent sequence (wn)n≥0 with w0 = 2 and w1 = r
(r of the previous paragraph).

For instance, the Fibonacci sequence (Fn)n≥0 defined by imposing that F0 = 0 and F1 = 1 and that
Fn+2 = Fn+1 + Fn holds for n ≥ 0 is a Lucas sequence of the first kind.

Theorem 2.6 ([29, p. 210]). Let b ≥ 2 be an integer, let w = (wn)n≥0 be a Lucas sequence of the first or second
kind such that s = ±1 (s of the first paragraph of this subsection), and let P = {n ∈N : |wn| ∈ Pb}. Then

P(x)�w,b
x

(log x)
1

2ω(b)

, x→∞ (2.7)

(by notation introduced in Section 2.1, P(x) denotes the number of elements of P no greater than x).

Two analytical tools used in the proof of Theorem 2.6 were a lower bound for linear forms in two
logarithms due to Baker and Jensen’s inequality for convex functions.

2.4.3 Linear recurrence sequences

With the motivation to generalize Theorem 2.6, Cilleruelo et. al. proved the following theorem, which
applies to a wider class of sequences w = (wn)n≥0 and provides a sharper estimate. The concept of
multiplicative independence is involved and so we first define it.

Definition 2.5 ([15, p. 435]). Two real numbers u, v > 0 are multiplicatively independent if assuming that
ux = vy and x, y ∈ Z, necessarily x = y = 0.

Theorem 2.7 ([15, Theorem 1.1]). Let b ≥ 2 be an integer, let w = (wn)n≥0 be the linear recurrence sequence of
integers of minimal recurrence relation

wn+k = c1wn+k−1 + c2wn+k−2 + · · · + ckwn, for n ≥ 1, (2.8)

where C(x) = xk − c1xk−1 − · · · − ck ∈ Z[x] has a unique dominant zero α1 > 0 multiplicatively independent with
b, and let P = {n ∈N : |wn| ∈ Pb}. Then there exists c = c(w, b) > 0 such that

P(x)�w,b x1−c, x→∞. (2.9)

Two tools used in the proof of Theorem 2.7 are the closed-form formula of a linear recurrence
sequence [15, Theorem 1.1] and an inequality due to Baker [15, Theorem 2.4].
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2.5 Arithmetic progressions of palindromes

We first give the definition of an arithmetic progression in Z.

Definition 2.6 ([42]). Let a and r,N ≥ 1 be integers. Then

a + r · [0,N) = {a, a + r, a + 2r, . . . , a + (N − 1)r}. (2.10)

Such sets are called arithmetic progressions inZ. The number N is the length of the arithmetic progression.

We can consider arithmetic progressions in any set of integers. For primes, we have the following
famous theorem of Green-Tao.

Theorem 2.8 ([20, Theorem 1.1]). For any integer N ≥ 1, the primes contain infinitely many arithmetic
progressions of length N.

Similarly, we can consider arithmetic progressions in the b-palindromes. Domotorp asked Tao this
and Tao gave an answer showing that any arithmetic progression in the 10-palindromes must have
length < 108 [43]. Motivated by this, Pongsriiam found the longest possible length of an arithmetic
progression of 10-palindromes as follows.

Theorem 2.9 ([35]). The longest possible length of an arithmetic progression of 10-palindromes is 10.

The proof of Theorem 2.9 was elementary but long with many cases and calculations. Pongsriiam
believes that with the same proof method, Theorem 2.9 holds even if we replace 10 by other bases. That
is, that the longest possible length of an arithmetic progression of b-palindromes is b.

Arithmetic progressions in other sets of integers have also been investigated, e.g., polygonal numbers
[9], the least positive reduced residue system modulo a natural number [34, 12], and Lucas numbers
[21].

2.6 Palindromic primes

We have the following definition.

Definition 2.7. Let b ≥ 2 be an integer. A b-palindromic prime is a b-palindrome which is also a prime.

Remark 2.1. The sequence of 10-palindromic primes is A002385 in the OEIS.
For each integer b ≥ 2, we may ask the following question.

Question 2.10. Are there infinitely many b-palindromic primes?

The answer of the above question is not known for any b. However, there are approximate results.

Theorem 2.11 ([7, Theorem 5.1]). Let b ≥ 2 be an integer. We have

#(Pb(x) ∩ P)�b #Pb(x)
log log log x

log log x
, x→∞. (2.11)

From the above theorem it follows that almost all b-palindromes are composite. An analytical tool
used in the proof of Theorem 2.11 was Brun’s combinatorial sieve.

One might have the intuition that it is ‘easier’ for a 10-palindrome to be prime than a random
natural number. There is evidence for this [18]. Let L ≥ 1 be an odd integer. Denote by P10,L the set of
10-palindromes with L digits and byN10,L the set of natural numbers with L decimal digits. Define the
quotients

QP(L) =
#(P10,L ∩ P)

#P10,L
, QN(L) =

#(N10,L ∩ P)
#N10,L

, Q(L) =
QP(L)
QN(L)

. (2.12)

The following table is computed by PARI/GP.

Table 2.1: First few values of QP(L), QN(L), and Q(L).

L 1 3 5 7 9
QP(L) 0.444 0.166 0.103 0.074 0.057
QN(L) 0.444 0.159 0.093 0.065 0.050
Q(L) 1.000 1.049 1.112 1.140 1.147
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The above table suggests the following conjecture.

Conjecture 2.12 ([18]). Q(L) is strictly increasing over odd integers L ≥ 1.

2.7 Palindromic squares and higher powers

In this section we describe results about b-palindromes which are simultaneously a perfect power. In
Subsection 2.7.1 we consider b-palindromic squares and in Subsection 2.7.2, higher powers.

2.7.1 Palindromic squares

We first give the following definition.

Definition 2.8. Let b ≥ 2 be an integer. A nonnegative integer is a b-palindromic square if it is simultane-
ously a b-palindrome and also the square of an integer.

In the papers [22, 27, 28, 14] containing results on b-palindromic squares, only positive integers were
considered, but because we defined also 0 to be a b-palindrome, we include 0 as a b-palindromic square
too. There have been two notions of a b-palindromic square being trivial used in the papers [22, 27, 28]
which we define as follows.

Definition 2.9 ([28, p. 262]). Let n be a b-palindromic square. Then

(i) n is first-trivial if
√

n is a b-palindrome; otherwise it is first-nontrivial,

(ii) n is second-trivial if we have that: If n = (aLaL−1 · · · a0)b and
√

n = (cKcK−1 · · · c0)b, then

aLxL + aL−1xL−1 + · · · + a0 = (cKxK + cK−1xK−1 + · · · + c0)2; (2.13)

otherwise it is second-nontrivial.

If a b-palindromic square is second-trivial, then it must also be first-trivial. In [22], examples of
10-palindromic squares which are not first-trivial were found by a computer, and the question of the
infinitude of such numbers is left as a further problem. In [27], an answer in the positive not only in
base 10 but also in all bases b ≥ 3 with b , 5 was given. Finally in [28], the case b = 5 was settled with a
positive answer. So altogether we have the following.

Theorem 2.13. For any integer b ≥ 3, there are infinitely many b-palindromic squares which are not first-trivial.

We now describe a result on second-trivial b-palindromic squares from [28].

Definition 2.10 ([28, Definition 2.2 (ii)]). The polynomial f (x) ∈ Z[x] produces second-nontrivial b-
palindromic squares if it is nonconstant and for every integer k > logb H( f (x)), the integer f (bk) is a
second-nontrivial b-palindromic square.

Remark 2.2. Here H( f (x)) is the height of f (x) defined as the maximum of the absolute values of the
coefficients of f (x).

The following theorem completely characterizes the polynomials in Z[x] which produce second-
nontrivial b-palindromic squares simultaneously for all b ≥ 10.

Theorem 2.14 ([28, Theorem 5.2]). A polynomial f (x) ∈ Z[x] produces second-nontrivial b-palindromic squares
for all b ≥ 10 if and only if f (x) is the square of a polynomial of one of the following forms:

(i) gr,s(x) = x2r + x2r−s + xr+s − xr + xr−s + xs + 1, where r, s ∈ Z such that r > 2s > 0,

(ii) gr,s(x) + x2r−2s + x2s, where r, s ∈ Z such that r > 2s > 0 and r , 3s,

(iii) gr,s(x) + x3r/2 + xr/2, where r, s ∈ Z such that r > 2s > 0 and 2 | r,

(iv) gr,s(x) + xr+s/2 + xr−s/2, where r, s ∈ Z such that r > 2s > 0 and 2 | s,

(v) gr,s(x) + x3r/2−s/2 + xr/2+s/2, where r, s ∈ Z such that r > 2s > 0 and 2 | (r + s) and r , 3s.
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For instance, for r = 3 and s = 1,

g3,1(x) = x6 + x5 + x4 − x3 + x2 + x + 1, (2.14)

thus
g3,1(x)2 = (x6 + x5 + x4 − x3 + x2 + x + 1)2. (2.15)

According to the above theorem, the polynomial g3,1(x)2 produces second-nontrivial b-palindromic
squares for all b ≥ 10. In particular, this holds for b = 10. Since log10 H(g3,1(x)2) = 1.945 · · · , we have that
for every integer k ≥ 2, the number g3,1(10k)2 is a second-nontrivial 10-palindromic square. For instance,

g3,1(102)2 = 1020300010207020100030201, (2.16)

g3,1(103)2 = 1002003000001002007002001000003002001. (2.17)

So it seems that the 10-palindromes g3,1(10k)2 for k ≥ 2 are basically the same one, the others obtained
by inserting more and more 0’s. Two lemmas which were crucial in leading to a proof of Theorem 2.14
are the following.

Lemma 2.15 ([28, Lemma 4.2]). Let f (x) ∈ Z[x]. If the values f (x) are squares for sufficiently large x ∈ Z,
then there is a g(x) ∈ Z[x] such that f (x) = g(x)2.

Lemma 2.16 ([28, Lemma 4.4]). Let f (x) ∈ Z[x]. If f (x)2 is reciprocal and with all coefficients nonnegative,
then f (x) is also reciprocal.

Remark 2.3. Here a polynomial f (x) =
∑n

i=0 aixi ∈ Z[x] with an , 0 is reciprocal if an−i = ai for every
0 ≤ i ≤ n; the zero polynomial 0 is also considered reciprocal.

There is a generalization of Lemma 2.15 in [40]. For each 3 ≤ b ≤ 9, a polynomial which produces
second-nontrivial b-palindromic squares is constructed [28, Theorems 3.2 and 3.3].

2.7.2 Higher palindromic powers

More general than squares, of course we can consider higher powers. They are investigated in [14],
where the distribution of k-th powers in b-palindromes is described. Let L ≥ 0 be an integer. Let Pb,L
denote the set of b-palindromes with L digits. Further, for integers k ≥ 2, let Pk

b,L = Pb,L ∩Nk, i.e., the set
of b-palindromes with L digits simultaneously a k-th power. Then we have the following result where
we also include the proof.

Theorem 2.17 ([14]). Let b, k ≥ 2 be integers. Then

#Pk
b,L � (#Pb,L)1/k, L→∞. (2.18)

Proof. Consider L to be a large integer and put M = b(L− 1)/(2k)c. For each integer a with 0 ≤ a < bM, let

Pk
b,L,a = {n ∈ Pk

b,L : n1/k ≡ a (mod bM)}. (2.19)

Then
#Pk

b,L =
∑

0≤a<bM

#Pk
b,L,a. (2.20)

We now consider any particular integer a with 0 ≤ a < bM and find an upper bound for #Pk
b,L,a. Let

n ∈ Pk
b,L,a. Then n ≡ ak (mod bM). Clearly M < L. Let r be the number formed by reversing the rightmost

M digits, with leading zeros if necessary, of ak. Since n is palindromic, the leftmost M digits of n is r.
Consequently,

rbL−M < n < (r + 1)bL−M, (2.21)

which implies that
r1/kb

L−M
k < n1/k < (r + 1)1/kb

L−M
k . (2.22)

Since n1/k ≡ a (mod bM), the value of #Pk
b,L,a is no greater than the number of integers in the interval

(r1/kb
L−M

k , (r + 1)1/kb
L−M

k ) (2.23)

19



congruent to a modulo bM. Hence

#Pk
b,L,a ≤

(r + 1)1/kb
L−M

k − r1/kb
L−M

k

bM + 1. (2.24)

Now let a0 be a value of 0 ≤ a < bM which maximizes #Pk
b,L,a, with the r above denoted r0. Then

#Pk
b,L =

∑
0≤a<bM

#Pk
b,L,a ≤ bM · #Pk

b,L,a0
≤ (r0 + 1)1/kb

L−M
k − r1/k

0 b
L−M

k + bM

= ((r0 + 1)1/k − r1/k
0 )b(L−M)/k + bM. (2.25)

Now

(r0 + 1)1/k − r1/k
0 =

1

(r0 + 1)(k−1)/k + (r0 + 1)(k−2)/kr1/k
0 + · · · + r(k−1)/k

0

≤ 1

kr(k−1)/k
0

≤ 1
k(bM−1)(k−1)/k

. (2.26)

Substituting this into (2.25) we get

#Pk
b,L ≤

1
k
· b L−1

k −M+1 + bM =
1
k
· b L−1

k −b L−1
2k c+1 + bb

L−1
2k c ≤ 1

k
· b L−1

k −( L−1
2k −1)+1 + b

L−1
2k

=
1
k
· b L−1

2k +2 + b
L−1
2k =

(
b2

k
+ 1

)
b(L−1)/(2k). (2.27)

Now
#Pb,L = (b − 1)bb

L−1
2 c ≥ (b − 1)b

L−3
2 , and so #P1/k

b,L ≥ (b − 1)1/kb
L−3
2k . (2.28)

Since (
b2

k
+ 1

)
b(L−1)/(2k) � (b − 1)1/kb

L−3
2k , L→∞, (2.29)

in view of (2.27) and the second inequality in (2.28), the proof is complete. □

There is also a lower bound for #Pk
b,L given in [14] as follows.

Theorem 2.18 ([14]). Let k ≥ 2 be a fixed integer. Then there exist real numbers c, b0 > 0 such that for integers
b ≥ b0 and L ≥ 0,

#Pk
b,L � Lcb1/bk/2c

. (2.30)

The proof of the above theorem involves giving a lower bound for the number of subsets (of a set)
satisfying a specially-defined property.

2.8 Sums of palindromes

We first give the following definition.

Definition 2.11. Let S ⊆N. For integers k ≥ 1, we define

kS = {a1 + · · · + ak | a1, . . . , ak ∈ S}. (2.31)

The set S is an additive basis if there exists an integer k ≥ 1 such that

k⋃
i=1

iS =N, (2.32)

in which case the smallest possible k is the degree of S.

For the set P10 \ {0} of positive 10-palindromes, we have the following result of Banks.

Theorem 2.19 ([6, Theorem 1]). The set P10 \ {0} is an additive basis of degree ≤ 49.

The proof of Theorem 2.19 is elementary but involves some inductive steps. With the motivation to
improve the 49 in Theorem 2.19, Cilleruelo et al. showed the following.

20



Theorem 2.20 ([13, Theorem 1.2]). Let b ≥ 5 be an integer. Then Pb \ {0} is an additive basis of degree 3.

The proof of Theorem 2.20 is by providing an algorithm which, when given an integer n ≥ 1 as an
input, outputs p1, p2, p3 ∈ Pb such that n = p1 + p2 + p3. The following theorem illustrates that the 3 in
Theorem 2.20 is optimal.

Theorem 2.21 ([13, Theorem 1.4]). Let b ≥ 3 be an integer. There exists a constant c < 1 such that

#{n ≤ x : n = p1 + p2 for some p1, p2 ∈ Pb} ≤ cx (2.33)

for sufficiently large x.

The proof of Theorem 2.21 is mostly by observing that any number of the form ((b−1)(b−1) · · · 0(b−1))b
with at least 4 digits and the digits other than the 4 shown randomly chosen, is not the sum of two
b-palindromes. With the motivation to complete the investigation by treating the cases b = 2, 3, 4 left
out in Theorem 2.20, Rajasekaran et al. [38] showed using automata theory that P2 \ {0}, P3 \ {0}, and
P4 \ {0} are additive bases with degrees 4, 3, 3 respectively.

2.9 The reciprocal sum of the palindromes

That the reciprocal sum of the primes, i.e., ∑
p∈P

1
p

(2.34)

diverges is well-known. On the contrary, the reciprocal sum of the positive b-palindromes

sb =
∑

n∈Pb\{0}

1
n

(2.35)

converges for every b ≥ 2. Phunphayap and Ponsgriiam [32] investigated these sb.

Theorem 2.22 ([32, Theorem 3]). The sequence (sb)b≥2 is strictly increasing.

In the proof of Theorem 2.22, the cases b < 16 and b ≥ 16 were treated separately. In the latter, the
main tool used was the following.

Lemma 2.23 ([32, p. 5]). Let a < b be integers and f : [a, b]→ R be monotone. Then

min{ f (a), f (b)} ≤
b∑

n=a

f (n) −
∫ b

a
f (t) dt ≤ max{ f (a), f (b)}. (2.36)

There is also the following asymptotic formula for sb, where γ is Euler’s constant.

Theorem 2.24 ([32, Theorem 5]). For b ≥ 2,

sb = log b · b3 + 3b2 + 3b + 2
b3 + b2 +

(
γ +

γ

b + 1
− 1

2b
− 1

12b(b + 1)

)
+O

(
log b

b3

)
, (2.37)

where the implicit constant can be taken to be 6.

The main tool used in the proof of Theorem 2.24 was∑
n≤x

1
n
= log x + γ +

1
2x
− 1

12x2 +
θ(x)
60x4 , (2.38)

where θ(x) ∈ [0, 1], which follows from the Euler-Maclaurin summation formula. The following is also
proved.

Corollary 2.25 ([32, Corollary 6]). We have the following limits.

lim
b→∞

sb = ∞, lim
b→∞

(sb − sb−1) = 0. (2.39)

Corollary 2.25 follows from Theorem 2.24 by using log(b − 1) = log b +O(1/b).
The sums (2.34) and (2.35) are instances of the more general theme of the reciprocal sum of an infinite

set of natural numbers, on which an exposition can be found in [8].
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Chapter 3

Other Palindromic Objects

This chapter mentions past results on other palindromic objects by which we mean objects with a
left-right symmetry akin to the palindromes.

For each section, we state a result or multiple related results and also comment on them. Full proofs
are included only for Theorems 3.2 and 3.3.

3.1 Staircase polynomials

Reciprocal polynomials in Z[x] are defined in Remark 2.3. We give the definition for polynomials over
a field as follows.

Definition 3.1. Let F be a field and let

f (x) = anxn + an−1xn−1 + · · · + a1x + a0 ∈ F[x], (3.1)

where n ≥ −1 and an , 0 if n ≥ 0. Then f (x) is palindromic (or reciprocal) if ai = an−i for 0 ≤ i ≤ n.

Hence any constant polynomial is trivially palindromic. We now define a special kind of palindromic
polynomials as follows.

Definition 3.2 ([37, Definition 3.1]). Let n ≥ 0 and 1 ≤ h ≤ d(n + 1)/2e be integers. We denote

Sn,h(x) = xn + 2xn−1 + · · · + hxn+1−h + · · · + hxh−1︸                   ︷︷                   ︸
n + 3 − 2h terms

+ · · · + 2x + 1 (3.2)

and call such polynomials staircase polynomials.

If Φd(x) denotes the d-th cyclotomic polynomial for integers d ≥ 1, then we have the following
theorem.

Theorem 3.1 ([37, Theorem 3.2]). Let n ≥ 0 and 1 ≤ h ≤ d(n + 1)/2e be integers. Then

Sn,h(x) =
∏
d|h
d,1

Φd(x)
∏

e|n+2−h
e,1

Φe(x). (3.3)

The fact that staircase polynomials are the product of two polynomials all of whose coefficients are
1 [37, Lemma 3.2] and the factorization of polynomials of the form xm − 1 into cyclotomic polynomials
[37, Theorem 2.3] are used in the proof of Theorem 3.1. Factoring polynomials of high degree are in
general difficult, but Theorem 3.1 provides the factorization for the staircase polynomials.

3.2 Palindromic compositions

We first give the following definition.

Definition 3.3. Let n ≥ 0 be an integer. A composition of n is an ordered tuple σ = (σ1, σ2, . . . , σk) of
length k ≥ 0 of positive integers such that n = σ1 + σ2 + · · · + σk. The entries of σ are called parts. The
composition σ is
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(i) palindromic if σi = σk+1−i for 1 ≤ i ≤ k,

(ii) a partition if σ1 ≥ · · · ≥ σk.

We have the following closed-form formula.

Theorem 3.2 ([24, Theorem 1.2]). Let 1 ≤ a0 < a1 < · · · be integers and let A = {ak | k ≥ 0}. Put

F(x) = xa0 + xa1 + · · · ∈ Q[[x]]. (3.4)

For integers n ≥ 0, let Pn denote the number of palindromic compositions of n all of whose parts belong to A. Then

P(x) :=
∞∑

n=0

Pnxn =
1 + F(x)
1 − F(x2)

. (3.5)

Proof. Extend the definition of Pn to allow Pn = 0 for n < 0. Let n ≥ 0 be an integer. We first count those
palindromic compositions of n with at least two parts. For integers k ≥ 0, the number of palindromic
compositions of n with at least two parts and with the first (therefore the last) part being ak is Pn−2ak .
Only for n ∈ A will there be a composition of length 1 and only for n = 0 will there be a composition of
length 0. Hence

P(x) =
∞∑

n=0

Pnxn =

∞∑
n=0

 ∞∑
k=0

Pn−2ak

 xn + 1 + xa0 + xa1 + · · · =
∞∑

n=0

∞∑
k=0

Pn−2ak x
n−2ak x2ak + 1 + F(x) (3.6)

=

∞∑
k=0

x2ak

∞∑
n=0

Pn−2ak x
n−2ak + 1 + F(x) =

∞∑
k=0

x2ak P(x) + 1 + F(x) = P(x)
∞∑

k=0

x2ak + 1 + F(x) (3.7)

= P(x)F(x2) + 1 + F(x). (3.8)

From this (3.5) follows. □

There is also the following weaker concept.

Definition 3.4. Let m ≥ 1 be an integer. A composition σ = (σ1, σ2, . . . , σk) is palindromic modulo m if
σi ≡ σk+1−i (mod m) for 1 ≤ i ≤ k. For integers n ≥ 0, let the number of compositions of n palindromic
modulo m be denoted by pc(n,m).

Andrews and Simay [4] investigated compositions palindromic modulo 2 and later Just [25] gener-
alized their results to modulo m. In [25], Just first proved the following closed-form formula.

Theorem 3.3 ([25, Theorem 1]). Let m ≥ 1 be an integer. Then
∞∑

n=1

pc(n,m)xn =
x + 2x2 − xm+1

1 − 2x2 − xm . (3.9)

Proof. Let the left-hand side of (3.9) be denoted by P(x). Write pc(n,m) = pc(n), omitting the m as
understood, and naturally set pc(n) = 0 for n < 0. Let A = {(a, b) ∈ N2 : a ≡ b (mod m)}. Then when
n ≥ 1,

pc(n) = 1 +
∑

(a,b)∈A

pc(n − a − b). (3.10)

Consequently,

P(x) =
∞∑

n=1

1 +
∑

(a,b)∈A

pc(n − a − b)

 xn =

∞∑
n=1

xn +

∞∑
n=1

∑
(a,b)∈A

pc(n − a − b)xn. (3.11)

Working on the second summand on the rightmost side of (3.11), we have

∞∑
n=1

∑
(a,b)∈A

pc(n − a − b)xn =
∑

(a,b)∈A

∞∑
n=1

pc(n − a − b)xn =
∑

(a,b)∈A

∞∑
n=1

pc(n − a − b)xn−a−bxa+b

=
∑

(a,b)∈A

xa+b
∞∑

n=1

pc(n − a − b)xn−a−b =
∑

(a,b)∈A

xa+b(1 + P(x)) = (1 + P(x))
∑

(a,b)∈A

xa+b.

(3.12)
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Working on the sum on the rightmost side of (3.12), we have∑
(a,b)∈A

xa+b =
∑

(a,b)∈A
a<b

xa+b +

∞∑
a=1

x2a +
∑

(a,b)∈A
a>b

xa+b =

∞∑
a=1

x2a + 2
∑

(a,b)∈A
a<b

xa+b. (3.13)

Working on the sum in the second summand on the rightmost side of (3.13), we have∑
(a,b)∈A

a<b

xa+b =

∞∑
a=1

∞∑
k=1

xa+a+km =

∞∑
a=1

∞∑
k=1

x2a+km =

∞∑
a=1

x2a
∞∑

k=1

xkm =
x2

1 − x2

xm

1 − xm . (3.14)

Consequently, substituting (3.14) into (3.13), we have∑
(a,b)∈A

xa+b =

∞∑
a=1

x2a + 2
x2

1 − x2

xm

1 − xm =
x2

1 − x2 + 2
x2

1 − x2

xm

1 − xm . (3.15)

Substituting (3.12) into (3.11), we have

P(x) =
∞∑

n=1

xn + (1 + P(x))
∑

(a,b)∈A

xa+b =
x

1 − x
+ (1 + P(x))

∑
(a,b)∈A

xa+b, (3.16)

which, using (3.15), implies that

P(x) =
x

1−x +
∑

(a,b)∈A xa+b

1 −∑
(a,b)∈A xa+b

=
x

1−x +
x2

1−x2 + 2 x2

1−x2
xm

1−xm

1 −
(

x2

1−x2 + 2 x2

1−x2
xm

1−xm

) = x + 2x2 − xm+1

1 − 2x2 − xm . (3.17)

□

Theorem 3.2 restricts the parts of a palindromic composition to belong to a set, whereas Theorem 3.3
relaxes palindromicity to merely modulo m. We can ask the following question.

Question 3.4. Let A ⊆ N be infinite and let m ≥ 1 be an integer. For integers n ≥ 0, denote by pc(n,m,A) the
number of compositions of n palindromic modulo m with all parts belonging to A. Is there a closed-form formula
for the generating function

∞∑
n=0

pc(n,m,A)xn? (3.18)

3.3 In continued fraction expansions

In this section we describe a left-right symmetry in the terms of certain continued fraction expansions
following the presentation in [16] as follows.

Let α > 1 be an irrational number. If we let q0 = bαc, then

α = q0 +
1
α1

(3.19)

for some irrational α1 > 1. If we let q1 = bα1c, then

α1 = q1 +
1
α2

(3.20)

for some irrational α2 > 1. Having constructed the irrational αn > 1, we let qn = bαnc so that

αn = qn +
1
αn+1

(3.21)

for some irrational αn+1 > 1. In this way we get a sequence of positive integers (q0, q1, q2, . . .), and it can
be shown that

lim
n→∞

q0 +
1

q1 +
1

q2+
1
···qn

 = α. (3.22)
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So this defines a map ϕ from the set I of irrational numbers greater than 1 to the setN∞ of all sequences
of positive integers. It can be shown that ϕ is a bijection. The sequence ϕ(α) is called the continued
fraction expansion of α. We now give the following definition.

Definition 3.5. A quadratic irrational is an irrational number α which is algebraic of degree 2 over Q. A
sequence (qn)n≥0 ∈N∞ is periodic if there exists an integer ω ≥ 1 such that qn = qn+ω for sufficiently large
integers n.

Remark 3.1. Notice that here, unlike in Definition 5.1, for a periodic sequence (qn)n≥0 ∈ N∞ it is only
required that qn = qn+ω for sufficiently large integers n.

Then we have the following theorem proved by Lagrange in 1770.

Theorem 3.5 ([16, p. 92]). Let α > 1 be a quadratic irrational. Then ϕ(α) is periodic.

In the following special case of Theorem 3.5, a left-right symmetry arises in the terms of ϕ(α).

Theorem 3.6 ([16, p. 92]). Let N ≥ 1 be an integer, not a square. Then the continued fraction expansion of
√

N
is of the form

q0, q1, q2, · · · , q2, q1︸             ︷︷             ︸
palindromic part

, 2q0, (3.23)

where the qi’s are positive integers and the palindromic part might be empty.

The proof of Theorem 3.6 is elementary, consisting of many inegenious algebraic manipulations. A
table of continued fraction expansions (3.23) is given in [16, p. 97]. The expansion (3.23) can be used to
find all positive integral solutions (x, y) to Pell’s equation x2 −Ny2 = 1.
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Chapter 4

Proof of the Periodic Phenomenon

This chapter is devoted to the proof of the periodic phenomenon, i.e., Theorem 1.2, which we state again
as follows.

Theorem 1.2. ([48, Theorem 1]). Let n ≥ 1 be an integer with 10 ∤ n and n , r(n). There exists an integer
ω ≥ 1 such that for all integers k ≥ 1,

n(k) ∈ V if and only if n(k + ω) ∈ V. (4.1)

In Section 4.1, we introduce certain numbers we denote by ρk,L and hpα,L. In Section 4.2, we introduce
certain functions we denote by φp,δ. In Section 4.3, we prove the case n = 819 of Theorem 1.2. In
Section 4.4, we prove Theorem 1.2 fully, which is a straightforward generalization of the proof of the
case n = 819. The proof of Theorem 1.2 constructs a particular ω, i.e., period of n, which we put into a
theorem in Section 4.5.

4.1 The numbers ρk,L and hpα,L

We define certain numbers denoted ρk,L as follows and then consider their divisibility properties in
Subsection 4.1.1.

Definition 4.1. For k,L ≥ 1, put

ρk,L =

k︷                               ︸︸                               ︷
1 0 . . . 0︸︷︷︸

L − 1

1 0 . . . 0︸︷︷︸
L − 1

1 . . . 1 0 . . . 0︸︷︷︸
L − 1

1,

meaning that 1 appears k times and that between each consecutive pair of them 0 appears L − 1 times.

Then we clearly have the following.

Lemma 4.1. Let n ≥ 1 be an integer with L decimal digits and let k ≥ 1. Then the k-repeated concatenation of n,
i.e., n(k), is just nρk,L.

4.1.1 Divisibility properties

We consider the divisibility of the numbers ρk,L by prime powers pα.

Lemma 4.2. Let pα be a prime power with p , 2, 5, let L ≥ 1, let β = ordp(10L − 1), and let h be the order of 10L

regarded as an element of (Z/pα+βZ)×. Then h > 1 and for k ≥ 1, we have pα | ρk,L if and only if h | k.

Proof. We first show that h > 1. That h = 1 means that 10L ≡ 1 (mod pα+β), or equivalently, pα+β | 10L − 1,
or equivalently, pα+ordp(10L−1) | 10L − 1. This cannot be, whence h > 1. We have

(10L − 1)ρk,L = (10L − 1)
k−1∑
i=0

10Li = 10Lk − 1.
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As β = ordp(10L − 1), we have pα | ρk,L if and only if 10Lk − 1 ≡ 0 (mod pα+β), or equivalently, 10Lk ≡ 1
(mod pα+β), or equivalently, h | k. The last equivalence is due to the structure of cyclic groups. □

Remark 4.1. If p = 2, 5, then 10L cannot be regarded as an element of (Z/pα+βZ)×. But obviously for
every k ≥ 1 we have pα ∤ ρk,L.

We shall use the numbers h in the above lemma often and so give them a notation as follows.

Notation 4.2. For pα and L as in the above lemma, the h is denoted by hpα,L.

We give the following table of some values of hpα,L, computed using Mathematica.

Table 4.1: Values of hpα,3 for various prime powers pα.

pα 7 72 13 132 17 172

hpα,3 2 14 2 26 16 272

Regarding divisibility in general, not just for ρk,L, we recall the following lemmas.

Lemma 4.3. Let n ≥ 1 be an integer, let p be a prime, and let g = ordp(n). Then

(i) g = 0 if and only if p ∤ n,

(ii) g = 1 if and only if p | n and p2 ∤ n,

(iii) g ≤ 1 if and only if p2 ∤ n,

(iv) g ≥ 1 if and only if p | n, and

(v) g ≥ 2 if and only if p2 | n.

Lemma 4.4. Let a, b ≥ 1 be integers with a | b. Then for integers c ≥ 1, we have a | c if and only if a | (c + b).

4.2 The functions φp,δ

We define certain functions denoted φp,δ in Subsection 4.2.1 and then state a lemma about them in
Subsection 4.2.2.

4.2.1 Definition

For a fixed prime p, the sequence of powers of p is

1, p, p2, . . . , pα, . . . .

Applying the function v (Definition 1.6) to them yields

0, p, p + 2, . . . , p + α, . . . .

Now we take differences of consecutive terms to get

p, 2, 1, . . . , 1, . . . , (4.2)

with all 1’s from the third term onwards. We give notation for the terms of this sequence.

Definition 4.3. For a prime p and integer α ≥ 0, put

φp,1(α) = v(pα+1) − v(pα).

In this notation then, the sequence (4.2) is (φp,1(α))∞α=0. More generally we define the following.
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Definition 4.4. For a prime p and integers α ≥ 0 and δ ≥ 1, put

φp,δ(α) = v(pα+δ) − v(pα).

In this notation, for instance, the sequence (φp,3(α))∞α=0 is

p + 3, 4, 3, . . . , 3, . . . ,

with all 3’s from the third term onwards. More generally, for δ ≥ 2, the sequence (φp,δ(α))∞α=0 is just

p + δ, δ + 1, δ, . . . , δ, . . . . (4.3)

Thus for every pair (p, δ) of a prime p and an integer δ ≥ 1, we have a function φp,δ : Z≥0 → N.
Rephrasing (4.2) and (4.3), the values of φp,δ may be summarized as

φ2,1(α) =

2 (α = 0, 1)
1 (α ≥ 2),

(4.4)

and if p , 2,

φp,1(α) =


p (α = 0)
2 (α = 1)
1 (α ≥ 2),

(4.5)

and if δ ≥ 2,

φp,δ(α) =


p + δ (α = 0)
δ + 1 (α = 1)
δ (α ≥ 2).

(4.6)

We give a notation for the ranges of φp,δ.

Definition 4.5. For a prime p and integer δ ≥ 1, put Rp,δ = φp,δ(Z≥0).

4.2.2 A lemma

In view of (4.4), (4.5), and (4.6), it is clear that |R2,1| = 2 and |Rp,δ| = 3 otherwise. Also, any nonempty
inverse image of φp,δ is one of

{0}, {1}, {0, 1}, Z≥2.

We have the following lemma, which is straightforward to prove.

Lemma 4.5. Let p be a prime, δ ≥ 1, u ∈ Rp,δ, and µ ≥ 0. Then we have the following.

(i) In case φ−1
p,δ(u) = {0}, for g ≥ 0,

φp,δ(µ + g) = u if and only if µ + g = 0

if and only if

g = 0 (µ = 0)
impossible (µ ≥ 1).

(4.7)

(ii) In case φ−1
p,δ(u) = {1}, for g ≥ 0,

φp,δ(µ + g) = u if and only if µ + g = 1

if and only if

g = 1 − µ (µ = 0, 1)
impossible (µ ≥ 2).

(4.8)

(iii) In case φ−1
p,δ(u) = {0, 1}, for g ≥ 0,

φp,δ(µ + g) = u if and only if µ + g ∈ {0, 1}

if and only if


g ≤ 1 (µ = 0)
g = 0 (µ = 1)
impossible (µ ≥ 2).

(4.9)
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(iv) In case φ−1
p,δ(u) = Z≥2, for g ≥ 0,

φp,δ(µ + g) = u if and only if µ + g ≥ 2

if and only if

g ≥ 2 − µ (µ = 0, 1)
always true (µ ≥ 2).

(4.10)

Here “impossible” means that no g ≥ 0 can be found to fulfill φp,δ(µ + g) = u, and “always true” means that
all g ≥ 0 fulfills φp,δ(µ + g) = u.

4.3 The case n = 819 of Theorem 1.2

In this section we prove the case n = 819 of Theorem 1.2 as follows.
We have the prime factorizations

819 = 32 · 7 · 13,

918 = 2 · 33 · 17.

For integers k ≥ 1, let the prime factorization of ρk,3 be

ρk,3 = 3g1 · 7g2 · 13g3 · 17g4 · b,

where (b, 3 · 7 · 13 · 17) = 1. The numbers g1, g2, g3, g4, b obviously depend on k, but we have suppressed
the notation for simplicity. By Lemma 4.1,

819(k) = 819ρk,3 = 32+g1 · 71+g2 · 131+g3 · 17g4 · b,
r(819(k)) = 918(k) = 918ρk,3 = 2 · 33+g1 · 7g2 · 13g3 · 171+g4 · b.

Applying the additive function v to these equations,

v(819(k)) = v(32+g1 ) + v(71+g2 ) + v(131+g3 ) + v(17g4 ) + v(b),

v(r(819(k))) = v(2) + v(33+g1 ) + v(7g2 ) + v(13g3 ) + v(171+g4 ) + v(b).

Hence 819(k) is a v-palindrome if and only if the above two quantities are equal, that is, after rearranging,

(v(71+g2 ) − v(7g2 )) + (v(131+g3 ) − v(13g3 ))

= 2 + (v(33+g1 ) − v(32+g1 )) + (v(171+g4 ) − v(17g4 )).

In terms of the functions φp,δ of Section 4.2, this becomes

φ7,1(g2) + φ13,1(g3) = 2 + φ3,1(2 + g1) + φ17,1(g4). (4.11)

Since 2 + g1 ≥ 2, by (4.5), we have φ3,1(2 + g1) = 1. Therefore (4.11) becomes

φ7,1(g2) + φ13,1(g3) = 3 + φ17,1(g4). (4.12)

Now consider the equation
u2 + u3 = 3 + u4. (4.13)

We want to solve it for u2 ∈ R7,1, u3 ∈ R13,1, and u4 ∈ R17,1. In view of (4.5),

R7,1 = {7, 2, 1}, R13,1 = {13, 2, 1}, R17,1 = {17, 2, 1}.

By trying all possibilities we see that the only solutions are (u2,u3,u4) = (7, 13, 17) and (2, 2, 1). Whence
(4.12) is satisfied if and only if

(φ7,1(g2), φ13,1(g3), φ17,1(g4)) = (7, 13, 17) or (2, 2, 1).

We first consider when (φ7,1(g2), φ13,1(g3), φ17,1(g4)) = (7, 13, 17). By Lemmas 4.5 (or more easily just by
looking at (4.5)), 4.3, 4.2, and Table 4.1,

φ7,1(g2) = 7 if and only if g2 = 0 if and only if 7 ∤ ρk,3

if and only if h7,3 ∤ k if and only if 2 ∤ k,
(4.14)
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and

φ13,1(g3) = 13 if and only if g3 = 0 if and only if 13 ∤ ρk,3

if and only if h13,3 ∤ k if and only if 2 ∤ k,
(4.15)

and

φ17,1(g4) = 17 if and only if g4 = 0 if and only if 17 ∤ ρk,3

if and only if h17,3 ∤ k if and only if 16 ∤ k.
(4.16)

Hence (φ7,1(g2), φ13,1(g3), φ17,1(g4)) = (7, 13, 17) simply when k is odd. We next consider when

(φ7,1(g2), φ13,1(g3), φ17,1(g4)) = (2, 2, 1). (4.17)

Similarly we have

φ7,1(g2) = 2 if and only if g2 = 1 if and only if

7 | ρk,3,

72 ∤ ρk,3

if and only if

h7,3 | k,
h72,3 ∤ k

if and only if

2 | k,
14 ∤ k,

(4.18)

and

φ13,1(g3) = 2 if and only if g3 = 1 if and only if

13 | ρk,3,

132 ∤ ρk,3

if and only if

h13,3 | k,
h132,3 ∤ k

if and only if

2 | k,
26 ∤ k,

(4.19)

and

φ17,1(g4) = 1 if and only if g4 ≥ 2 if and only if 172 | ρk,3

if and only if h172,3 | k if and only if 272 | k, (4.20)

where two divisibility relations to the right of a left brace means that both must hold. Hence

(φ7,1(g2), φ13,1(g3), φ17,1(g4)) = (2, 2, 1) (4.21)

precisely when 272 | k and (k, 7 · 13) = 1. Hence we have established the following characterization.

Theorem 4.6. For k ≥ 1, the number 819(k) is a v-palindrome if and only if k is odd or if 272 | k and (k, 7 ·13) = 1.

From the above theorem, we immediately see that c(819) = 1 (Definition 1.9). We see that 819(k)
is a v-palindrome if and only if all 3 conditions (4.14), (4.15), and (4.16) hold, or if all 3 conditions
(4.18), (4.19), and (4.20) hold. Now these conditions have the same truth values when k increases by
lcm(16, 14, 26, 272) = 24752. Hence ω = 24752 is a period of 819. Using the general procedure of Section
6.6, it can be shown that actually it is the smallest period, that is, ω0(819) = 24752.

4.4 Proof of Theorem 1.2

In this section we prove Theorem 1.2 fully, and this is essentially writing the proof of the case n = 819 in
the previous section in the general setting. We divide the proof into three subsections as follows.

4.4.1 First half of the proof

Let the prime factorizations of n and r(n) be

n = pe1
1 pe2

2 . . . p
em
m ,

r(n) = p f1
1 p f2

2 . . . p
fm
m ,

30



where we have done the factorization over the set of primes which divide one of n or r(n), setting ei = 0
or fi = 0 if necessary. Since n , r(n), we have ei , fi for some i. Let the i’s such that ei , fi be arranged
in order as

i1 < i2 < . . . < it. (4.22)

Let the number of decimal digits n has be denoted by L. For integers k ≥ 1, let the prime factorization
of ρk,L be

ρk,L = pg1

1 pg2

2 . . . p
gm
m b, (4.23)

where (b, p1p2 . . . pm) = 1. The g1, g2, . . . , gm, b obviously depend on k, but we suppress them from our
notation for simplicity. Then by Lemma 4.1,

n(k) = nρk,L = pe1+g1

1 pe2+g2

2 . . . pem+gm
m b,

r(n(k)) = r(n)(k) = r(n)ρk,L = p f1+g1

1 p f2+g2

2 . . . p fm+gm
m b.

Taking their v, we have

v(n(k)) =
m∑

i=1

v(pei+gi

i ) + v(b),

v(r(n(k))) =
m∑

i=1

v(p fi+gi

i ) + v(b).

Hence n(k) is a v-palindrome, that is, v(n(k)) = v(r(n(k))), if and only if

m∑
i=1

(v(pei+gi

i ) − v(p fi+gi

i )) = 0. (4.24)

If ei = fi, of course the term v(pei+gi

i ) − v(p fi+gi

i ) = 0, so by (4.22), the equation (4.24) is equivalent to

t∑
j=1

(v(p
ei j+gi j

i j
) − v(p

fi j+gi j

i j
)) = 0. (4.25)

This is a cumbersome notation, and we will just write pi j as p j, ei j as e j, fi j as f j, and gi j as g j, because we
will not refer to the other prime factors or exponents from here on. Consequently, (4.25) becomes

t∑
j=1

(v(pe j+g j

j ) − v(p f j+g j

j )) = 0. (4.26)

We also write

δ j = e j − f j,

µ j = min(e j, f j),
α j = µ j + g j,

for 1 ≤ j ≤ t. Then it is clear that the left-hand side of (4.26) can be rewritten, using the functions φp,δ of
Section 4.2, as

t∑
j=1

(v(pe j+g j

j ) − v(p f j+g j

j ))

=

t∑
j=1

sgn(δ j)(v(pα j+|δ j |
j ) − v(pα j

j )) =
t∑

j=1

sgn(δ j)φp j,|δ j |(α j),

(4.27)

Now consider the equation
t∑

j=1

sgn(δ j)u j = 0. (4.28)
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Supposedly we can solve it for

(u1,u2, . . . , ut) ∈ Rp1,|δ1 | × Rp2,|δ2 | × · · · × Rpt,|δt |.

Let the set of all solutions be
U = {u = (u1, . . . , ut)}.

Then we see that
t∑

j=1

sgn(δ j)φp j,|δ j |(α j) = 0

holds if and only if for some u ∈ U,
φp j,|δ j |(α j) = u j

for all 1 ≤ j ≤ t. Summarizing what we have done up to now, we have shown the following.

Lemma 4.7. For k ≥ 1, the number n(k) is a v-palindrome if and only if for some u ∈ U, we have φp j,|δ j |(α j) = u j
for all 1 ≤ j ≤ t.

4.4.2 Any parcitular φp j,|δ j|(α j) = u j

Now let us just consider any particular condition φp j,|δ j |(α j) = φp j,|δ j |(µ j + g j) = u j. If in the statement of
Lemma 4.5, we substitute the p, δ, u, and µ by p j, |δ j|, u j, and µ j, respectively, then we have

φp j,|δ j |(µ j + g j) = u j if and only if



g j = 0 (if (i, 0), or (ii, 1), or (iii, 1))
g j = 1 (if (ii, 0))
g j ≤ 1 (if (iii, 0))
g j ≥ 1 (if (iv, 1))
g j ≥ 2 (if (iv, 0))
always true (if (iv,≥ 2))
impossible (otherwise),

(4.29)

where on the right, a notation like (N, µ), where N is a Roman numeral and µ = 0, 1, denotes the case
(N) in Lemma 4.5 and in addition the case where µ j = µ; (iv,≥ 2) denotes the case (iv) in Lemma 4.5 and
in addition the case where µ j ≥ 2. As the last two cases (“always true” and “impossible”) never change
as k varies, we exclude them from our consideration. By Lemma 4.3, we can continue the equivalences
in (4.29) respectively (here we do not write out the cases as in (4.29)), recalling that g j = ordp j (ρk,L),

φp j,|δ j |(µ j + g j) = u j if and only if



p j ∤ ρk,L

p j | ρk,L and p2
j ∤ ρk,L

p2
j ∤ ρk,L

p j | ρk,L

p2
j | ρk,L.

(4.30)

In case p j , 2, 5, we can apply Lemma 4.2 to (4.30) to obtain, respectively,

φp j,|δ j |(µ j + g j) = u j if and only if



hp j,L ∤ k
hp j,L | k and hp2

j ,k
∤ k

hp2
j ,L
∤ k

hp j,L | k
hp2

j ,L
| k.

(4.31)

However, in case p j = 2, 5, by Remark 4.1, the conditions (4.30) become

φp j,|δ j |(µ j + g j) = u j if and only if



always true
impossible
always true
impossible
impossible.

(4.32)
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4.4.3 Finishing the proof

In view of Lemma 4.4, we see that the truth value of any particular condition φp j,|δ j |(µ j + g j) = u j does
not change if we increase k by

ω = lcm{hp j,L, hp2
j ,L
| 1 ≤ j ≤ t with p j , 2, 5}. (4.33)

In view of Lemma 4.7, whether n(k) is a v-palindrome depends only on the truth values of the
individual (φp j,|δ j |(µ j + g j) = u j)’s. Hence this ω serves as a possible ω as required by Theorem 1.2.

4.5 The constructed period

The proof of Theorem 1.2 in the previous section constructed a particular period (4.33) of n, which we
put into a theorem as follows. We first give the following definition.

Definition 4.6. Let n be as in Theorem 1.2. A crucial prime of n is a prime p for which ordp(n) , ordp(r(n)).
The set of all crucial primes of n is denoted by K(n).

Then we have the following.

Theorem 4.8. Let n be as in Theorem 1.2 and let L be the number of decimal digits of n. Then

ω f (n) = lcm{hp2,L | p ∈ K(n) \ {2, 5}} (4.34)

is a period of n.

Proof. The quantity (4.33) can be rewritten as

lcm{hp,L, hp2,L | p ∈ K(n) \ {2, 5}}. (4.35)

Hence it suffices to prove that hp,L | hp2,L for every p ∈ K(n) \ {2, 5}. Therefore let p ∈ K(n) \ {2, 5} be
arbitrary. Since

(10L)hp2 ,L ≡ 1 (mod p2+ordp(10L−1)), (4.36)

plainly
(10L)hp2 ,L ≡ 1 (mod p1+ordp(10L−1)). (4.37)

Now hp,L is the order of 10L regarded as an element of (Z/p1+ordp(10L−1)Z)×, thus hp,L | hp2,L follows from
the structure of cyclic groups. □

Remark 4.2. The “ f ” in the notation ω f (n) comes from “found”, because ω f (n) is a period of n we found.
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Chapter 5

Periodic Functions

This chapter is a treatment of the general topic of periodic functions. Our derivation of the fundamen-
tal period of n (Definition 1.9) in Chapter 6 belongs naturally to the more general derivation of the
fundamental period of an arbitrary periodic function.

In Section 5.1, we start from the definition of periodic functions and prove a formula for the fun-
damental period of an arbitrary periodic function Z → C (Theorem 5.5). The theorem [51, Theorem
9] gives another formula for the fundamental period of an arbitrary periodic function Z → C and we
direcly show that the formulae in Theorem 5.5 and [51, Theorem 9] give the same quantity in Section
5.2. In Section 5.3, we introduce Ramanujan spaces and prove Theorem 1.17 with a simple application
of Theorem 5.5.

Recall that the functions Ia have been introduced in Definition 1.11. In Section 5.4, we indicate
some properties of such functions and give a formula for the fundamental period of an arbitrary linear
combination of such functions with integer coefficients (Theorem 5.9). We also in the same section
introduce certain sets we denote by S(A,B) and express their indicator functions in terms of functions
of the form Ia (Lemma 5.11).

5.1 Periodic functions

In this section, we start from the definition of periodic functions in Subsection 5.1.1 and prove a formula
for the fundamental period of an arbitrary periodic function Z→ C (Theorem 5.5) in Subsection 5.1.3.

In Subsection 5.1.1 we also characterize periods (Theorem 5.1). In Subsection 5.1.2, we show that the
general form of an arbitrary periodic function Z → C is a finite linear combination (5.6) with complex
cofficients of functions of the form ζx where ζ is a root of unity.

5.1.1 Definition and characterization of periods

We first give the following definition.

Definition 5.1. A function f : Z→ C (respectively f : N→ C) is periodic if there is an integer ω ≥ 1 such
that for all x ∈ Z (respectively x ∈N),

f (x + ω) = f (x). (5.1)

Such an ω is called a period of f , and we also say that f is periodic modulo ω. When f is periodic, the
smallest period of f is called its fundamental period.

We have the following characterization of periods.

Theorem 5.1. Let f : Z→ C be a periodic function. Then we have the following.

(i) The restriction of f toN, i.e., f |N, is periodic. Moreover, an integer ω ≥ 1 is a period of f if and only if it is
a period of f |N.

(ii) If the fundamental period of f is ω0, then the set of periods of f is ω0N.

Proof. (i) Plainly any period of f is also a period of its restriction f |N. We only need to prove that any
period of f |N is conversely a period of f . So let ω be a period of f |N. Choose a period µ of f , then
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µ is also a period of f |N. For any x ∈ Z, there exists a positive integer q > 0 such that x + qµ > 0.
Also, x +ω + qµ > 0. Since ω is a period of f |N, f (x + qµ) = f (x + qµ +ω). Now, since µ is a period
of f ,

f (x) = f (x + qµ) = f (x + qµ + ω) = f (x + ω). (5.2)

Since the above holds for all x ∈ Z, ω is a period of f .

(ii) Let ω be a period of f . Use the division algorithm to write ω = qω0 + r, where q, r ∈ Z are such
that 0 ≤ r < ω0 and q > 0. Assume that r > 0, then r = ω − qω0. For any x ∈ Z,

f (x) = f (x + ω) = f (x + ω − qω0) = f (x + r), (5.3)

because both ω and ω0 are periods of f . Hence r is a period of f smaller than ω0, this is a
contradiction. Hence r = 0 and so ω0 | ω. The converse, that any positive integral multiple of ω0
is a period of f , is plain.

□

5.1.2 The general form of a periodic function

In this subsection, we show that the general form of an arbitrary periodic function Z → C is a finite
linear combination (5.6) with complex cofficients of functions of the form ζx where ζ is a root of unity.

Let the function e : R→ C be defined by

e(t) = e2πit. (5.4)

Then the set of roots of unity in C is
R = {e(α) | α ∈ Q}. (5.5)

We give the following notation.

Notation 5.2. For a ζ = e(α) ∈ R, where 0 ≤ α < 1 is rational, write α = a/b in lowest terms, i.e. a, b ∈ Z,
b > 0, and (a, b) = 1, then denote ν(ζ) = a and δ(ζ) = b. Thus ζ is a primitive δ(ζ)-th root of unity. For
each integer m ≥ 1, we denote by ζm the primitive m-th root of unity e(1/m).

Consider functions g : R → C with g(ζ) = 0 outside a finite set. Let the set of such functions be
denoted G. For a g ∈ G, define a function f : Z→ C by

f (x) =
∑
ζ∈R

g(ζ)ζx. (5.6)

The sum is actually finite because g(ζ) = 0 for all but finitely many ζ’s. We denote this f by Φ(g).

Theorem 5.2. Let g ∈ G. Then Φ(g) is periodic modulo

lcm{δ(ζ) | ζ ∈ R, g(ζ) , 0}. (5.7)

Proof. Let the least common multiple (5.7) be denoted by ω and Φ(g) = f . For each ζ ∈ R with g(ζ) , 0,
ζ is a δ(ζ)-th root of unity, therefore ζx+δ(ζ) = ζx for every x ∈ Z. As ω is a multiple of δ(ζ), we have
ζx+ω = ζx for every x ∈ Z. Consequently, for every x ∈ Z,

f (x + ω) =
∑

ζ∈R,g(ζ),0

g(ζ)ζx+ω =
∑

ζ∈R,g(ζ),0

g(ζ)ζx = f (x). (5.8)

□

Let the set of periodic functions f : Z → C be denoted by F . The above established a mapping
Φ : G → F . We shall prove that it is bijective. Before that, we first state the first half of [5, Theorem 8.4
on p. 160] as a theorem in this dissertation, which will be used.

Theorem 5.3 ([5, Theorem 8.4 on p. 160]). Let f : Z → C be periodic modulo ω. Then there exist unique
coefficients hr ∈ C for 0 ≤ r < ω such that for all x ∈ Z,

f (x) =
ω−1∑
r=0

hrζ
xr
ω . (5.9)
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Theorem 5.4. The mapping Φ : G → F is bijective.

Proof. Let f ∈ F be periodic modulo ω. By Theorem 5.3, there exist unique coefficients hr ∈ C for
0 ≤ r < ω such that for all x ∈ Z,

f (x) =
ω−1∑
r=0

hrζ
xr
ω . (5.10)

If we define the function g : R → C by setting g(ζr
ω) = hr for 0 ≤ r < ω and g(ζ) = 0 for all other ζ ∈ R, it

is easy to see that g ∈ G and that Φ(g) = f . Whence Φ is surjective.
We now prove injectivity. Assume that Φ(g1) = Φ(g2) = f ∈ F , then for all x ∈ Z,

f (x) =
∑
ζ∈R

g1(ζ)ζx =
∑
ζ∈R

g2(ζ)ζx. (5.11)

Let S = {ζ ∈ R : (g1(ζ), g2(ζ)) , (0, 0)}. Then S is finite and the above sums can be written as∑
ζ∈S

g1(ζ)ζx =
∑
ζ∈S

g2(ζ)ζx. (5.12)

Consequently, for all x ∈ Z, ∑
ζ∈S

(g1(ζ) − g2(ζ))ζx = 0. (5.13)

If S = ∅, plainly g1 = g2 = 0 is identically zero. Thus assume otherwise and list the elements of S as
{ξ1, . . . , ξm}. Put x j = g1(ξ j) − g2(ξ j) for 1 ≤ j ≤ m. Then (5.13) becomes

m∑
j=1

x jξ
x
j = 0. (5.14)

Since this holds for all x ∈ Z, in particular it holds for all 0 ≤ x < m, and we have a homogeneous system
of linear equations. Since the Vandermonde determinant∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
ξ1 ξ2 · · · ξm
· · · · · · · · · · · ·
ξm−1

1 ξm−1
2 · · · ξm−1

m

∣∣∣∣∣∣∣∣∣∣ , 0 (5.15)

as the ξ j’s are distinct, x j = 0 for all 1 ≤ j ≤ m, i.e. g1(ξ j) = g2(ξ j) for all 1 ≤ j ≤ m. In other words,
g1(ζ) = g2(ζ) for all ζ ∈ S. Since g1(ζ) = g2(ζ) = 0 for all ζ ∈ R \ S, we have shown that g1 = g2. Whence
Φ is injective. □

Hence we have established the general form of an arbitrary periodic function Z→ C as (5.6).

5.1.3 A formula for the fundamental period

We prove that the fundamental period of an arbitrary periodic functionZ→ C is indeed given by (5.7).

Theorem 5.5. Let g ∈ G. Then the fundamental period of Φ(g) is indeed given by (5.7).

Proof. Let Φ(g) = f . Theorem 5.2 already showed that

ω = lcm{δ(ζ) | ζ ∈ R, g(ζ) , 0} (5.16)

is a period of f . We need to show that it is the smallest one. Assume that the smallest period is actually
ω0, where 0 < ω0 < ω. By Theorem 5.1 (ii), we have ω0 | ω. By Theorem 5.3, there exist unique
coefficients hr for 0 ≤ r < ω0 such that for all x ∈ Z,

f (x) =
ω0−1∑
r=0

hrζ
xr
ω0
. (5.17)

Hence we see that g(ζr
ω0

) = hr for 0 ≤ r < ω0 and g(ζ) = 0 for all other ζ ∈ R.
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Now ω0 < ω and so in view of (5.16) there exists some ξ ∈ R with g(ξ) , 0 such that δ(ξ) ∤ ω0. We
have

ξω0 =

(
e
(
ν(ξ)
δ(ξ)

))ω0

= e
(
ν(ξ)ω0

δ(ξ)

)
. (5.18)

Now the argument on the right above is not an integer. For if it is, then δ(ξ) | ν(ξ)ω0. Since (δ(ξ), ν(ξ)) = 1,
we have δ(ξ) | ω0, which is a contradiction. Therefore ν(ξ)ω0/δ(ξ) is not an integer, and so ξω0 , 1. That
is, ξ is not an ω0-th root of unity. But g vanishes at all ζ ∈ Rwhich is not an ω0-th root of unity. This is a
contradiction. Hence ω is indeed the fundamental period of f . □

5.2 The formula in [51, Theorem 9]

The theorem [51, Theorem 9] gives another formula for the fundamental period of an arbitrary periodic
function Z → C and we direcly show that the formulae in Theorem 5.5 and [51, Theorem 9] give the
same quantity as follows.

Let f : Z→ C be a periodic function of periodω. Then by Theorem 5.3, there exist unique coefficients
hr for 0 ≤ r < ω such that for all x ∈ Z,

f (x) =
ω−1∑
r=0

hrζ
xr
ω . (5.19)

We can write f (x) as

f (x) =
ω∑

k=1

hω−kζ
−xk
ω , (5.20)

or if we rename hω−k as hk,

f (x) =
ω∑

k=1

hkζ
−xk
ω . (5.21)

Let the set of integers k such that 1 ≤ k ≤ ω and hk , 0 be {k1, . . . , kl}. Then according to [51, Theorem 9],
the fundamental period of f is

L =
ω

(k1, . . . , kl, ω)
. (5.22)

On the other hand, according to Theorem 5.5, the fundamental period of f is

R = lcm(δ(ζ−k1
ω ), . . . , δ(ζ−kl

ω )). (5.23)

We show that L = R, i.e.,
ω

(k1, . . . , kl, ω)
= lcm(δ(ζ−k1

ω ), . . . , δ(ζ−kl
ω )). (5.24)

When there are no 1 ≤ k ≤ ω such that hk , 0, i.e. when l = 0, this is plain. Thus assume that l > 0.
Notice that for 1 ≤ j ≤ l,

δ(ζ−k j
ω ) = δ

(
e
(−k j

ω

))
=
ω

(k j, ω)
, (5.25)

which is easily seen to divide L. Hence R | L.
Notice that for 1 ≤ j ≤ l, because of (5.25),

ω
(k j, ω)

| R, and therefore ω | R(k j, ω). (5.26)

Since
(k1, . . . , kl, ω) = ((k1, ω), . . . , (kl, ω)), (5.27)

we have a linear combination

(k1, . . . , kl, ω) =
l∑

j=1

y j(k j, ω), (5.28)

where the y j’s are integers. We prove that L | R, or equivalently,

ω | R(k1, . . . , kl, ω). (5.29)
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Since (5.26) holds for all 1 ≤ j ≤ l, using also (5.28),

ω |
l∑

j=1

y jR(k j, ω) = R
l∑

j=1

y j(k j, ω) = R(k1, . . . , kl, ω). (5.30)

Since we have proved that R | L and L | R, it holds that L = R.
Hence both Theorem 5.5 and [51, Theorem 9] give a formula for the fundamental period of an

arbitrary periodic functionZ→ C. These formulae might look different on the surface, but indeed give
the quantity.

5.3 Ramanujan spaces

We introduce Ramanujan spaces and prove Theorem 1.17 with a simple application of Theorem 5.5.
The set CZ of functions f : Z→ C is obviously a vector space over C with both vector addition and

scalar multiplication defined pointwise. The set, denoted by F in Section 5.1, of all periodic functions
Z→ C, is a subspace of CZ. We define the so-called Ramanujan spaces as follows, where R∗(ω) denotes
the set of primitive ω-th roots of unity in C.

Definition 5.3. Let ω ≥ 1 be an integer. The set of all functions

f (x) =
∑
ζ∈R∗(ω)

g(ζ)ζx, for x ∈ Z, (5.31)

where the g(ζ)’s are complex numbers, is a subspace of F called a Ramanujan space and denoted by Sω.

We restate Theorem 1.17 as follows, where 0 denotes the zero function Z→ {0}.

Theorem 1.17. ([51, Theorem12]). Let ω1, . . . , ωm ≥ 1 be distinct integers and let 0 , f j ∈ Sω j for each
1 ≤ j ≤ m. Then the fundamental period of the periodic function f1 + · · · + fm is lcm{ω1, . . . , ωm}.

Proof. For each 1 ≤ j ≤ m, we have
f j(x) =

∑
ζ∈R∗(ω j)

g j(ζ)ζx, (5.32)

where g j = Φ
−1( f j). Since the R∗(ω j) are pairwise disjoint, Φ−1( f ) = g, where

g(ζ) =

g j(ζ) if ζ ∈ R∗(ω j) for some 1 ≤ j ≤ m,
0 otherwise.

(5.33)

By Theorem 5.5, the fundamental period of f is

L = lcm{δ(ζ) | ζ ∈ R, g(ζ) , 0}, (5.34)

whereas the fundamental period asserted by the theorem is

T = lcm{ω1, . . . , ωm}. (5.35)

So we have to prove that L = T.
Let ζ be a root of unity such that g(ζ) , 0. Then ζ ∈ R∗(ω j) for some 1 ≤ j ≤ m. Since δ(ζ) = ω j and

ω j | T, we have δ(ζ) | T. Since δ(ζ) | T for any root of unity ζ such that g(ζ) , 0, we have L | T. On the
other hand, let 1 ≤ j ≤ m. Since f j , 0, we have g(ζ) = g j(ζ) , 0 for some ζ ∈ R∗(ω j). Since δ(ζ) = ω j and
δ(ζ) | L, we have ω j | L. Since ω j | L for any 1 ≤ j ≤ m, we have T | L. Since both L | T and T | L, we have
L = T. □

Since any periodic functionZ→ C can be expressed in the form f1 + · · ·+ fm as in Theorem 1.17, the
theorem gives another formula for the fundamental period of an arbitrary periodic function Z→ C.
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5.4 The functions Ia

Recall that the functions Ia have been introduced in Definition 1.11. In this section, we indicate some
properties of such functions in Subsection 5.4.1 and give a formula for the fundamental period of an
arbitrary linear combination of such functions with integer coefficients (Theorem 5.9) in Subsection 5.4.2.

In Subsection 5.4.3 we introduce certain sets we denote by S(A,B) and express their indicator functions
in terms of functions of the form Ia (Lemma 5.11).

5.4.1 Properties

Recall the concept of indicator functions as follows.

Definition 5.4. If A ⊆ Ω, then the indicator function of A in Ω is the function IA : Ω→ {0, 1} defined by

IA(x) =

1 if x ∈ A,
0 if x ∈ Ω \ A.

(5.36)

As said in Definition 1.11, Ia is the indicator function of aZ in Z. Clearly the function Ia : Z→ {0, 1}
is periodic with fundamental period a. The function Ia in the form of (5.6) is given by [5, Theorem 8.1
on p. 158] as follows, where R(a) denotes the set of a-th roots of unity in C.

Lemma 5.6 ([5, Theorem 8.1 on p. 158]). For a ≥ 1, we have that for all x ∈ Z,

Ia(x) =
1
a

∑
ζ∈R(a)

ζx. (5.37)

We also have the following multiplication property, which will be used to write the indicator function
In (Definition 8.2) as a linear combination (5.39) of functions of the form Ia with integer coefficients in
Subsection 6.4.2.

Lemma 5.7. For any integers a, b ≥ 1, we have IaIb = Ilcm(a,b).

Proof. We need to prove that for all x ∈ Z,

Ia(x)Ib(x) = Ilcm(a,b)(x). (5.38)

If lcm(a, b) | x, then both a | x and b | x, thus both sides of the above equation evaluates to 1. If lcm(a, b) ∤ x,
then either a ∤ x or b ∤ x, thus in the above equation, one of the factors on the left-hand side is 0, and the
right-hand side is also 0. This completes the proof. □

5.4.2 Linear combinations

We prove a formula for the fundamental period of an arbitrary linear combination (5.39) of functions of
the form Ia with integer coefficients (Theorem 5.9).

Firstly, we have the following uniqueness property. It can be easily proved by induction.

Theorem 5.8. Suppose that a function f : Z→ C is expressed in the form

f =
q∑

j=1

λ jIc j , (5.39)

where q ≥ 0 and 1 ≤ c1 < · · · < cq and λ1, . . . , λq , 0 are integers. Then the expression is unique, in the sense
that if q′ ≥ 0 and 1 ≤ c′1 < · · · < c′q′ and λ′1, . . . , λ

′
q′ , 0 are integers such that

f =
q′∑

j=1

λ′jIc′j , (5.40)

then necessarily q = q′ and for all 1 ≤ j ≤ q, we have c j = c′j and λ j = λ′j.

The fundamental period of a function of the form (5.39) is as follows.
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Theorem 5.9. The fundamental period of a function of the form (5.39) is lcm{c1, . . . , cq}.

Proof. Define the set
D = {d ∈N : d | c j for some 1 ≤ j ≤ q}. (5.41)

That is, D is the union of the divisors of c1, . . . , cq. In view of Lemma 5.6, the function f can be written as

f (x) =
∑
d∈D

∑
ζ∈R∗(d)

 ∑
1≤ j≤q,d|c j

λ j

c j

 ζx. (5.42)

Let us denote, for d ∈ D,

fd(x) =
∑
ζ∈R∗(d)

 ∑
1≤ j≤q,d|c j

λ j

c j

 ζx, (5.43)

so that fd ∈ Sd. Then f =
∑

d∈D fd. In view of Theorem 1.17, the fundamental period of f is

lcm{d ∈ D : fd , 0} = lcm

d ∈ D :
∑

1≤ j≤q,d|c j

λ j

c j
, 0

 . (5.44)

We have to show that

lcm

d ∈ D :
∑

1≤ j≤q,d|c j

λ j

c j
, 0

 = lcm{c1, . . . , cq}. (5.45)

That the right-hand side above (denote it by R) is a multiple of the left-hand side (denote it by L) is plain.
For each d ∈ D, we can write ∑

1≤ j≤q,d|c j

λ j

c j
=
λ1

c1
[d | c1] + · · · +

λq

cq
[d | cq], (5.46)

where [·] is the Iverson bracket listed in Section 1.1. Now suppose that pα is any prime power with pα | R
but pα+1 ∤ R. Let j0 be the largest integer with 1 ≤ j0 ≤ q and pα | c j0 . Then∑

1≤ j≤q,c j0 |c j

λ j

c j
=
λ1

c1
[c j0 | c1] + · · · +

λ j0

c j0
[c j0 | c j0 ] + · · · +

λq

cq
[c j0 | cq] =

λ j0

c j0
, 0. (5.47)

This holds because, for 1 ≤ j < j0, as c j < c j0 , plainly [c j0 | c j] = 0; and for j0 < j ≤ q, if c j0 | c j, then
pα | c j, which contradicts our choice of j0, thus [c j0 | c j] = 0. Therefore as L is a multiple of c j0 , it is also a
multiple of pα. Consequently, as L is a multiple of every prime power divisor of R, we have R | L. Since
both L | R and R | L, the equality (5.45) holds. □

About functions of the form (5.39), we also have the following which is obvious.

Theorem 5.10. Let f be a function of the form (5.39). If q > 0, then the smallest positive integer k such that
f (k) , 0 is c1. If q = 0, then f (k) = 0 for all integers k ≥ 1.

5.4.3 The sets S(A,B)

We define certain sets S(A,B) and express their indicator functions in terms of functions of the form Ia
(Lemma 5.11).

Definition 5.5. For finite sets A,B ⊆N, put

S(A,B) = {x ∈ Z : (for all a ∈ A, a | x) and (for all b ∈ B, b ∤ x)}. (5.48)

That is, S(A,B) is the set of all integers divisible by every element of A, but indivisible by every element
of B.

We have the following expression of the indicator function of S(A,B) in Z.
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Lemma 5.11. Let A,B ⊆N be finite sets. Then for all x ∈ Z,

IS(A,B)(x) = Ilcm(A)(x)
∏
b∈B

(1 − Ib(x)). (5.49)

Hence IS(A,B) is periodic modulo lcm(A ∪ B).

Proof. If x ∈ S(A,B), then a | x for all a ∈ A, and so lcm(A) | x. Thus Ilcm(A)(x) = 1. Moreover, for every
b ∈ B, we have b ∤ x, and so Ib(x) = 0. Hence we see that the right-hand side of (5.49) is 1.

On the other hand, assume that x is an integer with x < S(A,B). Then either x is not divisible by
some particular a ∈ A, or is divisible by some particular b ∈ B. In the first case, x cannot be a multiple of
lcm(A), thus Ilcm(A)(x) = 0 and we see that the right-hand side of (5.49) is 0. In the second case, Ib(x) = 1
for some b ∈ B, hence one of the factors in the product on the right-hand side of (5.49) becomes 0, and
we see again that the right-hand side of (5.49) evaluates to 0. This proves (5.49).

To prove the periodicity, we see that if we add to x the quantity lcm(A ∪ B), the values of Ilcm(A) and
all the Ib (b ∈ B) do not change, and hence IS(A,B) is periodic modulo lcm(A ∪ B). □
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Chapter 6

v-Palindromicity in Repeated
Concatenations

For an n as in Theorem 1.2, we have the sequence of repeated concatenations of n

n(1),n(2),n(3), . . . , n(k), . . . . (6.1)

In this chapter we examine the v-palindromicity of the terms above. The values ω0(n) and c(n) defined
in Definition 1.9 represent a preliminary rough description of the pattern and we tabulate some of their
values in Section 6.1.

The crux of this chapter is a procedure to express the indicator function In (Definition 1.10) as a linear
combination (6.25) of functions of the form Ia with integer coefficients. We call it the general procedure
and it is described in Section 6.6.

In Section 6.2, we define the D symbol which will be convenient when actually performing the
general procedure, as illustrated in Section 6.7. In Section 6.3, we investigate the necessary and sufficient
condition such that n(k) is a v-palindrome. We also in the same section define the type of a v-palindrome
(Definition 6.6). In Section 6.4, we construct the indicator function In based on the discussion in Section
6.3. In Section 6.5, we show how both ω0(n) and c(n) can be easily derived from an expression of In in
the form (6.25). Finally in Section 6.8, we provide a table of indicator functions In expressed in the form
(6.25).

6.1 Table of ω0(n) and c(n)

Recall that a particular period ω f (n) of n was given in Theorem 4.8. Theorem 1.3 says that we must have
ω0(n) | ω f (n). The following is a table of ω f (n), ω0(n), and c(n), for n ≤ 56 with n < r(n), computed using
Mathematica. We impose that n < r(n) because the values for n and r(n) are exactly the same, i.e.,

ω f (n) = ω f (r(n)), ω0(n) = ω0(r(n)), c(n) = c(r(n)). (6.2)
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Table 6.1: Values of ω f (n), ω0(n), and c(n), for n ≤ 56 with n < r(n).

n 12 13 14 15 16 17 18 19 23

ω f (n) 21 6045 4305 136 1830 337960 9 15561 253

ω0(n) 1 6045 1 1 1 337960 1 15561 1

c(n) ∞ 15 ∞ ∞ ∞ 280 1 819 ∞

n 24 25 26 27 28 29 34 35 36

ω f (n) 21 39 6045 9 4305 102718 122808 14469 21

ω0(n) 1 1 6045 1 1 1 1 1 1

c(n) ∞ ∞ 15 ∞ ∞ ∞ ∞ ∞ ∞

n 37 38 39 45 46 47 48 49 56

ω f (n) 32412 581913 6045 9 253 119991 21 22701 273

ω0(n) 32412 1 6045 1 1 1 21 22701 273

c(n) 12 ∞ 15 ∞ ∞ ∞ 3 3243 3

From the above table it seems that the following might hold.

Conjecture 6.1. Let n be as in Theorem 1.2. Then either ω0(n) = 1 or ω0(n) = ω f (n).

However, this turned out to be false and we provide a counterexample in Section 6.7.

6.2 The symbol D(p, δ,u, µ)

We define certain symbols D(p, δ,u, µ) symbol which will be convenient when actually performing the
general procedure, as illustrated in Section 6.7.

Recall that we defined the functions φp,δ in Definition 4.4 and denoted their ranges as Rp,δ. The cases
[i] through [vii] in the following lemma correspond to the conditions on the right in (4.29).

Lemma 6.2. For an ordered quadruple (p, δ,u, µ), where p is a prime, δ a natural number, u ∈ Rp,δ, and µ ≥ 0
an integer, exactly one of the following is the case. Moreover each case is possible.

[i] φ−1
p,δ(u) = {0} and µ = 0, or φ−1

p,δ(u) = {1} and µ = 1, or φ−1
p,δ(u) = {0, 1} and µ = 1,

[ii] φ−1
p,δ(u) = {1} and µ = 0,

[iii] φ−1
p,δ(u) = {0, 1} and µ = 0,

[iv] φ−1
p,δ(u) = Z≥2 and µ = 1,

[v] φ−1
p,δ(u) = Z≥2 and µ = 0,

[vi] φ−1
p,δ(u) = Z≥2 and µ ≥ 2,

[vii] otherwise.
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Moreover, each case is possible.

Proof. In view of (4.4), (4.5), and (4.6), clearly φ−1
p,δ(u) is one of {0}, {1}, {0, 1}, and Z≥2. Then one sees that

the first six cases are mutually exclusive. That each case is possible is plain. □

Based on the above lemma we define the following notation.

Notation 6.1. For each quadruple (p, δ,u, µ) as in Lemma 6.2, denote by D(p, δ,u, µ) the case number
(in lower case Roman numerals in brackets as in the lemma). That is, D(p, δ,u, µ) = [ii] if and only if
φ−1

p,δ(u) = {1} and µ = 0, and D(p, δ,u, µ) = [iii] if and only if φ−1
p,δ(u) = {0, 1} and µ = 0, etc.

6.3 The conditions when n(k) is a v-palindrome

Throughout this section we fix an n as in Theorem 1.2 with L decimal digits.
In Subsection 6.3.1, we define certain numbers associated to n. In Subsection 6.3.2, we introduce

the characteristic equation and the symbols Tp,u, Au, and Bu. In Subsection 6.3.3, we state the necessary
and sufficient condition on k such that n(k) is a v-palindrome (Theorem 6.3) and consider the set of all
integers k ≥ 1 such that n(k) is a v-palindrome. In Subsection 6.3.4, we define the type of a v-palindrome.
Finally in Subsection 6.3.5, we summarize the content of this section.

Proofs are not really given because they all follow from the proof of Theorem 1.2 in Section 4.4.

6.3.1 Associated numbers

We define certain numbers associated to n. Suppose that n and r(n) have the prime factorizations

n =
∏

p

pap , r(n) =
∏

p

pbp , (6.3)

where the products are over the primes, the ap, bp ≥ 0 are integers, and ap = bp = 0 for all but finitely
many primes p. For integers k ≥ 1, we have the ρk,L of Definition 4.1, but because L is fixed in this
section, we denote it simply by ρk.

For each crucial prime p of n (Definition 4.6), put

δp = ap − bp , 0, (6.4)
µp = min(ap, bp) ≥ 0, (6.5)
gp = ordp(ρk), (6.6)
αp = µp + gp. (6.7)

The δp and µp depend only on n, thus can be considered as fixed. The gp clearly depends on not only
n but also on k. However, we omit k from the notation for simplicity, keeping in mind that gp depends
also on the variable k. Consequently, αp also depends on k.

6.3.2 The characteristic equation

Recall that the set of crucial primes of n is denoted by K(n) in Definition 4.6. But because n is fixed in
this section, we denote it simply by K. We give the following definition.

Definition 6.2. The equation ∑
p∈K

sgn(δp)up = 0 (6.8)

will be called the characteristic equation for n, where the up are variables.

We want to solve (6.8) for the up but with certain restrictions as follows.

Definition 6.3. A solution (up)p∈K to (6.8) with up ∈ Rp,|δp | for all p ∈ K will be called a characteristic solution
for n. The set of characteristic solutions will be denoted by U (orU(n) to specify n).

We have the numbers hq,L defined in Notation 4.2 for every prime power q relatively prime to 10.
Since L is fixed in this section we denote it simply by hq. We then define the following notation.
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Notation 6.4. Let u = (up)p∈K be a characteristic solution for n. We denote, for p ∈ K \ {2, 5},

Tp,u = (Ap,u,Bp,u) =



(∅, {hp}) if D(p, |δp|,up, µp) = [i],
({hp}, {hp2 }) if D(p, |δp|,up, µp) = [ii],
(∅, {hp2 }) if D(p, |δp|,up, µp) = [iii],
({hp},∅) if D(p, |δp|,up, µp) = [iv],
({hp2 },∅) if D(p, |δp|,up, µp) = [v].

(6.9)

For p ∈ {2, 5}, denote

Tp,u = (Ap,u,Bp,u) =



(∅,∅) if D(p, |δp|,up, µp) = [i],
(∅, {1}) if D(p, |δp|,up, µp) = [ii],
(∅,∅) if D(p, |δp|,up, µp) = [iii],
(∅, {1}) if D(p, |δp|,up, µp) = [iv],
(∅, {1}) if D(p, |δp|,up, µp) = [v].

(6.10)

Also, we denote, for any p ∈ K,

Tp,u = (Ap,u,Bp,u) =

(∅,∅) if D(p, |δp|,up, µp) = [vi],
(∅, {1}) if D(p, |δp|,up, µp) = [vii].

(6.11)

Remark 6.1. Therefore Tp,u is an ordered pair of sets of at most one positive integer. The “T” comes from
“table”. A table of p versus u, with entries Tp,u, will be convenient when actually performing the general
procedure, as illustrated in Section 6.7 with Table 6.4.

We give further notation as follows.

Notation 6.5. For each characteristic solution u for n, put

Au =
⋃
p∈K

Ap,u, Bu =
⋃
p∈K

Bp,u, (6.12)

and Su = S(Au,Bu).

6.3.3 The necessary and sufficient condition

We state the necessary and sufficient condition on k such that n(k) is a v-palindrome as follows.

Theorem 6.3. For k ≥ 1, the number n(k) is a v-palindrome if and only if for some characteristic solution
u = (up)p∈K for n,

φp,|δp |(αp) = up, for all p ∈ K. (6.13)

Moreover, given a characteristic solution u = (up)p∈K for n, (6.13) holds if and only if

k ∈ Su. (6.14)

The first sentence in the above theorem is Lemma 4.7, and the second sentence follows from argu-
ments in Subsection 4.4.2.

The condition (6.13) might seem to be independent of k, but the αp actually depend on k. To write
(6.13) out so that the dependence on k is more visible, we can recover (6.13) into

φp,|δp |(µp + ordp(ρk)) = up, for all p ∈ K. (6.15)

Since the condition (6.13) (or equivalently (6.15)) cannot hold, for the same k, for two distinct character-
istic solutions, the conditions (6.13) are mutually exclusive over u. Consequently, the conditions (6.14)
are also mutually exclusive over u. Therefore the sets Su ∩N are pairwise disjoint, we write this as a
corollary.

Corollary 6.4. The sets Su ∩N are pairwise disjoint over u ∈ U.
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In fact we have the following, which says that not only are the intersections Su ∩N of the sets Su
withN pairwise disjoint, but the sets Su themselves are already pairwise disjoint as subsets of Z.

Theorem 6.5. The sets Su are pairwise disjoint over u ∈ U.

Proof. Suppose on the contrary that for some distinct u,v ∈ U that there exists an integer

x ∈ Su ∩ Sv = S(Au,Bu) ∩ S(Av,Bv). (6.16)

If we let
ω = lcm(Au ∪ Bu ∪ Av ∪ Bv), (6.17)

then we see that x + ω ∈ Su ∩ Sv too. Therefore adding ω as many times as necessary to x, we obtain a
natural number in Su ∩ Sv, this contradicts Corollary 6.4. □

The set of integers k ≥ 1 such that n(k) is a v-palindrome can now be written as follows.

Corollary 6.6. The set of integers k ≥ 1 such that n(k) is a v-palindrome is⊔
u∈U

(Su ∩N) =

⊔
u∈U

Su

 ∩N. (6.18)

Proof. This follows directly from Theorem 6.3 and Corollaries 6.4 and 6.5. □

6.3.4 The type of a v-palindrome

An integer k ≥ 1 such that n(k) is a v-palindrome can be categorized as to which Su it belongs to.
However, it could happen that Su = ∅, therefore we give the following definition.

Definition 6.6. Let u be a characteristic solution for n. If Su is empty, then we call u degenerate; otherwise
it is nondegenerate. The set of nondegenerate characteristic solutions will be denoted by U∗ (or U∗(n) to
specify n). For a u ∈ U∗, an n(k) which is a v-palindrome will be said to be of type u (with respect to n) if
k ∈ Su. We also denote

S =
⊔
u∈U∗

Su. (6.19)

Remark 6.2. We have included “with respect to n” in our definition of type above because the same
v-palindrome m might be m = n1(k1) = n2(k2) for n1 , n2, and therefore the type of m can be considered
with respect to n1 and also with respect to n2. However, we shall prove in Chapter 7 that the types are
the same. We call this the invariance property (Theorem 7.1). Assuming this property for now, we shall
omit saying “with respect to n” hereafter in this chapter.

Notice that if u is nondegenerate, then there exists a v-palindrome n(k) of type u, because Su contains
positive integers. We have thus categorized the v-palindromes n(k) into |U∗| types. For the characteristic
equation (6.8) for n, it could happen that there are no characteristic solutions at all, or that there are
characteristic solutions but unfortunately all are degenerate, or that there are nondegenerate solutions.
In the former two cases n(k) is not a v-palindrome for any k ≥ 1, i.e. c(n) = ∞. In the third case only does
there exist an integer k ≥ 1 for which n(k) is a v-palindrome.

6.3.5 Summary

Our original motivation was to examine the v-palindromicity of the repeated concatenations (6.1) of
n. In order to do this, we first solve for the characteristic solutions for n. Then, each nondegenerate
characteristic solution u gives rise to a nonempty infinite subset Su ∩N of integers k ≥ 1 for which
n(k) is a v-palindrome. The sets Su ∩N are pairwise disjoint over the nondegenerate solutions u and
their union gives the set of all integers k ≥ 1 for which n(k) is a v-palindrome. This section is of a more
theoretical and abstract nature which forms the basis of the general procedure of Section 6.6.

6.4 Construction of the indicator function In

Again, throughout this section we fix an n as in Theorem 1.2. In Subsection 6.4.1, we construct the
indicator function In (Definition 8.2) based on the discussion in the previous section. In Subsection 6.4.2,
we express In as a linear combination (6.25) of functions of the form Ia (Definition 1.11) with integer
coefficients.
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6.4.1 Construction

Following directly from Lemma 5.11, we have the following.

Theorem 6.7. Let u be a nondegenerate characteristic solution for n. Then for all x ∈ Z,

ISu (x) = Ilcm(Au)(x)
∏
b∈Bu

(1 − Ib(x)). (6.20)

Hence ISu is periodic modulo lcm(Au ∪ Bu). Moreover, for integers k ≥ 1, the number n(k) is v-palindromic of
type u if and only if ISu (k) = 1.

Since we have the disjoint union (6.19), we have the following.

Theorem 6.8. We have that for all x ∈ Z,

IS(x) =
∑
u∈U∗

ISu (x). (6.21)

Hence IS is periodic modulo

lcm

⋃
u∈U∗

(Au ∪ Bu)

 . (6.22)

Moreover, for integers k ≥ 1, the number n(k) is v-palindromic if and only if IS(k) = 1. Hence IS is the indicator
function In for n.

Proof. If x ∈ S, then x ∈ Su for exactly one u ∈ U∗, so the right-hand side of (6.21) evaluates to 1. If x is
an integer with x < S, then ISu (x) = 0 for all u ∈ U∗, so the right-hand side of (6.21) evaluates to 0. Let
the quantity in (6.22) be denoted by ω. For each u ∈ U∗, the function ISu = IS(Au,Bu) is periodic modulo
lcm(Au ∪ Bu) by Theorem 6.7. Since ω is a multiple of lcm(Au ∪ Bu) for every u ∈ U∗, we see that IS is
periodic modulo ω.

□

6.4.2 The indicator function In as a linear combination

We express In as a linear combination (6.25) of functions of the form Ia (Definition 1.11) with integer
coefficients. We first have the following.

Theorem 6.9. Let u be a nondegenerate characteristic solution for n. Then

ISu =
∑
B⊆Bu

(−1)|B|Ilcm(Au∪B). (6.23)

Proof. This follows by expanding the equation (6.20) in Theorem 6.7 and then simplifying using Lemma
5.7. □

Consequently we have the following.

Theorem 6.10. We have the expression

In =
∑
u∈U∗

∑
B⊆Bu

(−1)|B|Ilcm(Au∪B) (6.24)

for the indicator function for n.

Proof. This follows from Theorems 6.8 and 6.9. □

Consequently we have the following.

Theorem 6.11. There exist integers q ≥ 0 and 1 ≤ c1 < c2 < · · · < cq and λ1, λ2, . . . , λq , 0 such that

In =

q∑
j=1

λ jIc j . (6.25)

Proof. We simply collect like terms in equation (6.24). □

According to Theorem 5.8, we have in particular that the indicator function In for n can be expressed
in the form (6.25) uniquely. Examples of indicator functions In in this form are given in Table 6.5.

47



6.5 Derivation of ω0(n) and c(n)

Again, throughout this section we fix an n as in Theorem 1.2.
In Subsection 6.5.1, we state that a period of n is simply a period of its indicator function In (Theorem

6.12). In Subsection 6.5.2, we express In in the form (5.6) of a periodic function Z → C. In Subsection
6.5.3, we show how both ω0(n) and c(n) can be easily derived from an expression of In in the form (6.28).

6.5.1 The periods of n

Recall the concept of a period of n from Definition 1.9. On the other hand, we also have the concept of a
period of a periodic function Z→ C from Definition 5.1. The two concepts are related as follows.

Theorem 6.12. Let n be as in Theorem 1.2. Then for integers ω ≥ 1, the following are equivalent.

(i) ω is a period of In

(ii) ω is a period of In|N
(iii) ω is a period of n.

Hence ω0(n) is the fundamental period of In.

Proof. This follows from Theorems 5.1 and 6.8. □

Because of the above theorem, to find ω0(n), we just have to find the fundamental period of In.

6.5.2 The indicator function In in the form (5.6)

We express In in the form (5.6) of a periodic functionZ→ C. Then in principle we can use Theorem 5.5
to compute the fundamental period of In, which will then be ω0(n). However, this will be conceivably
tedious, and so the following theorem is only of theoretical interest. Recall that R(a) denotes the set of
a-th roots of unity in C.

Theorem 6.13. The indicator function In for n is

In(x) =
∑
u∈U∗

∑
B⊆Bu

(−1)|B|

lcm(Au ∪ B)

∑
ζ∈R(lcm(Au∪B))

ζx (6.26)

=
∑
ζ∈R(ω)

 ∑
u∈U∗,B⊂Bu,ζ∈R(lcm(Au∪B))

(−1)|B|

lcm(Au ∪ B)

 ζx, (6.27)

where ω is the quantity (6.22).

Proof. The first equality follows by using Lemma 5.6 into the equation (6.24) in Theorem 6.10. The
second equality is simply an iterated version of the first, summing over ζ first. □

6.5.3 Using the linear combination

By the following, both ω0(n) and c(n) can be easily derived.

Theorem 6.14. Suppose that the indicator function for n is expressed as

In =

q∑
j=1

λ jIc j , (6.28)

where q ≥ 0 and 1 ≤ c1 < . . . < cq and λ1, . . . , λq , 0 are integers. Then

ω0(n) = lcm{c1, . . . , cq}, c(n) = inf{c1, . . . , cq}. (6.29)

Proof. This follows directly from Theorems 5.9 and 5.10. □

In this way, once we have expressed the indicator function In in the form (6.28), it will be easy to
derive both ω0(n) and c(n). In the next section, we describe the general procedure to express In in the
form (6.28).
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6.6 The general procedure

Again, throughout this section we fix an n as in Theorem 1.2. We describe a procedure to express the
indicator function In (Definition 1.10) as a linear combination (6.35) of functions of the form Ia with
integer coefficients in the following. We call it the general procedure. This procedure is an “extraction”
from the previous discussions and so works due to the reasoning there.

Step 1. Factorize both n and r(n),

n = pa1
1 · · · p

am
m , (6.30)

r(n) = pb1
1 · · · p

bm
m , (6.31)

where p1 < · · · < pm are primes, and ai, bi ≥ 0 are integers, not both 0.

Step 2. Look for those primes pi for which ai , bi, i.e. the crucial primes. Since we are only going to
focus on these primes, we denote them again by p1 < · · · < pm, and the exponents are ai, bi. Define
the numbers δi = ai − bi and µi = min(ai, bi) for 1 ≤ i ≤ m.

Step 3. The characteristic equation for n is

sgn(δ1)u1 + sgn(δ2)u2 + · · · + sgn(δm)um = 0. (6.32)

We want to solve it for ui ∈ Rpi,|δi |, i.e. to find the characteristic solutions. If there are no solutions,
then conclude that c(n) = ∞ and ω0(n) = 1. Otherwise, let the solutions be u1, . . . ,ut, in any order.

Step 4. For each characteristic solution u, we have the sets Au and Bu of Definition 6.5. The solution
u is nondegenerate if and only if S(Au,Bu) , ∅. Now S(Au,Bu) , ∅ if and only if b ∤ lcm(Au)
for all b ∈ Bu. Use this to rule out those characteristic solutions u which are degenerate. If
no characteristic solutions remain, conclude that c(n) = ∞ and ω0(n) = 1. Otherwise, let the
nondegenerate characteristic solutions be u∗1, . . . ,u

∗
s, in any order.

Step 5. The indicator function In for n is then given by Theorem 6.8 as

In =

s∑
i=1

ISu∗i
. (6.33)

By Theorem 6.7 this can be written as

In =

s∑
i=1

Ilcm(Au∗i
)

∏
b∈Bu∗i

(1 − Ib). (6.34)

Multiplying everything out on the right-hand side above with the help of Lemma 5.7 and collecting
like terms, In can be expressed in the form (6.25), i.e.

In =

q∑
j=1

λ jIc j , (6.35)

where q ≥ 1 and 1 ≤ c1 < · · · < cq and λ1, . . . , λq , 0 are integers (how this is actually done is
illustrated in the example of n = 126 in Section 6.7). Finally, conclude that

c(n) = c1, ω0(n) = lcm{c1, . . . , cq}. (6.36)

Remark 6.3. We have described the general procedure in five steps as above. Whether c(n) = ∞ can
be ascertained at certain points during the procedure. Namely, in Step 3, if there are no characteristic
solutions at all, we immediately conclude that c(n) = ∞ and the procedure ends; and in Step 5, if all the
characteristic solutions are degenerate, then we immediately conclude that c(n) = ∞ and the procedure
ends. Otherwise, c(n) and ω0(n) and the indicator function In in the form (6.35) are found in Step 5.
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6.7 Counterexample to Conjecture 6.1

In Subsection 6.7.1, we perform the general procedure of the previous section to n = 126, which is the
smallest counterexample to Conjecture 6.1 found by PARI/GP. In Subsection 6.7.2 we consider another
function ωb(n) which will always be a period of n, but Conjecture 6.1 with ω f (n) replaced by ωb(n) is still
false.

6.7.1 The general procedure performed to n = 126

We perform the general procedure to n = 126 as follows.

Step 1. We factorize

126 = 2 · 32 · 7, (6.37)

621 = 33 · 23. (6.38)

Step 2. The crucial primes are 2, 3, 7, 23. We arrange the numbers pi, ai, bi, δi, and µi into a table.

Table 6.2: The pi, ai, bi,δi, and µi for n = 126.

i pi ai bi δi µi

1 2 1 0 1 0
2 3 2 3 −1 2
3 7 1 0 1 0
4 23 0 1 −1 0

Step 3. The characteristic equation is
u1 − u2 + u3 − u4 = 0, (6.39)

where we want to solve for u1 ∈ {1, 2}, u2 ∈ {1, 2, 3}, u3 ∈ {1, 2, 7}, and u4 ∈ {1, 2, 23}. The
characteristic solutions are

u1 = (1, 1, 1, 1), u2 = (1, 1, 2, 2), u3 = (1, 2, 2, 1), u4 = (2, 1, 1, 2) (6.40)
u5 = (2, 2, 1, 1), u6 = (2, 2, 2, 2), u7 = (2, 3, 2, 1). (6.41)

For each characteristic solution ul (1 ≤ l ≤ 7), also write ul = (ul1,ul2,ul3,ul4).

Step 4. We make two tables of the crucial primes pi (1 ≤ i ≤ 4) versus the characteristic solutions ul
(1 ≤ l ≤ 7) as follows.

The first is where in the (pi,ul)-entry we have the D(pi, |δi|,uli, µi) of Definition 6.1. The second is
where in the (pi,ul)-entry we have the Tpi,ul defined in Notation 6.4 and also at the bottom, the sets
Au, Bu, and Su defined in Definition 6.5. The first table helps us construct the second table because
the definition of Tpi,ul depends on D(pi, |δi|,uli, µi).

Table 6.3: Table of D(pi, |δi|,uli, µi).

u1 u2 u3 u4 u5 u6 u7

2 [v] [v] [v] [iii] [iii] [iii] [iii]
3 [vi] [vi] [vii] [vi] [vii] [vii] [vii]
7 [v] [ii] [ii] [v] [v] [ii] [ii]
23 [v] [ii] [v] [ii] [v] [ii] [v]
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Table 6.4: Table of Tpi,ul and Au, Bu, and Su.

u1 u2 u3 u4 u5 u6 u7

2 (∅, {1}) (∅, {1}) (∅, {1}) (∅,∅) (∅,∅) (∅,∅) (∅,∅)
3 (∅,∅) (∅,∅) (∅, {1}) (∅,∅) (∅, {1}) (∅, {1}) (∅, {1})
7 ({14},∅) ({2}, {14}) ({2}, {14}) ({14},∅) ({14},∅) ({2}, {14}) ({2}, {14})
23 ({506},∅) ({22}, {506}) ({506},∅) ({22}, {506}) ({506},∅) ({22}, {506}) ({506},∅)
Au {14, 506} {2, 22} {2, 506} {14, 22} {14, 506} {2, 22} {2, 506}
Bu {1} {1, 14, 506} {1, 14} {506} {1} {1, 14, 506} {1, 14}
Su ∅ ∅ ∅ S({14, 22}, {506}) ∅ ∅ ∅

We see immediately from the above table that the only nondegenerate solution is u4.

Step 5. The indicator function for 126 is then

I126 = I14I22(1 − I506) = I154 − I3542. (6.42)

We conclude that c(126) = 154 and ω0(126) = lcm(154, 3542) = 3542. Since ω f (126) = 31878
(calculation omitted), we see that n = 126 is a counterexample to Conjecture 6.1.

6.7.2 A refinement

So it was not difficult to find a counterexample to Conjecture 6.1, because there is a counterexample as
small as 126. According to Theorem 6.8, the quantity

ωb(n) = lcm

⋃
u∈U∗

(Au ∪ Bu)

 (6.43)

is always a period of n. It is easily seen that we always have ωb(n) | ω f (n). Therefore in a sense ωb(n) is a
refinement ofω f (n) because the former provides a smaller period. Thus we can speculate whetherω0(n)
is always 1 or ωb(n). But this too is false, as the smallest counterexample found by PARI/GP is n = 5957.

6.8 Table of indicator functions In

We provide a table of indicator functions In expressed in the form (6.25) computed by performing the
general procedure of Section 6.6 using PARI/GP. We also include c(n) and ω0(n).

Table 6.5: The indicator function In and c(n) and ω0(n) for some numbers n.

n In c(n) ω0(n)
13 I15 − I195 − I465 + 2I6045 15 6045
17 I280 − I4760 − I19880 + 2I337960 280 337960
18 I1 1 1
19 I819 − I15561 819 15561
26 I15 − I195 − I465 + 2I6045 15 6045
37 I12 − I444 − I876 + 2I32412 12 32412
39 I15 − I195 − I465 + 2I6045 15 6045
48 I3 − I21 3 21
49 I3243 − I22701 3243 22701
56 I3 − I21 − I39 + 2I273 3 273
79 I624 − I49296 − I60528 + 2I4781712 624 4781712
103 I10234 − I1054102 10234 1054102
107 I37100 − I3969700 − I26007100 + 2I2782759700 37100 2782759700
109 I1686672 − I183847248 1686672 183847248
113 I17360 − I1961680 − I5398960 + 2I610082480 17360 610082480
117 I2054 2054 2054
119 I123760 − I112745360 123760 112745360
122 I80 − I1040 − I1360 − I4880 + I17680 + 2I63440 + 2I82960 − 3I1078480 80 1078480
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We see that the indicator functions for 13, 26, and 39 are identical. There is another curiosity in the
above table: for all these indicator functions, the largest subscript is a multiple of all smaller subscripts.
This is not always true, and the smallest counterexample found by PARI/GP is n = 21726, with

I21726 = I816 − I5712 − I8976 − I10608 + I16401 − I32802 + I62832 + I74256

+I116688 − I816816 − I1098867 + I2197734.

Here 816 ∤ 2197734.
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Chapter 7

Proof of the Invariance Property

This chapter is devoted to the proof of the invariance property, roughly described in Subsection 1.6.1.
We state it formally as follows.

Theorem 7.1. Let m be a v-palindrome and write m = n0(k0), where n0, k0 ≥ 1 are integers and n0 is minimal.
Then all of the types

Type(m,n0(d)), for d | k0, (7.1)

are the same element ofU(n0).

In Section 7.1, we prove a formula about the numbers hpα,L defined in Notation 4.2. In Section 7.2, we
describe a slightly altered form of the general procedure of Section 6.6 suitable for the proof of Theorem
7.1. We call it the altered general procedure. In Section 7.3, we perform the altered general procedure to
all the repeated concatenations n(k) of an integer n as in Theorem 1.2 simultaneously. Finally in Section
7.4, we prove Theorem 7.1.

7.1 A formula for hpα,Lk

We prove the following formula about the numbers ρk,L defined in Definition 4.1 and the numbers hpα,L
defined in Notation 4.2.

Lemma 7.2. Let pα be a prime power with p < {2, 5} and k,L ≥ 1 integers. We have

hpα,Lk =
hpα+ordp (ρk,L),L

(k, hpα+ordp (ρk,L),L)
. (7.2)

Proof. The number hpα,Lk is the smallest positive integer such that

(10Lk)hpα,Lk ≡ 1 (mod pα+ordp(10Lk−1)). (7.3)

We have
10Lk − 1 = (10L − 1)(10L(k−1) + 10L(k−2) + · · · + 1) = (10L − 1)ρk,L, (7.4)

thus
ordp(10Lk − 1) = ordp(10L − 1) + ordp(ρk,L). (7.5)

Hence we can rewrite (7.3) as

(10Lk)hpα,Lk ≡ 1 (mod p(α+ordp(ρk,L))+ordp(10L−1)). (7.6)

Now the number hpα+ordp (ρk,L ),L is the smallest positive integer such that

(10L)
h

p
α+ordp (ρk,L )

,L ≡ 1 (mod p(α+ordp(ρk,L))+ordp(10L−1)). (7.7)

Hence by the property of cyclic groups, hpα,Lk is the smallest positive integer for which hpα+ordp (ρk,L),L | khpα,Lk,
and this is clearly that given by (7.2). □
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7.2 Altered general procedure

We describe a slightly altered form of the general procedure of Section 6.6 suitable for the proof of
Theorem 7.1. We call it the altered general procedure. In essense, the altered version is the original version
with Step 5 left out and with construction of tables akin to Tables 6.3 and 6.4. Just like the original
version, the altered version is also to be performed to an integer n as in Theorem 1.2. We now fix such
an n and describe the altered general procedure as follows.

Step 1 Factorize both n and r(n),

n = pa1
1 · · · p

am
m , (7.8)

r(n) = pb1
1 · · · p

bm
m , (7.9)

where p < · · · < pm are primes, and ai, bi ≥ 0 are integers, not both 0.

Step 2 Let K be the set of crucial primes of n. Since n , r(n), the set K is a nonempty finite set. We
are only going to focus on these primes, and so we denote them again by p1 < · · · < pm, and the
exponents are ai, bi. Define the numbers δi = ai − bi and µi = min(ai, bi) for 1 ≤ i ≤ m.

Step 3 Let U be the set of characteristic solutions for n. If U = ∅, then conclude that c(n) = ∞ and
ω0(n) = 1. Otherwise, suppose thatU = {u1, . . . ,ut}, where we write ul = (uli)m

i=1 for 1 ≤ l ≤ t.

Step 4 We make two tables of the crucial primes pi (1 ≤ i ≤ m) versus the characteristic solutions ul
(1 ≤ l ≤ t) as follows.

The first is where in the (pi,ul)-entry we have the D(pi, |δi|,uli, µi) defined in Definition 6.1. It is
called the first table for n. We illustrate the generic first table as follows.

Table 7.1: The first table.

u1 · · · ul · · · ut

p1 D(p1, |δ1|,u11, µ1) · · · D(p1, |δ1|,ul1, µ1) · · · D(p1, |δ1|,ut1, µ1)
...

...
...

...
pi D(pi, |δi|,u1i, µi) · · · D(pi, |δi|,uli, µi) · · · D(pi, |δi|,uti, µi)
...

...
...

...
pm D(pm, |δm|,u1m, µm) · · · D(pm, |δm|,ulm, µm) · · · D(pm, |δm|,utm, µm)

The second is where in the (pi,ul)-entry we have the Tpi,ul = (Api,ul ,Bpi,ul ) defined in Notation 6.4.
This table of entries Tpi,ul is called the second table for n and we illustrate the generic one as follows.

Table 7.2: The second table.

u1 · · · ul · · · ut

p1 (Ap1,u1 ,Bp1,u1 ) · · · (Ap1,ul ,Bp1,ul ) · · · (Ap1,ut ,Bp1,ut )
...

...
...

...
pi (Api,u1 ,Bpi,u1 ) · · · (Api,ul ,Bpi,ul ) · · · (Api,ut ,Bpi,ut )
...

...
...

...
pm (Apm,u1 ,Bpm,u1 ) · · · (Apm,ul ,Bpm,ul ) · · · (Apm,ut ,Bpm,ut )

The first table helps us to construct the second table because the determination of Tpi,ul depends
on D(pi, |δi|,uli, µi).

We have the sets Aul ,Bul ,Sul of Definition 6.5. Namely, for each ul, put

Aul =

m⋃
i=1

Api,ul , Bul =

m⋃
i=1

Bpi,ul,k, (7.10)

Sul = S(Aul ,Bul ). (7.11)
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Visually speaking, Aul and Bul are respectively the union of the left and right coordinates of the
entries in the ul-column. We then put

S =
t⊔

l=1

Sul . (7.12)

The set of nondegenerate solutions for n is denoted byU∗.

7.3 Altered general procedure performed to all the n(k)

Again, throughout this section we fix an n as in Theorem 1.2 with L decimal digits. We perform the
altered general procedure of Section 7.2 to all the repeated concatenations n(k) simultaneously as follows.

Step 1 Factorize both n and r(n),

n = pa1
1 · · · p

am
m , (7.13)

r(n) = pb1
1 · · · p

bm
m , (7.14)

where p < · · · < pm are primes, and ai, bi ≥ 0 are integers, not both 0. For integers k ≥ 1, we
abbreviate ρk,L as ρk. Since n(k) = nρk and r(n(k)) = r(n)(k) = r(n)ρk,

n(k) = pa1
1 · · · p

am
m ρk, (7.15)

r(n(k)) = pb1
1 · · · p

bm
m ρk. (7.16)

Hence we see that for 1 ≤ i ≤ m,

ordpi (n(k)) = ai + ordpi (ρk), (7.17)
ordpi (r(n(k))) = bi + ordpi (ρk), (7.18)

and that for any other prime p,

ordp(n(k)) = ordp(r(n(k))) = ordp(ρk). (7.19)

Step 2 In view of the equalities (7.17), (7.18), and (7.19) in Step 1, the crucial primes of n(k) are the same
as that of n. That is, K(n(k)) = K(n), and we denote it simply by K. We are only going to focus on
these primes, and so we denote them again by p1 < · · · < pm, and we redefine

ai = ordpi (n), bi = ordpi (r(n)), (7.20)

for 1 ≤ i ≤ m. Define the numbers δi = ai − bi and µi = min(ai, bi) for 1 ≤ i ≤ m. Since we are
applying the procedure to all the n(k), we also define, for 1 ≤ i ≤ m and all k ≥ 1,

aik = ordpi (n(k)) = ai + ordpi (ρk), (7.21)
bik = ordpi (r(n(k))) = bi + ordpi (ρk), (7.22)
δik = aik − bik = ai − bi = δi, (7.23)
µik = min(aik, bik) = min(ai, bi) + ordpi (ρk) = µi + ordpi (ρk). (7.24)

Hence we see clearly how the aik, bik, δik, µik changes as k increases. More precisely, we see that
the δik do not change and that the changes in the aik, bik, µik depend only on ordpi (ρk). We denote
xik = ordpi (ρk) for 1 ≤ i ≤ m and all k ≥ 1.

Step 3 In view of (7.23), the characteristic equation for all the n(k) are the same and it is

sgn(δ1)u1 + sgn(δ2)u2 + · · · + sgn(δm)um = 0. (7.25)

Moreover, the characteristic solutions for all the n(k) are the same. That is,

U(n) =U(n(2)) =U(n(3)) = · · · =U. (7.26)

IfU = ∅, conclude that for all integers k ≥ 1, the number n(k) is not a v-palindrome. Otherwise,
suppose thatU = {u1, . . . ,ut}, where we write ul = (uli)m

i=1 for 1 ≤ l ≤ t.
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Step 4 We illustrate the first and second tables for n(k) as follows.

Table 7.3: The first table for n(k).

u1 · · · ul · · · ut

p1 D(p1, |δ1|,u11, µ1 + x1k) · · · D(p1, |δ1|,ul1, µ1 + x1k) · · · D(p1, |δ1|,ut1, µ1 + x1k)
...

...
...

...
pi D(pi, |δi|,u1i, µi + xik) · · · D(pi, |δi|,uli, µi + xik) · · · D(pi, |δi|,uti, µi + xik)
...

...
...

...
pm D(pm, |δm|,u1m, µm + xmk) · · · D(pm, |δm|,ulm, µm + xmk) · · · D(pm, |δm|,utm, µm + xmk)

For the second table, a third subscript of k is added to the Api,ul and Bpi,ul to indicate the dependence
on k.

Table 7.4: The second table for n(k).

u1 · · · ul · · · ut

p1 (Ap1,u1,k,Bp1,u1,k) · · · (Ap1,ul,k,Bp1,ul,k) · · · (Ap1,ut,k,Bp1,ut,k)
...

...
...

...
pi (Api,u1,k,Bpi,u1,k) · · · (Api,ul,k,Bpi,ul,k) · · · (Api,ut,k,Bpi,ut,k)
...

...
...

...
pm (Apm,u1,k,Bpm,u1,k) · · · (Apm,ul,k,Bpm,ul,k) · · · (Apm,ut,k,Bpm,ut,k)

For each ul and all integers k ≥ 1, put

Aul,k =

m⋃
i=1

Api,ul,k, Bul,k =

m⋃
i=1

Bpi,ul,k, (7.27)

Sul,k = S(Aul,k,Bul,k). (7.28)

We then put

Sk =

t⊔
l=1

Sul,k. (7.29)

The set of nondegenerate solutions for n(k) is denoted by U∗(n(k)). Although the crucial primes
and characteristic solutions are the same for all the n(k), the nondegenerate solutions are not in
general.

7.4 Proof of the invariance property

Again, throughout this section we fix an n as in Theorem 1.2 with L decimal digits.
Assume that we have performed the alternated general procedure to n and to all the n(k) as described

in Sections 7.2 and 7.3. Moreover, all those notation are inherited. To prove the invariance property, i.e.,
Theorem 7.1, it suffices to prove that if n(kj) is a v-palindrome, where k, j ≥ 1 are integers, then the type
of n(kj) with respect to n is the same as that with respect to n(k). That is,

Type(n(kj),n) = Type(n(kj),n(k)), (7.30)

which we proceed to prove. Assume that Type(n(kj),n) = ul. This is equivalent to saying that kj ∈ Sul .
We need to show that Type(n(kj),n(k)) = ul too, i.e., j ∈ Sul,k. We illustrate the ul-column in the second
tables for n and n(k) as follows.
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Table 7.5: The ul-column in the second table for n.

ul

p1 (Ap1,ul ,Bp1,ul )
...

...
pi (Api,ul ,Bpi,ul )
...

...
pm (Apm,ul ,Bpm,ul )

Visually speaking, that kj ∈ Sul means exactly that kj is divisible by every number which appears in
the left coordinate of an entry in the above column, and indivisible by every number which appears in
the right coordinate of an entry in the above column.

Table 7.6: The ul-column in the second table for n(k).

ul

p1 (Ap1,ul,k,Bp1,ul,k)
...

...
pi (Api,ul,k,Bpi,ul,k)
...

...
pm (Apm,ul,k,Bpm,ul,k)

Similarly, that j ∈ Sul,k means exactly that j is divisible by every number which appears in the left
coordinate of an entry in the above column, and indivisible by every number which appears in the right
coordinate of an entry in the above column. Hence it suffices to prove that j ∈ S(Api,ul,k,Bpi,ul,k) for all
1 ≤ i ≤ m.

We focus on an arbitrary (Api,ul,k,Bpi,ul,k) and denote p = pi, u = ul, δ = δi, u = uli, µi = µ, and xk = xik,
and (A,B) = (Api,ul ,Api,ul ) and (Ak,Bk) = (Api,ul,k,Bpi,ul,k). Hence we need to prove that j ∈ S(Ak,Bk). We
divide our consideration into various cases, according to the prime p and D = D(p, |δ|,u, µ), in reference
to how the second table for n is determined via (6.9), (6.10), and (6.11). Just as the determination of
(A,B) depends on D, the determination of (Ak,Bk) depends on Dk = D(p, |δ|,u, µ + xk). By Lemma 7.2, if
p < {2, 5}, then

hp,Lk =
hp1+ordp(ρk,L),L

(k, hp1+ordp (ρk,L),L)
=

hp1+xk ,L

(k, hp1+xk ,L)
, (7.31)

hp2,Lk =
hp2+ordp(ρk,L),L

(k, hp2+ordp (ρk,L),L)
=

hp2+xk ,L

(k, hp2+xk ,L)
. (7.32)

We will be using the above equalities in the following case analysis.

(p < {2, 5} and D = [i]) We have (A,B) = (∅, {hp,L}). Thus hp,L ∤ kj, and so hp,L ∤ k. Consequently, by
Lemma 4.2, p ∤ ρk,L, and so xk = 0. Therefore Dk = [i] too, and so (Ak,Bk) = (∅, {hp,Lk}). Since xk = 0,
we have hp,Lk = hp,L/(k, hp,L). Assume on the contrary that hp,Lk | j, then

hp,L | (k, hp,L) j | kj, (7.33)

a contradiction to hp,L ∤ kj. Whence hp,Lk ∤ j, i.e., j ∈ S(Ak,Bk).

(p < {2, 5} and D = [ii]) We have (A,B) = ({hp,L}, {hp2,L}). Thus hp,L | kj and hp2,L ∤ kj, and so hp2,L ∤ k.
Consequently, by Lemma 4.2, p2 ∤ ρk,L, and so xk ≤ 1.

In case xk = 0, we have Dk = [ii] too, and so (Ak,Bk) = ({hp,Lk}, {hp2,Lk}). We have hp,Lk = hp,L/(k, hp,L)
and hp2,Lk = hp2,L/(k, hp2,L). Since hp,L | kj, we have hp,Lk | j. Assume on the contrary that hp2,Lk | j,
then

hp2,L | (k, hp2,L) j | kj, (7.34)

a contradiction to hp2,L ∤ kj. Whence hp2,Lk ∤ j, and so j ∈ S(Ak,Bk).
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In case xk = 1, we have Dk = [i], and so (Ak,Bk) = (∅, {hp,Lk}). We have hp,Lk = hp2,L/(k, hp2,L). Assume
on the contrary that hp,Lk | j, then

hp2,L | (k, hp2,L) j | kj, (7.35)

a contradiction to hp2,L ∤ kj. Whence hp,Lk ∤ j, i.e., j ∈ S(Ak,Bk).

(p < {2, 5} and D = [iii]) We have (A,B) = (∅, {hp2,L}). Thus hp2,L ∤ kj, and so hp2,L ∤ k. Consequently, by
Lemma 4.2, p2 ∤ ρk,L, and so xk ≤ 1.

In case xk = 0, we have Dk = [iii] too, and so (Ak,Bk) = (∅, {hp2,Lk}). We have hp2,Lk = hp2,L/(k, hp2,L).
Assume on the contrary that hp2,Lk | j, then

hp2,L | (k, hp2,L) j | kj, (7.36)

a contradiction to hp2,L ∤ kj. Whence hp2,Lk ∤ j, i.e., j ∈ S(Ak,Bk).

In case xk = 1, we have Dk = [i], and so (Ak,Bk) = (∅, {hp,Lk}). We have hp,Lk = hp2,L/(k, hp2,L). Assume
on the contrary that hp,Lk | j, then

hp2,L | (k, hp2,L) j | kj, (7.37)

a contradiction to hp2,L ∤ kj. Whence hp,Lk ∤ j, i.e., j ∈ S(Ak,Bk).

(p < {2, 5} and D = [iv]) We have (A,B) = ({hp,L},∅). Thus hp,L | kj.

In case xk = 0, we have Dk = [iv] too, and so (Ak,Bk) = ({hp,Lk},∅). We have hp,Lk = hp,L/(k, hp,L).
Since hp,L | kj, it is evident that hp,Lk | j, i.e., j ∈ S(Ak,Bk).

In case xk ≥ 1, we have Dk = [vi], and so (Ak,Bk) = (∅,∅). Whence j ∈ S(Ak,Bk) holds trivially.

(p < {2, 5} and D = [v]) We have (A,B) = ({hp2,L},∅). Thus hp2,L | kj.

In case xk = 0, we have Dk = [v] too, and so (Ak,Bk) = ({hp2,Lk},∅). We have hp2,Lk = hp2,L/(k, hp2,L).
Since hp2,L | kj, it is evident that hp2,Lk | j, i.e., j ∈ S(Ak,Bk).

In case xk = 1, we have Dk = [iv], and so (Ak,Bk) = ({hp,Lk},∅). We have hp,Lk = hp2,L/(k, hp2,L). Since
hp2,L | kj, it is evident that hp,Lk | j, i.e., j ∈ S(Ak,Bk).

In case xk ≥ 2, we have Dk = [vi], and so (Ak,Bk) = (∅,∅). Whence j ∈ S(Ak,Bk) holds trivially.

(p ∈ {2, 5} and D ∈ {[i], [iii]}) We have (A,B) = (∅,∅). Since p ∈ {2, 5}, we have xk = ordp(ρk,L) = 0, and so
Dk = D still. Thus (Ak,Bk) = (∅,∅). Whence j ∈ S(Ak,Bk) holds trivially.

(D = [vi]) We have (A,B) = (∅,∅). We see that irregardless of xk, we always still have Dk = [vi], and so
(Ak,Bk) = (∅,∅). Whence j ∈ S(Ak,Bk) holds trivially.

(p ∈ {2, 5} and D ∈ {[ii], [iv], [v]}, or D = [vii]) We have (A,B) = (∅, {1}). Thus 1 ∤ kj. But this is impossi-
ble, so actually this case cannot happen.

This completes the proof of the invariance property.
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Chapter 8

v-Palindromes in Other Bases

Recall that (v, b)-palindromes are briefly considered in Section 1.8. In fact most of the previously
described considerations with v-palindromes also hold for more general (v, b)-palindromes with almost
the same proofs.

In Section 8.1, we state the periodic phenomenon for (v, b)-palindromes (Theorem 8.1). In Section
8.2, we briefly consider the corresponding concept of the indicator function In for (v, b)-palindromes. In
Section 8.3, we prove that if a (v, b)-palindrome exists, then infinitely many exist (Theorem 1.9). Finally
in Section 8.4, we prove the existence of (v, b)-palindromes in infinitely many bases b.

8.1 The periodic phenomenon in base b

We state the periodic phenomenon for (v, b)-palindromes as follows, recalling thatVb denotes the set of
(v, b)-palindromes.

Theorem 8.1. Let b ≥ 2 and n ≥ 1 be integers such that b ∤ n and n , rb(n). Then there exists an integer ω ≥ 1
such that for all integers k ≥ 1,

n(k)b ∈ Vb if and only if n(k + ω)b ∈ Vb. (8.1)

Then just like Definition 1.9, we make the following definitions.

Definition 8.1. Let b and n be as in Theorem 8.1. An integer ω ≥ 1 satisfying the condition of Theorem
8.1 is called a b-period of n. The smallest b-period of n is called the b-fundamental period of n and denoted
by ω0(n)b. If there exists a k ≥ 1 such that n(k)b is a (v, b)-palindrome, the least such integer is denoted
by c(n)b; otherwise we write c(n)b = ∞. The integer (or∞) c(n)b is called the b-order of n.

Just like in decimal, there is the problem of deriving ω0(n)b and c(n)b.

8.2 The indicator functions In
b

We briefly consider the corresponding concept of the indicator function In for (v, b)-palindromes.

Definition 8.2. Let b and n be as in Theorem 8.1. The b-indicator function for n is the periodic function
In
b : Z→ {0, 1} such that

In
b (k) =

1 if n(k)b ∈ Vb,
0 if n(k)b < Vb,

for k ≥ 1. (8.2)

Then just like Theorem 6.11, we have the following.

Theorem 8.2. Let b and n be as in Theorem 8.1. Then there exist integers q ≥ 0 and 1 ≤ c1 < c2 < · · · < cq and
λ1, λ2, . . . , λq , 0 such that

In
b =

q∑
j=1

λ jIc j . (8.3)
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The general procedure of Section 6.6 can be easily adapted to express the b-indicator function In
b as

a linear combination (8.3) of functions of the form Ia with integer coefficients. Also, just like Theorem
6.14, we have the following.

Theorem 8.3. Let b and n be as in Theorem 8.1. Suppose that

In
b =

q∑
j=1

λ jIc j , (8.4)

where q ≥ 0 and 1 ≤ c1 < . . . < cq and λ1, . . . , λq , 0 are integers. Then

ω0(n)b = lcm{c1, . . . , cq}, c(n)b = inf{c1, . . . , cq}. (8.5)

8.3 One implies infinitely many

We prove that if a (v, b)-palindrome exists, then infinitely many exist as follows.

Theorem 1.9 ([50, Theorem 5]). Let b ≥ 2 be an integer. If there exists a (v, b)-palindrome, then there exist
infinitely many (v, b)-palindromes.

Proof. Suppose that n is a (v, b)-palindrome. We have the b-indicator function In
b for n. That n is a

(v, b)-palindrome means that In
b (1) = 1. Since In

b is periodic, say with ω as a period, we see that

1 = In
b (1) = In

b (1 + ω) = In
b (1 + 2ω) = · · · . (8.6)

Consequently,
n(1)b,n(1 + ω)b,n(1 + 2ω)b, . . . (8.7)

are all (v, b)-palindromes. □

8.4 Existence of (v, b)-palindromes in infinitely many bases

In this section, we prove the existence of (v, b)-palindromes (and therefore infinitely many (v, b)-
palindromes in view of Theorem 1.9) in infinitely many bases b as follows, divided into three subsections.
The proof is based on the humble fact that v(5) = v(6).

8.4.1 First part of the proof

Imagine that we have a base b ≥ 2 for which we would like to show that a (v, b)-palindrome exists.
The first simple try would be to look in the two-digit numbers. That is, numbers (ac)b = ab + c, where
1 ≤ a < c < b are integers. By definition, (ac)b is a (v, b)-palindrome if and only if v((ac)b) = v((ca)b), or
equivalently,

v(ab + c) = v(cb + a). (8.8)

Since v(n) is an additive function, for every integer t ≥ 1 with (t, 30) = 1, we have v(5t) = v(6t). Therefore
(8.8) would hold if for some integer t ≥ 1 with (t, 30) = 1,ab + c = 5t,

cb + a = 6t.
(8.9)

Therefore we have shown the following.

Lemma 8.4. Let b ≥ 2 be an integer. If there exists an ordered triple (a, c, t) of positve integers such that a < c < b
and (t, 30) = 1 and (8.9) holds, then the two-digit number (ac)b is a (v, b)-palindrome. Hence in particular there
exists a (v, b)-palindrome.
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8.4.2 Permissible triples

Based on Lemma 8.4, we make the following definition.

Definition 8.3. We call a triple (a, c, t) in the premise of Lemma 8.4 a b-permissible triple.

Our strategy is to try to find b-permissible triples. The system (8.9) can be written in matrix from as(
b 1
1 b

) (
a
c

)
= t

(
5
6

)
. (8.10)

Solving we have (
a
c

)
= t

(
b 1
1 b

)−1 (
5
6

)
=

t
b2 − 1

(
b −1
−1 b

) (
5
6

)
(8.11)

=
t

b2 − 1

(
5b − 6
−5 + 6b

)
=

( t(5b−6)
b2−1

t(−5+6b)
b2−1

)
. (8.12)

We write them separately as

a =
t(5b − 6)

b2 − 1
, c =

t(−5 + 6b)
b2 − 1

, (8.13)

from which we also see that 0 < a < c. Hence we have proved the following.

Lemma 8.5. Let b ≥ 2 be an integer. For every integer t ≥ 1, there exist unique a, c ∈ Q such that (8.9) holds,
and they are given by (8.13). Moreover, 0 < a < c.

Hence the only possible b-permissible triples are(
t(5b − 6)

b2 − 1
,

t(−5 + 6b)
b2 − 1

, t
)
, (8.14)

for an integer t ≥ 1 with (t, 30) = 1. The only missing conditions to fulfill are

t(5b − 6)
b2 − 1

,
t(−5 + 6b)

b2 − 1
∈ Z, (8.15)

t(−5 + 6b)
b2 − 1

< b. (8.16)

We write

t(5b − 6)
b2 − 1

=
t(5b − 6)/(5b − 6, b2 − 1)
(b2 − 1)/(5b − 6, b2 − 1)

, (8.17)

t(−5 + 6b)
b2 − 1

=
t(−5 + 6b)/(−5 + 6b, b2 − 1)

(b2 − 1)/(−5 + 6b, b2 − 1)
. (8.18)

Hence we see that (8.15) holds if and only if t is a multiple of

f (b) =
[

b2 − 1
(5b − 6, b2 − 1)

,
b2 − 1

(−5 + 6b, b2 − 1)

]
; (8.19)

here we also defined the function f (b) for integers b ≥ 2. Hence we have shown the following.

Lemma 8.6. Let b ≥ 2 be an integer. Then the b-permissible triples are precisely the triples(
t(5b − 6)

b2 − 1
,

t(−5 + 6b)
b2 − 1

, t
)
, (8.20)

where

t ∈ S(b) =
{

t ∈N : (t, 30) = 1, f (b) | t, t <
b(b2 − 1)
−5 + 6b

}
; (8.21)

where we also defined the set-valued function S(b) for integers b ≥ 2.
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8.4.3 Existence of permissible triples

Lemma 8.6 does not promise that a b-permissible triple exists, i.e., S(b) , ∅. However, we have the
following sufficient condition.

Lemma 8.7. Let b ≥ 2 be an integer. If

( f (b), 30) = 1, f (b) <
b(b2 − 1)
−5 + 6b

, (8.22)

then f (b) ∈ S(b), and consequently there is a b-permissible triple.

Since f (b) | b2 − 1, if (b2 − 1, 30) = 1 then ( f (b), 30) = 1. Hence the above lemma can be weakened to
the following.

Lemma 8.8. Let b ≥ 2 be an integer. If

(b2 − 1, 30) = 1, f (b) <
b(b2 − 1)
−5 + 6b

, (8.23)

then f (b) ∈ S(b), and consequently there is a b-permissible triple.

We now consider the condition (b2 − 1, 30) = 1. It is easily shown that this is equivalent to that both
b ≡ 0 (mod 6) and b ≡ 0, 2, 3 (mod 5). In particular, b ≡ 0 (mod 30) is a sufficient condition. Suppose that
k ≥ 1 is an integer, then

f (30k) =
[

(30k)2 − 1
(5(30k) − 6, (30k)2 − 1)

,
(30k)2 − 1

(−5 + 6(30k), (30k)2 − 1)

]
(8.24)

=

[
(30k)2 − 1

(6k − 2, 11)
,

(30k)2 − 1
(5k + 2, 11)

]
, (8.25)

where for the second equality we used a property of the greatest common divisor function to simplify.
Because of the right inequality in (8.23), we want f (30k) to be small. Thus it might be good if we have
(6k − 2, 11) = (5k + 2, 11) = 11, which is easily shown to be equivalent to that k ≡ 4 (mod 11). Whence
assume that k ≡ 4 (mod 11), then

f (30k) =
(30k)2 − 1

11
. (8.26)

On the other hand, the right-hand side of the right inequality in (8.23) becomes

(30k)((30k)2 − 1)
−5 + 6(30k)

. (8.27)

That f (30k) is strictly less than the above quantity is equivalent to

− 5 + 6(30k) < 11(30k), (8.28)

which clearly always holds. The following theorem easily follows from the previous discussion.

Theorem 8.9. Let k ≡ 4 (mod 11) be a positive integer. Then(
−6 + 150k

11
,
−5 + 180k

11
,
−1 + 900k2

11

)
(8.29)

is a 30k-permissible triple. In particular, the two-digit number(
−6 + 150k

11
,
−5 + 180k

11

)
30k

(8.30)

is a (v, 30k)-palindrome.

Hence we have proved the existence of (v, b)-palindromes in infinitely many bases, summarized as
follows.

Theorem 1.10. ([50, Corollary 12]). If b ≡ 120 (mod 330) is a positive integer, then there exists a (v, b)-
palindrome.

In particular, there is a positive density of bases b ≥ 2 for which a (v, b)-palindrome exists.
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Chapter 9

Repeated Concatenations in Residue
Classes

The motivation for this chapter is described in Section 1.9. We restate the problem stated at the end of
that section as follows.

Problem 1.16. Let n ≥ 1, b ≥ 2, a, and m ≥ 1 be integers. How to determine whether in a +mZ there is a
number of the form n(k)b? Or even better, how to find the set of integers k ≥ 1 such that n(k)b ∈ a +mZ?

Algorithm 9.2 is given as an answer to the latter question in the above problem. In Section 9.1,
we rephrase the latter question in Problem 1.16 into congruence notation and list some notation and
conventions to be used in this chapter. In Section 9.2, we first give Algorithm 9.1 for the case when m is
a prime power. In Section 9.3, we give Algorithm 9.2. Finally in Section 9.4, we give a concrete example
using Algorithm 9.2.

9.1 Preliminaries

In Subsection 9.1.1, we rephrase the latter question in Problem 1.16 into congruence notation. In
Subsection 9.1.2, we list some notation and conventions to be used in this chapter.

9.1.1 In congruence notation

Let n ≥ 1, b ≥ 2, a, and m ≥ 1 be integers. Then for integers k ≥ 1, the condition n(k)b ∈ a + mZ is
equivalent to

n(k)b ≡ a (mod m). (9.1)

Algorithm 9.2 takes (n, b, a,m) as input and outputs the set

{k ∈N : n(k)b ≡ a (mod m)}. (9.2)

This set will be denoted by K.

9.1.2 Notation and conventions

We shall use the following notation.

• In a congruence relation modulo m, a notation x−1 denotes an inverse of x modulo m.

• If g is a primitive root modulo m and gcd(x,m) = 1, then indg,m x denotes the index of x to the base
g modulo m.

We also make the following conventions for our algorithms.

• Once an output is reached, the algorithm terminates.

• An output written as a condition on k means that we output the set of all integers k ≥ 1 satisfying
that condition.
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9.2 When m = pα is a prime power

In this section, in the notation of Subsection 9.1.1, we consider the case when m = pα is a prime power.
In Subsection 9.2.1, we start to try to solve (9.1). This preliminary consideration leads to two cases,

considered separately in Subsections 9.2.2 and 9.2.3. Finally in Subsection 9.2.4, we summarize the
previous discussion into Algorithm 9.1.

9.2.1 Preliminary consideration

By (1.9), the congruence (9.1) is equivalent to

n · 1 − bLk

1 − bL ≡ a (mod pα). (9.3)

Put d = gcd(n, pα). If d ∤ a, then there is no solution for k, i.e., K = ∅. Thus assume that d | a. Then (9.3)
is equivalent to

n
d
· 1 − bLk

1 − bL ≡
a
d

(mod
pα

d
),

which is equivalent to
1 − bLk

1 − bL ≡
a
d
·
(n

d

)−1
(mod

pα

d
). (9.4)

Put pα/d = pα1 and let a1 ≡ a/d · (n/d)−1 (mod pα1 ). Then (9.4) is equivalent to

1 − bLk

1 − bL ≡ a1 (mod pα1 ). (9.5)

Suppose that pβ ‖ 1 − bL, then (9.5) is equivalent to

1 − bLk

pβ
≡ a1 ·

1 − bL

pβ
(mod pα1 ),

or equivalently,
1 − bLk ≡ a1(1 − bL) (mod pα1+β),

or equivalently,
bLk ≡ 1 − a1(1 − bL) (mod pα1+β). (9.6)

Put pα1+β = pα2 and let a2 ≡ 1 − a1(1 − bL) (mod pα2 ). Then (9.6) is equivalent to

bLk ≡ a2 (mod pα2 ). (9.7)

If α2 = 0, then K =N. Thus assume that α2 ≥ 1. There will be two cases, according to as whether there is
not or is a primitive root modulo pα2 , and we consider them in Subsections 9.2.2 and 9.2.3, respectively.
Recall that there is no primitive root modulo pα2 if and only if p = 2 and α2 ≥ 3.

9.2.2 In case p = 2 and α2 ≥ 3

In case p = 2 and α2 ≥ 3, the congruence (9.7) is equivalent to

bLk ≡ a2 (mod 2α2 ). (9.8)

If b . a2 (mod 2), then K = ∅. Thus assume that b ≡ a2 (mod 2). We consider the cases b ≡ a2 ≡ 0 (mod 2)
and b ≡ a2 ≡ 1 (mod 2) in the next two paragraphs, respectively.

In case b ≡ a2 ≡ 0 (mod 2), write b = 2δb1, where 2δ ‖ b. If a2 ≡ 0 (mod 2α2 ), then K = {k ∈ N : k ≥
α2/(δL)}. Thus assume that a2 . 0 (mod 2α2 ). Write a2 = 2εa3, where 2ε ‖ a2. Then (9.8) is equivalent to

2δLkbLk
1 ≡ 2εa3 (mod 2α2 ). (9.9)

Since a2 . 0 (mod 2α2 ), we have ε < α2, therefore (9.9) implies that

2δLkbLk
1 ≡ 0 (mod 2ε).
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Hence, we need to have δLk ≥ ε. Now assume that δLk ≥ ε. Then (9.9) holds if and only if

2δLk−εbLk
1 ≡ a3 (mod 2α2−ε). (9.10)

If δLk > ε, then the above congruence cannot hold because the two sides are of opposite parity. Hence,
we need to have k = ε/(δL). If ε/(δL) is not an integer, then K = ∅. Thus assume that ε/(δL) is an integer.
Letting k = ε/(δL), the congruence (9.10) becomes

bε/δ1 ≡ a3 (mod 2α2−ε). (9.11)

If (9.11) holds, then K = {ε/(δL)}, otherwise K = ∅.
In case b ≡ a2 ≡ 1 (mod 2), by the structure of (Z/2α2Z)×, there exist unique integers 0 ≤ µ1, µ2 < 2

and 0 ≤ ν1, ν2 < 2α2−2 such that b ≡ (−1)µ1 5ν1 (mod 2α2 ) and a2 ≡ (−1)µ2 5ν2 (mod 2α2 ). Hence, (9.8) is
equivalent to

(−1)µ1Lk5ν1Lk ≡ (−1)µ2 5ν2 (mod 2α2 ),

which holds if and only if both of the congruences

µ1Lk ≡ µ2 (mod 2), (9.12)

ν1Lk ≡ ν2 (mod 2α2−2) (9.13)

hold. We solve this system of congruences for k. If µ1L is even and µ2 odd, then (9.12) cannot hold, thus
K = ∅. Thus assume that K , ∅. We divide into two cases as follows.

(i) If µ1L is odd: (9.12) is equivalent to k ≡ µ2 (mod 2). We solve (9.13) in the usual way. Put
f = gcd(ν1L, 2α2−2). If f ∤ ν2, then (9.13) cannot hold, thus K = ∅. Thus assume that f | ν2. Then
(9.13) is equivalent to

k ≡ ν2

f

(
ν1L

f

)−1

(mod
2α2−2

f
). (9.14)

If 2α2−2/ f = 1, then (9.14) always hold, and so

K = {k ∈N : k ≡ µ2 (mod 2)}. (9.15)

Thus assume that 2α2−2/ f > 1. Then (9.14) implies that

k ≡ ν2

f

(
ν1L

f

)−1

≡ ν2

f
(mod 2).

If
µ2 ≡

ν2

f
(mod 2), (9.16)

then

K =

k ∈N : k ≡ ν2

f

(
ν1L

f

)−1

(mod
2α2−2

f
)

 .
If (9.16) does not hold, then K = ∅.

(ii) If µ1L and µ2 are both even: (9.12) always hold, so we are left with solving just (9.13), which we
do as in the second to sixth sentences in case (i).

9.2.3 In case p is odd or α2 < 3

We now consider the case when p is odd or α2 < 3. The congruence (9.7) implies that bLk ≡ a2 (mod p).
Consequently, if [p | b] , [p | a2], then K = ∅. Thus assume that [p | b] = [p | a2]. In case [p | b] = [p | a2] =
1, we solve (9.7) in the same way as in the case when p = 2, α2 ≥ 3, and b ≡ a2 ≡ 0 (mod 2), described in
the second paragraph of Subsection 9.2.2. Thus assume that [p | b] = [p | a2] = 0.

Let g be a primitive root modulo pα2 . Then (9.7) is equivalent to

Lk indg,pα2 b ≡ indg,pα2 a2 (mod pα2−1(p − 1)). (9.17)
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So we just have to solve (9.17), which we do in the usual way. Put

f = gcd(L indg,pα2 b, pα2−1(p − 1)).

If f ∤ indg,pα2 a2, then (9.17) cannot hold, thus K = ∅. Thus assume that f | indg,pα2 a2. Then (9.17) is
equivalent to

k ≡
indg,pα2 a2

f

(
L indg,pα2 b

f

)−1

(mod
pα2−1(p − 1)

f
),

and so

K =

k ∈N : k ≡
indg,pα2 a2

f

(
L indg,pα2 b

f

)−1

(mod
pα2−1(p − 1)

f
)

 .
9.2.4 Algorithm when m = pα is a prime power

Up to this point in Section 9.2, we have shown how to determine all the integers k ≥ 1 satisfying (9.1),
when m is a prime power. We now summarize the process into the following algorithm.

Algorithm 9.1. Given integers n ≥ 1, b ≥ 2, a ∈ Z, and a prime power m = pα, this algorithm computes the set
K of integers k ≥ 1 satisfying (9.1).

(I) Put d = gcd(n, pα). If d ∤ a, output K = ∅.

(II) Let the number of base b digits of n be denoted by L. Put pα/d = pα1 and suppose that pβ ‖ 1 − bL. Put
α2 = α1 + β. If α2 = 0, output K =N. Let a1, a2 ∈ Z be such that

a1 ≡
a
d
·
(n

d

)−1
(mod pα1 ),

a2 ≡ 1 − a1(1 − bL) (mod pα2 ).

If p is odd or α2 < 3, go to step (XII).

(III) If b . a2 (mod 2), output K = ∅. If b ≡ a2 ≡ 1 (mod 2), go to step (VII).

(IV) Suppose that pδ ‖ b. If a2 ≡ 0 (mod pα2 ), output k ≥ α2/(δL).

(V) Suppose that pε ‖ a2. If δL ∤ ε, output K = ∅.

(VI) If bε/δ ≡ a2 (mod pα2 ), output k = ε/(δL). Output K = ∅.

(VII) Let 0 ≤ µ1, µ2 < 2 and 0 ≤ ν1, ν2 < 2α2−2 be integers such that

b ≡ (−1)µ1 5ν1 (mod 2α2 ),
a2 ≡ (−1)µ2 5ν2 (mod 2α2 ).

If 2 | µ1L and 2 ∤ µ2, output K = ∅.

(VIII) Put f = gcd(ν1L, 2α2−2). If f ∤ ν2, output K = ∅. If 2 ∤ µ1L, go to step (X).

(IX) Output

k ≡ ν2

f

(
ν1L

f

)−1

(mod
2α2−2

f
).

(X) If f = 2α2−2, output k ≡ µ2 (mod 2).

(XI) If µ2 . ν2
f (mod 2), output K = ∅. Go to step (IX).

(XII) If [p | b] , [p | a2], output K = ∅. If [p | b] = [p | a2] = 1, go to step (IV).

(XIII) Let g be a primitive root modulo pα2 and put f = gcd(L indg,pα2 b, pα2−1(p − 1)). If f ∤ indg,pα2 a2, output
K = ∅.

(XIV) Output

k ≡
indg,pα2 a2

f

(
L indg,pα2 b

f

)−1

(mod
pα2−1(p − 1)

f
).
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9.3 For general modulus m

We now solve the congruence (9.1) for k, for a general modulus m. When m = 1, clearly K = N. Thus
assume that m > 1. Let the prime factorization of m be m = pα1

1 · · · p
αr
r . Then the congruence (9.1) is the

conjunction of
n(k)b ≡ a (mod pα j

j ), (9.18)

for 1 ≤ j ≤ r. For each 1 ≤ j ≤ r, we can solve the above congruence for k by the process of Section 9.2,
i.e., Algorithm 9.1, obtaining a solution set K j. Consequently, K = K1 ∩ · · · ∩ Kr. In actually finding K,
we can use the Chinese remainder theorem. We summarize this into the following algorithm.

Algorithm 9.2. Given integers n ≥ 1, b ≥ 2, a ∈ Z, and m ≥ 1, this algorithm computes the set K of integers
k ≥ 1 satisfying (9.1).

(I) If m = 1, output K =N.

(II) Let the prime factorization of m be m = pα1
1 · · · p

αr
r . For each 1 ≤ j ≤ r, compute the set K j of integers k ≥ 1

satisfying (9.18) by using Algorithm 9.1. Output K = K1 ∩ · · · ∩ Kr.

9.4 A concrete example

In this section, we give a concrete example using Algorithm 9.2. Consider the congruence

18(k)3 ≡ 2 (mod 208). (9.19)

We find the set K of integers k ≥ 1 satisfying the above congruence by using Algorithm 9.2 with n = 18,
b = 3, a = 2, and m = 208. Since m > 1, we go to step (II).

We have the prime factorization 208 = 24 · 13. In Subsections 9.4.1 and 9.4.2, by using Algorithm 9.1,
we find the sets K1 and K2 of integers k ≥ 1 satisfying the congruences

18(k)3 ≡ 2 (mod 24) and 18(k)3 ≡ 2 (mod 13),

respectively. Then, in Subsection 9.4.3, we consider K = K1 ∩ K2.

9.4.1 Computation of K1

We use Algorithm 9.1 with n = 18, b = 3, a = 2, and m = 24 as follows.

(I) Put d = gcd(18, 24) = 2. Since d = 2 | 2 = a, we go to step (II).

(II) Since 18 = 2003, we have L = 3. Since 24/2 = 23, we have α1 = 3. Since 1− bL = 1− 33 = −26, β = 1.
Put α2 = α1 + β = 3 + 1 = 4 , 0. Since

2
2
·
(18

2

)−1

= 9−1 ≡ 1−1 ≡ 1 (mod 23),

1 − 1 · (−26) = 1 + 26 ≡ −5 (mod 24),

we can choose a1 = 1 and a2 = −5. Since p = 2 and α2 = 4 ≥ 3, we go to step (III).

(III) Since 3 ≡ −5 ≡ 1 (mod 2), we go to step (VII).

(VII) Since

b = 3 ≡ (−1)1 · 53 (mod 24),

a2 = −5 ≡ (−1)1 · 51 (mod 24),

µ1 = µ2 = 1, ν1 = 3, and ν2 = 1. Since 2 ∤ 3 = µ1L, we go to step (VIII).

(VIII) Put f = gcd(ν1L, 2α2−2) = gcd(9, 22) = 1. Then f = 1 | ν2. Since 2 ∤ 3 = µ1L, we go to step (X).

(X) Since f = 1 < 22 = 2α2−2, we go to step (XI).
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(XI) Since µ2 = ν2/ f , we go to step (IX).

(IX) Since
1
1
·
(9

1

)−1

≡ 1 (mod 22),

we obtain that k ≡ 1 (mod 4).

Therefore we have computed that

K1 = {k ∈N : k ≡ 1 (mod 4)}.

9.4.2 Computation of K2

We use Algorithm 9.1 with n = 18, b = 3, a = 2, and m = 13 as follows.

(I) Put d = gcd(18, 13) = 1. Since d = 1 | 2 = a, we go to step (II).

(II) Since 18 = 2003, we have L = 3. Since 13/1 = 131, we have α1 = 1. Since 1 − bL = −26, we have
β = 1. Put α2 = α1 + β = 1 + 1 = 2 , 0. Since

2
1
·
(18

1

)−1

≡ 2 · 5−1 ≡ 3 (mod 13),

1 − 3(−26) = 1 + 3 · 26 ≡ 79 (mod 132),

we can choose a1 = 3 and a2 = 79. Since p = 13, we go to step (XII).

(XII) Since [13 | 3] = [13 | 79] = 0, we go to step (XIII).

(XIII) A primitive root modulo 132 is g = 2. We have ind2,132 3 = 124 and ind2,132 79 = 24. Put f =
gcd(3 · 124, 13 · 12) = 12. Since f = 12 | 24 = ind2,132 79, we go to step (XIV).

(XIV) Since
24
12
·
(3 · 124

12

)−1

= 2 · 31−1 ≡ 2 · 5−1 ≡ 3 (mod 13),

we obtain that k ≡ 3 (mod 13).

Therefore we have computed that

K2 = {k ∈N : k ≡ 3 (mod 13)}.

9.4.3 Computation of K

In Subsections 9.4.1 and 9.4.2, we computed respectively that K1 = {k ∈ N : k ≡ 1 (mod 4)} and
K2 = {k ∈N : k ≡ 3 (mod 13)}. By the Chinese remainder theorem, K = K1∩K2 = {k ∈N : k ≡ 29 (mod 52)}.
Therefore we showed that, for integers k ≥ 1, the congruence (9.19) holds if and only if k ≡ 29 (mod 52).
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Chapter 10

Conclusion

We have introduced the new concept of ( f , b)-palindromes in Definition 1.5. Then we focused on
the special case of v-palindromes, proving the periodic phenomenon (Theorem 1.2). In investigating this
phenomenon more closely, we developed the general procedure of Section 6.6. We also defined the concept
of the type of a v-palindrome and proved the invariance property (Theorem 7.1) about this concept. In
Chapter 8, we considered more general (v, b)-palindromes, proving their existence in infinitely many
bases b (Theorem 1.10).

An isolated problem on repeated concatenations in residue classes was considered in Chapter 9.
Also, because the derivation of the fundamental period ω0(n) of an integer n as in Theorem 1.2 belongs
naturally to the more general theme of the derivation of the fundamental period of an arbitrary periodic
function Z→ C, we included a short treatment, Chapter 5, on periodic functions.

In Section 10.1, we collect some conjectures and problems on (v, b)-palindromes. In Section 10.2, we
describe variations of the congruence (10.3) which might be interesting to solve. Finally in Section 10.3,
we describe how the research presented in this dissertation might be generalizable from v-palindromes
to more general ( f , b)-palindromes.

10.1 Conjectures and problems

We collect some conjectures and problems on (v, b)-palindromes in Subsections 10.1.1 and 10.1.2, repec-
tively.

10.1.1 Conjectures

In the short note [45], three conjectures on v-palindromes have been proposed by commentators after
extensive computer experiment. We state two of them as follows.

Conjecture 10.1. There does not exist a prime v-palindrome.

Conjecture 10.2. There are infinitely many v-palindromes n such that both n and r(n) are squarefree.

The above are only about v-palindromes, but the corresponding statement for (v, b)-palindromes can
also be considered.

In Table 6.1, we had c(n) = ∞ for 17 out of the 27 values of n. In fact it can be shown that all the
numbers in (1.36) have c(n) = ∞, so in particular there are infinitely many such numbers. Although it
might be slightly bold, we make the following conjecture.

Conjecture 10.3. Let S = {n ∈ N : 10 ∤ n, n < r(n)} and let T = {n ∈ S : c(n) = ∞}. Then the asymptotic
density of T in S is 1.

10.1.2 Problems

While Theorem 2.2 gives an exact formula for the number of b-palindromes no greater than an integer
n ≥ 1, i.e., Pb(n), the same can be considered for (v, b)-palindromes, namely the following.

Problem 10.4. Let b ≥ 2 be an integer. Is there an exact formula for the number of (v, b)-palindromes no
greater than an integer n ≥ 1, i.e.,Vb(n)? If not, how can it be approximated?
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From 199 till 575 are 377 consecutive positive integers each not a v-palindrome. Just as consecutive
composite numbers can be aribitrarily long, we propose the following problem.

Problem 10.5. Let b ≥ 2 be an integer. Can consecutive positive integers each not a (v, b)-palindrome be
arbitrarily long?

While Theorem 1.10 says that a (v, b)-palindrome exists in every base b ≡ 120 (mod 330), it is
still unsettled whether a (v, b)-palindrome exists in every base b. Therefore we propose the following
problem.

Problem 10.6. For which bases b ≥ 2 does there exist a (v, b)-palindrome?

For the above problem, we provide a possible approach as follows. The proof of Theorem 1.10 in
Section 8.4 was based on the equality v(5) = v(6). It is conceivable that the same method basing on other
common values of v will find other bases b for which a (v, b)-palindrome exists. For instance, we have

v(5) = v(6) = v(8) = v(9), (10.1)
v(7) = v(10) = v(12) = v(18). (10.2)

Perhaps exploiting this method will lead to resolving the existence of a (v, b)-palindrome in all bases b.

10.2 Variations

Throughout this section we fix integers n ≥ 1, b ≥ 2, a, and m ≥ 1 and let the number of base b digits n
have be denoted by L. We describe variations of the congruence

n(k)b ≡ a (mod m) (10.3)

solved for integers k ≥ 1 in Chapter 9 which might also be interesting to solve. Recall that consideration
of the above congruence was inspired by the sequence

18, 1818, 181818, . . . (10.4)

of v-palindromes. By restricting in Theorem 1.8, the palindrome ρ to have only the first and last digits
being 1 and at least one 0 in between, we obtain the sequence

1818, 18018, 180018, . . . (10.5)

of v-palindromes. Just as (10.4) inspired consideration of the congruence (10.3), the sequence (10.5)
inspires consideration of another congruence which we describe using the following notation.

Notation 10.1. For integers k ≥ 0, denote by n[k]b the positive integer whose base b digits are those of n,
followed by k digits of 0, and then another n again.

Then we can try to solve the congruence

n[k]b ≡ a (mod m)

for integers k ≥ 0. Conceivably in a similar way, consideration of other congruences can be inspired, by
restricting in Theorem 1.8, the palindrome ρ to a special form. Perhaps with the most generality, we can
try to solve the congruence

nρ ≡ a (mod m)

for ρ being a b-palindrome all of whose digits are 0 and 1 and such that between any pair of consecutive
digits of 1 there are at least L−1 digits of 0. This restriction on the number of digits of 0 between any pair
of consecutive digits of 1 is imposed so that in the multiplication nρ, “the copies of n do not overlap”. In
contrast, this restriction is not imposed in Theorem 1.8, and we see that in the multiplication 18ρ, “the
copies of 18 overlap to create digits of 9”.
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10.3 Generalization

In this dissertation, we started with the definition of v-palindromes and developed a sort of “theory”
consisting of the periodic phenomenon, the general procedure, and the invariance property. However,
we have always been only considering v-palindromes throughout. As proposed by Professor Yasuo
Ohno, it would be an interesting theme of research to explore how this “theory” or parts of it could hold
for other ( f , b)-palindromes. We give the following notation.

Notation 10.2. For a function f : N → C and integer b ≥ 2, the set of ( f , b)-palindromes is denoted by
P( f , b).

Then, for any particular pair ( f , b), the corresponding statement of the periodic phenomenon (Theo-
rem 1.2) for ( f , b)-palindromes is as follows.

Statement( f , b). Let n ≥ 1 be an integer with b ∤ n and n , rb(n). There exists an integer ω ≥ 1 such that
for all integers k ≥ 1,

n(k)b ∈ P( f , b) if and only if n(k + ω)b ∈ P( f , b). (10.6)

Notice that this statement is a function of the pair ( f , b). Consequently, what Theorem 1.2 is saying
is that Statement(v, 10) is true. As a first step in the exploration, we propose the following problem.

Problem 10.7. Try to characterize those pairs ( f , b) for which Statement( f , b) is true.

In fact, recently I became the mentor of a small group of students who are reading my papers
[48, 46, 49, 50, 47] and from there finding topics to research. One of them has already had much
consideration about the above problem. It is my hope that ( f , b)-palindromes can eventually become,
like the usual palindromes, a new kind of widely researched entity.
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